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ABSTRACT

Some financial time series exhibit short periods of explosive local trends fol-

lowed by an abrupt decline. Such trends can be a result of speculative bubble

phenomena. A bubble is formed when investors’ future profits expectations influ-

ence the present market value of securities. Mixed causal-noncausal autoregressive

processes (MAR) are able to better capture such behavior in comparison to stan-

dard causal ARIMA models. In the first part of this work we propose an alternative

distribution (Voigt) to model the disturbances in the MAR processes. The Voigt,

a convolution of Gaussian and Cauchy distributions, is used in atomic and molec-

ular spectroscopy, and is more flexible than other heavy-tail distributions. The

second part of this work extends the MAR models to Markov switching mixed

causal-noncausal autoregressive processes (MSMAR) with Cauchy distributed er-

rors to account for changes in regime at different times. Parameter estimation

of both models MAR with Voigt errors and MSMAR is performed in a Bayesian

framework via MCMC algorithms. The models are tested for performance with a

simulation study and then applied to Bitcoin/USD exchange rate data.
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CHAPTER 1

Introduction

Bubble effects have been known primarily as a financial phenomenon. In the

New Palgrave: A Dictionary of Economics a bubble is defined as:

“A sharp rise in the price of an asset or a range of assets in a continuous

process, with the initial rise generating expectations of further rises and attracting

new buyers - generally speculators interested in profits from trading in the asset

rather than its use or earnings capacity.” [1]

Peter M. Garber provided an overview of several bubbles in his “Famous First

Bubbles” paper [2]. One of them and arguably the most famous is “tulipmania”

which took place in Netherlands during 1634-1637. Rare tulip varieties were sold

at high prices on the market created by flower growers and those who enjoyed

tulips. By 1636 the rapid price growth of the flowers attracted people who thought

that they could make money buying and selling bulbs. This resulted in a further

price increase during the period between November 1636 and January 1637. At

this time, the price of one rare tulip bulb exceeded the annual salary of a wealthy

person. The rapid price growth got to the point when buyers refused to pay for

tulips. In February 1637 the market suddenly crashed. This resulted in economic

hardship in Netherlands for many years. There are many examples of bubbles. An

overview of the Mississippi Bubble (1719 - 1720) and the South Sea Bubble (1720)

can be found in [2].

It is important to study bubbles as they have a significant effect on human

life and national economy, as it can be seen from “tulipmania” example.

According to [3] there are three parts in a bubble phenomenon: an object

that lies in the center of the phenomenon, and two object’s attributes which are
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called external and driving values. In the tulipmania example, the object is the

tulip. The external value of the tulip is its market value, the price payed for the

bulb. The tulip’s driving value is the people’s expectation of the profit that can be

made by reselling it in the near future. The external value and driving value are

not related to the “true” value of a tulip, which is called a “fundamental value”.

A bubble appears when a positive feedback loop is formed between the object’s

driving value and its external value [3]. In other words, people’s expectations of

future profits influence the present market value of an object and vice-versa. A

feedback loop is a fundamental notion in system theory that emerges in fields such

as organizational theory, electrical engineering, epidemiology, etc. [3].

Mixed causal-noncausal autoregressive processes take into account the posi-

tive feedback by allowing present values to depend explicitly on future and past

values. In contrast, purely causal autoregressive processes force the variable to

depend only on past values. Due to explicit dependence on future the noncausal

autoregressive processes often provide a better fit to economic time series where

future expectations play a central role, such as bubble phenomena, in compari-

son to standard purely causal ARMA models [4]. Several authors attempted to

model bubble effects by mixed and noncausal autoregressive processes. In [5] a Bit-

coin/USD exchange rate was modeled by noncausual autoregressive process with

Cauchy distributed errors. An adequacy of the noncausal Cauchy AR model on

Nasdaq composite price index was tested in [6]. As an alternative to Cauchy, this

work will introduce Voigt distribution to model disturbances of the MAR processes.

An attempt to model noncausal dynamics by nonlinear method such as neural

network can be found in [7].

Regular MAR models are not flexible enough to account for regime switch-

ing in temporal dependence. To extend the regular MAR models we propose
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a Markov-switching mixed causal-noncausal autoregressive processes (MSMAR),

that take into account the regime switching in the correlation structure. In this

work the regime switching of the MSMAR is modeled in the MAR coefficients and

parameters of the error distributions but not in the level, although it can be also

incorporated in the model. A similar process that tries to model the dependence

of the parameters of the noncausal processes on time was proposed by [8] and is

called the ”time-varying AR” (TVP-AR).

This work will address performance of the proposed models by comparing

MAR with Voigt distributed errors (MARV) to MAR with Cauchy distributed

errors (MARC). The performance of MSMAR will be compared to MARC models

by analyzing the Bitcoin/USD data [5].

List of References

[1] J. J. Siegel, “What is an asset price bubble? an operational definition,” Euro-
pean financial management, vol. 9, no. 1, pp. 11–24, 2003.
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vol. 4, no. 2, pp. 35–54, 1990.
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International Journal of General Systems, vol. 37, no. 5, pp. 627–635, 2008.

[4] C. Gouriéroux, J.-M. Zakoian, et al., “Explosive bubble modelling by noncausal
process,” Tech. Rep., 2013.

[5] A. Hencic and C. Gouriéroux, “Noncausal autoregressive model in application
to bitcoin/usd exchange rates,” in Econometrics of Risk. Springer, 2015, pp.
17–40.

[6] C. Gouriéroux and J.-M. Zakoian, “Local explosion modelling by noncausal
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[7] Y. Ouyang and H. Yin, “Time series prediction with a non-causal neural net-
work,” in Computational Intelligence for Financial Engineering & Economics
(CIFEr), 2104 IEEE Conference on. IEEE, 2014, pp. 25–31.

[8] M. Lanne and J. Luoto, “A noncausal autoregressive model with time-varying
parameters: An application to us inflation,” 2013.
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CHAPTER 2

Mixed Causal-Noncausal Autoregressive Processes with Voigt Errors
(MARV)

As was mentioned in chapter 1, the mixed causal-noncausal autoregressive

processes (MAR) allow present observations to depend on future as well as the

past values, making it more flexible in modeling financial time series where future

expectations are believed to have an effect on present observations. More specif-

ically, an MAR of order (s, r) is a discrete-time stochastic process {yt : t ∈ Z}

defined as:

Ψ(L−1)Φ(L)yt = εt, εt
i.i.d.∼ fε(·|ηηη) (1)

Where L and L−1 are the “lag-backward” Lyt = yt−1 and the “lag-forward”

L−1yt = yt+1 operators, respectively. The disturbances εt are assumed to be a

white noise with some distribution fε(·|ηηη) parameterized by ηηη. In order for the

process (1) to be stationary the roots of the noncausal Ψ(L−1) = 1−
∑s

j=1 ψjL
−j

and causal Φ(L) = 1 −
∑r

j=1 ψjL
j polynomials must lie outside of the unit cir-

cle [1]. The noncausal and causal polynomials can be inverted and the MAR

process (1) can have an infinite two-sided moving average representation in terms

of the disturbances:

yt =
εt

Ψ(L−1)Φ(L)
=

∞∑
k=−∞

ωkεt−k

The weighted average at time t is over the disturbances at current, past and future

times. The errors εt can have a distribution with infinite variance and expectation

[2]. Noncausal and causal parameters of the MAR process (1) are non identifiable in

the case when disturbances {εt} are Gaussian white noise [1], see [3] for discussion.

Purely causal or (backward looking) autoregressive processes, as considered in

Box-Jenkins methodology [4], are widely used in time series analysis and are special

4



cases of the mixed AR processes. This can be easily seen by setting the noncausal

coefficients ψ to 0 in equation 1, so it reduces to a purely causal autoregressive

process,

Yt =

p∑
j=1

φjYt−j + εt, εt
i.i.d.∼ fε(·)

On the other hand, when all of the φ coefficients are equal to 0, the process

(1) reduces to a purely noncausal (forward looking) autoregressive process,

Yt =
d∑
l=1

ψlYt+l + εt, εt
i.i.d.∼ fε(·)

2.1 Voigt Distribution

As was mentioned previously, the causal and noncausal coefficients of the

MAR processes are non identifiable under the Gaussian assumption for the errors.

Because of the explosive behavior of bubbles and the identifiability problem a

typical choice for the distribution of errors found in the literature is Cauchy and

t-distribution, see for example [2], [1], [5]. In this work we want to compare the

performance of MAR with Voigt errors to the MAR with Cauchy errors.

