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ABSTRACT

The research and application of Unmanned Aerial Vehicles (UAVs) has been

a hot topic recently. A UAV is defined as an aircraft which is designed not to carry

a human pilot or operated with remote electronic input by the flight controller. In

this thesis, the design of a control system for a quadcopter named Rolling Spider

Drone is conducted. The thesis work presents the design of two kinds of controllers

that can control the drone to keep it balanced and track different kinds of input

trajectories. The nonlinear mathematical model for the drone is derived by the

Newton-Euler method. The rotational subsystem and translational subsystem are

derived to describe the attitude and position motion of drone. Techniques from

linear control theory are employed to linearize the highly coupled and nonlinear

quadcopter plant around equilibrium points and apply the linear feedback con-

troller to stabilize the system. The controller is a digital tracking system that

deploys LQR for system stability design. Fixed gain and adaptive gain scheduled

controllers are developed and compared with different LQR weights. Step refer-

ences and reference trajectories involving significant variation for the yaw angle in

the xy-plane and three-dimensional space are tracked in the simulation. The phys-

ical implementation and an output feedback controller are considered for future

work.
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CHAPTER 1

Introduction

The quadcopter is one of many types of unmanned aerial vehicles (UAVs).

Because of its reliability of maneuvering and the ability to be controlled and

modeled, the research about quadcopter is becoming a hot topic in the area of

robotics control.

1.1 Objectives and Motivation

This thesis work deals with the design of a control system for a specific quad-

copter which is called a Rolling Spider Drone [1]. It can take off and land vertically

and hover and fly with high maneuverability. Also, one of the most important ad-

vantages of the Rolling Spider Drone is that various control algorithms can be

downloaded into the Drone’s controller via firmware to test the actual flight per-

formance.

The challenge in control system design for a quadcopter is that the mathe-

matical model of the system is highly coupled, nonlinear and multivariable[2]. The

quadcopter dynamics contain 6 degrees of freedom, which are 3 rotational degrees,

(roll, pitch and yaw), and also translation along the x, y, z axes. Because the

number of control inputs are less than the system’s degrees of freedom, it is an

under-actuated system. The Rolling Spider Drone moves in a three dimensional

space. Optimal control theory and gain scheduling strategy will be employed in

the design of controller.

Currently, the Control System Laboratory in ECBE Department at the Uni-

versity of Rhode Island does not have any hardware for flight control experiments.

The purpose of this thesis is to use the commercially available Rolling Spider

1



Drone and Matlab/Simulink software to begin the development of a flight control

testbed for multivariable control algorithms [3]. The specific goals are as follows:

1. Derive the theoretical state-space model for the drone.

2. Develop linear multivariable control algorithm based on linearized models using

optimal control technique [4]. Evaluate the controller performance in simulation.

3. Extend the single controller to a set of controllers designed at a set of equilibrium

points and evaluate a gain-scheduled control system for reference trajectories that

require the use of multiple linear models.

1.2 Contribution of this Work

There are various control techniques that are used in order to provide stable

position and orientation of quadcopter. Reference [5] presentes a PID tuned LQR

controller with good robustness and easy implementation, however, only simula-

tion is provided, and the actual applicability of the controllers is not proposed.

Reference [6] presents a gain scheduling technique to design a controller for non-

linear system by linearizing the system at several equilibrium points. They use

LQR controller to verify the controllability and observability. However, this pa-

per did not provide closed-loop control for the trajectory tracking. The design

of this system will be based on LQR controller design for linear models and use

gain scheduling technique to deal with the nonlinear model of Drone. A digital

tracking system [7] will be designed that would be suitable for implementation on

the Rolling Spider drone.

1.3 Thesis Structure

This thesis is organized into five Chapters. Chapter 2 shows the mathematical

model set up of a quadcopter using the Newton-Euler theorem, gives the details

2



about the kinematic and dynamic model, and obtains the nonlinear state-space

model. Chapter 3 presents the control theory that is employed in the thesis. It

covers the linear and nonlinear control theory, stability robustness and margins,

linear quadratic regulator and gain-scheduled control. Chapter 4 demonstrates

the techniques used to develop a linear feedback controller to regulate the nonlin-

ear model. The controller is verified using the simulation. Chapter 5 shows the

conclusions and future work for the thesis.

List of References
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[3] Massachusetts Institute of Technology. “Matlab toolbox for parrot rolling
spider.” [Online]. Available: http://karaman.mit.edu/software.html
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[6] A. Ataka, H. Tnunay, and R. Inovan, “Controllability and observability analysis
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CHAPTER 2

System Modeling

In this chapter the flight dynamics model will be derived. The ordinary

quadcopter has a symmetrical design. It consists of four rotors fixed at an equal

distance from the body central as shown in Fig.1. Each of the rotors are driven

by a DC motor. Propellers 1 and 3 rotate in the same direction and propellers 2

and 4 rotate in the opposite direction to keep the system balance [1].

2.1 Kinematic Model

In order to set up the model of the quadcopter, the reference coordinate frames

should be defined. The earth inertial references frame is with N,E,D axes and

A,B,C body frame is with x, y, z axes. As shown in Fig.2, the inertial reference

is fixed on a specific place and it uses the N − E − D notation which represents

North, East and Downwards respectively. For the body frame, the origin located in

the center of the quadcopter body with x-axis pointing towards propeller 1, y-axis

pointing towards propeller 2 and the z-axis is pointing to the ground. It is known

that the quadcopter is a 6 DOF object. The three Euler angles φ, θ, ψ represent

the orientation of the quadcopter, where φ is roll angle about the x-axis, θ is pitch

angle about the y-axis,ψ is yaw angle about z-axis. The Euler-angles are import

for the definition of the transformation matrix from different reference frames.

The transformation matrix is formed by a sequence of three plane rotations,

which are named Ryaw,Rpitch,Rroll. There are two intermediate coordinate

systems being defined, the vehicle-1 frame and vehicle-2 frame; to describe the

orientation of the quadcopter.

The inertial frame is rotated about its z-axis by the yaw angle ψ to get the

4



Figure 1. Quadcopter Structure Configuration
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Figure 2. Quadcopter Reference Frame and Euler Angles
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vehicle-1 frame. The rotation matrix is

Ryaw =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

 . (1)

The resulting frame is then rotated by the pitch angle θ around its y-axis to

produce the vehicle-2 frame. This rotation matrix is

Rpitch =

 cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 . (2)

The last rotation from vehicle-2 to the body frame is

Rroll =

 1 0 0
0 cos(φ) sin(φ)
0 −sin(φ) cos(φ)

 . (3)

Finally, we get the rotation matrix from the NED world inertial frame to the

body frame, which is

RW2B = Rroll ·Rpitch ·Ryaw. (4)

Multiplying out the three individual rotation matrices yields

RW2B =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 1 0 0
0 1 −sin(φ)
0 sin(φ) cos(φ)


=

 c(θ)c(ψ) c(θ)s(φ) −s(θ)
c(ψ)s(θ)s(φ)− c(φ)s(ψ) c(φ)c(ψ) + s(θ)s(φ)s(ψ) c(θ)s(φ)
s(ψ)s(φ) + c(ψ)c(φ)s(θ) c(φ)s(ψ)s(θ)− c(ψ)s(φ) c(θ)c(φ)

 ,
(5)

where c and s denote cos and sin respectively. Also the rotation matrix that

transforms from the body frame to the inertial world frame , RB2W is obtained by

inverting RW2B. The result can be shown to be

RB2W =

 c(θ)c(ψ) c(ψ)s(θ)s(φ)− c(φ)s(ψ) s(φ)s(ψ) + c(φ)c(ψ)s(θ)
c(θ)s(ψ) c(φ)c(ψ) + s(θ)s(φ)s(ψ) c(φ)s(θ)s(ψ)− c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(θ)c(φ)

 . (6)

7



These rotation matrices will be used to convert the states measured in one

frame to another frame. In addition to transforming angular positions, it is also

possible to transform angular velocities. There is an inverted Wronskian matrix

W−1 that can transform the angular body rates ω = (p, q, r)T to the Euler rates

Θ̇ = (φ̇, θ̇, ψ̇)T that are measured in the inertial frame. The transformation is

described as follows,

Θ̇ = W−1 · ω , (7)

where W−1 is given by

W−1 =

 c(θ) s(φ)s(θ) c(φ)s(θ)
0 c(φ)c(θ) −s(φ)c(θ)
0 s(φ) c(φ)

 · 1

c(θ)
. (8)

2.2 Dynamic Model

The motion of the quadcopter can be divided into two subsystems, transla-

tional motion (x,y positions and altitude), and rotational motion (roll, pitch and

yaw)[2]. Based on the Newton-Euler formalism, the forces and moments acting on

the quadcopter will be investigated.

