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ABSTRACT 

A heuristic scheduling routine was developed in this study 

for scheduling the activities of a project-network. The objectives 

of the scheduling process are to minimize the daily allocation of 

resources, satisfy constraints on the availability of resources, and 

achieve total completion of the project within a given due date. 

Since this type of a problem is a large combinatorial one, an 

analytical solution is almost impossible, and always impractical, 

even for small project-networks. 

The scheduling procedure developed in this study consists of 

a series of computations and heuristic decisions based on functional 

properties of the networks and assembled into a logical sequence of 

steps designed to originate successive schedules that converge toward 

the optimal or near-optimal solution. 

The heuristic scheduli:Q.g routine was tested with several 

artificially prepared project-networks for which the optimal solutions 

were already kriovm. Either the originally prepared optimal schedules 

or resource equivalent ones were obtained. 

The solution of this problem will find real-life applications 

in the maintenance functions of varying industrial organizations, and 

in the construction industry among others. 
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I. INTRODUCTION 

In 1957 a team 0f engineers and mathematicians. from Du Pont 

·and Sperry Rand Corporation developed a planning, scheduling, and 

control technique that became known as the Critical Path Method 

(CPM). At about the same time, the U.S. Navy Special Projects 

Office, working with a firm of management consultants and witl'J 

Lockheed" developed a management control system that was used suc­

cessfully for coordinating the work of some 3,000 contractors, 

suppliers, and government agencies involved in design, development, 

and fabrication of Polaris missiles under the Navy-'s Fleet Ballistic 

MisBiles. Program; this control system was named PERT (Program 

Evaluation and Review Technique) and proved to be so successful that 

the Navy credited it for advancing the completion of the Polaris 

program by more than two years .. 

Originally, PER.T's me-:thodology was probabilistic due to the 

uncertainty of the time estimates for the duration of the activities 

involved in the Polaris program. On the other hand, CPM's method­

ology was deterministic, which is understandable since CPM was de­

veloped in an environment dominated by construction engineering and 

maintenance activities where time estimates are :fairly well defined 

by experience., As actually practiced today, however, either method­

ology can use the probabilistic as well as the deterministic model, 

and neither one seems to be overwhelmingly superior to the other. 

1 



PER'I1 and CPM are widely used project-network planning and 

scheduling techniques. Both make use of the fimdamental approach 

of di vidin.g the project into two kinds of basic e-lements: 

2 

activities or time consuming elements, and events or time points 

defined as the start or the end of an activity. The project is 

represented graphically by a. "network" of arrows and circles show-

ing the time-precedence relations of the activities and events. 'Ihe 

"critical path" is found by special calculations depending only on 

the time-precedence relations of the activities and events and is 

defined a .s the longest time consuming chain of activities and events 

connecting the start event and the end event of a given project­

network. The length of the critical path also represents the mini­

mum time needed to complete the project; e .. g.: the 11earliest project 

completion time" is determined by the critical path. The problem of 

scheduling a project is actually concerned with the determination of 

the starting date and the finish date of each activity in the project. 

Since the earliest starting time, earliest finish time, latest start­

ing time,_ latest finish time·, activity slack timet and other related 

information are obtained through PERT-CPM computations, it is fairly 

easy to obtain an initial schedule of the project , simply by 

scheduling the activities without disrupting the time-precedence 

relations embedded in the network. 

PERT-CPM techniques have proved to be very useful when the 

major concern is on the variable time, and when it can be assumed 

that there is an infinite availability of resources and an open 

budget. However, these assumptions are not always valid. 
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From the very beginning of the development of PERT-CPM 

tecbniques, there have been suggestions to extend the general 

utility of network plann~ and scheduling by including other vari-

ables besides time. The major concerns were with the problems of 

time-cost tradeoff, and of scheduling with limited resources. 

Project time-cost tradeoff
18

'
26 

is the problem of determining the 

cost of reducing the project completion time by "crashing" a select-

ed combination of activities. Crashing an activity means reducing 

its duration, usually accomplished by allocating more resources to 

this activity. 

Project scheduling with limited resources comprises two problems: 

the first one consists of the allocation of resources to the activities, 

on a day-by:~ay basis, up to the limit of available resources, trying 

to find the earliest project completion time that still satisfies the 

resource constraints; the second problem is finding a schedule that 

minimizes the daily resource allocations and at the same time completes 

the project within the given due date. This second problem is most 

commonly lmown as the "resource leveling problem" of project scheduling 

with limited resources. 

Insofar as is lmown, no generalized analytic technique has 

proved to be successful in solving a generalized problem of project-

network scheduling with limited resources, and only "heuristic" 

techniques applied to varying situations are widely used in practice. 

A heuristic is a guide or a method of reducing search in a problem 

solving situation; the phrase "rule of thumb" is often used 

synonymously with "heuristic". 



4 

The following definitions and/or assumptions are given to form 

a basis for the statement and formulation of the problem of leveling 

resource allocations when scheduling large project-networks. How­

ever, more definitions and/or assumptions might be given later on, 

as a part of the text, when deemed necessary. 

1. The project is a "one time project-network with limited 

resources", which means that: 

1) once the project is started it will be continued without 

interruption until its total completion is achieved, 

2) the project can be represented by a network showing the 

time-precedence relations of its activities and events, 

·3) the project may require several kinds of resources, but 

at least one kind is subjected to availability constraints, 

4) there is no exchange or sharing of allocated resources with 

another project being executed during the same period of 

time by the same company or by an affiliate company. 

2. The variable time (t) is considered .to be an integer variable 

expressed in days (time-units). 

3. "Resources requirements" of an activity (or project) stand for 

the daily amounts of resources that are needed for its success­

ful completion, "resources availability" refers to the pools of 

available resources from which the resources requirements can 

be satisfied, and "resources allocations" refer to the amount 

of resources drawn from the pools of available resources and 

assigned to scheduled activities on a day-by-day basis. 

4. Each activity behaves like a complete and separate entity within 
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the network, that is: 

1) once the activity is started it has to be continued 

until its completion is achieved, 

2) any activity requires the same amount of resources 

during any day of its entire duration, 

3) resuurce requirements of one activity may or may not be 

equal to the resource requirements of another activity. 

4) amounts of resources allocated to one activity cannot be 

allocated to another activity during the same day. 

5. The duration and daily resource requirements of all activities 

in the network have been calculated through time-cost tradeoff 

computations and can be considered as fixed values. 

6. The total amount of resources allocated in any day is equal 

to the surmnation of the individual resource require~ents of 

all the activities scheduled on the same day. 

Statement of the Problem 

The problem to be solved in this thesis is the following: 

"To find a schedule for the activities of a project-network 
that minimizes the daily allocations of resources, satisfying 
stated constraints on the availability of resources, and 
achieving total completion of the project within a given due 
date." 

The problem as stated above represents a restricted version of 

the problem of project scheduling with limited resources; restricted 

because we are interested mainly in minimizing peak resource alloca-

tions within a given project due date (e.g., resource leveling problem), 
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even if it means to idle some of the available resources; this is 

what makes our problem different from an allocation problem where 

the main interest is to obtain the earliest project completion by 

allocating all available resources to suitable subsets of activities, 

in a day by day bas-is, until all activities are scheduled. 

Some heuristic techniques have been developed for the solution 

* of related problems which could give a solution to our problem, but 

the last word is not yet in on project scheduling with limited re-

sources, and continued research leading to the development of new 

approaches will help to measure the worth of the various scheduling 

rules that have been suggested.. We are sa.f'e in saying that new 

heuristic techniques in this area will be, in fact, valuable for the 

final development of an analytical solution in the future .. 

Mathematical Formulation of the Problem 

First we define the required variables and parameters, then we 

give the formulation of the objective function, and finally we present 

the integer programming formulation of our problem. 

* These problems are discussed at the beginning of Chapter III. 
The techniques available in the open literature, and which are 
interesting to us, are also presented in Chapter III. 
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Definition of Variables and Parameters 

1. t = 1,2,3, .•• ,t n integer variable representing days of 

schedule; where t is the project completion day, e.g., n 
th 

the n day of schedule. 

2. td is a parameter representing the fixed project due date. 

3. 

4. 

5. 

j = 1,2,3, ••. ,a integer variable representing activities' 

identification numbers (.AIN's), where a is the total 

number of activities in the network. 

i 1,2,3, ••• ,g integer variable representing the g kinds 

of resourc e s required by the activities. 

r .. represents the requirements for resource i of activity j; 
lJ 

it is expressed in units of resource per day. 

6. d. represents the duration of activity j expressed in days. 
J 

7. Xjt is an integer variable that is either one or zero: 

8. 

9. 

xjt 1 if the activity j is scheduled during day t· ' 

xjt 0 if the activity j is not scheduled duririg day t. 

Qit is an integer variable representing the total amount of 

resources i allocated during the day t of the schedule. 

K. is a parameter representing the fixed amount of resources 
l 

i available to any combination of activities during any 

day of the schedule. 

10. Since the resource requirements (r .. ) of any activity have to 
lJ 

be satisfied by the resource allocat ion on the schedu le, it 

will always be true that: 



* 

fort= 1,2,3, ••• ,t n 

8 

11. ~ represents the largest current peak allocation of resource 

i on the schedule; that is: 

for any day t. 

Formulation of the Objective Function 

The objective of our scheduling problem is to minimize the 

daily allocations of resources, satisfying the stated availability 

constraints (K. for i = 1,2,3, ••• ,g), and achieving total completion 
l 

of the project within the given due date (td). This objective will 

be accomplished by minimizing the following objective function (O.F.): 

where: 

a 
* O.F. ~ (maximum ~ r .. x.t) . 

°j=l lJ J l 

t 1,2,3, ••• ,t n 

i 1,2,3, ••• ,g 

* Q. < K. 
l - l 



Integer Programming Formulation 
of our Scheduling Problem 

The integer prograrmning formulation presented next would 
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provide an analytic solution to the problem of project scheduling 

with limited resources. We are using here an approach similar to 

that of Bo-wman5 for the job shop problem. 

Integer-Linear Prograrmning formulation: 

a 
mini mLze (maximum I: r .. X ·t). 

j=l lJ J l 

for all and every i 

in the range: t 

subject to the following constraints: 

1,2,3, ... ,g 

1,2,3, ... ,t n 

1) time constraint; project due date is not exceeded. 

2) resource constraints; resources availabilities are not exceeded. 

for any i 1,2,3, ... ,g 

and for any : t = 1, 2 , 3 , ... , t n 

3) All activities will be performed. 

d. 
J 

for any j 1,2,3, ... ,a 



4) No activity will be split. 

X. < d. 
JS - J 

for any j = 1,2,3, ••• ,a 

5) No activity will be started before its predecessors are 

completed; time-precedence relations in the network are not 

broken. 

d X.t < p J -

t-1 
I: 

S=l 
x ps 

where: p any predecessor of j 

for any: t = 1,2,3, ••• ,t n 

and for any j = 1,2,3, ••• ,a 

It should be noted that this integer programming model does 

not allow for crashing or stretching of activities. Also .it does 

10 

not assure the finding of the earliest schedule satisfying the above 

constraints as the Bowman model does (suitable for the resource al-

location problem). It does assure, however, the finding of a 

feasible schedule that completes the project in due date with the 

minimum daily resource allocation (resource leveling problem). 

The large number of variables and equations involved, coupled 

with additional equations and slack variables necessary to assure an 

integer solution, would lead to such computational complexities that 

attempting a solution with this technique is almost impossible, and 
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always impractical, even for a small project. Furthermore, a real 

life project with hundreds of activities will surely exceed the 

capacity of present computers. For the reasons discussed above, 

we can saY that his analytical solution is impractical for our 

scheduling problem. 

The author concentrated his research on developing a 

heuristic routine that, following the formulation given above, 

would originate the best feasible schedule. The author wishes to 

emphasize that the word "best" implies only that we will try to 

find a feasible schedule with the minimum peak resource allocations, 

not just any feasible solution. This best feasible solution cannot 

be assured to be the optimal feasible solution of the scheduling 

problem, because optimal solutions are assured only by analytical 

techniques. However, as we shall see in Chapter III, the heuristic 

routine developed in this study actually originates schedules that 

converge to the optimal schedule, and there is a good chance of 

finding a near optimal schedule if not t~e real optimal one. 

There will be projects for which no feasible solution can be 

found within the given constraints. In this type of situation, we 

have to decide whether to increase the level of available resources 

or to allow some days of project slippage - or perhaps both at the 

same time - to be able to realize the project. "Project slippage" 

(S) stands for the number of days of delay in the completion time 

of a project beyond the corresponding fixed due date. In any case, 

whichever decision we make will originate in unexpected extra cost 

for the project which. must be reduced to a minimum. We say that 
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this extra cost is unexpected, because an efficient management 

usually seeks to set a due date that provides enough flexibility 

to avoid this kind of situation. We are therefore confronted wit h 

the problem, of trading the cost of increasing the level of avail-

able resources against the penalty costs of delaying the comple-

tion of the project. Dollar penalties for delays are common in 

project contracts, especially in the construction industry. 

The heuristic routine, when confronted with this situation 

of no feasible solution, will originate several schedules with 

different amounts of project slippage, so that the project manager 

can decide which one to take. Since the constraint on project 

duration (e.g. project due date) is broken, we need to set another 

constraint that replaces it in the formulation: we need to specify 

a "maximum project slippage" (S ) • 
m 

This new time constraint may 

be posed as follows: 

Alternative time constraints: 

where: 

S 0,1,2, ••• ,S is an integer variable that fixes 
m 

different amounts of project slippage. 

S maximum of project slippage. 
m 



II. LITERATURE REVIEW 

This chapter reviews the various solution techniques that 

have been proposed to solve problems of project-network scheduling 

with limited resources. The review is restricted to the presenta­

tion of the basic concepts and approaches involved in each 

technique (important to our research) as described in the open 

literature. All of these techniques have a common foundation on 

standard PERT-CPM procedures, and are in general heuristic solu­

tions of non-generalized problems. 

Analytic solution to the generalized problem of project 

scheduling with resource constraints has not been successful up 

to the present date because of the following main difficulties: 

1. The large amount of alternatives available for scheduling the 

various activities which leads to a combinatorial problem of 

formidable magnitude, ·even for small sized pro bl ems. 

2. Embedded interdependence of activities as a result of sharing 

the same resources that are rarely known; and even if they 

were known, to incorporate them into the formulation would 

present a major problem. 

3. Some activities can also be split in time, crashed, or extended 

to suit available levels of resources; if we couple them with 

13 
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the possibilities of overtime work and possible substitution 

of resources, we might be invalidating the original estimates 

and complicating the formulation to a point where no meaning-

ful solution is possible. 

1+. Even with a trimmed"!-down formulationt a practical size project 

would probably exceed the capacity of present computers and, 

in any event, would be an inefficient means of solving the 

problem • 

.Analytic formulations of" the line balancing problem42 and of 

the job shop probl-em5 can be transformed to provide analytic forrID.lla-

tions for problems of project scheduling with limited resources, but 

they are interesting mainly from the conceptual standpoint of the 

problems rather than as practical or efficient means of solving them .. 

We are safe in saying that the heuristic techniques aided by the 

computational power of digital computers will continue to contribute 

in an important way to solve some of the complex planning and 

scheduling problems of project management .. . 

Solution techniques for· problems of project-network schedulln-g 

:with limited resources usually take one of the following two forms: 

a.. Resource leveling tecbniques"""-These tecbniques attempt to 

reduce peak resource allocations as much as the time precedenc.e 

relations of the activities and events in the network will 

permit within a given project due date. These techniques are 

usually suitable for use with, or subsequent tot the time/cost 

. 10 26 
tradeoff analysis. ' 

b. Resource allocation techniques--These techniques try to 



allocate all available resources to selected subsets of 

activities on a day-py-day basis, attempting to find the 

earliest project completion time consistent with the stated 

level of available resources. 

15 

In order to easily identify the scope of the problem that each 

technique is aimed at solving, we will further identify them as: 

1) single-project single-resource techniques, 

2) single-project multi-resource techniques, 

3) multi-project single-resource techniques, and 

4) multi-project multi-resource techniques,_ 

whenever necessary. 

Resource Leveling Techniques 

A typical single-project single-resource leveling problem may 

be posed as follows: the critical path through the network has been 

determined and all activities have been tentatively scheduled at their 

earliest start times. When all the activities in the network are 

scheduled at their earliest start times, we say that we have an 

"earliest start schedule" for the project. The profile for the daily 

resource allo-cations might appear as in Figure l-A. The problem is to 

level down the peak resource allocations as much as the network will 

perm.it, subject to the constraint on project duration given by the 

project due date (td).. The resource profile for a feasible solution 

schedule might appear as in Figure 1- B. 

Burgess and Killebrew7 suggest a method of comparing alt.ernate 

schedules obtained by sequentially moving, in time, slack activities 
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and computing the resulting resource profiles. The measure of 

effectiveness is the sum of squares of the daily resource allocations. 

This measure has the property of becoming smaller as the variation in 

resource allocations from day to day becomes smaller. 

They present a computer program for tb.e method and give examples 

of its application for single-projects with one and two resources. 

They point out that the method does not necessarily produce optimal 

solutions and may give different solutions for the same problem if 

different sequences of activities are used as the initial schedule; 

therefore, a large number of alternate schedules must be computed, 

using varying activity orderings. 

Dewitte
12 

presents a computerized resource (manpower) leveling 

procedure developed at Hughes .Aircraft Company. Like the Burgess 

method. 1 it is designed to minimize the variation in resource alloca­

tions from day-to-day by adjusting the start times of slack activities. 

The measure of effectiveness is the absolute deviation of t~e daily 

resource allocations from a calculated project mean level of resource 

allocation. Basically, the method consists of partitioning the re­

source profile into specially-derived intervals and then sequentially 

leveling each interval, revising early start times of successor 

activities where necessary. 

Levy,_ Thompson, and Wiest25 present a method for leveling re­

source (manpower) allocations which is similar in many respects to 

the two methods just described above. Their problem is essentially 

one of multi-project multi-resource. First of all an early start 

schedule, along with total slack values for all activities, is 
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42 Wilson · presents a method designed to produce the minimum amount 

of daily resource allocations required to achieve a given project due-

date. Instead of the random choice, he incorporates a dynamic pro-

gramming scheme at each iteration to determine feasible subsets of 

activities to be moved. However, he makes the simplifying assumption 

that each activity requires one unit of the same kind of resource, 

and that each activity can be interrupted and started again without 

penalty. This latter assumption is expressed by subdividing the 

activities into "tasks" that have a duration equal to one unit of time. 

