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ABSTRACT 

Experiments were conducted to investigate larval 

mortality in cultured summer flounder during the first two 

weeks after hatch. The importance of feeding success, 

parentage, addition of algae, water quality, and the 

microbial community to mortality during this period were 

investigated. Larvae were raised in 2-L bowls at initial 

densities of 50 and 75/L with light aeration, 12L:12D 

photoperiod, and regular 1-L water changes. In all 

experiments mortalities were recorded and removed daily. In 

the first two experiments daily samples of larvae were taken 

to assess feeding success and to relate that to survival. 

The second experiment investigated the effects of both 

feeding success and the addition of algae to larval culture 

bowls on larval survival. The third experiment investigated 

the effects of water quality and bacterial load on survival 

during the experimental period. The first two experiments 

indicated that failure to establish .feeding is probably not 

the cause of catastrophic mortality of the larvae, although 

a statistical relationship existed between feeding incidence 

and survival in two of six cases. High variability (34 ± 

38% n=82) in survival was seen in the first two experiments 

(both within and between parental crosses) suggesting that 

catastrophic mortalities were due to rearing conditions 

rather than gamete quality. The addition of algae to larval 

cultures increased survival from 13 ± 24% (n=33) during the 
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·f i rst experiment to 46 ± 39% (n=49 ) during the second 

experiment. The final experiment indicated that larval 

mortality was not linked to the measured microbial or water 

quality conditions. The relationship between the 

percentage of floating eggs at time of fertilization and 

survival at 10 DAH was found to be not significant, 

providing further evidence that gamete quality was not as 

important as rearing conditions in these experiments. 
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PREFACE 

This thesis was prepared in the manuscript format as 

outlined in the University of Rhode Islands guidelines for 

thesis preparation. A manuscript, three appendices, and a 

bibliography have been included. The manuscript, prepared 

for submission to the Journal of the World Aquaculture 

Society, is titled INVESTIGATIONS INTO THE CAUSES OF EARLY 

LARVAL MORTALITY IN CULTURED SUMMER FLOUNDER (Paralichthys 

dentatus L.). The first appendix is a review of the 

literature pertinent to my research. The second appendix 

consists of the data from the five experiments, conducted in 

November 1995, February 1996, May 1996, October 1996 and 

February 1997 that make up the bulk of my research. The 

third appendix is a listing of the statistical source tables 

and graphs from the analyses done in the manuscript. The 

final section of this thesis is a bibliography of the 

complete thesis. 
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ABSTRACT 

Experiments were conducted to investigate l arval 

mortality in cultured summer flounder during the first two 

weeks after hatch. The importance of feeding success, 

parentage, addition of algae, water quality, and the 

microbial community to mortality during this period were 

investigated. Larvae were raised in 2-L bowls at initial 

densities of 50 and 75/L with light aeration, 12L:12D 

photoperiod, and regular 1-L water changes. In all 

experiments mortalities were recorded and removed daily. In 

the first two experiments daily samples of larvae were taken 

to assess feeding success and to relate that to survival. 

The second experiment investigated the effects of both 

feeding success and the addition of algae to larval culture 

bowls on larval survival. The third experiment investigated 

the effects of water quality and bacterial load on survival 

during the experimental period. The first two experiments 

indicated that failure to establish feeding is probably not 

the cause of catastrophic mortality of the larvae, although 

a statistical relationship existed between feeding incidence 

and survival in two of six cases. High variability (34 ± 

38% n=82) in survival was seen in the first two experiments 

(both within and between parental crosses) suggesting that 

catastrophic mortalities were due to rearing conditions 

rather than gamete quality. The addition of algae to larval 

cultures increased survival from 13 ± 24% (n=33) during the 
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first experiment to 46 ± 39% (n=49 ) during the second 

experiment. The final experiment indicated that larval 

mortality was not linked to the measured microbial or water 

quality conditions. The relationship between the 

percentage of floating eggs at time of fertilization and 

survival at 10 DAH was found to be not significant, 

providing further evidence that gamete quality was not as 

important as rearing conditions in these experiments. 
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The culture of larval marine fish has long been a 

problem. In the Northwestern Atlantic, a pleuronectiform 

flatfish, the summer flounder (Paralichthys dentatus L.) is 

a popular species for commercial and sport fishing. As with 

many species, the population of this fish has declined 

(NOAA/NMFS, 1993) to the point where severe restrictions on 

the allowed catch have been put in place. These 

restrictions may make both commercial aquaculture and/or 

stock enhancement economically feasible. Either of these 

ventures would benefit from increased hatchery efficiency in 

production of juvenile fish. 

A period of high mortality during the larval stage 

occurs from hatch through first feeding. Successful first 

feeding, in which the larvae make the transition from 

endogenous to exogenous nutrient supply, is critical to 

survival. Smigielski (1975) found that in summer flounder, 

90-95% of mortalities occurred within one week of hatch. 

The literature on summer. flounder is not as extensive as 

other commercially important flatfish cultured in Europe and 

Asia, but the importance of successful first feeding to 

larval survival is well documented in turbot (Anthony, 1910; 

Dhert et al., 1994; Jones, 1973; Jones et al., 1981; Minkoff 

& Broadhurst, 1994; Planas, 1994), striped mullet (Eda et 

al., 1990; Tamaru et al., 1994), halibut (Naas et al., 

1992), sole (Devauchelle et al., 1987), spot (Govoni, 1981), 
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winter flounder (Buckley et al., 1991), southern flounder 

(Daniels et al., 1996), and plaice (Shelbourne, 1964; Wyatt, 

1972), among many others. 

A major consideration in early larval feeding is the 

re l ationship between larval mouth gape and prey size (Houde , 

1 978 ; Beck & Bengtson, 1982; Appelbaum , 1985; Leger et a l ., 

1987 van der Meeren, 1991; Watanabe & Kiron, 1994; Lavens et 

al., 1995;). This relationship is critical in the hatchery 

setting where it is usual practice to provide a single prey 

species for the cultured larvae. An associated factor would 

be developmental problems of the jaw apparatus, which would 

affect ingestion of prey. Abnormal jaw development has been 

a concern in halibut culture (Pittman et al., 1987; Morrison 

& MacDonald, 1995;) and has been commented on in summer 

flounder culture (Bisbal, 1993). 

The addition of algae to larval culture systems (the 

so-called green-water method, as opposed to the clear-water 

method) seems to have become an acce~ted practice (Eda et 

al., 1990; Reitan et al.~ 1993; Naas et al., 1992; Tamaru et 

al., 1994; Stottrup et al., 1995). The advantages of the 

addition of algae to the larval fish culture include 

nutrition (rotifers in tanks maintain nutritional values via 

continued uptake of algae) (Reitan et al., 1993), 

antibacterial properties of algae (Kellam & Walker, 1989, 

Strottrup et al., 1995), and enhanced feeding with increased 

turbidity (Boehlert & Morgan, 1985). However Dhert et al. 
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(1994) came to the conclusion that the addition of algae was 

not necessary during the rotifer feeding stage in turbot 

culture. In our laboratory, it has become de facto practice 

to add algae to larval culture tanks. One study in our 

laboratory (Ainley, unpublished data) showed that addition 

of algae significantly increased survival of summer flounder 

from 5-42 days after hatch (DAH) . 

For the last six years we have been investigating the 

potential of summer flounder for aquaculture, with emphasis 

on the larval stages through metamorphosis. We routinely 

placed thousands of newly hatched larvae from each 

individual male X female cross into a 150 L aquarium. Some 

of these batches survived and grew well, while others did 

not. Because we did not rear and examine replicate batches 

from each cross we do not know whether early larval survival 

rates were being determined by gamete quality (e.g., due to 

nutritional provisioning of eggs or genetics) or tank 

conditions (e.g., water quality factors or bacterial 

contamination), or a combination of the two. While large 

variability has been reported in larval culture survival 

(Smigielski, 1975; Klein-MacPhee, 1981; Eda et al., 1990; 

Buckley et al., 1991; Reitan et al., 1993; Stottrup et al., 

1995), generally few authors in the aquaculture literature 

report inter-replicate variability, or they have had too few 

replicates to determine if there is a significant variance. 
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These experiments, conducted over a two year period, 

were designed to investigate larval first feeding mortality. 

The first experiment, consisting of two trials, was designed 

to investigate the variability within and between crosses 

and determine the degree to which larval mortality at the 

critical first feeding was a result of a failure of the 

larvae to initiate feeding. Such failure might be due to a 

mismatch in larval mouth gape and prey size, to a jaw 

development abnormality which affected the larvae's ability 

to ingest prey or to a digestive tract problem which 

interfered with the digestion and assimilation of the prey. 

The second experiment, consisting of two trials, was 

designed to elaborate on the findings of the first 

experiment. In these trials we continued the quantification 

of mortality and initiation of first feeding. Additionally, 

this experiment was designed to investigate whether the 

addition of algae to the culture medium and rinsing of the 

rotif ers before being offered significantly affected 

survival or variability. 

The third experiment, consisting of a single trial, 

investigated whether the inter-replicate variability in 

survival was associated with bacterial flora, water quality, 

or some combination of the two. 
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METHODS AND MATERIALS 

BROODSTOCK CULTURE & SPAWNING 

Flounder broodstock were maintained at the Narragansett 

Bay campus of the University of Rhode Island in single pass 

flow-through tanks. Water was passed through a sand 

filter, and either heated, cooled, or left at ambient 

temperature and mixed to obtain the desired water 

temperature. The broodstock were fed three times weekly 

with local fish or squid and were conditioned for spawning 

via photoperiod and temperature manipulation. Broodstock 

were anesthetized using 2-phenoxyethanol (Gilderhus & 

Marking, 1987) during all procedures requiring handling 

except for stripping of gametes. Spawning was hormone­

induced with repeated injections of carp pituitary extract 

at 2 mg/kg (Smigielski, 1975) over a two week period. Eggs 

and milt were collected separately in dry containers. The 

milt was activated with a small amount of seawater, added to 

the dry eggs, and allowed to stand for three to five 

minutes. Seawater (100 ml) was added and the fertilized eggs 

were poured into a graduated cylinder and allowed to stand 

for five to ten minutes, after which total volume of eggs 

and volume of floating eggs were determined. The floating 

eggs were assumed to be of good quality, whereas sinking 

eggs were assumed to be of poor quality. The floating eggs 

were then poured into 37-L aquaria with seawater filtered to 
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10 µn, and salinity adjusted to approximately 34 ' with the 

addition of 100' seawater. An antibiotic (Maracyn) with 200 

mg erythromycin activity was added. Temperature was 

maintained at 20 ± 2° C, mild aeration was provided, and a 

12:12 photoperiod was maintained. Developing embryos 

floating at the surface were collected daily with a nylon 

screen and transferred to a clean aquarium, salinity 

adjusted to 34 ' and antibiotic added. For the purposes of 

this series of experiments, single male X female crosses 

were used. Although we were limited by the amount of milt 

produced, whenever possible one male was used to fertilize 

as many separate batches of eggs as possible. This was done 

to minimize male influence on the results. 

LARVAL CULTURE METHODOLOGY 

Before the start of each trial all bowls, covers, 

tubing, air stones and tools were disinfected with a dilute 

bleach mixture, rinsed well, and dried. Experimental 

chambers were black-plastic-wrapped 190-mm diameter bowls 

containing 2 L of sea water filtered to 10 µn, provided with 

light aeration and a 12L:12D light regime. At two days 

after fertilization, one day before hatching, eggs were 

counted and distributed to the experimental chambers which 

were then randomly assigned to treatments and repetitions. 

One liter of water was exchanged every other day beginning 3 

days after hatch (DAH) . Temperature varied as to the time 
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of year that the trials were conducted (Table 1) . Starting 

2 DAH rotifers, Brachionus plicatilis, at a density of 

5000/L were added and that density was maintained throughout 

the experiment. Rotifers were cultured using the algae 

Tetraselmis suecica and Isochrysis galbana. Larval flounder 

normally begin to feed at approximately 3 DAH (Bisbal & 

Bengtson, 1995) . Mortalities were removed and replaced with 

larvae from the same cross, up to 3 DAH, to ensure that the 

experiment started out with the desired number of larvae per 

replicate bowl. Bowls were checked for mortalities daily 

and mortalities were recorded and removed. Daily, beginning 

on 3 DAH, a random sample of ten larvae was removed and 

examined under a dissecting microscope for presence of food 

in gut and developmental abnormalities. Table 1 provides 

data on crosses, number of replicates per cross, temperature 

ranges during experiments, percentage of floating eggs, 

hatch mortality, and volume of eggs expressed. 

EXPERIMENT 1, Clear-water trials. 

Experiment one consisted of two trials. In trial one 

a single male's milt was used to separately fertilize eggs 

from four females. In trial two milt from one male was 

crossed separately with eggs from four females, milt from 

another male was crossed separately with eggs from two other 

females, and milt from a third male was crossed with eggs of 

one other female. From each cross there were four replicate 
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bowls of 100 embryos each. One bowl of the four was 

maintained as an unfed control and three bowls were fed 

rotifers taken from a culture maintained in the laboratory. 