The twelve states variables are as follows: three translational positions, their

corresponding velocities and three angular positions and their corresponding ve-

locities. The position vector in an earth-fixed inertial coordinate system is denoted

as ~P = [x, y, z]T , its velocity rate vector in the inertial system is ~v = [ẋ, ẏ, ż]T . The

roll, pitch, yaw angles are denoted as ~Θ = [φ, θ, ψ]T and their derivatives are body

angular rates ~ω = [p, q, r]T . The position vector of the center of mass in the world

frame is denoted by d.

2.2.1 Translational Equations of Motion

Assume that the structure of quadcopter is rigid and symmetrical about the

center of gravity of the quadcopter, and the propellers are also rigid. Based on the

8



Newton’s second law,

~Fw =
d

dt
(m · ~v) (9)

where ~Fw = ~G − ~T . G is the gravity and T is the thrust generated from rotors.

Note that the ~T is described in the body frame, and must be transformed from

body frame to inertial frame. Then equation 9 can be expressed as

v̇ =
1

m
[

 0
0
mg

−RB2W ·

[
0
0
T

]
] (10)

Substituting RB2W into this equation gives an expression for the derivative of

velocity rate in the inertial frame.

v̇ =
1

m

 −T (c(φ)s(θ)c(ψ) + s(φ)s(ψ))
−T (c(φ)s(θ)s(ψ)− s(φ)c(ψ))

mg − T (c(φ)c(θ))

 (11)

This vector equation can be written in component form as

ẍ = − 1

m
T (c(φ)s(θ)c(ψ) + s(φ)s(ψ))

ÿ = − 1

m
T (c(φ)s(θ)s(ψ)− s(φ)c(ψ))

z̈ = − 1

m
Tc(φ)c(θ) + g (12)

2.2.2 Rotational Equations of Motion

In the inertial frame, it is known that the moment is defined as the time

derivative of the angular momentum, using rigid body rotational law, we have

~Mw =
d~L

dt
=

d

dt
(~I · ~ω) (13)

where ~I is the body’s inertia tensor

~I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 . (14)

9



Note that the off-diagonal terms are equal to zero due to the symmetric mass dis-

tribution of the quadcopter. In order to make the understanding and calculations

more intuitive, it is better to set up the expression in the body frame using Euler’s

equation,

~Mb = ~I · ~̇ω + ~ω × (~I · ~ω) =

 τx
τy
τz

 (15)

where the right-hand side is a vector of applied torques.

~ω × (~I · ~ω) =

 p
q
r

×
 Ixx p
Iyy q
Izz r

 =

 (Izz − Iyy) qr
(Iyy − Izz) rp
(Iyy − Ixx) pq

 (16)

substituting this into equation 15 yields

τx = Ixx ṗ+ (Izz − Iyy) qr

τy = Iyy q̇ + (Ixx − Izz) rp

τz = Izz ṙ + (Iyy − Ixx) pq (17)

These equations can be solved for the derivatives of the angular rates to obtain

ṗ = (τx + Iyyqr − Izzqr)/Ixx

q̇ = (τy − Ixxpr + Ixxpr)/Iyy

ṙ = (τz + Ixxpq − Iyypq)/Izz (18)

Using 7 and 8, the derivatives of the Euler angles are obtained by multiplying

by W−1 to get

φ̇ = p+ (rc(φ)s(θ))/c(θ) + (qs(θ)s(φ))/c(θ)

θ̇ = qc(φ)− rs(φ)

ψ̇ = (rc(φ))/c(θ) + (qs(φ))/c(θ) (19)

10



2.3 State Space Model
2.3.1 State Vector

The state vector of the quadcopter is defined to be,

X = [x1 x2 x3 x4 x5 x6 x7x8 x9 x10 x11 x12]T .

= [x y z φ θ ψ ẋ ẏ ż p q r]T .

(20)

Note that the translational positions and velocities are defined in the inertial

frame while the p q r are defined in the body frame.

2.3.2 Input Vector

The vector input U consisting of four inputs, is defined as,

U = [U1 U2 U3 U4] = [ω2
1 ω2

2 ω2
3 ω2

4]. (21)

that is, the inputs to the quadcopter system are the squares of the motor speeds

driving the four propellers.

2.3.3 Aerodynamic Moment and Force

As an effect of the propeller rotation, the lift and translational force called

the aerodynamic force generated. The direction of the force is always aligned with

the body frame z-axis. The thrust force is generated from rotors i = 1, 2, 3, 4 is

proportional to the square of the motor speed

Fi = Ka ω
2
i . (22)

The rotors also generate the aerodynamic moment, which is proportional to

the square of the rotor speed,

Mi = Km ω2
i . (23)
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For the low-altitude flight of quadcopters, air density can be considered as a

constant number, and Ka and Km in equation 22 and 23 are constants respectively.

Consider now the moments and thrust acting on the quadcopter. Fig.2 shows

the forces and moments acting on the quadcopter: the upwards thrust force Fi and

moment Mi come from the rotation of the rotors.

We define l as the lever length of each of the quadrotor’s arms, based on the

right-hand-rule, as Fig.2 presents, F2 multiplied by the moment arm l generates

a negative moment about the y-axis, while in the same manner, F4 generates a

positive moment. Thus the total moment about the x-axis is,

τx = −F2l + F4l

= −(Kaω
2
2)l + (Kaω

2
4)l

= Kal(ω
2
4 − ω2

2) (24)

For the moments about the body frame’s y-axis,the thrust of rotor 1 generate a

positive moment, while the thrust of rotor 3 generates a negative moment about

the y-axis,the total moment can be expressed as,

τy = F1l − F3l

= (Kaω
2
1)l − (Kaω

2
3)l

= Kal(ω
2
1 − ω2

3) (25)

The moment about the body frame’s z-axis is caused by the rotors’ rotation

from aerodynamic moment,while the thrust force has no effect on the moment for

z-axis.

τz = M1 −M2 +M3 −M4

= (Kmω
2
1)− (Kmω

2
2) +Kmω

2
3)− (Kmω

2
4)

= Km(ω2
1 − ω2

2 + ω2
3 − ω2

4) (26)
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The thrust is given by

T = −Ka(ω
2
1 + ω2

2 + ω2
3 + ω2

4) (27)

In the body frame, we define the positive orientation is pointing downwards, so

the thrust forces acting on the z axis produced by the rotation of four propellers is

in the negative direction, while there are no forces acting on the x and y directions.