The method is simple to use for small projects but becomes cumbersome 

as the number of events and activities in the network increases. Even 

though his method would be easy to program for machine operation, 

Wilson does not discuss it. 

In addition to this single-project single-r·.esource solution 

technique, Wilson also presents an interesting comparison of the 

resource leveling problem in networks with the assembly line balancing 

problem. 

Black3 presents a technique similar to Wilson's technique just 

presented above. Black uses the approach of subdividing the activities 

into unit time portions, the assumption that activities can be split 

in time, and an adaptation of the line-balancing problem as a base. 

His methodology is based on the Gutjahr-NeIIL.'iauser algorithm for the 

line-balancing problem. It involves generating of feasible subsets of 

activities, and then constructing a new network using the generated 

subsets as activities and stated resource constraints as time-

Precedence relations. This method will produce all feasible solutions 



with respect to given resource constraints.. It is computationally 

most efficient when dealing with the single-project multi-resource 

case, although comparatively speaking it is cumbersome and, in 

present form, computationally prohibitive for large networks .. 

Resource Allocation Techniques 

A typical single-project single-resource allocation problem 

20 

may be posed as follows: the cr.±tical path through the network has 

been determined, as well as the values of the different slack times 

of all the activities in the network. We start by scheduling a 

selected subset of activities during the first day so as to allocate 

all available resources; the rest of the activities are temporarily 

postponed~ We continue scheduling selected subsets of activities on 

a day-by-day basist always revising the previous scheduled days to 

avoid violations of the time-precedence relations in the net work, and 

always trying to allocate all available resources.. The resource 

profile resulting from ten days of scheduling on a thirty-two days 

project may look like that shown in Figure 2-A. We continue with this 

day-by-day allocation with scheduling process until we reach the solu­

tion schedule• whose resource profile may resemble that shown in 

Figure 2-B. 

The essential heuristics of these resource allocation techniques 

are those that determine which activities shall be sbheduled and which 

shall be postponed in any day of this progressive scheduling process. 

The approach most frequently used is to use activities' slacks as a 

basis of priority, scheduling first those activities which are most 

critical. 
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Kelley23 presents a method which is in many respects similar to 

that presented by Burgess7 for the resource leveling problem.. Kelley 

8uggests parallel and serial routines 'for :finding the shortest schedule 

of a single-project subject to stated multi-resource col}.straints. The 

major difference between these routines and that of Burgess, is that 

activities can be split if necessary and also crashed or extended in 

duration,_ with a corresponding increase or decrease in their resource 

requirements .. The solution schedules obtained with Kelley's serial 

routine are dependent on the order in which activities are scheduled, 

and in some cases this is also true of the parallel method. There­

fore he suggests repeating the scheduling procedures with various 

activities orderings. He also discusses additional refinements of the 

scheduling procedure, such as the use of a "threshold" resource require-

ment (minimum resource allocation needed to start an activity), which 

would increase the practical utility of his technique. He also 

describes a computer program which can handle four kinds of resource 

per activity _and up to nine kinds of resour9e for the entire project. 

Moder and Phillips34 present a routine which is not as flexible 

as the Kelley routine just presented above, in respect to splitting 

activities and changing their durations; but which will give the best 

obtainable results on a single pass. Attributed to G. H. Brooks of 

Purdue University, this method in some cases will produce a shorter 

duration schedule than the Kelley routine. Details of the routine 

and examples of its application are given in the cited reference. 

Lambourn~4 and Moshman, Johnson, and Larsen,33 present a multi­

proj.ect multi-resource allocation technique which is known as RAMPS 
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("Resource Allocation and Multi-Project Scheduling"). RAMPS is a 

computerized method designed to handle several projects simultaneous­

ly and schedule each activity so that project due dates are achieved 

and "idle resources" are minimized subject to stated resource con­

straints. "Idle resources" refers to those available resources which 

have not been allocated during the scheduling process.. .Although 

details of the algorithm are not available, a description of the 

procedure is given in the referenced publications. 

Three sets of input data are required for the activities: 

resource requirements, durations, and cost of splitting one activity 

once it has been started. Also, certain project information is 

required, such as starting date, due date, and dollar-penalty rate 

for project slippage or (alternatively) a project priority rating. 

Finally th~ "scheduling objectives" ill terms of six factors, such as 

work continuity, idle resources, et cetera, must be assigned relative 

weights and will influence the selection of various schedu1~ng possi­

bilities. The program produces two major outputs: a work schedule 

for each project including costs and daily resource allocations,- and 

a summary of total daily allocations classified according to kinds of 

resources._ If the desired schedule for a project is not feasible,. 

the output will indicate this as well as the resource constraint that 

cannot be met. 

Since details of the RAMPS computational -algorithm are not 

available in the open literature, we cannot give an analysis of the 

shortcomings of this tecbnique. However, from the descriptive inform­

ation provided it is most certainly a heuristic system based on 
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juggling slack activities in a manner somewhat similar to techniques 

described previously. As such, it probably does not neeessarily 

produce the optimum schedule for a given problem. 

McGee and Markarian
28 

present a methodology which begins with 

a time-cost tradeoff formulation of the CPM type. Two sets of time-

cost data are required for the activities: a "minimum essential 

effort" (maximum activity duration with minimum resource requirement) 

and a "crash effort" (minimum duration with maximum resource require-

ment). A linear function is assumed to exist between these two 

points. Kinds of resource and constraints on allocations must be 

given for each time interval. .An initial schedule is obtained using 

the "minimum essential effort" values for allocating resources. If, 

for this schedule,, one or more o:r. the constrained levels of resources 

are exceed~d, slack activities are re·scheduled in an attempt to stay 

within the constraints. If this action proves unsuccessful, they 

conclude that the fixed project due date cannot be achieved __ without 

additional resources. If the schedule allocates resources without 

exceeding the constrained levels, a check is made to determine whether 

the project ·completion time (given by this schedule) is equal to or 

less than the fixed project: due date. If the project completion time 

is larger than the project due date, successive crashing of less cost-

ly activities on the critical path is made until the desired due date 

is achieved, always observing that the constrained levels of resource 

are not exceeded., 

To handle several projects simultaneously the "minimum essenti al" 

resource allocation schedule for each project is determined first. 
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Then the values for Si (completion date minus due date for project i) 

are computed.. The project wit h the largest Si value is crashed first 

until it achieves its project due date (S. = o). New comparisons of 
1 

s. are made to determine which project should be crashed next. 
1 

Iterations continue in this fashion until all due dates are met 

(all S. < 0), or until no further allocations are possible becaus.e 
i-

of the resource constraints. 

No computer program is provided for this technique. However, 

McGee and Markarian do provide logic flow charts of the algorithms 

involved in their routine. 

Wiest38- 41 has developed a heuristic technique which he calls 

SPAR-1, and whioh is designed to allocate available resources on a 

day-by-day basis to project activities listed according to their 

early star~ times. His sequential schedule procedure starts by al-

locating resources, on the first day, to activities selected from a 

list of those currently available and sort,ed in order of th~ir total 

slack .. The most critical activities, those .with the smallest amount 

of slack, have the highest probability of being scheduled first, and 

as many of these activities are scheduled as available resources 

permit. Available acti,Vities not scheduled on the first day will be 

tried on the second day and so on, until all activities are finally 

scheduled, yielding a solution to the problem. 

Three sets of data are required for the activities: "normal 

crew size" or normal amount of resources required by the activity,_ 

"maximum crew size'' or the maximum amount of resources needed to 

crash the activity to its mininrum duration, and "minimum crew size" 
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or the minimum amount of resources that still permits the successful 

completion of the activity.. The rules for "crew size" selection are: 

l) If an activity to be scheduled is "critical" (the degree of 

criticality is given by an input parameter), it is placed_ on a 

priority list and given special treatment. 

2) If sufficient resources are available~ the activity is scheduled 

at its maximum crew size .. 

3) If insufficient resources are available, then an attempt is made 

to obtain the required resources by means of the "borrow" and 

"reschedulen routines, which will be described later on .. 

4) If all efforts fail, however, and the activity cannot be 

scheduled even at minimum crew size, then its start date is 

deiayed and will be ·tried for scheduling on the next day .. 

5) Befor e any new activity is scheduled on a given day, all 

activities already scheduled and still active are examined; if 

any of these activities is critical and has a crew si~e less 

than its maximum,. and if resources are available, the acti.v:ity' s 

crew size is increased· as much as possible up to its maximum .. 

6) If an activity requires several kinds of resources, separate 

activities are created for each kind of resource and these 

activities are constrained to start on the same day with the 

same level of resource allocati on - that is, normal, minimum, 

or maximum crew size4!-

Borrow from active activities.--If available resources are not 

sUfficient for scheduling some critical activity, we wi.11 enter into 

a routine that examines currently active activities to see if we can 
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borrow resources from them.. Resources are borrowed from an activity 

onlY when the resultant stretching of the activity will not delay 

the project completion date. 

Reschedule of active activities.--Sometimes a critical activity, 

j; can be scheduled,-if other activities previously scheduled which 

use the same kind of resources had been postponed to a later date. 

This routine scans the list of currently active activities and picks 

out those which could be postponed without delaying the project 

completion date. If sufficient resources can be obtained in this way 

and/or from the borrow routine described above, then activity j is 

scheduled and the necessary adjustments are made in previous alloca-

tions. 

SP.AR-1 is able to accomodate single or multiple projects, 

variable crew sizes, activities that can be split, shift or non shift 

scheduling, and various criteria :functions for evaluating a sc·hedule., 

Probabilistic elements in the program can .lead to different schedules 

with successive applications of the program., then the best of these 

solution schedules can be se1ected. 

SPAR-1 is currently written in. FORTRAN-IV and can handle a 

project with up to 1200 activities, moo events, and 25 kinds of 

resources. 

T. G. :au21 presents an analytic method for minimizing schedule 

duration of a single-project, given a specified availability of a 

single-resource, under the simplifying assumption that each activity 

requires one unit of time and one unit of resource for its completion. 

The method consists of labeling each node (in an activity-on-node 



network) with the value ai = xi + l, where xi is the length of the 

longest path from node Ni to the final node, then grouping M nodes 

at a time, where M is equal to the number of units of resources 

available. The number of such groups is then equal to the minimum 

number of time-units required for project completion. For example, 

Figure 3 shows an activity-on-node network with the calculated ai 

values shown above each node. If there are three units of resource 

available during any time unit (M = 3) , the nodes could be grouped 
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as shown by the broken lines, always giving preference to high values 

of a. in first groupings. Since there are six groupings, the project 
1 

requires six units of time for completion. 

Hu proves in his article that this method, which he calls 

"cutting the longest queue", gives a minimum-time solution schedule 

for completion of all activities. 
I 

Ru's method is very simple to apply for .small networks, but as 

the network increases in size (say for more than twenty acti vities) 

we quickly run into computational complexities. This method could be 

programmed for machine operationt thus increasing the size of the 

networks that could be handled. 

Unfortunately, we cannot say that Hu' s method is a practical 

one, because it is very unlikely to find a real-life project-network 

for which his model can be successfully applied, 
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III. SINGLE-PROJECT SThfGLE-RESOURCE SCHEDULING 

We are going to present our scheduling routine as applied to 

the solution of the problem of "leveling" resources (e.g.: mini-

mizing peak resource allocations) in a single-project with single-

resource availability constraint K .• This project should prefer-
1 

ably be completed within a given due date td. If no feasible 

schedule is possible, then management is willing to allow project 

slippage (S) only up to a certain maximum amount of days S , be­m 

cause the penalties that accompany a project slippage larger than 

S become so costly that management would pref er to expend the 
m 

extra money in procuring more units of resource, or possibly not 
\ 

to realize the project at all. Project slippage is any delay in 

the completion of the project beyond the given due date. 

It should be pointed out that this scµeduling routine does 

not necessarily produce the optimal solution schedule of a given 

project-network, but rather a workable near-optimal schedule that 

can be useful for all practical purposes. Only by strict analytical 

methods can one find the optimal solution of a given problem. 

However, because of the extreme computational difficulties 

encountered when attempting an analytical solution in problems of 

this type, only heuristic solutions are in corrnnon use up to the 
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present date. The solution techniques available in the open 

literature have been discussed in Chapter II. Heuristic is a 

synonym for "rule of thumb". 

Having done these preliminary observations, let us proceed 

with the step-by-step explanation of the scheduling routine: 

Step A. Planning the project 
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Planning is the process of analyzing the project, breaking it 

down into elementary operations (activities) necessary for its success-

ful completion, and finding the technological time-precedence order in 

which these elementary operations must be done. There must be a state-

ment of the starting date and the due date of the project, whether 

derived internally or imposed by the customer. One must also define 

the objectives of the project and its limitations. Each activity must 

have an estimated "duration" or performance time, coupled with its 

"resource requirements" or amounts of each kind of resource !hat the 

activity needs for its successful completio~ in the given duration. 

The project is then represented graphically by a "network" of 

arrows and circles that shows the technological time-precedence rela-

tions of its activities and events. The longest time-consuming chain 

of arrows and circles determines the "earliest project completion time" 

and receives the name of "critical path". 

The events are assigned identification numbers in such a way so 

as to prevent two events from having the same number and also taking 

care that any activity connecting two nodes always goes from a lower 

event number to a larger event number. Each activity can now be 

identified by these two event numbers as: A p,q' where p stands for 
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the identification number of its starting event and q stands for the 

identification number of its ending event, and where p is always less 

than q. 

The planning process ends with the final listing and tabulation 

of the data. It is recormnended that the following method of identify-

ing events and activities be used, because it will help to simplify 

the retrieval of data for future scheduling computations: 

1. The events are assigned the identification numbers (EIN's): 

1,2,3, ••• e; so that the largest identification number e is 

assigned to the ending event of the project and is also equal to 

the tot al number of events in the network. 

2. The events' identification numbers are already identifying the 

activities, in an implicit way, through the A notation p,q 

expl<3;ined before. However, the activities are going to be 

identified in an explicit way, after they are listed as follows: 

first, we group the activities according to their p ev:: nts; 

second, we list the activities within .each group, in ascending 

order, according to their q events; 

third, we obtain the total list of activities by writing one 

group after the other, in ascending order, according to the p 

events; 

fourth, we go through the list of activities assigning the 

identification numbers (AIN's): 1,2,3, ••• ,a; so that the 

largest activity identification number a is also equal to the 

total number of activities in the network. 
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Calculation of network characteristics 

The data listed and tabulated in the planning step may not be 

complete for our scheduling purposes. We need to compute or obtain 

the following information: 

For each activity .--Total slack,_ free slack, independent slack, 

safety slack, whether it belongs to the critical path or not, whether 

it is a dummy activity or not, and the a.mount of "mobility" that each 

activity has as compared to the mobility of all the other activities 

in the network (to be measured by the "index of mobility" values); 

also the earliest start, earliest finish, latest start, and latest 

finish, if they had not been calculated during the planning step. 

For each event.--Earliest time, latest time, slack time, and whether 

it belongs to the critical path or not. 

For the netymrk.--Earliest project completion time (obtained by 

calculating the critical path), project slack, project due date, 

maximum project slippage, maximum resource availability per ~it of 

time (K.), total number of activities, and total number of events. 
J. 

All these characteristics of .the project-network will be used, in one 

way or another, during the scheduling procedures of our routine; and 

therefore it is of the utmost importance to obtain their values before 

we start the scheduling procedures of the following steps~ 

The definitions and computation algorithms of these network 

characteristics can be found in almost any textbook dealing with net-

work planning and scheduling, because they form part of the standard 

terminology and computations of PERT-CPM techniques. The reader 

interested in obtaining a detailed explanation of these network 



characteristics is referred to Buffa,
6 

Horowitz,
2° Kelley,

23 Levy and 

26 30 34 37 Wiest, Meyer, JYiuth, or Waldron.. However, since the character-

istic of mobility (or flexibility) of the activities is measured in a 

rather different way in this thesis, we shall explain it. 

Mobility of an activity is the property that measures its 

ability of being rescheduled at a later date (or at an earlier date) 

relative to its current position in the schedule and without delaying 

the current project completion time. The mobility of an activity is 

a direct function of its slack times, and is constrained by the cur-

rent positions of' its neighboring activities, the current project 

completion time, and the current level of available resources •. 

We will measure the property of mobility by assigning to each 

one of the activities in the network an index of mobility, 'Which 

will give ~he order of the activities according to the amount of mobil-

ity that each one has,, and also according to the varying degrees of 

difficulty that they have in making use of this property bec.!3-use of 

their position in the network. 

We are presenting next . the algorithm that assigns the index 

of mobility values to each activity in the network: 

Index of mobility assignation algorithm.--

1. Set the index of mobility value (IM) equal to the total number 

of activities in the network (a); that is: 

Set: 

IM= a 

2. Assign the current IM value to one of the non-indexed activ-
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ities and then execute rule 3. The rule to decide which one of 

the still non-indexed activities should be assigned the current 

JN is as follows: 

Assign the current IM value to the non-indexed activity 

that has the largest amount of total slack. If there is a tie 

in total slacks, assign this IM to the activity in the tie that 

has the largest amount of free slack. If there is a tie both 

in total slacks and free slacks, assign this JJVI to the activity 

in the tie that has the largest amount of independent slack. If 

there is a tie in all threei total slacks, free slacks, and 

independent slacks, assign this IM: to the activity in the tie 

that has the largest amount of safety slack. If there is still 

a tie, assign this IM t _o the activity in the tie that has the 

larg~st starting event (event p). If there is still a tie, 

assign this IM to the activity in the tie that has the largest 

ending event (event q). 

This rule will always assign the . current IM value to only 

one activity because even in the case of ties in all slack times, 

it is impossible for two activities in a network to have the same 

starting event and the same ending event. 

3. Since the current IM value had been already assigned to one 

activity (by executing rule 2 above), we .should not assign the 

srune IM value to another activity. Therefore, we decrease by 

one the value of IM before executing rule 4, that is, we set: 

new ]].1; = old JJVI - 1. 



4. Here we simply check the current value .of IM (set by rule 3). 

IM will be equal to zero when all the activities in the net-

work had already been indexed. Therefore our rule here is: 

Return to execute rule 2, if the current IM value is 

larger than zero; if IM is equal to zero, stop the algoritbm. 