Voigt distribution is named after Woldemar Voigt, a German physicist. It is

used in physics for atomic and molecular spectroscopy [6]. In particular, the Voigt

line shape is used to model the distribution of photoelectron energies in x-ray

photoelectron spectroscopy (XPS) where the data generating process is assumed

to be a convolution of an instrumental function and the intrinsic line broadening

mechanism.

Specifically, let X1 ∼ G(µ, σ) and X2 ∼ C(0, γ) be independent Gaussian and

Cauchy distributed random variables, then a sum of X1 and X2, X̃ = X1 + X2 is

Voigt distributed. It’s density has the following form:

V(x̃; l, σ, γ) = fC ? fG =

∫ ∞
−∞

fC(x; l, γ)fG(x̃− x; 0, σ)dx, for x̃ ∈ R (2)

5



Where fC(x; l, γ), fG(x̃− x; 0, σ) are Cauchy and Gaussian densities, respectively.

Since the Cauchy and Gaussian densities are normalized, the corresponding con-

volution (Voigt) is also normalized.

The integral (2) is a real part of the Faddeeva function [7] ω(z) evaluated at

z = x̃−l+iγ
σ
√
2

,

V(x̃; l, σ, γ) =
Re(ω(z))

2π

where

ω(z) = e−z
2

(
1 +

2i√
π

∫ z

0

et
2

dt

)
(3)

The Faddeeva (3) and Voigt(2) functions do not have an analytical expression but

can be numerically approximated, see [8], [9], [10], [11], [12] for discussion.

Similarly to the Cauchy, the Voigt distribution does not have finite moments.

The parameter l can be interpreted as the location of the maximum of the density.

In the physics literature, as a measure of the spread of the Voigt distribution is

taken a half-width at half-maximum (HWHM).

The Voigt density as a convolution of C(0, 1) and G(0, 1) is shown in figure 1a

and it can be seen that it is lower than Gaussian and Cauchy near the center of

the distribution and larger than Cauchy and Gaussian in it’s tails. Far in the tails

the difference between Cauchy and Voigt is negligible. The reason for such behav-

ior is that the density of the Gaussian distribution decreases exponentially away

from the center, so the contribution of the Gaussian density becomes negligible in

comparison to the tails of Cauchy.

The possible advantage of using Voigt distribution can be understood from

Figures 1c, 1d, 1b. What determines the shape of the Voigt distrbution is the ratio

between the Gaussian standard deviation σ and the Cauchy scale γ, that is r = σ
γ

[6]. It can be seen that for r � 1 the Voigt distribution is approaching Gaussian

6



(a) V(0, 1, 1) and it’s components C(0, 1) and
G(0, 1)

(b) Shape of the Voigt distribution for vari-
ous values of r.

(c) Density of V(0, 1, 0.1) and it’s component
and G(0, 1)

(d) Density of V(0, 0.2, 1.0) and it’s compo-
nent C(0, 1)

Figure 1: Shapes of the Voigt density.
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and for values of r � 1 the Voigt distribution is approaching Cauchy. Such

property of the Voigt density makes it more flexible than Cauchy and Gaussian in

modeling distribution of disturbances.

2.2 Estimation of the Parameters of the MAR Processes

In this work parameter estimation was performed within Bayesian framework.

An alternative method for parameter estimation of the MAR processes using max-

imum likelihood can be found in [13].

Bayesian formalism requires specification of an observational equation which is

called ”likelihood” if viewed as a function of the parameters and prior distributions

which express our uncertainty about the parameters of interest before the data is

observed.

Combining the distribution of errors and the definition of the MAR process

(1), the joint likelihood of the mixed causal-noncausal processes has the following

form:

p(yyy, |ψψψ,φφφ,ηηη) =
T∏
t=1

fε(Ψ(L−1)Φ(L)yt|ηηη) (4)

where ψ = (ψ1, ψ2, ..., ψs)
T and φ = (φ1, φ2, ..., φr)

T are vectors of noncausal and

causal autoregressive coefficients respectively. The distribution of disturbances is

parameterized by η. Due to the dependence of the present observations on the past

and future observations in MAR(s, r), the error terms εt can not be computed for

the first r and last s observations, unless the marginal distribution is available at

these time points. For a relatively long time series this problem can be solved by

approximating the likelihood (4) by conditioning on initial r and last s observations

leading to the so called conditional likelihood:

p(y|ỹ,ψ,φ,η) =
T−s∏
t=r+1

fεt(Ψ(L−1)Φ(L)yt|η) (5)

8



where, ỹ is the vector of the first r and last s observations. In case of the Voigt

distributed errors εt the conditional likelihood (5) becomes:

p(y|ỹ,ψ,φ,η) =
T−s∏
t=r+1

Vεt(Ψ(L−1)Φ(L)yt; 0, σ, γ) (6)

The unknown parameters of the MAR process are causal φφφ and noncausal ψψψ

coefficients and a vector of nuisance parameters ηηη = (σ, γ) that parameterize the

Voigt distribution. A prior specification for parameters of the MAR p(ψψψ,φφφ,ηηη) com-

pletes the Bayesian specification and leads to the following posterior distribution:

p(ψψψ,φφφ,ηηη|{yt}T−st=r+1) ∝ p(y|ỹ,ψ,φ,η)p(ψψψ,φφφ,ηηη) (7)

The prior in (7) is assumed to be have an independent structure so it factorizes as

p(ψψψ,φφφ,ηηη) = p(ψψψ)p(φφφ)p(ηηη).

As mentioned previously the Voigt distribution does not have an analytic ex-

pression, so conjugate priors are not available. A particular choice of priors is based

on the range that the parameters can take as well as computational convenience.

In this work the prior uncertainty in causal and noncausal parameters is reflected

by the multivariate normal distributions, that is:

ψ ∼ N (0, σ2
ψI) (8)

φ ∼ N (0, σ2
φI) (9)

In order for the MAR process to be stationary, solutions of the causal and noncausal

polynomials must lie outside of the unit circle. Thus the priors must be chosen in

such a way that they put a high probability mass on a range of causal and noncausal

parameters that lead to stationary MAR processes. In the case of MAR(1, 1) a

reasonable prior for both causal and noncausal coefficients would be normal with

mean µ = 0 and variance σ2 = 0.25 that puts a 95% of the probability mass on

the range of values between -0.980 and 0.980.
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Since σ and γ must be strictly positive that is η = (σ, γ)T ∈ R2
>0, reasonable

priors are Gamma distributions with shapes ν1, α1 and rates ν2, α2:

σ ∼ G(ν1, ν2) (10)

γ ∼ G(α1, α2) (11)

Particular values of the hyperprior parameters ν1, α1 and ν2, α2 are chosen in such

a way that the prior puts a hight probability mass on a reasonable range of values.

For example, if we believe that the reasonable value for the Gaussian standard

deviation is 1 with an uncertainty in this value of about 0.25, then by choosing

ν1 = 16 and ν2 = 16 a 95% of the probability mass would be concentrated on the

range of values between 0.5716 and 1.5463.

Combining the priors (8) - (11) and the likelihood (6) we are interested in

estimating the following posterior distribution:

p(ψ,φ, σ, γ|{yt}T−sr+1 ) ∝
T−s∏
t=r+1

Vεt(εt|0, σ, γ, ỹyy)N (ψψψ|·)N (φφφ|·)G(σ|·)G(γ|·) (12)

Since the Voigt density does not have a closed form, it is not possible to get

an analytic expression for the posterior (12), although it can be approximated by

Monte Carlo methods. In particular, a hybrid of Metropolis, Metropolis-Hastings

and blocked-Gibbs algorithms can be used to sample from the posterior distribution

(12). The dimensionality of the joint posterior distribution (12) can be broken by

considering the following full conditional distributions:

10



p(ψ|·) ∝
T−s∏
t=r+1

Vεt(εt|0, σ, γ, ỹyy)N (ψψψ|0,Λψ) (13)

p(φφφ|·) ∝
T−s∏
t=r+1

Vεt(εt|0, σ, γ, ỹyy)N (φφφ|0,Λφ) (14)

p(σ|·) ∝
T−s∏
t=r+1

Vεt(εt|0, σ, γ, ỹyy)G(σ|ν1, ν2) (15)

p(γ|·) ∝
T−s∏
t=r+1

Vεt(εt|0, σ, γ, ỹyy)G(γ|α1, α2) (16)

Sampling from the full conditionals (13) - (16) follows the structure of a blocked

Gibbs algorithm. Unfortunately none of the full conditional distrubtions (13) -

(16) have a closed form, thus a Metropolis algorithm with normal proposals can

be used to sample from (13), (14) and Metropolis-Hastings to sample from (15),

(16). Reasonable proposal distributions for σ and γ would be Gamma.