The non-linear state-space equation Ẋ = f(X,U) can be written as,

f1 = ẋ = x7

f2 = ẏ = x8

f3 = ż = x9

f4 = φ̇ = p+ (rc(φ)s(θ))/c(θ) + (qs(θ)s(φ))/c(θ)

f5 = θ̇ = qc(φ)− rs(φ)

f6 = ψ̇ = (rc(φ))/c(θ) + (qs(φ))/c(θ)

f7 = ẍ = − 1

m
T (c(φ)s(θ)c(ψ) + s(φ)s(ψ))

f8 = ÿ = − 1

m
T (c(φ)s(θ)s(ψ)− s(φ)c(ψ))

f4 = z̈ = − 1

m
Tc(φ)c(θ) + g

f10 = ṗ = (τx + Iyyqr − Izzqr)/Ixx

f11 = q̇ = (τy − Ixxpr + Ixxpr)/Iyy

f12 = ṙ = (τz + Ixxpq − Iyypq)/Izz (28)
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CHAPTER 3

Control System Theory

The goal of this chapter is to design a digital tracking system for the quad-

copter. Although this plant is a nonlinear system, we can still use results from

linear control theory. As such, before we develop the various controllers, we first

go over the basic knowledge of linear control theory.

3.1 Linear Control System

A linear time invariant (LTI) system may be represented by a state-space

model of the form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t), (29)

where x(t) ∈ <n, y(t) ∈ <p,u(t) ∈ <m are time-dependent vectors, while A ∈

Rn×n,B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m are constant matrices.

Since the quadcopter is a multi-input multi-output (MIMO) system which

has 12 state variables, 4 inputs and 4 outputs, after linearization, the matrix A is

12 × 12, B is 12 × 4, C is 4 × 12 and D is 4 × 4. Because we want to use digital

control, we let the plant-input signals be generated through D/A converters (zero-

order hold) with sampling interval T seconds. Also, the plant outputs and state

variables are sampled by A/D converters. The LTI continuous-time system in

(29), when surrounded by D/A and A/D converters, is equivalent to the following

discrete-time state-space model,

x[k + 1] = Φx[k] + Γu[k]

y[k] = Cx[k] +Du[k], (30)
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where x[k] = x(kT ), y[k] = y(kT ), u(t) = u[k] for kT ≤ t < (k + 1)T , Φ = eAT

and Γ =
∫
eAτBdτ . T is the sampling interval and k is the time value of the

discrete-time sequences.

3.2 Controllability and Observability

Consider a continuous linear system. If it is possible to find an input u(t), t0 ≤

t ≤ t1 to drive the system from arbitrary initial state x(t0) = x0 to an arbitrary

final state x(t1) = xf with finite time, the system is said to be controllable. The

controllability matrix Wc can be defined as

Wc = [B AB A2B · · · An−1B]. (31)

The pair (A,B) is controllable if and only if the rank of (A,B) is equal to n,

the size of A matrix.

Consider a digital control system x[k + 1] = Φx[k] + Γu[k]. If it is possible

to find an input sequence u[k] that takes the system from an arbitrary initial state

x[0] to any final state x[j] with finite step j, then the digital system is said to be

controllable.

The controllability matrix WC for the digital system is,

WC = [Γ ΦΓ Φ2Γ · · · Φn−1Γ]. (32)

According to [1], the controllability of the ZOH equivalent system (Φ,Γ) ob-

tained from a continuous-time system (A,B) can be determined with two criteria.

First, the continuous-time system (A,B) must be controllable. Second, if the

imaginary part of the poles with largest magnitude βmax satisfies

T <
π

βmax
(33)
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then (Φ,Γ) will be controllable.

The property of obsevability can be defined for a continuous-time LTI system,

ẋ = Ax+Bu

y = Cx, (34)

which is a simplified form of (29). This system is said to be observable, if the

initial state xt0 can be calculated using the inputs and outputs where t0 ≤ t ≤ t1,

with finite time t1 − t0. We define the obsevability matrix Wo as

Wo =


C
AC
A2C
· · ·

An−1C

 . (35)

The pair (A,C) is observable if and only if the rank of Wo is equal to n. Two

additional properties as follows: (A,B) is to be stabilizable if its uncontrollable

poles are stable and (A,C) is to be detectable if its unobservable poles are stable.

Consider a linear discrete-time system x[k+1] = Φx[k], x[0] = x0 with output

measurements y[k] = C x[k]. If we know the information about x0, then the system

dynamics x[k+ 1] = Φx[k] will give complete knowledge about the state variables

at any discrete-time instant. While the initial conditions x0 is determined if and

only if the digital observability matrix WO (36) has rank n.

WO =


C

ΦC
Φ2C
· · ·

Φn−1C

 . (36)

3.3 Linear Quadratic Regulator

The desired control system for the quadcopter is a digital tracking system in

which reference trajectories are supplied for desired output variables. However, it

16



will be seen that the design of a tracking system is accomplished by solving an

associated regulator design problem. For ease of presentation, we first consider

regulator design in continuous time.

The notion of linear quadratic regulator (LQR) comes from the MIMO con-

trol system design [2]. Since the feedback gain is not unique for multi-input sys-

tems, optimal control solutions provide the best possible feedback gains for MIMO

system. Linear quadratic optimal control can be realized by specifying some kind

of performance objective function to be optimized. Consider that we have the

continuous linear system,

ẋ = Ax+Bu (37)

where the (A,B) is controllable. We would like to design a state feedback control

u = −Kx such that the cost function,

J =

∫
(xTQx+ uTRu)dt, x(t0) = x0 (38)

is minimized and drives state x to 0. Q ∈ <n×n,R ∈ <m×m are positive definite

symmetric matrices chosen by the designer.

For the infinite time LQR problems, assuming that (A,B) are constant matrix,

(A,B) is stabilizable and (A,Q
1
2 ) is detectable. In this case, the solution that

minimizes cost function is the feedback control function

u = −Kx (39)

with the feedback gain matrix

K = R−1BTP. (40)

The matrix P is the unique symmetric positive definite is a constant matrix

that solves the Control Algebraic Ricatti Equation (CARE)

ATP + PA− PBR−1BTP +Q = 0. (41)
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Figure 3. Optimal State Feedback Regulator

then the optimal control input is

u = −R−1BTPx = −Kx (42)

where K is called Kalman gain matrix. The “optimal” state feedback regulator

can be drawn as Fig.3.

3.4 Linearization near an equilibrium point

In order to use linear state feedback to regulate a nonlinear dynamic model

at an equilibrium point, we need to linearize the nonlinear system around this

point. According the Lyapunov stability theory, we can guarantee the system to

be locally asymptotically stable around the equilibrium point and also we can find

the Region of Attraction for the equilibrium point[3]. Suppose we have a nonlinear

system,

ẋ = f(x, u) (43)

with an operating point (xeq, ueq) and f(x, u) continuously differentiable in a do-

main containing the operating points such that f(xeq, ueq) = 0. Expand the non-

linear function in a Taylor series about the operating point. Then, for x near xeq

and u near ueq we define the actual plant state vector x as the constant equilibrium

state vector xeq plus a vector of deviations w,

x = xeq + w. (44)
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Also the actual plant input vector u is the constant equilibrium plant input

vector ueq plus a vector of deviations v,

u = ueq + v. (45)

then the behavior of the nonlinear system in (43) can be approximated by a linear

state-space model for the deviations as follows,

ẇ = Aw +Bv

z = Cw, (46)

where z is the deviation from the equilibrium output z = y−Cxeq. The nonlinear

system looks like a linear system around the equilibrium point where

A =
∂f

∂x
(x, u)|(x,u)=(xeq ,ueq)

B =
∂f

∂u
(x, u)|(x,u)=(xeq ,ueq). (47)

Assume that the pair (A,B) is controllable, then we can develop a linear

feedback control u = −Kx to regulate the closed loop nonlinear system.