It should be emphasized that these index of mobility values 

will remain the same even if we delay the project completion time 

given by the critical path - by setting a tn larger than the tn of 

the early . start schedule - because that action only makes the slack 

times of all activities increase by the same amount of time-units, 

the amount equal to the difference between the current project 

completion time (t ) and the earliest project completion time given n 
' by the critical path (t ). n 

Step c. Iriitial schedule 

We will use as the initial schedule the one in which all the 

activities are scheduled to begin at their earliest start dates -

e.g. the "early start schedule" - simply because it is very easy to 

obtain, since the earliest start and earliest finish dates of the 

activities come straight from the standa~d PERT-CPM calculations. 

Actually any other schedule - any one that is obtained by intuition 

or by scheduling the activities at random - would be as good as the 

initial schedule that we are proposing, provided of course that the 

time-precedence relations in the network are honored. 

The corresponding resource profile of our initial schedule is 
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then obtained by plotting total daily resource allocations against 

time. 

_§:teP D. Selecting activities for rescheduling 

Looking at the resource profile of our initial schedule (a 

typical resource profile of an early start schedule was shown in 

Figure 1-A; page 16 ) , it becomes evident that in order to level down 

the daily resource allocations, we have to cut the peaks and fill in 

the valleys of the profile. Since it is possible to find several 

peaks which have the same height and are the tallest of the profile, 

we have to decide which one of these "highest peaks" will be cut 

first. As a rule of thumb we will always cut the highest peak which 

occurs at the farthest day from the project starting date t ; that 
0 

is, the farthest to the right on the resource profile. 

This peak was selected because it seems to provide a ·s-etter 

chance of being cut than the others. Even if the rescheduling proce-

·~ 

dures explained in the following steps fail to cut this peak, we 

could still force the cutting of this peak by delaying the current 

project completion date. Here again, as in any other heuristic 

decisiqn, we cannot prove · this to be. the optimal choice, we can 

simply say that our decision produces good results and seems to make 

the best of all the available choices. Hereinafter we shall call 

this peak the "right most largest peak" or "RlVILP". 

The RlVILP results from the addition of the resource requirements 

of all the activities scheduled during the same day at which the RMLP 

occurs; th~refore it should be evident that, by rescheduling one of 



these activities to start at a later date, or to end at an earlier 

date, we will cause the reduction of its height (e.g. we will cut it), 

provided of course that the resource requirements of the rescheduled 

activity have a value greater than zero. 

Next we have to decide which one of the activities contributing 

to the height of the RMLP will be rescheduled. It is here that we 

make use of the index of mobility values (IM's) calculated in Step B. 

We list these activities in descending order according to their IM 

values. This listing of the "activities on the RMLP" is needed for 

the scheduling procedures of our routinet as we shall explain in the 

following Step E. 

Step E. Realizing the reschedule of the activities 

When we reschedule one activity while keeping all the others 

momentarily still, we are actually moving this activity along the 

time axis and it is obvious that its resource requirements are also 

moving accordingly, thus changing the resource profile of t he project. 

Furthermoret this activity could be rescheduled at a later date or an 

earlier date from its present position in the project schedu~e; that 

is, th;is activity could be moved forward .- or backward along the time 

axis. The restrictions that we have for rescheduling activities are: 

1. The present position of its starting event (event p) and that of 

its ending event (event q); these events actually behave like 

barriers between which the activity can float freely. 

2. The changes in the resource profile that this rescheduling causes 

should not originate another peak of the same height or of a 
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larger height than that of' the current RMLP. 

The activity should he rescheduled as far away as possible from 

its present position, while filling (resource-wise speaking), the 

lowest valley that it may reach. This action is convenient for 

the future scheduling of other activities, since the mobility of 

the activities is constrained by the height of the current ' RMLP 

and by the current positions of its neighbor activities. If the 

activity cannot be rescheduled at a "better position" - e.g.: 

all the possible rescheduling positions of this activity only 

originate peaks of the same height or larger than the current 

RMLP - we will leave it untouched, and we will say that the 

activity has been rescheduled in its very same position. 

Hereinafter, we shall call "iteration" any successful re­

scheduling , of one activity or group of activities, that cuts the 

height of the current RIYlLP by at least one unit of resource, thereby 

originating a better schedule than the previous one. It sh~uld be 

remembered, however, that the new current RIYJLP could have the same 

height as its predecessor, ii1 case we had several peaks of the same 

height during several different days of our schedule. 

There are two types of iteration: 

Iteration Type I.--Whether rescheduling forward or backward, 

this 'iteration consists of the rescheduling of only one of the 

activities which are currently scheduled during the same day on 

Which the RMLP occurs. The activities are tried for rescheduling 

one by one· in descending order according to their index of mobility 

,Yalues until an iteration is achieved, or until we exhaust all the 



"activities on the RMLP". This type of iteration is bound by the 

three restrictions given above. 

Iteration Type II .. --When rescheduling forward, this itera-

tion consists of rescheduling forward a group of activities, one by 

one in descending order according to their identification numbers 

(AIN's), starting with the activity that has the largest AIN in the 

4o 

network. The largest AIN in our network is "a", which is also ,equal 

to the total numb:(ir of activities in the network, due to the number-

ing system reconnnended in Step A. We continue rescheduling forward 

the activities and updating the position of the events until an itera-

tion is accomplished, or until we have tried. to reschedule forward the 

"activity on the RMLP" that has the lowest AIN number. 

When rescheduling backward, this iteration consists of re-

scheduling backward a group of activities, one by one in ascending 
\ 

order according to their .AIN numbers, starting with the activity that 

has the lowest AIN in the network. The lowest AIN in our network is 

"l", also due to the numbering system reco:rnm~nded in Step A. We 

continue rescheduling backward the activities and updating the position 

of the events until an iteration is accomplished, or until we have tried 

to reschedule backward the "activity on the RMLP" that has the largest 

AIN number. 

During the research phase of this thesis, it was noticed that 

the iteration Type II gives better results when it is released from the-

restriction of "filling the lowest valley that it may reach". It 

turned out to be better to reschedule the activities as far away as 

Possible, but without originating another peak of the same height as 



41 

the current RM.LP_. This type of iteration tends to pack the activi­

ties to either side of the schedule - resource wise speaking - leav­

ing an empty space in the center df the resource profile. We will 

ha.Ve the opportrmity of noticing this action later on, on pages 67 

and 69. 

The following algorithm for trying to obtain an iteration of 

either type contains the heuristic rules that turned out to give 

better results during the research phase of this thesis. We know -

from the execution of the previous steps - the height of the current 

RMLP as well as the day on which it occurs; we also know which activi-

ties are currently scheduled during the same day on which this fil/JLP 

occurs as well as their identification numbers (AIN' s) and their 

index of mobility values (IM' s). 

Rescgeduling algorithm 

1. Set the rescheduling direction as "forward". 

2. Try to obtain an iteration Type I. 

3. If the iteration was achieved, go back to execute Step D 

(explained on page 37) ;. if the iteration was not achieved, 

continue • .. 

4~ Try to obtain an iteration Type II. 

5. If the iteration was achieved, go back to execute Step D; 

if the iteration was not achieved, continue. 

6. Set the rescheduling direction as "backward". 

7. Try to obtain an iteration Type I._ 

8. If the iteration was achieved, go back to execute Step D; if 

the iteration was not achieved, continue. 
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Try to obtain an iteration Type II. 

10. If the iteration was achievedt go back to execute Step D; if 

the iteration was not achieved, continue. 

11. Set the rescheduling direction as "forward". 

12. Try to obtain an iteration Type II. 

If the iteration was achieved, go back to execute Step D; if 

the iteration was not achieved, continue. 

14. Set the rescheduling direction as "backward". 

15. Try to obtain an iteration Type I. 

16. If the iteration was achieved, go back to execute Step D; if 

the iteration was not achieved, continue. 

17. Try to obtain an iteration Type II. 

18. If the it.eration was achieved, go back to execute Step D; if 

the ~ter4tion was not achieved, continue to reschedule back-

ward all the activities of the network - accepting the forma-

tion of peaks with a height equal to the height of the~ current 

RMLP - and then go to execute Step F (.to be explained on 

page 43).. We conclude ·here that no iteration is possible, 

because the current schedule is actually the best schedule 

that our routine can find for the current project completion 

date (Current t ). If we wish to obtain a further minimiza­
n 

tion of the peak resource allocations, we have to delay the 

project completion date.. Whether we can or can not delay the 

project completion date will be determined by the following 

steps. 



43 

SteP F. Utilizing the project slack -
Project slack (PS) is the difference - expressed in days -

between the given project due date (td) and the current project 

completion date tn. According to our assumptions, the time constraint 

for our project can be equally satisfied by any project completion 

date equal to or larger than the earliest project completion date 

' given by the critical path of the network (tn ) provided that the tn 

does not exceed the given td. From the definition of PS, it is 

evident that we might be faced with one of the following three 

situations: 

1. PS is negative.--This is evidently the result of poor manage.-

ment planning, because a rational manager never commits himself to 

realize a project in a shorter time than the earliest project comple-

tion time gi,ven by the critical path of the network. The only action 

that we can take to avoid the corresponding penalties - for this de-

lay of the project completion beyond the agreed td - is to S~§Xt 

"crashing" selected combinations of activities until the new t be­n 

comes equal to or less than tlie given td. Crashing activities usual­

ly leads to an increase in the resource requirements of the crashed 

activities, and since this action is beyond the scope of the assump-

tions given in Chapter I, we will treat any negative PS as if it were 

a positive project slippage (S). The utilization of project slippage 

will be explained and discussed later in Step G (page 45). 

2. PS is zero .--This situation is not adverse from the point of 

view of' our time constraint, since the tn can be equal to td and still 

yield a feasible solution to our problem, provided of course that the 
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height of the RMLP of this solution schedule is equal to or shorter 

th.all the height of the maximum resource availability allowed for the 

project (Ki). 

If the height of the RJY1LP of the so+ution schedule is larger 

than the height of the given Ki, then our solution schedule is not 

feasible - e.g._: the project cannot be realized under the given 

constraints, td and Ki. To be able to realize this project, we have 

to allow some days of project slippage (s), an increase in the height 

of the given K. , or both. 
l. 

3. PS is positive.--This situation is the most advantageous for 

our scheduling objective of minimizing peak resource allocations, 

because it provides more mobility for the activities in the network. 

It is also the most commonly f'ound in real life, because any rational 

manager wil~ seek to set .a project due date that provides him with the 

opportunity of trying several completion dates without having to pay 

penalties for project delays. Contracts usually specify penC!-}..ties 

only for delays beyond an agreed due date. 

The following algorithm summarizes the computations and deci-

sions to be made in this Step F of our scheduling routine; 

1. Determine whether the current PS of the project has a negative, 

zero, or positive value. The formula to be used is; 

Current PS = td - current tn 

If PS is negative or zero,go to execute rule 2; if PS is 

positive, go to execute rule 3. 

2• Consider this negative or zero PS as though it were a positive 

project slippage (S) of the same number of days. That is, set: 
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current S = - current PS 

Then execute Step G ~elow) • 

The number of slack days this positive P.S provides will be used 

to update the values of the folloWing network characteristics 

as shown below~ 

Set: 

new current tn = given td 

new latest time of event P = current latest time of event p + current PS 

for all events': p = l,2,3t ... ,e 

new latest start of activity A = current latest start of activity A + 

current PS 

new latest finish of activity A= current latest finish of activity A + 

current PS 

' for all .activities! A= 1,2,3, ••• ,a 

Then go back to execute Step D (page 37). 

Step G. Utilizing the project slippage and 
publishing the solution schedules 

Project slippage is any delay in the completion date of the 

project beyond its corresponding due date; e.g., when the current pro-

ject completion date t happens to be larger than the given project due 
n 

date td.. The concept of project slippage is closely related to the 

concept of project slack: · it depends entirely on whether the current 

tn is smaller or larger than the given td to call their difference a 

Project slack (PS) or a project slippage (S). That is why we said in 

Step F (page 43), that a negative PS will be considered as if it were 

a Positive S of the same number of days. 



In project contracting, especially in the construction 

industry; it is common to specify penalties for delays beyond an 

agreed due date; e.g., penalties for "project slippage". These 

penalties are usually in the form of monetary fines which increase 

at a much faster rate than a simple linear proportionality. For 
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example, a contract may specify that for the first day of slippage 

the penalty is $1,000.00; for two days, $3,000.00; for three days, 

$6,000.00, .and so on; while in a simple linear proportionality (or 

one-to-one rate), the penalty for three days of slippage would amount 

to $3,000.00. .All this makes the utilization of project slippage 

most undesirable to any rational manager. On the other hand, to 

increase the level of available resources over 911d above the amount 

normally available (e.g., to increase the given K.), is also undesir-
1 

able becaus~ of the cost involved in procuring those extra ~its of 

resources. There may even be cases in which those extra units are 

impossible to procure. 

If a manager is confronted with a project-network for which 

no feasible solution schedule · can be found (e.g., he does not find a 

schedule which completes the project in due time with the available 

resources), he would like to know how the daily resource allocations 

vary in relation to different amounts of project slippage, so that he 

can make a cost evaluation and s.elect the schedule that gives the less 

costly combination of project slippage and incrementation of available 

resources. 

It is also obvious that our troubled manager would be willing 

to allow project slippage only up to a certain maximum number of days 



(ma.ximUJn proJect slippage), before the penalties get so heavy that 
Sm 

he has to accept a large incrementation of available resources, or 

ultimately decide that realization of the project is not worthwhile .. 

The computations and decisions to be made in this $tep G are 

aimed at providing all the alternative solution schedules necessary 

to a manager confronted with a situation .similar to the one outlined 

above. Evidently, if the execution of the previous steps had gene-

rated a feasible solution schedule, we would be publishing only one, 

recognized, "heuristic best solution schedule" .. 

The following algorithm summarizes the computations and deci-

sions to be made in this Step G: 

1. Compare the height of the current RMLP against the height of 

the given Ki. If the height of the current RMLP is larger than the 

height of K., conclude that the resource constraint is not satis-
, J_ 

fied and that the current schedule is not a feasible solution to 

our problem.- Then execut.e rule 3, further below. 

If the height of the current RMLP is equal to or smaller than 

the height of K., conclude that the resource constraint is being 
J_ 

satisfied by the current schedule, and that it might give a 

feasible solution to our problem. Then execute rule 2. 

2. Recall the current value of the project slippage ( S). If the 

current value of S .is equal to - or less than - zero, conclude 

that the time constraint is also satisfied by the current schedule, 

Which is therefore our "heuristic best solution schedule"; then 

publish it and stop all computations. 

If the current value of S is larger than zero, conclude that 
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the time constraint is not satisfied by the current schedule, which 

is there:fore not a feasible solution to our scheduling problem. 

Then execute rule 3. 

Publish the current solution schedule because it gives the 

minimum daily resource allocations for the current t , even though 
n 

it is not a feasible solution to our scheduling problem; also 

rep~rt whether it was failing to satisfy the resource constraint 

Ki' the time constraint td, or both. Then execute rule 4. 

Compare the current value of S against the value of S (maXi~ 
m 

mum project slippage to be allowed for this project). 

If the current S is smaller than the given S , update the fol­
m 

lowing information: 

new current t 
n 

new lat~st time of event p 

current t + 1 
n 

current latest time of event p 

+ 1 

for all events· t p 1,2,3, .... ,e 

new latest start of activity A= current latest start of' activity A 

+ 1 

new latest finish of activity A= current latest finish of activity A 

+ 1 

for all activities : A= 1,2,3, .... ,a 

Then go back to execute Step D (page 37). 

If the current Sis equal to - .or larger than - the given S, 
m 

stop all computations. 

The flow chart given in Figure 4 (page 49) su.rmnarizes the 
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basic logic of our scheduling routine as applied to the solution of 

the problem of scheduling a single-project with single-resource 

leveling. 

Let us find the solution schedule of an example project in 

order to illustrate the application of our scheduling routine. The 

following example project was artificially prepared so as to show 

the main computations and decisions that are made during our search 

for the "heuristic best solution schedule" of this project. 

a.- Figure 5 (page 52) shows the network of arrows and circles that 

represents the activities and events of our example project. As we 

can see, Figure 5 also shows the time-precedence relations of the 

activities and events, as well as the longest time-consuming chain of 

arrows and circles that is known as the "critical path" of the net­

work. 

Table I (page 53) presents our example project-network in 

tabular form. 

b.- Almost all the information obtained in Step B (page 33) should 

actually correspond to the f"inal stage of' the planning process, ac­

cording to the PERT-CPM technique. We created Step B simply to 

emphasize that our scheduling routine requires all the data tabulated 

in Table II (page 57) and Table III (page 59), and also because some 

of the information to be obtained in Step B is not usually obtained 

in a regular PERT-CPM planning process. 

Let us recall our notation, so as to simplify the presentation 

of the computations and decisions to be made from here on. 
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[A:d;r] 
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I/ 

( t 

represents the event whose identification number is p. 

Where p = 1,2,3, ••• ,e; e = 5 .. 
means that activit7 number A has a duration d and 

requires r units of resource per 
= unit of time. 

Where A= 1,2,3, ••• ,a; 

represents a "durrnny" . activity 

a = 8. 

represents an activity that belongs to the critical ir 
path of the network. 

) , d 

For any activity .A , it is always required that p be less 
than q. p,q 

FIGURE 5.--EXAMPIE PROJECT-NE!'WORK 
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....... 
ACTIVITIES = OPERATIONS 

Identification NODES 
Duration Resource Requirements Numbers 

(.A.JJP s) p - q (days) (units .of resource/da"J? 

1 1 -
2 1 -
3 1 -

4 2 -
5 2 -· 
6 2 -

7 -·· 3 -

8 4 -

2 

3 
4 

3 
4 
5 

5 

5 

8 

3 

5 

0 

2 

5 

3 

6 

td = 24 days 

S = 3 days 
m 

7 
2 

4 

0 

0 

6 

1 

6 

K. = 7 units of resource/day 
J_ 

--

Observe that the activities are grouped first according to their 

P events (starting events), and then listed according to their 

q events (ending events). 

TABLE I 

DATA OBTAINED IN THE PLANNilJG STEP 
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p represents any "event" in the network. 

p = 1,.2,3, ••• ,e; 

where e is also equal to the total number of events in the 

network. 

q represents any "successor event" of event p. 

A represents any activity in the network connecting the event p 
p,q 

(its starting event) with the event q (its ending event). For 

simplification, when it is not important to know the starting 

and ending events of the activity A , we shall refer to it 
p,q 

by the "A'' value only. 