The MAR processes have two free parameters, noncausal and causal orders

s and r that require selection. In this work, the selection of s and r is based on

minimizing the Deviance Information Criterion (DIC). The DIC tries to estimate

the out-of-sample predictive performance of the model. It can only provide an

insight about the model performance relative to another model. There are several

defenitions of the DIC, the one that is used in this work can be found in [14] and

is defined as:

DIC = Eη(D(yyy|ηηη)) + 2pd

pd =
1

2
V̂ ar(D(yyy|ηηη)) (17)

where D(yyy) = −2 log(p(yyy|ηηη)) is deviance and pd can be interpreted as the effective

number of parameters, or a measure of complexity. The advantage of defining the

measure of complexity pd as in (17) is discussed in [15].
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Given the number of posterior draws B of all the unknown parameters

{θθθ1, θθθ2, . . . , θθθB}, it is straightforward to estimate the DIC,

D̄(yyy) =
1

B

B∑
l=1

D(yyy,θθθb) (18)

DIC = D̄(yyy) +
1

(B − 1)

B∑
b=1

(D̄(yyy)−D(yyy,θθθb))2 (19)

In case of the conditional Voigt likelihood (6) the deviance becomes:

D(yyyT−sr+1 , θθθ
b) = −2

T−s∑
t=r+1

log(Vεt(Ψb(L−1)Φb(L)yt; 0, σb, γb)) (20)

Finally, the DIC can be calculated by plugging eq. (20) into eq. (18) and (19).

2.3 Simulation of the MAR Processes

The simulation of the mixed autoregressive processes is based on partial frac-

tion decomposition [2]. The MAR can be decomposed into two unobserved pro-

cesses. Let ut = Φ(L)yt and vt = Ψ(L−1)yt, the equation (1) can be rewritten

as:

Ψ(L−1)ut = εt

Φ(L1)vt = εt

(21)

The process ut is yt-causal and εt-noncausal, the process vt is yt-noncausal

and εt-causal. Mixed AR process yt can be simulated by recovering from the

unobserved components ut and vt. Using partial fraction decomposition and the

unobserved processes {ut} and {vt}, the mixed AR processes has two equivalent

representations which are useful for simulations:

1. Causal representation

yt = Lsg1(L)vt + g2(L)ut

2. Noncausal representation

yt = f1(L
−1)vt + L−rf2(L

−1)ut

12



For example, using the causal representation of the mixed AR processes, the

simulation of the MARV(1, 1) can be performed in the following steps [2]:

1. For t = t0, · · · , T , where T is sufficiently large, sample:

εt ∼ V(0, σ, γ)

2. For t = T − 1, T − 2, · · · , t0 compute:

ut = ψut+1 + εt

3. For t = t0 + 1, · · · , T compute:

vt = φvt−1 + εt

4. For t = t0 + 1, · · · , T − 1, obtain yt by computing:

yt =
1

1− ψφ
(ut + φvt−1)

2.4 Simulation Study

The simulation study is first performed on the data that was simulated from

the MAR(1, 1) process with V(0, 1, 1) errors, to asses the behavior of the MARV

models under the model misspecification and to check if the DIC will be able to

select the true model. The shape of the V(0, 1, 1) can be seen from the figure

1a and is a convolution of the standard Gaussian and standard Cauchy densities.

More specifically, for this simulation study the true data generating process is the

following:

(1− 0.85L−1)(1− 0.25L)yt = ε, ε ∼ V(0, 1, 1) (22)

Assuming that the true parameters of the process (22) are unknown the models

that we choose to fit are:
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1. MARV(0, 1) which is a regular causal AR with Voigt distributed errors,

(1− φL)yt = ε (23)

2. A purely noncausal AR process, MARV(1, 0)

(1− ψL−1)yt = ε (24)

3. Mixed causal-noncausal AR processes, MARV(1, 1)

(1− φL)(1− ψL−1)yt = ε (25)

4. A higher, or second order mixed causal-noncausal AR process, MARV(1, 2)

(1− ψL−1)(1− φ1L− φ2L)yt = ε (26)

After running an MCMC algorithm, the estimated parameters of the models (23)

- (26) along with 95% quantile based coverage intervals are shown in table 1. The

smallest DIC corresponds to an over parameterized model MARV(1, 2), but the

difference with the DIC of the MARV(1, 1) is very small. Also, one of the estimated

causal parameter φ2 of the MARV(1, 2) model is not significantly different from

0. Based on these observations the best model would be MARV(1, 1) which was

the true data generating process. Also, notice that all estimated coverage intervals

include the true values of the parameters. The simulated data along with the best

fit MARV(1, 1) and the estimated residuals are shown in figure 2.

Parameter ψ1 ψ2 φ1 φ2 γ σ lnL DIC

MARV(0,1) - - 1.177 - 1.433 1.352 -3035.629 6074.325
(1.175 1.179) (1.232 1.639) (1.069 1.625) (-3038.855 -3034.258)

MARV(1,0) 0.849 - - - 1.221 1.171 -2872.608 5747.732
(0.848 0.851) (1.054 1.396 ) (0.933 1.412) (-2875.437 -2871.327)

MARV(1,1) 0.849 - 0.249 - 0.958 1.131 -2673.323 5350.978
(0.848 0.851) (0.246 0.252) (0.812 1.118) (0.929 1.326) (-2677.059 -2671.475)

MARV(1, 2) 0.849 - 0.001 0.249 0.959 1.133 -2671.654 5349.427
(0.847 0.851) (-0.002 0.005) (0.246 0.252) (0.811 1.107) (0.925 1.329) (-2675.884 -2669.389)

Table 1: Posterior means and 95% quantile based coverage intervals for the pa-
rameters of various MAR models with Voigt errors fitted to the simulated data.
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(a) Simulated MARV(1,1) with parameters
ψ = 0.85, φ = 0.25, σ = 1, γ = 1 and the
best model fit.

(b) Time series of the residuals of the
MARV(1, 1) fit.

(c) A histogram of the residuals and an
estimated Voigt density with 95% quantile
based coverage interval.

(d) An autocorrelation function of the resid-
uals.

Figure 2: MARV(1, 1) fit and the residuals.

Recall from section 2.1 that the shape of the Voigt density depends on the ratio

between the Gaussian standard deviation and Cauchy scale. In the next simulation

study we are trying to check how well would the Cauchy density approximate the

Voigt in two extreme cases when the Gaussian standard deviation is much greater

than the Cauchy scale r � 1 and vise-versa r � 1. For the first scenario, the data

was generated from the MARV(1, 1) process with the errors distributed as V(0, 2,

0.1). For the second scenario the data was generated with the errors distributed
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according to V(0, 0.2, 2). The values of the causal and noncausal coefficients in

both cases are ψ = 0.856, φ = 0.732. The datasets were fitted with the MARV(1,

1) and MARC(1, 1) models. The summary of the posterior distributions of the

parameters and the DIC, are shown in tables 2 - 3. The visual summaries of the

MARV and MARC fits are presented in figure 3.

From the estimates of the DIC criterion, the MARV fits the data better when

the simulated process has the Gaussian standard deviation much greater than the

Cauchy scale. On the other hand, the MARC model fits the data equally well

when the Cauchy scale is much greater than the Gaussian standard deviation in

the simulated process. The reason for such performance can be understood by vi-

sually inspecting the “true” distribution of errors and the corresponding estimated

densities presented in figures 3c - 3d. Regardless of the distribution of errors, the

causal and noncausal parameters estimates under the MARC and the MARV mod-

els are very similar. In the first case the DIC selects the true MARV(1, 1) model,

as expected. In the second case the DIC selects the MARC(1, 1) model, since the

Cauchy density has fewer parameters and acts as a very good approximation to

the Voigt density for r � 1.