ẋ = f(x,−K(x− w)x+ v). (48)

3.5 Lyapunov Stability

In the sense of Lyapunov stability, an equilibrium point is to be asymptotically

stable if it is both stable and convergent, that means for all ε there exist a δ > 0

satisfy ‖x(0) − xeq‖ < δ ⇒ ‖x(t) − xeq‖ < ε and lim t→∞ x(t) = xeq for all

t ≥ 0. For a particular physical nonlinear system we would deploy a scalar-valued

positive definite function which is Lyapunov function to evaluate the stability of

an equilibrium point.
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Consider a n variables scalar-valued function V (x), which is a positive definite

function on some domain D containing xeq with V (xeq) = 0. If V̇ (x) is negative

semi-definite in the domain D then xeq is stable. For the quadcopter system, we

note that the origin x = 0 is an equilibrium point of the closed-loop system, since

closed-loop linearized system A − BK is stable (Hurwitz). If follows that, for

the nonlinear system, xeq is asymptotically stable. A set M ∈ <n (n dimensional

state space) is said to be an invariant set if x(0) ∈ M ⇒ x(t) ∈ M ∀t ≥ 0. In

our control laws, the feedback matrix was computed by the linearized model of the

quadcopter. The limitations for this method is that the feedback matrix is useful in

a neighborhood of the equilibrium point. As for how large the valid neighborhood

is, we will use Region of Attraction (RoA) to define the area. The definition

of Region of Attraction can help us find the initial states for which x(t) → xeq.

Given a linearized point, from Lyapunov stability theory, we may be able to obtain

a conservative estimate for the RoA from the invariant sets.

3.6 Stability Margins For Linear Multivariable Control Systems

Consider the feedback interconnection of two stable systems as shown Fig.4.

According to the small-gain theorem, if

‖H1(s)‖∞ ‖H2(s)‖∞ < 1.

then the closed-loop system is stable, where the norm is defined as ‖H(s)‖∞ =

max
ω

θ̄ (H(jw)), called the system infinity norm, and θ̄(M) is the maximum singu-

lar value of the matrix M . Consider the following system Fig.5 with multiplicative

plant perturbation 4. The inputs and outputs of 4 are v and w respectively,

when 4 = 0, the system is equivalent to the nominal plant model system. Based

on the small gain theorem, we can find a model from w to v with r set to zero. As
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Figure 4. Feedback Interconnection of Two Stable Systems

Figure 5. Perturbation Model with δ1

the Fig.6 shows, the system H(s) will be stable if,

‖ 4 (s)‖∞ <
1

‖H(s)‖∞
. (49)

Then the robustness bound for this closed loop system can be defined by

δ1 =
1

‖H(s)‖∞
(50)

where H(s) is the system form w to v which can be calculated using the system

infinity norm of (A,B,C,D). The value of the δ1 implies how large a perturbation

can be made to the plant model before the closed-loop system goes unstable. Now,

suppose that we have the perturbation model that is a diagonal matrix of unknown

complex numbers,

21



Figure 6. Interconnection of Perturbation and System

∆(s) =

 c1 0
. . .

0 cm

 (51)

where m is the number of plant inputs, ci are the complex numbers.

We know that this closed-loop system remains stable for all ∆(s) with

‖∆(s)‖∞ < δ1. The maximum singular value of a diagonal matrix is simply the

largest absolute value of the diagonal elements,

‖∆(s)‖∞ = m
i
ax |ci|. (52)

So we have the conclusion that the control system will be stable if max |ci| <

δ1. This analysis allows us to make a connection between the stability robustness

bound δ1 and classical stability margins (gain and phase margins).

Suppose we set up a model for the plant uncertainty with a diagonal matrix

of complex numbers, which is the classical perturbation model as Fig.7

where

Q =

 q1 0
. . .

0 qm

 . (53)

Assuming δ1 has been calculated for a given control system and ∆(s) is assumed

to be a complex number ci , so the stability conditions on corresponding classical

gain margins can be found by using Q = I+∆ or qi = 1+ci. If qi is a real number,
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Figure 7. Classical Stability Margins

the system stable condition is

qmax = 1 + δ1

qmin = 1− δ1

1− δ1 < qi < 1 + δ1, (54)

Then the classical upper gain margin (UGM) and lower gain margin (LGM)

are bounded by

UGM ≥ 20 log10(1 + δi) dB

LGM ≤ 20 log10(1− δi) dB. (55)

If qi is a complex number, that is q = e−jφ = 1 + ci, where 1 is the center of the

circle and ci is a disk with the radius δ1, we can find the classical phase margin

(PM) to be bounded by,

φmax ≥ 2sin−1(
δ1

2
). (56)

If the system perturbation plant model with following structure Fig.8, the

stability robustness bound can be defined as δ2. The system will be stable if
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Figure 8. Perturbation Model with δ2

‖∆(s)‖∞ < δ2, where δ2 is the reciprocal of the infinity norm of the system from

v to w. The connection between the classical perturbation model with this plant

model is, Q = (I + ∆)−1 or qi = 1
(1+ci)

. If ci is a real number then −δ2 < ci < δ2

, so the qi satisfy 1
1+δ2

< qi <
1

1−δ2 when qi is a real number. If qi is a complex

number that is q = e−jφ = 1 + Ci, where 1 is the center of the circle and ci is a

disk with the radius δ2, we can find the classical phase margin (PM) is bounded by,

φmax ≥ 2sin−1(
δ2

2
). (57)

Combining the results for δ1 and δ2 yields the following relationships between

the classical stability margins and the robustness bounds δ1 and δ2.

UGM ≥ max(1 + δ1,
1

1− δ2

)

LGM ≤ min(1− δ1,
1

1 + δ2

)

PM ≥ max(2sin−1(
δ1

2
), 2sin−1(

δ2

2
)). (58)
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3.7 Gain-Scheduled Control

In the previous discussion, we implemented the linear controller around the

equilibrium point xeq which is a single point. Although we can guarantee the local

stability around this point, when a trajectory goes outside of the RoA, the designed

controller would not be effective. This situation can be handled when there are a

sequence of operating points. In this case we need to design a sequence of different

linear controllers corresponding to the operating points in order to maintain the

stability.

The result is called a Gain-Scheduled controller. The main idea of the gain

scheduling is to linearize a range of operating points which contains the scheduled

variables, and then compute the varying linearized dynamics and feedback matrices

for the operating points. A series of linear controllers will be combined together to

control the nonlinear model [4]. The control precision would be determined by the

accuracy selection of scheduled variables. It is usually affected by the computation

speed and memory of the hardware for the quadcopter.

Consider the nonlinear system ẋ = f(x, u). Let the xeqi, ueqi, i = 0, 1... . be a

set of equilibrium points and xeq0 = αφ. The value of the control inputs is u(α0)

where satisfies the equation,

0 = f(α0, u(α0)). (59)

We can linearize the nonlinear model about the (α0, u(α0)) then we have the state

matrix and input matrix A(α0) and B(α0) where

A(α0) =
∂f

∂x
|(x, u) = (α0, u(α0)), B(α0) =

∂f

∂u
|(x, u) = (α0, u(α0)). (60)

Assuming that the pair (A(α0), B(α0)) is controllable, we can now continue to

develop a feedback control

uδ = −K(α0)(xδ − α0) + u(α0). (61)
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such that A(α0)−B(α0)K(α0) is stable. Applying this to the linearized the state

space equation results in the closed-loop system,

ẋδ = (A(α0)−B(α0))K(α0)xδ. (62)

We know that the Lyapunov stability can guarantee the closed-loop system is

stable in the region of attraction of Rα(0) ∈ D. When we switch the equilibrium

point to α1 at time t1, where α1, x(t1) ∈ Rα(1) we can linearize the system around

(α1, u(α1)) to obtain a new controller,

u(x;α1) = −K(α1)(x− α1) + u(α1). (63)

to asymptotically stabilize the closed-loop system about x = α1. In this way, we

can linearize a sequence of operating pointsαi,so long as αk−1, x(tk) ∈ <αk ⊂ D

where tk denotes the time of the kthswitch.
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CHAPTER 4

Tracking System Design and Simulation Analysis

As discussed, the technique of gain scheduling is well suited for linear

parameter-varying systems where the varying parameter can be assigned to be

the scheduling variable in the control law [1]. This strategy can be applied to non-

linear systems when the linearized dynamics happen to depend on a parameter of

interest to the control engineer. We will use the linearized dynamics of the quad-

copter to develop a series of gain scheduled control laws that use the yaw angle

as the scheduling variable. We will construct LQR control laws for use with state

feedback. Simulations will be conducted for each control law showing tracking

trajectories that exhibit the gain-scheduled nature of the controller.

