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Abstract

Rhode Island Department of Transportation (RIDOT) has been rehabilitating asphalt

pavements, and looking for a sustainable strategy. A Rhode Island Highway, Route 165

in Exeter was rehabilitated in 2013 with five different strategies, i.e., control (without

additive), calcium chloride, asphalt emulsion, Portland cement and Geo-grid. The

base/subbase layer (between asphalt base and existing granular subbase) was prepared by

Full Depth Reclamation (FDR) method. The goal of the project was to predict the

performance of rehabilitated asphalt pavement with different base/subbase strategies and

to select the best reclamation technique. The AASHTOWare Pavement ME Design

(PavementME) software was selected to predict performance.  It requires four different

categories of inputs, i.e., general information, traffic input, climatic input, and material

properties. Although RIDOT was able to prepare inputs of General information, Traffic,

and Weather, there were no accurate material input parameters. Material properties

required extensive testing which includes resilient modulus, dynamic modulus, creep

compliance, thermal conductivity, poison’s ratio and volumetric properties. Resilient

moduli of subgrade soils, existing subbase materials, and reclaimed subbase/base

materials with and without additives were determined at University of Rhode Island

(URI). Properties of Hot Mix Asphalt (HMA) including dynamic modulus and creep

compliance were determined in the present study. It was observed from the outputs that

asphalt concrete top down fatigue cracking happened on all strategies whereas the one

with Portland cement only passed for thermal cracking and permanent deformation in

asphalt layer. It was also observed that the strategy with Portland cement performed the

best whereas the one with asphalt emulsion did the worst, i.e., it would last for only 5



years. In summary, it was predicted with available input parameters that the reclaimed

strategies in order of best performance were: Portland cement, calcium chloride, control,

geo-grid and asphalt emulsion. It has been recommended that predicted performance will

be evaluated with long-term field monitoring, and that results of the present study will be

utilized for future rehabilitation projects.
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Chapter 1

Introduction

1.1. Pavement Rehabilitation

Pavement rehabilitation is a major activity for all highway agencies and has several

consequences on agency resources and traffic disruptions because of extensive and

extended lane closures. The traffic volumes on the primary highway system, especially in

urban areas, have seen tremendous increases over the last 20 years, leading in many

instances to earlier-than-expected failures of highway pavements. The aging of the

Interstate highway system and other primary systems built during the 1950s and 1960s

has resulted in the expenditure of a large portion of highway funds on pavement

rehabilitation. Efforts continue to be made to develop techniques and procedures that will

result in cost effective and longer-lasting pavement rehabilitation to serve the nation’s

highway system well into the 21st century. The process of pavement rehabilitation

involves the following procedures:

1. Prioritization of pavements in need of rehabilitation, which incorporates monitoring

activities to assess the functional and structural condition of pavements;

2. Development of feasible rehabilitation strategies;

3. Selection of the most cost-effective rehabilitation strategy given a set of constraints,

which may include reduced service life, life-cycle costs, and budgetary constraints; and

4. Adequate prediction and measurement of performance of the rehabilitated pavements.
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1.2. Pavement Evaluation

The state of the practice of pavement rehabilitation is good but can be better. In the last

10 years, significant improvements have been made in pavement evaluation techniques

and in rehabilitation equipment and procedures. Considerable progress has been made in

techniques to evaluate pavement condition. Equipment for measuring surface profiles and

for assessing the structural capacity of pavements is widely used by highway agencies

and other practicing pavement engineers. The common availability of the falling weight

deflectometer (FWD) has resulted in a more objective assessment of the structural

capacity of pavements and timely rehabilitation of under designed or overloaded

pavements.

1.3. Asphalt Pavement Rehabilitation

Asphalt pavement rehabilitation typically involves milling and resurfacing of the existing

asphalt pavement to mitigate the effects of rutting, cracking, potholes and other

distresses. Resurfacing thickness may depend on the condition of the existing pavement,

anticipated future truck traffic, and available funding. Under heavy truck traffic, the

expected service life of the rehabilitated pavement is typically about 8 to 12 years.

It has been estimated that the amount of miles of truck traffic on our highways will

be increasing and surpassing all other modes of freight shipments in the near future.

Tractor trailers and heavy vehicles account for a majority of the damage done to

highways (Lee and Peckham 1990). The States, especially Rhode Island, are having a

hard time keeping up with and paying for maintenance and rehabilitation (M&R). This

means there will be more wear done to our highways than ever before, and the States

will have to do more M&R with less funding. To meet upcoming highway demand,



3

the Rhode Island Department of Transportation (RIDOT) has been testing alternative

subbase materials as reclamation strategies, and has been expanding their use. To meet

up best rehabilitation strategy/technique for a pavement, it is necessary to predict its

performance over a certain number of years.

1.4. Justification for and Significance of Study

Asphalt or flexible pavements typically designed for 20 years, and generally consist of

four layers (namely subgrade soils, granular subbase, granular or asphalt base, and

asphalt surface). With the passage of time the top surface of pavement deteriorates

quickly due to mainly heavy truck traffic and adverse climate, if not, inadequately

designed pavement structures, and end up having different kinds of asphalt distresses,

e.g., rutting, fatigue cracking, thermal cracking, potholes, and roughness. To maintain

and rehabilitate pavement there should be a solution or strategy to meet up the 20 years

design life of pavement.  RIDOT used different rehabilitation strategies in the past, such

as use of Reclaimed Asphalt Pavement (RAP), Reclamation, Subbase stabilization, and

Geo reinforcement etc. The use of RAP in cold recycling has been increased, and two

categories were identified: partial depth recycling. e.g., Cold Central Plant Recycling

(CCPR) and Cold In-Place Recycling (CIR) and Full Depth Reclamation (FDR).

However, there is no effective guideline which strategy is the best in RI. In this research

study FDR with different additives and/or stabilization strategies used on base/subbase of

a Rhode Island (RI) Highway, i.e., Route 165 located in Exeter as shown in Figure 1.1

were focused.

Design of flexible pavement depends on different number of factors like properties of

subgrade soils, traffic or loading, properties of materials (which includes aggregates and
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asphalt mixtures), climate or environment, and cost. Basically, all these engineering

design factors except cost are the base for predicting the performance of pavement.

Since RIDOT established 5 test sections with RAP base/subbase materials with different

treatments on RI Rt. 165, performance for different rehabilitation strategies can be

predicted by using a mechanistic empirical approach, i.e., AASHTOWare Pavement ME

Design (PavementME) software. With the help of this graduate research State of Rhode

Island will be able to predict amount of distresses on pavement over a certain period as

well as number of the years for which pavement will last under different rehabilitated

strategies. However, there is no accurate material input parameters to use Pavement ME.

The results of this research study will also allow using proper input parameters and

selecting the optimal rehabilitating strategy for future rehabilitation/reconstruction of

projects and to develop guidelines for long-term pavement evaluation. Selection of

optimal rehabilitation strategy will be done through prediction and evaluation, e.g.,

distress observations, deflection analysis, and roughness measurement etc.

1.5. Objectives

The objectives of this project were:

1. To collect existing data from the five test sections on Route 165 including resilient

moduli of subbase materials before and after rehabilitation/reconstruction,

2. To determine accurate material input parameters,

3. To predict the performance of pavement structures with five different rehabilitation

strategies using PavementME software in terms of rutting, cracking and roughness,

4. To select the best rehabilitation/reconstruction techniques for Rt. 165 test sections,
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5. To come up with framework to select an optimal technique and/or strategy for future

rehabilitation/reconstruction projects, and

6. To develop guidelines for long-term evaluation.

1.6. STRUCTURE OF THESIS

This research study consists of five Chapters. Chapter 1 starts with Introduction. Chapter

2 discusses about rehabilitation design of RI Route 165, Chapter 3 describes about

determining accurate material input parameters, Chapter 4 provides the performance

prediction of RI Route 165 by Pavement ME, Chapter 5 describes about evaluation

methods for rehabilitated asphalt pavement and Chapter 6 provides conclusions and

recommendations.

Figure 1.1 Location of Route 165 in Exeter Rhode Island
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Chapter 2

Rehabilitation Design of RI Route 165

2.1. Pavement Evaluation for Rehabilitation Design

Rehabilitation design requires an evaluation of the existing pavement to provide key

information. The first step in the pavement rehabilitation design process involves

assessing the overall condition of the existing pavement and fully defining the existing

pavement problems. Figure 2.1 shows the steps and activities for assessing condition of

existing pavement for rehabilitation design. For rehabilitation design it is recommended

that engineer prepares an evaluation plan that outlines all activities needed for

investigating and determining the cause of the pavement defects. The field evaluation

plan could consist of a detailed pavement condition survey, non-destructive testing,

destructive sampling and testing, and traffic control, as a minimum. Field collection data

and evaluation plan consists of following steps.

1. Collection of Historic Data

This step involves collecting of information such as location of the project, year

constructed, year and type of major maintenance, pavement design features, material and

soil properties, traffic climate conditions, and any available performance data.

2. Initial Field Survey

This step involves conducting a windshield and detailed distress survey of sampled areas

within the project to assess the pavement condition. Data required includes distress
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information, drainage conditions, subjective smoothness, traffic control options, and

safety considerations.

3. Initial data evaluation and the determination of additional data requirements:

This step requires determining critical levels of distress/smoothness and causes of distress

and smoothness loss using information collected during the first field survey. This list

will aid in assessing preliminary existing pavement condition and potential problems.

Additional data needs can also be addressed during this step.

4. Second field survey:

This step involves conducting detailed measuring and testing such as coring and

sampling, profile smoothness measurement, skid resistance measurement, deflection

testing, drainage tests, and measuring vertical clearances.

5. Laboratory testing of samples:

This step involves conducting tests such as material strength, resilient modulus

permeability, moisture content, composition, density and gradations using samples

obtained from the second field survey.

6. Second data evaluation:

This step involves the determination of existing pavement condition and an overall

problem definition. Condition will be assessed and the overall problem defined by

assessing the structural, functional, and subsurface drainage adequacy of the existing

pavement.
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7. Final Field and office data composition:

This step involves a preparation of final evaluation report.

RI Route 165 rehabilitation design followed the above procedure and discussed in next

sections.

2.2. Historical data collection of Route 165

Route 165 located in the State of Rhode Island’s town Exeter. It also connects state of

Rhode Island with state of Connecticut and runs parallel to Interstate 95 highway and

carries a lot amount of heavy truck traffic. RI Route 165 was last reconstructed in 1986

and reclaimed to a depth of 125 mm (5 in.) mixed with calcium chloride. The pavement

thickness, after resurfacing, was 37.5 mm (1-1/2 in.) of bituminous surface course and

62.5 mm (2-1/2 in.) of bituminous modified binder course over a 125 mm (5 in.) cold

recycled base layer mixed with a ratio of 1:2 bituminous pavement/gravel and 200 mm (8

in.) of existing gravel subbase layer  as shown in Figure 2.2.

2.3. Initial Field Survey of RI Route 165

A geotechnical engineering exploration and analysis was conducted at the request of

RIDOT by V.A. Nacci and Associates, Consulting Soil, and Foundation Engineers on

September 25, 1987. It may be noted that, Route 165 was originally built on soft deposits

(swamp). Depending on the nature of the soft deposit, “construction” dealt with this in

one of two ways: one was by removal of the unsuitable material and the other was by

“floating the embankment on the soft soil, often with considerable settlement” (Nacci et

al. 1987).
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Eleven test borings were completed for the reconstruction, which found embankments

consisting of sand, some gravel, silt, fibrous organic deposits (peat), and organic silt.

Other test borings indicated that Route 165 was built on glacial till and stratified kame

deposits. There were pockets in the granite bedrock near the surface, which contributed to

a high water table.  An exploration and analysis found an additional seven areas of

swamp deposits.

Table 2.1 shows the Route 165’s various soil types and properties, and American

Association of State and Highway Transportation Officials (AASHTO) classifications of

the soil ranges from A-1 to A-4 (USDOA 1981). Soils within Route 165 has a low

shrink-swell potential but has a potential for frost action.  Route 165 is not comprised of

any clay 3 materials, therefore the plasticity index is zero. Areas of Route 165 that

contain Adrian, Walpole, and Ridgebury have severe wetness, low strength, and severe

frost action.

2.4. Initial Data Evaluation of RI Route 165

The RIDOT, throughout the years, has performed both material and pavement testing on

Route 165 roadway primarily through RIDOT maintenance programs. One of the

pavement testing include skid-resistance test which measure pavement smoothness and

were performed in 2003, 2006, and 2010.  The results obtained in 2003 showed that,

Route 165 had skid-resistance number between 52 and 58 whereas in 2010, the skid-

resistance number ranged from 50 to 56 while the 2006 data showed values between 43

to 49. Overall, Route 165 has shown a noticeable decrease in pavement smoothness and

ride ability.
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2.5. Second Field Survey and Laboratory testing of samples for RI Route 165

In 2012, the RIDOT Material Section, in conjunction with the URI Department of Civil

and Environmental Engineering, performed testing on the unbound materials from five

sample areas within Route 165. The areas where field samples were taken are in the

general vicinity of the poorer numbers of skid-resistance values. Twelve field samples

were taken between November 27, 2012 and December 6, 2012.  Nuclear gauge readings

were taken at the sample areas at the same time to measure in-situ dry density, wet

density, water contents, and percent moisture. Stationing, utility pole numbers, and

planned treatment areas were recorded to insure future samples were taken in the same

locations. The 2012 samples were taken to URI for resilient modulus testing, and the

results from RIDOT/URITC Project Number 000154 were used as parameters to run the

AASHTOware Pavement ME Design (PavementME) program (Bradshaw et al. 2015).

Physical properties of selected subgrade soils from Route 165 site sample locations are

presented in Table 2.2 (Bradshaw et al. 2015). Physical properties of selected 1980s RAP

blends from Route 165 site is presented in Table 2.3. Physical properties of selected FDR

RAP blends of Route 165 site is presented in Table 2.4. (Bradshaw et al. 2015).

2.6. Second Data Evaluation and Final Field and Office Data Compilation of RI Rt.

165

After assessing the existing pavement condition of Route 165 it was selected for major

rehabilitation. For that purpose a strategy was developed to rehabilitate Route 165 with

five different sections having five different additives in its Base/Subbase layer that were

(Control having no additive, Calcium Chloride, Portland cement, Asphalt Emulsion, and

Geo-grid) and to predict the performance of all test sections in terms of distresses by
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using PavementME approach. Location description of all test sections are shown in Table

2.5. Methodology used to rehabilitate Route 165 with control and four other additives is

discussed in next section.

2.7. Methodology and/or Procedure

A test road, i.e., Route 165 in Exeter was rehabilitated and used to predict and evaluate

the performance of different strategies. Four test sections used the full depth eight-inch

FDR base/subcase, and three of them were stabilized with calcium chloride, asphalt

emulsion, and Portland cement. The fifth test section was reconstructed with geo-grid and

six inches of filter stone sandwiched between the layers. The control section was

reclaimed in a similar method as the rest of the reclaimed test sections and no additives

was used. All four test and one control section were paved with two and a half inch thick

Class 19 HMA base and two inches Class 12.5 HMA surface.  As previously mentioned,

Route 165 is approximately seven miles long consisting of seven hills and valleys. The

reclaimed test sections were given at least one hill and valley. The geo-grid section has

only a small section for this research project and each test section has a different segment

length and area of construction as shown in Table 2.3.

Based on the RIDOT Job Specifications, each of the reclaimed test sections and the geo-

grid section were designed to conform to the same material gradation with 95% to 100%

passing a three inch sieve and 2% to 15% passing a number 200 sieve to achieve a

comparable performance between the test sections.  The contractor had to comply with

not having any stone, rock, cobble, or asphalt material being more than four inches in

width or length. Cross sections of each test section are shown in Figures 2.3 through 2.7.
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Equipment used for rehabilitation consisted of Reclaimer, vibratory sheep foot rollers and

motorized graders. Compaction was done in accordance with AASHTO T180, Method D

to obtain a uniform density of no less than 95% of maximum. It was also make sure that

pavement operations should took place only during acceptable temperature ranges.

2.7.1. Full Depth Reclamation with Calcium Chloride:

The first Full depth reclamation (FDR) consisted of using a calcium chloride (CaCl2)

solution. This procedure used AASHTO M 144 specifications for calcium chloride with a

solution being at 35% +/- 1%, alkali chloride 2% maximum as NaCl, and magnesium at

0.1% maximum as MgCl. From the RIDOT’s Specification 406.9901: A calcium pressure

distributer was used to distribute the CaCl2 solution at a rate of 0.1 to 2 gallons per square

yard with a spray bar length of up to 20 feet.  The distributor shall be equipped with a

digital volumetric accumulator meter capable of measuring gallons applied and distance

traveled. The volume and measuring device shall be equipped with a power unit for the

pump so that the application is by pressure, not gravity. The spray nozzles and pressure

system shall provide a sufficient and uniform fan–shaped spray of material throughout

the entire length of the spray bar at all times while operating, and shall be adjustable

laterally and vertically.  The spray shall completely cover the roadway surface receiving

the treatment (RIDOT SPC 406.9901).

2.7.2. Full Depth Reclamation with Portland cement

Based on RIDOT’s Specification 406.9904, Portland cement was spread by distributing a

measured amount of cement in front of the reclaimer. The spreader uniformly blended

cement and existing materials to the specified percentage +/- three pounds /square yard

(across the roadway. The Contractor was required to provide a method for verifying that

the correct amount of cement was being applied. Additionally, the cement spreader was
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equipped with a tractor-trailer utilizing “a Drop behind system” which was pressure

controlled.  Each day the operator would calibrate the drop to make sure the correct

application was being applied. The trailer was filled four to five times daily with bulk

delivery trucks. Three pounds per square yard comes out to be four percent Portland

cement mix.

2.7.3. Full Depth Reclamation with Asphalt Emulsion

Full depth reclamation with bituminous stabilizer consisted of using an asphalt emulsion

of grade MS-2 or HFMS-2. This procedure used AASHTO M.03.03.4 144 specifications

for asphalt emulsion. From the RIDOT’s Specification 406.9903: The asphalt emulsion

distributor shall be capable of applying asphalt emulsion in measured quantities at any

rate from 0.1 to 1.5 gallons per square yard of roadway surface, at any length of spray bar

up to 12 feet. It shall be capable of maintaining the application rate to a tolerance of

+0.03 gals/yd2 regardless of change in grade, width or direction of the road. It shall be

equipped with a thermometer for the emulsion and a digital volumetric accumulator

meter capable of measuring gallons applied and distance traveled. The volume and

measuring device shall be equipped with a power unit for the pump so that application is

by pressure, not gravity. The spray nozzles and pressure system shall provide a sufficient

and uniform fan-shaped spray of material throughout the entire length of the spray bar at

all times while operating, and shall be adjustable both laterally and vertically. The spray

shall completely and uniformly cover the roadway surface receiving the treatment

(RIDOT SPC 406.9901).
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2.7.4. Full Depth Reclamation with Geo-grid

A section of geo-grid mechanically stabilized layer was placed as another test section for

a comparison. Distributors of the Tensar International Corporation Technologies were

highly interested in demonstrating their product and made claims to its durability and

strength. RIDOT decided to use geo-grid along with the reclaimed sections to have a

complete test road. The Tensar product was used in an area of the road that has a high

seasonal water table.
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Figure 2.1: Steps and Activities for Assessing Condition of Existing Pavements for
Rehabilitation Design
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Figure 2.2: Cross section of Route 165 after Rehabilitation in 1986
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Figure 2.3: Cross section of Route 165 with Control Test Section
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Figure 2.4: Cross section of Route 165 with Calcium Chloride Test Section
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Figure 2.5: Cross Section of Route 165 with Portland cement Test Section
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Figure 2.6: Cross Section of Route 165 with Asphalt Emulsion Test Section
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Figure 2.7: Cross Section of Route 165 with Geo-grid Test Section
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Table 2.1: First Field Survey of Route 165 in 1981
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Table 2.2: Summary of Physical Properties of Selected Subgrade Soils from Route 165
Site
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Table 2.3: Summary of Physical Properties of Selected 1980’s RAP Blends from Route
165 Site
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Table 2.4: Summary of Physical Properties of Selected FDR RAP/Virgin Aggregate
Blends from Route 165 Site
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Table 2.5: Location description of all Test sections of RI Route 165

Test Sections Stationing Area (Sq yd.) Elevation (ft) Locations Utility Pole
Locations

Length
Segment (ft)

Control Section 48+50 to 75+00 9,000 303 67+25 369 2,650

Calcium Choride 0+00 to BK &
44+82 to 48+50 31,000 396 39+25 304 9,332

Portland cement 75+00 to 232+00 52,335 144 117+88 400 15,700
Asphalt emulsion 267+00 to 333+00 22,000 397 282+00 518 6,600

Geo-Grid 232+00 to 267+00 12,500 367 258+60 506 3,500



27

Chapter 3

Input Parameters for PavementME to Predict Performance

3.1. Background History of Pavement Design

AASHO road test conducted in Ottawa IL (1958-1960) was the initiative of modern

mechanistic empirical approach. The information obtained from the AASHO Road Test

was crucial in advancing knowledge of pavement structural design, pavement

performance, load equivalencies, climate effects, and much more. The basic performance

information resulted in the performance equations and nomographs used in the 1993

AASHTO Guide. 1993 AASHTO Guide has several old versions like 1961 interim guide

and 1986 guide which includes material characterization. 1993 AASHTO guide is purely

based on empirical performance equations and nomographs used to calculate the

structural number of different layers whereas 2002 design guide is extensive and

comprehensive which includes analysis and design of new, reconstructed and

rehabilitated asphalt and concrete pavements, evaluates existing pavements, sub drainage

design, recommendations for rehabilitation treatments and foundation improvements,

recommendations for low volume road design, and life cycle cost analysis.