Parameter ψ1 φ1 γ σ lnL DIC

MARV(1,1) 0.854 0.739 0.133 1.985 -2233.475 4471.418
(0.839 0.869) (0.720 0.758 ) (0.072 0.211) (1.869 2.105) (-2237.111 -2231.641)

MARC(1,1) 0.861 0.745 1.287 - -2366.979 4737.151
(0.844 0.880) (0.729 0.763) (1.186 1.392) - (-2370.284 -2365.592)

Table 2: Posterior means and 95% quantile based coverage intervals for the pa-
rameters of the MAR(1, 1) models for the simulated data with the distribution of
errors V(0, 2, 0.1).
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Parameter ψ1 φ1 γ σ lnL DIC

MARV(1,1) 0.856 0.732 2.062 0.223 -3246.622 6496.88
(0.856 0.857) (0.731 0.732) (1.879 2.254) (0.073 0.438) (-3250.283 -3245.078)

MARC(1,1) 0.856 0.732 2.078 - -3246.571 6496.57
(0.856 0.857) (0.731 0.732) (1.899 2.275) - (-3249.834 -3245.038)

Table 3: Posterior means and 95% quantile based coverage intervals for the pa-
rameters of the MAR(1, 1) models for the simulated data with the distribution of
errors V(0, 0.2, 2)

(a) Simulated MARV(1,1) with parameters
ψ = 0.856, φ = 0.732, σ = 2, γ = 0.1 and
the MAR fits.

(b) Simulated MARV(1,1) with parameters
ψ = 0.856, φ = 0.732, σ = 0.2, γ = 2 and
the MAR fits.

(c) A histogram of the true disturbances
with estimated densities of the MARV and
MARC models for the case when r � 1.

(d) A histogram of the true disturbances
with estimated densities of the MARV and
MARC models for the case when r � 1.

Figure 3: Simulation study of the MARV processes with the extreme ratios of r.
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2.5 Analysis of the Bitcoin/USD Exchange Rate Data

In this section, the MARV and MARC models are applied to the Bitcoin/USD

exchange rate, in order to compare their performance on a real data. The Bit-

coin(BTC) is an electronic currency created by Satoshi Nakamoto and is one of

the so called “cryptocurrencies”. These type of electronic/alternative currencies

are named after the fact that the cryptography is used to secure the on line transac-

tions and make them anonymous. The list of cryptocurrencies is quite exhaustive

and includes: Auroracoin, Bitcoin, Burstcoin, Litcoin, etc. The bitcoins can be

purchased with the US dollars or other currencies on virtual exchange markets. A

very detailed overview of the bitcoins can be found in [1].

We analyzed the Bitcoin/USD exchange rate for a period over 02/20/2013

-07/20/2013 as in [1]. The data consists of 150 observations of the daily closing

values and is shown in figure 4. 1

Figure 4: Bitcoin/USD exchange rate over a period of 02/20/2013 -07/20/2013

1The data was downloaded from https://www.quandl.com/
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It can be seen from figure 4 that the exchange rate series have a global trend

with locally explosive behavior and a bubble that burst at the beginning of April

2013. Since the MAR is a stationary process, the global trend in the data needs

to be subtracted before the MAR model can be used to fit the data. The global

trend is modeled with a polynomial function of the time as in [1].

ut = α0 + α1t+ α2t
2 + α3t

3 + yt (27)

The residuals yt of the model (27) are assumed to follow an MAR process of order

(s, r) i. e. Ψ(L−1)Φ(L)yt = ε where ε ∼ C(0, γ) or ε ∼ V(0, σ, γ). Notice that the

errors ε do not depend on time. The estimated posterior means and 95% quantile

based coverage intervals are provided in table 4. Based on the DIC criterion, MAR

models with Voigt distributions slightly outperform MAR models with the Cauchy

distribution. The best MARV model, based on the DIC, is MARV(2, 2), with an

addition of the estimated global trend, the full model becomes:

ut = −1.496 + 3.784t− 0.034t2 + 0.0000852t3 + yt

(1− 0.608L−1 − 0.049L−2)(1− 0.109L− 0.469L2)yt = εt

f̂ε(x) = V(x; 0, 0.918, 3.782)

The MARV(2, 2) model was able to remove the autocorrelation in the data that

can be seen by comparing the ACF of the detrended series, figure 5d with the ACF

of the residuals from the best model fit shown in figure 7c.
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Parameter ψ1 ψ2 φ1 φ2 γ σ lnL DIC

MARV(0,1) - - 0.904 - 1.789 2.783 -510.303 1024.149
(0.838 0.973) (0.904 2.808) (0.597 4.497) (-513.742 -508.696)

MARC(0,1) - - 0.885 - 2.707 - -511.37 1026.187
(0.831 0.941) (2.189 3.296) (-514.889 -510.02)

MARV(0,2) - - -0.241 1.136 1.493 3.277 -500.883 1006.352
(-0.386 -0.108) (0.989 1.289) (0.732 2.547) (1.219 4.732) (-504.709 -498.927)

MARC(0,2) - - -0.186 1.068 2.668 - -503.266 1011.291
(-0.287 -0.087) (0.952 1.18) (2.153 3.274) (-507.187 -501.436)

MARV(1,0) 0.818 - - - 0.933 4.55 -504.047 1011.022
(0.748 0.895) (0.421 1.635) (3.563 5.521) (-507.157 -502.674)

MARC(1,0) 0.901 - - - 2.993 - -515.116 1034.038
(0.803 0.989) (2.432 3.645) (-518.594 -513.626)

MARV(1,1) 0.656 - 0.488 - 0.835 4.076 -480.555 965.2042
(0.581 0.732) (0.375 0.581) (0.307 1.589) (2.937 5.113) (-484.231 -478.825)

MARC(1,1) 0.645 - 0.531 - 2.593 - -488.399 982.1
(0.586 0.708) (0.457 0.595 ) (2.096 3.175) (-492.44 -486.44)

MARV(1,2) 0.625 - 0.165 0.462 0.941 3.657 -474.783 955.1045
(0.555 0.7) (0.045 0.277) (0.33 0.549) (0.419 1.676) (2.598 4.613) (-478.877 -472.552)

MARC(1,2) 0.612 - 0.215 0.501 2.43 - -480.929 968.0657
(0.547 0.664) (0.089 0.3) (0.415 0.561) (1.938 3.006) (-485.328 -478.624)

MARV(2,0) 1.029 -0.188 - - 0.961 4.315 -497.218 998.7647
(0.869 1.197) (-0.318 -0.054) (0.43 1.703) (3.214 5.28 ) (-500.922 -495.411)

MARC(2,0) 1.218 -0.319 - - 2.722 - -503.417 1011.783
(1.08 1.346) (-0.42 -0.2) (2.196 3.321) (-507.526 -501.553)

MARV(2,1) 0.597 0.111 0.482 - 0.807 4.076 -475.866 956.9749
(0.494 0.686) (0.014 0.223) (0.388 0.567) (0.301 1.498) (3.001 5.082) (-479.822 -473.769)

MARC(2,1) 0.622 0.061 0.527 - 2.606 - -484.642 976.7998
(0.532 0.686) (-0.034 0.188) (0.443 0.59) (2.1 3.166) (-489.348 -482.038)

MARV(2,2) 0.608 0.049 0.109 0.469 0.918 3.782 -472.626 951.4516
(0.513 0.694) (-0.07 0.19) (-0.077 0.26) (0.343 0.557) (0.383 1.647) (2.673 4.822) (-476.779 -470.175)

MARC(2,2) 0.606 -0.035 0.203 0.499 2.441 - -478.758 965.1865
(0.532 0.668) (-0.145 0.082) (0.047 0.3 ) (0.423 0.56) (1.947 3.001) (-483.447 -476.134)

Table 4: Posterior means and 95% quantile based coverage intervals for the pa-
rameters of various MAR models with Cauchy and Voigt errors in application to
the Bitcoin/USD exchange rate.
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(a) Bitcoin/USD exchange rate over a pe-
riod of 02/20/2013 -07/20/2013 with an es-
timated global trend.

(b) Detrended Bitcoin/USD exchange rate
series over a period of 02/20/2013 -
07/20/2013.

(c) The autocorrelation function of the
“raw” data.

(d) The autocorrelation function of the de-
trended data.

Figure 5: Global trend and autocorrelation structure in the Bitcoin/USD exchange
rate series.
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Figure 6: The MARV(2, 2) fit added to the global trend along with the Bit-
coin/USD exchange rate series over a period of 02/20/2013 -07/20/2013.
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(a) Detrended Bitcoin/USD exchange rate
over a period of 02/20/2013 -07/20/2013
and the best model fit.

(b) Time series of the residuals of the best
model.

(c) Autocorrelation function of the residuals
of the best model.

(d) A histogram of the residuals of the best
model.

