
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

1994

An Evaluation of the Open Object-Oriented Database An Evaluation of the Open Object-Oriented Database

Frank Alsop
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Alsop, Frank, "An Evaluation of the Open Object-Oriented Database" (1994). Open Access Master's
Theses. Paper 1113.
https://digitalcommons.uri.edu/theses/1113

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1113?utm_source=digitalcommons.uri.edu%2Ftheses%2F1113&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

AN EVALUATION OF THE

OPEN OBJECT-ORIENTED DATABASE

BY

FRANK ALSOP

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

1994

APPROVED:

MASTER OF SCIENCE THESIS

OF

FRANK ALSOP

Thesis Committee /] /

Major Professor---"'-y _· ~~_,;;_~::;.....;;;.....;;.__, _/(.:_~.........,. ~- ._/7.___..h/c.__~--· .,._if-'---_
~);p IA -~ 7

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

1994

ABSTRACT

The diversity of database designs has motivated standardization efforts. The Ad­

vanced Research Projects Agency (ARPA) sponsored Open Object-Oriented Database

(Open OODB) project is the leading effort to develop an extensible, modular architec­

ture for next-generation, object-oriented databases (OODBs). The Next-Generation

Computer Resources (N GCR) Database Management Systems Interface Standards

Working Group (DISWG) has published requirements that will help dictate how the

Navy meets its future database needs. This thesis will evaluate Open OODB with

respect to the DISWG requirements. Each DISWG requirement is evaluated from

three distinct perspectives. First, we see if Open OODB has a matching require­

ment(s). Second, we evaluate if Open OODB's proposed architecture would meet

the requirement, and third, we evaluate if Open OODB's implementation meets the

requirement. If a particular DISWG requirement is found to be unmet, we investigate

the feasibility of extending Open OODB to meet the requirement.

11

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Victor Faye-Wolfe, for inspiring this thesis and

for his help in seeing it through. I would also like to thank Dr. Joan Peckham for

her answers to my many questions. Thanks, as well, to my committee chairperson,

Dr. Sodhi, and my other committee member, Dr. Datta.

I would like to acknowledge all the members of the RTSORAC research group,

including Paul Fourtier, Jane.t Prichard, Lisa Cingiser-DiPippo, Gary Hyslop and

John Black for their support and input.

Finally, I thank my wife, Melissa, for all her support and patience.

111

PREFACE

This thesis provides an evaluation of the Open Object-Oriented Database (Open

OODB) project with respect to the requirements of the Next-Generation Computer

Resources (NGCR) Database Management Systems Interface Standards Working

Group (DISWG). DISWG lists one hundred and nine requirements. Open OODB

is evaluated with respect to each requirement on three levels: Open OODB's require­

ments, its proposed architecture and its implementation. The thesis is organized as

follows.

Section one provides an introduction. We first discuss the shortcomings of current

databases. We then motivate the importance of standardization to overcome those

shortcomings. We then introduce Open OODB and DISWG and highlight their im-

portance.

Section two provides a summary of Open OODB. Since the rest of this thesis is

predicated upon an understanding of Open OODB, we go into some detail. We discuss

Open OODB's requirements, its computational model and its architecture. We also

briefly look at the CORBA model for a next-generation OODB because Open OODB

and CORBA are closely related.

Section three provides a look at relevant research at the University of Rhode

Island (URI). This includes a look at the RTSORAC (Real-Time Semantic Objects

Relationships and Constraints) project which is a leading effort to develop a next­

generation, real-time database. We then provide a brief look at the important question

of where the operating system ends and where the DBMS begins. We conclude with

a look at some of the author's individual research.

Section four contains the evaluation of Open OODB with respect to DISWG's re­

quirements. DISWG partitions its requirements into nine requirements classes. Thus,

this section is partitioned into nine subsections, one for each DISWG requirements

class.

IV

The first subsection contains an evaluation of Open OODB with respect to the

DISWG General requirements class. The General requirements pertain to almost any

computer system, not just databases. These General requirements include topics such

as portability, modularity and scalability, etc.

The second subsection contains an evaluation of Open OODB with respect to

DISWG's Basic DBMS requirements class. These Basic requirements pertain to

DBMSs in general. Included are topics such as support for queries, transactions

and persistent data, etc.

The third subsection evaluates Open OODB with respect to DISWG's Distribution

requirements class. In this subsection, it is observed that Open OODB does not

qualify as a distributed database system as per DISWG's definition. Open OODB is,

however, a distributed database. Therefore, Open OODB is evaluated as a distributed

database and we point out how Open OODB could be extended to be a distributed

database system.

The fourth subsection evaluates Open OODB with respect to DISWG's Hetero-

geneity requirements class. These requirements address the interoperability of het-

erogeneous databases and DBMSs. Thus, this requirement does not really apply to

Open OODB since Open OODB is a DBMS in and of itself. Therefore, we discuss

work underway to allow Open OODB to be incorporated into a heterogeneous system.

The fifth subsection evaluates Open OODB with respect to DISWG's Real-Time

requirements class. Open OODB is not a real-time database so these requirements are

not met. Many of these requirements depend upon a real-time operating system. In

this evaluation, we reference work being carried out at URI to extend Open OODB

with the functionalities of URI's RTSORAC model and to port Open OODB to a

real-time operating system.

The sixth subsection evaluates Open OODB with respect to DISWG's Fault Tol-

erance requirements class. Many of these requirements are reliant upon operating

v

system support. Currently, Open OODB defers recovery to the underlying Exodus

storage manager. Therefore, most of the discussions in this class focus on how to

extend Open OODB. to meet the requirements.

The seventh subsection evaluates Open OODB with respect to DISWG's Integrity

requirements class. Most of these requirements are not met by Open OODB. We once

again discuss extending Open OODB with RTSORAC features in order to meet these

requirements.

The eighth subsection evaluates Open OODB with respect to DISWG's Security

requirements class. Security as a class has been de-emphasized by DISWG and secu­

rity is outside the current scope of Open OODB. Therefore, this evaluation is different

than the evaluations of DISWG's other eight classes. We discuss security as it relates

to DBMSs and OODBs in general and do not perform a separate evaluation of the

twenty-four requirements of this class.

The ninth subsection evaluates Open OODB with respect to DISWG's Advanced

DBMS requirements class. This class is where DISWG incorporates requirements on

OODBs specifically. Therefore, many of these requirements are met and we discuss

how Open OODB meets them.

In the last section, the conclusion, we first summarize the main findings in the

evaluations of each DISWG requirements class. Finally, we present some general

observations on the strengths and weaknesses of Open OODB.

VI

Contents

1 Introduction

2 Open OODB

2.1 Motivation for OODBs

2.2 Open OODB's Requirements .

2.2.1

2.2.2

2.2.3

Open OODB's Meta Requirements

Open OODB's Functional Requirements

Open OODB's Next-Generation OODB Requirements .

2.3 Open OODB's System Architecture

2.3.1 Open OODB's Computational Model .

2.3.2

2.3.3

Open OODB's Meta Architecture .

Open OODB's Extenders ..

2.4 The Object Management Group ..

3 Research at the University of Rhode Island

3.1 Real-Time Databases

3.1.1 The RTSORAC Model

3.1.2 Potential Limitations of RTSORAC ..

3.2 The Operating System/DBMS Interface

3.3 The Author's Individual Work .

4 DISWG

4.1 DISWG's General Requirements Class

4.1.1 Public Specification .

4.1.2 Portability . . .

4.1.3 Interoperability

4.1.4 Supportability .

Vll

1

4

5

7

7

9

12

13

13

17

19

23

25

25

26

27

28

29

30

32

33

34

36

37

4.1.5 Hard ware Independence 38
4.1.6 Operating System Independent 38

4.1.7 Net work Independent 39

4.1.8 Programming Language Independent 40

4.1.9 DBMS Independent . 42

4.1.10 Scalability . 43

4.1.11 Modularity 44

4.1.12 Extensibility . . 45

4.1.13 Uniformity ... 46

4.1.14 Configurabili ty 47

4.1.15 Compatibility with Other NGCR Standards 48

4.2 DISWG's Basic DBMS Requirements Class .. 49

4.2.1 Persistent Data 49

4.2.2 Multiple Users. 50

4.2.3 Conventional Alphanumeric Data Types 51

4.2.4 Binary Large Objects (BLOBs) 52

4.2.5 Expressiveness of DML . 53

4.2.6 Planned Queries . 55

4.2.7 Ad Hoc Queries . . 55

4.2.8 Interactive Queries 56

4.2.9 Embedded Queries 57

4.2.10 Compiled Queries . 58

4.2.11 Interpreted Queries . 58

4.2.12 Transactions . . 59

4.2.13 Data Models . . 60

4.2.14 Conceptual Schema Definition . 61

4.2.15 External Schema Definition .. 62

Vlll

4.2.16 Internal Schema Definition 63

4.2.17 Identification and Authentication 64

4.2.18 Discretionary Access Control . 64

4.2.19 Access to Metadata . 65

4.2.20 Multiple DBMSs 66

4.2.21 Multiple Databases 67

4.2.22 Tracing 67

4.2.23 Statistical Monitoring 68

4.2.24 Training Mode 69

4.3 DISWG's Distribution Requirements Class 69

4.3.l Definitions 70

4.3.2 OODBs and Distribution .. 71

4.3.3 Open OODB and Distribution . 72

4.3.4 Distributed Query Processing 73

4.3.5 Distribution Transaction Management 74

4.3.6 Location Transparency 75

4.3.7 Fragmentation Transparency . . 76

4.3.8 Replication Transparency 77

4.3.9 Data Definition 79

4.3.10 Local Autonomous Processing Capability .. 80

4.3.11 Continuous Operation 81

4.3.12 Hardware Independent 82

4.3.13 Operating System Independent 82

4.3.14 Network Independent 83

4.4 DISWG's Heterogeneity Requirements Class 84

4.4.1 Definitions 84

4.4.2 Important Issues 85

IX

4.4.3 OODBs and Heterogeneity . 87

4.4.4 Remote Database Access . 87

4.4.5 Global Transactions . . . 88

4.4.6 M ultidatabase Systems . 89

4.4.7 Federated Database Systems . 89

4.5 DISWG's Real-Time Requirements Class 90

4.5.1 Definitions 90

4.5.2 Important Issues in Real-time Databases 91

4.5.3 The Future of RTDBSs 92

4.5.4 RTSORAC and Open OODB 93

4.5.5 Modes of Real-Time .. 94

4.5.6 Real-Time Transactions 95

4.5.7 Concurrency Control Correctness Criteria 97

4.5.8 Temporal Consistency 98

4.5.9 Real-Time Scheduling 99

4.5.10 Bounded Logical Imprecision . . 100

4.5.11 Bounded Temporal Imprecision 101

4.5.12 Main Memory Data . . 102

4.5.13 Time Fault Tolerance . . 103

4.5.14 Resource Utilization Li mi ts 104

4.5.15 Compilable DML 105

4.6 DISWG's Fault Tolerance Requirements Class 105

4.6.1 Definitions 106

4.6.2 Popular Strategies 106

4.6.3 Important Issues 107

4.6.4 Open OODB and Fault Tolerance 108

4.6.5 Collection of Fault Information .. 109

x

4.6.6 Retrieval of Fault Information 110

4.6.7 Initiation of Diagnostic Tests 111

4.6.8 Retrieval of Results of Diagnostic Tests 112

4.6.9 Operational Status 112

4.6.10 Fault Detection Thresholds 113

4.6.11 Specification of Fault Responses 113

4.6.12 Reconfiguration 115

4.6.13 Replicated Components 116

4.7 DIS\VG's Integrity Requirements Class 117

4.7.1 OODBs and Integrity . 118

4.7.2 Domains .. 119

4.7.3 Keys .. 120

4.7.4 Referential Integrity Constraints . . 121

4.7.5 Assertions 122

4.7.6 Triggers 123

4.7.7 Alerters 124

4.7.8 Enabling/Disabling of Constraint Enforcement . 125

4.7.9 Null Values 125

4.8 DISWG's Security Requirement~ Class 126

4.8.1 Security Policies and Strategies 127

4.8.2 OODBs and Security 128

4.8.3 Open OODB and Security . 129

4.8.4 The Next-Generation and Security 130

4.8.5 Multi level Security 131

4.8.6 Labeling 131

4.8.7 Mandatory Access Control . 131

4.8.8 Discretionary Access Control . . 131

XI

4.8.9 User Role-Based Access Control 131

4.8.10 Integrity .. 132

4.8.11 Consistency 132

4.8.12 Identification and Authentication 132

4.8.13 Security Auditing . 132

4.8.14 Least Privilege 132

4.8.15 Trusted Path 132

4.8.16 Trusted Recovery 133

4.8.17 Inference and Aggregation 133

4.8.18 Multilevel Data Model 133

4.8.19 SQL Extensions . . 133

4.8.20 0 S Interface 133

4.8.21 Network Interface . 134

4.8.22 Heterogeneity . . . 134

4.8.23 Next-Generation MLS/DBMS 134

4.8.24 Trusted Database Interpretation . . 134

4.9 DISWG's Advanced DBMS Requirements Class 134

4.9.1 Persistent Objects 135

4.9.2 Object Identifie.rs .. 136

4.9.3 Collection Data Type Constructors 137

4.9.4 User-Defined Data Types .. 137

4.9.5 Sorting Order . 138

4.9.6 Temporal Data 138

4.9.7 Spatial Data . . 139

4.9.8 Uncertain Data 140

4.9.9 Derived Attributes 141

4.9.10 Composite Objects 142

Xll

4.9.11 Object Type Hierarchies 143

4.9.12 Object Encapsulation .. 144

4.9.13 Versions and Configurations 145

4.9.14 Archival Storage 146

4.9.15 Schema Evolution . 147

4.9.16 Long Transactions 149

4.9.17 Rule Processing . . 150

4.9.18 Domain Specific Standards . 151

5 Conclusion 153

5.1 DISWG's General Requirements Class 153

5.2 DISWG's Basic DBMS Requirements Class .. 154

5.3 DISWG's Distribution Requirements Class 155

5.4 DISWG's Heterogeneity Requirements Class 156

5.5 DISWG's Real-Time Requirements Class ... 157

5.6 DISWG's Fault Tolerance Requirements Class 158

5.7 DISWG's Integrity Requirements Class 159

5.8 DISWG's Security Requirements Class 159

5.9 DISvVG's Advanced Requirements Class 160

5.10 Overall Observations of Open OODB ... 160

Xlll

List of Figures

1

2

3

4

The Open OODB Requirements and Architecture

The Open OODB Architecture

A Policy Manager Type Lattice

OMG's CORBA Model

XIV

5

14

20

24

1 Introduction

Most large, important computer applications rely on databases to efficiently store and

retrieve information. Scientific, medical and business applications all need vast stores

of data in order to perform essential computations. For example, NASA estimates

that just a few years of satellite image data will require storage for around 1016 bytes.