AASHTOWare Mechanistic Empirical Pavement Design Guide (MEPDG) is purely

based on 2002 design guide and used in this research study to evaluate and predict the

performance of RI Route 165.
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3.2. Introduction to AASHTOWare Pavement ME Design

The overall objective of AASHTOWare Pavement ME Design (PavementME) is to

provide the highway community with a state of the practice tool for the design and

analysis of new and rehabilitated pavement structures, based on mechanistic-empirical

principles. This means that the design and analysis procedure calculates pavement

responses (stresses, strains, and deflections) and uses those responses to compute

incremental damage over time. This ME based procedure is shown in flowchart form in

Figure 3.1. When analyzing a pavement design project using PavementME, whether new

construction, overlay, or restoration, an iterative process that follows three basic steps is

utilized:

1. Create a trial design for the project.

2. Run the PavementME to predict the key distresses and smoothness for the trial

design.

3. Review the predicted performance of the triial design against performance criteria

and modify trail design as needed to produce a feasible design that satisfies the

performance criteria.

3.3. Significance and Use of PavementME

The PavementME provides a uniform and comprehensive set of procedures for the

analysis and design of new and rehabilitated flexible and rigid pavements. PavementME

design employs common design parameters for traffic, materials, subgrade, climate, and

reliability for all pavement types, and is used to develop alternative designs using a
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variety of materials and construction procedures. The inputs generally used for

PavementME are listed as bellow.

1. General Project Information

2. Design Criteria and Reliability level

3. Truck Traffic data

4. Climate data

5. Material Properties

The general approach for determining inputs for materials in PavementME is a

hierarchical (level) system which includes following 3 levels.

1. Level 1 input involves comprehensive laboratory tests

2. Level 2 inputs are estimated through co-relations with other material properties

that are commonly measured in laboratory or field.

3. Level 3 requires the designer to estimate the most appropriate design value of the

material property based on experience with little or no testing.

In this research study level 1 input values were used which are described in later sections.

The output from the PavementME at selected reliability level includes:

1. Permanent deflection-Total pavement (in.)

2. Asphalt Concrete bottom-up fatigue cracking (percent)

3. Asphalt Concrete thermal fracture (ft. /mi)

4. Asphalt Concrete top-down fatigue cracking (ft. /mi)

5. Permanent deformation Asphalt Concrete only (in.)

6. International Roughness Index (IRI) or smoothness
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3.4. Input data of RI Route 165 for PavementME

3.4.1. General Project Information

General project information includes input values like design/analysis life and

construction and traffic opening dates. Usually design life of a new or rehabilitated

pavement is the time from initial construction until the pavement has structurally

deteriorated to a specified pavement condition or the time when significant rehabilitation

or reconstruction is needed. Design life for RI Route 165 was selected as 20 years which

is shown in PavementME reports (Appendix). Construction and traffic opening dates for

RI Route 165 was collected from RIDOT and shown in PavementME reports (Appendix).

3.4.2. Design Criteria and Reliability Level

Design performance and design reliability greatly affect deterioration of an adequately

performing pavement. Performance criteria are used to ensure that a pavement design

will perform satisfactorily over its design life.  The designer select performance threshold

distress values to judge the adequacy of a trail design. Designer also specifies the desired

level of reliability for each distress type and smoothness. The level of design reliability

could be based on the general consequences of reaching the terminal condition earlier

than design life. For RI Route 165 design criteria and reliability level is shown in Table

3.1.

3.4.3. Truck Traffic Data

Truck traffic is a key data element for the structural design/analysis of pavement

structures.
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PavementME uses the full axle-load spectrum data for each axle type for both new

pavement and rehabilitation design periods. Traffic volume, lane distribution, volume

adjustment factors (i.e., class distribution, traffic growth factors, etc.) and weight data are

used as inputs along with some miscellaneous data such as tire pressure. The axle-load

spectra are obtained from processing weighing-in-motion (WIM) data which is a device

usually embedded into a pavement used to calculate traffic flow. For RI Route 165 all

truck traffic data from period of December 2014- November 2015 was collected from

RIDOT Traffic section which includes data of average annual daily traffic (AADT)

which further broken down into vehicle classification, monthly adjustment factors, hourly

adjustment factors, daily vehicle counts and percent trucks in design direction. Average

Annual Truck Traffic (AADTT) is calculated for Class 4 to Class 13 of FHWA vehicle

classification chart which is shown in Figure 3.2. The AADTT from December, 2014 to

November, 2015 is 150. The percent trucks in design direction was calculated at 51/49.

Heavy trucks is cumulatively calculated as 295,762 truck vehicles over ten years and

627,848 truck vehicles in the highest design direction.  These values are calculated by

calculating the number of trucks per year and adding each year together for ten or twenty

years with a 1.3% increase in truck traffic and multiplying that number by .51(the design

direction). AADT data obtained from RIDOT for RI Route 165 is shown in Table 3.2.

3.4.4. Climate Data

Detailed climate data are required for predicting pavement distress with PavementME

and include hourly temperature, precipitation, wind speed, relative humidity, and cloud

cover. These data are used to predict the temperature and moisture content in each of the
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pavement layers as well as provide some of the inputs to the site factor parameter for the

smoothness prediction models.

All of the climate data needed by PavementME are available from weather stations,

generally located at airfields around the United States. PavementME has an extensive

number of weather stations embedded in its software for ease of use and implementation.

The longitude, latitude, elevation and number of months of available data are viewed by

the user in selecting the weather stations to be used by the software to create a virtual

weather station at the project location for the distress prediction.

For RI Route 165 project nearest weather station available in software i.e. Providence RI

is selected which has latitude of 2.361 and longitude of -71.011 as shown in the

PavementME reports (Appendix G).

3.4.5. Material Properties

The PavementME software requires that all material properties entered into the program

for new layers represent the values that exist right after construction. The general

approach for determining design inputs for materials in PavementME is a hierarchical

(level) system as described earlier. In its simplest and most practical form, the

hierarchical approach is based on the philosophy that the level of engineering effort

exerted in the pavement design process for characterizing the paving materials and

foundation should be consistent with the relative importance, size, and cost of the design

project. For RI Route 165 project most of the input values used are Level 1, i.e., values

obtained from comprehensive laboratory tests.
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Fundamental properties are required for all HMA mixture types or layers to execute

PavementME. Table 3.3 lists the HMA material properties that are required for the

material types listed in Table 3.4, as well as identify the recommended test protocols and

other sources for estimating these properties.

The input properties for all HMA material types are grouped into volumetric and

engineering properties. The volumetric properties (Superpave Mix Design) include

1. Air Voids

2. Effective Asphalt Content by volume

3. Aggregate gradation

4. Mix density

5. Asphalt grade

For RI Route 165 project all volumetric properties were determined at RIDOT material

section and discussed in later section. The engineering or mechanistic properties

(discussed in later section) for HMA materials include

1. Resilient Modulus

2. Dynamic Modulus

3. Creep Compliance

4. Indirect Tensile Strength

3.4.5.1. Volumetric Properties

A. Super-Pave Mix Design

In 1987, the Strategic Highway Research Program (SHRP) began developing a new

system for specifying asphalt materials. The final product of the SHRP asphalt research
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program is a new system called Superpave, short for Superior Performing Asphalt

Pavements. Superpave represents an improved system for specifying asphalt binders and

mineral aggregates, developing asphalt mixture design, and analyzing and establishing

pavement performance prediction. The system includes an asphalt binder specifications,

HMA design and analysis system, and computer software that integrates the system

components. The Superpave binder specification and mix design system include various

test equipment, test methods, and criteria. A detailed Superpave mix design procedure

and results for RI HMA is described in Appendix C.

The unique feature of the Superpave system is that it is a performance based specification

system. The tests and analyses have direct relationship to field performance. The

Superpave asphalt binder tests measure physical properties that can be directly related to

field performance by engineering principles. The data obtained from RIDOT material

section for RI Route 165 is shown in Table 3.5 and used in PavementME as an input.

B. Asphalt Grading

Asphalt binder grading system was developed in the mid-1990s and was purely based on

performance grading. Performance graded (PG) binders are defined by a term such as PG

64-28. The first number 64, is the high temperature grade. This means that the binder

possesses adequate physical properties up to at least 640C. This would correspond with

the high pavement temperature in the climate in which the binder is expected to serve.

Likewise, the second number (-22) is the “Low temperature grade” and means that the

binder possesses down to at least -220C. Table 3.6 lists the new binder test equipment and

purpose, however detailed procedure and lab reports for all those test with RI HMA

material are described in Appendix B1-B6 (Asphalt Binder properties).
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3.4.5.2.Engineering or Mechanistic Properties

A. Resilient Modulus

Resilient Modulus (Mr) is a fundamental material property used to characterize unbound

pavement materials. It is a measure of material stiffness and provides a mean to analyze

stiffness of materials under different conditions, such as moisture, density, and stress

level. A detailed procedure of determining resilient modulus of RI subbase soil is

described in Appendix A.

RI Route 165 as discussed in Chapter 2 consists of three unbound layers namely

Subgrade soil, Existing Subbase soil, and new FDR Base/Subbase layer. Resilient

modulus of all layers tested at University of Rhode Island laboratory in 2013 and

discussed in further subheadings.

A.1. Resilient Modulus of Subgrade Soils

As discussed in Chapter 2, subbase and subgrade soil samples were collected during

construction for testing. According to the results of a sieve analysis on the material, the

subbase consisted of gravelly sand or A-1-b AASHTO classification which is consistent

with the material shown for that location in the 1981 Soil Survey of Rhode Island; this

soil was also found under a previous URI study (Lee et al. 2003). The URI study

reported resilient modulus (Mr), which is deviator stress over recoverable strain, values

for Rhode Island subgrade soils ranged from 7,506 psi to 9,304 psi (Lee et al. 2003) and

an Idaho study for comparison shows the same types of gravel material ranged from

8,000 psi to 19,000 psi (Hardcastle 1993).
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A.2. Resilient Modulus of Existing Subbase Materials

Before the Full Depth Reclamation (FDR), 100 mm (4 in.) of asphalt pavement were

removed from the roadbed for ten test sections located throughout the length of the road.

Approximately twelve inches of existing subbase layer including 125 mm (5 in.) of

previously recycled material were collected.  It should be noted, the collected samples

were mix with seven inches of the existing gravel borrow and the five inches of

previously reclaimed material was not tested separately. Resilient moduli of the ten

subbase test sections were determined by using triaxial chamber apparatus according to

AASHTO T 307-99 procedure. Resilient moduli values are presented in Table 3.7. The

laboratory resilient moduli values varied from 17, 000 psi to 74,000 psi.

A.3. Resilient Modulus of New FDR Base/Subbase Materials

In construction, four inches of old asphalt surface and base layers were reclaimed into

four inches of previously reclaimed subbase, and a new eight-inch homogeneous FDR

base/subbase layer was formed. Samples were taken, before the new construction FDR

base/subbase layer were mixed with the three different strategies, to URI for testing.

Before triaxial testing, four samples were mixed with additives in the lab according to

RIDOT specifications for Route 165.  Out of the six samples two control FDR samples

were tested without additives, one sample was mixed with CaCl2, one sample was mixed

with asphalt emulsion, and two samples were mixed with Portland cement.  For the

Portland cement samples, one was cured for 4 hours and the other 7 days before testing.

The resilient moduli of FDR base/subbase layer were determined by using AASHTO

T307-99, and results are shown in Table 3.8.
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B. Dynamic Modulus of HMA

The dynamic modulus represents the stiffness of the asphalt material when tested in a

compressive-type, repeated load test. The dynamic modulus is one of the key parameters

used to evaluate both rutting and fatigue cracking distress predictions in the MEPDG.

Dynamic modulus values measured over a range of temperatures and frequencies of

loading can be shifted into a master curve for characterizing asphalt concrete for

pavement thickness design and performance analysis. The values of dynamic modulus

and phase angle can also be used as performance criteria for HMA design.

For Route 165 dynamic modulus test was conducted by University of Rhode Island and

the test results are attached in Appendix E.

C. Creep Compliance and Indirect Tensile Strength (IDT) of HMA

Creep compliance is usually defined as the time dependent strain divided by applied

stress. The values of creep compliance, tensile strength and Poisson’s ratio determined

with AASHTO T 322-03 method can be used in linear viscoelastic analysis to calculate

the low temperature and fatigue cracking potential of asphalt concrete. A detailed

procedure for calculating Creep Compliance and IDT is attached in Appendix D.

For Route 165 Creep compliance was acquired from a URI study, and used as an input

parameter for the MED software (Lee et al., 2014). The creep compliance results are used

according to the MEPDG for new pavement only. Those values are shown in Table 3.9.
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Figure 3.1 Flowchart of the analysis process of AASHTOWare Pavement ME Design
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Figure 3.2 FHWA Vehicle Classification Chart
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Table 3.1 Design Criteria or Threshold values and Reliability Level for RI Route 165

Distress Type Performance

Criteria

Reliability Level

(%)

Permanent deflection-Total pavement (in.) 0.75 90

Asphalt Concrete bottom-up fatigue cracking

(percent lane area)

25 90

Asphalt Concrete thermal fracture (ft. /mi) 1000 90

Asphalt Concrete top-down fatigue cracking

(ft. /mi)

2000 90

Permanent deformation Asphalt Concrete

only (in.)

0.25 90

Terminal IRI (in. /mi) 172 90
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Table 3.2 Average Annual Daily Traffic of RI Route 165 from December 2014-
November 2015

Vehicle Class 4 5 6 7 8 9 10 11 12 13 Total
14-Dec 28 1333 298 93 202 1625 13 1 12 0 3605

Jan 17 1168 298 84 139 1301 4 1 84 0 3096
Feb 19 1466 371 103 155 1495 2 2 38 0 3651
Mar 22 1389 229 22 245 1966 11 1 49 3 3937
Apr 38 1691 250 46 261 2136 13 0 30 1 4466
May 41 2116 335 140 261 2015 12 4 41 1 4966
June 64 2109 319 105 339 2180 25 5 65 1 5212
July 37 2432 387 106 407 2115 20 1 56 2 5563
Aug 43 2523 452 214 466 2064 16 6 45 1 5830
Sept 34 2408 285 63 353 2234 20 0 78 0 5475
Oct 24 1899 395 145 418 2144 7 2 64 0 5098

15-Nov 36 1296 296 119 281 1781 23 0 66 2 3900
Total 407 21835 3921 1247 3535 23065 176 34 640 24 54884

Vehicle Class
Distribution 0.74% 39.81% 7.14% 2.27% 6.44% 42.05% 0.31% 0.05% 1.16% 0.03% 100%
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Table 3.3: Asphalt Materials and test protocols for Measuring the Material property
Inputs for New and Existing HMA layers.
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Table 3.4: Major Material Types for AASHTOWare Pavement ME Design
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Table 3.5:  Volumetric Properties of Base course material of RI Route 165
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Sample
4a

(Cement)
124

(17.9)
141

(20.4)
154

(22.3)
170

(24.6)
191

(27.7)
201

(29.1)
251

(36.4)
272

(39.4)
268

(38.8)
270

(39.1)
285

(41.3)
317

(45.9)
324

(46.9)
338

(49.0)
369

(53.5)
4b

(Cement)
123

(17.8)
141

(20.4)
161

(23.3)
178

(25.8)
207

(30.0)
225

(32.6)
266

(38.5)
305

(44.2)
316

(45.8)
290

(42.0)
318

(46.1)
368

(53.3)
355

(51.4)
379

(54.9)
424

(61.4)

6 (Cement) 120
(17.4)

132
(19.1)

145
(21.0)

163
(23.6)

182
(26.3)

193
(27.9)

244
(35.3)

269
(39.0)

275
(39.8)

281
(40.7)

293
(42.4)

325
(47.1)

331
(48.0)

344
(49.8)

373
(54.0)

8a
(Geogrid)

121
(17.6)

137
(19.8)

153
(22.1)

176
(25.5)

198
(28.7)

212
(30.7)

270
(39.1)

301
(43.6)

313
(45.3)

317
(45.9)

336
(48.7)

381
(55.2)

387
(56.1)

407
(59.0)

452
(65.5)

8b
(Geogrid)

139
(20.1)

154
(22.3)

168
(24.3)

188
(27.2)

209
(30.3)

221
(32.0)

272
(39.4)

299
(43.3)

303
(43.9)

295
(42.7)

316
(45.8)

352
(51.0)

350
(50.7)

368
(53.3)

404
(58.5)

8c
(Geogrid)

148
(21.4)

168
(24.3)

189
(27.4)

214
(31.0)

243
(35.2)

265
(38.4)

342
(49.6)

388
(56.2)

405
(58.7)

362
(52.5)

393
(56.9)

458
(66.4)

414
(60.0)

443
(64.2)

513
(74.4)

8d
(Geogrid)

158
(22.9)

175
(25.3)

194
(28.1)

226
(32.7)

252
(36.5)

267
(38.7)

335
(48.5)

368
(53.3)

374
(54.2)

373
(54.0)

392
(56.8)

440
(63.8)

433
(62.8)

454
(65.8)

502
(72.8)

9
(Emulsion)

123
(17.8)

135
(19.5)

149
(21.6)

167
(24.2)

184
(26.6)

196
(28.4)

242
(35.0)

263
(38.1)

269
(39.0)

272
(39.4)

284
(41.1)

312
(45.2)

318
(46.1)

329
(47.7)

354
(51.3)

11
(Control)

148
(21.4)

164
(23.7)

181
(26.2)

157
(22.7)

229
(33.2)

248
(35.9)

296
(42.9)

328
(47.5)

343
(49.7)

326
(47.2)

347
(50.3)

390
(56.5)

381
(55.2)

402
(58.3)

440
(63.8)

12
(CaCl)

147
(21.3)

162
(23.4)

177
(25.6)

196
(28.4)

220
(31.9)

236
(34.2)

300
(43.5)

329
(47.7)

337
(48.8)

340
(50.6)

360
(52.2)

396
(57.4)

406
(58.8)

424
(61.4)

455
(65.9)

σ3 (kPa) 21 21 21 35 35 35 69 69 69 103 103 103 138 138 138
 θ (kPa) 83 104 124 138 172 207 276 345 414 379 414 517 517 552 690
σd (kPa) 21 41 62 35 69 103 69 138 207 69 103 207 103 138 276
тoct (kPa) 10 20 29 16 32 49 32 65 97 32 49 97 49 65 130

Resilient Modulus Mpa (Ksi)

Table 3.6: Superpave Binder Test Equipment and its purpose

Equipment Purpose

Rolling Thin Film Oven (RTFO)
Pressure Aging Vessel

Simulate binder aging (hardening)
characteristics

Dynamic Shear Rheometer (DSR) Measure binder properties at high and
intermediate temperatures