On days three and ten (initiation of first feeding and the 

end point of these trials) larvae were measured for total 

length and fixed in neutral buffered formalin for 

histological analysis. Samples were embedded in paraffin 

blocks and serial sagittal sections of 6 µn were prepared. 

Prepared slides were stained with hematoxylin and eosin, or 

every other slide in a series was stained with a Mallory­

Heidenhain trichrome stain, chosen to investigate cartilage 

development of the jaw apparatus (Humason, 1962; Bisbal & 

Bengtson, 1995a) . Determination of development and 

condition of larvae was done by examination and comparison 

of musculature myofibrils (striated closely packed parallel 

to notochord in healthy larvae vs. undistinguishable pattern 

of fibrils without parallel orientation, and separations 

between muscle fibers caused by cellular degradation in 

starved larvae), organization of hepatic tissue (compact 

continuous liver tissue organization in healthy larvae vs. 

unorganized hepatic tissue with interstitial spaces in 

starved larvae) , anterior intestinal mucosa (continuous and 

uninterrupted with a distinct brush border, columnar cells 

were systematically arranged and folded in healthy larvae 

vs. discontinuous mucosa with irregular and shrunken cells 

in the starved larvae) , and cells in the posterior anterior 
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intestine (signs of pinocytosis in healthy larvae which was 

absent in starved specimens) (Bisbal & Bengtson, 1995c) . 

Jaw development was determined by staining with Mallory­

Heidenhain trichrome stain. Condition of jaw development 

was determined by presence and form of Meckel's cartilage, 

the ethmoidian plate, and the associated soft tissue. 

EXPERIMENT 2, Green-water trials. 

Experiment two consisted of two trials. The first 

trial was conducted using a single male X female cross. A 2 

X 3 factorial design with 5 replicate bowls per treatment 

was used. The first factor was culture medium (algae added 

to the seawater, or not) and the second factor was feeding 

condition (larvae fed rinsed rotifers, larvae fed unrinsed 

rotifers, or larvae not fed). Rinsed rotifers consisted of 

the rotifers being sieved and rinsed· with clean seawater 

before being offered to larvae. Unrinsed treatments 

consisted of rotifers added directly from the rotifer 

culture to the treatments. Algae, a mixture of equal 

volumes of T. suecica and I. galbana, was added to the 

appropriate culture bowls at a rate of 50 ml per day. 

Density of rotifers was maintained at 5000/L throughout the 

trial. This trial began on 3 DAH, as in the previous 

trials, but was extended to last until 14 DAH to allow for 
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the possible extended survival due to any nutritional value 

(Van der Meeren, 1991; Stottrup, 1994) of algae in the 

unfed , algae added, controls. The culture methodology of 

experiment 1 was followed with some changes: a) the number of 

larvae per bowl at the start of the trial was increased to 

150 to account for sampling during the increased length of 

the trial, and b)larvae were measured on days 3, 10, and 14 

after hatch. Daily samples were fixed in neutral buffered 

formalin for possible future histological examination. 

In trial 2 of this experiment the milt from one male 

was used to fertilize separate batches of eggs from three 

females. Trial 2 was designed as a 2 x 2 x 3 factorial with 

factor one being culture medium (algae added to the 

seawater, or not), factor two being feeding condition 

(larvae fed rinsed rotifers, or larvae unfed), and factor 

three being cross (cross one, cross two, or cross three). 

Each cell of the experiment had five replicate bowls. 

EXPERIMENT 3, Bacterial-water quality trial. 

A single male X female cross was cultured using ten 

bowls with 150 larvae each. All bowls had algae, a mixture 

of equal volumes T. suecica and I. galbana, added at a rate 

of 50 mL per day. Five replicate bowls were maintained as 

unfed controls, while five replicate bowls were fed rinsed 

rotifers beginning 2 DAH. One additional bowl, maintained 

as a negative control, was filled with seawater, provided 
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aeration and covered, but had no addition of algae or 

larvae. Bacterial load in each bowl was determined via 

enumeration of colony forming units (CFU) . Samples (1 mL) 

were taken at 2 DAH from algae culture, rotifer culture, 

larval bowls, sea water supply and negative control bowl, 

before the addition of algae and rotifers to the larval 

cultures, serially diluted with sterile seawater, and plated 

in triplicate. Thereafter a sample (1 mL) from each bowl 

was serially diluted and plated on the appropriate medium 

(below) every other day until 14 DAH when the experiment was 

terminated. The sterile sea water supply was also plated, 

but without dilution. All bacterial enumeration was done in 

triplicate, and plates were incubated at 22°c ± 2°c. CFU 

enumeration was conducted at 24, 48, and 72 hours after 

bacterial cultures were established. A marine agar (DIFCO) 

was used for overall CFU enumeration, a thiosulfate-citrate­

bile salt-sucrose (TCBS) agar (DIFCO) was used to select for 

Vibrio spp., and a Cetrimide agar (DIFCO) was used to select 

for Pseudomonas spp. Fish larvae were randomly selected 

and removed from the culture vessels at the rate of ten per 

day. This removal was done to mirror the progression of 

densities established in the previous experiments. Larvae 

were discarded after removal. 

Water quality was measured every other day, before 

water in each culture bowl was changed. Parameters measured 

were ammonia-nitrogen, dissolved oxygen (DO), nitrite-

14 



nitrogen, pH, and temperature. DO was measured with a 

commercially available meter (Otterbine Sentry III), other 

parameters were quantified colorimetrically with a 

commercially available test kit (LaMotte model AQ-4). 

STATISTICAL ANALYSIS. 

Regression analyses (Sokal & Rohlf, 1969) were 

conducted of survival on 10 DAH to the average of the daily 

percentage of food in the gut for each replicate, and to 

percentage of floating eggs at time of fertilization to 

survival at 10 DAH (mean for each parental cross) . Analysis 

of variance (ANOVA) was conducted for each trial using 

survival as the dependent variable. 

sine transformed prior to analysis. 

effect was calculated via a standard 

Percentages were arc­

An overall treatment 

~ (Keppel, 1991) which 

is a procedure for measuring the strength of association. 

All analyses were done using the SYSTAT statistical program. 

All analyses had, a priori, the significance level set at 

et=0.05 (Cowles & Davis, 1982). 

15 



RESULTS 

EXPERIMENT 1, Clear-water Trials. 

In trial 1 survival ranged from 0-80% (mean 28% ± 32% 

at 10 DAH, n=l2) among replicate bowls (Fig. 1). When the 

average percentage of larvae with food in gut (for days when 

there were larvae alive) for each replicate was regressed 

against the survival in that replicate at 10 DAH the 

relationship was not significant (r2=0.24, P>0.05). Low 

levels of jaw or skeletal deformities were noticed in both 

the daily samples and mortalities, (totals in the first two 

experiments, four trials, were 84 and 90, respectively, out 

of 17,150 total larval observations, 0.48% and 0.52% 

respectively) . Complete mortality was observed in some fed 

replicates beginning at 5 DAH, whereas complete mortality 

was not observed in the unfed replicates until 9 DAH. 

ANOVA at 10 DAH showed no significant effects on survival 

from cross, food in gut, hatching mortality, or length at 3 

DAH of larvae. 

Survival in trial 2 ranged from 0-60% (mean 5% ± 15% at 

10 DAH, n=21) (Fig. 2, A & B). When the average percentage of 

larvae with food in gut (for days when there were larvae 

alive) for each replicate was regressed against the survival 

in that replicate at 10 DAH the relationship was weak and 

not significant (r2=0.14, P>0.05). ANOVA at 10 DAH showed 

no significant effect of food in gut, cross, hatching 
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mortality, or length at 3 DAH of larvae on survival. It is 

noteworthy that the unfed controls from crosses B,C,E and F 

(Fig. 2, A & B) survived longer than did the fed treatments. 

Histological analysis of the larvae showed that 

development of the digestive tract, and mucosal epithelium 

appeared to proceed normally, as did cartilage development 

in the jaw apparatus. 

EXPERIMENT 2, Green-water trials. 

Overall, experiment 2, trial 1, was characterized by 

high survival (0-93%, mean 75 ± 30% at 10 DAH, mean 48 ± 37% 

at 14 DAH, n=19) (Fig. 3A and 3B) in all fed treatments. No 

significant effects of algae additions /or rinsing of 

rotifers on survival rates was seen. The unfed controls 

exhibited the typical survival curves, good survival until 

approximately 7 DAH, then a rapid decline (Fig. lA & 2, A & 

B) as seen in previous trials. In the replicates which did 

not have algae added, average percent of larvae with food in 

gut (for days when larvae were alive) regressed on survival 

at 10 DAH exhibited a relationship that was not significant 

(r2 =0.39, P>0.05). In the replicates which did have algae 

added, average percentage of larvae with food in gut (for 

days when larvae were alive) regressed on survival at 10 DAH 

exhibited a weak relationship that was not significant 

(r2 =0.05, P>0.05). 
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Trial two in experiment 2 (mean survival 28 ± 32% at 

10 DAH, 4 ± 12% at 14 DAH, n=30) revealed a much different 

picture than trial one (Fig. 4A, 4B, and 4C). ANOVA at 10 

DAH showed significant effects of algae (F( 1 , 24 )=13.79, 

P<0.05) and cross (F( 2 , 24 )=3.64, P<0.05). An analysis of 

the strength of association showed algae to have a standard 

fu2 of 0.25 and crosses a standard~ of 0.10, implying that 

25 and 10% of the variation was due to the effects of algae 

and cross respectively. On the other hand, ANOVA at day 14 

revealed no significant differences in effect of algae and 

cross on survival. A regression of the average percentage 

of larvae with food in gut ~ (for days on which larvae were 

alive) on survival at 10 DAH, for replicates with no algae 

added, was significant (r2 =0.33, P<0.05). The same analysis 

done on bowls which did have algae added showed a slightly 

stronger relationship which was also significant (r2=0.44, 

P<0.05). 

EXPERIMENT 3, Bacterial-water quality trial. 

Survival ranged from 0-85% (mean 81 ± 14% at 10 DAH, 

mean 59 ± 35% at 14 DAH, n=5) in the fed replicates, with 

only one replicate exhibiting complete mortality before the 

end of the experiment (Fig. SA). Colony forming units 

enumerated on the marine agar showed a trend in all 

replicates to increase towards the end of the experiment. 

Presumed Vibrio spp. appeared early in the experiments, but 
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then disappeared by 10 DAH. Pseudomonas were never detected 

on the cetrimide agar in any of the larval (fed or control ) , 

rotifer, algal cultures, or in seawater alone. In the unfed 

controls (Fig. 5B) the same trends were evident: an initial 

Vibrio presence which then decreased and an initially low 

CFU on the marine agar followed by a increase. 

In the rotifer culture there was a low but consistent 

presence of presumed Vibrio spp. The CFU on marine agar was 

consistently higher than the Vibrio CFU on the TCBS agar. 

The algal culture never sh9wed CFU on TCBS agar, but showed 

relatively high levels of CFU on the marine agar. The 

negative control never developed CFU on TCBS agar, and had 

low levels of CFU on marine agar. 

Water quality parameters varied over a small range in 

DO (5.5±1.0 ppm) and nitrite(N02 -N) (from undetectable to 

0.3ppm). Ammonia (TAN) levels generally were in a range of 

undetectable to 1.0 ppm. There were spikes in ammonia 

(levels of 3.0ppm in two bowls, one fed and one unfed) on 9 

DAH which did not correspond to higher mortality in those 

bowls. The fed replicate with high mortality did not show 

any unusual water quality parameters during the course of 

the experiment. 

COMBINED RESULTS 

Regression of percentage of floating eggs at time of 

fertilization on survival at 10 DAH for all crosses used in 
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the experiments showed weak, non-significant relationships 

for both green (r2=0.017, P>0.05) and clear (r2=.003, 

P>0.05) treatments. Thus, percentage of floating eggs is 

not a good predictor of larval survival. 

Survival 9f individual replicates ranged from 0-98%. 

Mean survival for all replicates in a given cross treated in 

the same manner ranged from 3-81%. Coefficients of 

variation (CV) ranged from 20-430 for all replicates (n=87) . 

The mean survival for all clear water replicates (no algae 

added) was 23 ± 33% (n=58), CV=150, compared to the mean for 

green water replicates (algae added) of 59 ± 37%(n=29), 

CV=60 (Table 2). 

Plots of data points relating average daily percentages 

of food in gut with survival at 10 DAH for each replicate 

bowl in experiments 1 & 2 indicate interesting differences 

between bowls with and without algae (Fig. 6). In bowls 

without algae, if average food in gut was below about 40%, 

survival was 0%, whereas, if average· food in gut was above 

about 40%, survival varied from 0-90%. In bowls with algae, 

only one replicate had average food in gut below about 60%, 

but those above about 60% had survival levels from 0-90%. 

It appears that some aspect of algae addition may have 

increased the average percentage of larvae with food in the 

gut. 