This large figure does not even account for all the important, pre-existing data that

must be maintained [84]. However, as the twenty-first century quickly approaches,

the shortcomings of current database technology are well recognized [82]. Thus, new

database technologies known as next-generation database systems are being proposed.

The new technology receiving the most attention is the object-oriented database

(OODB). Many think that OODBs represent the future of database technology [39,

71, 93]. The object-oriented (00) approach represents a new way of modeling the

world in a computer environment. Rather than looking at data and the functions

that manipulate data as separate entities, which is the traditional approach, the 00

paradigm looks at data and its associated functions as a single entity, or object. For

example, since it is natural to think of a sphere together with its volume, radius,

and other attributes, every sphere object comes with functions that can compute its

volume and radius, etc. Thus, a major benefit of using the 00 approach is that it

more closely models real world situations than do the previous approaches (19]. Since

databases typically involve modeling some real word entity (a customer, a patient,

a weather pattern, etc.) , applying the 00 paradigm to database technology seems

natural.

As when almost any new technology surfaces, there are many, disjointed efforts

underway to develop OODBs. This leads to the undesirable consequence of each

endeavor having to "rediscover the wheel". A coordinated, unified attack on the

problem of designing an OODB would have many benefits. One is that work which

has already been done can be reused and improved upon without having to start

1

''' from scratch". Also, different groups of researchers could work towards solutions of

the same problems and share their experiences.

Central in developing a coordinated, unified attack is the establishment of stan­

dards. In order to develop standards, there must be in place an agreed upon set of

requirements. A requirement is a desired quality that, in this case, every database

should have. An example is extensibility which means that new functionalities can

easily be added. A standard is much more implementation specific. For example, a

standard might define exactly what values must be passed into a specific function.

To develop standards, preliminary work must be done and proposed designs, or ar­

chitectures, tested. In the field of databases, there are several such unifying efforts

underway.

The leading effort to develop design proposals for future OODBs is the Open

Object-Oriented Database (Open OODB) project ongoing at Texas Instruments (TI).

This effort is sponsored by the Advanced Research Projects Agency (ARPA). Open

OODB's overall goal is "to build a high-performance, multi-user object-oriented data­

base management system (OODBMS) in which database functionality can be tailored

by application developers for the diverse needs of demanding applications" [58]. Open

OODB has an overall set of requirements describing the needs of next-generation

OODBs [69] and has proposed a database design, or framework, that other develop­

ers can use to build customized OODBs. Additionally, Open OODB has implemented

some of its proposed design. This allows Open OODB to be evaluated from three

distinct perspectives: its overall requirements, its proposed design and its current

implementation.

The United States Navy has formed the Next-Generation Computer Resources

(NGCR) task force to standardize its computer systems. The Navy has a multitude

of heterogeneous computer systems at sea, on land, in air and in outer space. It would

obviously be helpful if these systems adhered to a common set of standards that would

2

allow them to communicate and share data efficiently. To quote the Chief of Naval

Operations, "the force that wins the information battle will gain such ascendancy

that it may not have to fight the real battle" (32].

One subgroup of the NGCR has the specific task of developing requirements that

the Navy feels next-generation databases must meet. This group is the Database

Management System Interface Standards Working Group (DISWG). Notice that the

acronym does not refer directly to databases but to database interj aces. An interface
'

is a channel of communication, somewhat like a door into a room. Thus, DISWG

is interested in establishing requirements on the way different parts of a database

management system talk to each other and to the rest of the system.

The University of Rhode Island (URI) is an alpha site responsible for testing and

issuing reports on Open OODB. 1 Researchers at URI are interested in extending the

functionalities of Open OODB to meet more of the DISWG requirements. To guide

this research, an evaluation of Open OODB must be performed. This evaluation must

include the following.

• Which DISWG requirements are currently met by Open OODB. This part of

the evaluation is performed from three distinct perspectives: Open OODB's

requirements, its implem~ntation and its proposed architecture.

• An examination of unmet DISWG requirements and a report on the viability

of extending Open OODB to meet those requirements. Suggestions must also

be made on how to implement those extensions.

Thus, this thesis performs the essential task of evaluating Open OODB with re­

spect to DISWG's requirements. It also provides guidelines to help extend Open

OODB to meet more of DISWG's requirements. The rest of this thesis is organized

1The alpha version of Open OODB is release 0.2. When we refer to Open OODB or the current
Open OODB, we mean this release.

3

as follows. The next section reviews Open OODB 's requirements and proposed sys­

tem architecture. The following section contains the evaluations in nine subsections,

one for each DISWG requirements class. Each DISWG requirements class is made

up of a set of individual requirements. Open OODB is evaluated with respect to

each, individual DISWG requirement from the aforementioned three perspectives: its

requirements, its proposed architecture and its implementation. Any discussion of

extending Open OODB to meet a particular requirement is included in the imple­

mentation evaluation. The thesis ends with some concluding remarks.

2 Open OODB .

The diversity of OODB designs has slowed acceptance by potential users [94]. Each

design must start from scratch and build from the bottom up. Development of

reusable, standardized components would facilitate matters. Open OODB represents

the leading effort to design "an architectural framework that allows flexible configura-

tion of independently developed modules ... " [58]. Open OODB also wishes to verify

its proposed architecture through implementation and testing.

Figure 1 pictorially represents how Open OODB's requirements and architecture

relate to each other. 2 In Figure 1, we see that Open OODB has two sets of require-

ments: meta and functional requirements. The meta requirements are requirements

on the meta architecture and the functional requirements are requirements on the

extenders. The meta and functional requirements, as well as the extenders, are all

described in detail in upcoming sections. Together, the meta architecture and the

extenders make up the system architecture.

We begin this section with a motivation for the development of OODBs in gen­

eral. Then, we provide an overview of the Open OODB project highlighting its

2This diagram also appears in a slightly different form in Open OODB's literature. The dia­
gram included here is from the Technical Overview document included with release 0.2. Elsewhere,
the system architecture and extenders are merged together with an arrow going from the meta
architecture to the system architecture. That arrow is labeled used to implement.

4

Open OODB

/ ~~
Meta Requirements

l
Functional Requirements

l
Meta Architecture Extenders

~ /
System Architecture

Figure 1: The Open OODB Requirements and Architecture

requirements, computational model and proposed architecture. Throughout these

discussions, implementation details are brought up where relevant. Many more im-

plementation details are left for the sections evaluating Open OODB with respect to

DISWG's requirements . To conclude the overview of Open OODB, we take a brief

look at an influential group working towards OODB standards to whom Open OODB

is closely tied: the Object Management Group (OMG).

2.1 Motivation for OODBs

Research in OODBs has been motivated by the inability of traditional databases to

deal with next-generation database needs. Indeed, some would say that traditional,

existing databases do not adequately fulfill the needs (i.e., business applications) for

which they were specifically designed (82]. Next-generation needs include computer

aided design, office information systems and a host of multimedia applications. The

three most widely accepted database models so far have been the relational, hier-

archical and network models. However, all these models have limitations, which we

next look at briefly.

Traditional relational systems are limited by a small set of data types and the

functionality of those types [49]. Thus, relational models have trouble representing the

5

Complex data types needed for multimedi·a 1. t• tc Also, in the relational app ica 10ns, e ·

model, complex relationships between objects are hard to express [23]. Relational

systems are inhibited by decreasing performance as their size grows [26].3 Thus, in

[23], it is concluded that the "simplicity of the relational model is both its strength

and its weakness." Next-generation databases will have to be strong performers with

a rich data set to enhance modeling capabilities.

Net work and hierarchical databases both provide so-called record-at-a-time access.

Performing queries in such systems is not natural for the unskilled. Complex programs

must be written in order to access data, which limits short-notice data availability [84].

If the structure of the database were to change, chances are the application programs

that access data would also have to change. These factors tend to place a great

burden on the programmer [26, 84]. Also, performance is a concern in the network

and hierarchical models because of the expense of crossing the application/ database

boundary many times [42]. 4

The 00 model has been proposed as a viable alternative to the traditional data

models. OODBs have the potential to more realistically model real world situations.

There are many efforts underway aime~ at developing both OODBs and relational

databases extended to include 00 features. The.se efforts include5: Orion [43], 0 2

[22], Iris [95], GemStone [13], ObjectStore (48], POSTGRES [83] and Starburst [49].

However, because there is no coordination among these efforts and no accepted defi-

nition of an OODB, each project must start from scratch [5, 59]. Open OODB is the

ARPA sponsored project at TI to develop an open, extensible architecture for the use

of future OODB developers.

3 This is not to imply that performance is not a concern in OODBs. In fact, it is a concern [15].
However, the performance problems of relational systems are much more understood.

4 Many would say that the network/hierarchical models outperform the relational model. How­
ever, there are concerns about how performance in all those models will scale to next-generation
needs.

5This is only a partial list; there are certainly other worthwhile efforts. Also, this list includes
both OODBs and extended relational databases because there is disagreement on where the dividing
line between the two falls.

6

2.2 Open OODB's Requirements

Requirements are needs that must be met to satisfy some customer(s). Requirements

need to be precise without including any implementation details [69]. The Open

OODB project defines three types of requirements: meta requirements, functional

requirements and next-generation OODB requirements. The meta requirements de­

scribe "the organizational and operational characteristics that the OODB must meet

while satisfying the functional requirements" [59]. The functional requirements de­

scribe "the capabilities the Open OODB must provide to its users" [66]. The next­

generation OODB requirements are a "catch-all" for features that are out of the scope

of Open OODB. The Open OODB requirements are presented as a list numbered from

Rl through Rl 7. Rl through R12 are the functional requirements and R13 through

R16 are the meta requirements. Rl 7 is the lone next-generation OODB requirement.

Under each requirement, there are numerous subrequirements which are labeled as

Rl-2 or R4-5-2, etc. \Ve now review each type of Open OODB requirements.6

2.2.1 Open OODB's Meta Requirements

As noted earlier, meta requirements are overall characteristics that must be adhered

to while still providing the need.ed services, or functionalities. Referring to Figure 1,

we can see that the meta requirements are requirements on the meta architecture.

The meta architecture is discussed in the architecture section. Open OODB has

four meta requirements: Rl3 Openness, R14 Seamlessness, R15 Performance and

R16 Industrial Strength. Rl3 Openness and Rl4 Seamlessness are referred to as

organizational meta requirements while Rl5 Performance and R16 Industrial Strength

are called operational meta requirements. None of these four are specific to OODBs,

which is why they have been separated from the rest of the requirements [64]. Next,

we summarize each meta requirement.

6The complete list of Open OODB requirements is too lengthy for inclusion. For the complete
list, see [69].

7

R13 Openness. This is perhaps Open OODB's key meta requirement. Open is

defined as meaning "that the modules of the OODB have well-documented inter­

faces and that the modules can be changed or replaced to add functionality or im­

prove performance" [69]. Openness is the "characteristic of a system which allows

developers or researches to modify or control some part (s) of its architecture or

implementation"[60]. The name Open OODB was not chosen arbitrarily! All of

Openness's subrequirements, R13-1 through R13-11, deal with some aspect of mod­

ularity. Examples include: modules need well defined interfaces, modules need to be

justified and modules may be extensible, etc. Its worth noting that Open OODB uses

the terms openness and extensibility as synonyms (59].

R14 Seamlessness. An "OODB must provide a seamless interface between the

programming language and the database" (69]. A seam is an "explicit interface which

occurs when performing an action" and " the occurrence of an event involving a spe-

cific_ operation, argument type, or environmental attribute" [60). Seamlessness refers

to the "the absence of a seam between the data model of a transient application

and a persistent shared database ... " [60]. Seamlessness can be considered a type

of transparency, where operations can be carried. out on behalf of a user, but with­

out the knowledge of the user: Subrequirements here deal with different types of

transparency. For example, R14-3 states that an OODB must exhibit persistence

transparency, R14-6 location transparency and R14-7 replication transparency.

RIS Performance. "An OODB must provide usable performance and the ability

to configure, tune, measure, profile performance" [69]. There are five subrequirements

of this meta requirement. R15-1 lists a set of required measures such as speed and

response time, etc. R15-2 requires an OODB to support performance tuning mecha­

nisms. R15-3 states that an OODB should support usage metering. R15-4 requires

support for performance benchmarks and R15-5 states that an OODB must be seal-

8

able.

R16 Industrial Strength. This group of meta requirements applies to any usable

system. Thus, they are "inherited by any OODB"[69]. Here, we find requirements

on documentation, portability, robustness and dependencies, etc.

2.2.2 Open OODB's Functional Requirements

Functional requirements are services provided by an implementation that do not pre­

clude the implementation from meeting the meta requirements. The Open OODB

requirements document lists twelve functional requirements. First, we list those re­

quirements and then we briefly discuss them.

• Rl Object-oriented Data Model.

• R2 Persistence.

• R3 Concurrent Access.

• R4 Distribution.

• R5 Data Dictionary.

• R6 Query Capability.

• R 7 Change Management Facility.

• RS Class Libraries.

• R9 Integrity and Recovery.

• Rl 0 Security.

• Rl 1 Access to Legacy Data.

• Rl 2 Program and User Interfaces.

9

Rl Object-oriented Data Model. "An OODB must have an object-oriented data

model" (69]. The 00 data model is briefly discussed in the introduction to this thesis.