Rotational Viscometer (RV) Measure binder properties at high
temperatures

Bending Beam Rheometer (BBR)
Direct Tension Tester (DTT)

Measure binder properties at low
temperatures

Table 3.7: Resilient Moduli of Sampled 1980s RAP/Virgin Blends from Route 165 Site
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Sample
1

(CaCl)
252
(36.5)

236
(34.2)

247
(35.8)

291
(42.2)

305
(44.2)

313
(45.2)

408
(59.1)

419
(60.7)

412
(59.7)

462
(67.0)

472
(68.4)

496
(71.9)

541
(78.4)

555
(80.4)

568
(82.3)

4a
(Cement)

386
(55.9)

390
(56.5)

407
(59.0)

457
(66.2)

489
(70.9)

507
(73.5)

613
(88.9)

627
(90.9)

585
(84.8)

633
(91.8)

659
(95.5)

684
(99.2)

727
(105.4)

749
(108.6)

738
(107.0)

4b
(Cement)

528
(76.5)

646
(93.6)

718
(104.1)

743
(107.7)

874
(126.7)

1005
(145.7)

1102
(159.8)

1331
(193.0)

1541
(223.5)

1226
(177.8)

1376
(199.5)

1675
(242.9)

1456
(211.1)

1581
(229.3)

1898
(275.2)

5
(Emulsion)

178
(25.8)

177
(25.6)

187
(27.1)

208
(30.1)

218
(31.6)

224
(32.4)

285
(41.3)

295
(42.7)

291
(42.2)

321
(46.5)

328
(47.5)

343
(49.7)

352
(51.0)

364
(52.7)

371
(53.8)

7a
(Control)

179
(25.9)

171
(24.8)

178
(25.8)

209
(30.3)

220
(31.9)

226
(32.7)

291
(42.2)

300
(43.5)

298
(43.2)

329
(47.7)

339
(49.1)

350
(50.7)

383
(55.5)

396
(57.4)

400
(58.0)

7b
(Control)

240
(34.8)

232
(33.6)

244
(35.3)

285
(41.3)

303
(43.9)

315
(45.6)

411
(59.6)

430
(62.3)

428
(62.0)

456
(66.1)

475
(68.8)

505
(73.2)

541
(78.4)

561
(81.3)

578
(83.8)

σ3 (kPa) 21 21 21 35 35 35 69 69 69 103 103 103 138 138 138
 θ (kPa) 83 104 124 138 172 207 276 345 414 379 414 517 517 552 690
σd (kPa) 21 41 62 35 69 103 69 138 207 69 103 207 103 138 276
тoct (kPa) 10 20 29 16 32 49 32 65 97 32 49 97 49 65 130

Resilient Modulus Mpa (Ksi)

Table 3.8: Resilient Moduli of selected FDR with or without additive of RI Route 165
Site

Table 3.9: Creep Compliance of HMA base course material for RI Route 165 Site
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Chapter 4

Performance Prediction of Rehabilitated Rt. 165 with PavementME Software

4.1. Outputs of PavementME Software for Rehabilitated RI Route 165

Output from PavementME Software generally consists of six types of distress types as

follows:

1. Permanent Deformation-Total Pavement (in.)

2. AC bottom-up fatigue cracking (percent)

3. AC thermal fracture (ft./mil)

4. AC top-down fatigue cracking (ft./mil)

5. Permanent deformation-AC only (in.)

6. Terminal IRI (in./mil)

The above mentioned all distress types are compared with targeted value specified by

standard and selected reliability level. If the predicted distresses and achieved reliability

is within the target values it shows the criterion as pass otherwise fail. To achieve good

results and longer life for pavement all distress type should pass the criterion.

Five sections of RI Route 165 were analyzed with PavementME by using all the above-

mentioned inputs. Each section’s performance prediction is discussed in further headings.

4.1.1. Prediction of Performance for Control Test Section (Cold Recycled)

The control test section on Route 165 was reclaimed to a depth of eight inches and did

not receive any additives. After the FDR, as shown in Figure 2.3, 25 mm (I in.) of old

1980 recycled blend with the old CaCl2 subbase material was assumed left over and is

represented in the PavementME.
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Table 4.1 shows the PavementME output from using the Mr from laboratory testing.

There is one predicted design output failure for AC top-down fatigue cracking

(longitudinal cracking).  The report obtained from the PavementME of control section is

attached in Appendix G.

4.1.2. Prediction of Performance for the Calcium Chloride Section

The calcium chloride section was full depth recycled and mixed with CaCl2 to a depth of

eight inches on Route 165. After the FDR, as shown in Figure 2.4, a one inch of old

recycled blend with CaCl2 is assumed left over and is represented in the PavementME.

Table 4.2 shows the PavementME output from using the Mr from laboratory tests.  There

is one predicted design output failure for AC top-down fatigue cracking (longitudinal

cracking). The report obtained from the PavementME Calcium chloride’s section is

shown in Appendix G.

4.1.3. Prediction of Performance for Portland cement Section

The Portland cement section was full depth recycled to a depth of eight inches with the

cement mixed throughout.  A one inch of old recycled blend mixed with CaCl2 is

assumed left over and is represented in the PavementME, Figure 2.5.

There were two Portland cement samples tested for this project.  Sample 4a was mixed

with Portland cement (PC) and tested after four hours, while sample 4b was mixed with

PC and tested after 7 days of curing. The Portland cement section on Route 165 was

micro cracked after four hours and traffic was allowed on the newly compacted surface.

Since micro cracking prevents the PC to gain any more stiffness, so, sample 4a is used as

an input for Mr in this study.
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The PavementME was run with the layer thicknesses and Mr as shown below in Table

4.3. There are no predicted output failures for cement’s section. The report obtained from

the PavementME Portland cement’s section is shown in Appendix G.

4.1.4. Prediction of Performance for Asphalt Emulsion Section

The asphalt emulsion section was full depth recycled to a depth of eight inches with only

the first three inches mixed with emulsion as shown in Figure 2.6.

The PavementME run with the layer thicknesses and Mr as shown below in Table 4.4.

There is only one predicted design output failure for AC top-down fatigue cracking

(longitudinal cracking).  The report obtained from the PavementME Asphalt emulsion’s

section is shown in Appendix G.

4.1.5. Prediction of Performance for Geo-Grid Section:

The Tensar geo-grid section used full depth recycled material to a depth of ten inches and

did not receive any additives. To install the geo-grid, sixteen inches of subbase were

removed from the road after FDR and stockpiled. The geo-grid was installed on top of the

subgrade and six inches of filter stone were placed on the geo-grid. Another geo grid

layer was placed over the filter stone and ten inches of FDR were placed and compacted

as shown in Figure 2.7.  For this test, the control material for sample 7b Mr mean values

for confining stress of 35 kPa were used from Table 3.8.

The PavementME was run with the layer thicknesses and Mr as shown below in Table

4.5.  There is only one predicted design output failure for AC top-down fatigue cracking

(longitudinal cracking). The report obtained from the PavementME Asphalt emulsion’s

section is shown in Appendix G.
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4.2. Comparison of all Test Sections of RI Route 165

The comparison between the control and the other four test sections are shown in Table

4.6.  The most prevalent distress, in the four test sections, is in the asphalt layer.  AC top

down fatigue cracking (longitudinal cracking) for the control, CaCl2, asphalt emulsion

and geo-grid predicted cracking will be greater than the estimated twenty years target

value of 2,000 ft. /mile.  The Portland cement section is the only test section that did not

have any predicted distresses for twenty years. It was observed that the higher the AC top

down cracking, the earlier the threshold distress is noted. Threshold distress is defined as

the years to predicted distresses which is shown on the third page of PavementME report

(Appendix G) of each section.

Having AC top down fatigue cracking (longitudinal cracking) also means the pavement

layer of four and half inches in not thick enough for the actual truck traffic loading.  Either

the Class 12.5 HMA or the Class 19 HMA layer should have been thicker. Since the cost

of the Class 19 HMA was thirty dollars less than the Class 12.5 HMA. So, by using the

Class 19 HMA will save the overall cost of the future projects.

The test sections in order of best performance are: Portland cement, CaCl2, control, geo-

grid and asphalt emulsion with the smallest amount of cracking and highest predicted

threshold distresses in years as shown in Graph 4.1. All the test sections predicted that

there will not be any permanent deformation in the subbase or AC layer, or AC bottom

up fatigue cracking (alligator cracking). Finally, it was concluded that higher the resilient

moduli, better will be the results in terms of less distresses.
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Table 4.1: Summary of AASHTOWare Pavement ME Design inputs and outputs for RI
Route 165 Control test section

Design Inputs
Layer Type Thickness Laboratory Mr (psi)

Flexible 2
Flexible 2.5

Cold recycled (FDR RAP) 8
Bradshaw et

al., 2015 37,655

Non-stabilized (1980 Virgin RAP) 1
Bradshaw et

al., 2015 30,650

Non-stabilized (Ex. gravel borrow) 8
Lee et al.,

2003 13,620

Subgrade
Semi-

infinite
Lee et al.,

2003 9304

Design Outputs

Distress Target Predicted
Criterion
Satisfied

AC bottom-up fatigue cracking (% lane
area) 25.00 4.60 Pass

AC top-down fatigue cracking (ft/mile) 2,000.00 2,548.73 Fail
AC thermal cracking (ft/mile) 1,000.00 84.34 Pass

Permanent deformation - total pavement
(in) 0.75 0.51 Pass

AC only permanent deformation (in) 0.25 0.06 Pass
Terminal IRI (in/mile) 172.00 146.72 Pass
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Table 4.2: Summary of AASHTOWare Pavement ME Design inputs and outputs for RI
Route 165 Calcium Chloride test section

Design Inputs
Layer Type Thickness Laboratory Mr (psi)

Flexible 2.00
Flexible 2.50

Cold recycled (FDR RAP) 8.00
Bradshaw et

al., 2015 43,890

Non-stabilized (1980 Virgin RAP) 1.00
Bradshaw et

al., 2015 31,510
Non-stabilized (Ex. gravel borrow) 8.00 Lee et al., 2003 13,620

Subgrade
Semi-

infinite Lee et al., 2003 9,304

Design Outputs

Distress Target Predicted
Criterion
Satisfied

AC bottom-up fatigue cracking (% lane
area) 25.00 3.33 Pass

AC top-down fatigue cracking (ft/mile) 2,000.00 2354.80 Fail
AC thermal cracking (ft/mile) 1,000.00 84.84 Pass

Permanent deformation - total pavement
(in) 0.75 0.51 Pass

Permanent deformation - AC only (in) 0.25 0.06 Pass
Terminal IRI (in/mile) 172.00 146.30 Pass
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Table 4.3: Summary of AASHTOWare Pavement ME Design inputs and outputs for RI
Route 165 Portland cement test section

Design Inputs
Layer Type Thickness Laboratory Mr (psi)

Flexible 2.00
Flexible 2.50

Cold recycled (FDR RAP) 8.00
Bradshaw et al.,

2015 70,240.00

Non-stabilized (1980 Virgin RAP) 1.00
Bradshaw et al.,

2015 27,170.00
Non-stabilized (Ex. gravel borrow) 8.00 Lee et al., 2003 13,620.00

Subgrade
Semi-

infinite Lee et al., 2003 9,304.00

Design Outputs

Distress Target Predicted
Criterion
Satisfied

AC bottom-up fatigue cracking (% lane area) 25.00 2.01 Pass
AC top-down fatigue cracking (ft/mile) 2,000.00 1593.19 Pass

AC thermal cracking (ft/mile) 1,000.00 84.84 Pass
Permanent deformation - total pavement (in) 0.75 0.48 Pass

Permanent deformation - AC only (in) 0.25 0.06 Pass
Terminal IRI (in/mile) 172.00 144.84 Pass
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Table 4.4: Summary of AASHTOWare Pavement ME Design inputs and outputs for RI
Route 165 Asphalt Emulsion test section

Design Inputs
Layer Type Thickness Laboratory Mr (psi)

Flexible 2.00
Flexible 2.50

Cold recycled (FDR RAP) 8.00
Bradshaw et al.,

2015 31,420

Non-stabilized (1980 Virgin RAP) 1.00
Bradshaw et al.,

2015 26,440
Non-stabilized (Ex. gravel borrow) 8.00 Lee et al., 2003 13,620

Subgrade
Semi-

infinite Lee et al., 2003 9,304

Design Outputs

Distress Target Predicted
Criterion
Satisfied

AC bottom-up fatigue cracking (% lane area) 25.00 9.54 Pass
AC top-down fatigue cracking (ft/mile) 2,000.00 3009.93 Fail

AC thermal cracking (ft/mile) 1,000.00 84.34 Pass
Permanent deformation - total pavement (in) 0.75 0.53 Pass

Permanent deformation - AC only (in) 0.25 0.06 Pass
Terminal IRI (in/mile) 172.00 148.06 Pass
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Table 4.5: Summary of AASHTOWare Pavement ME Design inputs and outputs for RI
Route 165 Geo grid test section

Design Inputs
Layer Type Thickness Laboratory Mr (psi)

Flexible 2
Flexible 2.5

Cold recycled (FDR RAP) 10
Bradshaw et

al., 2015 30,040

Cold recycled (FDR RAP) 5
Bradshaw et

al., 2015 13,620

Subgrade
Semi-

infinite
Lee et al.,

2003 9304

Design Outputs

Distress Target Predicted
Criterion
Satisfied

AC bottom-up fatigue cracking (% lane area) 25 7.90 Pass
AC top-down fatigue cracking (ft/mile) 2000 2810.36 Fail

AC thermal cracking (ft/mile) 1000 84.84 Pass
Permanent deformation - total pavement (in) 0.75 0.52 Pass

Permanent deformation - AC only (in) 0.25 0.06 Pass
Terminal IRI (in/mile) 172 147.33 Pass
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Table 4.6: Comparison of Performance Prediction of all Test Sections of RI Route 165

Design Outputs Control Calcium
Chloride

Emulsion Cemet Geo-grid

Distress Target Predicted Predicted Predicted Predicted Predicted
Permanent deformation (in.) 0.75 0.51 0.51 0.53 0.48 0.52

AC bottom-up fatigue cracking (percent) 25 4.6 3.33 9.54 2.01 7.9
AC top-down fatigue cracking (ACTDFC) (ft/mile) 2000 2548.73 2354.8 3009.93 1593.19 2810.36

Permanent deformation-AC only (in.) 0.25 0.06 0.06 0.06 0.06 0.06
AC thermal cracking (ft/mi) 1000 84.34 84.3 84.3 84.3 84.3

Terminal IRI (in/mile) 172 146.72 146.3 148.06 144.84 147.33
Years to predict threshold distress ACTDFC (Years) 20 11 18 5 29 9
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Figure 4.1: Comparison of all Test sections of RI Route 165 in terms of threshold distress
period
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Chapter 5

Evaluation of Performance for Rehabilitated Asphalt Pavement

5.1. Pavement Evaluation Methods

Pavement performance is a function of its relative ability to serve traffic over a period of

time (HRB 1962). Originally, a pavement’s relative ability to serve traffic was

determined quite subjectively by visual inspection and experience. Typically, a system of

objective measurements is used to quantify a pavement’s condition and performance.

These systems are used to aid in making the following types of decisions:

 Establish maintenance priorities. Condition data such as roughness, surface distress, and

deflection are used to establish the projects most in need of maintenance and

rehabilitation. Once identified, the projects in the poorest condition are more closely

evaluated to determine repair strategies.

 Determine maintenance and rehabilitation strategies. Data from surface distress surveys

are used to develop an action plan on a year-to-year basis; i.e., which strategy

(patching, BSTs, overlays, recycling, etc.) is most appropriate for a given pavement

condition.

 Predict pavement performance. Data, such as roughness, skid resistance, surface distress,

or a combined rating, are projected into the future to assist in preparing long-range

budgets or to estimate the condition of the pavements in a network given a fixed budget.

Pavement Evaluation generally consists of different steps which are mentioned below.

1. Initial Pavement Assessment

2. Condition or Visual Survey
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3. Present Serviceability Index (PSI)

4. Ground Penetrating Radar Survey

5. Deflection Basins

6. Skid Resistance

7. International Roughness Index

5.2. Initial Pavement Assessment

The condition assessment needs to be begun with an assembly of historic data. Historic

data can be obtained from a windshield pavement condition field survey of the entire

project followed by a detailed survey of selected areas of the project, by reviewing

construction files and results from previous borings and laboratory results, by considering

previous distress and profile surveys and pavement management records to establish

performance trends, and also by reviewing previous deflection survey.

RI Route 165 initial pavement assessment report is discussed in Chapter 2 subheading

First Field Survey of RI Route 165.

5.3. Condition or Visual Survey

A key factor to determine the condition or strength of the existing pavement layers is the

result from a detailed pavement condition index survey. Pavement visual surveys are

performed to identify the types, locations, and severities of distress. The survey should be

performed on the pavement, shoulder, and on any drainage feature along the project site.

To conduct Condition survey, inspection sheet as shown in Figure 5.1 is used to

determine the 19 different types of distresses, their severity, and their quantity. Most

common distress types shown on the pavement are discussed below.
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1. Alligator cracking (Bottom up cracking): Defined as a series of interconnected cracks

(characteristically with an alligator pattern) that indicate at the bottom of the HMA

layers. Alligator cracking as shown in Figure 5.2 is also one of the outputs of

PavementME and calculated as a percent of total lane area.

2. Longitudinal Cracking (Top down Cracking): is a form of fatigue or wheel load

related cracking that occurs within the wheel path and is defined as cracks

predominantly parallel to the pavement centerline.  Longitudinal cracks indicate at

the surface of the HMA pavement and initially show up as short longitudinal cracks

that become connected longitudinally with continued truck loadings. Raveling or

crack deterioration may occur along the edges of these cracks but they do not form

an alligator cracking pattern. Longitudinal cracking as shown in Figure 5.3 is also

one of the outputs of PavementME and calculated as a total feet per mile, including

both wheel paths.

3. Thermal Transverse Cracking: Defined as Non-wheel load-related cracking that is

predominately perpendicular to the pavement centerline and caused by low

temperature or thermal cycling. Thermal transverse cracking as shown in Figure 5.4

is also one of the outputs of PavementME and calculated in feet per 12-ft-wide lane.

On December 21, 2015, pavement windshield surveys were conducted on Route 165 by

URI Graduate students and Professor K. Wayne Lee, and the results of these surveys are

shown in Appendix F.  Five pavement sections (10 feet wide x 100 feet in length) were

selected near utility poles, previous FWD testing sites, and permanent land markers, for

ease of identification. The pavement sections did not show any low, moderate or severe

pavement distresses such as rutting or cracking but there were signs of minor raveling of
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the pavement.  No major defects were expected since the pavement was recently placed

in the summer of 2014.  As a result, these December field surveys would become the base

line for continuous monitoring of this road by URI students.

In addition to conducting the windshield surveys, RIDOT has on-going contracts with

vendors whose responsibilities include measuring the IRI, rutting and cracking using

vehicles equipped with computers, cameras, and lasers.  Information is down-loaded into

a Deighton’s Total Infrastructure Management System (dTIMS) management database in

the form of photographs, pavement defect data, and locations.   DTIMS functions include

three types of scoring: (1) a cross tab transformation to rate distresses and severity levels;

(2) expression and formula transformations to place a deduct value from sample areas

and calculate a pavement condition index (PCI) and/or Pavement Structural Health Index

(PSHI), respectively; and structured table outputs with column and rows.

5.4. Present Serviceability Index

The present serviceability index (PSI) is based on the original AASHO Road Test PSR.

Basically, the PSR was a ride quality rating that required a panel of observers to ride in

an automobile over the pavement in question. PSI is based on the same 5-point rating

system as PSR it goes beyond a simple assessment of ride quality. About one-half of the

panel of raters found a PSR of 3.0 acceptable and a PSR of 2.5 unacceptable. Such

information was useful in selecting a “terminal” (or failure) serviceability (PSI) design

input for empirical structural design equations. Concept of PSI can be better understood

by considering Figure 5.5.