Statistical source tables, regression equations, and 

graphs are located in Appendix III. 
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DISCUSSION 

This series of experiments has yielded data that 

l)quantifies the variability in survival within and between 

crosses and treatments, 2)indicates that inability to 

initiate first feeding is probably not the sole cause of 

mortality, 3)demonstrates that there was a significant 

statistical relationship between feeding and survival in 

only two cases out of six examined, 4)suggests that some as 

yet unidentified, factor(s) in the rearing environment 

is(are) the cause of catastrophic mortality, 5)suggests that 

green water can sometimes improve survival, and 

6)demonstrates that there is no relationship between 

percentage of floating eggs at time of fertilization and 

larval survival through the critical first feeding period. 

The fact that the results are equivocal (sometimes green 

water results in higher survival, sometimes not; sometimes 

feeding was correlated with survival·, sometimes not) 

demonstrates the complexities of larval rearing. 

Bromage et al. (1994) in their discussion of egg 

quality argue persuasively for the reporting of all data 

from egg batches, including instances of 100% mortality, and 

not just the overall statistics. The range (0-93%, mean 34 

± 38%, n=82) of results reported here demonstrates that to 

report means of replicates or of treatments would not fully 

represent the results. It is worth noting that there is a 
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dearth of information on inter-replicate variability in the 

published aquaculture literature (although many 

experimental researchers, e.g. Houde 1978; Buckley et al. 

1991, do report variability). Many researchers either do 

not mention the parentage of the larvae worked with or use 

few replications in experiments. 

These experiments showed that inability to establish 

first feeding on prey, Brachionus plicatilis, by larvae was 

probably not the cause of catastrophic mortality in summer 

flounder culture. Analysis of the data, whether by visual 

inspection on an individual replicate basis or by 

statistical methods on summarized information, leads to 

equivocal findings. For example, in some replicates 

survival dropped quickly yet the daily sampling showed 80% 

of the larvae with food in their guts (Fig. 1, A & B). 

Conversely, other replicates exhibited high survival while 

the percentage of larvae with food was relatively low (Fig. 

1, D). This inconsistent pattern is repeated throughout 

this series of experiments. Regression analyses of feeding 

incidence on survival were similarly inconsistent, with 

significant results obtained in only one third of the cases. 

One pattern that is consistent and clear is the lack of 

similarity between the survival curves of the unfed control 

replicates and the fed treatments. If the fed larvae were 

not ingesting or not gaining nutritive value from the prey 

offered, then the survival curves of the fed replicates 
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should consistently mirror those of the unfed controls. 

Yet, it is clear that none of the fed controls, green or 

clear (e.g., in experiment 2, trial 1), mirrors the unfed 

replicates (Fig. 3A & 3B). The one instance where survival 

curves of the fed treatments showed any similarity to those 

of the unfed controls was in experiment 2, trial 2 (Fig. 

4A) , which was the only trial to show a significant 

relationship between food in gut and survival at 10 DAH. 

Histological examination did not detect signs of starvation 

as described by Bisbal & Bengtson(1995c). Some observations 

of skeletal deformities were observed but these deformities 

never reached the proportions (27%) reported by Andrades et 

al. (1996) in sea bream. 

The apparent strength of certain crosses (A & D in 

experiment 1 trial 1, the single cross in experiment 2 trial 

1, cross 3 in experiment 2 trial 2, and the single cross in 

experiment 3) suggests the importance of egg quality to 

early larval survival. Kjorsvik et al. (1990) and Bromage 

et al. (1994) made strong arguments that egg quality is a 

major limiting factor in larval marine fish culture. Here 

we have shown that there is no relationship between floating 

eggs at time of fertilization and survival at 10 DAH. The 

emphasis on breeding and broodstock nutrition in more mature 

animal husbandry fields is well known. The findings of this 

series of experiments suggest that research into these 

fields might decrease the variability found in early larval 
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summer flounder culture. Bromage et al. (1994) suggest that 

three factors have been found to significantly affect egg 

quality, l)bacterial colonization of the egg surfaces, 

2 ) broodstock nutrition, and 3)overripening of the eggs in 

vivo. 

Although we consider egg quality important, it does not 

diminish or is secondary to the importance of tank 

environment. A striking result in experiment 1 trial 2 was 

the early demise of the fed replicates in crosses B, C, E, 

and F. These results suggested mortality was related to 

rotifer additions to the bowls which might be affecting 

individual tank environments, as evidenced by the inter­

replicate variability seen in experiment 2, trial 1 (Fig. 

3B) . While the full range of effects of the addition of 

algae are unknown, the addition of algae might have multiple 

advantageous effects on tank environment which include: 

a) reduction in bacterial load in enrichment and culture 

(Kellam & walker, 1989), b)increased· feeding due to 

turbidity (Boehlert & Morgan, 1985), c)maintenance of 

rotifer nutritional value to the larvae (Lubzens et al., 

1989), and d)therapeutic properties (Austin et al., 1992). 

There was no indication of direct nutritional value from the 

addition of algae to the larvae. The lack of significant 

differences between the unfed control replicates in 

experiment 2 trial 1 & 2, with and without the addition of 

algae, provide evidence of this. A similar result was also 
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reported by Qasim (1955) . We did notice that summer 

flounder larvae did ingest algae at low levels. The 

possibility of algal nutrient value (Naas et al., 1992), the 

possible presence of enzymes appropriate for algae digestion 

in larval fish (Baragi & Lovell, 1986), and physical 

stimulation of digestive enzyme release even due to inert 

particles (Hjelmeland et al., 1988) has been reported. The 

difference in patterns of percent food in gut between the 

clear and green water treatments (Fig. 6) suggests that the 

addition of algae does enhance the feeding response in 

larval summer flounder. 

The findings of Nicolas et al. (1989) on the relative 

levels of bacteria in algal, rotifer and larval turbot 

culture mirrors what was found in our experiments. 

Significant levels of pathogenic bacteria in larval fish 

culture utilizing emulsion enrichment of rotifers have been 

reported by Perez Benavente & Gatesoupe (1987), Angulo et 

al. (1988), Gatesoupe (1990), Skjermo & Vadstein (1993), and 

Toranzo et al. (1993), among others. The highest levels of 

bacteria measured in our system did not appear to translate 

into increased mortality. The relatively low levels of 

bacteria reported here may be due to our use of algae alone 

for enrichment and culture of rotifers. 

The complexity resulting from the multiple factors (and 

their potential interactions) affecting larval fish culture 

make progress in this area difficult. We still have not 
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identified the causes of the catastrophic mortalities 

observed in some replicates. Because such mortalities occur 

in only some replicates resulting from each cross, we 

conclude that the cause is principally related to the 

rearing environment. Gamete quality is important as 

indicated by some crosses having higher survival. We 

conclude that continued research on the water quality and 

microbial environment is necessary in conjunction with 

research into gamete quality. 
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Table 1. Summary of conditions for all experiments. 

Experiment, trial cross, male parent, number of replications 

of each treatment, temperature range recorded during each 

experiment, the % of eggs that were floating at 

fertilization, the hatching mortality (in % and standard 

deviation) , and total volume (mL) of eggs expressed by each 

female at spawning. 

Exp/trial/ # Temperature 9,,- floating % Hatch Volume eggs 0 

cross/male Reps ± range OC eggs Mort±SD Expressed ML 

1/1/A/1 4 18±3 100 33 ± 26 not recorded 
1/1/B/1 4 30 41 ± 16 not recorded 
1/1/C/1 4 80 20 ± 9 not recorded 
1/1/D/1 4 60 44 ± 13 not recorded 

1/2/A/2 5 18±3 20 46 ± 1 11 
1/2/B/2 5 20 17 ± 9 140 
1/2/C/2 5 50 11 ± 19 32 
1/2/D/2 5 95 5 ± 4 20 
1/2/E/3 5 10 13 ± 5 20 
1/2/F/3 5 not recorded 40 ± 7 70 
1/2/G/4 5 not recorded 11 ± 13 72 

2/1/A/5 5 20±3 50 28 ± 18 114 

2/2/A/6 5 22±1 90 09 ± 7 12 
2/2/B/6 5 80 11 ± 15 42 
2/2/C/6 5 100 32 ± 33 16 

3/1/A/7 5 20±2 100 24 ± 16 84 
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Table 2. Survival results from all three experiments and 

trials, including combined clear treatments (experiment 1, 

all replicates, and experiment 2, clear water replicates), 

and combined green water treatments (experiment 2, green 

water treatments and experiment 3). All statistics are for 

10 DAH, including n for replicates, range (%), mean (%), 

standard deviation (%), and coefficient of variation 

[(mean/SD)x 100]. 

Exp. 1 Exp 2 Exp 3 
T-1 T-2 T-1 T-2 Combined 

G c G c Green Clear 

n 12 21 9 10 15 15 5 29 58 
Range 0-80 0-60 0-98 38-94 0-81 0-66 59-92 0-98 0-94 
Mean 26 3 72 78 45 12 81 59 23 
SD 33 13 41 17 34 19 14 37 33 
CV 130 430 60 20 80 1·60 20 60 150 
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Figure 1. Daily measurements of % survival and % of larvae 

with food in gut in experiment 1 trial 1. Letters in graphs 

refer to individual male X female crosses listed in Table 1. 

Lines show survival of replicates. Bars indicate percent of 

daily sample with food in gut. Both use percentage on y 

axis. Black bar corresponds to open square survival line, 

white bar to open circle survival line, striped bar to open 

triangle points survival line. Control survival is given in 

graph A only, represented by open diamond. 
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Figure 2A. Daily measurement of % survival and % of larvae 

with food in gut in experiment 1 trial 2. Letters in graphs 

refer to individual male X female crosses listed in Table 1. 

Lines show survival of replicates. Bars indicate percent of 

daily sample with food in gut. Both use percentage on y 

axis. Black bar corresponds to open square survival line, 

white bar to open circle survival line, striped bar to open 

triangle points survival line. Unfed controls are 

represented by lines with open diamonds. 
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Figure 2B. Daily measurement of % survival and % of larvae 

with food in gut in experiment 1 trial 2. Letters in graphs 

refer to individual male X female crosses listed in Table 1. 

Lines show survival of replicates. Bars indicate percent of 

daily sample with food in gut. Both use percentage on y 

axis. Black bar corresponds to open square survival line, 

white bar to open circle survival line, striped bar to open 

triangle points survival line. Unfed controls are 

represented by lines with open diamonds. 
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Figure 3A. Daily measurement of % survival of unfed 

controls in experiment 2 trial 1, 5 replicates in clear 

control , green control had two replicates discarded when 

they inadvertently had rotifers added. Letters in graphs 

refer to treatment: CC=clear control, no algae added. 

GC=green control, algae added. Lines show survival of 

replicates. Bars indicate percent of daily sample with 

algae in gut. Both use percentage on y axis. 
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Figure 3B. Daily measurement of % survival and % larvae 

with food in gut in fed treatments in experiment 2 trial 1, 

s replicates in each treatment. Letters in graphs refer to 

treatment: RC=rotifers rinsed, no algae added. RG=rotifers 

rinsed and algae added. NRC=rotifers not rinsed and no 

algae added. NRG=rotifers not rinsed and algae added. 

Lines show survival of replicates. Bars indicate percent of 

daily sample with food in gut. Both use percentage on y 

axis. Black bar corresponds to open square points on 

survival line, White bar to open circles, striped bar to 

open triangles, grey bar to solid line, horizontal striped 

bar to open diamonds. 
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Figure 4A. Daily measurements of % survival and % larvae 

with food in gut for cross 1 in experiment 2 trial 2. 

Number and letters in upper left corner of graph indicate 

cross and treatment. FA indicates fed, with addition of 

algae; FNA=fed, no algae; CA=control, algae added; 

CNA=control, no algae added. Lines show survival of 

replicates. Bars indicate percent of daily sample with food 

in gut. Both use percentage on y axis. Black bar 

corresponds to open square points on survival line. White 

bar to open circles, striped bar to open triangles, grey bar 

to solid line, horizontal striped bar to open diamonds. 
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Figure 4B. Daily measurements of % survival and % larvae 

with food in gut for cross 2 in experiment 2 trial 2. 

Number and letters in upper left corner of graph indicate 

cross and treatment. FA indicates fed, with addition of 

algae; FNA=fed, no algae; CA=control, algae added; 

CNA=control, no algae added. Lines show survival of 

replicates. Bars indicate percent of daily sample with food 

in gut. Both use percentage on y axis. Black bar 

corresponds to open square points on survival line. White 

bar to open circles, striped bar to open triangles, grey bar 

to solid line, horizontal striped bar to open diamonds. 
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Figure 4C. Daily measurements of % survival and % larvae 

with food in gut for cross 3 in experiment 2 trial 2. 