Subrequirements of this functional requirement include many of the characteristics

of 00 programming languages such as object identifiers (OIDs), inheritance and

complex objects, etc. OIDs provide a way to uniquely identify objects. Inheritance

allows objects to acquire the properties of other objects and complex objects are made

up of more than one object.

R2 Persistence. "An OODB must support persistent storage of object instances

and classes supported by its 00 data model(s)" [69]. Persistence is the ability of

data to outlive its creating process. "Persistence assumes that there is a pool of

objects outside program scope that can be brought into a program and put back

outside program scope when desired"[65]. Example subrequirements include: R2-3

an OODB must be able to store and retrieve objects, R2-4 an OODB must be able

to map an object into the proper format (i.e., transient or persistent) and R2-5 an

OODB must support object names independent of program names.

R3 Concurrent Access. "An OODB must provide for sharing and controlled

concurrent access by multiple u_sers/processes" [69]. Concurrent access is "the access

of an object by two or more processes at the same time" [60]. Sample subrequirements

of this functional requirement deal with lock primitives and transaction control, etc.

Lock primitives provide a means to synchronize concurrent access and transaction

control maintains database consistency while allowing concurrent access.

R4 Distribution. "An OODB must support location transparency of objects" (69].

Location transparency means that constructs "can be applied independently of an

object's current physical or logical location" and that "details of the mapping of

a fragment into a particular object store" are hidden [60]. Two subrequirements

10

included here are that an OODB must support object transfer between workstations

and that applications can access data stored on multiple object servers.

R5 Data Dictionary. "An OODB must be able to store, access, and manipulate

meta-data" [69]. Meta data7 "encodes the definition (structure and behavior) of a

class (type, schema) or other auxiliary information about a class." A data dictionary

is a collection of meta data. Subrequirements of this functional requirement mainly

list the types of information that a data dictionary should be able to represent.

R6 Query Capability. "An OODB must support a query capability"[69]. A query

is a "statement written in a non-procedural language specifying what data is to be

retrieved from a database" [69] without specifying how it is to be retrieved. Sample

subrequirements include: R6-2 an OODB to be SQL compatible, R6-5 that the results

of queries can be queried and R6-7 that queries must be efficient. SQL (Structured

Query Language) is the best known database query language.

R7 Change Management Facility. "An OODB must support a change manage­

ment facility"[69]. Open OODB defines change management as a "consistent set of

techniques that aid in evolution, composition and policy management of the design

and implementation of an object or system" [69]. Thus, the change management sub-

requirements deal with such topics as versions, configurations and schema evolution.

A version is a variant of an object's original value and a configuration is a group of

consistent, related versions. Schema evolution means that the database is likely to

change, or evolve.

RS Class Libraries. ~'An OODB should provide support for class libraries" [69].

This functional requirement says that it must be possible to persist objects from class

7 Meta data is alternatively spelled meta-data and metadata in Open OODB documentation.
However, to be consistent with "meta requirement", we prefer "meta data".

11

libraries and that some pre-existing, or legacy libraries must be supported. An obvious

example is the libraries that are associated with c++, such as < streamio.h >, etc.

R9 Integrity and Recovery. R9 requires that "An OODB must support data

integrity and recovery" (69]. Under integrity, there are subrequirements stating that

pointers and indices must be consistent and that it must be possible to state various

integrity constraints. Under recovery, there are subrequirements for atomic transac­

tions, recovery and backup/restore.

RIO Security. "An OODB must support security" [69]. These requirements state

some obvious security concerns such as authorization, grant operations and encryp­

tion. However, since security is outside the scope of the current effort, this require­

ments section is undeveloped and preliminary.

Rll Access to Legacy Data. "An OODB must support access to legacy data

stored in an SQL-compatible relational database or file system" [69]. This requirement

is outside the scope of the current effort, so like security above, it is not well developed.

R12 Program and User Interfaces. "An QODB should support program and

user interfaces" (69]. Interfaces are essential to the success of a project like Open

OODB. The application program interface subrequirements list the different types of

support that an OODB must provide to be accessible to programs. The user interface

subrequirements cover many things, but, like Rl 1 Access to Legacy Data above, are

outside the scope of the current effort.

2.2.3 Open OODB's Next-Generation OODB Requirements

This requirement type is a "catch-all" for next-generation features that are outside

the scope of the Open OODB project. Under this type, there is only one require­

ment, Rl 7, which states that "these database application requirements are out of

12

the scope for OODBl (first release of Open OODB) but the design should not pre­

clude them" [69]. There are only ten subrequirements, including: Rl 7-1 main memory

DBMS, Rl 7-2 heterogeneous DBMS, Rl 7-4 rules-based DBMS and Rl 7-8 parallelism.

These subrequirements are not reflected in Open OODB's proposed design or imple­

mentation, are undeveloped and are not mentioned anywhere else in Open OODB's

literature.

2.3 Open OODB's System Architecture

Open OODB's system architecture8 is partitioned into two pieces: (1) a meta ar­

chitecture and (2) extenders [66).9 "This ... corresponds to the partitioning of the

Open OODB requirements into meta and functional requirements"[59]. The meta

architecture provides a basis for specifying and implementing extensions and governs

module interfaces. The extenders define the actual modules that represent Open

OODB's functionalities. Refer to Figure 2 to see how the meta architecture and ex­

tenders fit into the overall system architecture. In the rest of this subsection, we first

review the Open OODB computational model, then its meta architecture and, finally,

its extenders.

It is important to note that this discussion of Open OODB focuses on the pro­

posed architecture. Much of the functionalities are, as of yet, unimplemented. This

distinction becomes more apparent as we proceed.

2.3.1 Open OODB's Computational Model

"Open OODB's computational model is based on transparently extending the be­

havior of objects from application programming languages" [59]. To accomplish this,

8 When we refer to Open OODB's architecture, or current architecture, we mean the architecture
as described in documents specifically provided with the alpha release. Since Open OODB is an
ongoing project, its architecture has been changed since the alpha release.

91n a later draft, the architecture is defined as consisting of the meta architecture and the system
architecture In this later definition, the system architecture does essentially what the extenders do
as described in the alpha release.

13

API
~1~t~ -A;ch~ M~d~l~~
I ~~~:n-d~~ Modules J

Meta Architecture Support (Sentries)

I

-------- -----

Persist
Trans­

action

L---- --------

--- ----'"----

Distri­

bution
Change Indexing Query

-----'

L---------------------------- -- -----------------------------
: Support Modules
I .---------------r-------__J'------~----------------,

~---- -----· ,----- -----.
I I I I

: Address Space:
I

: Translation Data Diet. I
I I

L - - - ~--------------'

Communi­

cations__ ______ ___, - - - - I

Figure 2: The Open OODB Architecture

Open OODB wishes to avoid making programmers use embedded system calls. Such

calls can be viewed as seams, something which violates Open OODB's Seamlessness

meta requirement. Thus, the computational model is based on transparently extend-

ing c++.

Open OODB is based upon extending C++,. An extension of a programming

language provides additional functionalities to that language. For instance, a useful

extension when considering databases is persistence. Traditional C++ programs pro-

vide no mechanisms to manage persistent objects, but such mechanisms are crucial

to databases. Thus, Open OODB extends C++ to include persistence.

In Open OODB's computational model, all objects exist in a universe of objects.

In traditional C++ programs, all objects exist in the same universe. Instead of using

the word universe, we could say that all objects in traditional C++ programs exist

in the same environment. Therefore, in traditional C++ programming, there is one

universe, or environment, in which objects can reside.

14

Open OODB's computational model is based upon redefining the universe of ob­

jects. In Open OODB, the universe can consist of more than one environment and

objects have environmenta.l a.ttributes describing the object's current environment.

A typical environment is an object's address space and a typical environmental at­

tribute contains information about an object's address space. For instance, instead of

objects existing only in the single address space environment associated with tradi­

tional C++ programs, Open OODB needs at least two address space environments:

one for "regular", or transient, objects and one for persistent objects.

Another way to look at this is to say that the cardinality of all the environmental

attributes in traditional C++ programs is one. For example, all objects exist in one,

single address space. Extending a language increases the cardinality of an object's

environmental attributes. For instance, in C++ extended to include persistence, the

address space environmental attribute has a cardinality of at least two: the object

may be in a transient address space or a persistent one. In essence, the universe of

where an object can exist is partitioned into different environments.

When an Open OODB application wishes to persist an object, that object must be

"moved" from one environment to another. In order to move, the object must cross

the environmental boundary between the regular address space and the persistent

address space. The crossing of an environmental boundary represents an extension

to C++. Thus, persistence is one of the extensions to C++ that Open OODB imple-

ments. Other extensions are performed in the same way. For instance, C++ makes

no provision for replication of objects, so Open OODB creates a replication envi­

ronment. If an object needs to be replicated, it crosses the environmental boundary

between non-replicated and replicated objects. All of the extensions are discussed in

the upcoming subsection on Open OODB's extenders.

Interactions with objects in Open OODB are called events and events in a tradi­

tional C++ program are known as direct events. For example, a direct event could

15

be a simple assignment statement like Student[l} =new Person();10 where Student{l}

is a variable local to its creating program. If, however, a direct event needs to be

extended, it is replaced by a virtual event. Thus, a virtual event is an extension

to a direct event.11 In order to extend an event a mechanism is needed to detect
'

when an event needs extension. In other words the mechanism must detect when an
'

environmental boundary is to be crossed. In Open OODB, that mechanism is known

as a sentry. For example, if there is a call to persist an object or class, etc., in an

Open OODB application, that call represents an attempt to cross an environmental

boundary. A sentry detects the call, and replaces the direct event with a virtual event

that can handle persistence. For example, if the program contains a statement like

Persist(Student{l}), that statement represents an extension to C++. Therefore, a

sentry detects the extension and initiates a virtual event.

When a sentry detects the need to extend an event, the sentry passes control

to a module designed to perform the needed functionalities. For instance, there are

modules to perform persistence and replication, etc. Open OODB calls the different

functionalities policies and the modules that implement them policy performers. Each

policy may have more than one performer associated with it. For instance, persistence

may be performed in different ways. We may be persisting a single object or a

whole set of objects. The mechanism that decides the actual policy to implement

is a Policy Manager (PM). Therefore, in Open OODB, there could be a Persistence

PM to handle persistence and a Replication PM to handle replication, etc. In our

example of Persist(Student{l]), the sentry would pass control to the Persistence PM

which would initiate the required tasks.

To sum up this discussion of Open OODB's computational model, we carry

10The statements included are in pseudo-code. That is, they are for illustrative purposes only and
do not represent any particular language.

11 Note that virtual events themselves can be extended . This situation could arise if we need to
persist a replicated object. Before the persistence virtual event could finish , it would have to be
extended with a replication virtual event .

16

through an example other than persistence. An Open OODB application is exe­

cuting as a sequence of direct events when a statement calling for the beginning of

a transaction is reached. Transactions represent an extension to C++. The need

to extend the direct event is trapped by a sentry. The sentry calls the Transaction

PM to replace the direct event with a virtual event. The Transaction PM picks an

appropriate policy performer to implement the extension, or virtual event. Different

performers here may be one to implement two-phase locking or one to implement

optimistic concurrency control, etc. When the transaction is complete, control is

returned to the original, direct event.

2.3.2 Open OODB's Meta Architecture

"The meta architecture consists of the modules, interfaces, and topology necessary to

support the computational model of event extension" [66]. Its purpose is to "support

the kinds of variability evidenced in existing systems or envisioned for future ones" (64].

The meta architecture consists of five modules. These five modules are not directly

accessible to applications, making them distinct from the extender modules that are

discussed in the next subsection. First we list the five modules and then briefly

describe them.

• Address Space Managers.

• Communications.

• Translation.

• Data Dictionary.

• Meta Architecture Support.

Address Space Managers. This module allows for objects to be uniformly ac­

cessed no matter where they reside. The objects could be in virtual memory or in a

17

persistent store, etc. To do so, the Address Space Manager (ASM) supports global

identifiers and mappings to and from global identifiers to local representations. In an

actual implementation, there would probably be multiple ASMs, one for each address

space.

Communications. "Open OODB's Communications module is a veneer that nor­

malizes the interfaces to one or more underlying communications mechanisms" (59].

In other words, "when an object moves, it moves via one or more communications

media" (65]. The various communications media may use different transport mech­

anisms. These transport mechanisms may include network protocols and different

memory, etc. The object Communications module picks the appropriate transport

mechanism, provides uniform interfaces to the transport mechanisms and transfers

the bytes~

Translation. Since different address spaces may require different formats, a module

is needed to perform the necessary translations. The Translation module converts

objects (or whatever the unit of transfer is) into the appropriate format. Note that the

Translation module performs the translation, but the actual byte transfer is performed

the Communications module.

Data Dictionary. "The Data Dictionary is a globally known repository of data

model and type information, instance information, name mappings (of application-

specific names to instances), and possibly system configuration and resource utiliza-

tion information" [59].

Meta Architecture Support. "The Meta Architecture Support module imple-

ments the mechanisms to extend events uniformly and defines interface conventions

used by other Open OODB modules" (94]. Referring to Figure 2, we can see that to

get to the actual extenders, we must first pass through the meta architecture support

18

module, which has five principle components. The five are: 1) sentries, 2) common

interfaces for Policy Managers, 3) pragmas, 4) common exception mechanisms and 5)

common references and OIDs.

Sentries, as noted on page 16, detect and trap events. Common interfaces for

Policy Managers are achieved by using a common ancestor PM object and inheritance.

Pragmas allow flexibility, i.e.: prefetch if it is possible, but do not raise an exception

if it is not possible. Common exception mechanisms "define a collection of exception

classes and required handlers to provide traceability for exceptions signaled by hidden

policies" (59]. Finally, 0 IDs and references are objects manipulated by all modules,

so they need a global represe~tation.

2.3.3 Open OODB's Extenders

Open OODB's behavioral extensions are represented as a group of extenders, or Policy

Manager modules (64]. The extenders are defined by the functional requirements [65].

When a sentry detects a virtual event, or extension, the sentry passes control to an

appropriate PM. Note that there is not one universal PM to handle, for example,

transactions. Different applications may have different needs. Therefore, the PMs

could be implemented as a type lattice as depicted in Figure 3.