62

PSI is highly subjective test to determine the performance of pavement so, for RI Route

165 PSI test was not conducted.

5.5. Ground Penetrating Radar (GPR) Survey

GPR is well established, high speed nondestructive technology used to estimate the

thickness of different pavement and soil strata layers, and is frequently used to survey

prior to use of destructive sampling. It is possible that GPR may be valuable in reducing

the number of cores and borings required for a project, for example by segmenting the

project based on similar subsurface features or anomalies identified with this technology

prior to drilling the borings. Specifically, dielectric and thickness contours may be

prepared along the project to locate areas with different structural features and material

conditions. GPR data may be collected at highway speeds so that there is no interference

with existing traffic flow. Figure 5.6 is showing GPR equipment on site.

GPR was performed on Route 165 in June 2015 after the final surface course was placed.

The original, existing pavement thickness for each test section varied from 4.13 inches to

4.55 inches. The average core thickness for the Class 12.5 HMA pavement was 2.29

inches and the average pavement thickness for the 19mm pavement was 2.81 inches.

The GPR was used to confirm that the roadway was being constructed according to

RIDOT specifications.  In areas where the pavement thickness varied between 4.13 and

4.21 inches, the west-bound geo-grid test, Portland cement, and recycled sections need to

be monitored for possible premature cracking because of the relatively small pavement

thickness.
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5.6. Deflection Basin Test

The most widely used deflection testing device is the falling weight deflectometer (FWD)

as shown in Figure 5.7. However, the use of seismic testing devices is increasing in

popularity and does provide an estimate of the in-place modulus of pavement layers. Data

from both of these Non-destructive testing technologies need to be calibrated to

laboratory conditions in providing inputs to the PavementME. Deflection basin tests can

be measured with different drop heights to evaluate the load-response characteristics of

the pavement structure. Four drop heights are typically characterize the pavement

structure into three distinct load-response categories; elastic, deflection softening, and

deflection hardening. The spacing of the deflection tests will vary along a project. A

closer spacing of testing points is suggested in pavements with history of fatigue

cracking, In addition, deflection basin tests may be effective in cut and fill areas and in

transition areas between cut and fill. Transition areas are where water can accumulate and

weaken the underlying soils. The analysis of deflection basin data measured at different

temperatures (morning and evening) may assist in determining the in-place properties of

the HMA.

In an effort to predict roadway deflection, the RIDOT recently utilized its recently

refurbished Kuab Falling Weight Deflectometer (FWD) on Route 165 which,

incidentally, was one of the first roads it was used on.   FWD results can be used to

determine in situ resilient moduli of both the subgrade and subbase by back and forward

calculations.  RIDOT has been using FWD on their roads for years but, unfortunately,

was neither able to internally interpret the results nor perform back calculations
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successfully. So, for this project resilient modulus values obtained from destructive

testing was used as an input for PavementME.

5.7. Skid Resistance:

Skid resistance is the force developed when a tire that is prevented from rotating slides

along the pavement surface (HRB 1972). Skid resistance is an important pavement

evaluation parameter because:

 Inadequate skid resistance can lead to higher incidences of skid related accidents.

 Most agencies have an obligation to provide users with a roadway that is “reasonably”

safe.

 Skid resistance measurements can be used to evaluate various types of materials and

construction practices.

Skid resistance changes over time. Typically, it increases in the first two years following

construction as the asphalt binder coating the top layer of aggregate is worn away by

traffic, then decreases over the remaining pavement life as aggregates become more

polished. Skid resistance is also typically higher in the fall and winter and lower in the

spring and summer. This seasonal variation can skew skid resistance data if not properly

compensated.

Some DOTs measure skid resistance using a locked-wheel skid tester as shown in Figure

5.8, which basically employs a test wheel that is locked up as it is rolling and skidded

along the tested surface as a spray of water is applied in front (to simulate worst

conditions). Data obtained are used to measure the tested surface’s friction resistance.
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On RI Route 165, skid resistance tests were performed in 2003, 2006, and 2010 and skid

numbers obtained from test showed that there was significant increase of skid resistance

after every passing year and overall ride ability and smoothness of pavement decreased.

So, skid resistance test was become the base test to rehabilitate Route 165.

5.8. International Roughness Index (IRI)

Pavement roughness is an expression of irregularities in the pavement surface that

adversely affect a vehicle’s ride quality. Roughness is an important pavement

characteristic because it affects not only ride quality but also vehicle operating costs, fuel

consumption and maintenance costs. The World Bank found road roughness to be a

primary factor in the analyses and trade-offs involving road quality vs. user cost.

The international roughness index (IRI), developed by the World Bank in the 1980s, is

used to quantify roughness. IRI is based on the accumulated suspension of a vehicle

(inches or mm) divided by the distance traveled by the vehicle during the measurement

(miles or kilometers). The open-ended IRI scale is shown in Figure 5.9.

Roughness measurements can be made in a variety of ways including surveying

instruments, portable inclinometers, profilographs, response type road roughness meters

(RTRRMs) and profiling devices. The most common methods involve profilographs and

profiling devices. For pavement condition surveys, some DOTs actually record the

pavement’s surface profile using laser equipment mounted in a specially equipped

collection van as shown in Figure 5.10 and then convert this profile into a roughness

measurement. In addition to collecting profile data, these vans also record rutting data.
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IRI is one of the outputs of PavementME and calculated in in. /mile. For RI route 165,

IRI tests were conducted in 2014 after paving road and found out the IRI values obtained

from tests are much lower than the targeted value of IRI set by PavementME, i.e., 172 in.

/mil as shown in Table 5.1.

Currently, RIDOT performs regular IRI tests on its roadways to monitor pavement

performance over time.  Based on pavement performance and distress type, PavementME

Analysis Output Charts shows the IRI values increasing over time. Thus, based on these

distresses and calculated PavementME IRI, it seems feasible that RIDOT would be able

to compare their field generated values to the predicted charts in order to track

performance of the PavementME.

5.9. Comparative Analysis of Performance Prediction of RI Route 165

PavementME output predicted AC top down fatigue cracking (longitudinal cracking) for

almost all test section except Portland cement which passes for all distress types. ME

Design reports also predicted the years to predict threshold distresses for all test section

and it was observed that with current layer thickness only Portland cement can last for 20

years of design life. To evaluate the whole scenario generated with ME Design reports it

was highly suggested that to find a way to overcome AC top down cracking. One of the

causes of AC top down cracking is having thin top asphalt layer so, it was suggested to

use additional 1 inch top Class 19mm base course asphalt layer and rerun all ME Design

reports to check the outcomes. Finally it was observed that by increasing one inch of top

asphalt layer AC top down cracking of all test sections came under the targeted value i.e.

2000 ft. /mil with same amount of years to predict threshold distresses. However, by
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additional one inch layer of asphalt it will increase the cost of the overall project but it is

worth full to have additional one inch of asphalt layer now than to maintain or

rehabilitate after four years of paving (in case of using Emulsion as an additive). The

order of all test sections (lower to higher) in terms of cost analysis by paving with one

inch additional asphalt layer is Portland cement, Control, Asphalt Emulsion, Calcium

Chloride, and Geo-grid.

5.10. Guidelines for Long-Term Evaluation and Optimal Rehabilitation Design

strategies

A material database consisting of resilient moduli, pavement core data and sieve analysis

needs to be created for easy reference for design engineers.  The RIDOT has years of

collected data but unfortunately no “on-line” database.   URI, on the other hand, has

already done extensive resilient moduli testing with seasonal variations on subbase and

subgrade materials and needs to incorporate these results into the state’s database. The

results of the testing should be included in one main database along with any new testing

done (Lee et al. 2001).

LTPP currently has a Microsoft Excel Program that uses FWD deflections to predict

resilient moduli of the asphalt layers, subbase and subgrade materials.  The program,

however, requires pavement and subbase thicknesses as input parameters which a GPR

can provide.  FWD testing is already being performed on state highways and this

information should be appropriately documented and compiled into a database.
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Figure 5.1: Inspection Sheet for Conducting Condition Survey
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Figure 5.2: A View of Alligator Cracking on Pavement Surface

Figure 5.3: A View of Longitudinal Cracking on Pavement Surface
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Figure 5.4: A view of Transverse Cracking on Pavement Surface

Figure 5.5: Concept of Pavement Performance Using Present Serviceability Index
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Figure 5.6: Ground Penetrating Radar (GPR) Equipment

Figure 5.7: A View of Falling Weight Deflectometer (FWD) Mechanism
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Figure 5.8: Lock Wheel Skid Tester Truck

Figure 5.9: International Roughness Index (IRI) Roughness Scale
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Table 5.1: Comparison of Performance Prediction for IRI of RI Route 165

Design
Outputs

Control CaCl2 Emulsion Portland
Cement

Geo-grid

Distress Target Predicted Predicted Predicted Predicted Predicted
Terminal IRI

(in./mil)
172.00 146.72 146.30 148.06 144.84 147.33

Av. Final Ride
ability Results

for WB (in.
/mil)

Left/Right
lane.

58.4/46.9 44/40.43 65.8/88.9 64.3/52.9 63.7/56.7
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Chapter 6

Conclusions and Recommendations

1. Recently RIDOT worked with URI, and established test sections successfully on RI

Route 165 with Full Depth Reclamation (FDR) with five and additives and/or

strategies, i.e., control, calcium chloride, asphalt emulsion, Portland cement, and geo-

grid to find best practices.

2. Instron 8800 servo-hydraulic testing machine was successfully modified for

determining dynamic modulus of HMA.

3. Instron 5582 machine was successfully used for determining creep compliance of

HMA with modification, mainly software.

4. More accurate material input parameters including dynamic modulus and creep

compliance of HMA were determined.

5. The performance of five different strategies was successfully predicted and evaluated

using PavementME software. It required traffic, climate, and material properties data

as an input and to predict the amount of distresses in terms of rutting, fatigue, thermal

cracking, and roughness.

6. The outcomes obtained from this research study showed that all test sections observed

AC top down (longitudinal cracking) except Portland cement section which passed

for all distress type criteria. Pavement ME software also predicted the amount of

years to show threshold distresses. The order in terms of performance (best to worst)

for all test sections by PavementME software was Portland cement, calcium chloride,

control, geo-grid, and asphalt emulsion.
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7. It was observed that AC top down (longitudinal cracking) occurs due to thin top layer

of asphalt.  So, it was recommended that to provide additional one-inch asphalt layer

i.e., 19 mm Class HMA to avoid AC top down cracking. PavementME software

didn’t show any distress type for all test sections with revised layer thicknesses.

8. It was also observed that higher the resilient modulus of pavement layer increases the

stiffness of the material, and that the outcomes predicted by PavementME software

didn’t show any distresses. This could be confirmed because of the Portland cement

section which has higher Mr value and didn’t show any distress for almost 25 years.

9. It was recommended conducting condition survey to verify the PavementME software

predictions. Furthermore, it was recommended that RIDOT will track all the

performance data of Route 165 test sections.

10. Although it appeared that Portland cement is an excellent additive, the curing time

can be a problem on narrow roads like Route 165 where detours are not possible.

Detours drive up the costs for the project because of the additional traffic control and

the delays to the traveling public. Thus, Portland cement could be considered for

future projects where a detour is feasible.
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Appendix A

Determining the Resilient Modulus of Subgrade soils and Aggregate Materials
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Appendix A

Determining the Resilient Modulus of Subgrade Soils and Granular Materials

This method covers procedures for preparing and testing untreated subgrade soils and
untreated subbase/base materials for determination of resilient modulus (Mr) under
conditions representing a simulation of the physical conditions and stress states of
materials beneath flexible pavements subjected to moving wheel loads.

Apparatus

The following apparatus were used in this test

1. Split Mold
2. Membranes
3. Vacuum Pump
4. Compacting Hammer and Machine
5. Triaxial cell
6. Pie tape and measuring ruler
7. Loading Device
8. Load and Specimen Response Measuring Equipment
9. Linear Variable Differential Transducers (LVDTs)
10. Signal excitation, conditioning and recording equipment
11. Triaxial Pressure Chamber shown in Figure A-1
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Figure A1: Triaxial Chamber for Resilient Modulus Testing

Procedure for determining Physical Properties:

1. Combined sample into 1 tray
2. Coned and quartered the sample (separated into four equal sections) and combined

the diagonal piles
3. Setup tray and bowls to place materials passed ¾ in. sieve (-¾”) and the ones which

retained ¾ in. sieve (+¾”).
4. Scalped out +¾” particles and place in bowl(s). Place remainder -¾”- particles into

tray(s)
5. Recorded the weight of tray
6. Recorded the weight of the tray and material (-¾” and +¾”)

a. The difference of Step 5 and Step 6 was the weight of the wet sample
7. Air dried the wet sample (this should take ~1 week)

8. Recorded the weight of the dry sample and determined the water content (-¾” and
+¾”)

Table A-1: Moisture Content of Sample
9. Performed grain size analysis on the entire sample

a. Opening sizes in mm: 37.5, 10, 4.75, 2.38, 0.599, 0.075, and 0.01 (pan)
10. Performed specific gravity (Gs) test on +¾” particles only
11. Performed modified proctor test on -¾” particles only (AASHTO T180)

a. When determining water content make sure to use air dry samples (DO NOT
PLACE IN OVEN).

b. From proctor curve: Maximum Dry Density, and Optimum Moisture Content
(OMC)

12 Applied correction equations to convert OMC and Maximum Dry Density to field
conditions.

Resilient Modulus Material Lab Testing

Moisture Content for -¾’’ material = 1.44% Moisture content for -¾’’ material =
1.405%

Moisture content for +¾’’ material = 0.65% Moisture content for +¾’’ material =
0.609%
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Figure A-2: Maximum Dry Density VS Water Content Curve

Sample Preparation:

1 Attached first membrane to base of triaxial cell using elastics
2 Attached Split Mold. Tightened screws on opposite direction with careful handling

membrane, i.e., -not caught in split mold while tightening.
3 Stretched membrane over the top of the split mold and secured with elastics
4 Attached vacuum line with swage lock fittings to perimeter of split mold
5 Attached portable vacuum to the line so that membrane expands to the walls of the

split mold
6 Placed filter paper at the bottom of split mold
7 Scalped out +1 ½’’ particles from the testing material
8 Determined amount of material needed for sample preparation
9 Compacted resilient modulus sample in 6, 2-inch-thick, lifts
10 Added water to achieve OMC to sample material
11 Placed first lift of soil into split mold and compact using impact hammer
12 When finished released vacuum from split mold and applied a small vacuum to the

base of the sample
13 Carefully folded membrane over the top and bottom of the sample
14 Measured and recorded the height and diameter of the sample
15 Assembled triaxial apparatus. Tightened rods the same amount
16 Removed vacuum from the base of the sample and transported to Instron testing

machine.

Resilient Modulus Testing and Computer Operation:

Proportional Integral Derivative (PID) Settings:

1 Turned on Instron tower and computer tower
2 Turned on the water pump against the wall
3 From Instron Console (Control software for the load frame) on computer restored

calibration
4 Placed triaxial cell with the sample in Instron and centered on the platen
5 Attached confining pressure line
6 Manually moved the Instron piston so that it is just above the triaxial cell piston
7 Applied seating load and confining pressure
8 Opened drainage valve at the base of the triaxial cell
9 Recorded the old and new Proportional Derivative Integral (PID) settings

Conditioning Phase:

1 Opened Wave matrix software (software where testing sequences are created)
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2 Selected method (“conditioning Phase”)
3 Changed seating load and confining pressure according to AASHTO standard for

conditioning phase
4 Set limits on Instron piston under Instron console
5 Attached LVDTs securely to brackets on triaxial cell
6 Finally started the test

Resilient Modulus Testing Phase

1 When conditioning phase was complete, clicked finish and continued project
2 Selected sequence type i.e., Subbase
3 Checked method tab, graphs, amplitude, rest period, etc.
4 Adjusted set point and confining pressure based on standard
5 Started the test and adjusted confining pressure when prompted throughout the test
6 Inserted data file into Mat Lab code and into a results summary file.

A typical stress vs strain relationship for each sequence for Rt. 165 materials is shown in
Figure A-3.

Figure A-3: Stress vs Strain Chart for Rt. 165 material
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Column # 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Designation S3 Smax C1 Pmax Pcyclic Pcontact Smax Scyclic Scontact H1 H2 Havg ϵr Mr

Unit kPa kPa ___ kN kN kN kPa kPa kPa meter meter meter m/m MPa
Precision

20.7 20.7 100.00 0.34 0.30 0.03 18.51 16.61 1.90 4.09E-05 4.09E-05 1.34E-04 123.81
20.7 41.4 100.00 0.71 0.64 0.07 38.95 34.96 3.99 8.45E-05 8.45E-05 2.77E-04 126.06
20.7 62.1 100.00 1.08 0.97 0.11 59.27 53.23 6.03 1.25E-04 1.25E-04 4.10E-04 129.70
34.5 34.5 100.00 0.59 0.54 0.05 32.31 29.78 2.53 6.26E-05 6.26E-05 2.05E-04 145.11
34.5 68.9 100.00 1.21 1.10 0.11 66.30 60.37 5.93 1.21E-04 1.21E-04 3.97E-04 151.94
34.5 103.4 100.00 1.83 1.66 0.17 100.18 90.78 9.40 1.80E-04 1.80E-04 5.91E-04 153.55
68.9 68.9 100.00 1.22 1.14 0.07 66.48 62.48 4.00 1.07E-04 1.07E-04 3.51E-04 177.90
68.9 137.9 100.00 2.46 2.26 0.20 134.59 123.66 10.93 2.02E-04 2.02E-04 6.64E-04 186.31
68.9 206.8 100.00 3.70 3.38 0.33 202.46 184.63 17.83 2.97E-04 2.97E-04 9.75E-04 189.38

103.4 68.9 100.00 1.22 1.18 0.04 66.63 64.56 2.07 9.74E-05 9.74E-05 3.19E-04 202.09
103.4 103.4 100.00 1.84 1.74 0.10 100.82 95.29 5.52 1.39E-04 1.39E-04 4.55E-04 209.22
103.4 206.8 100.00 3.72 3.43 0.29 203.18 187.32 15.86 2.61E-04 2.61E-04 8.58E-04 218.42
137.9 103.4 100.00 1.85 1.78 0.07 100.98 97.39 3.59 1.30E-04 1.30E-04 4.25E-04 229.01
137.9 137.9 100.00 2.47 2.34 0.13 135.27 128.21 7.05 1.65E-04 1.65E-04 5.40E-04 237.43
137.9 275.8 100.00 4.97 4.59 0.38 271.79 250.94 20.85 3.11E-04 3.11E-04 1.02E-03 246.29

ave 185.84

Parameter
Chamber
Confining
Pressure

Nominal
Max. Axial

Stress
Resilient
Modulus

Cycle No.
Actual Applied

Max. Axial
Load

Actual Applied
Cycle Load Actual Applied

Contact Load

Actual
Applied Max
Axial Stress

Actual
Applied Cycle

Stress
Actual Applied
Contact Stress

Recov Def.
LVDT #1
Reading

Recov Def.
LVDT #2
Reading

Average
Recov Def

LVDT 1 and 2
Resilient

Strain

Sequence 1
Sequence 2
Sequence 3
Sequence 4
Sequence 5
Sequence 6
Sequence 7
Sequence 8
Sequence 9

Sequence 10
Sequence 11
Sequence 12

Sequence 15

Sequence 13
Sequence 14

A typical test results for Rt. 165 FDR Base/Subbase materials are shown in Table A-2.

Table A-2. Resilient Modulus of Base/Subbase Material

Analysis of Data Collection

By analyzing the above data, it was found that the resilient modulus of base/subbase
material is 185.84 ksi (average value of all the test sequences) which shows the stiffness
of the layer. Higher the resilient modulus value, stiffer will be the material

Conclusions

All resilient moduli used for performance prediction are included in Chapter 2. Those are
for subgrade soils, subbase materials, and FDR base/subbase materials for five test
sections in RI Rt. 165.
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Appendix B

Properties of Asphalt Binder Used
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Appendix B-1 Determination of Penetration of Bituminous Material

Purpose of Test

The purpose of this method was to determine the penetration of semi-solid and solid
bituminous materials. Penetration can be best expressed as the consistency of a
bituminous material expressed as the distance in tenth of a millimeter that a standard
needle vertically penetrates a sample of the material under known conditions of time,
loading and temperature.

Apparatus

The following apparatus used in this test

1. Penetration Apparatus that permits the needle holder to move vertically without
measurable friction and is capable of measuring the depth of penetration to nearest
0.1mm.