Then z A = 1, 2; 3 , ••• , a ; 

where a is also equal to the total number of activities in the 

network. 

d(A) repr~sents the duration of activity A. 

r(A) represents the resource requirements of activity A. 

EI'(p) represents the earliest time that event p can occur. .._ 

LT(p) represents the latest time that event .p can occur. 

ST(p) represents the slack time of event p. 

ES(A) represents the earliest start of activity A. 

EF(A) repre.sents the earliest finish of activity A. 

LS(A) represents the latest start of activity A. 

LF(A) represents the latest finish of activity A. 

TS(A) represents the total slack of activity A. 

FS(A) represents the free slack of activity A. 

IS(A) represents the independent slack of activity A. 

SS(A) represents the safety slack of activity A. 
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IM(A) represents the index of mobility of activity A. 

represents the earliest project completion time given by the 

critical path of the network. 

represents the given due date for our project 

represents the starting date of our project, or day zero. 

PS represents the project slack. 

s represents the current proj.ect slippage. 

represents the maximum project slippage to be allowed for the 

project. 

Then: S is always less than, or equal to, S .. m 

K. represents the maximum level of resources available to any 
1 

combination of activities during any day. 

Let us assume that the values of the following network charac-

teristics had already been obtained in the planning step of _ _our ex-

ample project, because the setting of these values constitutes the 

goal of PERT-CPM planning. 

Then, the given values are: t ' 0 K.' 1 
' 

t ' n all 

d(A)'s, all r(A)'s, all ES(A)'s, all EF(A)'s, all LS(A)'s, all 

LF(A)' s, all ET(p)' s, all LT(p)' s, e, and a. 

The slack times of the activities, events, and project can be 

calculated by the following formulas: 

ST(p) 

TS(A) 

FS(A ) p,q 

IS(A ) . p,.q 

SS(A ) 
P,q 

LT(p) - ET(p) 

LF(A) - EF(A) = LS(A) - ES(A) 

ET(q) - EF(A ) p,q 

ET(q) - d(A ) - LT(p) p,q 

LS(A ) - LT(p) p,q 



The activity A is a dummy if its d(A) is equal to zero. 

The activity A belongs to the critical path of the networkt if 

its TS(A) is zero. 

The event P belongs to the critical path of the network, if 

its ST(p) is zero. 

The index of mobility values of the activities were found by 

following the algorithm given during the presentation of Step B 

(page 34). However, we will calculate some of these IM values in 

order to show the application of this algorithm. 

1. Set: IM= a = 8 

2. The activity that has the largest TS is activity No. 2. 

TS(2) = 10 

Then:. 

IM(2 ) = 8 

3. Set1 new IM = 8 - 1 = 7 

4. Since 7 > o, return to execute rule 2. 

5. The non-indexed activities that have ' the largest TS values are: 

No. 3, No. 4, and No. 7. 

TS(3) = 5; TS(4) = 5J TS(7) = 5. 

Of these tied activities, the activities with the largest FS 

values are: No. 3 and No. 7 

FS(3) 5; FS(7) = 5; FS(4) = O. 

Of these tied activities the activity that has the largest IS 

value is activity No. 3. 

IS(3) = 5; IS(7) o. 
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~ 

ACTIVITIES 

~ 

Ident. Events Resource 
Earliest Times 

Nos .• Duration 
Req's. -

(.A.IN' s) p - q Start Finish ;:t 
-

1 1 2 8 7 0 a ~~ - !;\ 

2 1 - 3 3 2 0 3 
1;i 

l·'I 

3 l - 4 5 4 0 5 ,,:· 

4 2 -3 0 0 8 8 ~ 

5 2 - 4 2 0 8 10 \.' 

~ 
6 2 - 5 5 Q 8 13 

7 3 - 5 3 1 8 11 
~~ 

'~ 

8 4 - 5 6 6 10 16 J) 

·i 

TABLE II 
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-
ACTIVITIES 

,....... 

L~test Tim~s Slack Times Index 
Critical - Path 

Dummy of 
start Finish Total Free Indep. Safety Mobility 

..... 

0 8 0 0 0 0 Yes No 1 

10 13 10 5 5 10 No No 8 

5 10 5 5 5 5 No No 7 

13 13 5 0 0 5 No Yes 5 

8 10 0 0 0 0 Yes No . 2 

11 16 3 3 3 3 No No 4 

13 16 5 5 0 0 No No 6 

10 16 0 0 0 0 Yes No 3 
--

NETWORK CHARACTERISTICS (ACTIVITIES) 



Identification 
Numbers 
(EIN's) Earliest 

1 0 

2 8 

3 8 

4 10 

5 16 
I 

I 

EVENTS 

Times 

Latest Slack 

0 

8 

13 
10 

16 

t 16 days 
n 

t 
d = 24 days 

PS = 8 days 

S = 3 days m 

0 

0 

5 
0 

0 

Critical 
Path 

Yes 

Yes 

No 

Yes 

Yes 

K. 7 uni ts o.:f ·resource/day 
1 

a = 8 activities 

e = 5 events 

T.ABLE III 

NETWORK CHARACTERISTICS (EVENTS .AND PROJECT) 
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Then: 

IM(3) = 7. 

6 Set : new IM = 7 - 1 = 6 • . 
7. Since 6 > o, return to execute rule 2. 

8. The non-indexed activities with the largest TS values are: 

No. 4 and No. 7. 

TS(4) = 5; TS(7) = 5. 

Of these tied activities, the activity with the largest FS 

value is activity No. 7. 

FS(7) = 5; FS(4) o. 

Thent 

IM(7) = 6. 

9. Set : new IM = 6 - 1 = 5 

10. Since .5 > o, return to execute rule 2. 

If we continue the assignation of IM values according to the 

rules of this algorithm, we would find the very same IM values listed 

in Table II (page 57) under the heading "Index of Mobility". We can 

see in Table II that the larger IM .values correspond to the activities 

that have positive slack times, while the smaller IM values correspond 

to the activities on the critical path, which can not be delayed with-

out delaying the current project completion time. The IM values are 

measuring the mobility of each activity with respect to the mobility 

of all the others. 

c.- The in:Ltial schedule for our example project is shown in 

Figure 6 (page 62), together with its corresponding resource profile. 

All the activities and events have been located at their earliest 
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times according to the values given in Table II (page 57) and in 

Table III (page 59); therefore we are using the "early start schedule" 

of the project. The numbers above the horizontal arrows give the fol-

lowing information for each activity: (1) its identification number A, 

(2) its duration d, and (3) its resource requirements r; these para­

meters were put inside the brackets in the following order [A:d;r]. 

The larger dots represent the location of the events whose identifica-

tion numbers are written on the lower right hand side of these dots. 

There should not be any confusion regarding the fact that we have more 

than one dot with a given number, because an event is a time-point and 

as sucht this point becomes a line perpendicular to the time axis on 

our two-dimensional graph. We put one dot on each side of the arrows 

to remember the activities' starting and ending events, and also to 

represent graphically their slack times. t marks the starting date 
0 

of our project, or the beginning of day ,: one. t marks the "earliest n 

project completion time", which for this schedule is also th$ "current 

project completion time" or tn. td marks the given project due date, 

* which is also our time constraint. td marks the latest due date for 

our project, in case we are forced to utilize some "project slippage" 

(S), but only up to the given S or "maximum project slippage'', in m , 

order to satisfy the resource constraint K. or "maximum availability 
1 

of resources" marked by a horizontal-dashed-line on the resource pro-

file. The utilization of project slippage was discussed on page 45 

of this thesis. PS shows the available project slack, and RMLP 

Points out the "right most largest peak" of our resource profile 

the Peak we are going to cut by rescheduling one of the activities 
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currently scheduled during the same day at which RMLP occurs; e.g., 

by rescheduling the activities on the RMLP. This notation will 

also be used in all successive schedules. 

d.- We see from Figure 6 (page 62) that the current RMLP occurs at 

day eleven and that the activities currently scheduled during this 

day are No. 6,. No. 7, and No. 8. It is obvious that in order to cut 

the current RMLP we have to reschedule one of these activities. The 

order in which these activities will be tried for rescheduling is 

given by their corresponding IM values as follows: 

Try to reschedule: 

first, activity No. T, because· IM(7) 6 

second, activity No. 6, because IM(6) 4 

third, activity No. 8, because nvr(B) 3. 

e.- Now, we realize the rescheduling of one of the activities on 

the filJILP by following the rules of the "rescheduling algori thrn'l 

given on page 41. By following the algorithin we obtain an i-t;eration 

Type I when activity No. 7 is reschedule forward. We have then 

obtained the second schedule "(shown in Figure 7, page 64). Notice 

that activity No. 7 was rescheduled as far away as possible, while 

filling the lowest valley that it could reach. .Also notice that the 

height of the new RMLP is equal to the height of the old RMLP 

(Figure 6, page 62) • 

Since we obtained an iteration, we execute Step D again. 

f ·- We determine from Figure 7 (page 64) that the current RMLP 

occurs at day three, and that the activities on the RMLP are activities 

No. 1, No. 2, and No. 3. The order for rescheduling is: 
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first, activity No. 2, because D1(2) 8 

second, activity No. 3, because IM(3) 7 

third, . activity No. 1, because IM(l) = 1. 

g.- By following the rescheduling algorithm given on page 41, we 

see we can obtain an iteration Type I by rescheduling forward acti­

vity No. 2. We have then obtained the third schedule (shown in 

Figure 8, page 66). By comparing the secoricl schedule (page 64) with 

the third, we can notice the old and ' new positions of activity No. 2. 

Since we obtained an iteration, we execute Step D again. 

h.- We can see from the current schedule (Figure 8, page 66), that 

the current RMLP occurs at day twelve, and that the activities on the 

RMLP are activities No .. 6 and No. 8. The list for rescheduling is: 

first, activity No. 6, because IM(6) 4 

second, activity No. 8, because IM(8) 3. 

i.- We follow the rescheduling algorithm (page 4l)and notice that 

neither an iteration Type I nor an iteration Type II can be obtained 

under the current t 
n 

The possible rescheduling positions of 

activity No. 6 do not cut the height of the current RMLP. Activity 

No. 8 cannot even be rescheduled at a different position. The only 

way we could possibly cut the current RlYILP, is by delaying the current 

tn ; that is, by utilizing the available PS. 

j.- We follow the algorithm given oh page 44 and discover a positive 

PS· of ei?bL days; therefore we set the new tn to be equal to the given 

td (24 days) and update the latest times of all events, and the latest 

starting dates and latest finishing dates of all activities, by adding 

eight days (the value of PS) to them. 
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These network characteristics are the only ones that need to 

be updated; all the others remain the same. Once the updating is 

completed, we execute Step D again. 

k.- The current schedule is still the third schedule (Figure 8,. 

page 66), and the list for rescheduling is also the same: 

first, activity No. 6, because IM(6) 4 

second;- activity No. 8, because IM(8) 3. 

1.- We follow the rescheduling algorithm and notice that no itera­

tion Type I is possible; why? because event No. 5 is still positioned 

at the end of day sixteen. Remember that an iteration Type I does not 

change the current position of an event. We continue with the algo­

rithm and discover we can obtain an iteration Type II by rescheduling 

forward activity No. 8; why not reschedule activity No. 6 instead? 

Isn't it true tha~ the IM of activity No. 6 is larger than the IM of 

activity No. 8? NO! Remember that for an iteration Type II, when 

rescheduling forward, w.e select the activities for rescheduling in 

descending order according to their identifi.cation numbers. We have 

obtained, then, the fourth schedule (Figure 9, page 68). By comparing 

the third schedule (page 66) with the fourth, we can notice the old 

and new positions of activity No. 8 and event No. 5. We can also 

notice that our rule of "rescheduling an activity as far away as pos­

sible from its present position" has caused that activity No. 8 be 

rescheduled to begin at its current latest starting date ; therefore 

leaving an empty space on the resource profile. This should not 

bother us at this moment, because the fourth schedule is only an 

intermediate one. If we re-read rule 18 of our rescheduling algo-
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ritbm (page 41), we will remember thatt when no iteration o:f either 

type can be obtained we have to reschedule backward all the 

activities in the network. This rule 18 would not permit an empty 

space in the resource pro:file o:f a solution schedule. Exceptions are 

made in those cases where the technological time-precedence relations 

of the activities and events :force us to schedule one activity that 

does not require any kind o:f resources; :for example, when we have to 

let a cement wall dry before we can start painting it. 

Since we have obtained an iteration, we go back and execute 

Step D again. · 

m •. - We can see see on the current schedule (Figure 9, page 68) that 

the current RMLP occurs at day :five, and that the activities on the 

RMLP are activities No. 1 and No. 3. The list for rescheduling is: 

first, activity No. 3, because IM(3) = 7 

second, activity No. 1, because IM(l) = 1 

n.- We follow our rescheduling algorithm (page 4i) and we notice 

that no iteration Type I can be obtained :fro~ the current schedule 

(fourth schedule, Figure 9, page 68). We continue with the reschedul­

ing algorithm and discover that an iteration Type II can be obtained 

by rescheduling forward the activities No. 8, 7, 6, 5.; 4 and 3. We 

have obtained, then, the :fifth schedule (Figure 10, page 70). By 

comparing Figure 9 with Figure 10, we notice the old and new positions. 

of the activities and events. We can also see how an iteration Type II 

Packs the activities to either side of the schedule trying to leave 

an empty space in the center o:f the resource profile. 

Since we have obtained an iteration, we return and execute 
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Step D once again. 

o.- We can see on the current schedule (Figure 10, page 70) that 

the current filllLP occurs at day eighteen, and that the activities 

on the RlY.ILP are the activiti-es No. 3, No. 5 and No. 6. The list 

for rescheduling is: 

first, activity No. 3, because IM(3) 7 

second, activity No. 6, because IM(6) 4 

third, activity No. 5, because IM(5) 2. 

p.- We follow our rescheduling algorithm (page 41) and notice 

that no iteration Type I or Type II can be accomplished in the for-. 

ward rescheduling direction. Activities No. 3 and No .. 5 are already 

positioned at their latest times, and activity No. 6 would only 

originate peaks of equal or larger height than the current RMLP. We 

continue with the algorithm and notice that an iteration Type I can 

be obtained by rescheduling backward activity No. 3. We have then 

obtained the sixth schedule (Figure 11, page 72). Notice how 

activity No. 3 is filling the lowest valley :that it can reach. 

Since we have obtained ·an iteration, we again execute Step D. 

q.- We can see on the current schedule (Figure 11, page 72 ) that 

the current RMLP occurs at day eight, and that the activities on the 

RMLP are activities No. 1 and No. 2. The list for rescheduling is: 

first, activity No. 2, because IM(2) 8 

second, activity No. 1, because IM(l) 1. 

r .. - By following our r .escheduling algorithm (page ·41) we notice 

that an iteration Type I is obtained by rescheduling forward activity 

No. 2. We have then obtained the seventh schedule (Figure 12, page 73) .. 
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BY comparing Figure 11 with Figure 12 we can notice the old and new 

positions of activity No. 2; we can also notice that activity No. 2 

b.aS been rescheduled as far away as possible from its old position, 

while filling in the lowest valley that it can reach. 

Since we have obtained an iteration, we again execute Step D. 

s.- We can see on the current schedule (Figure 12, page 73), that 

the current RMLP occurs at day twenty-f'our, and that the activities 

on the RMLP are activities No. 7 and No. 8. The list for rescheduling 

is: 

first, activity No. 7, because IM(7) 6 

second, activity No. 8, because IM(8) 3. 

t.- Once again we follow our rescheduling algorithm (page 41) and 

notice that no iteration Type I or Type II can be obtained by re­

scheduling forward. Activities No. 7 and No. 8 are already sched­

uled at their latest times, and event No. 5 cannot be delayed. We 

continue with the algorithm and notice that no iteration Type I or 

Type II can be accomplished by rescheduling backward, because the 

height of the , current RMLP cannot be cut; why? because we would only 

be originating peaks of equal or larger height than the height of the 

current RMLP. We continue with the algorithm until we reach its last 

rule (rule 18, page 42), and since we haven' t been able to obtain an 

iteration, we continue to reschedule backward all the activities of 

the network - now accepting the formation of new peaks with a height 

equal to the height of the current RMLP. The schedule obtained by 

the foregoing procedure ,(Figure 13, page 75), gives the minimum daily 

resource allocations for the current project completion date 
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(current tn = 24 days). By comparing Figure 12 with Figure 13, we 

notice the old and new positions of all the activities and events of 

the network; we can also notice that the height of the new RMLP is 

equal to the height of the old filJILP. These two schedules can be 

considered as equivalent, from the point of view of minimization of 

daily resource allocations; but obviously the last schedule 

(Figure 13, page 75) is much better than the former (Figure 12, 

page 73), because it also gives the earliest start positions of all 

the activiti.es and events, therefore making the allocations on the 

first days of the schedule larger in height than the allocations on 

the last days of the schedule. Since 'no iteration was obtained, we 

continue with our routine to find out whether we should still delay 

the current project completion date (t = 24 days), or stop the 
n 

computations.. In our routine, we are passing f.rom Step E (page 38) 

to Step F (page 43). 

u.- We execute the algorithm given on page 44 , and notice that 

the current PS is equal to zero (because the. current t = 24 days n 

given td). Therefore we set ·the value of the current project slip­

page (S),. as follows: 

current S - PS = O. 

Next, we execute the rules of Step G (explained on page 45 ) • 

v.- Looking at the resource profile of our current schedule 

(Figure 13, page 75 ) , we can see that the height of the current 

RMLP (7 units of resource) is equal to the height of the maximuJn 

resource availability (K. , marked by the horizontal-dashed-line); 
J. 

therefore we conclude that the resource constraint is being 



satisfied by the current schedule. We recall the value of the cur­

rent proj.ect slippage (s) and notice that it is equal to zero; we 
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therefore conclude that the time constraint is also satisfied by the 

current schedule ( tn = 24 days = t d) • Since the curr.ent schedule 

gives the minimum daily resource allocations for the project, and 

also gives the earliest completion date for all activities and events, 

we can name it our · "heuristic best solution schedule" and then stop 

the computations. 

Let us make some observations regarding the given values for 

the resource constraint (K. = 7 uni ts of resource per day), and for 
1 

the time constraint ( t d = 24 days). 

Suppose we had assigned a larger value to K. (K. = 8,9, ••• ). 
1 1 

The heuristic best solution schedule given in Figure 12 would have 

been the same, because K. is only one of our two yardsticks for 
1 -

deciding whether a current schedule is feasible or not. The other 

yardstick is the value given for td. 