Number and letters in upper left corner of graph indicate 

cross and treatment. FA indicates fed, with addition of 

algae; FNA=fed, no algae; CA=control, algae added; 

CNA=control, no algae added. Lines show survival of 

replicates. Bars indicate percent of daily sample with food 

in gut. Both use percentage on y axis. Black bar 

corresponds to open square points on survival line. White 

bar to open circles, striped bar to open triangles, grey bar 

to solid line, horizontal striped bar to open diamonds. 
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Figure SA. Daily measurements of % survival and % larvae 

with food in gut for fed replicates in experiment 3. In all 

graphs the individual replicates are represented by the 

following symbols; bowl 1 with a diamond (+), bowl 2 by a 

square (• ) , bowl 3 is represented by a triangle (~), bowl 4 

by a cross (x), and bowl 5 is represented by a asterisk (*) . 

The first graph indicates the survival curves of the five 

replicates. The next graph shows results of plating of 

samples from each bowl on marine agar. The Y axis is 

exponential notation of colony forming units per mL of 

sample. The third graph indicates colony forming units per 

mL (CFU/mL) grown on Thiosulfate-Citrate-Bile Salts-Sucrose 

(TCBS) selective media. These are presumed Vibrio colonies. 

45 



100 

90 

80 

'::§!..70 
0 

60 

50 
Survival 

40 

30 

20 

10 

0 

2.50E-02 

2.00E-02 

1.50E-02 
Marine Agar 

1.00E-02 

5.00E-03 

...J O.OOE+OO -------~----=::;;;;;,__----1--------~""""""""""""""~L___---J 

~ ........ 
:::> 
u. 
(.) 3.50E-02 T 

3.00E-02 I 

2.50E-02 

2.00E-02 f 
1.50E-02 

1.00E-02 

5.00E-03 

0 

Figure 5A 

2 

TCBS Agar 

4 6 8 10 12 14 

Time (Days After Hatch) 

46 



Figure SB. Daily measurements of % survival and % larvae 

with food in gut for unfed control replicates in experiment 

3. In all graphs the individual replicates are represented 

by the following symbols; bowl 1 with a diamond (+),bowl 2 

by a square (• ) , bowl 3 is represented by a triangle ( ~ ) , 

bowl 4 by a cross (x) , and bowl 5 is represented by a 

asterisk (*). The first graph indicates the survival curves 

of the five replicates. The next graph shows results of 

plating of samples from each bowl on marine agar. The Y 

axis is exponential notation of colony forming units per mL 

of sample. The third graph down indicates colony forming 

units per mL (CFU/mL) grown on Thiosulfate-Citrate-Bile 

Salts-Sucrose (TCBS) selective media. These are presumed 

Vibrio colonies. 
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Figure SC. Indicates the colony forming units on marine and 

TCBS agar from rotifer and algae cultures (introduced), and 

in the blank (negative control). On this graph the rotifer 

culture marine agar colony forming units per mL are 

indicated by a diamond (+), rotifer culture colony formers 

on TCBS are represented by a square (• ) . Algal culture 

colony forming units on marine agar are represented by a 

triangle (• ) . The background colony formers, as 

represented by the levels found in the negative control, are 

represented by a cross (x) . 
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Figure 6. Scatter plots with survival at 10 DAH on the Y 

axis, average percentage of food in guts of the daily 

sampling of larvae (on days when larvae were alive) per 

replicate bowl on the X axis. Top graph is all replicates 

bowls without algae added, i.e. experiment 1 trial 1 & 2, 

and experiment 2 trial 1 & 2 treatments which did not have 

algae added. Lower graph is replicates which had algae 

added, i.e. experiment 2 trial 1 & 2 green treatments. 
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APPENDIX I 

LITERATURE REVIEW 

In the western North Atlantic, summer flounder, 

Paralichthys dentatus L., a pleuronectiform flatfish , is a 

popular target species for sport and commercial fishing. A 

concise summary of the habitat, spatial and temporal 

distribution of larvae, juvenile, and adult stages is found 

in Able & Kaiser(1994). Morse (1981) found that the males 

are generally smaller than the females. Smith & Fahay 

(1970) described of the eggs and larvae of summer flounder 

from both wild-caught and laboratory-cultured specimens. 

Martin & Drewry (1978) provided an abbreviated synopsis of 

summer flounder biology. Powell & Henley (1995) described 

the egg and larval development of congeneric gulf and 

southern flounders from specimens reared in the laboratory. 

Generally the literature on the culture of summer 

flounder is sparse, especially when compared to that of 

turbot in Europe and japanese flounder in Asia. Some of the 

early work was done during the 1970's by Smigielski (1975) 

who showed that summer flounder can be induced to spawn with 

repeated injections of carp pituitary extract, that black 

sided aquaria were better than clear for larval culture, 

that addition of microalgae is advantageous, and that there 

was extreme variability is survival of larvae. Klein­

MacPhee (1981) worked on stocking density in cultured summer 
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flounder found that 20 larvae per liter was best in clear 

water. Later Bisbal & Bengtson (1993, 1995a,b,c) published 

a series of papers detailing the development of the 

digestive tract in larval summer flounder, effects of 

delayed feeding on survival and growth, and a description of 

the starving condition in the larval summer flounder. 

One of the difficulties in larval marine fish culture 

is a determination of what is normal, viz the morphology of 

the larvae. It is of course extremely difficult to come to 

some conclusion on this topic. One would expect that 

morphologically abnormal larvae would suffer higher 

predation than normal larvae in nature. In the laboratory 

predation does not occur and the artificially high densities 

of prey provided results in an artificially higher survival 

rate. Nankee (1981) documented abnormalities of larval fish 

in Long Island Sound including Paralichthys dentatus and, 

although he described types of abnormalities found, he did 

not provide the percentage of larvae· that were found with 

deformities. Andrades et al. (1996) investigated the amount 

of skeletal deformities found in cultured sea bream, finding 

that approximately 27% of the larvae had these deformities, 

with 5% surviving through metamorphosis. Fournie et al. 

(1996) attempted to document base line data for gross 

abnormalities in estuarine fishes in two biogeographic 

provinces; of 214 summer flounder sampled in the Virginian 

province in 1991, no abnormalities were reported. Grudger 
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(1935) reported on partially ambicolorate summer flounder 

that were landed at a Boston pier. He stated that summer 

flounder seem to be particularly susceptible to abnormal 

coloration, and that this is often found coupled with eye 

migration and fin ray abnormalities. The problem with 

abnormal coloration is seen often in cultured flounder and 

is apparently related to a nutritional deficiency of highly 

unsaturated fatty acids (HUFA) in larval stages of Japanese 

flounder Paralichthys olivaceus (Kanazawa, 1993), turbot 

Scophthalmus maximus (Dhert et al. 1994) and summer flounder 

Paralichthys dentatus (Baker & Bengtson, 1996) 

In contrast to the sparse literature on summer flounder 

culture, literature on turbot culture is quite extensive. 

Anthony (1910) detailed the history of larval turbot culture 

in France and England during the previous 15 years. 

Describing what makes a valuable aquaculture species, he 

made points that are still valid almost a 100 years later. 

Anthony also credited two French aquaculturists, Fabre­

Domergue & Bietrix, with coining the term "critical period" 

in early larval life history. I believe that knowledge of 

the history of my area of research is important, because 

none of us have the time to keep reinventing the wheel. 

Shelbourne's (1964) treatise on the artificial propagation 

of marine fish includes not only valuable information on the 

history of larval culture, but also covers the discussions 

at the time on stock enhancement. His treatment includes 
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the practical value of hatchery culture and the evidence for 

and against stock enhancement. 

Larval development, from bilaterally symmetrical 

pelagic larva to benthic flatfish, is an interesting series 

of morphological, behavioral, and biochemical developments. 

Al-Maghazachi & Gibson (1984) divided the process in turbot 

into 5 distinct phases, each sub-divided into substages, 

based on gross morphological changes. During this time 

period, the digestive tract also undergoes functional and 

morphological changes, described for summer flounder by 

Bisbal & Bengtson (1995). Segner et al. (1994) describe 

this developmental sequence in turbot. The latter authors 

proposed a division of the development of organs found in 

larvae into two groups, l)those found in the larvae at 

hatch, differentiated into functional organs, and 2)those 

which are not present in the larvae, but develop during 

metamorphosis. Padros et al. (1993) followed the 

histopathological events during the critical first feeding 

stage and noted that progressive bacterial colonization of 

the intestine was seen in turbot larvae, especially in the 

more mature larvae of the cohort. These authors suggested 

that the immune system of the larval flatfish is less well 

developed than that of other teleost which might account for 

the increases susceptibility to bacterial infections. 

Cousin & Baudin-Laurencin (1987) and Cousin et al. (1986) 

examined development of the turbot in a pair of histological 
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studies. Govoni et al. (1986) reviewed the physiology of 

digestion in larval fish, suggesting that further research 

into functional changes during the morphological changes is 

needed. Fukuhara (1988) studied the development, 

morphological and functional, of Limanda yokohamae and 

related it to the behavioral changes leading to 

metamorphosis. Fukuhara (1986) had looked at t~e Japanese 

flounder with the same outlook two years earlier, adding 

ecological changes as well. One of the concerns noted by 

Bisbal (1993) in earlier experiments was jaw apparatus 

maldevelopment. Morrison & MacDonald (1995) looked at this 

in halibut, and came to the conclusion that, at least in 

halibut, it was due to a secondary bacterial infection. 

Pittman et al. (1990) described the morphological and 

behavioral development of halibut larvae. 

Appelbaum et al. (1983) looked at the olfactory and 

gustatory development in the sole, in the hope that 

knowledge of larval responses to prey could be a first step 

towards developing an artificial diet for larval marine 

fishes. A program of research and the components important 

to the development of larval diets was outlined by Bengtson 

(1993). 

An important component to larval culture, one that has 

to a large extent not been investigated, is egg quality and 

broodstock nutrition. In more mature animal husbandry 

fields, the importance of broodstock management has been 
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explored . As marine fish culture is a relatively new 

endeavor , compared to land animal culture , other concerns 

have been considered more pressing than broodstock 

management. Kjorsvik et al. (1990) reviewed egg quality in 

fishes, including a discussion of quality characteristics, 

and factors of importance for egg quality. Bromage et al. 

(1994) discussed the role of over-ripening of halibut eggs 

as a quality determinant. Authors of both articles 

mentioned the assessment of egg quality by separating and 

estimating percentages of floating eggs to sunken eggs, a 

procedure practiced in my work. The Bromage article has an 

interesting discussion of accurate assessment of egg 

quality, in which he stressed that just reporting mean 

(pooled) survival and fertilization rates is misleading. 

Another misleading reporting method is to exclude 

repetitions that have 0% survival. The reporting of the 

full inter-replicate variability, while not presenting the 

data in the best light, is critical to truly gaining 

understanding of the processes of larval survival. 

Devauchelle et al. (1988) discussed spawning of turbot 

in captivity over a 12 year period. The authors reported on 

the use of photoperiod and temperature manipulation, and the 

effects on hatching success. Devauchelle et al. (1987) 

reported on the same parameters, also over a 12 year period, 

on the spawning of sole in the laboratory. Berlinsky et al. 

(1996) reported on the induced spawning of southern flounder 
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using gonadotropin analogues. Suquet et al. (1995 ) reported 

on optimal time and ratio of sperm:egg interaction, with a 

time of 3 minutes recommended for sperm:egg interaction. 

Howell & Scott (1989) discussed the ovulatory cycle and egg 

deterioration. Post-ovulatory deterioration is a concern in 

my work , as the determination of optimum spawning stage has 

not been investigated in summer flounder. 

The variability of larval survival in summer flounder 

is a major finding of my work. While this variability is 

critical to experimental design and findings, it is often 

glossed over in the literature. Smigielski (1975) found 

survival to metamorphosis for summer flounder to be between 

0 and 5%, with a mean of 1.3% ± 2.0%. He did not report 

survival during the critical first feeding stage, nor did he 

report parentage. Klein-MacPhee (1981), using two 

replicates per treatment, reported mean survival to 30 days 

after hatch of 0, 11.8, 37.4, 0.9, and 0.6% for stocking 

densities of 5, 10, 20, 40, and 80 fish per liter 

respectively. Bisbal & Bengtson (1995) report survival 

(pooled mean of three replicates) of up to 40% at a culture 

temperature of 12.5°c, and 90% at 21°c. This is the extent 

of summer flounder survival data that I found. Data for 

other species also indicate that first feeding mortality is 

extremely high. Buckley et al. (1991) found that larval 

winter flounder survival ranged from 0.07 to 6 ~ 0 • Shelbourne 

(1964) reported survival through metamorphosis of plaice 
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larvae to be 0 . 1 to 6.6% over the span of five years, 1957-

1961. Qasim (1955) reported between 0 and 40% survival of 

Banius pholis L. at 32 days after hatch. Planas (1994), in 

his review of different production systems for turbot larval 

culture, reported a survival range of 1 to 37% for 18 

experiments. Minkoff & Broadhurst (1994 ) , in their 

discussion of intensive turbot fry production in Europe, 

stated that while survival of larvae can be 40-50% in the 

first month, rearing success is unpredictable. These 

authors reported that, up to 9 days after hatch, egg and 

larval quality have the largest impact on survival. They 

reported mortalities of 25-80% during the critical early 

larval stages from hatch to first feeding. Dhert et al. 