Refer to Figure 3. At the root of the PM type lattice is a generic PM. All other

PMs inherit from this root. In this way, all PMs in Open OODB can present a uniform

interface. Under the Transaction PM node, there are different subtypes of Transaction

PMs to handle the different types of transactions that may be encountered. If the

transaction is nested , the Nested Transaction PM is called. If the transaction is

cooperative, then the Cooperative Transaction PM is called. Finally, if the transaction

is both nested and cooperative, the Nested Cooperative Transaction PM is called.

The following are the six PM modules currently proposed for Open OODB to

implement a subset of Open OODB's overall, functional requirements. After the list

19

Policy

Manager

/ ~ Location Transaction
PM PM

/ ~ .
Cooperative Nested

Transaction PM Transaction PM

~ /
Nested Cooperative

Transaction PM

l
Implementation

Figure 3: A Policy Manager Type Lattice

is a brief discussion of each of the six.

1. Persistence.

2. Transaction.

3. Distribution.

4. Change Management.

5. Indexing.

6. Query.

Persistence PM. "The Persistence PM provides applications with an interface

through which they can create, access, and manipulate persistent objects" [59]. In or­

der to do so, the Persistence PM must be able to allocate and resolve identifiers that

uniquely identify objects, or OIDs. These OIDs must be universally interpretable and

independent of the object's location. Since OIDs are semantically meaningless to hu­

mans, the Persistence PM needs the ability to associate names with objects and OIDs.

20

For instance, the OID for an object may be 3257, but its name may be "customer".

To associate names with objects, the Persistence PM resolves names to OIDs. Since

OIDs themselves resolve to objects, names always resolve to objects. The Persistence

PM module may use the services of many other modules including the Distribution

PM and all of the meta architecture modules. Indeed, "Distribution and persistence

are closely related in Open OODB, with persistence simply the distribution of objects

... to address spaces that themselves happen to persist" [59].

Transaction PM. This module "enables concurrent access to persistent and tran-

sient data ... " [59]. Traditionally, transactions have been designed to adhere to the

ACID12 properties. However, to support a wide range of applications, the traditional

ACID properties have to be relaxed. For instance, we may need cooperative transac-

tions, necessitating that the isolation property be relaxed. Therefore, Open OODB

allows for more than one type of PM to handle a given extension.

The Transaction Pi\·1 must "provide the basic operations of begin-transaction,

get-object, commit, and abort" [65). The Transaction PM must also provide and

maintain locks and keep track of things like read/write access. The Transaction PM

is currently not implemented and transaction cqntrol is performed by the Exodus

storage manager.

Distribution PM. Also known as the Location PM, this module allows objects to

be in separate address spaces unbeknownst to the end-user. The Distribution PM

does this by "hiding the distinction between address spaces, thus giving the illusion

of a large, flat address space" [65]. Open OODB describes two ways to implement

transparent distribution. The first is to let the operations span address spaces. The

second is to make sure that the executing function and its arguments are at the

same site. Open OODB leaves the choice to the user. The Distribution PM is
12

The A is for atomicity, the C for consistency, the I for isolation and the D for durability

21

unimplemented and distribution control is left to the Exodus storage manager.

Change Management PM. This module's functionalities are described differ­

ently in different documents. In the documentation included specifically with the

alpha release, the Change Management PM is described as follows. "The scope of the

Change PM module includes three orthogonal subcomponents: version management,

... configuration management, ... and dependency management, which manages re­

lationships between associated representations. Meta data evolution is viewed as

an important application of the Change PM for managing change of data dictionary

information" [59]. In [65], and the later [66], "The Change PM supports the extensions

of object versions and object configurations." It appears that dependency manage­

ment and meta data evolution have been dropped from the Change PM, therefore we

do not discuss them.

Version and configuration management are looked at more closely in the DISWG

Advanced requirements class where there is a requirement for their support. Even

though this module is unimplemented, it is an active research area for the Open

OODB project. 13 In its final form, Change Management may well be divided into

three separate modules supporting: 1) replicated_ and/or partitioned objects, 2) ver­

sions and 3) configurations [65].· Interestingly, OMG14 is wrestling with similar prob­

lems on how to best manage change management [57].

Indexing PM. This module is "responsible for instantiating indices over sets and

for maintaining their consistency as set membership or values of objects in the set

change. . .. However, even within this rather straightforward looking requirement,

there is a wide range of variation" [65]. Different indexing policies include immediate

update, commit time update and on-demand update where updates are performed
13 According to an email correspondence with Steve Ford at TI on April 21, 1994, Change Man­

agement will not be included in the next release of Open OODB due in the summer of 1994, but in
a subsequent release.

14A brief review of OMG is provided in the next subsection.

22

when needed. This module is unimplemented. In OM G's Object Services Ar~hitecture

(OSA) proposal, indexing is not a separate service, but a subcomponent of a query

service.

Query PM. "The Object Query module provides end-users, application program­

mers and other modules efficient access to large collections based on their content's

structural and behavioral properties" [59]. It consists of the query language and the

query compiler, which is responsible for query optimization. Query capability is one

of Open OODB's most well developed functionalities. However, Open OODB cur­

rently has no separate Query PM and the query capabilities are not modularized.

In summary, Open OODB does not implement the Change Management or Index­

ing PM modules. Also, Open OODB does not currently have functional Transaction

and Distribution PM modules as these are both handled by the underlying Exodus

storage manager [36]. Finally, Open OODB does not have a separate Query PM

module, leaving Persistence as the only PM module implemented so far.

2.4 The Object Management Group

Open OODB's findings parallel. the findings of the influential Object Management

Group (OMG) [58]. Indeed, one of Open OODB's requirements (R13-9) states that

Open OODB modules must conform to OMG's architecture. Open OODB is spon­

sored by the military; OMG by an industrial consortium with over 200 members [94].

OMG provides an Object Services Architecture (OSA) document [57] which details

the services needed in next-generation OODBs. Since Open OODB and OMG have

much in common, we reference OMG throughout the evaluation of Open OODB with

respect to DISWG's requirements. Therefore, we now provide some background on

OMG.

"OMG is dedicated to producing a framework and specifications for commercially

23

,..---------------;
: Common Facilities :
~--------------'

,--------------- ---------------------·
Object Request Broker

~---------------------------------------·

r---------------,
I

' Object Services
I l- ______________ ,

Figure 4: OMG's CORBA Model

available object-oriented environments" [57]. OM G's initial results consist of the OSA

which is more specifically referred to as the Common Object Request Broker Architec-

ture (CORBA). At the heart of CORBA is the Object Request Broker (ORB), which

brokers requests between application objects and object services. Figure 4 shows the

four main parts of Ol\.1G's Reference Model. 15

• The Object Request Broker enables objects to make and receive requests

and responses in a distributed environment.

• Object Services is a collection of services (interfaces and objects) that provide

basic functions for using and implementing objects.

• Common Facilities is a collection of services that provide general purpose

capabilities useful in many applications.

• Application Objects are objects specific to particular end-user applications.

OMG's list of required services include: object translation, persistence, concur-

rency control and transactions, object naming, data dictionary, versioning and con­

figuration management, queries, relationships, events and security.16 Open OODB

sees this list as a superset of its own requirements [59]. This discussion of OMG is

15This list of OMG's four parts is taken verbatim from page 2 of [57].
16This list is incomplete; for the complete list see [57].

24

necessarily brief. For a more detailed critique, see [54]. The fact that Open OODB

and OMG are obtaining similar results and are working towards similar goals will

help both endeavors.

This concludes the section reviewing Open OODB. Many more details can be

found throughout "the nine subsections which evaluate Open OODB with respect to

the DISvVG requirements.

3 Research at the University of Rhode Island

URI is interested in extending Open OODB to include new functionalities. Some

of these functionalities are real-time features and relationship objects that, among

other things, enforce integrity constraints. Both Real-Time and Integrity are DISWG

requirements that Open OODB does not currently meet. 17 Thus, we cite URI's

work extensively in the sections on real-time, integrity constraints and elsewhere,

necessitating this brief review.

This section is organized as follows. First, we examine URI's overall research goal

of developing a real-time OODB. This discussio_n includes a look at RTSORAC [73].

Next, we take a brief look at operating system support needed for real-time databases

and DBMSs in general. Then, we look at some of the author's research that formed

a background for this thesis.

3.1 Real-Time Databases

"A real-time databa.se is a database in which both the data and the operations upon

the data may have timing constraints. The RTSORAC (Real Time Semantic Objects

Relationships And Constraints) group at the University of Rhode Island (URI) has

integrated real-time, object-oriented, semantic and active database approaches to

17We look at this in more detail in the appropriate subsections.

25

'
develop a formal model for the specification of objects, relationships, constraints,

updates and transactions" [73]. This group is going to extend Open OODB to include

RTSORAC features. In the next two subsections, we briefly present the RTSORAC

model and discuss some possible limitations.

3.1.l The RTSORAC Model

"RTSORAC has three components which model the properties of a real-time, object­

oriented database: objects, relationships and transactions. Objects represent da­

tabase entities. Relationships represent associations among the database objects.

Transactions are executable entities which access the objects and relationships in the

database" [73]. We next look at each of these three components.

Objects have five components: < N, A, M, C, CF >.18 N is an identifier and A

is the set of attributes. In A, it is possible to express an imprecision amount and

a timestamp associated with a particular attribute. M is the set of methods. C ·

is the set of constraints used to maintain the object's correct state. C can express

both logical and temporal constraints. Logical constraints ensure valid data states

under write operations and temporal constraints ensure valid data states under the

progression of time. CF is a compatibility function used for concurrency control.

"A relationship is an object defined by < N, A, M, C, CF, P, IC>" [96]. The first

five components are the same as in an object. P represents the set of objects partic­

ipating in the relationship. "IC is a set of inter-object constraints placed on objects

in the participant set" [96]. IC performs much as C does in an object, only IC can

invoke the methods of objects participating in a relationship. The intra-object con­

straints of an object and the inter-object constraints of a relationship clearly specify

integrity constraints, permitting implementation of mechanisms such as triggers and

assertions, etc.

18
Each of these five components has subcomponents. Space considerations preclude us from

discussing all of them. A full description of the model is in (73].

26

A transaction has six components: < Nt, 0, OC, PreCond, PostCond, Result >.

Nt is an identifier and 0 is the set of operations involved in the transaction. OC are

constraints on those operations. PreC ond and PostC ond are pre- and post-conditions

associated with the transaction and Result is the result of the transaction.

Implementation at URI will proceed as follows. There is already a prototype of

SORAC (RTSORAC without the real-time features) that uses the ONTOS database

system. SORAC will be extended to be real-time and ONTOS will be replaced by

Open OODB. Open OODB will be ported to a real-time, POSIX-compliant [92] op­

erating system. Open OODB's extensible, modular nature make it a good candidate

for the extensions URI wishes · to make.

3.1.2 Potential Limitations of RTSORAC

RTSORAC represents the most developed model we know of for a real-time OODB.

However, there are some practicalities that may impede implementation. One concern

is that RTSORAC is too far reaching. Perhaps it would be better to concentrate on

a subset of the model rather than trying to do so much all at once. Also, it is unclear

how scalable the model will be from at least two distinct perspectives. One concern

is whether the model could cope with a system including many objects involved in

many, complicated relationships. How hard will the many, involved relationships be

to express and what impact would there be on performance?

Of course, if the schema designer writes efficient code, then the above potential

problem is minimized. A problem that can not be alleviated by "good code", however,

is the limitations of the underlying operating system. Typical database activity of

one or two hundred transactions would overload state-of-the-art, real-time operating

systems. For instance, in an earlier model at URI, it was assumed that every method

of an object was a separate thread. Since a transaction may include several method

invocations, there could be too many t4reads
0
active for the operating system to

27

handle. This is an ongoing area of research at URI and, in the latest model, each

method is not an individual thread.

The preceding discussion on operating system support raises a very important

question: where does the operating system end and the DBMS begin? We briefly

consider this question in the next subsection.

3.2 The Operating System/DBMS Interface

When considering real-time databases, it is impossible to ignore the role of the oper­

ating system. Furthermore, the question of exactly where the interface lies between

between the operating system and the DBMS can not be ignored in traditional da­

tabase systems as well. In this subsection, we take a brief look at why this is the

case.

A DBMS's performance is intrinsicly tied to the underlying operating system.19

DBMSs can provide many services including, but not limited to: transaction schedul-

ing and locking, real-time features, recovery algorithms, security checks, distribution

management and memory control. Operating systems can also provide many ser-

vices including, but not limited to: task scheduling and locking, real-time features,

recovery algorithms, security checks, distribution· management and memory control.

The juxtaposition of the previous lists illustrates the problem. There is an obvious

redundancy of functionalities.

The key question is: how can this redundancy be lessened or removed? The

algorithms used by each system are very similar. The following are a few examples.

In a DBMS, one scheme to prevent deadlock is the wait-promote-protocol [2]. In

the wait-promote-protocol, if a transaction holds a lock, that transaction's priority is

elevated to be the same as the priority of the highest priority transaction waiting for

the same lock. In an operating system, priority inheritance does essentially the same
19

Most of what is discussed in this subsection has been extracted from an unfinished document
entitled "Operating System Support for Next Generation Database Management Systems" by Paul
Fortier and Joan Peckham.

28

thing at the task level. Also, DBMSs typically rely on recovery schemes that involve

roll-back, as do operating systems. Scheduling algorithms are basically the same at

both levels. In real-time databases, transactions have start times and deadlines; in

operating systems, tasks have start times and deadlines.

One possibility is to consider the actions of a DBMS to be a refinement of the

actions of an operating system. In other words, a transaction could be modeled as a

task with some important revisions. To accomplish this, there would have to be new

operating system standards that support basic database requirements. The operating

system would provide interfaces to the required functionalities. If a certain database

requirement needs to be supported, plug a module that fulfills those requirements into

the appropriate operating system interface. This type of a system would facilitate

the move into the next-generation of database systems.