2. Penetration needle
3. Sample Containers
4. Water Bath
5. Stop Watch
6. Thermometers
7. Cleaning Liquid

Test Procedure

1. First we prepare the sample for testing for that we put the sample (bitumen) in the
oven and heat it in such a case that the temperature will not exceed to 90oC the
expected softening point of bitumen.

2. Then we pour the sample into two small containers such that when cooled to the
temperature of test the depth of the sample is at least 10 mm greater than the depth
to which needle is expected to penetrate.

3. Then we allowed the samples to get cool for some time so that their top surface
become exactly flat.

4. For this test we should know the standard conditions of temperature (i.e. 25oC or
77oF), Load (i.e. 100g) and Time (i.e. 25 sec).

5. Then we examine the needle holder and tried to fix it so that the value on the scale
attached to penetration apparatus goes to zero. Then we clean the needle by using
cleaning liquid with the help of paper.

6. Then we placed the 50 g weight above the needle, making the total weight 100g.
7. Then we submerged the container into the water bath and paced the water bath on

the stand of penetrometer.
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8. After that we positioned the needle by slowly lowering it until its tip just makes
contact with the surface of the sample. This can be accomplished by looking onto
the sides of water bath.

9. Then we quickly released the needle by pressing the holder for a period of 5
seconds (time noted by using stop watch) and adjust the instrument to measure the
distance penetrated in tenths of a mm.

10. We took at least three reading by doing the above procedure on a same container at
different locations.

11. We cleaned the penetration needle every time we start our test to take reading with
help of cleaning liquid.

Observations

Table B-1-1: Penetration rate in (mm) for Sample A

Test No. Time (sec) Load (g) Temperature
(oF)

Penetration Reading
(mm)

1 5 100 77 107

2 5 100 77 93

3 5 100 77 85

Average value of penetration for sample A = = 95 mm

Table B-1-2: Penetration rate in (mm) For Sample B

Test No. Time (sec) Load
(g)

Temperature
(oF)

Penetration Reading
(mm)

1 5 100 77 80
2 5 100 77 106

3 5 100 77 143

Average value of penetration for sample B = = 109.67 mm

Analysis of Data Collection

By analyzing the data collected by performing penetration test we can easily say that
penetration rate is increasing after every time we performed test on a same sample as
shown above in the tables of Sample A and B. This is because of the softening of asphalt
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with the passage of time and penetration needle go deeper and scale showed higher
values of penetration.

Possible sources of error

There might be following possible errors conducting penetration test

1. Change in temperature during the test
2. Zero error in the scale measuring penetration rate
3. Error in measurement of time

Conclusion

By conducting Penetration test we can measure the consistency of all bituminous
materials. Higher values of penetration indicate softer consistency. By performing this
test we can easily differentiate the grades of all bituminous materials. Finally, we can say
that penetration test is one of the best test to check one of the properties of bituminous
materials i.e. Consistency. The penetration value of asphalt binder was 1,100.
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Appendix B-2

Viscosity Determination of Asphalt using the Brookfield Thermosel Apparatus

Purpose of Test:

The purpose of this test is to measure the apparent viscosity, ratio of shear stress to shear
rate for a Newtonian or non-Newtonian liquid, from 100 to 500 degrees F (38 to 260o C)
using the Brookfield Thermosel apparatus.

Abbreviated Procedure:

Prepare the asphalt sample by heating in oven. Turn on the thermosel power and set the
desired temperature. Once the equilibrium temperature is obtained with the appropriate
spindle in the chamber, add the sample to the chamber. Approximately 8 to 10 mL of
asphalt will be required, this mass must be calculated from the specific gravity. Reinsert
the chamber into the viscometer and insert the spindle. Perform the test with viscometer
at 20 rpm and observe at 20 rpm and observe the meter reading. Record three readings 60
sec apart at each temperature.

Observations:

The data collected from the viscometer can be seen below in table.

Test
#

Asphalt Weight
(g)

Spindle
#

Test
Temperature

(oC)

Reading
#

Time
(min)

Viscosity
(cP)

1 Unknown
Sample

3.5 27 135 1
2
3

1
2
3

500
487
477

2 Unknown
Sample

3.5 27 135 1
2
3

1
2
3

787
712
662

3 64-28 10.5 27 135 1
2
3

1
2
3

1325
1137
1012

4 64-28 10.5 27 135 1
2
3

1
2
3

2550
2000
1427

The viscometer directly reported the viscosity of the asphalt instead of reporting the % of
the torque.
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Analysis of Data

According to the procedure outlined in the ASTM specifications stated to plot viscosity
VS. Temperature after the viscosity readings became consistent. Because these tests were
all performed at a constant temperature of 135oC Figure 1 through 4 below the viscosity
vs. time for each of the tests.

Figure B-2-1: Viscosity VS Time for reading 1
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Figure B-2-2: Viscosity VS Time for reading 2

Figure B-2-3: Viscosity VS Time for reading 3

Figure B-2-4: Viscosity VS Time for reading 4
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The unknown sample analyzed in test 1 and 2 has a final viscosity of 475 and 662 at
135oC. Because this viscosity is near 500, I feel this asphalt has a viscosity grade of AC-
5. This estimation of AC-5 could be verified with a penetration test.

Possible Source of Error

A possible error for this experiment was the fact that all of the tests were performed at a
constant temperature of 135oC instead of at various temperatures ranging from 38 to
260oC (100-500oF). This constant temperature made it impossible to plot the viscosity vs.
changing temperature.

Conclusion

After analyzing the data gathered in this lab, I do not feel that the results were very
accurate. The results for the same asphalt (both unknown sample and the PG 64-28) were
inconsistent at the same temperature (135oC). It was also impossible to plot viscosity vs.
changing temperature due to the fact that all tests were performed at the same
temperature. I was, however, able to plot the viscosity vs. time to show how viscosity
decreases as the test is performed.
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Appendix B-3

Determining the Rheology Properties of Asphalt Binder Using a Dynamic
Shear Rheometer

Purpose of Test

This test method covers the determination of the dynamic shear modulus and phase angle
of asphalt binder when tested in dynamic (oscillatory) shear using parallel plate test
geometry. This test is appropriate for unaged and aged asphalt binders both.

Apparatus

The following apparatus used in this test

1. Dynamic Shear Rheometer (DSR) Test system which consists of Parallel metal
plates, an environmental chamber, a loading device and a control data acquisition
system.

2. Metal plates made from stainless steel or aluminum with smooth ground surface.
One set made up of 8.00±0.02 mm in diameter and the other one of 25.00±0.05mm
in diameter.

3. Environmental Chamber used for controlling test temperature by heating or by
cooling to maintain a constant specimen environment. The temperature in the
chamber may be controlled by the circulation of fluid such as water and conditioned
gasses like nitrogen etc.

4. Temperature Controller capable of maintaining specimen temperatures within±0.1oC.
5. Internal Temperature detector for the DSR used to control the temperature of

specimen between two plates.
6. Loading Device apply a sinusoidal oscillatory load to the specimen at a frequency of

10.0±0.1 rad/sec.
7. Control and data acquisition system which can provide a record of temperature,

frequency, deflection angle and torque.
8. Specimen Mold
9. Specimen Trimmer
10. Wiping Material
11. Cleaning Solvents
12. Reference Thermometer
13. Optical Viewing Device
14. Electronic Thermometer
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Figure B-3-1: Dynamic Shear Rheometer.

Test Procedure

1. This test is performed on unaged binders and binders that have been aged in a rolling
thin film oven and pressure aging vessel.

2. At the beginning of the procedure, a 10 g sample is usually in a small container such
as a “3” ounce tin. To prepare for testing heat the sample until it is sufficiently fluid
to pour. The consistency should be less than 0.5 Pa-sec which is approximate
consistency of motor oil. The sample should never be heated above 150oC.

3. Turn on the rheometer air system by opening the supply regulator. The regulator is a
valve affixed to the central laboratory air system and is normally located close to the
rheometer. In many cases, the valve is part of a combination regulator/water filter
system and is not a part of rheometer itself. It is important that the rheometer air
system be on prior to manipulation of the rheometer to prevent damage to any
components. Turn on personal computer system and temperature control system that
circulates water.

4. Turn on rheometer and the attached computer. As we are using DSR by TA
instruments so we used the Advanced Rheology Navigator software to run our test.

5. After initializing the software program do the calibration first with an operational
thermometer and thermistor and check the calibrations with a testing material.

6. After doing calibration go to the main screen of the software then in scripts menu
select utility scripts and then click on the zero gap option.

7. Once you click on the zero gap then software used you to attach 25 mm matching
plates then select ok. Once you do that the upper head of the machine will start
lowering its head to achieve 4500 microns value.

8. After that again from the script menu select original binder and enter your sample
name and file name in the window then software will ask you about the range of
temperature you want to run the test. In our case we put first temperature as 62oC
and the second temperature as 68oC.

9. After that   instrument will take some time to achieve the desired temperature and
once again instrument will set zero gap.

10. In the mean while pour your sample into silicon made mold and give sample about 5
minutes to get cool and stiff.
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11. After that software will ask you to load the sample simple remove the sample from
mold and place it between two place and then select ok.

12. After doing that instrument will come down to achieve 1050 microns then software
will ask you to trim the sample. Carefully by using trimming tools trim the sample
from the sides of the plates and then select OK

13. Then instrument will go down further to 1000 microns and achieve desired
temperature once again.

14. After that software will take 10 minutes to run the test at first given temperature and
10 more minutes to run the test for second given temperature.

15. After doing that software will tell you that test has been completed unscrew the
plates and clean them and in the end it will print a 2 page report for you in which
you can find the values of G*, Phase angle and G*/Phase angle.

Observations

After performing the above procedure we have following observations.

Table B-3-1: G*/sin delta of Asphalt Binder at 64oC
Sr.
No

Angular
Frequency
(Rad/sec)

Temperature
(oC)

Osc.
Stres

s
(Pa)

%
Strain

Delta
(Degrees)

G*
(Pa)

G*/sin
delta
(kpa)

1 10.0 64.0 206.4 12.056 85.24 171
7

1.723

Table B-3-2: G*/sin delta of Asphalt Binder at 70oC
Sr.
No

Angular
Frequency
(Rad/sec)

Temperature
(oC)

Osc.
Stres

s
(Pa)

%
Strain

Delta
(Degrees)

G*
(Pa)

G*/si
n

delta
(kpa)

1 10.0 70.0 98.14 11.972 86.66 819.
7

0.821

Analysis of Data Collection

By analyzing the data collected by performing DSR test on unaged sample that our test
passed on both temperatures provided by us that are 64 and 70oC. According to PG
Binder grading system G*/sin delta value for unaged sample should have the value
minimum 1.00 KPa. In our case temperature at 64oC pass the criteria for PG grading
system.

Possible sources of error

There might be following possible errors conducting DSR test.

1. Calibration of the equipment
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2. Not enough trimming of the sample after loading between plates
3. Not having enough good bulge as recommended by AASHTO specifications.

Conclusion

So in the whole we can say that this method is used to measure the complex shear
modulus (G*) and Phase angle (sine delta) of asphalt binders using a dynamic shear
rheometer and parallel plate test geometry. The test temperature from this method is
related to temperature experienced by the pavement in the geographical area for which
asphalt binder is intended to be used. The complex shear modulus is an indicator of the
stiffness or resistance of asphalt binder to deformation under load. The complex shear
modulus and the phase angle define the resistance to shear deformation of the asphalt
binder in the linear viscoelastic region.
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Appendix B-4

Determining the Rheology Properties of Asphalt Binder
Using a Dynamic Shear Rheometer on Short term Aged Sample

Purpose of Test

This test method covers the determination of the dynamic shear modulus and phase angle
of asphalt binder when tested in dynamic (oscillatory) shear using parallel plate test
geometry. This test is appropriate for unaged and aged asphalt binders both.

Apparatus

The following apparatus used in this test

1. Dynamic Shear Rheometer (DSR) Test system which consists of Parallel metal
plates, an environmental chamber, a loading device and a control data acquisition
system.

2. Metal plates made from stainless steel or aluminum with smooth ground surface.
One set made up of 8.00±0.02 mm in diameter and the other one of 25.00±0.05mm
in diameter.

3. Environmental Chamber used for controlling test temperature by heating or by
cooling to maintain a constant specimen environment. The temperature in the
chamber may be controlled by the circulation of fluid such as water and conditioned
gasses like nitrogen etc.

4. Temperature Controller capable of maintaining specimen temperatures within±0.1oC.
5. Internal Temperature detector for the DSR used to control the temperature of

specimen between two plates.
6. Loading Device apply a sinusoidal oscillatory load to the specimen at a frequency of

10.0±0.1 rad/sec.
7. Control and data acquisition system which can provide a record of temperature,

frequency, deflection angle and torque.
8. Specimen Mold
9. Specimen Trimmer
10. Wiping Material
11. Cleaning Solvents
12. Reference Thermometer
13. Optical Viewing Device
14. Electronic Thermometer

Preparation of Short term Aged Sample using RTFO:-

1. For the preparation of aged sample we took three bottles of rolling thin film oven
preheated at 163oC in oven and pour 35gms of asphalt binder preheated in an oven.



95

2. Then we placed the bottles into the oven back which was preheated at 163oC. After
that we set the air pressure of 4 Psi, closed the door of the oven, Turn on the
rotational and air button on the oven.

3. We placed our sample in the oven for 85 minutes. After that we removed the bottles
pour a little amount of sample into the 8mm silicon made mold for DSR testing on
aged sample and remaining into the container for PAV testing on aged sample.

Test Procedure

1. This test is performed on binders that have been aged in a rolling thin film oven.
2. Turn on the rheometer air system by opening the supply regulator. The regulator is a

valve affixed to the central laboratory air system and is normally located close to the
rheometer. In many cases, the valve is part of a combination regulator/water filter
system and is not a part of rheometer itself. It is important that the rheometer air
system be on prior to manipulation of the rheometer to prevent damage to any
components. Turn on personal computer system and temperature control system that
circulates water.

3. Turn on rheometer and the attached computer. As we are using DSR by TA
instruments so we used the Advanced Rheology Navigator software to run our test.

4. After initializing the software program do the calibration first with an operational
thermometer and thermistor and check the calibrations with a testing material.

5. After doing calibration go to the main screen of the software then in scripts menu
select utility scripts and then click on the zero gap option.

6. Once you click on the zero gap then software used you to attach 25 mm matching
plates then select ok. Once you do that the upper head of the machine will start
lowering its head to achieve 4500 microns value.

7. After that again from the script menu select original binder and enter your sample
name and file name in the window then software will ask you about the range of
temperature you want to run the test. In our case we put first temperature as 62oC and
the second temperature as 68oC.

8. After that   instrument will take some time to achieve the desired temperature and
once again instrument will set zero gap.

9. In the mean while pour your sample into silicon made mold and give sample about 5
minutes to get cool and stiff.

10. After that software will ask you to load the sample simple remove the sample from
mold and place it between two place and then select ok.

11. After doing that instrument will come down to achieve 1050 microns then software
will ask you to trim the sample. Carefully by using trimming tools trim the sample
from the sides of the plates and then select OK

12. Then instrument will go down further to 1000 microns and achieve desired
temperature once again.

13. After that software will take 10 minutes to run the test at first given temperature and
10 more minutes to run the test for second given temperature.
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14. After doing that software will tell you that test has been completed unscrew the plates
and clean them and in the end it will print a 2 page report for you in which you can
find the values of G*, Phase angle and G*/Phase angle.

Observation: -

After performing the above procedure we have following observations.

Table B-4-1: G*/sin delta value at 64oC

Sr.
No

Angular
Frequency
(Rad/sec)

Temperature
(oC)

Osc.
Stress
(Pa)

%
Strain

Delta
(Degrees)

G*
(Pa)

G*/si
n

delta
(kpa)

1 10.0 64.0 586.0 12.011 77.43 4902 5.023

Table B-4-2: G*/sin delta value at 70oC

Sr.
No

Angular
Frequency
(Rad/sec)

Temperature
(oC)

Osc.
Stres

s
(Pa)

%
Strain

Delta
(Degrees)

G*
(Pa)

G*/si
n

delta
(kpa)

1 10.0 70.0 293.8 12.095 79.93 2446 2.185

Analysis of Data Collection
By analyzing the data collected by performing DSR test on short term aged sample that
our test passed on both temperatures provided by us that are 64 and 70oC. According to
PG asphalt binder grading system for sample under short term aging should have the
value min 2.2 kPa. In our case temperature at 64oC passed through this criteria. Finally
we can say that 64oC is the final maximum temperature for this sample.

Possible sources of error

There might be following possible errors conducting DSR test.

1. Calibration of the equipment
2. Not enough trimming of the sample after loading between plates
3. Not having enough good bulge as recommended by AASHTO specifications.
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Conclusion

So in the whole we can say that this method is used to measure the complex shear
modulus (G*) and Phase angle (sine delta) of asphalt binders using a dynamic shear
rheometer and parallel plate test geometry. The test temperature from this method is
related to temperature experienced by the pavement in the geographical area for which
asphalt binder is intended to be used. The complex shear modulus is an indicator of the
stiffness or resistance of asphalt binder to deformation under load. The complex shear
modulus and the phase angle define the resistance to shear deformation of the asphalt
binder in the linear viscoelastic region. In this report we predicted that 64oC is the final
maximum temperature of this sample.
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Appendix B-5

Determining the Rheology Properties of Asphalt Binder
Using a Dynamic Shear Rheometer on Pressurized Aging Vessel Sample

Purpose of Test

This test method covers the determination of the dynamic shear modulus and phase angle
of asphalt binder when tested in dynamic (oscillatory) shear using parallel plate test
geometry. This test is appropriate for unaged and aged asphalt binders both.

Apparatus

The following apparatus used in this test

1. Dynamic Shear Rheometer (DSR) Test system which consists of Parallel metal
plates, an environmental chamber, a loading device and a control data acquisition
system.

2. Metal plates made from stainless steel or aluminum with smooth ground surface.
One set made up of 8.00±0.02 mm in diameter and the other one of 25.00±0.05mm
in diameter.

3. Environmental Chamber used for controlling test temperature by heating or by
cooling to maintain a constant specimen environment. The temperature in the
chamber may be controlled by the circulation of fluid such as water and conditioned
gasses like nitrogen etc.

4. Temperature Controller capable of maintaining specimen temperatures within±0.1oC.
5. Internal Temperature detector for the DSR used to control the temperature of

specimen between two plates.
6. Loading Device apply a sinusoidal oscillatory load to the specimen at a frequency of

10.0±0.1 rad/sec.
7. Control and data acquisition system which can provide a record of temperature,

frequency, deflection angle and torque.
8. Specimen Mold
9. Specimen Trimmer
10. Wiping Material
11. Cleaning Solvents
12. Reference Thermometer
13. Optical Viewing Device
14. Electronic Thermometer

Preparation of Pressurized Aging Vessel (PAV) Sample:

1. Combine the hot residue from the RTFO into a single container, stir to blend, then
transfer into TFOT pans for PAV conditioning.
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2. Place the pan holder inside the pressure vessel. If an oven is used, place the pressure
vessel inside the oven. If an integrated temperature control pressure vessel is used,
turn on the heater. Select an aging temperature and preheat the pressure vessel to the
aging pressure selected.

3. Place the TFOT pan on a balance and add 50 grams of asphalt binder to the pan. This
will yield approximately a 3.2 mm thick film of asphalt binder.

4. If the vessel is preheated to other than the desired aging temperature, reset the
temperature control on the heating device to the aging temperature.

5. Place the filled pans in the pan holder and then place the pan holder with filled pans
inside the pressure vessel and close the pressure vessel.

6. Connect the temperature transducer line and the air pressure supply line to the loaded
pressure vessel’s external connections.

7. Wait until the temperature inside the pressure vessel is within 2oC of the aging
temperature, apply an air pressure of 2.1 MPa and then start timing the test.

8. Maintain the temperature and air pressure inside the pressure vessel for 20 hours.
9. At the end of the 20 hour test period slowly begin reducing the internal pressure of

the PAV, using the air pressure bleed valve. Adjust the bleed valve to an opening that
requires 9 minutes to equalize the internal and external pressures on the PAV thus
avoiding excessive bubbling and foaming of asphalt binder.

10. If the temperature indicated by temperature recording device falls above or below the
target aging temperature 0.5oC for more than 10 minutes during the 20 hour aging
period, declare the test invalid and discard the material.