(1994) reported survival up to 20%, but did not report 

parentage or the number of repetitions used. Although 

Olesen & Minck (1983) reported in the abstract of their 

article survival of turbot larvae of 40%, they actually 

showed results from 7 experiments, with survival ranging 

from 9 to 40%. I assume that the survival rates are a 

pooled mean, but no standard deviation was reported. In one 

of the early works of the "modern era", Jones (1973) 

reported survival of turbot larvae to be very low, less than 

1% overall. In a later research effort, Jones et al. (1981) 

reported mortality to be greatest 5-12 days after hatch. 

Overall survival ranged from 3-6%, with individual batches 

ranging from 0-25%. In other species of fish survival rates 
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vary, but the early larval period during the transition from 

endogenous to exogenous feeding remains a critical time. 

N~ss et al. (1996) reported 69% survival during the first 15 

days after the initiation of feeding for halibut, with 20% 

of the mortality occurring between days 3 and 6. Appelbaum 

(1985) reported survival rates between 20 and 90% for sole 

larvae during the critical first-feeding stage. Eda et al. 

(1990), working with striped mullet, reported larval 

survival of 11.5 ± 6.3% and 34.3 ± 11.1% during two years of 

experiments. 

Larval nutrition, and the development of an artificial 

feed for larvae is long term goal of research into the early 

larval stages of fish culture. We currently rely on the 

culture of live prey, rotifers and Artemia. Lubzens et al. 

(1989) reviewed the culture of rotifers and their 

suitability as first prey for larval marine fishes. Scott & 

Baynes (1978) reported on the nutritional value of rotifers 

when they were cultured on different · algae and at different 

temperatures. Leger et al. (1987) reviewed the use of 

Artemia in larval culture. The development of an artificial 

diet for larval culture is an active area of research. In 

reviews by Dabrowski (1986), Watanabe & Kiron (1994) and 

Lavens et al. (1995) it was noted that this goal is still 

not at hand. 
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An area of active research is the bacterial milieu of 

larval culture. Levin et al. (1972) reported that Vibrio 

anguillarum was isolated from winter flounder and found to 

be the cause of disease. Austin (1983) reported on the 

bacterial microflora found in a coastal fish farm and 

isolated 30 different bacteria, including Vibrio and 

Pseudomonas species. Tanasomwang & Muroga (1988) 

investigated the intestinal flora of Japanese flounder 

larvae and found that the levels of bacteria decreased with 

the transition from live to artificial diets, with the two 

largest groups represented being Vibrio and Pseudomonas. 

Angulo et al. ·(1988) found that, of the bacteria associated 

with turbot culture tanks in Spain, Vibrio and Pseudomonas 

represented the largest percentage. Perez Benavente & 

Gatesoupe (1988) found that when rotifers were disinfected 

before being presented to larval turbot, survival rates 

improved. Iida et al. (1989) found that a viral disease was 

responsible for mass mortality in Japanese flounder culture. 

They isolated it to the point they hypothesized that a 

herpes virus was responsible. Nicolas et al. (1989) 

examined the bacteria associated with the trophic chain of 

algae, rotifers and turbot larvae and concluded that Vibrio 

found in the guts of larval turbot were probably introduced 

by the rotifers. Kellam & Walker (1989) studied the anti­

biotic activity associated with marine microalgae, and found 

that Tetraselmis suecica, a species that I use in my 
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experiments, has antibacterial properties. Gatesoupe (1990) 

found that, by rinsing rotifers and offering them in pulses, 

rather than all at once, he reduced the bacteria associated 

with larval culture and improved survival and growth in 

turbot. Although he reported survival between 22 and 82%, 

he did not report the number of repetitions or the parentage 

of the larval cultures. Toranzo et al. (1993) investigated 

the bacterial differences in three Spanish turbot farms. 

Their finding that all farms had high levels of Vibrio and 

Pseudomonas species led to their conclusion that good 

husbandry is the most cost effective way of controlling 

bacterial disease. Skjermo & Vadstein (1993) investigated 

the bacterial levels associated with enrichment of rotifers. 

They found that the bacterial levels increased, and the 

species composition shifted, with addition of enrichment, 

then decreased and returned to the original composition with 

passage of time. Hernandez-Cruz et al. (1994) found that 

the addition of antibiotics, to the culture vessels or to 

the rotifers before feeding, did not significantly improve 

survival and growth of sea bream larvae. The authors also 

found that rotifers and larvae that were treated with 

antibiotics had lower Omega-3 HUFA levels than those that 

were not treated. 

Since Qasim (1955) workers have investigated the 

possibility that algae is a contributor to early larval 

nutrition. Van der Meeren (1991) concluded that cod do 
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indeed ingest algae, possibly through a filter feeding 

mechanism, although he did not test whether larvae fed algae 

had better survival rates than larvae without algae. Austin 

et al. (1992 ) tested the use of Tetraselmis suecica as an 

antibacterial preparation in the culture of fish, using 

various disease-causing bacteria from salmonid culture. 

They found that T. suecica did reduce bacteria numbers in 

culture tanks and, when used therapeutically, reduced 

mortalities in already infected fish. Naas et al. (1992) 

found that the use of green water led to increased feeding 

rates in halibut larvae cultures. Finding that both growth 

and survival were enhanced, the authors concluded that there 

was no indication that the larvae were feeding on the algae; 

the improvement was likely due to turbidity effects. 

Boehlert & Morgan (1985) found that turbidity increased 

feeding in larval herring, a possible advantage in the 

addition of algae to the culture medium. The authors 

postulated that larvae might be able · to pick out prey better 

with the additional contrast provided by algae. Reitan et 

al. (1993) looked at the nutritional effects of the addition 

of algae to larval turbot culture. They found that the 

culture of larvae together with rotifers and algae was 

better than just the enrichment of rotifers with algae prior 

to the addition of rotifers to the larval tanks. The 

authors concluded that two effects were at work: l)that 

rotifer HUFA levels were maintained in the larval culture 
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vessels when algae was maintained, an indirect nutritional 

effect. 2)that the larvae exhibited enhanced ingestion 

rates when algae was present, the possible effect of 

turbidity or microbial changes. Tamaru et al. (1994) found 

a paradox in the addition of algae to larval striped mullet 

culture: ammonia levels were increased in cultures with the 

addition of algae, but so were growth and survival, and no 

differences in DO, pH, or salinity existed between the two 

treatments. Stottrup et al. (1995) investigated 5 species 

of algae for their effects on larval turbot culture and 

found that growth and survival differed depending on the 

species of algae used. The use of Isochrysis led to 

increased within-treatment variation. 
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APPENDIX II 

EXPERIMENTAL DATA 

EXPERIMENT 1, TRIAL 1. 

Trial 1 was conducted from November 3-21, 1995. Four 

individual female X male crosses were used, with 4 

replicates per cross. They are referred to as A, B, C and D 

series. 

"A" series eggs were from fish 402 (Female) crossed with 

fish 30 (Male). Spawned on Nov. 3 at 5:30 pm, 100% of 

the eggs floated in seawater after fertilization. 

"B" series eggs were from fish 29 (Female) crossed with fish 

30 (Male). Spawned on Nov. 6, no time recorded, 30% of 

the eggs floated. 

"C" series eggs were from fish 20 (Female) crossed with fish 

30 (Male). Spawned on Nov. 9, no time recorded, 80% of 

the eggs floated. 

"D" series eggs were from fish 243 (Female) crossed with 

fish 30 (Male). Spawned on Nov. 9, no time recorded, 

60% of these eggs floated. 

Table 1. Results of trial 1 showing day after hatch, 

percent survival, percent of daily sampling with food in gut 

for the 13 replicates from 4 parental crosses. %S for 

percent survival. %F for percent of daily sample which had 
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food in gut. DAH for day after hatch. Same letter before 

replicate number signifies same parental cross. Replicate 

1, cross 1, was unfed control. 

Table 1. 
Rep Al A2 A3 A4 BS B6 
DAH %S %F %S %F %S %F %S %F %S %F %S %F 
3 100 0 100 0 100 0 100 0 20 0 96 0 
4 100 0 100 10 100 50 100 50 20 0 91 0 
5 84 0 98 60 84 90 96 60 0 89 60 
6 78 0 97 90 82 80 95 90 87 80 
7 75 0 97 90 80 70 91 70 82 70 
8 71 0 95 50 74 86 88 86 72 70 
9 0 88 40 0 0 26 80 
10 71 56 0 

Rep B7 CB C9 ClO Dll D12 D13 
DAH %S%F %S%F %S%F %S %F %S %F %S %F %S %F 
3 100 0 100 10 100 0 100 0 100 0 100 0 100 0 
4 97 0 98 60 99 10 95 80 94 90 95 60 98 80 
5 94 40 96 60 95 90 93 50 93 80 93 100 95 80 
6 93 70 96 20 95 80 92 20 92 90 88 50 92 70 
7 91 80 91 10 92 40 88 10 91 50 87 30 91 80 
8 80 80 81 30 91 0 73 40 90 80 81 30 90 80 
9 0 70 33 88 30 68 36 84 90 78 60 88 70 
10 0 42 75 0 77 93 12 60 80 73 

Table 
after 

2. Combined survival results from trial 1 showing day 
hatch, range, mean, and standard deviation. 

DAH 
3 
4 
5 
6 
7 
8 
9 
10 

Range Mean " SD 
20-100 93 22 
20-100 92 22 

0-98 85 26 
0-97 84 26 
0-97 82 25 
0-95 77 24 
0-88 49 41 
0-80 24 32 
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EXPERIMENT 1, TRIAL 2. 

The second trial in this series of experiments was 

conducted from February 6-19, 1996. This trial consisted of 

7, designated A through G, individual female x male crosses, 

with 4 replicates of each cross. 

"A" series eggs were from fish number 475 (female) 

crossedwith fish number 464 (male) , 11 mL of eggs were 

extruded, and 20% of these floated. 

"B" series eggs were from fish number 461 (female) crossed 

with fish number 439 (male), 140 mL of eggs were 

extruded, 20% of these floated. 

"C" series eggs were from fish number 457 (female) crossed 

with fish number 439 (male), 32 mL of eggs were 

extruded, 50% of these floated. 

"D" series eggs were from fish number 480 (female) crossed 

with fish number 439 (male), 20 mL of eggs were 

produced, 95% of these floated.-

"E" series eggs were from fish number 449 (female) crossed 

with fish number 439 (male, 20 mL of eggs were 

extruded, 10% of which floated. 

"F" series eggs were from fish number 427 (female) crossed 

with fish number 406 (male), 70 mL of eggs were 

produced, percentage of floaters was not reported. 

"G" series of eggs were from fish number 429 (female) 

crossed with fish number 406 (male), 72 mL of eggs were 
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extruded, percentage of floating eggs was not 

reported. 

Table 3. Results of trial 2 showing day after hatch, 

percent survival, percent of daily sampling with food in gut 

for the 28 replicates from 7 parental crosses. %8 for 

percent survival. %F for percent of daily sample which had 

food in gut. DAH for day after hatch. Same letter before 

replicate number signifies same parental cross. Replicates 

with number 1 indicate unfed controls. 

Table 3. 
Rep Al A2 A3 

DAH %8 %F %8 %F %8 %F 
3 
4 
5 
6 
7 
8 
9 
10 

100 0 
86 0 
77 0 

0 

100 50 
84 40 
78 10 
70 100 
64 80 
48 33 

0 

100 00 
78 80 
75 40 
63 70 
57 100 

0 

A4 
%8 %F 

100 50 
83 70 
77 60 
70 70 
65 70 
60 80 

0 

Bl 
%8 %F 

100 00 
81 00 
76 00 
72 00 
68 00 
63 00 
56 00 

0 

B2 
%8 %F 

100 30 
24 00 
0 

B4 Cl C2 C3 C4 Dl D2 
DAH %8 %F 
3 100 70 
4 72 60 
5 68 80 
6 65 90 
7 60 100 
8 53 70 
9 6 67 
10 0 

D4 
DAH %8%F 
3 100 0 
4 52 20 
5 45 90 
6 37 100 
7 3 0 
8 0 
9 
10 

%S%F 
100 0 

97 0 
96 0 
96 0 
94 0 
93 0 
92 0 
37 0 

El 
%8%F 
100 0 

64 0 
54 0 
43 0 
34 0 
23 0 

4 0 
0 

%8 %F 
100 30 
53 50 
47 70 
40 50 
30 50 
18 60 

0 

E2 
%8%F 
100 0 

91 0 
33 60 
23 100 

5 0 
0 

%8 %F %8 %F 
100 10 100 10 

45 30 54 0 
34 40 0 
26 37 

0 

E3 
%8 %F 
100 0 

33 40 
23 0 

2 0 
0 

E4 
%8 %F 

100 0 
55 0 
50 45 
11 0 

0 

78 

%8 %F 
100 0 

98 0 
97 0 
97 0 
97 0 
96 0 
94 0 

0 
Fl 
%8 %F 

100 0 
66 0 
62 0 
56 0 
50 0 
38 0 

0 

%8 %F 
100 0 

0 0 

F2 
%8 %F 

100 0 
5 0 
0 

B3 
%8 %F 

100 50 
47 10 
40 70 
31 100 

7 0 
0 

D3 
%8 %F 

100 10 
69 30 
65 100 
61 80 
55 90 
48 90 
38 100 

4 100 
F3 
%8 %F 

100 20 
40 30 
10 45 

0 



Table 

DAH 
3 
4 
5 
6 
7 
8 
9 
10 

Table 
after 
DAH 
3 
4 
5 
6 
7 
8 
9 
10 

3 Cont. 
F4 Gl G2 G3 G4 

%8 %F %8 %F %8 %F %8 %F %8 %F 
100 0 100 0 100 70 100 40 100 70 

0 55 0 84 90 76 10 67 71 
46 0 82 100 73 100 8 0 
40 0 80 100 70 100 0 
31 0 77 80 15 90 

8 0 73 90 0 
0 68 90 

60 94 

4. Combined survival results from trial 2 showing day 
hatch, range, mean, and standard deviation. 

Range Mean SD 
100-100 100 0 

0-98 59 27 
0-97 47 32 
0-97 38 33 
0-97 29 33 
0-96 22 31 
0-94 13 29 
0-60 4 13 

EXPERIMENT 2, TRIAL 1. 