In summary, cooperation between the operating system and the DBMS is an area

that needs further research. "It is important that future operating system designers

become more sensitive to database management system's needs" [88]. Many of the

DISWG requirements for real-time and fault tolerance can not be met without sup­

port from the operating system. Theref~re, this brief discussion is referred to in the

evaluations of DISWG's real-time and fault tolerance requirements.

3.3 The Author's Individual Work

In this section, some of the author's work that led to this thesis is discussed. This

thesis work has gone through three distinct phases, all of which are pertinent to this

finished product. Now, each of the three phases is looked at briefly.

Initially, the topic was to add fault tolerance capabilities to the POSIX-compliant

(92], real-time Lynx operating system. The intent was to adapt fault tolerance al­

gorithms used in MACH [6], which in turn were adapted from algorithms used in a

fault tolerant version of UNIX [11]. The algorithms create shadow processes for all

29

processes in the system to protect against the failure of any, individual process. The

original process and its shadow must be on different nodes. Periodic checkpoints are

taken and messages sent after a checkpoint are logged. Upon failure of a process, its

shadow is activated and the shadow is "caught-up" using the logged messages. This

work with fault tolerance has helped in the evaluation of DISWG's Fault Tolerance

requirements class.

When URI was chosen as an alpha test site for Open OODB, the author became

part of a group working towards real-time extensions to Open OODB. Part of this

project is to port Open OODB to the Lynx real-time operating system. Open OODB

uses the Exodus storage manager, which has to be ported to Lynx as well. Since

the author was experienced with Lynx due to the fault tolerance work, the new

thesis topic became to implement the port of Exodus. Initially, time wqs spent using

the facilities of Exodus in order to understand its capabilities. Then, work on the

port was started. This proved more difficult than originally thought due to compiler

incompatibilities. Lynx uses an early version of the GNU C++ compiler and Open

OODB uses a much more recent AT&T release. The port would have involved making

tedious, minor changes to possibly hundreds of files and libraries and this was deemed

unsuitable for thesis work. However, the work with Exodus, and participation in the

real-time database group, helped the author to gain an understanding of the Open

OODB system.

The last stage is reflected in this thesis. It was determined that an evaluation

of Open OODB with respect to the DISWG requirements was needed to fuel future

research efforts at URL This thesis provides that evaluation.

4 DISWG

The armed services, like most large corporations, rely on the efficient management

of data. However, in an armed service like the Navy, life-or-death situations may

30

depend on such management. To facilitate efficient access, the Navy has embarked

on a standardization effort. This effort, initiated by the U.S. Navy Space and Naval

Warfare Systems Command (SPAWAR), is called the Next-Generation Computer

Resources (NGCR) program. The NGCR Database Management System Interface

Standards Working Group (DISWG) was formed by the NGCR in 1992. DISWG

"is chartered to identify and help define nonproprietary commercially-based DBMS

interface standards for use in the development and maintenance of future mission­

critical computing systems" [32].

Towards that goal, DISWG has published a requirements document. DISWG's

goal in devising this document is to help guide the Navy's development of DBMS

standards. Also, DISWG wants to allow for flexibility so that old standards can evolve

and new standards be developed. Thus, DISWG chose to focus its requirements

on interfaces. This choice was made to "avoid dictating requirements that would

unnecessarily constrain the design or implementation of DBMSs or applications" [32].

DISWG divides its requirements into the following nine requirements classes.

1. General Requirements.

2. Basic Database Management Services.

3. Distribution.

4. Heterogeneity.

5. Real-Time Processing.

6. Fault Tolerance.

7. Integrity.

8. Security.

9. Advanced Database Management Services.

31

In the next nine subsections, Open OODB is evaluated with respect to each of

the nine DISWG requirements classes. Each requirements class evaluation has the

same format. First, there is some introductory material providing any necessary

background or definitions. Then, we evaluate all the requirements of the class. This

evaluation is performed with respect to Open OODB's requirements, its proposed

architecture and its implementation. If the requirement is not met by Open OODB,

where appropriate, we provide a brief discussion on the feasibility of extending Open

OODB to meet the requirement. To maintain consistency, the discussion of extending

Open OODB is always included in the evaluation of Open OODB's implementation.

As a final note before the evaluations start, Open OODB provides a C++ and a

Lisp implementation. We are concerned only with the C++ implementation and all

comments, except where specifically noted, refer to the c++ implementation [61].

4.1 DISWG's General Requirements Class

The General requirements address "general goals (e.g., scalability, modularity, ex­

tensibility, configurability) of interface standards" [32]. These requirements could be

applied to any system, not just to databases. However, many of these requirements

highlight the difference between DISWG and Open OODB. DISWG is a list of re-

quirements on interface standards and Open OODB is a specific proposed architecture

and implementation. The DISWG requirements need to be as all encompassing as

possible, but Open OODB has had to make concrete, implementation decisions. For

instance, DISWG may place its requirements on an interface to be independent of any

particular language, but Open OODB must pick a language for its implementation.

This important difference is referred to throughout the discussions of the requirements

in this and other classes. We now evaluate Open OODB with respect to the fifteen

requirements of this class.

32

1 1 Public Specification 4 ..

The NGCR DBMS interface standards shall be based on public specifica-

tion.

Public specification is defined as "specifications available, without restrictions, for

implementation and distribution of an implementation" (32].

Open OODB

Requirements. Open OODB has a matching requirement. In an earlier draft of

the DISWG requirements, public specification is referred to as open specification.

Open OODB's meta requirement Rl3 is entitled Openness [69]. Open OODB defines

openness as "the characteristic of a system which allows developers or researchers

to modify or control some part(s) of its architecture or implementation" [60]. This

definition strongly matches DISWG's d~finition of public specification. Also, remem­

bering that DIS\VG lists a set of requirements on interfaces, it is interesting that

Open OODB's Rl3-l requirement states that interfaces must be well documented.

Proposed Architecture. Open OODB's propo'sed architecture meets this DISWG

requirement. Open OODB has been designed with openness in mind. Open OODB's

goal is to provide a modular framework that allows researchers to design customized

OODBs. As stated above, openness and public specification mean very much the

same thing.

Implementation. This requirement is met. Open OODB provides documentation

and source code with its release. However, due to the preliminary status of Open

OODB's implementation, Open OODB's documentation lacks a definitive description

on just how to interface with its modules.

33

2 Portability 4.1.

The NGCR DBMS interface standards shall promote the portability of

application software, data, and users (end users, application programmers,

and database administrators (DBA 's)).

DISWG defines portability as "the ease with which software (and, in the broad sense,

data and users) can be transferred from one system to another" [91].

Open OODB

Requirements. Open OODB has a matching portability requirement. Indeed,

portability is also a goal of 0 MG and should be a goal of any open system. Open

OODB was motivated in large part by the lack of a standard application program

interface. This lack has slowed acceptance of OODBs due to portability concerns [70].

Thus, Open OODB sees that portability must be required.

Open OODB's portability requirement is subrequirement R16-5 under R16 Indus­

trial Strength [69). Open OODB wishes to be independent of any R16-5-1 hardware,

R16-5-2 operating systems, R16-5-3 programming languages, R16-5-4 compilers, R16-

5-5 storage managers and R16-5-520 en~ironments .. At a lower level, under R2 Persis­

tence, R2-4-4-l states that an object's external representation must be portable across

compilers , opera.ting systems, and machine architectures. Also, under R6 Query Ca­

pability, R6-15 states that the query system must be retargetable across OODBs and

programming languages. Under R12 Program and User Interfaces, R12-2-1 states

that an OODB should support a user interface that is portable to a wide variety of

platforms. Finally, under R7 Change Management, R7-8 says that Open OODB's

change management facilities must be portable to other 00 D Bs.

20
This duplicate requirement number must be a typo in the Open OODB requirements document .

34

Proposed Architecture. Open OODB's proposed architecture would meet this

requirement. Open OODB has been designed with portability in mind.

Implementation. Open OODB's implementation does not meet this requirement.

Open OODB is currently tied to the following (58].

• Hardware: Sun SPARCstations.

• Operating System: 4.1.x of SunOS.

• Compilers: AT&T C++ Release 2.1.12, Sun C++ Releases 2.1 and 3.0.1.

• Persistent store: Exodus Storage Manager.

• Languages: C++ and CMU Common Lisp version 16f.

Open OODB is currently attempting to increase portability by adding compilers.

At URI, we have had some experience with the portability problems. We wish to

add real-time features to Open OODB and towards this end have attempted to port

Open OODB to POSIX-compliant, real-time LynxOS. LynxOS only supports GNU

C++. We have found this to be a challenging pr?blem.

There are (at least) two portability concerns with respect to language indepen­

dence. First, Open OODB needs to come up with a standard external C++ represen­

tation [63]. Lack of such currently pins objects to the creating machine environment.

A consequence of coming up with a standard representation will be an extra transla­

tion step and thus, slower performance. Second, the fact that Open OODB takes a

programming language specific approach (i.e., persistent c++) makes multiple lan-

guage support difficult [70].

Open OODB's reliance on the Exodus storage manager creates another set of

problems. Exodus performs many basic DBMS services at a lower level than Open

35

ooDB. Among those services are transaction control, locking, recovery and distri­

bution control. Thus, many of the proposed functionalities of Open OODB would,

if implemented, be repeated by Exodus with an obvious impact on performance.

However, if these are left unimplemented, then portability suffers.

Despite these problems, nothing precludes a future Open OODB implementation

from meeting this requirement.

4.1.3 Interoperability

The NGCR DBMS interface standards shall promote the interoperability

of DBMSs a.nd applications.

DISWG defines interoperability as "the ability of two or more systems (or, more

generally, two or more components) to exchange information and to mutually use

exchanged information" [91].

Open OODB

Requirements. Open OODB has no specific interoperability requirement. This

is an area where the difference between DISWG and Open OODB is highlighted.

DISWG is a list of requirements on interfaces and this requirement says that the in­

terfaces should not preclude interoperability. Open OODB represents an architecture

and an implementation of a specific DBMS and as such, would not have the same

concerns for interoperability.

However, Open OODB requirement Rll states that "an oodb must support access

to legacy data stored in an SQL-compatible relational database or file" [69]. Legacy

data is defined as "data that already exists and is used and useful in pre-existing

applications prior to the introduction of OODB technology" [60]. Requirement R11

is outside the scope of the Open OODB's current effort, but is an area of current

research.

36

Proposed Architecture. This is unmet. Nothing in the proposed architecture

addresses the issue of interoperability.

Implementation. This is unmet. However, Open OODB's modular design and

well defined interfaces would enhance Open OODB's ability to interoperate with

other DBMSs. As noted above, Open OODB is actively pursuing research in this

area. Open OODB envisions a CORBA-like environment with one implementation of

Open OODB treated as an individual object requesting services from other objects.

The other objects could be more Open OODB implementations, or other, possibly

heterogeneous, database implementations. Such an environment would meet this

requirement.

4.1.4 Supportability

The NGCR DBMS interface standards shall promote maximum life cycle-

supportability features for conforming products.

Open OODB

Requirements. This requirement is matched. A ~ubrequirement of the R16 Indus­

trial Strength meta requirement, R16-11 support, states that an OODB must have

R16-ll-1 quick response to bug reports, R16-11-2 user group meetings, R16-11-3 next

release features and schedule available, R16-11-4 continued development in progress

and upgrades and, finally, R16-11-5 long-term support.

Proposed Architecture. This requirement is met. The open, extensible and mod­

ular nature of Open OODB's architecture allows for supportability.

Implementation. This is met for reasons just stated.

37

1 5 Hardware Independence 4 ..

The NGCR DBMS interface standards shall be independent of any par­

ticular hardware platform.

Open OODB

Requirements. This requirement is matched. Under R16 Industrial Strength, sub­

requirement R16-5-1 implies that an OODB should be independent of any hardware

platform (69].

Proposed Architecture. This is met by the proposed architecture. Open OODB's

modular nature and its ability to deal with different types of address spaces and data

formats account for hardware differences. Also, Open OODB's proposed Translation

module is designed to translate objects between hardware platforms [70].

Implementation. This is unmet by the current implementation. As mentioned

previously, Open OODB is currently tied to Sun SPARCstations [58], and the lack of

a standard, external C++ representation pins Open OODB to its underlying machine

[63]. However, Open OODB has been designed ~ith a goal of hardware indepen­

dence, which should facilitate ports to other hardware platforms. Also, Open OODB

is implemented on UNIX and uses the TCP /lP protocol. The wide acceptance of

both enhances portability. Finally, its encouraging that another C++ based DBMS,

GemStone [13], supports a wider degree of hardware heterogeneity than does Open

OODB.

4.1.6 Operating System Independent

The NGCR DBMS interface standards shall be independent of any par-

ticula.r operating system.

38

,
Open OODB

Requirements. This is matched. Under Rl6 Industrial Strength, R16-5-2 implies

that an OODB must be OS (operating system) independent.

Proposed Architecture. The proposed architecture meets this requirement.

Implementation. This is unmet. Open OODB is tied to 4.1.x of SunOS [58]. How­

ever, portability and operating system independence are Open OODB requirements,

meaning that Open OODB has been designed with those requirements in mind. The

proposed Translation module would translate objects between formats required by

different operating systems.

Also, Open OODB rests on the very popular UNIX operating system. This cer­

tainly enhances operating system portability. For instance, work is underway to at

URI to port Open OODB to a POSIX-compliant operating system. POSIX is emerg­

ing as the de facto operating system standard and POSIX is based on UNIX.

4.1. 7 Network Independent

The NGCR DBMS interface stan·dards shall be independent of any par­

ticular network.

DISWG's requirements defer to NGCR's SAFENET standards- governing networks.

Open OODB

Requirements. There is no directly matching Open OODB requirement. This

is interesting since there is an OODB requirement for almost every other type of

independence (R16-5). However, under R4 Distribution, R4-13 requires that the

OODB "insulates client-server from network protocol" [69].

39

Proposed Architecture. Open OODB's proposed architecture meets DISWG's

network independence requirement. Network independence is alluded to in architec­

ture documents. The Communication support module is responsible for the actual

movement of bytes. This movement is between one or more communications media

which may include networks [66]. The Translation module translates objects into

different representations required by different communications mechanisms [70]. The

Distribution PM chooses the appropriate translation format. Thus, the Communica­

tions, Distribution and Translation modules could be implemented to allow DISWG's

network independence requirement to be met.