11. Remove the pan holder and pans from PAV, and place in an oven set at 163oC. Heat
until sufficiently fluid to pour. Stir gently in the removal of air bubbles.

12. Pour a small amount of sample into rubber mold and allow sample to cool down for
DSR testing.

Test Procedure

1. This test is performed on binders that have been aged in PAV.
2. Turn on the rheometer air system by opening the supply regulator. The regulator is a

valve affixed to the central laboratory air system and is normally located close to the
rheometer. In many cases, the valve is part of a combination regulator/water filter
system and is not a part of rheometer itself. It is important that the rheometer air
system be on prior to manipulation of the rheometer to prevent damage to any
components. Turn on personal computer system and temperature control system that
circulates water.

3. Turn on rheometer and the attached computer. As we are using DSR by TA
instruments so we used the Advanced Rheology Navigator software to run our test.

4. After initializing the software program do the calibration first with an operational
thermometer and thermistor and check the calibrations with a testing material.

5. After doing calibration go to the main screen of the software then in scripts menu
select utility scripts and then click on the zero gap option.
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6. Once you click on the zero gap then software used you to attach 25 mm matching
plates then select ok. Once you do that the upper head of the machine will start
lowering its head to achieve 4500 microns value.

7. After that again from the script menu select PAV residue and enter your sample name
and file name in the window then software will ask you about the range of
temperature you want to run the test. In our case we put first temperature as 25oC and
the second temperature as 22oC.

8. After that instrument will take some time to achieve the desired temperature and once
again instrument will set zero gap.

9. In the mean while pour your sample into silicon made mold and give sample about 5
minutes to get cool and stiff.

10. After that software will ask you to load the sample simple remove the sample from
mold and place it between two place and then select ok.

11. After doing that instrument will come down to achieve 2050 microns then software
will ask you to trim the sample. Carefully by using trimming tools trim the sample
from the sides of the plates and then select OK

12. Then instrument will go down further to 2000 microns and achieve desired
temperature once again.

13. After that software will take 10 minutes to run the test at first given temperature and
10 more minutes to run the test for second given temperature.

14. After doing that software will tell you that test has been completed unscrew the
plates and clean them and in the end it will print a 2 page report for you in which you
can find the values of G*, Phase angle and G*/Phase angle.

Observation:-

After performing the above procedure we have following observations.

Table B-5-1: G*/sin delta value at 25oC

Sr.
No

Angular
Frequenc

y
(Rad/sec)

Temperature
(oC)

Osc.
Stress
(Pa)

%
Strain

Delta
(Deg)

G*
(Pa)

G*/s
in

delta
(kpa)

1 9.991 25.0 55920 0.9988 44.98 5.61E6 3970
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Table B-5-2: G*/sin delta value at 22oC

Sr.
No

Angular
Frequenc

y
(Rad/sec)

Temperature
(oC)

Osc.
Stress
(Pa)

%
Strain

Delta
(Deg)

G*
(Pa)

G*/si
n

delta
(kpa)

1 9.991 22.0 83840 1.016 42.19 8.28E
6

5562

Analysis of Data Collection
By analyzing the data collected by performing DSR test on long term aged sample that
our test passed on 25oC temperature. According to PG grading system sample with long
term aging should have G*/sin delta value less than 5000 kPa. In our case at 25oC passed
the criteria.
Possible sources of error

There might be following possible errors conducting DSR test.

1. Calibration of the equipment
2. Not enough trimming of the sample after loading between plates
3. Not having enough good bulge as recommended by AASHTO specifications.

Conclusion

So in the whole we can say that this method is used to measure the complex shear
modulus (G*) and Phase angle (sine delta) of asphalt binders using a dynamic shear
rheometer and parallel plate test geometry. The test temperature from this method is
related to temperature experienced by the pavement in the geographical area for which
asphalt binder is intended to be used. The complex shear modulus is an indicator of the
stiffness or resistance of asphalt binder to deformation under load. The complex shear
modulus and the phase angle define the resistance to shear deformation of the asphalt
binder in the linear viscoelastic region.
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Appendix B-6

Determining the Flexural Creep Stiffness of Asphalt Binder using Bending Beam
Rheometer

Purpose of Test

This test method covers the determination of the flexural creep stiffness or compliance of
asphalt binder by means of a bending beam rheometer. It is applicable to material having
flexural stiffness value from 20 MPa to 1 GPa values in the range of (50 nPa-1 to 1 nPa-1)
and can be used with unaged material or with material aged using RTFOT or PAV test.
This test apparatus is designed to test within the temperature range of -36oC to 22oC.

Apparatus

The following apparatus used in this test.

1. Bending Beam Rheometer Test System (Figure B-6-1)
2. Loading Frame
3. Loading System
4. Sample supports
5. Loading Shaft
6. Controlled Temperature fluid bath
7. Data Acquisition System
8. Thermometers
9. Test Beam molds

Figure B-6-1: Bending Beam Rheometer Test System
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Preparation of Asphalt Binder Beam:-

Prepare the asphalt sample by heating in oven. Pour the sample in standard aluminum
mold. Allow the sample to cool down at room temperature for 45 minutes then trim it
from the top after then put in the refrigerator to cool down. Set the temperature of the
water bath inside the BBR system for your test temperature in our case we set the
temperature at -18oC. Once asphalt in the mold gets hard remove from the mold and place
the asphalt binder beam in the water bath for one hour to equalize temperature.

Test Procedure:-

First step to run BBR test is to do calibrations for Load, Deflection and Temperature. Use
zero and load gauges on the BBR machine to lower or raise the shaft. Apply pressure of
40 psi to BBR machine. For load calibrations apply four different 100g weight on the
machine on a thick beam and save the readings in the software. Similarly save the
deflection calibration as instructed by software. After doing calibration run a confidence
test on a thin beam by applying four different 100g weights and save the results in the
software. Once it done then place the asphalt binder beam under the loading machine and
run the test from the software and software will calculate the stiffness and deflection
values of the beam in a given interval of time that is 240 seconds and Load.

Observations: Table B-6-1: Slope value (m) at Target temperature -18oC

Time
T (sec)

Load
P

(mN)

Deflection
(mm)

Measured
Stiffness
(MPa)

Estimated
Stiffness
(MPa)

Difference
(%)

m-values

8.0 979 0.144 548 548 0.000 0.216
15.0 981 0.166 476 475 -0.210 0.238
30.0 983 0.199 398 400 0.503 0.261
60.0 987 0.240 332 331 -0.301 0.285

120.0 990 0.296 270 269 -0.370 0.309
240.0 994 0.372 215 216 0.465 0.339

Table B-6-2: Slope value (m) at Target temperature -12oC
Time

T
(sec)

Load
P

(mN)

Deflection
(mm)

Measured
Stiffness
(MPa)

Estimated
Stiffness
(MPa)

Difference
(%)

m-values

8.0 988 0.278 287 287 0.000 0.276
15.0 987 0.332 240 240 0.000 0.295
30.0 985 0.410 194 194 0.000 0.316
60.0 983 0.513 155 154 -0.645 0.338

120.0 981 0.652 121 121 0.000 0.389
240.0 981 0.842 93.9 93.9 0.000 0.380
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Analysis of Data Collection
According to PG grading system m-value for asphalt binder sample should be minimum
0.3. By analyzing the data obtained from BBR test at two different temperature of -18oC
and -12oC (as attached report shows) of same asphalt binder sample we came to know
that the this binder is good for -26oC which is slightly more than what we desire that is -
28oC so we have to add some modifiers to make it equal to PG 64-28 grading.
Possible sources of error

There might be following possible errors conducting BBR test.

1. Calibrating temperature to -18oC and -12oC inside water bath due to some external
factors.

2. Calibrating load values due to the sensitivity of machine
3. No proper cleaning of shaft which have to stand on asphalt binder beam.

Conclusion

On the whole we can say that BBR test is good to use for testing temperature experienced
by pavement in the geographical area for which asphalt binder is intended to use. The
flexural creep stiffness or flexural creep compliance, determined from this test describe
the low temperature, stress-strain time response of asphalt binder at the test temperature
within the linear viscoelastic response range. Finally by looking into the chart given by
FHWA as shown in Figure B-6-2 it was predicted that the sample used for testing to
determine its PG grade is PG 64-28.

Figure B-6-2: PG Asphalt Binder Grading System Chart
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BBR Report
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Appendix C

Super Pave Volumetric Design for Hot-Mix Asphalt
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Appendix C
Super Pave Volumetric Design for Hot-Mix Asphalt

Purpose of test
The objective of the lab was to use optimum gradation provided to determine optimum
binder content from samples compacted using the SuperPAVE Gyratory Compactor.

Apparatus
Gyratory Compactor, Computer, Mixer, Oven, Mixing Tools, Containers, Scales,
Vacuum Device, Vibratory Device & Gloves.

Test procedure
1. Sample Preparation and Compaction:

a. Weigh out 4600 grams of aggregate for each of the eight specimens being made.
Four gradations will be used, with two samples of each gradation. Prepare loose
mix as per Marshall Design Method, using 4.5%, 5.0%, 5.5% and 6.0% asphalt
content (AC) by weight for a set of two specimens.

b. Marshall Design method involves curing loose aggregate mix in oven at 135⁰C for
approximately 24 hours. Heat the Asphalt binder for an hour to reach its liquid
state and weigh the % to be added to the heated aggregate mix. Mix them in the
mixer

c. Leave the mix in the oven for 4 hours to ensure aging of the sample.
d. Also at the same time, leave the gyratory mold and base plates in the oven to be

heated up.
e. Turn on the Super pave Gyratory Compactor and the computer associated with it.

Pull up the Excel program with the Samples in the columns
f. After time is due, remove the 6” diameter SGC mold and fill the mold with the

asphalt mix. Place two paper platers on the base and top plate.
g. Set the SGC pressure to 600kPa, the angle of gyration to 1.25⁰ and speed of

gyration is standardized at 30 rpm.
h. Place the mold with the asphalt mix inside and hit Enter on SGC screen to start

the compactor. At the same time, select Specimen 1 in Excel sheet and click
“Launch Comm. Module”. The data starts generating in the column.

i. After achieved maximum gyrations of 205, extract the compacted mold and place
it between piers to extract the sample.

j. Make a note of the %AC used for the sample on the paper circular disc and repeat
the process for each sample at its varying asphalt content percentage.

k. Calculate the optimum trial blend. The end result is a creation of 4 sets of 2
samples with optimum trial blend, as per Marshall Mix Design with 4600 grams
of aggregate. % AC will equal the estimated binder content minus 0.5%, as is,
plus 0.5%, and plus 1.0%.

l. Clean the work area and calculate optimum asphalt content.
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2. Specific Gravity of Coarse Aggregate:
a. Weigh out 2000 grams sample of coarse aggregate blend in question and

submerge overnight for nearly 15 hours.
b. Determine submerged mass.
c. Dry sample with a towel such that no film remains on the surface of the

aggregate. Determine the mas and is called as Saturated Surface Dry mass.
d. Oven-dry the sample overnight at 110⁰C and determine the mass.

3. Specific Gravity of Fine Aggregate:
a. Weigh out 1000 grams of the fine aggregate blend in question.
b. Determine mass of pycnometer filled with water at 23⁰C
c. Determine mass of pycnometer filled with the aggregate and water to the

calibration line.
d. Allow surface of sample to dry using a blow dry until the sample just fails the

cone and determine the SSD mass.
e. Combine Gsb of Fine and Coarse values

4. Specific Gravity of Compacted Mix
a. Determine the compacted sample weight in air after being retrieved from the SGC

mold.
b. Submerge the sample for 15 to 30 minutes after the sample reaches room

temperature. Determine the submerged mass.
c. Remove the sample from the water and dry the surface using a cloth so that no

water film stays on the surface. Determine the mass again.
d. Multiply by a correction factor as needed for the temperature.

5. Specific gravity of Loose Mix
a. Retrieve 1000 grams of HMA sample prior to its compaction. This requires

careful planning of preparing a HMA over 5100 grams for every sample and
separating 500 grams from each.

b. Cure the sample for 2 hours at 230⁰F and let it cool to 25⁰C.
c. Weigh the container to be used
d. Fill the container with water and make a note of the weight
e. Add the sample to the water in the container.
f. Place the container with the sample on the vibratory device. Fasten the lid and

start the vibratory device making sure the vacuum is attached.
g. Let it run for 15 minutes so that the air between the HMA mixtures is removed.
h. Weight the container with the water and sample.
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Data collected:

Table C-1: Densification Data for 4.5 % Asphalt Content

Gyrations Ht, mm Vmx Gmb (est) "C" Gmb (corr) %Gmm Gyrations Ht, mm Vmx Gmb (est) "C" Gmb (corr) %Gmm

5 123.6 2183.1 2.155 1.109 2.390 92.64 5 124.6 2200.748 2.14 1.09 2.33 90.31
9=N(ini) 121.1 2138.9 2.200 1.086 2.390 92.64 9 122.0 2154.825 2.19 1.07 2.33 90.31
10 120.6 2130.1 2.209 1.082 2.390 92.64 10 121.5 2145.994 2.19 1.06 2.33 90.31
15 118.9 2100.1 2.241 1.067 2.390 92.64 15 119.8 2115.968 2.23 1.05 2.33 90.31
20 117.8 2080.6 2.262 1.057 2.390 92.64 20 118.6 2094.773 2.25 1.04 2.33 90.31
30 116.3 2054.1 2.291 1.043 2.390 92.64 30 117.2 2070.045 2.28 1.02 2.33 90.31
40 115.4 2038.3 2.309 1.035 2.390 92.64 40 116.2 2052.383 2.30 1.02 2.33 90.31
50 114.7 2025.9 2.323 1.029 2.390 92.64 50 115.5 2040.019 2.31 1.01 2.33 90.31
60 114.2 2017.1 2.333 1.024 2.390 92.64 60 114.9 2029.421 2.32 1.00 2.33 90.31
70 113.8 2010.0 2.341 1.021 2.390 92.64 70 114.5 2022.356 2.33 1.00 2.33 90.31
80 113.4 2002.9 2.349 1.017 2.390 92.64 80 114.1 2015.291 2.34 1.00 2.33 90.31
90 113.2 1999.4 2.353 1.016 2.390 92.64 90 113.9 2011.759 2.34 1.00 2.33 90.31
100 112.9 1994.1 2.360 1.013 2.390 92.64 100 113.6 2006.46 2.35 0.99 2.33 90.31
125 112.4 1985.3 2.370 1.008 2.390 92.64 125 113.1 1997.629 2.36 0.99 2.33 90.31

126=N(des) 112.4 1985.3 2.370 1.008 2.390 92.64 126 113.1 1997.629 2.36 0.99 2.33 90.31
149 112.1 1980.0 2.377 1.006 2.390 92.64 149 112.7 1990.564 2.37 0.98 2.33 90.31
150 112.1 1980.0 2.377 1.006 2.390 92.64 150 112.7 1990.564 2.37 0.98 2.33 90.31
200 111.6 1971.1 2.387 1.001 2.390 92.64 200 112.2 1981.733 2.38 0.98 2.33 90.31

204=N(max) 111.6 1971.1 2.387 1.001 2.390 92.64 204 112.1 1979.966 2.38 0.98 2.33 90.31

AVERAGE % Gmm =(0.93+0.90)/2 = 0.915= 91.5%

Va=% Air Voids= 100- %Gmm@N(des)= 100-91.5= 8.5

VMA %= 100-(%Gmm@N(des)*Gmb (meas)*Ps)/Gsb = 100-(91.5*2.58*0.955)/2.55 = 11.59

VFA %= 100*(VMA-Va)/VMA= 100*(11.59-8.5)/11.59 = 26.66

%Gmm@N(ini) = 92.64

%Gmm@N(des) =Average %Gmm = 91.5

Bulk Specific Gravity of mixture = Gmb (meas) = 2.33

Bulk Specific Gravity of stones=Gsb=  2.55

Aggregate Content = Ps= 95.5%

Specific Gravity of mixture measured= Gmm (meas)= 2.58

Bulk Specific Gravity of mixture = Gmb (meas) = 2.39

Wm=mass of dry specimen for 4.5 % A.C = 4705.5 gms Wm=mass of dry specimen for 4.5 % A.C = 4710.4 gms

Specimen 1

Densification Data for Blend 1, 4.5% Asphalt Content Densification Data for Blend 1, 4.5% Asphalt Content

Specimen 2

Bulk Specific Gravity of stones=Gsb=  2.55

Aggregate Content = Ps= 95.5%

Specific Gravity of mixture measured= Gmm (meas)= 2.58
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Table C-2: Densification Data for 5.0 % Asphalt Content

Gyrations Ht, mm Vmx Gmb (est) "C" Gmb (corr) %Gmm Gyrations Ht, mm Vmx Gmb (est) "C" Gmb (corr) %Gmm

5 125.7 2220.176 2.12 1.12 2.371 95.26 5 124.7 2202.5 2.13 1.11 2.369 95.18
9 123.2 2176.02 2.17 1.09 2.371 95.26 9 122.2 2158.4 2.18 1.09 2.369 95.18
10 122.7 2167.189 2.18 1.09 2.371 95.26 10 121.8 2151.3 2.19 1.08 2.369 95.18
15 121.0 2137.163 2.21 1.07 2.371 95.26 15 120.2 2123.0 2.21 1.07 2.369 95.18
20 119.9 2117.734 2.23 1.06 2.371 95.26 20 119.1 2103.6 2.23 1.06 2.369 95.18
30 118.4 2091.24 2.25 1.05 2.371 95.26 30 117.6 2077.1 2.26 1.05 2.369 95.18
40 117.5 2075.344 2.27 1.04 2.371 95.26 40 116.7 2061.2 2.28 1.04 2.369 95.18
50 116.8 2062.98 2.29 1.04 2.371 95.26 50 116.1 2050.6 2.29 1.03 2.369 95.18
60 116.3 2054.149 2.30 1.03 2.371 95.26 60 115.6 2041.8 2.30 1.03 2.369 95.18
70 115.8 2045.318 2.31 1.03 2.371 95.26 70 115.1 2033.0 2.31 1.02 2.369 95.18
80 115.5 2040.019 2.31 1.03 2.371 95.26 80 114.8 2027.7 2.32 1.02 2.369 95.18
90 115.2 2034.72 2.32 1.02 2.371 95.26 90 114.6 2024.1 2.32 1.02 2.369 95.18
100 115.0 2031.188 2.32 1.02 2.371 95.26 100 114.3 2018.8 2.33 1.02 2.369 95.18
125 114.5 2022.356 2.33 1.02 2.371 95.26 125 113.9 2011.8 2.34 1.01 2.369 95.18
126 114.4 2020.59 2.33 1.02 2.371 95.26 126 113.9 2011.8 2.34 1.01 2.369 95.18
149 114.1 2015.291 2.34 1.01 2.371 95.26 149 113.5 2004.7 2.35 1.01 2.369 95.18
150 114.1 2015.291 2.34 1.01 2.371 95.26 150 113.5 2004.7 2.35 1.01 2.369 95.18
200 113.6 2006.46 2.35 1.01 2.371 95.26 200 113.0 1995.9 2.36 1.01 2.369 95.18
204 113.5 2004.694 2.35 1.01 2.371 95.26 204 113.0 1995.9 2.36 1.01 2.369 95.18

%Gmm@N(ini) = 95.26

%Gmm@N(des) =Average %Gmm = 95.22

Bulk Specific Gravity of stones=Gsb=  2.55

Aggregate Content = Ps= 95%

Bulk Specific Gravity of stones=Gsb=  2.55

Aggregate Content = Ps= 95%

Specific Gravity of mixture measured= Gmm (meas)= 2.489

Bulk Specific Gravity of mixture = Gmb (meas) = 2.371

Densification Data for Blend 2, 5.0% Asphalt Content

Specimen 2

Va=% Air Voids= 100- %Gmm@N(des)= 100-95.22=4.78

VMA %= 100-(%Gmm@N(des)*Gmb (meas)*Ps)/Gsb = 100-(95.22*2.489*0.95)/2.55 =11.71

VFA %= 100*(VMA-Va)/VMA= 100*(11.71-4.78)/11.71 = 59.18

Specific Gravity of mixture measured= Gmm (meas)= 2.489

Bulk Specific Gravity of mixture = Gmb (meas) = 2.369

Wm=mass of dry specimen for 5.0 % A.C = 4715.4 gms

Specimen 1

Densification Data for Blend 2, 5.0% Asphalt Content

Wm=mass of dry specimen for 5.0 % A.C = 4701.3 gms

AVERAGE % Gmm =(95.26+95.18)/2 = 95.22%
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Table C-3: Densification Data for 5.5 % Asphalt Content