The second experiment, first trial, in this series was 

run from May 18 through June 2, 1996. This first of the 

"green water" experiments was conducted using one individual 

female x male cross, with 5 replicates of each treatment. 

The female in this cross, which did not have a tag (tags are 

lost occasionally) was crossed with fish number 430 (male) , 

114 mL of eggs were extruded at 10 am on May 16, 50% of 

which floated. 
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Table 5. Combined survival results from experiment 2, trial 

1 showing day after hatch, range, mean, and standard 

deviation of the fed replicates. The unfed controls are not 

included " 

DAH Range Mean SD 
3 91-100 99 2 
4 87-100 98 3 
5 49-100 92 15 
6 45-99 91 17 
7 34-98 85 18 
8 27-98 83 21 
9 19-98 80 24 
10 0-98 75 30 
11 0-97 73 30 
12 0-95 69 31 
13 0-94 61 35 
14 0-92 48 37 

Table 6. Results of clear control (no algae, unfed) 

treatment experiment 2, trial 1 showing day after hatch, 

percent survival, percent of daily sampling with food in gut 

for the 28 replicates from 7 parental crosses. %8 for 

percent survival. %F for percent of daily sample which had 

food in gut. DAH for day after hatch. 

Table 6. 
Clear Controls 
Bowl Number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 0 100 0 100 0 100 50 100 0 
4 100 0 99 0 100 0 100 0 100 0 
5 98 0 99 0 99 0 100 10 97 0 
6 98 0 88 0 98 0 99 0 87 0 
7 78 0 87 0 98 0 99 0 85 0 
8 59 0 0 0 0 0 0 0 0 0 
9 37 0 
10 8 0 
11 0 0 
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Table 7. Results of clear control (no algae, unfed) 

treatment experiment 2, trial 1 showing day after hatch , 

percent survival, percent of daily sampling with food in gut 

for the 28 replicates from 7 parental crosses. %8 for 

percent survival. %F for percent of daily sample which had 

food in gut. DAH for day after hatch. 

Table 7. 
Green Controls 
Bowl number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 0 100 10 100 20 See note 1. 
4 100 10 100 20 100 0 
5 100 0 100 30 100 0 
6 100 0 100 0 99 0 
7 100 0 94 60 99 0 
8 0 0 81 0 0 0 
9 56 25 
10 0 0 
Note 1: Bowls 3 & 4 were discarded as they inadvertently had 

rotifers added to them. Once rotifers were introduced to 

controls with green water, it became impossible to remove 

100% of them. 

Table 8. Results of rinsed clear (no algae, fed rinsed 

rotifers) treatment experiment 2, trial 1 showing day after 

hatch, percent survival, percent of daily sampling with food 

in gut for the 28 replicates from 7 parental crosses. %8 

for percent survival. %F for percent of daily sample which 

had food in gut. DAH for day after hatch. 

81 



Table 8 
Rinsed clear 
Bowl number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 0 91 20 100 40 100 50 98 50 
4 100 70 87 50 100 60 100 50 98 100 
5 100 70 82 80 98 80 99 50 95 70 
6 99 0 75 20 94 10 99 40 91 40 
7 94 80 67 40 76 70 96 70 87 60 
8 88 80 57 80 72 90 96 90 86 100 
9 83 70 44 80 68 100 96 70 83 90 
10 81 80 38 50 62 80 94 70 81 40 
11 79 70 29 70 57 60 93 70 79 70 
12 75 90 15 86 47 80 92 100 73 80 
13 70 100 0 36 80 0 68 100 
14 62 100 20 100 60 95 

Table 9. Results of rinsed green (algae added, fed rinsed 

rotifers) treatment experiment 2, trial 1 showing day after 

hatch, percent survival, percent of daily sampling with food 

in gut for the 28 replicates from 7 parental crosses. %8 

for percent survival. %F for percent of daily sample which 

had food in gut. DAH for day after hatch. 

Table 9. 
Rinsed Green 
Bowl Number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 99 70 Note 1 99 50 100 70 98 70 
4 98 100 98 90 100 100 98 90 
5 51 80 98 70 99 90 97 80 
6 47 100 98 100 99 80 97 90 
7 42 100 96 90 98 80 96 90 
8 36 100 93 80 98 90 96 90 
9 27 100 92 100 98 100 96 100 
10 0 91 90 96 100 95 100 
11 90 100 96 100 94 100 
12 88 100 95 100 93 100 
13 86 100 94 90 92 90 
14 82 100 92 100 90 100 
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Note 1. Bowl 2 of the rinsed green treatment was discarded 

when a miscount occurred, the end result being too many 

larvae were stocked in this bowl. 

Table 10. Results of not rinsed clear (no algae added, fed 

unrinsed rotifers) treatment experiment 2, trial 1 showing 

day after hatch, percent survival, percent of daily sampling 

with food in gut for the 28 replicates from 7 parental 

crosses. %8 for percent survival. %F for percent of daily 

sample which had food in gut. DAH for day after hatch. 

Table 10. 
Not Rinsed Clear 
Bowl Number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 99 30 99 20 99 0 99 0 100 0 
4 99 60 98 80 99 90 99 60 99 70 
5 98 90 96 100 99 80 98 100 98 90 
6 97 40 96 90 99 80 98 70 97 70 
7 90 80 89 80 91 90 94 90 93 70 
8 89 70 88 80 85 80 93 100 92 90 
9 88 80 87 80 79 100 91 100 91 80 
10 84 60 84 60 76 90 89 80 90 70 
11 80 100 81 70 73 100 87 100 89 100 
12 75 70 75 90 68 70 85 100 87 100 
13 64 60 70 100 62 90 82 80 84 100 
14 55 72 0 52 100 78 88 80 100 

Table 11. Results of not rinsed green (algae added, fed 

unrinsed rotifers) treatment experiment 2, trial 1 showing 

day after hatch, percent survival, percent of daily sampling 
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with food in gut for the 28 replicates from 7 parental 

crosses. %8 for percent survival. %F for percent of daily 

sample which had food in gut. DAH for day after hatch. 

Table 11. 
Not Rinsed Green 
Bowl number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 0 100 20 99 60 99 40 99 50 
4 100 100 100 90 99 90 99 100 99 80 
5 99 80 95 90 98 60 99 100 49 80 
6 99 90 94 100 98 70 99 90 45 100 
7 98 100 93 90 91 90 98 100 34 100 
8 98 90 90 80 89 90 98 70 27 100 
9 98 100 89 100 88 100 98 100 19 100 
10 98 100 88 100 86 100 98 100 0 
11 97 70 86 90 84 90 97 90 
12 95 100 83 100 82 100 93 100 
13 94 80 80 90 78 100 92 80 
14 92 100 75 100 72 100 0 

EXPERIMENT 2, TRIAL 2. 

Experiment 2, trial 2 was conducted between October 2, 

1996 and October 22, 1996. This experiment was the largest 

of the two year series, .using 3 parental crosses, 4 

treatments with 5 repetitions of each treatment for a total 

of 60 bowls. 

"1" series of eggs were from fish number 123 (female) 

crossed with fish number 270 (male) . The spawning took 

place on 10/7/96. 
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11 2 11 series of eggs were from fish number 373 (female) 

crossed with fish number 270 (male) . These fish were 

spawned on 10/5/96. 

"3" series of eggs were from fish number 29 (female) crossed 

with fish number 270 (male) . Spawning took place on 

10/2/96, at 9:30 am, 16 mls of eggs were extruded and 

100% of these floated. 

Table 12. Results of cross 1 fed green (algae added, fed 

rinsed rotifers) treatment experiment 2, trial 2 showing day 

after hatch, percent survival, percent of daily sampling 

with food in gut. %8 for percent survival. %F for percent 

of daily sample which had food in gut. DAH for day after 

hatch. 

Table 12. 
Cross #1, Experiment 2, trial 2 I Fed with algae added. 
Bowl number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 80 100 20 100 50 99 60 100 90 
4 100 50 90 20 99 50 · 99 40 100 90 
5 100 50 11 0 79 100 64 20 47 50 
6 94 80 0 25 60 24 80 34 50 
7 82 100 15 33 17 100 24 90 
8 80 90 0 0 0 
9 76 100 
10 72 90 
11 13 100 
12 0 
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Table 13. Results of cross 1 fed no green (algae not added, 

fed rinsed rotifers) treatment experiment 2, trial 2 showing 

day after hatch, percent survival, percent of daily sampling 

with food in gut. %8 for percent survival. %F for percent 

of daily sample which had food in gut. DAH for day after 

hatch . 

Table 13 
Cross #1, experiment 2, trial 2, fed, no algae. 
Bowl Number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 98 30 99 10 100 20 100 60 100 60 
4 97 40 99 70 100 0 100 40 100 50 
5 91 30 98 60 68 0 85 60 100 40 
6 68 80 68 70 13 0 58 60 72 80 
7 53 80 54 80 0 27 60 63 80 
8 46 100 24 90 18 0 46 80 
9 40 80 12 80 0 30 100 
10 32 100 0 21 100 
11 0 0 

Table 14. Results of cross 1 unfed green (algae added, 

unfed) treatment experiment 2, trial" 2 showing day after 

hatch, percent survival, percent of daily sampling with food 

in gut. %8 for percent survival. %F for percent of daily 

sample which had food in gut. DAH for day after hatch. 

Table 14 
Cross #1, experiment 2 I trial 2, control algae. 
Bowl mumber 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 0 100 0 99 0 100 0 100 0 
4 99 0 100 0 98 0 100 0 100 0 
5 67 0 81 0 0 0 95 0 
6 0 0 0 
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Table 15. Results of cross 1 unfed clear (no algae added, 

unfed) treatment experiment 2, trial 2 showing day after 

hatch, percent survival, percent of daily sampling with food 

in gut. %8 for percent survival. %F for percent of daily 

sample which had food in gut. DAH for day after hatch. 

Table 15 
Cross #1, experiment 2 I trial 2, control no algae. 
Bowl number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 0 100 40 100 0 98 0 99 30 
4 100 0 99 0 95 0 97 0 98 0 
5 100 0 0 0 0 88 0 
6 2 0 0 
7 0 

Table 16. Results of cross 2 fed green (algae added, fed 

rinsed rotifers) treatment experiment 2, trial 2 showing day 

after hatch, percent survival, percent of daily sampling 

with food in gut. %8 for percent survival. %F for percent 

of daily sample which had food in gut. DAH for day after 

hatch. 

Table 16. 
Cross #2, experiment 2, . trial 2 I Fed green. 
Bowl number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 96 70 97 50 98 90 95 90 98 90 
4 94 40 95 80 94 9·0 93 90 97 90 
5 78 50 92 50 93 90 92 80 95 50 
6 54 60 88 80 90 60 89 90 93 80 
7 46 100 83 60 82 90 85 80 89 100 
8 40 100 60 100 76 100 81 100 87 90 
9 0 53 90 72 90 79 100 86 90 
10 48 100 69 100 76 100 81 80 
11 0 64 100 73 100 76 100 
12 58 90 68 100 70 90 
13 50 90 62 85 64 100 
14 15 100 0 8 100 
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Table 17. Results of cross 2 fed clear (no algae added, fed 

rinsed rotifers) treatment experiment 2, trial 2 showing day 

after hatch, percent survival, percent of daily sampling 

with food in gut. %8 for percent survival. %F for percent 

of daily sample which had food in gut. DAH for day after 

hatch 

Table 17. 
Cross #2, experiment 2, trial 2 I fed-clear. 
Bowl Number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 98 70 99 60 100 60 99 10 99 20 
4 96 70 99 20 99 50 98 0 99 60 
5 89 40 98 50 95 40 94 20 94 60 
6 78 70 88 60 92 70 88 10 72 50 
7 40 70 75 80 50 60 87 100 51 100 
8 31 90 70 75 32 70 0 38 80 
9 24 80 0 23 33 30 70 
10 14 100 0 19 100 
11 0 0 

Table 18. Results of cross 2 clear control (no algae added, 

unfed) treatment experiment 2, trial 2 showing day after 

hatch, percent survival, percent of daily sampling with food 

in gut. %8 for percent survival. %F for percent of daily 

sample which had food in gut. DAH for day after hatch. 