Implementation. This is unmet. However, as stated above, the full implementa­

tion of Open OODB's Communications, Translation and Distribution PM modules

would allow this DISvVG requirement to be met. Also, the fact the Open OODB uses

the popular TCP /IP protocol would facilitate extending Open OODB to meet this

requirement.

4.1.8 Programming Language Independent

The NGCR DBJ\.1S interface sta.nda.rds sha.11 ·be independent of a.ny pa.r-

ticula.r progra.mming langua.ge.

This is essential because the Navy is already using several programming languages

and is sure to need to accommodate even more in the near future (i.e., C++). Thus,

the next-generation of Navy databases should not be tied to any particular set of

languages.

Open OODB

Requirements. Open OODB has no matching requirements. However, several

come close. Under R16 Industrial Strength, R16-5-3 requires that an OODB support

40

C++, Lisp and multiple language interfaces such as Ada, Fortran and C, etc. There­

fore, this requirement does not state that Open OODB must be language independent,

but that it should support multiple languages.

Also, Rl-2, under Rl 00 Data Model, requires that this model may be one of

six different things. One of those six choices Rl-2-2 states that this 00 model may
' '

be a new object model that is language-independent and independent of C++, Lisp,

etc. This requirement addresses the DISWG requirement of language independence,

but because it is one of six choices that could be made, does not outright require an

OODB to be language independent. The other five choices do not require language

independence. However, a subrequirement of one of the five, Rl-2-6-3, says that an

OODB should not preclude supporting a common OODB semantics across languages.

In other words, the query language should not rely on the underlying (or embedding)

programming language. This requirement is seen by Open OODB as desirable, but

currently unmet.

There are other Open OODB requirements that partially match this DISWG

requirement. Under R4 Distribution, R4-3 states that an OODB must support a

computing environment that is heterogeneous with respect to the host programming

language. This requirement is Ol,ltside the current scope of Open OODB. Under R.13

Openness, R.13- 7 states that modules must have a language independent architecture

and implementation.

Proposed Architecture. This is met. Its modules have been designed to be in­

dependent of any particular language.

Implementation. This is unmet. This is a requirement that demonstrates the

difference between DISWG and Open OODB. The DISWG requirements are on a

standard, meaning that the standard should be programming language independent.

An actual implementation, such as Open OODB, has to pick an implementation

41

language(s). The languages supported by Open OODB are c++ and Lisp, although

feasibility studies have shown that Ada 9X could be supported.

The choice of C++ was easy: C++ is emerging as a de facto standard. Many

other next-generation databases provide a c++ interface. Examples include Ode

[39], GemStone [13] and ObjectStore [48]. Even extended relational systems such as

Starburst have begun using C++ [49]. Open OODB has tried to make its architecture

language independent, but may encounter difficulties in porting to other languages.

This is due to an early implementation decision made by Open OODB. Designers of

OODBs have three choices for their 00 data model: programming language neutral,

a database programming langtiage or programming language specific. Open OODB

uses the programming language specific approach which could make interoperability

across different language's type systems difficult and limit programming language

independence [59].

4.1.9 DBMS Independent

The NGCR DBMS interface standards shall be independent of any par-

ticular vendor or implementation.

Open OODB

Requirements. There are no matching requirements.

Proposed Architecture. This is not met. Open OODB is a DBMS and, therefore,

can not propose an architecture that is independent from itself.

Implementation. This is unmet. This requirement once again highlights the main

difference between DISvVG and Open OODB.

42

4.1.10 Scalability

NGCR DBJHS interface standards shall accommodate changes in volume

of data , number of users, or transaction rates.

Open OODB

Requirements. This DISWG requirement is matched. Under Open OODB's R15

Performance meta requirement, R15-5 states that an OODB should be scalable. Open

OODB then presents a list of what should be scalable which does not exactly match

DISWG's list. Open OODB mentions the size of the database (number of objects,

total space) and the number of users but does not explicitly refer to the transaction

rate. However, if the OODB is scalable with respect to size and users, etc., then

transaction rate scalability is implicitly covered. In addition, Open OODB's R15-l-6

says that performance measurements should be scalable with respect to large objects,

large numbers of objects and large numbers of users.

Proposed Architecture. This is partially met even though scalability is not men­

tioned in Open OODB's architecture documents. Open OODB is structured as an

"object services architecture" connected to many. services. These services could in­

clude multiple copies of Address Space Managers to handle many remote sites. These

services could also include multiple copies of PMs. Not all services have to be in a

particular implementation. This allows for configurability and a degree of scalability.

Implementation. This is partially met and nothing in Open OODB's design would

preclude it from being fully met. Since scalability is an Open OODB requirement,

Open OODB has been designed with scalability in mind. Some of Open OODB's scal­

able characteristics were just mentioned in the proposed architecture section. Another

aspect of scalability is the ability to handle huge stores of data. This is an active

research area for Open OODB and others, including OMG. It is interesting to note

43

that the designers of GemStone state that scalability is one of the three "most difficult

aspects of a database management system with regard to development and successful

deployment"[l3]. However, "It will be necessary to scale all DBMS algorithms to

operate effectively on databases of the size contemplated by next-generation appli­

cations, often several orders of magnitude bigger than the largest databases found

today" [84].

4.1.11 Modularity

The NGCR DBMS interface standards should adhere to the design prin-

cipa.l of modula.rity. That is, database functions should be grouped into

modules tlrnt ca.n be understood independently.

Open OODB

Requirements. Whereas Open OODB does not have a requirement that says that

an OODB must be modular, Open OODB's goal is to develop an open, modular

OODB toolkit. Thus, a main premise of the Open OODB project is its modularity.

All the subrequirements of Open OODB's R13 Openness meta requirement mention

various aspects of modularity. For instance, R13-1 says that module instances must

be documented, Rl3-2 deals with configurability of modules in the system and R13-3

says that ea.ch module must be justified, etc. Thus, an open system implies a modular

system.

Proposed Architecture. The proposed architecture meets this requirement. Open

OODB has been designed with modularity in mind. Note that modularity is also

a design goal of OMG. Modularity is facilitated by the nature of 00 design, i.e.,

modules are objects with well defined interfaces and hidden, independent implemen­

tations. Open OODB's modules should be easily modified or replaced, and indeed,

44

some groups have removed modules and replaced them with customized ones. For in­

stance, the University of Florida has replaced the persistent Address Space Manager

(59].

Implementation. This requirement is partially met. Open OODB has adhered to

the design principal of modula,rity. However, most of its modules are, thus far, only

proposed. For instance, the only implemented PM is the Persistence PM and Open

OODB's query functionality, one of the most developed parts of the system, is not

modular.

4.1.12 Extensibility

The NGCR DBMS interface standards should facilitate development and

use of extensions: e.g., interfaces should be composable so that they can

be combined to crea.te new interfaces and facilities. It should be possible

to a.dd new interfaces for new functions.

Open OODB

Requirements. Open OODB does not have a specific extensibility requirement,

but creating an extensible system is a design goal of Open OODB. Extensibility

goes hand in hand with openness (59] which is an Open OODB meta requirement.

Therefore, much of the flavor of this DISWG requirements class is captured in Open

OODB's Rl3 Openness requirement. For instance, Rl3-2-l states that alternative

implementations of modules can replace modules and Rl3-5 states that some modules

are extensible.

Proposed Architecture. This is met. Open OODB's architecture has been de­

signed with extensibility in mind. A stated goal of Open OODB is to provide a

customizable OODBMS framework which implies extensibility.

45

Implementation. This is met. A major motivation for this thesis is to provide an

evaluation of Open OODB to facilitate researchers at URI making extensions to Open

QODB. Open OODB has been picked for this work due, in part, to its extensibility.

Extensibility is also a design goal of OMG [57]. The designers of Starburst note that

"extensibility can not be retrofitted; it must be a fundamental goal and permeate

every aspect of the design" [49].

4.1.13 Uniformity

The NGCR DBMS interface standards should be based on a consistent

set of unifying, well-defined conceptual models. Interface features should

uniformly address aspects such as status return, exceptional conditions,

parameter types, and options.

Open OODB

Requirements. There is no matching Open OODB requirement. However, unifor­

mity is mentioned in the Open OODB literature as is discussed below.

Proposed Architecture. This is met. Open .OODB uniformly applies the 00

paradigm throughout its desigll", e.g., PMs are objects. The Open OODB "Meta

Architecture Support (MAS) module implements the mechanisms to uniformly extend

events, and defines interface conventions used by other Open OODB modules" (59].

The MAS provides a common interface for all PMs as well as a common exception

mechanism. To do so, PMs are implemented as a type lattice with all PMs having a

common ancestor and, therefore, a common interface (64].

Implementation. Open OODB's implementation should meet this requirement,

but the preliminary stage of development of most of Open OODB's modules precludes

46

us from saying it is met. Certainly, if Open OODB's designers are able to implement

their proposed architecture, then this requirement would be met.

4.1.14 Configurability

The NGCR DBMS interface standards shall support the configurability

of DBMS implementations so that a given implementation can be tailored

to a specific application.

Open OODB

Requirements. Open OODB has a matching requirement. Under R13 Openness,

R13-2 states that "different system configurations are possible" (69] and that modules

themselves may be reconfigurable. Rl3-2-l states that modules may be implemented

differently and R13-2-l-3 states that generating new configurations must be efficient.

Also, R13-2-2 states that not all modules need to be used in an implementation.

Proposed Architecture. The Open OODB architecture meets this DISWG re­

quirement. Indeed, the main goal of Open OODB is to provide an OODBMS frame­

work that can be custom-tailored to meet particular needs (58). Open OODB provides

a diagram of sample configurations in [59]. Open OODB's modularity facilitates re-

configuration.

Implementation. This is only partially met because many functionalities have not

yet been implemented. If Open OODB were fully implemented, then this should be

met. However, Open OODB is not sure how to make reconfigurations efficient [69].

Also, Open OODB's designers state that, while they are attempting to be as open as

possible, they "are not trying to support complete system reconfiguration at no cost,

as we believe it to be infeasible" [67]. Note that configurability is also a goal of OMG

[57).

47

4.t.15 Compatibility with Other NGCR Standards

The NGCR DBMS interface standards should be compatible with other

NGCR standards. In particular, they should be implementable on op­

era.ting systems that conform to the NGCR Operating System Interface

(OSIF) Sta.ndard {OSIF 93} and (in the case of distributed data) on net­

works tl1a.t conform to the NGCR SAFENET Standard {SAFENET 93}.

Moreover, the DBMS services specified in the NGCR DBMS interface

sta.nda.rds should be accessible from application programs written in Ada

and other programming languages in common use for MCCR applications.

Open OODB

Requirement. There is no matching Open OODB requirement. Under R13 Open­

ness, R13-9 states the OODB modules conform to other framework architecture such

as that proposed by OMG (69]. However, since Open OODB is not affiliated with the

Navy, it has no requirements for meeting NGCR standards.

Proposed Architecture. The proposed architecture does not meet this require­

ment.

Implementation. This is not met. This is not a goal of the Open OODB project.

However, since Open OODB is designed with openness, extensibility and modularity

in mind, it should be possible to extend Open OODB to meet this DISWG require­

ment on an "as needed" basis. At URI, work is underway to port Open OODB to a

POSIX-compliant operating system. This port should be facilitated by the fact that

Open OODB is built on Unix. POSIX represents an extension of UNIX, the dominant

operating system. Additionally, Open OODB has been designed with distribution and

network independence in mind. This should allow the NGCR SAFENET standards

on networks to be met. Also, Open OODB has completed a feasibility study with

48

positive results on adding Ada 9X as a supported language. Thus, Open OODB can

be extended to meet NG CR standards.

4.2 DISWG 's Basic DBMS Requirements Class

"This category represents basic services typically provided by today's general-purpose

DBMSs and which must be included in NGCR DBMS interface standards" [32]. Note

that these requirements, since they are general purpose, do not provide support for

mission-critical computing. Such support is left for other requirements classes to be

evaluated shortly.

The evaluation of some of the requirements of this class posed a problem. DISWG

lists six distinct types of queries: planned, ad hoc, interactive, embedded, compiled

and interpreted. However, the definitions of some of these types are somewhat hazy

and this leaves room for doubt as to exactly what the requirements mean. Now, we

review each of the twenty-four requirements of this class.

4.2.1 Persistent Data

The NGCR DBMS Interface Standard shall provide support for the man-

a.gement of persistent data.

Persistent data is data which outlasts its creating process [91].

Open OODB

Requirements. This is matched. Open OODB's R2 Persistence functional re-

quirement states that "'an oodb must support persistent storage of object instances

and classes supported by its object-oriented data model(s)." Subrequirements R2-1

through R2-8 deal with different aspects of persistence. Also, under R14 Seamless­

ness , Open OODB requirement R14-3 deals with issues involving persistence. For

49

,
instance, Rl 4-3-1 reqmres that persistence must be orthogonal to class/ type and

R14-3-2 requires that instances can he either transient or persistent.

Proposed Architecture. Open OODB's proposed architecture meets this DISWG

requirement. Open OODB seamlessly adds functionalities such as persistence [58].

Applications which need to use persistent objects interface with Open OODB's Persis­

tence PM. The Persistence PM uses the services of many other Open OODB modules

such as: the Distribution PM, the Translation, Communications, Data Dictionary

and Address Space Managers and the sentries. It may also use the Transaction PM

and Change PM [59].

Implementation. This is met. The current implementation of Open OODB hands

the responsibility of managing persistent data to Exodus. In essence, Open OODB

tells Exodus to persist objects and Exodus does what is required.

4.2.2 Multiple Users

The NGCR DBMS interface standards shall provide support for multiple

simultaneous users and application programs, all using any combinations

of queries, DMLs, DDLs, a!1d DCLs.

The DML is the Data Manipulation Language, the DDL is the Data Definition Lan­

guage and the DCL is the Data Control Language.

Open OODB

Requirements. This DISWG requirement is matched. Open OODB's R3 Concur­

rent Access functional requirement states that an "oodb must provide for sharing

and controlled concurrent access by multiple users/processes." Also, under the Rl

00 Data Model functional requirement, Rl-2~6-2 states that an OODB must be

multilingual and allow inter data model sharing [69].