Suppose that we had assigned a smaller. value to K. 
1 

(Ki= 6,5,4, ••• units of res·ource). The schedule given in Figure 13 

would not satisfy this smaller K. and therefore would not give a 
J_ 

feasible solution. Then, our routine would tell us to start using 

project slippage - one day at a time - trying to obtain a further 

minimization of the height of the current RMLP. For our example 

Project, we would have obtained the very same schedule (Figure 131 

page 75), because the height of the current RMLP cannot be reduced; 

why? because activity No. 1 alone requires seven units of resource 

Per day. If we look at the schedule in Figure 13~- we can easily see 
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that the current RMLP could be cut by allowing one day of project 

slippage (PS) (activities No. 6 and No. 8 would be rescheduled one 

day later), but we can see that the height of the new RMLP (which 

would occur at day eight) would be equal to the height of the old 

RMLP (the one presently occuring at day fourteen). The only way 

that we could possibly reduce the height of this new RMLP would be 

by extending (as opposed to "crashing") the duration of activity 

No. 1 by X days until this activity No. 1 can be accomplished with 

only six units of resource per day. 

Even though the computations made during the entire execution 

of our scheduling routine are simple and straightforward, we must 

recognize that they are lengthy and too numerous for hand calcula­

tions. A computer program written in FORTRAN rl for the IBM-360 

computer was used to make practical the utilization of our scheduling 

routine in real-life projects. This computer program realizes all 

the computations and decisions that compose our scheduling routine. 

It is given in Appendix A of this thesis. The example problem just 

explained was fed to the computer and the total computer time 

utilized was 1.26 minutes (1.13 minutes for reading and compiling 

the program and the data, and .13 minutes for the execution of the 

calculations ,~ .. The data-input for this example project, as well as 

the computer output, is given in Appendix B of this thesis. 

A small real-life project (construction of a gas station) 

composed of 58 activities and 36 events, was also f'ed to the computer 

and the total computer time utilized was 12.73 minutes (1.16 minutes 

for reading and compiling the pro~ram and the data, and 11.57 minutes 
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for the execution of the calculations). Its computer solution is 

given in Appendix C. The data-input .is not given because it fol­

lows the same format as the data-input of Appendix B, and also be­

cause all the data-input is contained in t he computer output, and 

can be reconstructed by the interested reader if he wishes to do so. 

The printing format of this computer program was prepared to 

handle networks with up to 70 activities and 70 events. For larger 

networks this printing format can easily be transformed by an 

experienced programmer, in order to obtain the schedule on a tabular 

list rather than the pictorial tabulation of the schedule which we 

are providing. The size of the project that this computer program 

can handle will then be limited only by the memory-storage capacity 

of the computer. 

It is pointed out that our scheduling routine can cop~ with 

the .so-called nsplitting" of activitie.s (activities that may be 

interrupted and then continued at a later date without extra cost), 

simply by dividing each "splittable" activity into the required 

number of sub-activities and ·sub-events. These sub-activities and 

sub-events will be incorporated in the data as though they w.ere real 

activities and events of the original project network. Then, when 

the "heuristic be.st solution schedul.e" is obtained, it will determine 

whether these splittable activities should be done cont~uously or 

with successive interruptions. The original time-precedence rela­

tions of the original activities and events remain i ntact._ 

It is also pointed out that our scheduling routine can hand.le 

those activities that do not have a constant requirement 0£ resources 
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during their entire durations: for example, an activity A may have 

a duration cf 2 days and require 4 units of resource during its :first 

day, and 3 units o:f resource during its second day. Obviously, to 

keep track of these ''non-constant resource requirements" of the acti­

vities represents a larger amount of computations and extra care in 

the preparation of the resource profiles; but we can see that the 

scheduling routine is not changed. 



IV. GENERALIZED PROJECT SCHEDULING PROBLEM 

Let us now contemplate the adaptation procedures for our 

scheduling routine, so that it can cope with more complicated cases 

of project scheduling with resource constraints. In the following 

discussions we will assume that the reader is already familiar with 

the rules and decisions explained in the steps of the "scheduling 

routine" just presented in Chapter III. 

Single-Project Multi-resource Case 

We can consider here, that two different situations could occur: 

a. The several kinds of resources required by the activities of the 

project-network can be weighted and reduced to units of a single 

connnon resource. Then, we would be solving again, the single­

project single-resource case; and therefore the "heuristic best 

solution schedule" can also be found by following the scheduling 

routine given in Chapter III. This situation may arise in 

projects for which the several kinds of resources can be trans­

formed and expressed in units of money, area, weight, etc., and 

where the minimization of this single connnon resource has 

priority. Projects realized by government agencies usually 

have the constraint of a fixed-budgeted-periodi dal availability 

of dollars, and obviously, even if the availabi].ity of men and 

equipment can be easily satisfied by the market, we have to 
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constrain our expenses to the fixed budget. A repair-project 

in a long bridge would typify the constraints on total area, 

or total weight, of the several kinds of resources needed for 

the repair-project. 

Suppose that the given project requires g kinds of resources 

(i = 1,2,3, ••• ,g). Then, the resource requirements of each 

activity can be represented by the sum of its weighted 

individual resource requirements as follows: 

where: 

r(A.) 
J 

C.z .. 
l lJ 

j is the activity identification number. 

C. is the cost-weighting factor for resource i 
l 

z .. is the requirement of resource i of activity A. 
lJ J 

during any day of its duration. 

C. and z .. > o. 
l lJ -

Then, the resource constraint can be formulated as follows: 

a * 
I: X ·t r (A.) < K 

. 1 J J -
J= 

where: 

t represents any day of the schedule. 

Xjt represents a zero-one variable that takes the value 

of one when the activity Aj is currently scheduled 

during day t, otherwise it takes the value of zero. 



a is equal to the total number of activities in the 

network. 

St is the total allocation of resources during day t. 

* K is the maximum availability of money, or area, or 

weight, etc. 

r(A.) is as previously defined. 
J 

b. The second situation is perhaps the most commonly found in 

real life; in any case, it is more general. It happens when 

the several kinds of resources required by the activities of 

the project-network are so different in nature (or maybe 

management prefers to keep them separate), that they cannot be 

weighted and reduced to units of a single common resource. 

In this situation, the mathematical formulation can be trans-

formed as follows: 

Let: 

The vector r(A.) represents the set of daily resource 
J 

requirements of activity A .• 
J 

r (Aj) = ( z
1 

. , z
2 

. , ; •• , z .. ,. ••• , z· j) 
J J J.J g 

where: 

Aj, zij' and g are as previously defined. 

The vector St represents the set of allocations of the 

g kinds of resources during day t. 

a a a 
( L: X . t z l J. , L: X . t z 2 . , ••• , L: XJ. t z . . ,. ••• , 

. 1 J . 1 J J . 1 J.J 
J= J= J= 

a 
L: XJ.t z . ) 

j=l gJ 



where: 

a, X.t' z .. , and g are as previously defined. J lJ 

The vector K represents the set of maximum daily 

availabilities of the g kinds of resources 

where: 

K. is the maximum daily availability of resource i. 
l 

g is as previously defined. 
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Then, the resource constraint can be formulated as follows: 

St ~ K; during any day t. 

The adaptation of the scheduling routine given in Chapter III 

will be accomplished by making the following cbanges: 

1. Provide one resource profile for each of the g kinds of resources. 

2. Obtain information from manq,gement about the "order of priority" 

in which the g kinds of resources will be minimized - which kind 

is the "most important'·', which one is the "second~most important", 

and so on. If no "order of priority" is given, assign the 

"order of priority" at random. 

3. Realize the rescheduling of the activities by cutting the illv'.!LP 

of the resource profile of the "most important" kind of resources 

in exactly the same way as explained in Chapter III; but do not 

accept the formation of peaks of larger height than the height 

of the current largest peak in each one of the resource profiles 

of the other "g-1" kinds of resources; e.g.: accept only the 
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formation of peaks of equal or smaller height than the height 

of the current larger peak in each one of the resource profiles 

of the other g-1 kinds of resources. 

4. All the other heuristic rules and decisions of the scheduling 

routine given in Chapter III remain the same. 

Multi-Project Single-Resource Case 

This case happens when several projects require the same kind 

of resources i which are only available in a fixed amount. 

K. (maximum availability of resource i - during any day of the 
1 

schedule - to any combination of activities belonging to one or more 

projects). 

For ex.ample: a maintenance department, or a shop,, that has 

several projects in its backlog. Each one of these projects requires 

the same k_ind of special equipment - or the same kind of highly 

trained personnel - which is only available in a limited number. The 

problem is to realize as many projects as possible with the existing 

resources, and to determine the completion date of each project. 

This "leveling" problem is very similar to the "allocation" problem. 

The difference is the objective function of the scheduling procedures. 

The allocation procedures are aimed ·at minimizing the project comple-

tion dates, whil-e the leveling procedures are aimed at minimizing the 

daily resource allocations to the given projects; any project comple-

tion date could be accepted, as long as it do.es not go beyond the 

given due date .. 

The scheduling routine presented in Chapter III could be used to 
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solve this case by finding first the best heuristic s chedule 

of each individual project by using the parameter K. (as previously 
1 

defined) as the resource constraint. The scheduling routine of 

Chapter III is applied without any modification to each of these single 

project single resource sub-cases .. Then, we would consider each one 6f 

these projects as if they were super-activities of a super-project. 

The resource requirements of these super-activities are given by the 

resource profile of their corresponding heuristic best solution 

schedules. All the super-activities would have the day zero as their 

earliest start times; their corresponding completion times would give 

their durations; and their cor:eesponding due dates would give their 

latest finish times. The resource constraint of the super-project is 

given by K. (as defined before), and the time constraint is given by 
1 

the due date of the super-activity that happens to have the largest due 

date among all these super-activities. The maximum slippage for the 

super-project is given by the maximum slippage of the super-activity 

that happens to have the largest due date among all of these super-

activities.. We would finally obtain the "heuristic best solution 

schedule" of the super-project by following the heurist ic rules and 

declsions of the scheduling routine given in Chapter III. 

M!.llti-Project Multi-resource Case 

This case happens when a certain industrial concern needs to 

realize several different projects that require several different 

kinds of resources which are subjected to availability constraints. 

The problem is to realize as many projects as possible with the 



existing resources and to determine the completion date of each 

project. The completion dates should be set, preferably, within 

the corresponding due dates. 

We can also consider here that two situations could occur: 

a. A situation where the several kinds of resources required by 

the activities of the several project-networks can be weighted 

and reduced to units of a single common resource (money, area, 

weight, etc.). Then, we would be solving again the multi­

project single-resource case, explained immediately preceding. 

b. A situation where the several kinds of resources required by 

the activities of the several project-networks cannot be 

weighted and reduced to units of a single common resource. 

The scheduling routine presented in Chapter III could also be 

used to solve this case, by first finding the best heuristic schedule 

of each individual project by using the vector K (defined on page 84) 

as the resource constraint, and then by following the procedures 

outlined on page 84 for the adaptation of the scheduling routine to 

solve the single-project multi-resource case in a situation wher e the 

several kinds of resources cannot be weighted and reduced to a single 

common kind of resource such as money, weight, etc. Then, we would 

consider each one of these projects as if they were super-activities 

of a super-project as previously explained on page 86, with the 

difference that the resource constraint is now given by the vector 

K to ·represent the set of maximum daily availabilities of the 

several kinds of resources. 



where K. and g are as previously defined. 
l 

We would finally obtain the best heuristic schedule of the 
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super-project by following the heuristic rules and decisions of the 

scheduling routine given in Chapter III as adapted by the instruc­

tions given on page 84 for the solution of the single-project 

multi-resource case in a situation where the several kinds of 

resources cannot be weighted and reduced to a single common kind 

of resource. 

The preceding adaptations of our scheduling routine do give 

a solution to each one of these more complicated cases of project 

scheduling with resource constraints; but, obviously, more resear ch 

is necessary before we could assume that the heuristic solutions 

of the multi-project cases are also practical and workable. These 

heuristic solutions of the multi-project cases should be taken only 

as valuable suggestions for the final development of multi-project 

scheduling techniques in some. future research. 



V. CONCLUSIONS 

The scheduling routine presented and discussed in this thesis 

will find real-life applications in the construction industry and in 

the maintenance functions of other industrial concerns where the 

scheduling of the activities of a single-project under constraints on 

availability of resources and due date is the scheduling problem, and 

the minimization of the daily allocations of resources is the 

objective of the scheduling procedures. 

The scheduling routine provides practical and workable means of 

solving the leveling problem of project scheduling with resource 

constraints for the single-project single-resource case, and for the 

single-project multi-resource case. It allows for "splitting" and 

"non-constant resource requirements" of the activities. The practi­

cality of the scheduling routine is enhanced by the fact that it can 

be programmed for computer operation,: therefore releasing the user 

from the lengthy, repetitive, and tedious calculations associated with 

problems of this type, A computer program that realizes all the 

computations and prints out the solution schedules of the single-

proj ect single-resource case is given in Appendix A.. The Appendices 

B ·and C show computer solutions of two examples. 

Two extensions of the scheduling routine that could solve the 

multi-project single-resource case, and the multi-project multi­

resource case of the leveling problem of project scheduling with 
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resource constraints are presented as suggestions to a future 

researcher interested in the solution of these cases. However, 

more research should be done in order to provide practical and 

workable solutions for these cases. 
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Several analytical formulations of varying problems of project 

scheduling with resource constraints have been published; but, as the 

authors themselves recognize, they are impractical and usually un­

workable means of solving real.-life problems. They are important, 

however, from the conceptual point of view. We present in this thesis 

an integer linear programming formulation of the leveling problem of 

project scheduling with resource c_onstraints which could yield the 

optimal solution, but which is almost impossible to solve. Therefore 

it does not provide workable means of solving the problem. 

The literature review summarizes the variety of heuristic ap­

proaches that have been proposed for the solution of different 

problems of project scheduling with resource constraints. The avail­

able publications are mainly concerned .with .the description of the 

fundamental heuristics of these scheduling techniques, · their goals_, 

and the scope of the problems they are aimed at solving, but very 

little information, if any, is given about the details of their 

scheduling procedures. All this precluded a possible comparison of 

our scheduling routine with the other scheduling techniques. It is 

emphasized, however, that we tried to incorporate in our scheduling 

routine as many as possible of those apparently good procedures of 

the other techniques, and that we supplemented them with new proce­

dures of our own that seemed to yield better results in our specific 
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scheduling problem. 

We have shovm in the solution of the examp'le project that our 

scheduling routine originates successive schedules that converge 

towards the optimal solution schedule: e.g., the feasible schedule 

that gives the minirrrum daily allocations of resources. Therefore, 

we can conclude that it provides a good chance of finding a near­

optimal solution schedule, if not the rea~ optimal one. Due to the 

heuristic nature of the rules and decisions that compose our 

scheduling routine, we cannot assure the optimality of the solution 

schedules that it produces. , Optimal solution schedules can be 

assured only by strict analytical techniques. However, since the 

last word is not yet in on problems of project scheduling with 

resource constraints, it is believed that new heuristic scheduling 

techniques based on functional properties of thenetworks will 

supplement those already available toward the final development of 

a practical and workable analytic scheduling technique. 
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fQU~VALENCE ( Kr REE (l),K ES TAt l J),{ K NDEPtlJ , KEF . Nl l) J 
fQUIVlLENCE (K _AFE { l t, NE STA( l )t 
1 JOSC H=NOSC H-+ 
' F { l\JQ } 15{ -,.. 5 9 6 C 

1 r WP TE C6 , 9 t' l ) NO CH , 
NT ·=NT. ME + 
00 l ,~G 6 H ME ·=l , NTl 

-=MT M -

C M RKS T iE F 'O ... NG T MES OF THE ACT!VI TIES 
c 

c 

00 l . r·. 2 K= 1 , N 
lF{K CF N(K}- l l f' B , . 0 7,l , 8 

lfll SO . ( K } =PAL 0 
GO T 11 r 2 

1 ··· 8 S 0 N ( K ) = B LA C 0 
i v · 2 cor TI Nu E 

WRITE ( 6 , Ql ~ 3 J ( SO {K) , K=l 1NA ) 

c M ~ R Ks Hff ' RR E IT L 0 c A T ON s OF THE N 0 DE s 
c 

DO 1 ( 3 , ·= .. , N N 
I F ( ff S TA { N ) - M ) C , ~ 9 , 11 03 

E g NO=f\JO 1 
SON ( f\IQ )= N ~:: • 

11 1
:-: COtH I NUE 

I { i 0 2~' .,12'"; 119 
. 19 

c 
PITE ( 6 , 9 02 ) CSON ( t, N=l , NO ) 

c 
c 

RKS TW~ ST ' R . T M_S ·F THE ACT I VITI S 

12 : DO l r 4 K-= ., NA 

A-8 



c 
c 
c 
c 

c 

11 .. .' 

lg 

F'CKES td ) - 1} 1 1 , 
SON ( K #=PA 0 
GO TO 1 4 
so~H K } = L ( 0 
CONTINUE 
•AJ R I T E { 6 ' Q l ( 3 l ( s 0; < 
1F NT- - MTI E > 1l G6 , 

SC HE DU 

), K=l , NA l 
(' 6 , 112 

DATE - 71 253 

pRIN S . HE CURRENT SCHED JL E ANO IT ' S CORR SPONOING 
E SOURCE PR n F • LE 

2 WR TE { 6 , gl ~ 4 ) MTIME , ( MSCHEDCK, MTIM E),K=l, NA J 
w 1 TE ( 6 , 91 0 5 ) L ~ VE L ( M TIME } 
CONTI NU 
NOT l\ ·=SC 

0 9 / 1 9 / 29 

C FORM TS 

c 
91 Gl FOjt A { 4Hl / T32 -,' S CHE D U L E UM BE R ' d ·4./// 

+T ?i·, , ' ·CT v1r· ~s : 1 , 2 , 3 ,. ...... , 1 , I2 / T8 1 ' · JME -U N!T • .,Tll4 , 1 l EVEL'/) 
9 l f2 F R\1AT <T l2 ., ·1 ~0DES L OCA TED HER ARE :', 20 F.3 . C t 
9 1(? FORMAT CT16 , 8 "Al l 
91 '-l- FCR! AT T9 , !4 ,, Tl 6 , 8- 0 I 
91 1..5 FORtv1AT ( •+•, Tll4 , I4 } 