Figure 7: Bitcoin/USD exchange rate and the corresponding fit summaries.

For further comparison of MARC and MARV performance a much longer time

series of the Bitcoin/USD exchange rate were considered, spanning a time interval

from 2010-07-17 until 2014-02-25 that is shown in figure 8a.

The time series of the Bitcoin/USD exchange rate (figure 8a) exhibit a very

complex dynamics. One of the features of this dataset is that there is quite long

interval of a relatively linear constant trend going from 2010-07-17 until around

2013 with a small bubble around the middle of 2011. The data exhibit a series
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of explosive trends starting in the middle of 2013. As in the previous analysis,

in order to use the MAR models, the time series must be detrended. Since the

dynamics is quite complicated, it is hard to assume any functional dependence

on time as was done previously. Rather than assuming any particular form of

the underlying deterministic trend, we used a nonparametric local constant least

squares estimator (LCLS), also known as Nadaraya-Watson smoother. The only

parameter that controls the smoothness of the LCLS estimator is a bandwidth.

For detailed overview of the properties of the LCLS refer to [16], [17]. By incorpo-

rating the nonparametric trend m(t) with an MAR stochastic component yt a full

specification of the model for the exchange rate ut becomes:

ut = m(t) + yt

m(t) =

∑n
i=1Kh(ti, t)uti∑n
i=1Kh(ti, t)

where h is a bandwidth and Kh(·) is a kernel (Gaussian in our case). The non-

parametric trend is not a part of the MAR model, so the bandwidth and the

coefficients of the MAR were not estimated simultaneously. In this settings, the

LCLS smoother acts rather as a data preprocessing tool. The bandwidth h was

chosen 40.5 to smooth the data just enough to account for the global trend with-

out smoothing the bubble dynamics. The residuals after subtracting the trend, are

assumed to follow an MAR process.

There were several models considered for fitting the exchange rate series. Ta-

ble 5 contains posterior means and 95% quantile based coverage intervals for the

parameters of the models under consideration. By comparing the DIC of the esti-

mated models, overall MARC models slightly outperformed MARV models. Based
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on the DIC the best performing model is purely noncausal MARC(1, 0), that is:

(1− 0.881L−1)yt = εt, ε ∼ C(0, 0.164)

The best MARC(1, 0) fit and and the residuals are shown in figure 9. Although,

visually, the fit looks good, the model was not able to completely remove the

autocorrelation structure in the series, which can be seen from the plot of the

autocorrelation function of the residuals (figure 9e). Based on the pattern that

the autocorrelation function exhibits, it is possible that there is some seasonality

in the data, which is not modeled by the MARC(1, 0) model.
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(a) Bitcoin/USD exchange rate over a period
of 2010-07-17 - 2014-02-25

(b) Detrended bitcoin/USD exchange rate
over a period of 2010-07-17 - 2014-02-25

(c) An autocorrelation function of the Bit-
coin/USD exchange rate series.

Figure 8: Visual summary of the Bitcoin/USD exchange rate series over a period
of 2010-07-17 - 2014-02-25
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(a) The Bitcoin/USD exchange rate with the
MARC(1, 0) fit added to the nonparametric
trend.

(b) The MARC(1, 0) fit and the detrended
Bitcoin/USD exchange rate.

(c) Residuals of the MARC(1, 0) fit. (d) A histogram of the residuals of the
MARC(1, 0) fit.

(e) An autocorrelation function of the resid-
uals of the MARC(1, 0) fit.

Figure 9: Visual summary of the best MARC fit in application to the Bitcoin/USD
exchange rate series over a period of 2010-07-17 - 2014-02-25
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Parameter ψ1 ψ2 φ1 φ2 γ σ lnL DIC

MARV(0,1) - - 0.952 - 0.161 0.013 -2412.704 4832.982
(0.95 0.957) (0.146 0.178) (0.005 0.024) (-2417.493 -2410.114)

MARC(0,1) - - 0.952 - 0.16 - -2410.681 4824.332
(0.95 0.957) (0.145 0.177) (-2414.013 -2409.599)

MARV(1,0) 0.881 - - - 0.165 0.013 -2404.954 4817.252
(0.879 0.883) (0.149 0.182) (0.005 0.024) (-2409.678 -2402.319)

MARC(1,0) 0.881 - - - 0.164 - -2402.963 4809.988
(0.877 0.883) (0.148 0.181) (-2407.103 -2401.66)

MARV(1,1) 0.754 - 0.329 - 0.184 0.015 -2449.582 4907.961
(0.751 0.757) (0.324 0.334) (0.167 0.203) (0.006 0.028) (-2454.675 -2446.603)

MARC(1,1) 0.754 - 0.329 - 0.184 - -2447.53 4899.446
(0.751 0.757) (0.324 0.334) (0.167 0.202) (-2451.362 -2445.731)

Table 5: Posterior means and 95% quantile based coverage intervals for the pa-
rameters of various MAR models with Cauchy and Voigt errors.
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CHAPTER 3

Markov Switching Mixed Causal-Noncausal Autoregressive Processes
(MSMAR)

3.1 The MSMAR processes

Introduced in this chapter, the MSMAR process is a more general case of the

MAR. The mixed causal-noncausal processes allow for an explicit dependence of

the present values on the past as well as the future. A MAR of order (s, r) is

defined as:

Ψ(L−1)Φ(L)yt = εt, εt
i.i.d.∼ fε(·|ηηη) (28)

To account for different regimes, in the correlation structure, at different times,

the MAR process can be extended to MSMAR process by introducing a hidden

regime (state) indicator. More specifically, let St ∈ {1, 2, ..., K} be a latent state

indicator with a transition matrix ξξξ, then the MSMAR of order (sss, rrr, K) is a

stochastic process {yt : t ∈ Z} defined as:

ΨSt(L
−1)ΦSt(L)yt = εt, εt ∼ fεt(·|ηηηSt) (29)

The transition matrix of the latent state variable St has the following form:

ξξξ =


ξ1,1 ξ1,2 · · · ξ1,K
ξ2,1 ξ2,2 · · · ξ2,K

...
...

. . .
...

ξK,1 ξK,2 · · · ξK,K

 ≡

ξξξ1.
ξξξ2.
...
ξξξK.

 (30)

where P (St = l|St−1 = m) = ξml for l = 1, . . . , K; m = 1, . . . , K. Every

row of the transition matrix must satisfy
∑K

l=1 ξjl = 1 and ξjl ≥ 0 for all j, l =

1, 2, . . . , K, so it is a probability mass function. It is also assumed that the rows

are independent of one another.

As in the case of the MAR processes, the polynomials ΨSt(L
−1) = 1 −∑sSt

i=1 ψ
(St)
i L−i, ΦSt(L) = 1 −

∑rSt
i=1 φ

(St)
i L−i are causal and noncausal in the lag-
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forward and the lag-backward operators respectively. The flexibility of the MS-

MAR processes is due to the fact that the model can incorporate regime specific

orders of causal and noncausal dependence, as well as regime specific parameters

of the distribution of errors. The MSMAR process can include a mixture of purely

causal with purely noncausal and mixed AR processes at different regimes. In this

work the switching is modeled in the correlation structure rather than in the level,

although the level can be also incorporated in the model.

In order for the MSMAR process to be regime stationary, the roots of the

causal and noncausal polynomials must lie outside of the unit circle.

3.2 Parameter Estimation

Parameter estimation is carried out within Bayesian framework. The joint

sampling distribution of the observations and the latent state variables, as a func-

tion of the parameters, is called a “complete data likelihood” [1] and, in general,

has the following form:

p(yyy,SSS|ψψψ,φφφ,γγγ) = p(yyy|SSS,ψψψ,φφφ,γγγ)p(SSS|ξξξ) (31)

In case of the MSMAR with the Cauchy distributed errors {εt}, the joint density

of the time series given a vector of states becomes:

p(yyy|SSS,ψψψ,φφφ,γγγ) =
K∏
k=1

∏
t:St=k

C(Ψk(L
−1)Φk(L)yt|0, γk) (32)

Due to the recursive structure of the process, the errors {εt} can not be computed

for the entire time series. Unless the marginal distribution of the observations is

known at each time point, the complete data likelihood is not available for the

entire vector of observations. A straightforward way to bypass this difficulty, is to

approximate the likelihood (32) by conditioning on a vector of the first rk and the

last sk observations i.e. ỹyyk = {y1, y2, . . . , yrk , yT−sk , yT−sk+1, . . . , yT}. Notice that
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the the vector ỹyyk is regime specific. The approximation of the likelihood takes the

following form:

p(yyy|ỹyy,SSS,ψψψ,φφφ,γγγ) =
K∏
k=1

∏
t̃:St=k

C(Ψk(L
−1)Φk(L)yt|0, γk) (33)

where t̃ = {t : t 6= 1, 2, . . . , rk, T − sk, T − sk + 1}

The second factor in eq. (31) is the sampling distribution of the hidden state

vector SSS. Given the transition matrix ξξξ, p(SSS|ξξξ) can be explicitly written as:

p(SSS|ξξξ) =
T∏
t=1

P (St|St−1, ξξξ)P (S0) =
K∏
j=1

K∏
m=1

ξ
Njm(SSS)
jm (34)

where Njm is an operator that counts the number of transitions from state j to

state m.