50

Proposed Architecture. Open OODB meets this DISWG requirement. Users

may be simultaneously querying, manipulating, defining or controlling data. Also,

Open OODB provides support for multiple languages, c++ and Lisp, being used at

the same time.

Implementation. This is met. The fact that Open OODB's DML, DDL, DCL and

queries are all written in the same high level language(s) helps.

4.2.3 Conventional Alphanumeric Data Types

The D!v!L(s), DDL(s), and DCL(s) specified in the NGCR DBMS inter­

face sta.nda.rds sha.11 provide the capability to define and manipulate con­

ventiona.l a.lpha.numeric da.ta. types, including integer, real, and character

string.

Open OODB

Requirements. This is somewhat matched. Under Rl 00 Data Model, Rl-2-1-3-

6 requires that the data model must support first class coverage for types (not just

objects). Rl-:3-12 requires that instances of C typ~s must be supported as first class

independently persistent sharable objects. Under R2 Persistence, R2-1-2-2 states

that an OODB must support persistence for variables. Note that, since Open OODB

data is defined and manipulated through c++, and c++ supports conventional data

types, Open OODB supports the same. Thus, this DISWG requirement is implicitly

matched by Open OODB, although no Open OODB requirement explicitly matches

the wording of DISWG.

Proposed Architecture. The Open OODB architecture meets this DISWG re­

quirement. As stated above, because Open OODB is based on C++ which supports

conventional data. types, Open OODB supports conventional data types.

51

Implementation. This is met due to Open OODB being an extension of C++.

Open OODB does not, however, meet its own requirements with respect to treating

these conventional data types as first class objects. The current implementation does

not allow for these types to persist.

4.2.4 Binar~ Large Objects (BLOBs)

The NGCR DBMS interface standards shall provide the capability to de­

fine a.nd ma.nipula.te BLOBs.

A binary large object (BLO~) is defined by DISWG as "long, variable-length se-

quences of bits or bytes used to represent non-conventional data, such as graphics,

image, audio, and video objects" [32]. BLOBs are the types of non-conventional data

that have helped to promote research into next-generation OODBs [15].

Open OODB

Requirements. This requirement is matched. Under R15 Performance, R15-1-6

requires that an OODB should be scalable with respect to single, large objects. Also,

under Rl 00 Data Model, Rl-1-12 requires that the 00 data model must support

large objects needed for multimepi~ support.

Proposed Architecture. This is not directly met because Open OODB has no

specific functionalities to deal with BLOBs.

Implementation. This is currently met with limitations. It is met because Open

OODB is an extension to C++ which supports pointers of type void and char to

arrays of arbitrary length. One limitation is that Open OODB adds nothing to C++

to specially handle BLOBs. Another is that actual storage in Open OODB is currently

handled by Exodus.

52

Open OODB feels that adding functionalities to handle BLOBs can be done with­

out too much difficulty [69]. For example, another OODB that is an extension to

c++, ObjectStore, allows for image data that "that can be stored in very large ar­

rays that span many pages" [48]. ORION uses a descriptor object to describe the disk

location of the associated long data [43]. BLOBs can be treated in a manner similar

to files, with a label similar to a file descriptor [85]. Starburst handles what they

call "Long Fields" of up to 1.5 gigabytes with a Long Field Manager with pointers to

large pieces of the Long Field [49]. In this way, parts of the BLOB, or Long Field, can

be referenced. For example, when dealing with photographic images of faces, each

face can be broken down into eyes, the nose, etc., allowing access to pieces of the

face, or Long Field. Postgres [86] also provides file oriented access to large objects.

In (28], it is proposed to extend SQL to handle BLOBS with special statements such

as CREATE< BLOB >, etc.

It must be noted that even though OODBs have been designed with the purpose

of manipulating large objects common in multimedia applications in mind, many

of the problems of manipulating such data are the same as they would be in other

DBMSs. For instance, mechanisms must be devised to allow simultaneous access to

different parts of the large object, or BLOB. Also; mechanisms must be devised to

allow updates to only part of the BLOB without paging in the whole BLOB and

mechanisms to handle the logging necessary for recovery must not necessitate logging

the whole BLOB. OODBs appear to offer no advantages over other data models for

handling such mechanisms.

4.2.5 Expressiveness of DML

The NGCR DBMS interface standards shall include a DML that allows

users to ea.sily isolate va.rious subsets of the data held in a database. In

particular, the DML shall provide for data representing multiple tables

53

(or record types or object types) to be meaningfully joined in a retrieval

transaction. The join operation may be expressed declaratively as in rela­

tional database systems, or navigationally as in network and some object­

oriented database systems.

Open OODB

Requirements. Open OODB has no matching requirements. However, this re­

quirement is implicitly matched as covered below.

Proposed Architecture. The Open OODB architecture allows this DISWG re­

quirement to be met. A motivating factor behind OODBs is the superior modeling

capability of the 00 paradigm. Open OODB's DML is C++ which is highly expres-

s1ve.

Implementation. This is met. The DML is C++, which is expressive. Any OODB

implemented as an extension to a programming language will have an expressive

DML. ObjectStore lists one of its strengths as the expressiveness of C++, its DML,

as compared to the capabilities of a language such as SQL (48].

DISWG specifically mention~ joins in this requirement. OODBs can perform

joins and may significantly reduce the number of joins needed in applications. This

is accomplished by making one class an attribute of another, which is "in essence a

static specification of a join ... " (46]. In other data models, such as the relational, one

table can not be an attribute of another table. However, OODBs do not eliminate

the need for joins. Joins are still needed to compare two classes that are disjoint. For

instance, we may want to see how many employees are older than the companies for

which they work (46].

54

2 6 Planned Queries 4 ..

The NGCR DBMS interface standards shall provide support for planned

queries.

A planned query is a query "for which the need was foreseen" [91]. For instance, the

database may be based on a design that anticipates particular queries.

Open OODB

Requirements. Open OODB has no matching requirement.

Proposed Architecture. Open OODB's architecture meets this requirement al­

though allowing for planned queries is not mentioned in the literature.

Implementation. This is met. Open OODB's schemas are in C++ which is highly

expressive. Classes and class hierarchies could be set up in order to handle certain

queries efficiently. For instance, if it is known that two classes are to be frequently

used in conjunction, it may be better to set up the two classes in the same hierarchy

as opposed to in different hierarchies. This would help because it should be more

efficient to deal with one hierarchy than to join multiple hierarchies.

4.2.7 Ad Hoc Queries

The NGCR DBMS interface standards shall provide support for ad hoc

queries.

DISWG defines ad hoc queries as the opposite of planned queries, i.e., queries for

which the need was not foreseen.

55

Open OODB

Requirements. There is no Open OODB requirement that states that an OODB

must support ad hoc queries in the way that DISWG defines ad hoc queries. However,

under R6 Query Capability, R6-13-2 says an OODB must support interactive, ad hoc

queries. Open OODB seems to use the terms interactive and ad hoc interchangeably,

whereas in DISWG, there is a clear distinction as is seen in the discussion on the next

DISWG requirement: interactive queries.

Proposed Architecture. Open OODB's architecture supports ad hoc queries. As

just mentioned, in Open OODB's documentation, ad hoc is used synonymously with

interactive [59].

Implementation. This is met. Under Open OODB's definition of ad hoc queries

as being the same as interactive queries, all Open OODB queries are ad hoc. Un­

der DISWG's definition of ad hoc being the opposite of planned, Open OODB, and

perhaps every worthwhile database, meets this requirement.

4.2.8 Interactive Queries

The NGCR DBMS interface standards shall provide support for interac-

tive queries

An interactive query is defined by DISWG as a "query language statement issued as

a command by a user"[91].

Open OODB

Requirements. This is matched. Under R6 Query Capability, R6-13-2 states that

an OODB must support interactive, ad hoc queries.

56

Proposed Architecture. The Open OODB architecture meets this DISWG re­

quirement. Open OODB states that "our implementation does not preclude an in­

teractive (ad hoc) query capability" [59].

Implementation. This is met. We assume that the term interactive query as used

by DISWG is an antonym for canned query, although this is not explicitly stated.

4.2.9 Embedded Queries

The NGCR DBMS interface standards shall provide support for embedded

queries. Programming languages in which the embedding can take place

include at lea.st Ada, FORTRAN, C, and C++.

Open OODB

Requirements. This is matched under Open OODB's R6 Query Capability func­

tional requirement. R6-2-1 says that OODBs must support an SQL-like language that

can be integrated with a host programming language. Also, under R14 Seamlessness,

R14-9 requires support for seamless queries.

Proposed Architecture. The current architecture meets this DISWG reqmre­

ment.

Implementation. This is met as Open OODB supports an SQL-like language em­

bedded in C++ (62, 81]. As a matter of fact, Open OODB currently supports only

embedded queries (63]. This requirement again points out the main difference be­

tween DISWG and Open OODB. DISWG has to allow for many languages, but Open

OODB has had to pick a specific language(s) for implementation. Studies have been

done on porting Open OODB to Ada with favorable results, and Open OODB's mod­

ules have been designed to be language independent. Thus, Open OODB could be

57

implemented in more languages.

4.2.10 Compiled Queries

The NGCR DBMS interface standards shall provide suppo~t for compiled

queries.

A compiled query is "a query language statement that is compiled, or translated, into

executable code prior to run-time.

Open OODB

Requirements. There is no matching Open OODB requirement.

Proposed Architecture. The Open OODB architecture supports compiled quer-

ies.

Implementation. This is met because all Open OODB queries are compiled.

4.2.11 Interpreted Queries

The NGCR DBMS interface standards shall provide support for inter­

preted queries

DISWG defines interpreted queries as the opposite of compiled queries.

Open OODB

Requirements. There is no matching Open OODB requirement.

Proposed Architecture. Open OODB currently does not meet this requirement.

Open OODB and others are working on an interpreted C++, a necessity for the

support of interpreted queries.

58

Implementation. This is not met because c++ can not currently be interpreted.

Interpreted queries are considered more flexible, but slower, than compiled queries.

The flexibility is due to the possibility of making run time additions [33]. The slowness

is due to the time needed to interpret each command individually. However, in [36],

it is pointed out that the compile time should be considered as well as the run time.

4.2.12 Transactions

The NGCR DBMS interface standards shall support transactions with

conventional ACID properties. They shall include statements for initiating

transactions and committing or aborting them.

Open OODB

Requirements. This is matched. Under R3 Concurrent Access, R3-2 says that

OODBs must also support some of the following: traditional short transactions,

nested transactions, optimistic transactions, multi-threaded transactions, long dura­

tion transactions, parallel transactions, compensating transactions, and cooperative

transactions. Open OODB allows for the relaxation of the ACID properties. This is

evidenced by the cooperative transactions mentioned above, which directly conflicts

with ACID 's Isolation component (59].

Proposed Architecture. This is met. In addition, the traditional ACID properties

may be relaxed. The architecture calls for a Transaction PM that "enables concurrent

access to persistent and transient data and supports recovery of changes on these data

in the presence of failure" (59].

Implementation. This is met. Manipulations of the persistent store must be done

from within transactions which are delineated with familiar looking begin, commit

and abort transaction statements. However, the Transaction PM is not currently im-

59

plemented in Open OODB. This is because Exodus, the underlying storage manager,

implements its own transaction control mechanisms and those mechanisms are deeply

embedded in Exodus.

Exodus's transaction control does meet this DISWG requirement, which is why

we can conclude that Open OODB meets it. Exodus uses an ARIES-based recov­

ery mechanism to help support ACID's Atomicity component. ACID's Consistency

component, while ultimately the responsibility of the programmer, is supported with

a strict locking mechanism. Transactions in Exodus operate in isolation, supporting

ACID's Isolation component. Finally, Exodus provides persistent storage, as well as

the ARIES-based recovery scheme, which supports ACID's Durability component.

Both concurrency control and recovery are usually associated with transactions,

but are not mentioned in this DIS\VG requirement. In Open OODB, Exodus handles

both. Exodus applies a single concurrency control mechanism to all objects. Objects

"are read locked upon read, and the lock is promoted to a write lock if an attempt

is made to write the object back" [63]. For recovery, Open OODB relies on Exodus's

ARIES [51] based algorithm.

4.2.13 Data Models

The NGCR DBMS interface standards shall provide DML(s), DDL(s),

and DCL(s) that support conventional data models, i.e., relational and

network.

Open OODB

Requirements. There is no directly matching requirement. However, under the

Rll Access to Legacy Data functional requirement, R11-1 says that an OODB "must

be able to access and update existing info in conventional relational databases (RDB)

as objects" [69].

60

Proposed Architecture. Open OODB does not currently meet this DISWG re­

quirement. However, Open OODB envisions that , due to its modular, extensible

design, its services could be combined to provide relational databases, etc. [58].

Implementation. This is unmet. However , providing such support is an active

research area for the Open OODB project. Nothing in Open OODB's design would

preclude this requirement from being met. The 00 paradigm, with its encapsulated

data and method access, seems well suited to provide support for conventional data

models.

4.2.14 Conceptual Schema Definition

The NGCR DBMS interface standards shall provide DDL statements for

defining a.nd maintaining conceptual schemas.

DISWG defines a conceptual schema as "a description of the conceptual or logical

data structures and the relationships among those structures" [32].

Open OODB

Requirements. This DISWG requirement is not directly matched by an Open

OODB requirement. However, under R5 Data Dictionary, R5-5-l states that the

Data Dictionary must be able to represent data model information. Included in this

information are class/type/schema definitions, type lattice and behavior, etc.

Proposed Architecture. The Open OODB architecture supports meeting this

requirement. C++ is used as the DDL and it is very natural to represent schemas in

the 00 paradigm.

Implementation. This is partially met. The DDL is C++. However, Open OODB

makes no mention of relationships between objects as does DISWG in its definition of

61

conceptual schema. In URI's RTSORAC model, relationships21 between objects are

themselves objects, and can thus be treated similar to any other object (73]. Open

QODB could be extended to include relationships such as those in RTSORAC, which

would allow this DIS\VG requirement to be met even more stringently.