( E TUR N 
tNO 

A-9 



c 
c 
c 
c 
c 

c 

19 PEAK DATE = 71 253 

U8ROUTl L ... PE:AK 

F . NDS UT THE LOC TI ON OF THE P;,. G1 T- OST-L RGES T-PE ;K { MA XTU i 
~N D SA V S I S V LUE ( L M . X } 

COMMOiJ K ,. NODE·t Ti~ ), K J NOOE {7 G) , K T !ME{7 0 } , K.RSRC E { 70 ) , NE H 7 0 ) 
C OM tv1 0 K E F ( 7 t } , .. T{ 7 r t , K L S t 7 u } 1 K l F ( 7 :_ ) ., K FL 0 AT{ 7r:., ) ., K f R E { 7 () ) 
c o fv1 fv1 o !\l K A • o E P < 1 o • , K s .ti FE < 10 i , N s L A c K < 1 o > ., K R .4 N K n c· > , L Ev EL rn r ) 
co~ iv\C'N KCH O 5 ( 3 '~' , KLU ,L MA X, MA XTU, NOT , NAIN M·, MMOV ,R , MA. XR fS 
CO 1"1 W f\l YE S , S G N 0 , Y N 0 ., e. L .1. NC 0 , P L ! , M SC H D ( 7 0 , 8 C ) , S I N 0 P 

t. 9 / 1 9/ 29 

CD~MON ·A, N , N AS T, NS L P, NTI ME ,L SL · P, LTIM E, NCSCH , MSA LE1I CRE 
COMMO , ES 7C ) , KP0~ ( 30 }, K P OSRK( 3 0 t 
CI Mf.: ,15 r 0 1 K f ST A { 7CH , KE F N ( 70 ), NEST .. ( 70 J 
~QUl V ALFNC E ! KFR EE ( l l, KE- TA Cll ),( KI NDEP ( ll , K F!N(lJI 
fQU! VAL _ CE ( S F _:( lh NE STA {l)) 
LM X=( 
DO 12·:· M= 1 , T ME 
L=LE VEU M) 
! F ( L - L MA X ) , 2 0 r; , 20 t , 2 f' 0 

·r'> LMA X= L 

12c"" 
M .. XTU=M 
CONT~NUE 

OETfR INES W ;CH AC IVIT ES CONTRI BUTE TO BU LO UP LMA X 
NO sr..v .. s THE R Df NTIFIC . TI ON NUM ERS ( KP OS {KH , 
ND THE n INDE X OF MOBIL . TY NUMB RS CKPOSR (K)) • 

N= C 
00 ! 2 .# _ K= . , f\J 
MT .·=KfSTA (K ) +l 
MT2=KfFI ( K) 
p=(tvT2 - MT l , 2() , 2 ~ 1 

r •_ FPviL - M X '"' 0 2 1 202 ,1 2 ~ , 

2=2 :,...t r T~ - A X U ) 1 2( 1 ., 203 , 2 0 3 
2'"i 3 =N l 

KPOS {N)=K 
KPCSRK {N, =KR .NK( K} 

izr. CONT fl lJ 
KL U= (' 

2 ·~;5 KJ =KPOSR K ( 
t 'CHOI= .. 

C DETERM!.IF.S T E ORDE OF RE SCHEDULING 
c 

DO 12C2 NO-=:.. , 1 

KR=KPrJSRK ( 0 ) 

A-10 



19 PEA K 

F ( KR-K ) l ·~2 , 2 02 , 2·;' 6 
z 6 K =~P O SRK ( NO ) 

NC HOI -=N O 
l Z .2 CON NUE 

KLU= . LU 
KC HO .S ( KLUt =K OS f NCHO l ) 
KP OSRK ( NC HO:.. } =O 
K.P OS {NC HO ~= f 
I F ( , 1- J ) 2 f1 7 , 2 (q ., 2 r; 5 

'"'7 L ·. , L M= N 
RETURN 
c::: ND 

DAT E - 71253 D9 / 1 9 / 29 

A-11 



Q l Q , I r ;:: 0 0..TE = 7 1253 

SU f3ROU T .. NE TO I TE 

ER T ON TYPE I --- FOR W RD S 

COMMO 1 , NOOE ( 7 ( ), K J NODE 170 ), K TI ME ( 7 i) } , KRSRCE { 7C ), NE H 7 0 ) 
COl\J\ f>.>10 ~-1 • EF ( 7 ·' •, NL T { 7 .• ) , K LS ( 70 ) , Kl F ( 7-'1 ) , KFL OA T{ 70 ), KfRE _( 70 ) 
COMMO· K . NDEP { 7 C1 ), KSAFE ( 7 (i ). f\ SL ACK ( 7 ~1 t , KR ,A,NK( 7 (' }, EV EL -( 8n ) 
COMMON K f'OIS ( 3r ), KLU , LMA X, MAXTU, NO TA, NA N M , MMOV ER , ~~ X R _$ 
COMfvllN f ' , S!GNO , YN J , BL. NC O, PALO, MSCHE D( 7 t_ , r l, S NOP 
COfA~ ON L6 , NN , 1LAS T, NSLIP , NTI ME -,L Sl! P 1 LT .• M ., NC SCH , MSAL E,I NC R 
COMMO. KES ( 7 r ), KPOS ( 30 ) , KP OSRKC f ) 
OIMfNS~DN KES A ( 7~ i, K E FI N < 7C t, N EST A C 70 > 
E(~U V ~ ENCE ( K FREE t ), KE ST A ( l) .) ., ( KIN EP<U , KEF I ( 1 H 
E Q U l V - LE t CE { K ~ AF E { l , NE ST A ( 1 ) ) 
N= A ll 

c 
C TEMPTS TO RESCHE JULE THE ACTI V!T I FS ANO RE PORTS 
c t!HETH ER THf T EMP T i · S S CCE SSfUL O' NO T 

( 
DO 1 2 :-- 3 1Cl = , N 
K=K CHO IS ( ~i O l 
J=KJ NOOE ( K} 
NJT= NE STA {J) 
IF( ·JT-KEF ' ( K }) "Z f' : ,, 12 ;..3 , 2 0 8 

2~8 MDTF =N J -K EF!N ( K) 
MDIF=MA XTU- .ST A{ K) 
f ' t-~OTF- KMD F ) , zrq , 0 9 

209 ST EP=MD·F - KMD I F+ 
LL 3=L M. X 
DO 121· I+ MS TF = . , NS· E P 
M T _= '\A XTU+ MST EP 
MXT 2=MX T1-l +KTI ME { K) 
LL2= { 

0 _? r ~ ~?= M X T , M T2 
LE v·= LE v E u M 9 ~ + K, s R c « K l 
' F ( LFV- M·X 2 0 , 1 2 ~ 4 , 12 04 

2 (: I F { L E V - L L ? } 2 Cl 5 , l 2 n 5 , 2 11 
21 . L2=l EV 

l 2 . C 0 "l TI ilJ E 
IF(LL 2- LL,.., ) 2 1 2 , 2 2 , 2C4 

? 2 Ll3=L 2 
MH . P = M.S TE P 

12 #4 CC INUf 
~F < LL~, - MA X ) 214 ,1 20 3 ,1 2 (: 3 

214 KEST ( Kl = . XTU +MH PN -
KFFI K)=KES A( Kl+ KTIME <KJ 

A-12 
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19 

MSA L E= hVi 
iJl I NL M=( 
GC TO 2 5 
co ~H iuE 
R ET JR N 
END 

TO I TE DATE - 7125 3 0 9 / 1 9 / 29 
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c 

19 TOLFFT DATE ~ 7 12::3 

SUBROUTl F TOLEFT 

! TERATT Df\J TYP E --- 8 ACK 1 .~ , 0 S 

c CMtv10N KI Q; E { 7 0 ) ' KJNO OE n o ),, K TI ME { 7 ~~.) ' KRS RCE ·{ 70 ) ' NE H 70 , 
C 0 MM 0 l\! K F { 7 r-. t , L T( 7 C ) , K L S t7 ": l , K L F (7 O ) ~ K F l 0 A T ( 7f"< ) ~ K F RE E { 7 C ) 
C 0 ~ C1 N K .. ND E P ( 7 f., ) , K SA F E ( 7 C· ) , NS l A CK ( 7 'l ) ., RA ti K ( 7~· i , LEV El ( 80 l 
COMV101 KCHO TS( : ( .), KLU ,L MA X, Mt XT U , NDT , NATNLM,MMOV ER, M RES 
C 0 ·1~_,0 ! Y F .. S ~ r: N , Y . 0 , BL A NC 0 , P. l 0 _, MSC HE D ( 7 (} , 8 Q i ., S P'JO P 

C9 / 19/ 29 

COMMON · , N , ~ L A ST , NS LIP , NTIME , LSLlP , LTIM E ,N GSCH , M SAL E ,I CRE 
COi4\10N KE S ( 7 r ) , KPOSD - ) , KPOSRKO O l 
DI r.: NS I 0 t K E ST ( 7 C ) :. KE F N ( 70 J , NEST A ( 70 ) 
EQUi VALE CE ( KF REE ( },K ES T.At l)l , {KIN EPt U , KEF !N ( l )} 
".:QUI V. LE C { K . FE { ,) , Ni: ST A ( 1 ) ) 

C TT E11PTS T Q RESC HEDULE THE .""\C TI VITI ES AN D RE PORTS 
c W ETH~R HE TE MPT 1 

.. S SUCC ESSFUL OR NOT 

c 
DO l (' 1L= l , · J. I NL M 
K=KC 01 5 { 0 ) 
I=KPJOLE {K) 
N IT·= NE S T ( I ) 
K T=KES A ( K · 
!F ( Na T- KST } 5n , 5 0 1 ~ 50 1 

5:· 1 ~"1D F= KST - .., T 
KM Dt F·=KEF I l { ) · -M XTU 
1f= ( ML !F-KMDI F) 5 r-1 1 , 5C? , 5 02 

5< 2 NSTEP = MD lF-K iOIF -+ 
Lll=L "1A X 
DO 1502 MS TE = , TEP 
M X 2 = MA X TU - r,,1 SL_ P 
• XTl=MX -KTIM ~ ( Kl+l 

LL2= C 
DO l~ ' M8 =MXT1 , MXT 2 
119 = ·~XT2- M8 + MXT 

l E V l ·= LE V EL t 9 ) 
lF(LEV -L X) 5 ~ ~ , 1502 , 150 2 

5 1 3 F ( \1 a - KE :ST { K ) ) 5 •,: 5 , 5 (' 5 , 5r; 4 
5 ~ 4 LEV.=LE V -K RSRCE tK) 
5 ~ 5 LE J-= l F V 1 +K R SR CE ( K) 

IF(LE V-L M x, 506 , 15 ~ , 1s c 2 

SC ! F ( LE V-LL ) 50 3 , l 5(' 3 , 50 7 
5':' 7 l. L 2 =LE V 

151.. 3 cor ir ui:: 
IF ( LL ?-LLl ) 5 t; 3 , 5t .. g , l5C2 

5t: Lll = l? 

A-14 



19 TO LEFT 

I HAPN=I STEP 
, c-: 2 ro i T~NUE 
.., _,, :[f(LL .. - M ... >() 5f'9 , .~5·: , 5 ~ 1 

~9 KEF N(K )=M · TU-MH PN 
K STA{K ) =KEF! H ) -KTI ME ( K ) 
ri S LE= n . 
N I L M= r 
GO TO sir· 

'5::1 CO i TIN c 

5 RE T R, 
END 

A-15 
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c 
c 
c 
c 
c 

19 MO VE'. OAT E = 7 i . 53 

SUR OU T .:. F: MC VER 

I T~RAT ON TYPE II --- FCR RDS 

CCM 'vff'N KN JDf .( 7 f" ), ' J f\ODE (7 ,, )~ K T ,..ME C7 'J } , K RSPCf= ( 7 •~- >, ET ( 7r ) 
COv1"1 C ~ KEF < } _, ~ l T ( 7"' ) , K LS f 7 ,,. ) , K· f { 7 1~ ) ,K F L OA ( 7C' ) , KFREE ( 7C'l 
C 0 MM 0 N I< DE P ( 7 , ) , K S F E ( 7 .-· > , NS l CK {7 ) t , K d ·J, l K ( 7 D ) , L .E V ( 0 t 
COi ~"lON KCHO .. $ ( ..., • ' ) , KLU , LMA X., MA XTU ., NO T A, A Nlii.1 , , MOVER , -. XRE S 
CO ~CN Y ·S , S'I .. f'i0 , YN0 , 8 L,A CO , PA L O, MS CHE 0 { 7 fj., 8 " )., NOP 

t 9 / l 9/29 

- 14 Oil NA N , N ; ST , NSLIP , TI M , LSLIP 1 LTI M ., CSCH , MSALE . INCRE 
c 0 Vi I 0 N K F s ( 7 •" } ' K p 0 s { i ' ) ' K p 0 s R K ( 3 .. ) 
DI~~~S lO KO~T RA (7 ~ ) 

OIMENSI JN KES T { 7 (. ), KEFI ( 7() ), ST f T't) ~ KO NT R (7 0 ) 
E U IV AL E 1 CE ( P. .:E ( U , K ST A ( U ) ,{ K , ND P ( ) , KE F I N Cl H 
tf~U! VALE JCE ( KS F E tU , NE ST A <lJ ),( KF LO HU , K NTRN(lH 

c c SETS LL CO T 0 .S TO ZERO 

c 

c 
c 
c 
c 
c 
c 

c 

00 ~ 9 9 ·= , .L~ 

KO; TR i ( K ) = _r 
K01 TP ( K } = 11 

1 39 9 UE 

DETERM~NES WHICH C V Y - Of TH OSE T AT CONT . IBUTE TO 
U I L n JP L M, X - H i\ S TH E SM l l E ST ! DEN TI F l CAT I 0 N NU M E P • 
H S • C IV 1 TY ( K 9 } - ~ 0 UL D BE THE LAS T AC TIVITY 0 BE 

REC ED UL ·D , ~F LMA :< C T BE C T. 

= l , itdNLM 
SCK,-K 9 t 399 , 3 9 , 4Ct 

9 9 - ( K } 
1 4 ~ .~ 

C RESC EO ULES T ,_ CT V I ES I N DE SCEND ! tG OP.DER ACCORD!N 
C TO TH E IR !DfN IF~C TIO 1 NUMB RS , ST P.T S WITH AC TIV I . V A 
c 

no it...r K= 
K.i..= NA-K+l 
J=KJN ODF·( K · 

F { Kl - 9 ) 1 , 46 ' 46 
46 \ F{ - .. J . ) 4C l ~ 4 CC , 4 .:· 
4· ; K 0 NT R r ( J ) = L T { J ) 

} K2-=K F!HKl ) 
N :::: . JES A \J) 
~ F K ?- N L ( J ) t 4 ':" 2 , ;~ 7 , 4 } 7 

A-16 



Vf L l q MO VER 

K3=N5 
1<4=K'l-KTIME { . H 
T F ( K ?-K ) 4f 4 , 4f 7 , 4 0 7 
DC 1 L. ( ? N6= K 4 , K '3 
L V=LE VEL( N6 )+ KRS RCE I K 

F CLMA X-L EV} L5 , 4 Q5 , 40 ? 
IF ~2-K3) ~r 6 , 4 C 7 , 40 7 

K3=K?- 1 
GO TO t.i.Q3 
CON TJN UE 
K2=K3 

4; 7 . F N 5- NL ( J ) ) 4 C 8 , 41 6 , : , 6 
4 '8 ~ ( K O. TR 1

( J}) 4 t:9 , 4f' 9 , 4 :""\ 
4 ~-g KflN-rRN ( ) =t\l T { l 

DO .... 4 1~' 3 
.. CHE=K 
l F { • CH -- J ) l 40. 3 , 4 7 0 , 1 4 f1 3 

47 .'} K5=Kf:S T.A { 6 } -

IF ( K5- ONT N(JJJ 4 14 , 403 , 140 3 
a 4 KO' TR I ( J ) = K 5 

14"' 3 CO t T UE 
41 1

:. F ( 1\15- K 0 NT R 1 ) ) 4 l ., 4 . , 4 16 

'l . N5=l\l5 + 
GO TO L.f': 2 

DATE ·- 71253 

c 
C R_PORTS E i 1E W POS!TI GN OF THE A,CTIV TY Kl 

c 

c 

4 KEFI { Kl ) =K ,_ 
KESTA ( Kl >= K2-KT. ME {Kl l 
K4 =KE ST f.\ ( K 1 ~ + 1 

C tO J LSTS (HAN~ES I N TH RESOURCE PR OFILE 
c 

c 

CALL RE PR .. F 
IF ( M -XTU- . t.. ) 4 7 , 4~ 5 , 15 

41 5 IF ( "'1A XTU-K F . N { K ) ) 4 8 , 18 , 4 1 7 
41 7 0 f\TR /) l K l t = 1 0 

C RfP OP TS wH E HER . HE ,. TER ATI •tl WAS .i1CCOMP LI S HED OR NOT 
c 

4 8 

4 9 
14,)4 
l 4 ' 1 

4 i... 

1 0 l C 4 K 7 = .. , NA NL 
I F ( K 1 - K , H L .. S { K 7 ) l 4'>4 , 4 l 9 , 1 ·4 C 4 

F ( KCNTRA {l<.!} ) 1 4~1, , 14 1.1 4 1 4211 
UJ NTIN UE 
COf\J T !UE 

MO VER .:: n 
GO TC t+ 2 

2 ,,. ~- MC V f R = _f' r 

A-17 
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422 

423 
1 ;i 5 

MO VER 

E NEW POS.TIONS OF THE NODS 

D 0 1 . ' 5 N:= , 1 N 
.. F{KOJTR { f'H ~ .... J , , 4 0 5 , 42 3 
NES A( NJ= KONTR ( N) 
CONT l f\J UE 

ETURN 
E D 

A-18 
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( 

( 

c 
c 
c 

19 M_vr- L QA ;E = 712 5 

SU qouTI E ~~ DVEL 

IT E - TION TYP II --- AC Kw ~· OS 

K L D - { 7 } ) , K f\ 0 0 ( 7 0 ) , KT l Mc { 7 G ) , KR S RC E { 7P } , N T ( 7 ··' ) 
KEF ( 7 '""' , . JLT ( 7 tH , KLS (7Q), LF <r :. >, KFL OAT (7i: .. , FRE ( 70 ) 
K f D { 7 /' ) , KSAF ( 70 l, NS CK {7 ~ l , KRA K (7 C ), EV EL{ 80 ) 
K 0 $ ( 3 '' } ,, KLU , LMA X , Ml~XT 1, OT . , 'A I N L M1 MMOV E , M XR S 
YES , SIG lO ,Y NO , BL CO , P A L O , ~SC -c ( 7 f , 8 C >, S!NOP 

.·9 / 9/ 29 

Nl\ , NN , NL ST , NSl.iP , ~TI ME , LSL!P,LTI ME , CSCH MS .ALE , .. lCRE 

c 
c 
c 
c 
c 
( 

c 

( fJ~ KE ( 7 1 , KPOS ( ... l,KP ·'RK ! 3f ) 
<J " ME S 0 i KON RA{7 ) 
O : M~NS '" ON E T { .. :; ; , KEF! 1 70 ), ES T A ( 7J ),KONTRN (7 ". ) 
EQU !VALF Cf ( KFREE l l , KES TA { l ) ) ,(K IN DEP ( l ),K EFIN ( . )) 

IC~ { S FE <l l, NE STA ( H } ,(KFL 4-+T ( U , KON RNL H 

DO 1 6tJ•, K= , A 
K N TRN { K } -= f' 
K. NT ( K ) = = 

1 ,. , . "'ON T l E 

Di:'. TE R f"l .. N S t4 .. CH 1 CT I VI TY - OF TH S E T . AT C 0 TR I BUTE T 0 
BU LO UP X - H S THE LAR 1EST I DEN · '~IC · TION N .M BER. 