4.1 Linearization and Controllability of Quadcopter Dynamics

We now are interested in linearizing the nonlinear dynamics of the quadcopter

about its equilibrium points in order to develop our gain-scheduled controller. To

do this, we must first find the equilibrium points of the quadcopter dynamics.

Equilibrium points satisfy

0 = f(xeq, ueq), (64)

where

xeq = (x, y, z, 0, 0, ψ, 0, 0, 0, 0, 0, 0)T . (65)

ueq = (ω2
1, ω

2
2, ω

2
3, ω

2
4)T . (66)

This situation corresponds to the hovering configuration of the quadcopter.
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Linearizing the nonlinear dynamics about the steady state values results in

ẋ = A(x− xeq) +B(u− ueq). (67)

where the Jacobian matrices

A =
∂f

∂x
(x, u)|(x,u)=(xeq ,ueq)

B =
∂f

∂u
(x, u)|(x,u)=(xeq ,ueq). (68)

are given by

A =

[
O6×6 I6×6

Ψeq O6×6

]
. (69)

B =

[
O8×4

I4×4

]
. (70)

where

Ψeq =


0 0 0 gcosψeq gsinψeq 0
0 0 0 gsinψeq −gcosψeq 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (71)

The signals to be tracked are

y = (x, y, z, ψ)T , (72)

which can be expressed as

y = Cx, (73)

where

C =


1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0

 . (74)

We denote the controllability matrix of the linearized system as,

Wc(Aeq, Beq), (75)
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Figure 9. Digital Tracking System

it can be verified that

ρWc(Aeq, Beq) = 12, ∀ψeq ∈ <. (76)

4.2 Obtaining a Tracking System by Regulating the Design Model

The goal of this chapter is to design a tracking system that makes the plant

outputs to follow given reference trajectories. Chapter 3 show that a state-feedback

gain matrix can be calculated that will regulate the plant (drive all state variables

to zero). We now show how to extend the plant to a “design model” such that

regulating the design model is equivalent to a tracking system for the plant.

The control algorithm for the quadcopter will be a digital tracking system. As

Fig.9, the digital tracking system is comprised of the nonlinear plant, a linear feed-

back matrix and additional dynamics. Here we derive a continuous-time tracking

system for ease of presentation.

Consider the plant as Fig.10 with a constant disturbance vector, w,

ẋ = Ax+Bu+ w

y = Cx+Du. (77)

Also, let r be a vector of constant commands for the plant outputs. Note that

ṙ = 0 and ẇ = 0. Since the tracking error e = y − r then we have ė = ẏ − ṙ and
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Figure 10. Digital Tracking System

ż = Ãz + B̃µ
z

−K̃

µ

Figure 11. Design Model Structure

ẏ = Cẋ+Du̇. Define two new variables ξ = ẋ and µ = u̇. Then ė = Cξ+Dµ and

ξ̇ = ˙̇x = Aẋ+Bu̇ = Aξ +Bµ.

Now define a new state vector z

z =

[
ξ
e

]
. (78)

then we have

ż =

[
ξ̇
ė

]
=

[
A O
C O

] [
ξ
e

]
+

[
B
D

]
µ. (79)

Let

Ã =

[
A O
C O

]
and B̃ =

[
B
D

]
. (80)

then (80) can be written as ż = Ã z + B̃ µ. A regulating gain matrix K̃ can be

computed for (Ã, B̃) using the LQR algorithm, closing the loop with µ = −K̃z
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Figure 12. Partition K̃ for the New State Variables

Figure 13. Redraw the System Structure with Actual Plant Model

Fig.11. This regulator drives

z =

[
ξ
e

]
→
[

0
0

]
(81)

no mater what the disturbance w is. We can partition the K̃ matrix as K̃ =

[K1 K2] , so the input µ = −K1ξ − K2e. Then the tracking system structure

can be obtained from Fig.12 Fig.13 and finally redrawn as Fig.14 and Fig.15 with

additional dynamics.

The system will drive y to r and keep zero steady-state error despite of un-

certain disturbance w.

4.2.1 Additional Dynamics Blocks

The additional dynamics block consists of m integrators in parallel, whose

outputs are multiplied by the gain matrix K2. As Fig.16 shows, the input to the

additional dynamics are the differences between the measured outputs and the
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Figure 14. Structure of a State-Space Tracking System

Figure 15. Extend the Design Model with Additional Dynamics

32



references inputs. We will supply reference input signals for the following four

variables: x-position, y-position, z-position (height) and ψ (yaw angle). Thus the

additional dynamics block will contain four integrators. Note that the state-space

model for parallel integrators is Aa = Om×m and Ba = Im×m, where m is the

number of the plant output variables.

4.2.2 LQR Design of a Linear Tracking System

Given a plant model (A,B,C) with n state variables and m outputs, the pro-

cedure developed in the previous subsections is used to calculate the gain matrices

K1 and K2 that are needed to implement the tracking system shown in Fig.15.

The procedure may be summarized as follows:

(1) Form the matrices Ã and B̃ for the design model shown in Fig.11.

(2) Choose LQR weighting matrices Q and R. This choice is discussed below.

(3) Calculate the LQR gain matrix K̃ using the matlab ‘ lqr ’ command.

(4) Partition the K̃ matrix to obtain K1 and K2. K1 consists of the first n columns

of K̃ and K2 consists of the last r columns.

The Q and R matrices used in the LQR design are chosen using the following

considerations. The Q matrix is chosen to have the following form:

Q = α CT
d Cd, (82)

where the r × (n + r) matrix Cd = [0 M ]. For a four-output plant, M =

diag (c1, c2, c3, c4). Let α be a varied parameter. c1, c2, c3, c4 represent the amount

of effort applied to tracking the outputs x, y, z, ψ. For the R matrix, define

R = ρ diag(r1, r2, r3, r4) where (r1, r2, r3, r4) represent the efforts to implement the

plant inputs the angular speed of the 4 rotors. Increasing the value of c1, c2, c3, c4

will get a good response for the corresponding states, decreasing the value of

r1, r2, r3, r4 will allocate more energy employed by the control inputs. Varying

α and ρ will affect the dynamics performance of the system and find a optimal
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Figure 16. Additional Dynamics and Integrators

u = −Kx where the feedback matrix K is calculated by the optimal Q and R to

minimize the cost function J in (38).

4.3 Design of a Fixed-Gain Tracking System

We will begin with developing the fixed-gain controller to track a step input

reference. The nonlinear model of the quadcopter is

ẋ = f(x, u). (83)

Let

ẋδ = Axδ +Buδ. (84)

be the linearization about the equilibrium point xeq, ueq, where,

xeq = (x, y, z, 0, 0, ψ, 0, 0, 0, 0, 0, 0)T (85)

ueq = (ω2
1, ω

2
2, ω

2
3, ω

2
4)T (86)

and xδ = x− xeq, uδ = u− ueq.