Gyrations Ht, mm Vmx Gmb (est) "C" Gmb (corr) %Gmm Gyrations Ht, mm Vmx Gmb (est) "C" Gmb (corr) %Gmm

5 123.1 2174.3 2.18 1.12 2.44000 96.52 5 128.7 2273.2 2.20 1.10 2.42 95.73
9 120.6 2130.1 2.23 1.09 2.44000 96.52 9 126.1 2227.2 2.24 1.08 2.42 95.73
10 120.2 2123.0 2.24 1.09 2.44000 96.52 10 125.7 2220.2 2.25 1.08 2.42 95.73
15 118.4 2091.2 2.27 1.07 2.44000 96.52 15 124.0 2190.2 2.28 1.06 2.42 95.73
20 117.3 2071.8 2.29 1.06 2.44000 96.52 20 122.8 2169.0 2.30 1.05 2.42 95.73
30 115.8 2045.3 2.32 1.05 2.44000 96.52 30 121.3 2142.5 2.33 1.04 2.42 95.73
40 114.8 2027.7 2.34 1.04 2.44000 96.52 40 120.4 2126.6 2.35 1.03 2.42 95.73
49 114.2 2017.1 2.35 1.04 2.44000 96.52 49 119.7 2114.2 2.36 1.02 2.42 95.73
50 114.1 2015.3 2.36 1.04 2.44000 96.52 50 119.7 2114.2 2.36 1.02 2.42 95.73
60 113.6 2006.5 2.37 1.03 2.44000 96.52 60 119.1 2103.6 2.37 1.02 2.42 95.73
70 113.1 1997.6 2.38 1.03 2.44000 96.52 70 118.7 2096.5 2.38 1.02 2.42 95.73
80 112.8 1992.3 2.38 1.02 2.44000 96.52 80 118.4 2091.2 2.39 1.01 2.42 95.73
90 112.5 1987.0 2.39 1.02 2.44000 96.52 90 118.1 2085.9 2.39 1.01 2.42 95.73
100 112.3 1983.5 2.39 1.02 2.44000 96.52 100 117.8 2080.6 2.40 1.01 2.42 95.73
125 111.8 1974.7 2.40 1.01 2.44000 96.52 125 117.4 2073.6 2.41 1.01 2.42 95.73
126 111.8 1974.7 2.40 1.01 2.44000 96.52 126 117.4 2073.6 2.41 1.01 2.42 95.73
150 111.4 1967.6 2.41 1.01 2.44000 96.52 150 117.0 2066.5 2.42 1.00 2.42 95.73
200 111.0 1960.5 2.42 1.01 2.44000 96.52 200 116.6 2059.4 2.42 1.00 2.42 95.73
204 110.9 1958.8 2.42 1.01 2.44000 96.52 204 116.6 2059.4 2.42 1.00 2.42 95.73

VMA %= 100-(%Gmm@N(des)*Gmb (meas)*Ps)/Gsb = 100-(96.12*2.528*0.945)/2.55 =9.96
VFA %= 100*(VMA-Va)/VMA= 100*(9.96-3.88)/9.96 =61.04

Densification Data for Blend 1, 4.5% Asphalt Content Densification Data for Blend 1, 4.5% Asphalt Content

Specimen 1 Specimen 2

%Gmm@N(des) =Average %Gmm = 96.12
Va=% Air Voids= 100- %Gmm@N(des)= 100-96.12= 3.88

Specific Gravity of mixture measured= Gmm (meas)= 2.528 Specific Gravity of mixture measured= Gmm (meas)= 2.528
Bulk Specific Gravity of mixture = Gmb (meas) = 2.44 Bulk Specific Gravity of mixture = Gmb (meas) = 2.42

%Gmm@N(ini) = 96.52

AVERAGE % Gmm =(96.52+95.73)/2 =96.12%

Wm=mass of dry specimen for 5.5 % A.C = 4748.1 gms Wm=mass of dry specimen for 5.5 % A.C = 4992.0 gms

Specimen 1 Specimen 2

Wm=mass of dry specimen for 4.5 % A.C = 4705.5 gms Wm=mass of dry specimen for 4.5 % A.C = 4710.4 gms
Bulk Specific Gravity of stones=Gsb=  2.55 Bulk Specific Gravity of stones=Gsb=  2.55

Aggregate Content = Ps= 94.5% Aggregate Content = Ps= 94.5%
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% AC %Air Voids %VMA %VFA
4.5 8.5 11.59 26.66
5 4.78 11.71 59.18

5.5 3.88 9.96 61.04
6 3.11 11.07 71.9

MIX Volumetric Properties at N(des)

Table C-4: Densification Data for 6.0 % Asphalt Content

Data analysis
Results and graphs of mix properties versus asphalt content is shown in Figures C1 to C3.
All calculations were performed in accordance to AASHTO specifications.
Results shown from the graphs tell us that optimum binder content will be 5.4 % as it
passed all the checks for % Air voids i.e. 4.0, % VMA i.e. 10.5 which is greater than 10%
for 37.5 mm aggregate size materials and % VFA i.e. 61% which is greater than 60-75 %
range of Design VFA.

Table C-5: Mix Volumetric Properties at N (des)

Gyrations Ht, mm Vmx Gmb (est) "C" Gmb (corr) %Gmm Gyrations Ht, mm Vmx Gmb (est) "C" Gmb (corr) %Gmm

5 122.8 2169.0 2.17 1.11 2.41 96.79 5 123.2 2176.0 2.16 1.12 2.415 96.99
9 120.3 2124.8 2.21 1.09 2.41 96.79 9 120.7 2131.9 2.21 1.09 2.415 96.99
10 119.9 2117.7 2.22 1.08 2.41 96.79 10 120.3 2124.8 2.21 1.09 2.415 96.99
15 118.2 2087.7 2.25 1.07 2.41 96.79 15 118.6 2094.8 2.25 1.08 2.415 96.99
20 117.1 2068.3 2.27 1.06 2.41 96.79 20 117.4 2073.6 2.27 1.06 2.415 96.99
30 115.6 2041.8 2.30 1.05 2.41 96.79 30 116.0 2048.9 2.30 1.05 2.415 96.99
40 114.7 2025.9 2.32 1.04 2.41 96.79 40 115.0 2031.2 2.32 1.04 2.415 96.99
49 114.1 2015.3 2.33 1.03 2.41 96.79 49 114.4 2020.6 2.33 1.04 2.415 96.99
50 114.0 2013.5 2.34 1.03 2.41 96.79 50 114.3 2018.8 2.33 1.04 2.415 96.99
60 113.5 2004.7 2.35 1.03 2.41 96.79 60 113.8 2010.0 2.34 1.03 2.415 96.99
70 113.1 1997.6 2.35 1.02 2.41 96.79 70 113.4 2002.9 2.35 1.03 2.415 96.99
80 112.8 1992.3 2.36 1.02 2.41 96.79 80 113.0 1995.9 2.36 1.02 2.415 96.99
90 112.5 1987.0 2.37 1.02 2.41 96.79 90 112.8 1992.3 2.36 1.02 2.415 96.99
100 112.3 1983.5 2.37 1.02 2.41 96.79 100 112.5 1987.0 2.37 1.02 2.415 96.99
125 111.8 1974.7 2.38 1.01 2.41 96.79 125 112.1 1980.0 2.38 1.02 2.415 96.99
126 111.8 1974.7 2.38 1.01 2.41 96.79 126 112.1 1980.0 2.38 1.02 2.415 96.99
150 111.5 1969.4 2.39 1.01 2.41 96.79 150 111.7 1972.9 2.38 1.01 2.415 96.99
200 111.0 1960.5 2.40 1.00 2.41 96.79 200 111.2 1964.1 2.40 1.01 2.415 96.99
204 111.0 1960.5 2.40 1.00 2.41 96.78714859 204 111.2 1964.1 2.40 1.01 2.415 96.99

VFA %= 100*(VMA-Va)/VMA= 100*(11.07-3.11)/11.07 = 71.90

Bulk Specific Gravity of mixture = Gmb (meas) = 2.41 Bulk Specific Gravity of mixture = Gmb (meas) = 2.415
%Gmm@N(ini) = 96.79

%Gmm@N(des) =Average %Gmm = 96.89
Va=% Air Voids= 100- %Gmm@N(des)= 100-96.89=3.11

Aggregate Content = Ps= 94% Aggregate Content = Ps= 94%
Specific Gravity of mixture measured= Gmm (meas)= 2.49 Specific Gravity of mixture measured= Gmm (meas)= 2.49

VMA %= 100-(%Gmm@N(des)*Gmb (meas)*Ps)/Gsb = 100-(96.89*2.49*0.94)/2.55 =11.07

Densification Data for Blend 2, 5.0% Asphalt Content Densification Data for Blend 2, 5.0% Asphalt Content

Specimen 1 Specimen 2

Wm=mass of dry specimen for 5.0 % A.C = 4715.4 gms Wm=mass of dry specimen for 5.0 % A.C = 4701.3 gms

Bulk Specific Gravity of stones=Gsb=  2.55 Bulk Specific Gravity of stones=Gsb=  2.55

Wm=mass of dry specimen for 6.0 % A.C = 4704.8 gms
Specimen 1 Specimen 2

AVERAGE % Gmm =(96.79+96.99)/2 =96.89%

Wm=mass of dry specimen for 6.0 % A.C = 4704.2 gms
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Figure C-1: Asphalt Binder VS Air Voids

Figure C-2: Asphalt Binder VS %VMA

Figure C3: Asphalt Binder VS. VFA
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Table C-6: Design Mixture Properties at 5.4% Binder Content

Possible sources of error
Given the large scope of this lab, the inexperience of the students performing the lab, and
the multiple attempts taken and mixes prepared to arrive at proper numbers, it is to be
expected that our results will suffer from at least small error. Multiple attempts at
achieving reasonable numbers means that values such as Gsb, Gmb and Gmm that were
used as if they were from one sample may actually have represented samples with slight
differences. With different equipment and possibly by different procedures than those
used in the URI asphalt labs, we might achieve different results. Error derived from these
circumstances is expected to be small.

Conclusion
In conclusion, using the optimum trial gradation provided in class we were able to
determine optimum asphalt content though which might have certain scope of error.

Mix Property Result Criteria Checks
Air Voids % 4 4 OK

VMA % 10.5 10 Min OK
VFA % 61 60-75 OK

Design Mixture Properties at 5.4% Binder Content



118

Appendix D

Determination of Creep Compliance Test of Hot Mix Asphalt (HMA)
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Appendix D

Determining the Creep Compliance and Strength of Hot Mix Asphalt (HMA) Using
Indirect Tensile Test Device

Introduction

Federal Highway Administration (FHWA) and Transportation Research Board
(TRB) have been promoting new approach to design pavement structures, i.e.,
Mechanistic Empirical Pavement Design Guide (MEPDG).  With the Rhode Island
Department of Transportation (RIDOT) beginning to fully implement the newer
AASHTOWare Pavement ME Design (Pavement ME) to design new and rehabilitated
pavement structures, there is a need to determine material input parameters, e.g., creep
compliance and dynamic modulus of RI Hot Mix Asphalt (HMA) and other asphaltic
mixtures of flexible pavements. The American Association of Highway and
Transportation Officials (AASHTO) provided a test method T322-03 to determine the
creep compliance and strength of HMA which is needed as input to the Pavement ME.

Creep Compliance is defined as time-dependent strain per unit stress while
indirect tensile (IDT) strength is the capacity to withstand the indirect tensile load which
is induced from the compression load along the diameter of circular specimens. Both
properties are determined using the IDT test; i.e., a cylindrically shaped specimen is
loaded in compression across its diameter thus indirectly causing tension in opposite
directions perpendicular to and beginning at the line of loading. As HMA is considered a
visco-elastic material, creep compliance and tensile strength are not only dependent on
the HMA mix constituent properties, constituent proportions, and compacted mix
properties (e.g., % air voids), but also highly temperature dependent. Additionally, creep
compliance is dependent on the load/unload duration and tensile strength is dependent on
loading rate.

RIDOT contracted with the University of New Hampshire and Villanova
University to determine creep compliance and tensile strength of asphaltic mixes used in
RI Route 165, those values were not adequate to run Pavement ME by a research team of
the University of Rhode Island (URI). Thus, URI team decided to perform the test to
generate appropriate input parameters for Pavement ME and to calculate the thermal
(low-temperature) cracking distress.

Specimen Preparation

Hot Mix Asphalt specimens having 6 in. diameter and 4.3 in. (110 mm) of height
were prepared in Superpave gyratory compactor (SGC) by using Rhode Island Class I
specification and P.J. Keating material. Four different asphalt binder ratio was used to
prepare the specimens i.e. (4.5%, 5.0%, 5.5%, and 6.0%) to calculate the optimum binder
content (See Appendix C). After determining optimum binder content cylindrical
specimens were sawed to suitable heights of 38 to 50 mm (1.5 to 2 in.) from their original
heights i.e. 110 mm (4.3 in.) thus making two specimens from one cylindrical specimen.
Sawing was accomplished by using wet sawing, an appropriate time frame of at least 24
hours was necessary to allow the specimens to dry before testing.
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The sawing requires a constant water flow to cool the blade and the sample while
cutting. This will also help to reduce the noise and binds most the sawed chips. However,
constant water flow also allows water to pervade the specimen. Since testing is conducted
at temperature far below the freezing point of water, the specimen’s performance is
highly susceptible to any water content.

The cylindrical samples have a height of about 110 mm (4.3 in.), thus two specimens
with the required height could be produced. Due to the quality of the saw, a high level of
accuracy could be maintained.

In total, eight specimens for each asphalt binder content were produced with the thickness
in the range of 41 to 44 mm. These met the requirement of the procedure of T 322, which
are 38 to 50 mm (AASHTO 2011).

It was observed that the different behavior of the materials could be seen even during
specimen preparation. The fine materials of the P.J. keating were less strongly integrated
into the material and therefore chipping was increased during sawing. In order to still
obtain usable specimens, care had to be taken to saw the specimens fast enough to
minimize wobbling of the blade and at the same time slow enough not to rip out particles
instead of cutting through them.

Creep Compliance Testing:

Creep compliance test as per AASHTO T322-07 was conducted using Instron 5582
machine connected with Blue Hill 2 software. Blue Hill 2 software-controlled testing
systems can perform variety of tension (pull), compression (push), flex (bend), cyclic,
creep, and relaxation applications. In this case, creep compression relaxation method was
used. A method according to AASHTO T322-07 specifications was created by using
method tab on the home screen of Blue Hill 2 software. Geometric dimensions of
specimen were inputted into the method tab. As creep compliance test is a non-
destructive test, per AASHTO procedure a static load of fixed magnitude without impact
to the specimen for at least 1,000 seconds must be applied and that load should produce a
horizontal deformation of 0.00125 mm to 0.0190 mm for 150 mm (6 in.) diameter
specimens. By using numerous trials hold criteria of compressive load in this case was
selected as 1000 N with a rate of 30 mm/min. 1000 seconds of time was selected to run
the complete analysis for each specimen.

Creep Compliance test generally consists of following five major steps.

• Step 1- Balance strain gauges and load cell

• Step 2- Lower loading ram and apply load < 1.0 kN (Noise)

• Step 3- Load> 1.0 KN and Increase load to desired level

• Step 4- Keep load constant for test duration of 1,000 seconds

• Step 5- Remove load and end the test

To follow the above steps strain gauges i.e., Linear Variable Differential Transducers
(LVDTs) must be calibrated before using.
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Calibration of LVDTs:

There were four LVDTs configured with Lucas Conditioners which further attached to
the computer with versa channel. A mechanical setup was created with the help of Mr.
Jim Brynes from Mechanical Engineering Department of URI as shown in Figure D-1. A
voltmeter was connected to the versa channel to read the amount of voltage. Each LVDT
should read ±10V within a range of 0.01 in. By using Lucas Conditioner manual and
coarse fine buttons on the conditioners voltage was increased to desired level i.e. ±10 V.
Zero voltage point was determined by screwing the screw gauge attached with the digital
dial meter. Then by using the mechanical setup, it was made sure that with the increment
of +0.01 in. LVDT should read exactly +10V and if the increment is in opposite direction
form 0V i.e. -0.01 in. LVDT should read -10V.

Once correct voltage was obtained on both directions channels 1 to 4 were calibrated on
Blue Hill 2 software by clicking on transducer setup menu by giving calibration point and
extensometer range point which already set up by the screw gauge attached with dial
meter.

Figure D-1: A Mechanical Setup Created to Calibrate LVDTs
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In the next step after calibration brass buttons on the cylindrical specimens were glued by
using template to mount the LVDTs on both faces of the specimen as shown in Figure D-
2.

Figure D-2: LVDTs mounted on the face of the Specimen

After plugging the LVDTs, specimen was placed in the chamber of Instron 5582 machine
carefully and the cables (related to computer) were connected with the all four channels
mounted on both faces of the specimen.

Loading ram was lowered until it slightly above to the specimen as shown in Figure D-3.
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Figure D-3: Specimen inside the Loading Frame Chamber of Instron Machine

For creep compliance test specimens, must be tested at three different temperatures i.e.,
00C, -100C, and -200C. Temperature controller unit attached with Instron machine was
responsible for maintaining temperature inside the chamber. Specimens were kept in the
chamber for approximately 2 to 3 hours before testing so that specimens could attain the
desired temperature (AASHTO 2011).

After maintaining temperature test was conducted by using Blue Hill 2 software for about
1000 seconds. A constant load was maintained throughout the test i.e. 1,000 N as shown
in the Figure D-4.

Figure D-4: Constant Static Load Applied to the Specimen
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Table D-1: Specimen 1 Data at -200C to calculate Creep Compliance

Figure D-5 also shows displacement (mm) for all four LVDTs vs testing time (sec).

Figure D-5: Displacement in mm for Specimen 1 VS Testing Time in sec at -20oC

The next step was the control of deflections in order to see if faulty data were recorded.
Figure D-5 depicts the displacements of the 4 strain gauges attached to both faces of

Time Extension Load Displacement
(Channel 1)

Displacement
(Channel 2)

Displacement
(Channel 3)

Displacement
(Channel 4)

Compressiv
e extension

(sec) (mm) (N) (mm) (mm) (mm) (mm) (mm)
0 -8.75432 -0.13177 0 0 0.00000 0.00000 8.75432
1 -9.25422 -0.20989 -0.001564 -0.000607 0.00096 0.00066 9.25422
2 -9.7543 -0.19475 -0.00951 -0.001206 0.00173 0.00091 9.7543
5 -11.2543 -17.639 -0.010467 -0.002383 0.00501 0.00511 11.2543

10 -11.4545 -999.882 -0.011482 -0.003442 0.00616 0.00811 11.45447
20 -11.4572 -999.513 -0.013621 -0.004548 0.00801 0.00904 11.45716
50 -11.4614 -999.837 -0.014419 -0.005312 0.00935 0.01027 11.46141
100 -11.4659 -999.782 -0.015486 -0.006398 0.01007 0.01212 11.46589
200 -11.473 -1,000.16 -0.016321 -0.007892 0.01089 0.01251 11.47295
400 -11.4824 -1,000.12 -0.017549 -0.008657 0.01123 0.01283 11.4824
600 -11.4893 -999.696 -0.018956 -0.009389 0.01205 0.01328 11.48933
800 -11.495 -1,000.35 -0.019674 -0.010420 0.01286 0.01452 11.49495

1,000.00 -11.4994 -999.264 -0.020521 -0.01068 0.01307 0.01508 11.49943
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specimen 1 over the 1,000 seconds’ test time, which includes the creep period as well as
load adjustment and removal.

It can be observed that both horizontal deformations are approximately equal. This is a
good result as it proves consistency within the specimen and probability of getting close
to the true value is increased by calculating the average. The vertical displacements
deviate a little more. This can be due to multiple reasons, starting from inhomogeneous
material, influence of large or interlocked pieces of aggregates, or aggregate gaps on the
path from the loading piston to the center of the specimen that are filled with binder or air
voids. Also, sometimes the fault can lie within the strain gauges, although this is rather
rare.