Table 18 
Cross 2, experiment 2, trial 2, clear control. 
Bowl Number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 0 99 0 98 20 98 0 98 0 
4 99 0 98 10 96 0 97 0 96 0 
5 98 0 91 0 91 30 95 0 88 0 
6 94 0 0 82 0 82 0 0 
7 0 0 0 
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Table 19 . Results of cross 2 green control (algae added , 

unfed ) treatment experiment 2, trial 2 showing day after 

hatch, percent survival, percent of daily sampling with food 

in gut. %8 for percent survival. %F for percent of daily 

sample which had food in gut. DAH for day after hatch. 

Table 19. 
Cross 2, experiment 2, trial 
Bowl number 1 2 
DAH %8 %F %8 %F 
3 93 0 94 0 
4 89 0 94 0 
5 85 0 88 0 
6 4 0 1 0 
7 0 0 

Table 20. Results of cross 

2 I green control. 
3 4 

%8 %F %8 %F 
99 0 100 0 
99 0 99 0 
98 0 92 0 

0 82 0 
0 

3 fed green (algae 

5 
%8 %F 
96 0 
94 0 
92 0 
79 0 

0 

added, fed 

rinsed rotifers) treatment experiment 2, trial 2 showing day 

after hatch, percent survival, percent of daily sampling 

with food in gut. %8 for percent survival. %F for percent 

of daily sample which had food in gut. DAH for day after 

hatch. 

Table 20. 
Cross 3, experiment 2, trial 2 I fed-green. 
Bowl number 1 2 . 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 80 100 60 99 40 94 60 100 10 
4 99 60 100 100 98 80 93 60 100 20 
5 98 60 100 100 96 40 92 100 98 80 
6 87 10 95 80 87 60 68 80 87 20 
7 84 40 89 60 70 100 61 100 81 60 
8 77 80 83 80 75 100 54 80 65 80 
9 75 80 81 80 73 80 47 60 61 100 
10 73 100 80 100 69 100 42 100 58 80 
11 70 100 78 100 65 100 37 80 54 80 
12 67 100 76 100 61 80 31 80 49 75 
13 0 73 100 57 100 23 80 0 
14 0 51 100 23 100 
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Table 21. Results of cross 3 fed clear (no algae added, fed 

rinsed rotifers) treatment experiment 2, trial 2 showing day 

after hatch, percent survival, percent of daily sampling 

with food in gut. %8 for percent survival. %F for percent 

of daily sample which had food in gut. DAH for day after 

hatch. 

Table 21. 
Cross 3 I experiment 2, trial 2, fed clear. 
Bowl number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 40 99 0 100 40 99 20 100 10 
4 100 20 99 60 99 40 99 20 99 20 
5 98 60 98 60 94 60 95 40 98 40 
6 62 60 84 80 38 20 47 40 38 60 
7 50 40 74 80 27 40 38 40 28 40 
8 38 100 72 60 20 0 32 0 22 33 
9 31 60 70 80 9 33 0 0 
10 25 100 66 100 0 
11 17 100 63 100 
12 0 59 60 
13 43 60 
14 36 100 

Table 22. Results of cross 3 green control (algae added, 

unfed) treatment experiment 2, trial 2 showing day after 

hatch, percent survival, percent of daily sampling with food 

in gut. %8 for percent . survival. %F for percent of daily 

sample which had food in gut. DAH for day after hatch. 

Table 22. 
Cross 3 I experiment 2, trial 2, green control. 
Bowl Number 1 2 3 4 5 
DAH %8 %F %8 %F %8 %F %8 %F %8 %F 
3 100 0 99 0 99 0 100 0 100 0 
4 99 20 99 0 98 20 98 0 99 0 
5 81 0 98 0 70 0 88 0 88 0 
6 16 0 44 0 12 0 22 0 28 0 
7 0 0 0 0 0 

90 



Table 23. Results of cross 3 clear control (no algae added, 

unfed) treatment experiment 2, trial 2 showing day after 

hatch, percent survival, percent of daily sampling with food 

in gut. %S for percent survival. %F for percent of daily 

sample which had food in gut. DAH for day after hatch. 

Table 23. 
Cross 3 I experiment 2 , trial 2 I clear control. 
Bowl number 1 2 3 4 5 
DAH %S %F %S %F %S %F %S %F %S %F 
3 99 0 98 0 99 0 99 0 100 0 
4 98 0 97 0 98 0 94 0 100 0 
5 90 0 82 0 88 0 80 0 87 0 
6 44 0 32 0 5 0 6 0 26 0 
7 0 0 0 0 0 

EXPERIMENT 3. 

This final trial of the series was conducted from 

February 25 to March 18, 1997. The parental cross was fish 

number 109 (female) crossed with fish number 108 (male) . 

Spawning was on February 25, 1997, 84 Ml of eggs were 

expressed, of which 100% were floating after fertilization. 

Numbers of CFU reported here was obtained by applying three 

10-µl spots of known dilution on agar plates, then averaging 

the numbers obtained. Plating of culture water was done 

every other day beginning on O DAH. In this experiment 

food in gut was not quantified. Disolved oxygen (DO) levels 

were measured and mortalities were counted and removed twice 

daily (just after lights came on in the morning and just 

before they went off in the evening) . Measurement of DO did 

not commence untill 4 DAH due to problems with the meter. 
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Ammonia (measured as ppm NH3-N), nitrite (measured as ppm 

N02-N) and pH were measured every other day beginning on 1 

DAH. Unfed replicate number 1 was discarded when it 

inadvertently became contaminated with rotifers. 

Table 24. Shows results for fed replicate number 1 in 

experiment 3. DAH =Days After Hatch. To make these tables 

easier to read, exponential notation lOx was left out, e.g., 

1.5 -5 equals 1.5 x 10-5. TCBS is thiosulfate-citrate-bile 

salts-sucrose agar which selects for Vibrio spp. No entry 

for any particular day under the agars indicates that there 

were no CFU for that days sample. Mortality on 0 DAH equals 

hatch mortality, mortalities 0-2 DAH was recorded once daily 

in the morning. 

Table 24 
Fed replicate number 1 

Mortality Marine Agar TCBS Agar Ammonia Nitrite DO ppm 
DAH AM PM CFU CFU ppm ppm AM PM 

0 74 1. 6 -5 
1 19 <0.2 
2 0 1.1 -4 3.3 -2 
3 5 0 <0.2 
4 0 0 1. 5 -6 3.3 -2 6.0 5.5 
5 0 1 0.3 <0.05 5.5 6.5 
6 3 1 3.2 -5 5.0 6.5 
7 0 0 0.6 <0.05 5.5 5.5 
8 0 1 3.2 -5 5.0 6.0 
9 1 0 1. 0 <0.05 5.5 5.5 
10 0 0 2.3 -4 5.5 6.0 
11 0 0 0.8 <0.05 5.5 5.0 
12 0 0 2.8 -4 5.0 5.5 
13 0 0 0.8 0.3 5.5 5.5 
14 0 0 6.3 -3 6.0 
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Table 25. Shows results for fed replicate number 2 in 

experiment 3. DAH =Days After Hatch. To make these tables 

easier to read, exponential notation lOx was left out, e.g., 

1.5 -5 equals 1.5 x 10-5. TCBS is thiosulfate-citrate-bile 

salts-sucrose agar which selects for Vibrio spp. No entry 

for any particular day under the agars indicates that there 

were no CFU for that days sample. Mortality on 0 DAH equals 

hatch mortality, mortalities 0-2 DAH was recorded once daily 

in the morning. 

Table 25 
Fed replicate number 2 

Mortality Marine Agar TCBS Agar Ammonia Nitrite DO ppm 
DAH AM PM CFU CFU ppm ppm AM PM 

0 38 2.6 -5 3.3 -5 
1 2 <0.2 
2 0 1. 2 -4 1. 0 -3 
3 2 0 <0.2 
4 1 0 7.0 -5 5.8 5.0 
5 1 0 0.5 <0.05 5.0 6.0 
6 0 0 6.0 -5 5.0 6.0 
7 0 0 0.6 <0.05 5.5 5.5 
8 1 0 1. 5 -5 4.5 5.5 
9 0 1 2.0 <0.05 5.0 5.5 
10 0 0 7.0 -3 5.0 5.0 
11 0 0 0.8 <0.05 5.5 5.5 
12 0 0 1. 2 -2 5.0 5.0 
13 0 0 0.8 0.3 5.5 5.5 
14 0 1. 2 -2 6.0 
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Table 26. Shows results for fed replicate number 3 in 

experiment 3. DAH =Days After Hatch. To make these tables 

easier to read, exponential notation lOx was left out, e.g., 

1.5 -5 equals 1.5 x 10-5. TCBS is thiosulfate-citrate-bile 

salts-sucrose agar which selects for Vibrio spp. No entry 

for any particular day under the agars indicates that there 

were no CFU for that days sample. Mortality on O DAH equals 

hatch mortality, mortalities 0-2 DAH was recorded once daily 

in the morning. 

Table 26 
Fed replicate number 3 

Mortality Marine Agar TCBS Agar Ammonia Nitrite DO ppm 
DAH AM PM CFU CFU ppm ppm AM PM 

0 42 1. 6 -5 
1 9 <0.2 
2 1 8.3 -3 
3 2 0 <0.2 
4 1 0 1. 5 -6 6.0 5.5 
5 0 0 0.4 <0.05 5.5 6.0 
6 1 1 5.1 -5 3.3 -4 5.5 6.0 
7 0 0 0.6 <0.05 5.5 5.5 
8 0 1 5.6 -3 3.0 -2 5.5 5.5 
9 0 0 1. 0 <0.05 5.0 5.0 
10 1 0 1. 2 -2 5.5 5.5 
11 0 0 0.8 <0.05 5.5 5.5 
12 0 0 1. 5 -2 5.0 5.5 
13 0 0 0.8 0.3 4.5 5.5 
14 0 2.5 -2 6.0 
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Table 27 . Shows results for fed replicate number 4 in 

experiment 3. Larvae in this replicate wwere all dead on 12 

DAH. DAH = Days After Hatch. To make these tables easier to 

read, exponential notation lOx was left out, e.g., 1.5 -5 

equals 1.5 x 10-5. TCBS is thiosulfate-citrate-bile salts-

sucrose agar which selects for Vibrio spp. No entry for any 

particular day under the agars indicates that there were no 

CFU for that days sample. Mortality on 0 DAH equals hatch 

mortality, mortalities 0-2 DAH was recorded once daily in 

the morning. 

Table 27 
Fed replicate number 4 

Mortality Marine Agar TCBS Agar Ammonia Nitrite DO ppm 
DAH AM PM CFU CFU ppm ppm AM PM 

0 19 1.4 -5 
1 8 <0.2 
2 8 1. 3 -4 
3 3 0 <0.2 
4 1 0 6.0 -3 6.0 5.8 
5 0 1 0.4 <0.05 5.0 6.0 
6 0 0 4.7 -4 5.0 6.0 
7 0 0 0.6 <0.05 5.5 6.0 
8 3 0 5.6 -3 3.3 -4 5.0 5.5 
9 9 7 1. 0 <0.05 5.5 5.5 
10 3 2 4.6 -4 5.0 5.5 
11 1 0 0.8 <0.05 5.5 5.5 
12 4 0 1. 5 -3 5.5 
13 
14 
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Table 28. Shows results for fed replicate number 5 in 

experiment 3. DAH =Days After Hatch. To make these tables 

easier to read, exponential notation lOx was left out, e.g., 

1.5 -5 equals 1.5 x 10-5. TCBS is thiosulfate-citrate-bile 

salts-sucrose agar which selects for Vibrio spp. No entry 

for any particular day under the agars indicates that there 

were no CFU for that days sample. Mortality on O DAH equals 

hatch mortality, mortalities 0-2 DAH was recorded once daily 

in the morning. 