The approximate likelihood of (33) and the distribution of the hidden state

variables (34) give the following complete-data conditional likelihood:

p(yyy,SSS|ỹyy,ψψψ,φφφ,γγγ, ξξξ) =
K∏
k=1

∏
t̃:St=k

C(Ψk(L
−1)Φk(L)yt|0, γk)

K∏
j=1

K∏
m=1

ξ
Njm(SSS)
jm (35)

A joint posterior distribution of all the parameters and hidden state indicators

given the data is quite complicated to sample from directly. However, the problem

can be simplified by first sampling the state-specific parameters, given the vector

of state indicators, and then sample the state indicators by conditioning on the

state-specific parameters.

Sampling the State-specific Parameters

Given a vector of state indicators SSS, we are interested in estimating the fol-

lowing posterior distribution:

p(ψψψ,φφφ,γγγ, ξξξ|yyy,SSS) ∝ p(yyy|SSS,ψψψ,φφφ,γγγ)p(SSS|ξξξ)p(ψψψ,φφφ, γ, ξξξ) (36)

For computational convenience, a priori, the state-specific parameters

{ψψψk,φφφk, γk, ξξξk.} are assumed to be independent within and between the states, so

32



the joint prior distribution factorizes as p(ψψψ,φφφ, γ, ξξξ) =
∏K

k=1 p(ψk)p(φk)p(γk)p(ξξξk.).

The Cauchy likelihood is not from the exponential family of distributions, so con-

jugate priors are not available. The choice of the priors for the state-specific

parameters {ψψψ,φφφ,γγγ} is dictated by the range that these parameters can take. The

prior over the causal and noncausal coefficients must ensure stationarity of the

MSMAR process, so a reasonable choice is a multivariate normal distribution,

ψψψk ∼ Nψ(000, τψk
III) and φφφk ∼ N (000, τφkIII). Since the Cauchy scale must be a strictly

positive value, the prior for γk is chosen to be γk ∼ G(νk1, νk2) with shape νk1 and

rate νk2.

Essentially, every row of the transition matrix is a probability mass func-

tion. Since the rows are mutually independent, a prior over the probability mass

functions, that in conjunction with the complete data likelihood, will provide a

closed form conditional posterior is ξξξk. ∼ D(aj1, aj2, . . . , ajK) ≡ D(aaak.) for k =

1, 2, . . . , K.

The complete data likelihood has a convenient structure that by combining

with all the prior specifications mentioned above, leads to the following full condi-

tional distributions:

p(ψψψk|·) ∝
∏
t̃:St=k

C(Ψk(L
−1)Φk(L)yt|0, γk)N (ψψψk|000, τψk

III) (37)

p(φφφk|·) ∝
∏
t̃:St=k

C(Φk(L
−1)Φk(L)yt|0, γk)N (φφφk|000, τφkIII) (38)

p(γk|·) ∝
∏
t̃:St=k

C(Ψk(L
−1)Φk(L)yt|0, γk)G(γk|νk1, νk2) (39)

ξξξk. ∼ D(ak1 +Nk1(SSS), ak2 +Nk2(SSS), . . . akK +NkK(SSS)) (40)

for k = 1, 2, . . . , K.

A Metropolis algorithm with normal proposals can be used to sample from

the full conditionals (37) - (38). A Metropolis-Hastings algorithm with gamma
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proposals can be used to sample from (39). Notice that with the complete data

likelihood and the Dirichlet prior, the posterior for the rows of the transition

matrix is also Dirichlet, so the rows of the matrix can be sampled directly from

the Dirichlet distribution (40).

Sampling the States

Conditioning on a vector of parameters {ψψψ,φφφ,γγγ, ξξξ}T , the states SSS can be sam-

pled from a distribution estimated by a Forward-Filtering Backward-Smoothing

algorithm (FFBS) [1]. The filtering is an inference about the hidden state at time

t given observations up to time t. Smoothing yields an inference about the hidden

state at time t given all available data. For the MSMAR model, filtering the states

at time t is implemented by conditioning on the data up to time t+ s.

Let ηηη = (ψψψ,φφφ,γγγ, ξξξ)T , be a vector of all state specific parameters, the maximum

noncausal order be smax = max{s1, s2, . . . , sK} and the maximum causal order be

rmax = max{r1, r2, . . . , rK}, the FFBS algorithm for the MSMAR model works as

follows:

1. Forward filtering, for t = 1 + rmax, . . . , T :

(a) Compute one-step predictive distribution

P (St = l|yyyt+sl−1) =
K∑
k=1

ξklP (St−1 = k|yyyt+sk−1, ηηη) (41)

for l = 1, 2, · · · , K

(b) As the new datum at time t+smax becomes available, the states at time
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t are filtered as:

P (St = l|yyyt+sl , ηηη) =
C(Ψl(L

−1)Φl(L)yt|0, γl)P (St = l|yyyt+sl−1)
p(yt|yyyt+smax−1, ηηη)

(42)

p(yt|yyyt+smax−1, ηηη) =
K∑
k=1

C(Ψk(L
−1)Φk(L)yt|0, γk)P (St = k|yyyt+sk−1)

(43)

Initialize the filter recursion at:

P (Srmax = l|ysmax−1) =
K∑
k=1

ξklP (Srmax−1 = k) (44)

2. To smooth the probabilities and sample the state indicators, the backward-

smoothing algorithm runs for t = T − smax − 1, T − smax − 2, . . . , t:

(a) Initialize recursion at filtered probability distribution from the pre-

vious step P (ST−smax = l|yyy,ηηη), then smooth the state probabilities with:

P (St = l|yyy,ηηη) =
K∑
k=1

ξlkP (St = l|yyyt, η)P (St+1 = k|yyy,ηηη)∑K
j=1 ξjkP (St = j|yyyt, ηηη)

(b) Sample state indicator:

St ∼Multinom(1, θθθ)

θθθ = (P (St = 1|yyy,ηηη), · · · , P (St = K|yyy,ηηη))T

Several important points about the FFBS algorithm for the states estimation need

to be discussed. Since the filtering recursion starts at t = 1 + rmax the states

{S1, S2, . . . , Srmax} must be initialized at some values by (44). These values can be

resampled from smoothed probabilities obtained later by a backward-smoothing

algorithm. The states are not filtered for the time points that are included in the

interval between t = T − smax + 1, . . . , T , in this work the values of the states at

these points are obtained by sampling from the one step predictive distributions
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obtained by (41). Since the smoothing algorithm starts at time t = T − smax − 1

the probabilities of the state indicators can not be smoothed at the time points

included in the interval t = {T, T − 1, . . . , T − smax− 1}. When the available time

series is long, this approximation is reasonable.

The MSMAR process has regime specific causal rk and noncausal sk orders

that can be regarded as free parameters. In this work the model selection is

performed via minimization of the Deviance Information Criterion (DIC), refer to

section 2.2 for the description.

3.3 Simulation of the MSMAR processes

The method of simulation of Markov switching MAR processes is similar to

the MAR processes described in section 2.3, with the additional sampling of a se-

quence of the state indicators SSS. The method is also based on the partial fraction

representation of the mixed AR process [2]. Consider the following reparameter-

ization of the MAR process, ut = Φ(L)yt and vt = Ψ(L−1)yt. The equation (28)

can be rewritten as:

Ψ(L−1)ut = εt

Φ(L1)vt = εt

The Mixed AR processes {yt} can be simulated by recovering from the unob-

served components ut and {vt} by using two representations [2],

1. Causal representation

yt = Lsg1(L)vt + g2(L)ut (45)

2. Noncausal representation

yt = f1(L
−1)vt + L−rf2(L

−1)ut (46)

In the case of the MSMAR, the process yt can be recovered conditionally on

the simulated sequence of state indicators SSS. A sequence of the state indicators
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can be simulated by using a transition matrix (30) and the recurrence relation,

P (St+1|St = j) = ξξξj.