The linear tracking sysem will be designed using xeq and ueq. In order to

control the nonlinear drone, a linear feedback controller will be used, as shown in

Fig.17. Note that the linearized dynamics do not depend on the spatial coordinates
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Figure 17. Tracking System for the Nonlinear Drone

(x, y, z) of the steady state. As such, the gain matrix K only depends on the yaw

angle configuration ψ of the quadcopter, so we can use this controller to track a

step reference,

r = (x, y, z, ψ)T . (87)

We will now go through a series of choices for the Q and R weight matri-

ces and evaluate the performance of the resulting tracking systems. Firstly, we

linearized the nonlinear dynamics at xeq = (2, 2,−2, 0, 0, pi/6, 0, 0, 0, 0, 0, 0)T with

the balanced input ueq = (ω2
1, ω

2
2, ω

2
3, ω

2
4)T , where ω1 = ω2 = ω3 = ω4 = mg

4 ka
,

when the quadcopter stay in a constant altitude hover state. Then we got the

Jacobian matrices A,B. For the choice of symmetric positive Q and R matrix,

let c1, c2, c3, c4 and u1, u2, u3, u4 be a constant number 1, that means M and R are

identity matrices.

Fig.18, 19 and 20 show the step input position and ψ angle reference track-

ing performance. The reference inputs to the model are r = (2, 2,−2, π/6)T

and the scaling parameters for the Q and R matrices are α = 10, ρ =

0.01, thus Q = diag(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 100, 100, 100) and R =

diag(0.01, 0.01, 0.01, 0.01).

Fig.18, 19 show that the actual position and ψ angle all reach the zero steady
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Figure 20. Plant Input Angular Speed

state error as expected, although there is excessive oscillation. The oscillation can

be reduced by penalizing the seventh, eighth and ninth state variables, ẋ, ẏ and

ż. It takes about 80 seconds for x and y states to reach steady state, while z and

ψ need more time, about 190 seconds. Increasing the diagonal elements of Q will

improve the setting time for the corresponding states, and increasing the element

of R will reduce the energy the controller uses to stabilize the plant. Fig.19 shows

that the input angular velocity are equal in magnitude but have opposite direction

for the opposite pair ω1, ω3 and ω2, ω4 when the quadcotper take off and hover at a

stable state. And the robustness bound values of δ1 and δ2 for this control system

are 0.5132 and 0.9771 respectively.

It takes more time for the height and yaw angle to reach a steady state.

So, we set the c1, c2, c3, c4 to be (10, 10, 100, 100) giving more effort for z and ψ

states control. We will choose some weights to penalize the ẋ, ẏ and ż and keep
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Figure 21. Step Reference Tracking X and Y states

(u1, u2, u3, u4), α and ρ as the first test. So the Q = diag(0, 0, 0, 0, 0, 0, 1e+ 5, 1e+

5, 1e+ 3, 0, 0, 0, 1e+ 4, 1e+ 4, 1e+ 6, 1e+ 6) and R = diag(0.01, 0.01, 0.01, 0.01).

Fig.21 and 22 show that when effort applied to control state is increasing, it

takes less time for the states reach a steady state. For x and y states, it needs

about 15 seconds, while for z and ψ the time would be around 35 seconds. The

overshoot for x, y, z, ψ is much better than previous values. And the values of δ1

and δ2 for this control system are 0.5628 and 0.9838 respectively.

Although the overshoot has been improved and settling time is smaller, we

want to seek a better transient response with good combination of Q and R. This

time we keep the c1, c2, c3, c4 as (10, 10, 100, 100) , (u1, u2, u3, u4) as one, and α = 10,

penalty for ẋ, ẏ and ż, change ρ = 0.001, thus Q = diag(0, 0, 0, 0, 0, 0, 1e + 6, 1e +

6, 1e+4, 0, 0, 0, 1e+4, 1e+4, 1e+6, 1e+6) and R = diag(0.001, 0.001, 0.001, 0.001).
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40



0 10 20 30 40 50 60
1850

1900

1950

ra
d/

s

Plant Input Variables

Angular Velocity Omega1

0 10 20 30 40 50 60
1850

1900

1950

ra
d/

s Angular Velocity Omega3

0 10 20 30 40 50 60
-1950

-1900

-1850

ra
d/

s

Angular Velocity Omega2

0 10 20 30 40 50 60

Time(s)

-1950

-1900

-1850

ra
d/

s

Angular Velocity Omega4
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Fig.24, 25 show that it takes more time, about 15 seconds for the states x

and y to reach a steady state, while for z and ψ about 25 seconds. So decrease

the weights of R will produce a good response and quicker converge to the steady

state with little overshoot. And the values of δ1 and δ2 for this control system are

0.6062 and 0.9716 respectively.

In the last test we set the c1, c2, c3, c4 to be (100, 100, 1000, 1000) and keep

α = 10, ρ = 0.001 (u1, u2, u3, u4) as 1 and penalties for ẋ, ẏ and ż. Thus Q =

diag(0, 0, 0, 0, 0, 0, 1e + 6, 1e + 6, 1e + 4, 0, 0, 0, 1e + 6, 1e + 6, 1e + 8, 1e + 8) and

R = diag(0.001, 0.001, 0.001, 0.001). Compared with the plant input Fig.26 and

Fig.29 we can see that when we put bigger penalties on the Q matrix, more effort

should be supplied to the command control inputs and the quadcopter would have

to take off with a much larger motor speed. This also happens when we put larger

penalties (1e10, 1e10, 1e6) on the derivatives of x,y and z positions. That is just the
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limitation of the LQR regulator, we have to make a trade-off between the outputs

transient performance with the power we can supply for the plant inputs.

Fig.27, 28 show that it takes more time, about 8 seconds, for the states x and

y z and yaw to reach a steady state. Fig.29 shows that the quadcopter takes about

10 seconds from taking off to a steady state. The transient response performance

is good, and the values of δ1 and δ2 for this control system are 0.5677 and 0.9669

respectively.

This controller can also be used to track trajectories in which there is little

variation in the yaw angle of the quadcopter. However, when the yaw angle un-

dergoes substantially variation, the fixed-gain controller will work not well. To

correct this issue, a set of linear tracking gains can be calculated for a given set of

equilibrium points. A gain-scheduled tracking system will be developed using the

measured yaw angle as a scheduling variable.
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4.4 Gain-Scheduled LQR Control

The fixed gain controller we designed has been evaluated for step reference

tracking. Now we will show how the feedback matrices K1 and K2 may be obtained

by linear interpolation to track references with significant change in the yaw angle.