Table 28 
Fed replicate number 5 

Mortality Marine Agar TCBS Agar Ammonia Nitrite DO ppm 
DAH AM PM CFU CFU ppm ppm AM PM 

0 26 7.0 -4 3.0 -5 
1 14 <0.2 
2 10 2.5 -2 
3 7 1 <0.2 
4 3 0 1. 3 -4 6.0 5.0 
5 0 2 0.6 <0.05 5.5 6.0 
6 0 1 2.1 -3 5.5 5.5 
7 0 0 0.6 <0.05 5.5 6.0 
8 1 0 3.0 -3 5.5 6.0 
9 1 1 3.0 <0.05 5.5 5.5 
10 2 0 1. 2 -2 5.5 5.5 
11 0 0 0.8 <0.05 5.5 5.5 
12 0 0 1. 5 -2 5.5 5.5 
13 0 0 0.8 0.3 5.0 5.5 
14 0 2.4 -2 6.0 
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Table 29. Shows results for unfed replicate number 2 in 

experiment 3. DAH =Days After Hatch. To make these tables 

easier to read, exponential notation lOx was left out, e.g., 

1.5 -5 equals 1.5 x 10-5. TCBS is thiosulfate-citrate-bile 

salts-sucrose agar which selects for Vibrio spp. No entry 

for any particular day under the agars indicates that there 

were no CFU for that days sample. Mortality on 0 DAH equals 

hatch mortality, mortalities 0-2 DAH was recorded once daily 

in the morning. 

Table 29 
Unfed replicate number 2 

Mortality Marine Agar TCBS Agar Ammonia Nitrite DO ppm 
DAH AM PM CFU CFU ppm ppm AM PM 

0 28 1. 2 -3 3.0 -5 
1 9 <0.2 
2 0 1. 2 -2 3.0 -4 
3 2 0 <0.2 
4 0 0 2.5 -2 3.0 -4 6.0 6.0 
5 1 3 <0.2 5.0 6.5 
6 0 2 4.8 -2 5.5 7.5 
7 1 4 <0.2 5.5 6.5 
8 6 5 2.2 -2 5.5 6.0 
9 24 11 3.0 <0.05 5.0 5.5 
10 5 2.9 -2 5.5 

Table 30. Shows results for unfed replicate number 3 in 

experiment 3. DAH =Days After Hatch. To make these tables 

easier to read, exponential notation lOx was left out, e.g., 

1.5 -5 equals 1.5 x 10-5. TCBS is thiosulfate-citrate-bile 

salts-sucrose agar which selects for Vibrio spp. No entry 
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for any particular day under the agars indicates that there 

were no CFU for that days sample. Mortality on O DAH equals 

hatch mortality, mortalities 0-2 DAH was recorded once daily 

i n the morning. 

Table 30. 
Unfed replicate number 3 

Mortality Marine Agar TCBS Agar Ammonia Nitrite DO ppm 
DAH AM PM CFU CFU ppm ppm AM PM 

0 45 1. 7 -3 
1 19 <0.2 
2 5 1. 9 -2 6.0 -4 
3 2 2 <0.2 
4 0 0 2.9 -3 6.5 6.0 
5 2 1 <0.2 6.0 6.5 
6 2 2 9.0 -4 6.0 6.5 
7 0 2 <0.2 6.0 7.0 
8 17 17 1.4 -3 6.0 6.0 
9 14 <0.2 6.0 

Table 31. Shows results for unfed replicate number 4 in 

experiment 3. DAR= Days After Hatch. To make these tables 

easier to read, exponential notation lOx was left out, e.g., 

1.5 -5 equals 1.5 x 10-5. TCBS is thiosulfate-citrate-bile 

salts-sucrose agar which selects for Vibrio spp. No entry 

for any particular day under the agars indicates that there 

were no CFU for that days sample. Mortality on 0 DAR equals 

hatch mortality, mortalities 0-2 DAH was recorded once daily 

in the morning. 
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Table 31. 
Unfed replicate number 4 

Mortality Marine Agar TCBS Agar Ammonia Nitrite DO ppm 
DAH AM PM CFU CFU ppm ppm AM PM 

0 27 2.0 -3 3.0 -5 
1 14 <0.2 
2 0 8.0 -3 3.0 -4 
3 2 0 <0.2 
4 0 0 6.0 -3 3.0 -4 6.0 6.5 
5 1 0 <0.2 6.0 7.5 .L 

6 0 0 5.9 -2 6.0 7.0 
7 0 6 <0.2 5.5 7.0 
8 1 12 3.3 -2 5.5 6.5 
9 35 3 <0.2 5.5 6.0 
10 4 4.5 -2 6.0 

Table 32. Shows results for unfed replicate number 5 in 

experiment 3. DAH = Days After Hatch. To make these tables 

easier to read, exponential notation lOx was left out, e.g., 

1.5 -5 equals 1.5 x 10-5. TCBS is thiosulfate-citrate-bile 

salts-sucrose agar which selects for Vibrio spp. No entry 

for any particular day under the agars indicates that there 

were no CFU for that days sample. Mortality on 0 DAH equals 

hatch mortality, mortalities 0-2 DAH was recorded once daily 

in the morning. 
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Table 32. 
Unfed replicate number 5 

Mortality Marine Agar TCBS Agar Ammonia Nitrite DO ppm 
DAH AM PM CFU CFU ppm ppm AM PM 

0 31 1. 0 -3 
1 6 <0.2 
2 3 1. 2 -2 1. 0 -3 
3 4 0 <0.2 
4 0 3 1. 6 -3 6.0 6.5 
5 0 0 <0.2 5.5 7.0 
6 0 3 2.9 -2 6.0 6.0 
7 0 0 <0.2 5.5 7.0 
8 6 8 5.8 -2 5.5 6.5 
9 32 3 <0.2 5.5 6.0 
10 3 6.9 -2 6.0 

Table 33. Shows results for bacterial testing of rotifer 

and alga cultures, and negative control in experiment 3. 

DAH = Days After Hatch. To make these tables easier to read, 

exponential notation lOx was left out, e.g., 1.5 -5 equals 

1.5 x 10-5. TCBS is thiosulfate-citrate-bile salts-sucrose 

agar which selects for Vibrio spp. No entry for any 

particular day under the agars indicates that there were no 

CFU for that days sample .. 

Table 33. 
Background and introduced 

Rotifer culture 
bacteria 

DAH 
0 
2 
4 
6 
8 
10 
12 
14 

Marine agar TCBS 
2.0 -5 
5.6 -3 
3.9 -2 
1.0 -2 
3.1 -2 
6.3 -4 
2.5 -2 
7.6 -3 

1.3 -3 
5.6 -3 
2.6 -3 
1.3 -3 
3.0 -3 
2.0 -3 

Algae culture 
Marine agar 

100 

3.2 -2 
1.1 -4 
3.0 -3 
4.6 -2 
3.7 -4 
3.7 -2 
3.5 -2 

Blank 
Marine agar 

5.3 -3 
2.1 -3 
4.6 -4 
3.1 -2 
2.5 -2 
7.3 -3 
7.0 -3 
1.1 -2 



APPENDIX III 
STATISTICAL FORMULAS TABLES AND GRAPHS 

Omega squared: 

w2= SSA- (a-l)MSsh 

SSTota1+MSs1A 

The general linear model for the ANOVA: 

Coefficient of Variation: 

CV= SD XlOO 
Mean 

Experiment 1, trial 1, ANOVA of cross on survival at 10 DAH, 
without controls included. 

Source 
Cross 
Error 
Total 

SS 
4108.67 
7940.00 

12048.67 

DF 
3 
8 . 
11 

MS 
1369.56 

992.50 

F-Ratio 
1. 38 

p 

0.317 

Experiment 1, trial 1, regression of average of food in gut 
during daily sampling on days when larvae were alive, on 
survival at 10 DAH, controls not included. 

2 Y = -11.420 + 0.833X. r = 0.24. 

ANO VA 
Source SS DF MS F-Ratio p 

Regression 2853.50 1 2853.5 3.103 0.109 
Residual 9195.18 10 919.52 
Total 12048.67 11 
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Experiment 1, trial 2, ANOVA of cross on survival at 10 DAH, 
without controls included. 

Source 
Cross 
Error 
Total 

SS 
1010.29 
2410.67 
3420.95 

DF 
6 

14 
20 

MS 
168.38 
172.19 

F-Rat io 
0.978 

p 

0.48 

Experiment 1, trial 2, regression of average of food in gut 
during daily sampling on days when larvae were alive, on 
survival at 10 DAH, controls not included. 

2 Y = -3.56 + 0.108X. r = 0.14. 

ANO VA 
Source SS DF 
Regression 476.07 1 
Residual 2944.88 19 
Total 3420.95 20 

Experiment 2 I trial 1, ANO VA 
without controls at 10 DAH. 

Source SS DF 
Algae 150.22 1 
Rinsed 336.01 1 
Interaction 115.31 1 
Error 15631.00 15 
Total 16232.542 18 

Experiment 2, trial 1, ANO VA 
without controls at 14 DAH. 

Source SS DF 
Algae 1235.01 1 
Rinsed 48.19 1 
Interaction 2155.11 1 
Error 21692.00 15 
Total 25130.31 18 

of 

of 

MS 
476.07 
154.99 

algae 

MS 

and 

150.22 
336.01 
115.31 

1042.07 

algae and 

MS 
1235.01 

48.19 
2155.11 
1446.13 
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F-Ratio p 

3.07 0.10 

rinse on survival 

F-Ratio p 

0.14 0.71 
0.32 0.58 
0.11 0.74 

rinse on survival 

F-Ratio p 

0.85 0.37 
0.03 0.86 
1. 49 0.24 



Experiment 2, trial 1 , clear water treatments regression of 
average food in gut of daily sample (when survival was 
greater than zero) and survival at 10 DAH. 

Y = -23.07 + 1.40X. r 2= 0.39. 

AN OVA 
Source SS DF MS F-Ratio p 

Regression 955.73 1 955.73 5.05 0.06 
Residual 1515.18 8 189.40 
Total 2470.90 9 

Experiment 2, trial 1, green water treatments regression of 
average food in gut of daily sample (when survival was 
greater than zero) and survival at 10 DAH. 

2 Y = 374.08 + -3.40X. r = 0.05. 

AN OVA 
Source SS DF MS F-Ratio p 

Regression 702.19 1 702.19 0.38 0.56 
Residual 12934.03 7 1847.72 
Total 13636.22 8 

Experiment 2, trial 2, AN OVA of algae and rinse on survival 
without controls at 10 DAH. 

Source SS DF MS F-Ratio p 

Cross 4243.47 2 2121.73 3.642 0.04 
Algae 8036.03 1 8036.03 13.79 0.00 
Interaction 3144.27 · 2 1572.13 2.70 0.09 
Error 13982.40 24 582.60 
Total 29406.17 29 

Experiment 2, trial 2, AN OVA of algae and rinse on survival 
without controls at 14 DAH. 

Source SS DF MS F-Ratio p 

Cross 673.27 2 336.63 2.48 0.10 
Algae 124.03 1 124.03 0.92 0.35 
Interaction 73.27 2 36.63 0.27 0.77 
Error 3254.80 24 135.62 
Total 4125.37 
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Experiment 2, trial 2, clear water treatments regression of 
average food in gut of daily sample (when survival was 
greater than zero) and survival at 10 DAH. 

2 Y = -14.30 + 0.51X. r = 0.33. 

AN OVA 
Source SS DF MS F-Ratio p 

Regression 1624.80 1 1624.80 6.42 0.03 
Residual 3289.60 13 253.05 
Total 4914.40 14 

Experiment 2, trial 2, green water treatments regression of 
average food in gut of daily sample (when survival was 
greater than zero) and survival at 10 DAH. 

2 Y = -38.86 + l.15X. r = 0.44. 

ANO VA 
Source SS DF MS F-Ratio p 

Regression 7219.07 1 7219.07 10.16 0.01 
Residual 9236.66 13 710.51 
Total 16455.73 14 

Clear water treatments (no algae added) all experiments, 
regression analysis of percentage of good eggs at time of 
fertilization on survival at 10 DAH. · 

2 Y = 0.27 + O.OX. r =0.003. 
ANO VA 
Source 
Regression 
Residual 
Total 

SS 
0.003 
1. 09 
1.10 

DF 
1 

11 
12 
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MS 
·o. 003 
0.10 

F-Ratio p 

0.032 0.86 



Green water treatments (algae added) all experiments, 
regression analysis of percentage of good eggs at time of 
fertilization on survival at 10 DAH. 

y 0.71 -0.002X. 2 = + r =0.02. 
ANO VA 
Source SS DF MS F-Ratio p 

Regression 0.004 1 0.004 0.05 0 . 84 
Residual 0.26 3 0.09 
Total 0.27 
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Figure 1. Experiment 1 trials 1 (upper graph)& 2 (lower 
graph) . Average food in gut during daily sampling (when 
survival was greater than zero) on the X axis, survival 
percentage at 10 DAH on the Y axis. 
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Figure 2. Experiment 2 trial 1, clear water treatments 
(upper graph) and green water treatments(lower graph). 
Average food in gut during daily sampling (when survival was 
greater than zero) on the X axis, survival percentage at 10 
DAH on the Y axis. 
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Figure 3. Experiment 2 trial 2, clear water treatments 
(upper graph) and green water treatments(lower graph). 
Average food in gut during daily sampling (when survival was 
greater than zero) on the X axis, survival percentage at 10 
DAH on the Y axis. 
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