St+1 ∼Multinom(1, ξξξj.)

Conditionally on a sequence of state indicators SSS, the process yt can be recov-

ered by using causal representation and noncausal representation:

1. Causal representation

yt = LsStg1St(L)vt + g2St(L)ut

2. Noncausal representation

yt = f1St(L
−1)vt + L−rStf2St(L

−1)ut

In case of the MSMAR(1, 1) process, the simulation can be performed in the

following steps:

1. Generate a vector of state indicators St and disturbances εt,

(a) For t = 1, 2, · · ·T

sample (St|St−1 = l) ∼Multinom(1, ξξξl)

(b) For t = 1, 2, · · ·T

sample (εt|St = j) ∼ C(0, γj)

2. Generate a sequence of ut and vt:

(a) initialize (uT+1) and (v0)

(b) Compute, for t = T, T − 1, T − 2, · · · , 1

ut = ψ(st)ut+1 + εt
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(c) Compute, for t = 1, 2, · · · , T

vt = φ(st)vt−1 + εt

(d) For t = 1, 2, · · · , T recover yt by:

yt =
1

1− φ(st)ψ(st)
(ut + φ(st)vt−1)

3.4 Simulation Study

This simulation study tries to access the performance of the MSMAR un-

der the model misspecification. The study was performed on the data that was

simulated from the following MSMAR((1, 1), (1, 1)) process:
(1− 0.87L−1)(1− 0.15L)yt = εt, εt ∼ C(0, 0.2) if St = 1

(1− 0.72L−1)(1− 0.25L)yt = εt, εt ∼ C(0, 2.2) if St = 2

(47)

with the transition matrix:

ξξξ =

(
0.995 0.005
0.005 0.995

)
(48)

Assuming that the true parameters of the process (47) are unknown, the models

that were considered for estimating the parameters are:

1. MSMAR((0, 1), (1, 0))
(1− φ11L)yt = εt, εt ∼ C(0, 0.2) if St = 1

(1− ψ21L
−1)yt = εt, εt ∼ C(0, 2.2) if St = 2

2. MSMAR((0, 1), (1, 1))
(1− φ11L)yt = εt, εt ∼ C(0, 0.2) if St = 1

(1− ψ11L
−1)(1− φ21L

−1)yt = εt, εt ∼ C(0, 2.2) if St = 2
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3. MSMAR((1, 0), (1, 1))
(1− ψ11L)yt = εt, εt ∼ C(0, 0.2) if St = 1

(1− ψ11L
−1)(1− φ21L

−1)yt = εt, εt ∼ C(0, 2.2) if St = 2

4. MSMAR((1, 1), (1, 1))
(1− ψ11L

−1)(1− φ11L)yt = εt, εt ∼ C(0, 0.2) if St = 1

(1− ψ11L
−1)(1− φ21L

−1)yt = εt, εt ∼ C(0, 2.2) if St = 2

The values of the estimated parameters and the corresponding 95% quantile

based coverage intervals are reported in table 6. It is interesting to note that

all estimated causal and noncausal parameters are very similar in values to each

other, even under the model misspecification. The DIC has a minimum value at the

“true” model MSMAR((1, 1), (1, 1)). The simulated data and the corresponding

fit are shown in figure 10.

(a) Simulated MSMAR((1, 1), (1, 1)) data
with the corresponding best fit.

(b) Distribution of the residuals of the best
MSMAR fit.

Figure 10: Simulated MSMAR process.
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Parameter MSMAR((0, 1),(1, 0)) MSMAR((0, 1), (1, 1)) MSMAR((1, 0), (1, 1)) MSMAR((1, 1), (1, 1))

ψ11 - - 0.152 0.150
(0.146, 0.161) (0.146, 0.156)

ψ21 0.897 0.873 0.873 0.873
(0.888, 0.906) (0.863, 0.880) (0.863, 0.880) (0.863, 0.880)

φ11 0.250 0.250 - 0.250
(0.244, 0.255) (0.245, 0.255) - (0.245, 0.253)

φ21 - 0.718 0.719 0.718
(0.713, 0.725) (0.712, 0.726) (0.712, 0.726)

γ1 2.397 2.396 2.756 2.041
(2.108, 2.710) (2.113, 2.709) (2.436, 3.093) (1.805, 2.309)

γ2 0.612 0.230 0.232 0.230
(0.543, 0.687 ) (0.203, 0.260) (0.204, 0.260) (0.205, 0.258)

ξ11 0.990 0.994 0.994 0.994
(0.987, 0.994) (0.992, 0.996) (0.992, 0.996) (0.992, 0.996)

ξ12 0.010 0.006 0.006 0.006
(0.006, 0.013) (0.004, 0.008) (0.004, 0.008) (0.004, 0.008)

ξ21 0.009 0.005 0.005 0.005
(0.006, 0.013) (0.003, 0.008) (0.003, 0.008) (0.003, 0.008)

ξ22 0.991 0.995 0.995 0.995
(0.987, 0.994) (0.992, 0.997) (0.992, 0.997) (0.992, 0.997)

lnL(·) -2638.831 -2172.408 -2245.029 -2087.864
(-2653.697, -2623.998) (-2185.118, -2161.695) (-2257.025, -2234.025) (-2100.362, -2077.006)

DIC 5394.627 4410.88 4557.134 4243.384

Table 6: Posterior means and 95% quantile based coverage intervals for the pa-
rameters of various MSMAR models applied to simulated data.

3.5 Application to Bitcoin/USD Exchange Rate

In this section the MSMAR model is applied to the Bitcoin/USD exchange

rate time series and it’s performance is compared to the MAR models on the basis

of the DIC criterion. The Bitcoin/USD exchange rate data is discussed in section

2.5.

Recall that, the series have a global nonlinear trend that can be clearly seen

from figure 8a. As in the case of the MAR models, the trend was model by LCLS

estimator. The bandwidth h was chosen 40.5 as in the case of the MAR models,

to smooth the data just enough to account for the global trend without smoothing

the bubble dynamics. The residuals after subtracting the trend, are assumed to

follow an MSMAR process, so the full model specification is:

ut −m(t) = yt

ΨSt(L
−1)ΦSt(L)yt = εt

The number of parameters in the MSMAR models grow quickly with increasing
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causal-noncausal orders and the number of regimes. Let pk = sk + rk be the total

number of the regime-specific causal and noncausal parameters and mk = |ηηηk| be

the cardinality of the set of the parameters of the distribution of the errors. The

total number of parameters of the MSMAR processes is
∑K

k=1(pk +mk). The MS-

MAR models are usually over parameterized, so the analysis was performed with

two-regime (K = 2) models with the most complex model MSMAR((1, 1), (1, 1)).

One feature of the MSMAR processes that reduces the space of possible models,

given a fixed number of regimes K, is that the MSMAR processes are invariant

under the permutation of the regime assignments. For example the MSMAR((0,

1), (1, 1)) is equivalent to the MSMAR((1, 1), (0, 1)). This fact greatly reduces

the space of the distinct models to consider, for a fixed number of regimes K. On

the other hand, this feature introduces a label-switching phenomena in the MCMC

simulations, that makes estimation of the marginal posteriors of the parameters

harder, although it does not affect the overall fit.