4.4.1 Figure - 8 trajectory tracking

Tracking a figure eight curve in a 2 dimensional plane. During this test only

the design values Q and R in the last group experiment for the step references

tracking will be employed. The figure eight references inputs are generated in the

commands block. The range of the desired xm and ym are defined as

xm(t) = Ax sin
2t

T
(88)

ym(t) = Ay sin
t

T
, (89)

where Ax is the amplitude of xm, Ay is the amplitude of ym and T is the period of

the figure eight. This means that a figure eight can be commanded to remain in

an area of Ax × Ay and one of the period of the figure eight would be completed

in 2πT seconds. The relation between the xm and ym with the ψ angle command

is given by,

ψcmd = tan−1 Ay cos( t
T

)

2Ax cos(2t
T

)
. (90)

Note that the tan−1 is calculated by the atan2 function to make it change

smoothly in all quadrants. The main idea of gain scheduling controller is to design

a family of linear controllers around operating points, or regions that should guar-

antee the robustness, and change according to the variation of scheduled variable

ψ angle. The change of controllers usually be implemented with interpolation or

by switching from different values of scheduled variable. [2] shows the instability

created by switching among controllers, which may come from the transition dy-

namics that the information is not covered by each switching linear controllers.
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So, interpolation methods will be focused in the thesis. The values spacing ∆ of

interpolation for the ψ angle will be determined first. We can define a Ψ(t) for

the real time position of yaw angles and check which interval ψ(t) lies in (Define

ψ(q) ≤ ψ(t) < ψ(q+1) and ∆ = ψ(q+1)−ψ(q) where q is the index). Then, a se-

quence of linear feedback matrix could be calculated using equilibrium points with

the changeable ψ angle. As Fig.30 shows, the matlab function inside the controller

block defines a parameter c = ψ(t)−ψ(q)
∆

. The actual feedback matrix is computed

using the parameter c. In this way, the missing information between the transition

dynamics could be detected mostly. Also, the modulo operation used to make sure

the ψ angles value stays in the range (0 , 2π). The control precision is usually de-

termined by the spacing ∆ radians and limited by the physical hardware. We tried

the following values for ∆ as π/3 , π/12 and π/30. Note that these tests are com-

pleted based on the Q = diag(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e+6, 1e+6, 1e+8, 1e+8)

and R = diag(0.001, 0.001, 0.001, 0.001).

We can see that as the ∆ decreases from π/3 to π/12 and finally to π/30,

the tracking performance becomes much better. The actual tracking locus is very

sloppy and fuzzy when ∆ = π/3. When the ∆ decreased to π/12, although with lit-

tle distortion during the trajectory tracking, the overall performance is good. The

improvement from last when ∆ = π/30 is more noticeable with precise tracking.

For the fixed-gain tracking system, penalties are added to the derivative of

x, y and z positions to improve the overshoot. While, for the Figure-8 trajectory

tracking, we will put the same weights on the Q matrix with different spacing values

of ∆. So the matrices Q = diag(0, 0, 0, 0, 0, 0, 1e6, 1e6, 1e4, 0, 0, 0, 1e+6, 1e+6, 1e+

8, 1e+8) and R = diag(0.001, 0.001, 0.001, 0.001) for this tracking controller. Also,

in the simulations of the gain-scheduled controllers, we will be using the same Q

and R matrices for different equilibrium points.
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Fig.34, 35, 36 depict the figure-8 curve tracked with different spacing values ∆

for yaw angles. It is clear that there is little change for the tracking performance

with values of ∆ from π/3 to π/12 until to π/30. Even for choose a bigger spacing

value ∆, the quadcopter tracks the reference inputs well.

4.4.2 3D trajectory tracking

We will further conduct a simulation where the quadcopter is to track a rising

spiral and lemniscate trajectory in 3-dimensional space to test the effectiveness of

the gain-scheduled controller. The helix curves can be parameterized as

xm(t) = Ax sin
2t

T

ym(t) = Ay cos
2t

T

zm(t) = Az t, (91)

where Ax is the amplitude of xm, Ay is the amplitude of ym and T is the period of

the figure eight. The ψ angle can be defined as the following equation,

ψcmd = tan−1 Ay cos( t
T

)

2Ax cos(2t
T

)
. (92)

We will set Ax = 15,Ay = 15,Az = 0.5, t = 0.005, T =

10 in the simulation. The 3D trajectories tracking is performed using

Q = diag(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e + 6, 1e + 6, 1e + 8, 1e + 8) and R =

diag(0.001, 0.001, 0.001, 0.001) without penalties on the derivatives. The quad-

copter is manipulated to fly 3 rotations around z axis. The actual trajectory is

slightly difference with the references around the start point due to the initial

state setting for the quadcopter, this can also be seen in the xy-plane projection

and y trajectory position response. At about 5 seconds, the measured trajectory

begins to track the references well, although with little deformity. The Fig. 39

xy-plane plot gives a top vision of the behavior for the helix curve. Fig.38 shows
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that the two clockwise spinning and two counterclockwise spinning rotors have

the same magnitude but opposite direction of the angular speed. This two pairs

rotors make quadcopter rise quickly and balance drag-induced torque about z-axis.

Fig.40 shows the roll angle variation is less than 0.8rad even for the big yaw an-

gle change during the trajectory tracking. Fig.41, 42, 43 and 44 show that the

transient response do a good job. The settling time and overshoot are acceptable.

Now we switch to another 3D trajectory, which is a lemniscate trajectory

defined as,

xm(t) = Ax sin
2t

T

ym(t) = Ay sin
t

T

zm(t) = Az t− 5, (93)

where Ax is the amplitude of xm, Ay is the amplitude of ym and T is the period

of the figure eight. The relation between the xm and ym with the ψ angle using
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the following equation (94). In the simulations, we will use Ax = 2, Ay = 2,

Az = 0.5, t = 0.005, T = 10.

ψcmd = tan−1 Ay cos( t
T

)

2Ax cos(2t
T

)
. (94)

The actual trajectory is slightly different with the references around the start

point due to the initial state setting for the quadcopter, this can also be seen in

the xy-plane projection and y trajectory position response. To check the ability

of the tracking system to “catch up” to the references, the initial states we set

for the drone is different from the initial values of the references. Fig.45 shows

that the two clockwise spinning and two counterclockwise spinning rotors have

the same magnitude but opposite direction of the angular speed. This motion

make the quadcopter rise quickly and balance drag-induced torque about z-axis.

Fig.48 shows the roll angle variation is less than 0.025 rad even for the big yaw

angle change during the trajectory tracking. Fig.49, 50, 51 and 52 show that the
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Figure 46. Plant Input Angular Speed
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transient response for the x, y, z, ψ trajectory. The settling time and overshoot are

acceptable.
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CHAPTER 5

Conclusions

The quadcopter is a MIMO nonlinear system with four inputs and twelve

state variables. Linearizing the nonlinear model using the Jacobian methods, we

obtain the state space model around the desired equilibrium points . In the design

of digital LQR controller, the altitude, x position, y position and yaw angle are

tracked outputs and the twelve state variables are fed into the gain matrix. The

weights choice for LQR regulator is tested using different pairs of Q and R matrices.

The stability margin and settling time of the linearized system are guaranteed al-

though with little overshoot. Techniques from linear control theory used to design

the fixed gain digital tracking system. We extended the LQR regulator to a digital

tracking system with the additional dynamics. When tracking references signals

involving big variation in the yaw angle, we designed the gain-scheduled controller

taking yaw angel as the scheduling variable, the adaptive gain matrices are cal-

culated using the gain-scheduled algorithm. To demonstrate the effectiveness of

the algorithm we developed, step references and trajectory tracking simulation we

conducted. Also, we used the control laws tracking some trajectories in three di-

mensional spaces such as helix and lemnsicate when there is no dramatic changes

in the trajectory of yaw angle. The simulation result show that the controller we

developed is able to successfully converge to the stable state and track the desired

references.

This thesis provides a basis platform to design the trajectory tracking con-

trollers for the Rolling Spider Drone. Although the control algorithm we developed

gave good results, there are many parts of the design can be improved. The state-

feedback regulator employed in the design is under the assumption that all 12 state

61



variables measured. However, in the practice, it is more necessary and smarter to

measure some of the variables with the sensors mounted on the Drone. Usually,

the Inertial Measurement Unit (IMU) which is a 6 axis-accelerometer-gyroscope

equipment and pressure sensor can obtain the acceleration and angular rates in the

body-frame and heights in the inertial-frame. Then the measured inertial-frame

velocity and x,y positions can be obtained by transformation matrix RB2W (6).