Subsequently the horizontal and vertical deformations of all specimens at the analyzed
temperature were averaged and normalized in order to compare them. This can be
accomplished by using equations from (AASHTO T 322-03)

Since all specimens have a diameter of 150 mm, the second fraction is 1. In the test
method, ΔX and ΔY are treated as arrays. In this study, this is achieved by calculating
single values in a table in the spreadsheet software. After executing these equations,
normalized deformations are obtained that enable the user to directly compare the
deflections of all three specimens to one another. Figure D-6 shows the normalized
deflections of HMA specimen at -200C.
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Figure D-6: Normalized Horizontal Deformation of Specimen 1 at -200C

The average horizontal and vertical deformations for every face are needed in order to
determine the ratio of the horizontal to vertical deformations X/Y, Poisson’s ratio, and a
coefficient, Ccmpl, these are needed for the calculation of creep compliance. The average
deformations occur after half the total creep time and are obtained using equations shown
below.

The vertical deformations were obtained by applying the same calculations to the ΔY
values. Then, the trimmed mean of the deflections ΔXt and ΔYt needed to be obtained.
For this, the six ΔXa,I and ΔYa,I values were ranked numerically and the highest and
lowest values were disregarded. The average of the middle four values was determined
according to Equation shown below.

0.00000
0.00500
0.01000
0.01500
0.02000
0.02500

0 200 400 600 800 1000 1200
No

rm
al

ize
d 

Di
sp

la
ce

m
en

t [
m

m
]

Creep Time [sec]

Normalized Deformation over Creep Time

Specimen 1, 1, t Specimen 1, 2, t

Specimen 1,3.t Specimen 1,4,t



127

The ratio of the horizontal to vertical deformation X/Y was computed according to
Equation shown below.

Consequently, Ccmpl was determined by using following equations.

The above equation must be true if

It may be noted that Poisson’s ratio v should always be between 0.05 and 0.50. These
calculations were carried out in a spread sheet program, i.e., (Microsoft Excel). These
were performed for all temperatures. Table D-2 shows the results for HMA at -200C.

Table D-2: Calculations prior to Creep Compliance at -200C

Based on the trimmed mean of the deflections (deflection arrays) ΔXtm,t with respect to
variable time t following the same numerical ranking for the average deformations in
Equation shown above, the creep compliance D(t) can finally be computed using
Equation shown below.

ΔXa,1 0.011623 ΔYa,1 0.018259
ΔXa,2 0.01305 ΔYa,2 0.008989
ΔXt 0.01233 ΔYt 0.013624

-20oC

0.644 <0.90 <1.511                Check OK
=0.90
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The above formula allows the computation of the creep compliance for any time recorded
in the present study every half-second. The AASHTOWare pavement ME Desgn requires
the creep compliance only at certain time points. For greater precision of the requested
data points ΔXtm,t shown in Table D-3 below, Also, the used version of the program only
allows the input of the results in US customary units, while the test method consistently
uses SI units. Therefore, the creep compliance is firstly calculated in [1/GPa] (SI unit)
since it results from the calculations above. Technically, the obtained unit was [1/TPa],
but dividing by 103, the unit [1/GPa] was obtained. Then the conversion factor of
(145000)-1 was applied to obtain the customary unit of [ /psi].

Table D-3: Creep Compliance of HMA at -200C for AASHTOWare ME Design

Creep Time t
[s] ΔXtm,t [mm] D(t) [1/Gpa] D(t) [1/psi]

0 0.000305 7.82325E-05 5.40E-10
1 0.00081 0.000207765 1.43E-09
2 0.00132 0.00033858 2.34E-09
5 0.00506 0.00129789 8.96E-09

10 0.007135 0.001830128 1.26E-08
20 0.008525 0.002186663 1.51E-08
50 0.00981 0.002516265 1.74E-08

100 0.01109 0.002844585 1.96E-08

Similarly, all above calculations were performed for -100C and 00C and the results are
shown below.
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Table D-4 : Specimen 1 data at -100C from Software to calculate Creep Compliance

Figure D-7: Displacement in mm for Specimen 1 VS Testing Time in sec at -10oC

.

Time Extension Load Displacement
(Channel 1)

Displacement
(Channel 2)

Displacement
(Channel 3)

Displacement
(Channel 4)

Compressive
extension

(sec) (mm) (N) (mm) (mm) (mm) (mm) (mm)
0 -7.89981 0.25056 0.00 0.00 0.00 0.00 7.89981
1 -8.39989 0.62981 -0.001463 -0.000543 0.000743 0.00054 8.39989
2 -8.89973 0.73177 -0.007530 -0.000987 0.001235 0.00090 8.89973
5 -10.39991 -0.24143 -0.009989 -0.001865 0.004856 0.00325 10.39991

10 -11.46553 -1,000.47 -0.011325 -0.002834 0.006232 0.00687 11.46553
20 -11.46846 -1,000.24 -0.012897 -0.004032 0.007862 0.00898 11.46846
50 -11.47163 -1,000.05 -0.013765 -0.005105 0.008789 0.00932 11.47163
100 -11.47385 -1,000.51 -0.015326 -0.006021 0.009657 0.01089 11.47385
200 -11.47456 -999.49334 -0.016281 -0.007532 0.010679 0.01172 11.47456
400 -11.47612 -999.42582 -0.016998 -0.008567 0.011130 0.01263 11.47612
600 -11.47594 -1,000.45 -0.017854 -0.008964 0.011960 0.01303 11.47594
800 -11.476 -1,000.97 -0.019582 -0.009986 0.012326 0.01368 11.476

1,000.00 -11.47767 -999.65734 -0.021251 -0.010456 0.012996 0.01495 11.47767
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Figure D-8: Normalized Horizontal Deformation of Specimen 1 at -100C

Table D-5: Calculations prior to Creep Compliance at -100C

Table D-6: Creep Compliance of HMA at -100C for AASHTOWare ME Design
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ΔXa,1 0.01134 ΔYa,1 0.01732
ΔXa,2 0.01305 ΔYa,2 0.00876
ΔXt 0.01219 ΔYt 0.01304

-100C

0.644 <0.93 <1.511                Check OK

=0.93

Creep
Time t [s]

ΔXtm,t
[mm] D(t) [1/Gpa] D(t) [1/psi]

0 0.000417 0.000110526 7.63E-10
1 0.000641 0.000169897 1.17E-09
2 0.00106 0.000280953 1.94E-09
5 0.00405 0.001073453 7.41E-09

10 0.00655 0.001736078 1.20E-08
20 0.008421 0.002231986 1.54E-08
50 0.00905 0.002398703 1.66E-08

100 0.01027 0.002722064 1.88E-08
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Table D-7: Specimen 1 data at 00C from Software to calculate Creep Compliance

Figure D-9: Displacement in mm for Specimen 1 VS Testing Time in sec at 0oC

Time Extension Load Displacement
(Channel 1)

Displacement
(Channel 2)

Displacement
(Channel 3)

Displacement
(Channel 4)

Compressive
extension

(sec) (mm) (N) (mm) (mm) (mm) (mm) (mm)
0 -9.34833 0.74532 0.00 0.00 0.00 0.00 9.34833
1 -9.84817 -0.17254 -0.001387 -0.000503 0.000652 0.000430 9.84817
2 -10.34843 -0.69469 -0.006920 -0.000856 0.001154 0.000880 10.34843
5 -11.20946 -1,000.53 -0.008954 -0.001790 0.004526 0.003050 11.20946
10 -11.23206 -1,000.41 -0.010321 -0.002544 0.006023 0.006230 11.23206
20 -11.2534 -1,000.48 -0.012354 -0.003876 0.007523 0.008740 11.2534
50 -11.28658 -1,000.24 -0.013254 -0.005050 0.008432 0.009020 11.28658

100 -11.3172 -999.60361 -0.014765 -0.005968 0.009387 0.010320 11.3172
200 -11.35319 -1,000.10 -0.015978 -0.007354 0.009980 0.011230 11.35319
400 -11.39534 -1,000.48 -0.016640 -0.008356 0.010780 0.012210 11.39534
600 -11.42207 -999.85749 -0.017231 -0.008643 0.011560 0.012980 11.42207
800 -11.44216 -999.48617 -0.019156 -0.009756 0.012090 0.013320 11.44216

1,000.00 -11.45824 -1,000.10 -0.020989 -0.010110 0.012789 0.014450 11.45824
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Figure D-10: Normalized Horizontal Deformation of Specimen 1 at 00C

Table D-8: Calculations prior to Creep Compliance at 00C

Table D-9: Creep Compliance of HMA at 00C for AASHTOWare ME Design
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ΔXa,1 0.01189 ΔYa,1 0.01654
ΔXa,2 0.01367 ΔYa,2 0.00865
ΔXt 0.01278 ΔYt 0.01259

00C

0.644 <1.015 <1.511                Check OK
=1.015

Creep Time t [s]ΔXtm,t [mm] D(t) [1/Gpa] D(t) [1/psi]
0 0.000327 0.00093195 6.43E-09
1 0.000541 0.000154185 1.06E-09
2 0.001017 0.000289845 2.00E-09
5 0.003788 0.00107958 7.45E-09
10 0.006126 0.00174591 1.20E-08
20 0.0081315 0.002317478 1.60E-08
50 0.008726 0.00248691 1.72E-08

100 0.009853 0.002808105 1.94E-08
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Appendix E

Determination of Dynamic Modulus Hot Mix Asphalt (HMA)
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Appendix E

Determining Dynamic Modulus of Hot Mix Asphalt (HMA)

Introduction

The dynamic (complex) modulus of a visco-elastic test is a response developed under
sinusoidal loading conditions. It is a true complex number as it contains both a real and
imaginary component of the modulus and is normally identified by E* (or G*). In visco-
elastic theory, the absolute value of the complex modulus |E*| is the Dynamic Modulus.
In the general literature, however, the term, “Dynamic Modulus”, is often used to denote
any type of modulus that has been determined under “non-static” load conditions.

For linear visco-elastic materials such as HMA mixtures, the stress-strain relationship
under a continuous sinusoidal loading is defined by its complex dynamic modulus (E*).
This is a complex number that relates stress to strain for linear visco-elastic materials
subjected to continuously applied sinusoidal loading in the frequency domain. The
complex modulus is defined as the ratio of the angular load frequency, ω, δ = δοsin(ωt)
and the amplitude of the sinusoidal strain ε = εosin(ωt-ø), at the same time and frequency,
that results in a steady state response.

E* = δ/ε = δoe iω t/εoe i(ω t-ø) = δοsinωt/εosin(ωt-ø)

Where, δο = peak (maximum) stress,

εo = peak (maximum) strain,

ø = phase angle, degrees,

ω = angular velocity,

t = time, seconds, and

i = imaginary component of the complex modulus.

Mathematically, the dynamic modulus is defined as the absolute value of the complex
modulus, or:

|E*| = δο/εο

Figure E-1: Dynamic Modulus Test Curve

For a pure elastic material, ø = 0, and it is observed that the complex modulus (E*) is
equal to the absolute value, or dynamic modulus. For pure viscous materials, ø = 90º. The
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dynamic modulus testing of asphaltic materials is normally conducted using a uniaxially
applied sinusoidal stress pattern as shown in Figure E1. The primary output variables of
the test are the dynamic modulus |E*|, and the phase angle (ø), which is a direct indicator
of the elastic-viscous properties of the mix or binder material.

Specimen Preparation

Samples for dynamic modulus testing were prepared by mixing the aggregates with PG
64-28 graded asphalt cement in the present study. Test samples were prepared in
accordance with the requirements of AASHTO T 342-1.

Sample Requirements

The AASHTO T 342-11 requirements for dynamic modulus test samples are provided in
Table 1. Dynamic modulus testing requires a 150 mm high by 100 mm diameter sample,
of a target air void content, be cored from 175 mm high by 150 mm diameter sample.
There is no simple conversion factor for compaction of a 175 mm high, 150 mm diameter
SGC compacted sample to a cored dynamic modulus (E*) sample with a given target air
void content. The two samples will not have the same VTM due to a density gradient
present in SGC compacted samples. A trial and error procedure is required to determine
the density or void content of the larger sample required to produce a cored and sawed
test sample of the intended void content.

Recommended target air void contents for HMA samples are 4-7%. For this project, the
HMA test samples were compacted to a void content of 4.5 ± 1 % VTM. After several
trials, it was determined that a 175 mm high by 150 mm diameter sample compacted to
6.0 ± 1% VTM would yield a dynamic modulus test sample of the target 4.5 ± 1% void
content.
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Table E-1. Criteria for Acceptance of Dynamic Modulus Test Specimens

Criterion Items Requirements
Size Average diameter between 100 mm and 104 mm

Average height between 147.5 mm and 152.5 mm
Gyratory

Specimens
Prepare 175 mm high specimens to required air void content

(AASHTO T 312)
Coring Core the nominal 100 mm diameter test specimens from the center

of the gyratory specimen. Check the test specimen is cylindrical
with sides that are smooth parallel and free from steps, ridges and

grooves
Diameter The standard deviation should not be greater than 2.5 mm

End Preparation The specimen ends shall have a cut surface waviness height within
a tolerance of ± 0.05 mm across diameter The specimen end shall
not depart from perpendicular to the axis of the specimen by more

than 1 degree
Air Void Content The test specimen should be within ± 1.0 percent of the target air

voids
Replicates For two LVDT’s, two replicates with a estimated limit of accuracy

of 13.1 percent
Sample Storage Wrap specimens in polyethylene and store in environmentally

protected storage between 5 and 26.7° C ( 40 and 80° F) and be
stored no more than two weeks prior to testing

Batching:

A 5,700 to 6,300 gram batch of aggregate, batched to the desired gradation, was required
to produce a 175 mm high by 150 mm diameter test specimen with 6.0 ± 1% VTM.
When the compacted sample was cored to 100 mm diameter and sawed to the required
sample height of 150 mm, the required target void content of 4.5 ± 1% VTM was
obtained.

Mixing:

All samples were mixed in a bucket mixer. The asphalt cement was stirred occasionally
to prevent localized overheating while being heated to the mixing temperature of 325o F.
The aggregates were heated for a minimum of four hours at the mixing temperature of
325o F. Approximately one hour before mixing, the compaction molds, spoons and
spatulas were placed in the oven and brought to the mixing temperature. For mixing, the
aggregates were placed in the bucket mixer and the desired amount of asphalt cement
added. The mixture was mixed until well coated, approximately two minutes.

Compaction:

After mixing, the mixture was placed in a large flat pan and placed in an oven set at the
compaction temperature 148oC (300oF) for two hours in accordance with AASHTO R 30.
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The samples were compacted in a 150 mm diameter mold to a height of 175 mm using a
Pine SGC. To produce the required 175 mm high by 150 mm diameter sample with a
void content of 6.0 ± 1 %, 5,700 to 6,300 grams of aggregate were required. Twenty to
twenty-five gyrations were typically required to reach a height of 175 mm. A compacted
HMA specimen is shown in Figure E2.

Figure E-2: Compacted HMA specimen for Dynamic Modulus Testing
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Coring and Sawing:

After compaction, the samples were extruded from the compaction molds, labeled and
allowed to cool to room temperature. Next, the compacted samples were cored and sawed
to obtain a 150 mm tall by 100 mm diameter test sample with 4.5 ± 1 % air voids. The
samples were cored using a diamond studded core barrel to obtain the required diameter
of 100 mm (figure E3). The cored samples were then sawed to obtain the required 150
mm height (figure E4). The cored and sawed samples were washed to eliminate all loose
debris. After cleaning, the samples were tested for bulk specific gravity in accordance
with AASHTO T 166.

Figure E-3 Sample being cored to required test diameter.

Figure E-4 Sample being sawed to obtain parallel faces.
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Setting up Testing Method:

Specimens were tested for dynamic modulus per AASHTO TP 62-03. The procedure is
briefly explained in Figure E5. The test parameters are provided in Table E2.

Figure E-5: Test procedures for dynamic modulus of HMA sample.
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Table E-2. Test Parameters for Dynamic Modulus Test

Specimen Temperature,
oC (oF)

Time from Room
Temperature, h      25oC

(77oF)

Time from Previous
Test Temperature, h

-10 (14) Overnight Overnight
4 (40) Overnight 4 hours or overnight

21 (70) 1 3
37 (100) 2 2
54 (130) 3 1

Temperature, oC (oF) Range, kPa Range, psi

-10 (14) 1400 to 2800 200 to 400

4 (40) 700 to 1400 100 to 200

21 (70) 350 to 700 50 to 100

37 (100) 140 to 250 20 to 50

54 (130) 35 to 70 5 to 10

Frequency, Hz Number of Cycles

25 200

10 200

5 100

1 20

0.5 15

0.1 15

Figure E6 shows the dynamic modulus testing machine i.e. Instron 8800 fast track, which
comprises of 5000N capacity of load cell connected with 2 LVDTs having ±0.25 mm
range and Instron console and wave matrix software. Instron console is required to setup
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calibrations of LVDTs and load cell and to set up the limits during the test whereas
instron wave matrix software is required to create test sequences according to AASHTO
procedure.

Figure E-6: Dynamic Modulus Testing Machine

A sequence was created in wave matrix software with the help of Instron senior service
support engineer as shown in Figure E7. All sequences were created in stress controlled
mode. A ramp duration of 3 seconds was provided before start of every testing sequence.
Hold duration of 2 minutes was also provided between every frequency change in testing
sequences per AASHTO procedure requirements. Amplitude was selected according to
the range provided by the AASHTO standard to obtain axial strains between 50 and 150
microstrain.
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: sec

Figure E-7: Test Sequences on Instron Wave Matrix Software

A total of 16 steps were created which includes 5 ramp duration intervals, 5 two-minute
hold duration intervals, and 6 actual testing sequences with different frequencies,
amplitudes, and number of cycles.

Testing:

A HMA specimen was conducted on above mentioned temperatures. A jig was designed
to fix LVDTs on two sides of the specimen as shown in Figure 9. It was made sure to
restore the calibrations of load, strain 1, and strain 2 on Instron Console. Load and strains
were balanced and proper limits were set before conducting the test. Piston was pushed
downward so that it came into the contact with the specimen. Test was started by using
the created testing sequence.
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Figure E-8: Specimen along with a Jig to fix LVDTs

Analysis of Raw Data:

Instron Wave matrix software is very useful in terms of analyzing data and doing
calculations from the raw data. In calculation option from the method tab Dynamic
Mechanical Analysis (DMA) calculation was selected as shown in Figure E9. Correlation
method was selected to analyze the raw data. Parameters for calculating dynamic
modulus includes specimen geometry which was selected as Axial- Cylindrical. 4 in.
diameter and 6 in. height was inputted into the software as shown in Figure E9 to perform
DMA calculations.

After running successful testing sequence on a specimen instron wave matrix created a
raw data on a excel spread sheet and also calculate the dynamic modulus values by
performing DMA calculations as shown in Table E3.
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Figure E-9: DMA calculation Screen to calculate Dynamic Modulus Value

Table E-3: Dynamic Modulus of HMA Specimen.

T
(oF)

0.1 Hz 0.5 Hz 1 Hz 5 Hz 10 Hz 25 Hz

14 1591378.3 1932420.5 2067904.4 2348196.0 2453128.6 2577269.3

40 602057.2 896143.6 1012970.1 1372388.2 1501016.3 1684233.2

70 126021.9 213337.4 257818.4 430836.2 522374.9 668378.0

100 47425.64 63186.44 73229.86 118821.5 149934.2 206914.4

130 35511.67 38375.26 40593.26 49927.52 56707.92 69585.82
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Appendix F

Condition Survey of Route 165
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Appendix F

Condition Survey of Route 165

Asphalt Pavement Inspection Sheet for Control Test Section
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Asphalt Pavement Inspection Sheet for Calcium Chloride Test Section
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Asphalt Pavement Inspection Sheet for Portland cement Test Section
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Asphalt Pavement Inspection Sheet for Asphalt Emulsion Test Section
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Asphalt Pavement Inspection Sheet for Geo-grid Test Section



151

Appendix G

Summary of AASHTOWare ME Design Reports for Route 165 Test sections
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Appendix G

Summary of AASHTOWare ME Design Reports for Route 165 Test sections
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