The models that were fitted to the data were:

1. MSMAR((0, 1), (1, 0))
(1− φ11L)yt = εt if St = 1

(1− ψ21L
−1)yt = εt if St = 2

2. MSMAR((0, 1), (1, 1))
(1− φ11L)yt = εt if St = 1

(1− ψ21L
−1)(1− φ21L)yt = εt if St = 2

3. MSMAR((1, 0), (1, 1))
(1− ψ11L)yt = εt if St = 1

(1− ψ21L
−1)(1− φ21L)yt = εt if St = 2
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4. MSMAR((1, 1), (1, 1))
(1− ψ11L

−1)(1− φ11L)yt = εt if St = 1

(1− ψ21L
−1)(1− φ21L)yt = εt if St = 2

5. MSMAR((2, 1), (2, 1))
(1− ψ11L

−1 − ψ12L
−2)(1− φ11L)yt = εt if St = 1

(1− ψ21L
−1 − ψ21L

−2)(1− φ21L)yt = εt if St = 2

Other second order models were also considered such as MSMAR((1, 2), (1, 2)),

MSMAR((2, 1), (1, 2)), MSMAR((2, 2), (1, 1)), MSMAR((2, 2), (1, 2)), MS-

MAR((2, 0), (0, 2)). The transition matrix of all the models under consideration

has the following form:

ξξξ =

(
ξ11 ξ12
ξ21 ξ22

)
(49)

In all models the errors are assumed to follow the Cauchy distribution with a

regime specific scale parameter, that is:
εt ∼ C(0, γ1) if St = 1

εt ∼ C(0, γ2) if St = 2

The summaries of the draws of the parameters from the posterior distributions,

and the corresponding DIC values are provided in table 7. Since the DIC values of

the most second order models were larger than the first order models, we decided

not to include the summaries of these models in the table. It can be seen that the

DIC criterion favors the MSMAR((2, 1), (2, 1)) model. The final chosen model for

the Bitcoin/USD exchange rate analysis is thus the MSMAR((2, 1), (2, 1)). The

estimated model has the following form:
(1− 0.171L−1 − 0.027L−2)(1− 0.931L)yt = εt, εt ∼ C(0, 0.054) if St = 1

(1− 0.566L−1 − 0.232L−2)(1− 0.332L)yt = εt, εt ∼ C(0, 3.422) if St = 2
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with an estimated transition matrix:

ξ̂ξξ =

(
0.992 0.008
0.008 0.992

)
(50)

Recall from table 5, the best MAR model’s DIC value is 4809.988 which is

much larger in comparison to the best MSMAR model’s DIC 2942.961, which

suggests that the MSMAR model is able to better capture the dynamics of the

Bitcoin/USD exchange rate series.

Figure 11 shows the data with the regime assignments. It is clear from the

plot, that one regime corresponds to relatively linear constant trends, and the

other regime corresponds to the explosive behavior. The MSMAR((2, 1), (2, 1))

suggests that there are two regimes with the second order noncausal and first order

causal dependence. The MSMAR model as well as MAR model still was not able

to completely remove the autocorrelation in the series. As was discussed in section

2.5, the series may include seasonal components which are not modeled by the

MSMAR in this work.
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Figure 11: Posterior modes for the regimes of the Bitcoin/USD exchange rate data
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(a) MSMAR((2, 1), (2, 1)) fit added to the
nonparametric estimate, ût = m̂(x) + ŷt.

(b) A fit of the MSMAR((2, 1), (2, 1)) to
the detrended series.

(c) Residuals of the MSMAR((2, 1), (2, 1))
with the corresponding regimes.

(d) Tn ACF of the residuals of the MS-
MAR((2, 1), (2, 1)) fit.

(e) A histogram of the residuals of the
MSMAR((2, 1), (2, 1)) fit.

Figure 12: Visual summaries of the fit of the best MSMAR model.
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Parameter MSMAR((0, 1),(1, 0)) MSMAR((0, 1), (1, 1)) MSMAR((1, 0), (1, 1)) MSMAR((1, 1), (1, 1)) MSMAR((2, 1), (2, 1))

ψ11 - - 0.944 0.098 0.171
- - (0.930, 0.955) (0.028, 0.138) (0.159, 0.183)

ψ12 - - - - -0.027
- - - (-0.034, -0.021)

ψ21 0.930 0.876 0.876 0.877 0.566
(0.868, 0.950) (0.858, 0.898) (0.858, 0.898) (0.860, 0.900) (0.511 0.617)

ψ22 - - - - 0.232
- - - - (0.177, 0.288)

φ11 0.996 0.998 - 0.954 0.931
(0.98, 1.007) (0.985, 1.008) - (0.939, 1.001) (0.919, 0.943)

φ12 - - - - -
- - - - -

φ21 - 0.154 0.156 0.154 0.332
- (0.107, 0.189) (0.113, 0.191) (0.109, 0.188) (0.295, 0.361)

φ22 - - - -
- - - -

γ1 0.056 0.056 0.054 0.053 0.054
(0.050, 0.062) (0.051, 0.063) (0.049, 0.060) (0.047, 0.059) (0.049, 0.060)

γ2 3.733 3.781 3.726 3.464 3.422
(3.132, 4.408) (3.202, 4.431) (3.182, 4.341) (2.932, 4.077) (2.923, 3.989)

ξ11 0.993 0.993 0.993 0.992 0.992
(0.990, 0.995) (0.990, 0.995) (0.991, 0.995) (0.990, 0.995) (0.990, 0.995)

ξ12 0.007 0.007 0.007 0.008 0.008
(0.005, 0.010) (0.005, 0.010) (0.005, 0.009) (0.005, 0.010) (0.005, 0.010)

ξ21 0.008 0.008 0.007 0.008 0.008
(0.005, 0.011) (0.005, 0.011) (0.005, 0.010) (0.005 0.011) (0.006, 0.011)

ξ22 0.992 0.992 0.993 0.992 0.992
(0.989, 0.995) (0.989, 0.995) (0.990, 0.995) (0.989 0.995) (0.989, 0.994)

lnL(·) -1418.694 -1412.527 -1413.169 -1415.619 -1390.996
(-1437.565, -1400.374) (-1431.022, -1393.422) (-1429.123, -1397.54) (-1432.895, -1398.716) (-1408.616, -1373.359)

DIC 3015.076 3007.705 2958.686 2981.338 2942.961

Table 7: Posterior means and 95% quantiled based coverage intervals for the pa-
rameters of various MSMAR models in application to the Bitcoin/USD exchange
rate series.
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CHAPTER 4

Conclusion and Future Research Directions

In modeling the bubble phenomena, the Voigt distribution seems promising

as an alternative to the Cauchy distribution. The DIC criterion suggests that the

MARV processes are able to slightly better model the bubble phenomena than the

MARC in the bitcoin data over the period between 02/20/2013 - 07/20/2013. On

the other hand the MARC process slightly outperformed MARV in application to a

longer series of the bitcoin data. The next step in developing the MARV processes

would be to compare the performance of the MARV to MARC on a different

dataset, for example the U.S inflation, which was analyzed in [1]. It would be

also interesting to compare the performance of the MARV with the mixed causal-

noncausal processes with t-distributed errors.

This work proposed the Markov-switching extension of the mixed causal-

noncausal processes and it was shown that it is able to model the bitcoin data

much better than the MAR processes, based on the DIC criterion. One of the

directions in exploring the Markov switching causal-noncausal processes would be

to consider a mixture of t-distributions. A possible advantage in using a mixture of

t-distributions is that by allowing the degrees-of-freedom to depend on the regime,

it may be more flexible in modeling complex variation in the data.

The MSMAR model, considered in this work, has also several limitations.

The simulation study revealed that the transition matrix is underestimated in

the settings of a frequently changing regimes. A possible explanation for this

behavior is that the model does not include a state specific intercept, so under

some parameter values the regimes are not well separated and the model can not

identify the regimes correctly. In other words, if the true data generating process
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has the regimes that are changing very often, the MSMAR may not be able to

correctly identify the state indicators. Another limitation is that the MSMAR

model does not completely remove the autocorrelation in the bitcoin data, this

may be due to the seasonality in the series, so an addition of an AR(5) may be

needed. There is also a limitation in the current implementation of the MCMC

sampling algorithm. The MCMC algorithm used in this work does not take into

account the label switching phenomena. One of the possible solutions to this

problem is to use a random permutation algorithm described in [2].

Yet another direction to take in exploring the mixed causal-noncausal pro-

cesses is an incorporation of the trend in the model, rather than as a data prepro-

cessing tool.

One of the most important uses of time series analysis is forecasting. The next

step in extending the MSMAR processes is to develop the forecasting method.
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[2] S. Frühwirth-Schnatter, Finite mixture and Markov switching models. Springer
Science & Business Media, 2006.

48



BIBLIOGRAPHY

Abramowitz, M. and Stegun, I. A., Handbook of mathematical functions: with for-
mulas, graphs, and mathematical tables. Courier Corporation, 1964, vol. 55.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M., Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Breidt, F. J. and Davis, R. A., “Time-reversibility, identifiability and independence
of innovations for stationary time series,” Journal of Time Series Analysis,
vol. 13, no. 5, pp. 377–390, 1992.

Davis, R. A., Lii, K.-S., and Politis, D. N., “Maximum likelihood estimation for
noncausal autoregressive processes,” in Selected Works of Murray Rosenblatt.
Springer, 2011, pp. 396–419.
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