H S ~ C IV TV {K9 l WOU D E THE L ST TIV IT Y TO BE 
RE SC Ht= D 11~ A. , l u T BE CU T • 

K 9 -= ·1 
DO ~ 6' K= , 1' ! NLM 

F ( K CHO .. ( K }- K9 ) 16 . , 16 H , 6 C.O 
61 · K 9 = HO IS { K) 

16 COfJT N U ~ 

C P t= S C H '::: U L E S THE AC T I I I N SC E ND I 0 R 0 E R li C C 0 · 0 I G 
c TO THF. K I D IF r ., AT ION NUMBER S , T RT ·s ITH ACT! V v ~ -
c 

68 i' F ( S ~ OP- 166fi., 1659 , 1659 
165 9 I OC0 -= 5 " 

Kg = , 
6 ,.+ OrJ 1 6 .:_ K= , A 

=K . Nf\E { K ) 
~F (K-K 9 ~ i~ l , 6 C ., 62 

6 . F ( 1 - 1 ) ~ 2 , f.: '" ? , 6 ~'\ -
6< K 0. TR N ( )-= NE T { 1 } 

A'· K 2=K f, T .( K} + 
I 5=\l -ST { ) 

F ( K 2- \Ir T { ! ) ·- ) 6 . 2 , 6 , 60 4 

A-19 



OVE L 

6 t... K3=N5 
6'5 K~=K3 1-K .ME { l - 1 

.. F(K2 -K 3 ) 6 .,,.2 , c .:..2 , 6 ~' 6 

6 ··6 DO 16-' !6=K 3 , K . 
LEV .. =L EVEU N , ) 
I F { L E V 1- L M 1- X ) 6 ''.. 7 , c 0 , 61 0 

6 ·7 1F ( J6-KES TA ( K ) - . } 6 fi 9 , 6r · E, 6 0 8 
6'1 L E V = L V 1- KR SR C E ( K ) 
6.-.,o LE V= LE Vl.+K SRCE ( K ) 

IF <TI 1 oco ~ 630., ,3 f , 629 
2 9 IF ( L M X: - l . V 6 H: , 160:.,, , 16 U.: 

6 3 I F { L M · X - LE V l 6 l ~-:: , 6 1 (\ , . 6 ~B 

"' F {K 2- K3 } 612 , 61 , l 
611 K3=K3 + 1 

GO T O 6G5 
16' 3 CGN T . JUE 

c 

K2=K~ 
6 2 1 F { f\J 5- - NE T ( I ) ) 6 1 g , 61 9 , 6 7 ti 
6 7t: F { KON TP N ( • l ) 614 ., 6 . 4 , l 1 
614 KO ! TR N { ) = ET·( 1 1 

DO ... c.r· 4 K6= , N 
JC H ~ = J N ODE ( K ) 
IF IJC~E -I t 16C4 , 6l5 , 1604 

61 5 K 5-= K E-f ·. N t K. 6 ) 

61 
16 ~iii 

lF ( Kf5 -KON ( I )} 6r4 ., l6 '.}4 , 616 

6 7 RN ( .l - ') 619 , 619 , 61 
6. B 

OAT E ·- 7 . 2 53 

c RE.P O .. rs THI= 'E W POS! I ON OF TH E ACTIV . TY K. 
c 

6 9 KESTA { K ) = 2-
KEF INC )=K ES T { K l+ KT!M E ( K l 

c 
C ·D JU ST S CH G-S IN THE RESC URC PROF I L E 
c 

c 

Ci1LL REPROF 
i F ( ~~ X U-K2 ) 62 , 20 y62 0 

zr ..FP1AX U-KEF~ l{K }) 622 , 6.2 2 , 6 21 
6_. KONTRA ( K)=1 nr 

C EPORTS WHETHER THE ~TERA. T I ON W.AS ACCO MP LI SHED OR , OT. 
c 

22 IF{--;- NOCO } 6El , 681 , .. f:2 
8. DO 6 f· 5 K 7-= , J A I NL M 

F CK-K HO S( K7 ), _6 C5 , 623 ,16 0 5 

A-20 
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EVEL 1 9 MO VEL 

b2 3 l,..(KONT ( K )~ 1 6~. 5 , l G5 , 6 _ 5 

1 6 r 5 C01HINUE 

1 6 ~ CONT !NU -
b 2 4 i\i\ MC VER =f' 

Gr1 TO 6?6 
62 5 MM'!Vf = - ·:,A 

REPO . TS HE EW PO SIT :. ONS OF TH E OD S 

62 6 DO 1 t r , NN 
!F(KO.HR 1 ( q} 16r'6 ,, _6~ 6 , 62 7 

627 N .... S l { }= 0. T ~ ( N ) 
6r CJl\ TT HJE 

i F ( Tl OC 0 } 6 4 3 , 6 43 , 6 . t.J 
64 r KS= .. 

0 .. ~ ... , 7 8·= 1 ' 1/l 
I F K J N 0 0 E { 8 ) - f\ ' ) l 6 . 7 ., -6 4 1 , 6 4 1 

6 t,, F { KS - KE F • N ( 8 ) ) 6 2 , 6~. 7 , l 6 . : 7 
64 2 K ~ =K - F i t K 

.. 6'.J 7 CONTINUE 
NE S ~ C !N ) = K 9 

E 10 
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APPENDIX B 

COMPUI'ER SOLUI'ION OF THE EXAf/.IPLE PROJECT 



/* 

//GO .. SYSIN DD* 

YES* NO -" 

008024003007 

001002008007 

001003003002 

001004005004 

002003000000 

002004002000 

002005005006 

003005003001 

004005006006 

/* 

DATA - INPUT 



N D F S = E V c N T S 

NUtv1 8E R: t.rJ LI ES T ME L TEST T MF= 

f'\ 
\ .. ~: 

2 8 8 

8 3 

4 { 

\ ) 

5 16 16 

B-2 

SL A.CK 

5 

n 
l' 

CR ITIC AL P TH 

YtS 

YE S 

NO 

YE S 

YE S 



A c T I v I T I E s 

NUPBl=R I ODE J NOD ·- R SRCE DUR . E- ST ,RT E- FIN L- S ART L-fl N TOT AL-F F EE -F I NO-F SAF E- F C- PA TH DUMM Y I NDE X 

1 2 7 8 ,~: 8 0 8 (-< 
\) 0 a 0 VE s NO 1 

2 3 2 3 0 3 10 13 10 5 5 10 NO NO 8 

3 1 4 4 5 ... .;.: i:. 5 rn 5 5 5 5 NO NO 7 
..; 

4 2 3 r. n 8 ~3 13 5 (1 \,.. 0 5 NO YES 5 

i;:;. 2 4 
, .. 2 8 1 8 10 G 0 0 0 YES NO 2 

.,.,, ·; 

6 2 5 6 5 8 13 11 16 3 3 3 3 NO NO .4 

7 .... 5 3 n l 'l 16 5 5 0 f) NO NO 6 
_, _, 

8 4 5 6 6 0 16 10 16 c L (} r. y YES NO 3 

TH E EA RLI EST P RO J f T COf'J.P l TI O 1 TI E IS 16 UNITS OF TIME 
THE GI VE 1 PPO J ErT UE OtTE IS 21+ UNITS OF TIM E 
THE CU RRE. lT PRO J ECT SU.\C I IS 8 UNITS OF TI ME 
TH E O.AILY RESO U1 :: V LABILIT Y '"S 7 UNITS ~ F RES OURCE 

HE . t X ~MUM PR J E( T SL_PP .GE IS 3 UNITS OF TI ME 



S C H E 0 U L E N U M B E R 

ACTI V L . S 
T fv'E - UN IT LEVEL 

NODES l uC r r:o RE RE .• . 1' 

1 13 

2 13 

1 3 
..., 

4 11 

5 1 1 

6 7 

7 1 

8 7 
..., ., 

NODE S LOCAT ED HERE 'RE : 2. 3 • 
..,...,...,..., 

g 1 

fJ.O:' 61 1· 7 

NOD S LOCA TED HEP~ ARf 4 • 
...., 

11 1 3 
. ..., 

2 12 

13 on r:ioo l) 6 12 
...., 

14 ' 0 ·:.COG0t1 6 6 

5 6 

16 6 

. ODE S LOCATED HERE ARE 



S C H E D L N U M B E R 3 

CTI VIT IES : 1 , 2 , 3 , •••••• • , 8 
TIME-UN T LEVEL 

NOQ ._ S LOCA T 0 H~RE ARE 

1 11 

2 7C4 00C:J'1 4 
11 

11 

4 7r 4 r . n 11 

5 11 

.., 
6 9 

7 9 

8 
9 

..,.., ..., 
i JO ES L DC n =o HERE A 

9 6 

6 

N DES LLCA TED HF.RE ARE 4., 

12 

12 12 

13 12 

14 7 

1 5 
7 

16 
7 

NODFS L QC -T EO HE , f RE • 5 ,. 
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Hf HE RISTIC BEST S LUT . ON SCHEDU LE FOR THE GT VEN PR OJ ECT I S 
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~· DES L 0 CA E 0 HERE ' '- E : • 

7 

2 7 

3 7 

4 1 

5 7 

6 7 

7 7 

7 

NOD S LOCA TE RE f~ E 2. 
...,., ...,., 

9 6 

6 

1 l :;: 2 t~, .~ r ., 6 
..., 

i OD s LOC D ER p '\ 3 . 
...., 

2 /;; 4 Jt t ('\ .4, 5 

5 

OD S LCCAfEO H R ~ E ! 4 . 

1 

l 6 

6 
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17 6 

18 6 

9 6 

2 .~ 6 

21 6 

22 6 

23 6 

24 6 , 

0 ES LOCA TED HERE 
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APPENDIX C 

COM:PDTER SOLUTION OF THE CONSTRUCTION 

OF A GAS STATION 



N n 0 s = E v E I T s 

i!UM BE " EAR L ES ..,. MF .!J. . EST TI Mf SLAC K CRI TIC AL PATt t 

1 (' ( y s 

2 5 5 r YES 

8 17 9 10 

4 1 f'' 1 9 9 NO 

5 I.. 23 9 10 

6 4 ·23 9 NO 

7 15 3 1 6 NO 

8 18 34 16 0 

9 ,-., .n c Y ES 

(' g 39 31 0 

1 _5 41 26 j 0 

-· 5 5 n YES 

13 2 (· 3 6 ... 6 - :o 

4 ?9 "'"'9 "" y s 

15 '3 1 31 y s 

... 6 7 4 1 .... 3 NO 

7 35 35 ""' YES ·u 

1 8 23 _, 9 16 NO 

9 2 t, 42 16 NO 

' 2t '3 7 , 2 NO 

2 ... .?. 6 49 23 0 

22 5 46 11 lQ 

? :7, 
..... -" 3 7 46 9 0 

24 37 4 } 3 0 

25 4.' 4 r (; YES 

26 44 L.4 r YES 

?7 10 45 26 NO 

C-1 



~UMBER NnDE J , ODE 

2 

2 2 3 

2 7 

4 , 2 9 

5 2 1 1 

6 2 

7 2 

8 2 

9 2 2? 

,. 2 28 

3 

.2 6 

7 

L 3 

15 4 5 

16 5 

.. 7 5 8 

8 6 1 

7 e 

2e 

?. 9 12 

u 

27 

24 ~2 4 

3 1 

26 1 

?7 l 5 16 

A C T 

S CE C RA E- <:: T , RT E- F 

3 

1 

2 

1 

2 

8 

3 

6 

7 

2 

l 

5 

3 

5 

5 

2 ·' 

2 

4 

2 

2 

4. 

4 

2 

6 

C-3 

5 

5 

5 

5 

5 

5 

5 

5 

8 

8 

8 

14 

... 5 

18 

8 

5 

25 

20 

29 

3 1 

5 

8 

1... 

15 

1 5 

2~ 

., . 

..1. 

9 

8 

14 

4 

14 

16 

25 

19 

2 9 

23 

3 

3 7 

V I T I t S 

L- ST RT L-F I TOTAL - F :FR EE- F ND-F SAFE- F C-P ATH DUMMY INDEX 

5 0 YES NO 1 

1 ' 17 9 9 N-0 NO 21 

2 31 16 16 NO NO 4n 

5 a YES NO 2 

41 26 26 NO NO 48 

32 42 2 7 22 22 27 NO NO 51 

39 4 9 34 11 11 34 NO NO 55 

46 26 15 15 26 NO NO 49 

26 46 21 12 12 21 NO NO 43 

4 ,,, 45 35 NO NO 56 

. 7 19 9 NO NO 23 

22 23 1 . 5 5 NO NO 35 

31 3 23 7 14 NO YE.S 45 

39 39 3 22 NO YES 53 

2.3 9 c ND NO 24 

?3 23 9 0 0 NO YES 25 

' 4 34 4 c 11 NO YES 42 

3 2 9 g 0 ND NO 29 

3 1 3 16 0 0 0 NO 3 6 

34 3 16 NO NO 3 7 

YES NO 3 

9 4 1 3 5 NO NO 5 4 

4 26 NO NO 4 7 

5 2 .- l) 0 YES NO 4 

3 6 0 NO NO 38 

29 31 ' \ YES NO 5 

34 3 0 3 NO NO 16 



1 ...... 7 2 4 35 3 1 

29 1 5 5 I . 

1 2 7 37 42 

23 37 37 6 

25 3 7 37 r: 

7 2 .2 :.:. 5 35 46 

4 17 2· g 2 35 3 7 8 

1 7 25 5 35 35 

;.. 7 35 35 5 

3 7 18 .:. 9 23 26 

38 19 26 26 42 

39 21 26 6 49 

29 3 ?: 7 43 42 

4 2 35 .2 26 28 9 

42 22 .32 2 2 35 3 7 46 

23 2 ? ?, 7 39 

4 25 ( 3 7 37 4"' 

45 2 6 44 

26 44 44 6 

47 26 6 

7 19 . 9 

2 7 32 ( " 9 19 '. 8 

5 ; 28 29 0 

5 2 r 1· 45 

~2 zq 35 3 4 4 . 48 

3 : 35 6 35 41 45 

54 32 e 2 6 

2 5 3 46 49 8 

56 33 ·') L .' 49 46 

5 7 35 3 2 49 5 49 

,... 11 

35 c 

46 L 8 8 

42 

46 9 

4.(} 3 0 

46 11 t') I(} 

0 

0 

45 r 

42 l 

42 16 1 

49 2 

l..8 5 

51 23 2 3 

48 g L .. 

48 9 7 

4 1,. .. ; 3 ..... 
\j 

:J 

46 2 0 

6 

45 26 1 6 

48 29 27 1 

48 33 0 

45 35 ? 5 

l 5 .. ) 

5 0 

48 2 

5 , 2 2 

49 

51 

l C 

2 

6 

0 

11 

3 

0 

0 

7 

c 

0 

2 

3 

0 

0 

YES 

NO 

N 

NO 

NO 

NO 

0 

YES 

0 

NO 

NO 

NO 

NO 

0 

NO 

NO 

NO 

YES 

NO 

YES 

NO 

NO 

0 

NO 

NO 

ND 

NO 

NO 

YES 

YES 

NO 6 

NO 31 

YES 21 

YE S 26 

YES 18 

YES 

NO 17 

NO 7 

VES 30 

NO 39 

YES 41 

YES 44 

NO 2 0 

NO 46 ' 

NO 34 

NO 28 

YES 19 

NO 8 

YES 14 

NO 

YE .S 5 0 

YES 52 

YES 58 

YES 57 

NO 22 

NO 3 2 

NO 13 

NO 1 5 

NO 1 0 

NO 11 



58 35 3 4 1 51 52 51 52 Q YE S NO 12 

THE E AR L EST P"O ·E' en ° L LON TI : E s 52 UN T OF TI ME 
TH E G VEN PRO ~ c DUE DtTF . S 6 > UNITS OF T ME 
THE CURRE JT P1 J EC SLA· K rs 8 Uh TS OF TIME 
TH E AI LY RCSOURfE ti. V . L. B L T Y rs 2 u ITS OF R- SOUR CE 
T ~ MUM PR OJ .: CT S L w PAGL 1- 3 JNITS OF TIME 
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3 

3 
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5 3 
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. ...,.,..,., . .,.., ..... -, 

6 : 62 *58 l 'i 4 0 
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162 ::~5 4 4 0 

NODES LDC T :D HERE ti E :: 3 . ,. 
-,.,""'!! -, 

q r:.·,6 _ ~~ 5P4 ·13 ·et···-~-. r,0(; 7 ( .cc·-ir:.·~\J)··;.,,. ..... CfH Q();,f.,J ... ;O(;.~ 00~ OC ;-Ot.) 49 

-. - _,; 46 

i\JOOES L CATED E E ARE : ~ . 0 . 28 . 
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.... ... 52 

'.'\ 6 .. 1 ,~ 5 s 4 { "" ' r "., * c r· 0 ,, r 52 

13 .5 2 

14 52 

NOD S LDC ED EPE A 

5 47 
..., ..., ., 
LOC- T EO HER.E ARF : 7 . 1 • 

., ..., 



6 29 

17 2 4 

. 8 2 4 

O_ES LOC TED HERE ARE 

22 

NODES L HER . A E : 27 . 
...,.., 

19 
.., ..., 

' 
NODS L QC \ TED HERE RE : .3 . 