The Euler angular rates are given by (7). The output feedback regulator can be

designed by measuring the acceleration and angular rates in the body-frame and

heights in the inertial-frame, an estimator can be used to obtain all the desired

12 state variables and feed them back to the controllers. Also, the physical ex-

periment will need to performance with the real system Rolling Spider Drone to

demonstrate the algorithms devised.
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APPENDIX

Matlab Code

1 % clear all

2 % Origianl Model Digital

3 load('figure8 1degree.mat');

4

5 % Quadcopter Parameter defination

6 quad.Ct = 0.0107; %Thrust coefficient

7 quad.Cq = quad.Ct*sqrt(quad.Ct/2); %Torque coefficient

8 quad.r = 33/1000; %Rotor radius

9 quad.A = pi*quad.rˆ2; %Rotor Area

10 quad.rho = 1.184; %Density of air

11 quad.ka = quad.Ct*quad.rho*quad.A*quad.rˆ2;

12 quad.km = quad.Cq*quad.rho*quad.A*quad.rˆ3;

13 quad.g = 9.81;

14 quad.ix = 0.0686e-3;

15 quad.iy = 0.092e-3;

16 quad.iz = 0.1366e-3;

17 quad.d = 0.0624; %Distance from rotor to the

center of Drone

18 quad.m = 0.068; %Mass of Drone

19 T = 0.005; %Sample time

20

21 [phia,gammaa] = c2d(zeros(4),eye(4),T); %Additional Dynamics

22 C = [eye(3,3) zeros(3,9);0 0 0 0 0 1 0 0 0 0 0 0 ];%Output state

variables

23 D = zeros(4,4);

24
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25 syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 u1 u2 u3 u4;

26 % (x y z phi theta psi xdot ydot zdot p q r)

27

28 T thrust = quad.ka*(u1+u2+u3+u4);

29 taux = quad.ka*quad.d*(u4-u2);

30 tauy = quad.ka*quad.d*(u1-u3);

31 tauz = quad.km*(u1-u2+u3-u4);

32

33 % Non-linear function

34 f1 = x7;

35 f2 = x8;

36 f3 = x9;

37 f4 = x10+sin(x4)*tan(x5)*x11+cos(x4)*tan(x5)*x12;

38 f5 = cos(x4)*x11+sin(x4)*x12;

39 f6 = (sin(x4)/cos(x5))*x11+(cos(x4)/cos(x5))*x12;

40 f7 = (-1/quad.m)*T thrust*(cos(x4)*sin(x5)*cos(x6) + sin(x4)*sin(x6))

;%x7

41 f8 = (-1/quad.m)*T thrust*(cos(x4)*sin(x5)*sin(x6)...

42 -sin(x4)*cos(x6));

43 f9 = quad.g - (1/quad.m)*T thrust*(cos(x4)*cos(x5));

44 f10 = (taux+quad.iy*x11*x12-quad.iz*x11*x12)/quad.ix;

45 f11 = (tauy-quad.ix*x10*x12+quad.iz*x10*x12)/quad.iy;

46 f12 = (tauz+quad.ix*x10*x11-quad.iy*x10*x11)/quad.iz;

47

48 % Scheduled variables definition

49 yaw equil = [0:1:360]*(pi/180); % Change yaw angle to radians

50 n = length(yaw equil);

51 xbar = zeros(n,12);

52 x1bar = yaw equil;

53

54 % Feedback matrix calculation

55 for i = 1:n
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56 % Calculate the input and equilibrium points

57 % Hover stable state

58 omega = (sqrt((quad.m*quad.g)/(quad.ka*4)));

59 ubar = [omegaˆ2;omegaˆ2;omegaˆ2;omegaˆ2];

60 xbar(i,:) = [0;0;-2;0;0;yaw equil(i);0;0;0;0;0;0];

61

62 % Jacobian function for the partial derivative of xbar and ubar

63 System.V = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12];

64 System.A = jacobian([f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12],System.V

);

65 A(:,:,i) = double(subs(System.A,{x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,

x12,u1,u2,u3,u4},{0,0,-2,0,0,yaw equil(i),0,0,0,0,0,0,omegaˆ2,

omegaˆ2,omegaˆ2,omegaˆ2}));

66 System.B = jacobian([f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12],[u1,u2,

u3,u4]);

67 B(:,:,i) = double(subs(System.B,{x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,

x12,u1,u2,u3,u4},{0,0,-2,0,0,yaw equil(i),0,0,0,0,0,0,omegaˆ2,

omegaˆ2,omegaˆ2,omegaˆ2}));

68

69 % Additional Dynamics

70 [m,l] = size(C);

71 [l,p] = size(B(:,:,i));

72 Aa = kron(eye(m),0);

73 Ba = kron(eye(m),1);

74 q = length(Aa);

75 Ad(:,:,i) = [A(:,:,i) zeros(l,q);Ba*C Aa];

76 Bd(:,:,i) = [B(:,:,i);zeros(q,p)];

77

78 % Choose Q and R weights for LQR Matrix

79 alpha = 1;

80 c1 = 1000;

81 c2 = 1000;
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82 c3 = 10000;

83 c4 = 10000;

84 N = [c1 0 0 0;0 c2 0 0;0 0 c3 0;0 0 0 c4];% mapping the output for

tracking

85 Cd = [zeros(4,12) N];%

86 Q = alpha*(Cd)'*Cd;

87 R = 0.001*eye(p);

88

89 % Digital LQR Feedback Matrix

90 [phid(:,:,i),gammad(:,:,i)] = c2d(Ad(:,:,i),Bd(:,:,i),T);

91 phiD = phid(:,:,i);

92 gammaD = gammad(:,:,i);

93 Kd(:,:,i) = dlqr(phiD,gammaD,Q,R);

94 K11(:,:,i) = Kd(:,1:12,i);

95 K22(:,:,i) = Kd(:,13:16,i);

96

97 % Parameters for Simulink

98 vK1(:,:,i)= K11(:,:,i);

99 vK2(:,:,i)= K22(:,:,i);

100 end

66



1 % controller function

2

3

4 function [xa,u] = fcn(v,vK1,vK2,x1bar,xbar,ubar,C,phia,gammaa)

5

6 % Define the dynamic K matrix

7 lpoints=x1bar;

8 N=length(x1bar);

9 inc=x1bar(2)-x1bar(1);

10

11 xa=v(1:4); % Track 1-4 output

12 x=v(5:16); % State Variables 12

13 y=C*x; % Output x,y,z,yaw

14 x ref=v(17);

15 y ref=v(18);

16 z ref=v(19);

17 x1b=v(20); %v(20)=actual yaw position

18 r=[x ref;y ref;z ref;x1b];%v(17:20);

19

20 x1b1=mod(x1b,2*pi);

21 if x1b >= 0 && x1b1 < lpoints(end)

22 n=floor((x1b-lpoints(1))/inc+1);% Divide inc then plus 1

23 alpha=(x1b-lpoints(n))/inc;

24 K1=(1-alpha)*vK1(:,:,n)+alpha*vK1(:,:,n+1);

25 K2=(1-alpha)*vK2(:,:,n)+alpha*vK2(:,:,n+1);

26 xbar sl = (1-alpha)*xbar(n,:)'+alpha*xbar(n+1,:)';

27 % xbar sl=xbar(n,:)';

28 else

29 % n=0;

30 % alpha=0;

31 K1=vK1(:,:,1);

32 K2=vK2(:,:,1);
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33 xbar sl=xbar(1,:)';

34 end

35

36 % Controller code

37 e=r-y; % e=r-(y-C*xbar sl); % r input 1 column

38 %u=K2*xa-K1*x; For Linear

39 u=K2*xa-K1*(x-xbar sl)+ubar; % non-linear write here

40 xa=phia*xa+gammaa*e;
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