2 11 

11 

23 11 

noE S LDC TED HER ARE : 8 . 

2 4 25 

25 25 

f ODES Lt CL ED -1 ER RE : 1? . 

6 19 

N __ O S RE APE 9 -. 2 1. 
., ., ..., 

2 7 5 

2 5 

29 4 

i !ODE S L OC T ED HEPE [ : . 4-r . 

2 

'.::2 , 
-- ~ 2 

OD HEPE t. E : ~5 . 

3? 8 

33 8 



8 

8 
.., ., .., 

ODES LOCA ED HER ~ E 1 . 22 . c .• 

21 
..., 

- 7 16 
..., ,_..., .., .., ..., 

\JOO S L OC ED HER': RE : 6 . 2r .23.24 • 
., ..., ., ..., ..,...., 

8 11 

39 ll 

7 

!CDES OCA TED HER tRE : 25 . 

1 9 

4? 8 

8 

~ODES OC ED HERf R -· 0 . '"' . 
44 12 

,., 
NuDES RE : 26 . 31 .• 

18 

46 18 
..., .., 

ODE S OCu TEO HERE RE : 32 . 33 . 

4 7 3 

4 3 

49 3 

f'ODE S L DC TED H <E AR .: 34 . 

3 
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3 

~OD E L DC TE D HER E . t: : 3 5 .. 

4 
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5 3 
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6 22 

1000>00COOO ~ Ot00000 22 

8 22 
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1 3 24 

24 

15 24 
.., 

NO! E ~ L CATFD ER-: Af<E : 7. 

1 6 24 



't ·t * t"'\ t 3· 24 

8 24 

_9 4 '_"~( r;r *\. r' 2 1 

NflOE LOCA E . fRE ARE : 5 . 6. 8 . 

24 

2 ... 24 -~ . ' . {,.,: ;v l . .... 

\JO ES LOCA .FO ERE R - • ".l . , . 
., 

2 ~ 1 ir 'Cl 6r ( ;'iJ. 'Ln oc ..... )~,.<)CC\~ cor· · ,.;"'! :y:-, o c tJ l} Ot. \. oo ./n 

2 -0 

20 ?4 \.1 1 ''' "' ., C R 6 n -.. ~ : ;1 .. 
., 

I 0 FS LOCA E ER F AR :: .. 8 . 

. 5 19 

ODES Lor Teo HERf ·RE : l~ 2 . 

L. 6 21 

'- 7 21 

2B 24 

? 24 

ODf=S I Q(, ... TE D HE E RF : 1 4 .. 
..., 

22 

3 22 

NnOES LDC ED HERE RE : . 27 . 

2 0 

5 4 '": 2C 

84 .2 0 



5 . · o .·on c <; ;" . o o 20 
..., .., 

0 S L DC- TED HfRE . E : 7. 3 C . 
....., .., .... 

36 ) l !"" 5.:;r v0·)3 1~. c .J"' 17 
..., 

!ODE S L DCL T ED W"Rf RE : 22 . 

2 0 

NODE S L C A T ~D rl RE RE : • 23 . 

38 1 9 

~WOES L OCAT ED E 

39 23 

4 ' 
' -· 23 

, .., 
JDDES l C E : 2 .• 

41 24 

42 14 
..., 

10 

44 9 

l 0 ~ S L OCA T f HER,.. R.E : 26 . 3 • 

4 5 15 

4 6 15 - ..., 
N DE S LC ED LERE AR E : ~ 2 . 33 . 

-, ., 
7 ) nn e 0 .:-: l n 2 l r_: f' 7 

. ~ODES Ul f . TFD I ERE .. RE ~ 2 9. 
..., 

4 1 0 

4 9 1 0 

. OD S HEK~ u. RE : 3 . • 

1 0 
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...., 

NOD S LOCA T:O HER~ A E : 35 . 

5? 4 

NODES 
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S C H E D U L E U M E R 27 

CT!VIT_ S 1, 2, -=., ..... . .. , s 
T!ME -U~ T LEVEL 

NODES LOCA TED E RE 

l 3 

2 3 

3C 1 0 C 3 

4 3 

5 3 

ODFS OCA T E HERE AR ~- ! 
...., , ..,-, ..., 

6 ·~ 1 r 2 ~- ' I' ; .1 7 

7 17 

8 17 
., ·-,..., 

N I. ES LOCA TED jfRf ~p : ~ . r . 

9 19 

16 

G D S L 0 C A T E ,, H E !? A R ~ : , . • 9 • 2 , • 

19 

12 19 

3 ., ~~ -c- 19 

19 

5 19 
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20 

. 9 2 . .i 
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18 
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22 18 

23 18 

2 18 

25 18 

_6 17 
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NODE S LOC6 ED HERE R : 

2 19 

29 19 
.., 

ODES LDC TED ERE ~ E : 
.., 

21 

rr; 21 
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33 .. 6 "( ,"'· 4 rr 21 

NODES LOC TED ' E_. E t.RE ,• 21 • 
..., 

34 22 

19 



?6 15 

3 7 15 

13 

1 3 

., .,....,.., 
{' 16 

4 16 
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4 3 14 
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18 
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18 
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19 
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., ...., ., 
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- ..,.., 

5 9 
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4 
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2 
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6 
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6 
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19 
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25 . ( , -, r 0 r 0 t') j . f \ c t \ J ·"'; r; 0 ,) f . f ,, 0 f) 0 r ~ r_ 0 f ) c .... 0 18 
...., 

26 ~ f c ,.,. (' { f 17 

27 17 

No o ~s LOCA T ., HFR R 
. ..., 

19 

29 19 

~ -· DES LDC fD ERE AR.E : 1 • 
..., 

21 

31 21 

32 21 

21 

. !nDES L OC ~ T ED HERF : 2 7 • 
..., 

.22 . 
.., ....,..., 

.,..., 

35 ,"";. 6 l ' 19 



36 15 

37 15 

NODES LLICATED HERE ARE : 14 . 

.38 13 

13 

i 1~ DES DC.A. T -D J: PE t RF : 7 .• l 5 • _ _,.., 

1 6 

41 16 

16 

NODES L OC~TFO Hf ~ RE : 8. 

14 
.., .., -, 

44 i .a 

I ODES LOCH ED HERE A E : 13 . 
.... 

45 17 

46 18 

, ODE . LOC TED ER . ARE : 24 . 

47 9 

NO DES LOCA T D HERE ARE : 18 . 

48 
.., 

, ODES LOCATE U Hr- E R : 25 . 

49 2 1 

20 
.,..., ..., 

NODf S LOCA.TED ERE ARE : l 'Q .. 2C. . 2L. 

51 0 ' ioenoc·c 31 (~ 0050{,·;: 1)00 \"1,; t; C on rt 9 

c-20 



., .., ...... 

oo~ s LOC TED H PE p : Zf • .3 1 . 
.....,, ...., 

14 

14 

r ODE LOCA TED HE 
....,.., 

5 6 

5 6 t"":.• .,... .. _, 6 

5 7 ' ( .. ~ ,. -~ •·. f •Q 10 
..., ., 

NO. ES L OC FD ARE : 3 4 . 

58 1 0 

59 10 
.., ., 

Jl"JO ES L R F : 35 . 

r rn·~.JG0 4 4 
...., 

NO E .. f APE : 3 6 .• 

6 l 

C-21 



C H E D U L E N U M B E R 29 

IV!T ES ,?, : , ..... ... , 58 
T _ 1 E-UN T LEVEL 

1n0Es L c T . H RE t...RE :: 

3 

4 

5 
.., 

N_OfS LO A E F E . R 

6 

7 

NODFS L o r ~ : ED ERf R 

. ') . . 

DE' LOCA T ED ' ERE RE : 4. 9 . 28 . 

2 

4 

f f"I -
\~. ·, 

r. 
' '. ) 

3 

3 

3 

3 

3 

17 

17 

17 

19 

16 

9 

19 

19 

19 

19 

2 0 



20 

8 2 ·0 

g 2 0 

.. DES L T D H -~ R : ~ .. 6 . 

4 18 

2 . 0 18 

22 18 

18 

24 18 

25 18 

... 6 17 

2 7 ~ ··r "."', ... 84 17 

NrDES L OC FD ER i:.R :1 2 .• 

2 r ,; , 19 

2S 19 

NODE S L OC T EO HFRE A E : 1 · * 

21 

21 

32 21 

33 21 
.., 

..., 

?4 22 

35 19 



36 15 

37 15 
..., 

NOOf S LO( r :o ffR ARE : L . 
..., 

13 

3 9 !, .• ·6 "", ;( 13 

tOD FS L DC T ED HF:'""E A. E .• 7.1 5 • 
., ..., ...,...., 

4 16 

25 " 16 

16 

NLOES LOCATED HE~E ARE : 8. 

14 
..., ..., . ..., 

noL .. LOC T ED ERL AP ~- : 11 . 22 . 3 · . • 

22 

fO OF S LOC T . ,ERE 
..., ..., 

17 

.., .,..., ...... ..., 

11 

7 9 

NODES L C ED 1ER E f : 
..., 

48 19 

9 19 

.., 
c ~, 
:J, ,

1 \V) )*->:)cu:rw ~.soooo JJJt;0;:10·. o 2 0 
..., ...., 

: 1 . 2·, . 2 1. 
-., .,..., ., 

5 ... ' .:. · 1 :.: •.JC 5 00 f1 0 '0 ·ij, , f°'! 0 t .. G , i 9 

52 9 



8 
., .., 

f\ODES L - C T ED HERE A E : 26 3 1. 

5 14 

55 Ot 14 

ODE S L OC TED HERE AP 
...,.., 

56 6 

f\JOOE S L OCl'- T 0 HE _ A R ~- : 2 9 . 

5 7 l C 

5 . 10 
...., .., 

PE : 34 . 
...., 

g 
..., 

3 

6 1 .r r 4 

JOO E S l OC.1 TED Hf · E f.' R E : 3 6 . 

6 

C-25 



THE H_ RIS C BES T SO L JT . C 



s c ~ 0 U L E ~ U M 8 R 34 

er · v !E S 
TI , ~ - U T LEVEL 

, OD S OC T ED He E RE ! 

3 

2 3 

3 3 

3 

r) c ~, •)O· , '·tr-'.·(': , Q('C "'1 C (' -.._ .. ;n 0 GOOC ·., 00 () )0 3 

NODES L OC!--' T ED hER .R E : .. 
..., ~....,..., ..., 

17 

7 17 

g 17 

ODF: S L OCA T _O ER~· A E : 3 • .-~ .. • 
...,.,....,.., 

9 19 

16 

..., ...,., 
~ l l. 9 

2 19 

13 19 

19 

j .-
19 

....,..., 

1 20 

C-27 



1 7 20 

8 20 

9 20 
..,...,, 

NODES L DC T ED HERE ARE : 5 . 6 • 
.., ...,.., 

18 

18 

22 18 

2""' 18 

24 18 

25 18 

':6 17 

' 1 7 

NOD S OCA T ED HER· .L.PE ! 1 -- • 

28 19 

29 19 

oo-s LOCA TED ERE ~Rf : 11 . 

18 

18 

32 18 

·3 18 

34 18 

35 18 



...., 
18 

37 18 

3 

JOCES LOC,... TE . HER , RE : 2 7 
-,.., 

39 15 

NODES LOCA TE HE E RE : 7. 14 ~ 
-, .., 

1 0 

41 10 

NODf S LDC TfD R.E RE ·: 15,. 
.,..,..., 

16 

c.DE S L DC ED ' EFF ARE : 8 . 

14 

.14 

9 

: 11. 22.3 .• 
...,,.....,..., 

19 

.16 
..., .., ....,..., .., -, 

E :1 6.18 . 23 . 

2 -0 
..., ...., 

..., 

19 

19 
...., .,...,.., 

NODES L OC t T D I ER · A . : 19 • 2i· • 2 .:.. • 2 5 • 

14 

52 . 14 

C-29 



5 3 p. .. 9 

54 9 

. ..,..., -. 
14 

56 14 

rQOE S LOCAT ED HER 
...,..., 

5 7 

5 8 1 0 

5g 

, HJD ES L O C ~ T ED HE:f.L ·R E .. : 3 4 . 

3 

61 
..., 

NOD f S OC..A TEO , ERE t KE : 35 . 

6 .2 

0 E S L .. C.AT ED , EF f ARE : 36 . 

6 3 0 


	A Heuristic Routine for Project-Network Scheduling with Resource Constraints
	Terms of Use
	Recommended Citation

	thesis_alvarez_1972_001
	thesis_alvarez_1972_002
	thesis_alvarez_1972_003
	thesis_alvarez_1972_004
	thesis_alvarez_1972_005
	thesis_alvarez_1972_006
	thesis_alvarez_1972_007
	thesis_alvarez_1972_008
	thesis_alvarez_1972_009
	thesis_alvarez_1972_010
	thesis_alvarez_1972_011
	thesis_alvarez_1972_012
	thesis_alvarez_1972_013
	thesis_alvarez_1972_014
	thesis_alvarez_1972_015
	thesis_alvarez_1972_016
	thesis_alvarez_1972_017
	thesis_alvarez_1972_018
	thesis_alvarez_1972_019
	thesis_alvarez_1972_020
	thesis_alvarez_1972_021
	thesis_alvarez_1972_022
	thesis_alvarez_1972_023
	thesis_alvarez_1972_024
	thesis_alvarez_1972_025
	thesis_alvarez_1972_026
	thesis_alvarez_1972_027
	thesis_alvarez_1972_028
	thesis_alvarez_1972_029
	thesis_alvarez_1972_030
	thesis_alvarez_1972_031
	thesis_alvarez_1972_032
	thesis_alvarez_1972_033
	thesis_alvarez_1972_034
	thesis_alvarez_1972_035
	thesis_alvarez_1972_036
	thesis_alvarez_1972_037
	thesis_alvarez_1972_038
	thesis_alvarez_1972_039
	thesis_alvarez_1972_040
	thesis_alvarez_1972_041
	thesis_alvarez_1972_042
	thesis_alvarez_1972_043
	thesis_alvarez_1972_044
	thesis_alvarez_1972_045
	thesis_alvarez_1972_046
	thesis_alvarez_1972_047
	thesis_alvarez_1972_048
	thesis_alvarez_1972_049
	thesis_alvarez_1972_050
	thesis_alvarez_1972_051
	thesis_alvarez_1972_052
	thesis_alvarez_1972_053
	thesis_alvarez_1972_054
	thesis_alvarez_1972_055
	thesis_alvarez_1972_056
	thesis_alvarez_1972_057
	thesis_alvarez_1972_058
	thesis_alvarez_1972_059
	thesis_alvarez_1972_060
	thesis_alvarez_1972_061
	thesis_alvarez_1972_062
	thesis_alvarez_1972_063
	thesis_alvarez_1972_064
	thesis_alvarez_1972_065
	thesis_alvarez_1972_066
	thesis_alvarez_1972_067
	thesis_alvarez_1972_068
	thesis_alvarez_1972_069
	thesis_alvarez_1972_070
	thesis_alvarez_1972_071
	thesis_alvarez_1972_072
	thesis_alvarez_1972_073
	thesis_alvarez_1972_074
	thesis_alvarez_1972_075
	thesis_alvarez_1972_076
	thesis_alvarez_1972_077
	thesis_alvarez_1972_078
	thesis_alvarez_1972_079
	thesis_alvarez_1972_080
	thesis_alvarez_1972_081
	thesis_alvarez_1972_082
	thesis_alvarez_1972_083
	thesis_alvarez_1972_084
	thesis_alvarez_1972_085
	thesis_alvarez_1972_086
	thesis_alvarez_1972_087
	thesis_alvarez_1972_088
	thesis_alvarez_1972_089
	thesis_alvarez_1972_090
	thesis_alvarez_1972_091
	thesis_alvarez_1972_092
	thesis_alvarez_1972_093
	thesis_alvarez_1972_094
	thesis_alvarez_1972_095
	thesis_alvarez_1972_096
	thesis_alvarez_1972_097
	thesis_alvarez_1972_098
	thesis_alvarez_1972_099
	thesis_alvarez_1972_100
	thesis_alvarez_1972_101
	thesis_alvarez_1972_102
	thesis_alvarez_1972_103
	thesis_alvarez_1972_104
	thesis_alvarez_1972_105
	thesis_alvarez_1972_106
	thesis_alvarez_1972_107
	thesis_alvarez_1972_108
	thesis_alvarez_1972_109
	thesis_alvarez_1972_110
	thesis_alvarez_1972_111
	thesis_alvarez_1972_112
	thesis_alvarez_1972_113
	thesis_alvarez_1972_114
	thesis_alvarez_1972_115
	thesis_alvarez_1972_116
	thesis_alvarez_1972_117
	thesis_alvarez_1972_118
	thesis_alvarez_1972_119
	thesis_alvarez_1972_120
	thesis_alvarez_1972_121
	thesis_alvarez_1972_122
	thesis_alvarez_1972_123
	thesis_alvarez_1972_124
	thesis_alvarez_1972_125
	thesis_alvarez_1972_126
	thesis_alvarez_1972_127
	thesis_alvarez_1972_128
	thesis_alvarez_1972_129
	thesis_alvarez_1972_130
	thesis_alvarez_1972_131
	thesis_alvarez_1972_132
	thesis_alvarez_1972_133
	thesis_alvarez_1972_134
	thesis_alvarez_1972_135
	thesis_alvarez_1972_136
	thesis_alvarez_1972_137
	thesis_alvarez_1972_138
	thesis_alvarez_1972_139
	thesis_alvarez_1972_140
	thesis_alvarez_1972_141
	thesis_alvarez_1972_142
	thesis_alvarez_1972_143
	thesis_alvarez_1972_144
	thesis_alvarez_1972_145
	thesis_alvarez_1972_146
	thesis_alvarez_1972_147
	thesis_alvarez_1972_148
	thesis_alvarez_1972_149
	thesis_alvarez_1972_150
	thesis_alvarez_1972_151
	thesis_alvarez_1972_152
	thesis_alvarez_1972_153
	thesis_alvarez_1972_154
	thesis_alvarez_1972_155
	thesis_alvarez_1972_156
	thesis_alvarez_1972_157
	thesis_alvarez_1972_158
	thesis_alvarez_1972_159
	thesis_alvarez_1972_160
	thesis_alvarez_1972_161
	thesis_alvarez_1972_162
	thesis_alvarez_1972_163