4.2.15 External Schema Definition

The NGCR DBMS interface standards shall provide DDL statements for

defining a.nd maintaining external schemas.

DISWG states that an external schema and a view are equivalent and mean a de­

scription of a subset of the database.

Open OODB

Requirements. There is a matching requirement. Under the Rl 00 Data Model

requirement, subrequirement Rl-1-13 states that an OODB may support views. Also,

under R6 Query Capability, R6-14 requires support for incrementally updated views.

Proposed Architecture. Open OODB does not currently meet this requirement.

Implementation. This is not inet. Indeed, in (46], it is observed that "No OODB

today supports views" (46]. Generally, a view is composed of fragments of one or more

objects. Thus, a view is a new, previously undeclared object which needs an identifier,

and this creates problems for OODBs (7]. This is complicated by the fact that, ideally,

views should be updatable. One way to deal with the problem is presented in [3] which

discusses views in the 0 2 system. They liken views to importing data from a remote

database. They use a method that creates virtual classes and imaginary objects that

exist only in the view.
21

Relationships in RTSORAC are discussed in the section on research at URI.

62

The problem of views in an OODB appears similar to the schema evolution prob­

lem. A view creates a new object type and schema evolution can do the same thing.

Also, since views are closely tied to queries, the development of an Object SQL would

facilitate matters.

4.2.16 Internal Schema Definition

The NGCR DBJ\LS interface standards shall provide DDL statements for

defining and maintaining internal schemas.

The internal schema is a description of how data is actually organized in storage.

It includes information on "the ordering and size of records, and available access

methods (links, indexes)" [32].

Open OODB

Requirements. Open OODB does not have a matching requirement. However,

under R5 Data Dictionary, R5-1-4 states that the Data Dictionary must be responsible

for physical representation information such as alignment, offsets and formats.

Proposed Architecture. This is partially met. The DDL is C++ which can

specify some orderings in main memory (i.e., as with arrays). However, C++'s ability

in this area is limited.

Implementation. This is partially met. As noted above, C++ has some ability

to order main memory. However, persistent storage is handled by the underlying

Exodus storage manager, and as such, is outside of the control of Open OODB's

DDL. The designers of the C++ based ObjectStore note that "Applications can

improve performance by exercising control over the placement of objects within a

database" [48]. ObjectStore allows for application defined clustering of objects that

63

are frequently used together. ORION supports only a simple clustering scheme where

"instances belonging to a user-specified collection of classes are stored in the same

physical segment"[43]. "Unfortunately, however, clustering is more of an art than a

science at this time" [21].

4.2.17 Identification and Authentication

The NGCR DBMS interface standards shall provide a mechanism for iden­

tifying a.nd a.uthenticating users.

Open OODB

Requirements This is partially matched. Under Open OODB's RlO Security func­

tional requirement, Rl0-2 specifies that an OODB must support authorization. Other

subrequirements of RlO hint at identification, but do not explicitly require it.

Proposed Architecture. Open OODB does not currently meet this DISWG re-

quirement. Security is outside the scope of the current effort. Open OODB foresees

difficulty in adding security features to its functionalities [69], but envisions security

as a dimensional extension to the system architect~re [68]. Since DISWG has a sepa­

rate Security requirements class, .further discussion on the topic is deferred until the

evaluation of that class.

Implementation. This is not met. Security issues are covered in the evaluation of

DISWG's Security requirements class.

4.2.18 Discretionary Access Control

The NGCR DBMS interface standards shall support discretionary access

control. Tl1e owner of a database object shall be able to specify which

64

users are authorized to perform whi'ch t. n obJ'ect Discre-opera wns on a ·

tionary access control ca.n, for example, be managed through the definition

of views and the granting/revoking of privileges. The Standard shall en­

able a user to specify access control at various levels of granularity (e.g.,

in a rela.tiona.l database, at the level of tables or various subset of tables,

such as columns or rows).

Open OODB

Requirements. As noted previously, Open OODB requirement RlO deals with

security issues. The RlO requirements are not well developed as of yet, and their

general nature allow most security requirements to be matched. For instance, Rl0-6

requires an OODB to support "various sorts of security" [69].

Proposed Architecture. Open OODB does not meet this, or any security re-

quirements , because security falls outside the scope of the current effort. For further

information , refer to the evaluation of DISWG's Security requirements class.

Implementation. This is not met. Security is discussed in the section on DISWG's

Security requirements class.

4.2.19 Access to Metadata

The NGCR DBMS interface standards shall enable a DBMS to main-

tain the integrity of a database by disallowing operations, such as certain

updates to metadata, that could corrupt the system.

Open OODB

Requirements. There is no directly matching requirement. R5 does require that

"an OODB must be able to store, access, and manipulate meta-data" [69], but no

65

mention is made of maintaining the integrity of the meta data. Also, under Rl 4 Seam­

lessness, R14-10 requires that "Meta-data ... are data and can be queried , change

managed, concurrency controlled, using ordinary mechanisms" [69].

Proposed Architecture. The proposed architecture does not meet this require­

ment. Although a Data Dictionary module is mentioned, no provision is made for

maintaining its integrity with respect to meta data access.

Implementation. This is unmet. Most OODBs do not offer support for meta

data management [46]. As will be noted in the discussion of DISWG's Integrity

requirements class , although integrity maintenance is not currently included in Open

OODB, the basic nature of the 00 paradigm should facilitate its future inclusion.

4.2.20 Multiple DBMSs

The NGCR DBMS interface standards shall not preclude the presence of

multiple DBMS implementations on the same computer system.

Open OODB

Requirements. There is no matching Open OODB requirement. Open OODB

itself is a DBMS, so this again points out the difference between DISWG and Open

OODB that has been noted throughout this thesis. DISWG presents requirements

on interface standards and Open OODB is an implementation.

Proposed Architecture. Open OODB's proposed architecture meets this require­

ment simply because nothing precludes it from being met. As stated above, smce

Open OODB is itself a DBMS, this requirement does not really apply.

Implementation. This is met. Nothing in Open OODB's implementation would

prevent it from co-existing with other DBMSs on the same computer system.

66

4
.2.21 Multiple Databases

The NGCR DBMS interface standards shall enable multiple databases,

possibly sharing a DBMS, to be implemented on the same computer sys­

tem (e.g., via a "create database" command).

Open OODB

Requirements. There is no directly matching Open OODB requirement. However,

under R4 Distribution, R4-3 requires that "applications can access data stored on

multiple object servers" [69].

Proposed Architecture. This is met. Multiple databases could be handled by

using multiple ASMs and possibly the services of the Distribution PM, etc. For

instance, ea.ch database could be considered to be a separate address space with its

own ASM. If there a.re multiple databases distributed on different nodes in the system,

then the Distribution PM would be needed.

Implementation. This is met. Currently, Open OODB is the DBMS for Exodus

and could be the same for other databases.

4.2.22 Tracing

The NGCR DBMS interface sta.ndards shall provide a capability for user­

readable error and transaction execution tracing.

Open OODB

Requirements. This is not · directly matched. However, under R15 Performance,

subrequirement R15-3 states that an OODB should support usage metering. Usage

metering is "defined as the kinds of feedback the system should be able to provide" [69].

67

Proposed Architecture. The Open OODB architecture does not currently meet

this requirement. There is no mention of the architecture providing for such capabil-

ities.

Implementation. This is unmet. Nothing would preclude it from being met. How­

ever, Open OODB mentions how hard error checking is when using the transparent

extension approach. The same problems would probably affect tracing.

4.2.23 Statistical Monitoring

The NGCR DBA1S interface standards shall provide the capability to en­

able a.nd disable statistical monitoring of database usage.

Open OODB

Requirements. Open OODB's Rl5 Performance meta requirement matches this

DISWG requirement. Rl5 states that "an oodb must provide usable performance

and the ability to configure, tune, measure, profile performance" (69]. Specifically,

subrequirement Rl5-3 states that an OODB must support usage metering. Also,

under Rl3 Openness, subrequiremenf Rl3-11 sta~es that "it should be possible to

install performance meters at module interfaces" (69].

Proposed Architecture. The Open OODB architecture does not currently meet

this DISWG requirement.

Implementation. This is not met. Open OODB's modularity and well defined

interfaces should allow for for the incorporation of statistical monitoring facilities.

Open OODB recognizes the need for such facilities, but is not clear on how to best

implement them [69].

68

4.2.24 Training Mode

The NGCR DBMS interface standards shall support a training mode of

operation in which users can exercise the DBMS without damaging the

integrity or operational capability of the system.

Open OODB

Requirements. There is no matching Open OODB requirement. One would think

think this would be a subrequirement under the R12 User Interface requirements.

Proposed Architecture. This DISWG requirement is not met by Open OODB's

architecture.

Implementation. This is not met. The fact that there is not an implemented user

interface would certainly hinder any training mode. However, once a user-friendly

user interface is devised, nothing in Open OODB's design would preclude a training

mode.

4.3 DISWG's Distribution Requirements Class

"The NGCR DBMS interface s~andards shall support distributed database systems

where a distributed database system is defined as [below]" [32]. It is important to

note that the requirements in this class are on distributed database systems, not on

distributed databases. "The Navy and other armed services have large numbers of

computer systems interconnected by various local-area and wide-area networks. Ef­

fective organization and management of data distributed across these interconnected

computer systems is crucial" [32]. In fact, distribution is one of the most important

aspects of next-generation computer systems [12, 71]. In the rest of this subsection,

we first provide some of DISWG's definitions as they relate to distribution. We next

69

provide some alternative definitions. We then discuss the benefits of the 00 ap­

proach and follow with a general discussion of how Open OODB fits in with these

requirements. Finally, we perform the evaluations.

3 1 Definitions 4 •.

DISWG cites the following: "A distributed database is a collection of data distrib­

uted over different computers of a computer network. Each site of the network has

autonomous processing capability and can perform local applications. Each site also

participates in the execution of at least one global application which requires access­

ing data at several sites using a communications subsystem" [32]. D ISWG states that

a distributed DBMS (DDBMS) "permits the management of a distributed database"

that does "not accommodate heterogeneity or autonomy." Finally, DISWG defines

a distributed database system (DDBS) as "a combination of the distributed data­

base and distributed DBMS." Thus, a DDBS is a collection of autonomous databases

which can be accessed through a distributed DBMS. Finally, according to DISWG, "a

distributed database system managed by xyz DDBMS would have data at multiple

nodes on a computer network, and each node would be running a copy of xyz; this

distributed database system would appear to the end user as a single logical database

system" [32].

DISWG contrasts a DDBS with a federated database system. In a DDBS, homo­

geneity is implied. "The DDBS supports just one data model and query language,

with an unambiguous schema"[32]. Each node in a DDBS runs a copy of the same

distributed DB1\.1S. In a federated database system, heterogeneity is implied. The

component databases may vary with respect to data model, query language, schema

and DBMS, etc .. Federated database systems are looked at more closely in the sub­

sequent Heterogeneity DISWG requirements class.

Despite DISvVG's definitions, "There is no standard definition for a DDBMS"[89]

70

and there is no standard definition of a DDBS [l 3]. Alternative definitions vary

subtly and drastically. In [10], a distributed DBMS is defined as a collection of sites

running one or both of a transaction manager and a data manager. The designers of

ORION-2 define their system as a "homogeneous distributed object-oriented system

that allows each user a single-system image of the entire, shared database and of the

user's own, private database" [45]. In [31], it is observed that perhaps its best to use

the term distributed database "in a more general sense to mean a collection of possibly

independent or federated database systems." In [26], "A distributed database is a

collection of data that belongs logically to the same system but is physically spread

over the sites of a computer -network." Also in [26], DDBSs can be categorized by

the degree of homogeneity and local autonomy. One thing is clear: the definition of

distribution in the context of databases needs refinement.

4.3.2 OODBs and Distribution

Most ~'applications that require OODBMS technologies typically arise in distributed

environments" and the basic characteristics of the 00 paradigm are expected to be of

significant assistance with distribution [71]. These helpful 00 characteristics include:

advanced modeling power [78], message passing and encapsulation, and the extensible

nature of OODBs [25]. Encapsu.lation means that an object's data is protected by a

well-defined interface. vVith object encapsulation, it does not really matter where a

computation takes place (65]. Also, inheritance could be used to take advantage of the

similarities in the distributed components. However, the designers of GemStone feel

that "Distribution is perhaps the most difficult" aspect "of a database management

system with regard to development and successful deployment"[13].

A distributed system's components could be thought of as objects or collections

of objects [54, 78]. In [71], it is proposed to view the distributed sites as fragments

of a composite object. It must be pointed out that both of the just cited methods,

71

using collections and fragments, are applicable to federated databases as well. This

fits in with the way that DISWG defines DDBSs and federations as differing mainly

in the degree of heterogeneity.

4.3.3 Open OODB and Distribution

Open OODB is not designed to be a distributed database system according to the

DISWG definition. However, Open OODB is designed to be a distributed database.

This capability will certainly help to extend Open OODB to be constructed as a DDBS

in the DISWG sense. Indeed, allowing multiple copies of Open OODB to participate

in a DISWG DDBS is an active research area at TI. The modular, extensible nature

of Open OODB and the fact that multiple copies of modules can coexist are plusses

in this area. Open OODB envisions an OSA-like architecture with a CORBA-like [57]

backplane and multiple Open OODB implementations connected to the backplane.

Thus, since Open OODB does not currently meet these DISWG requirements, the

evaluations of the individual requirements in this class are very similar in format. For

example, we conclude that Open OODB's proposed architecture and implementation

do not meet the requirement, but nothing precludes extending Open OODB to meet

the requirement. Therefore, for argument's sake, we discuss how Open OODB would

meet DISWG's requirements if those requirements were on a distributed database

instead of a distributed data.base system. For instance, the first requirement in this

class is on support for queries in a distributed database system. Open OODB does not

match that requirement because Open OODB is not a distributed database system.

However, Open OODB has a requirement for support of distributed queries in a

distributed database. This approach is justified because Open OODB's abilities as a

distributed database will enhance extending it to be a DISWG DDBS.

Open OODB's Distribution PM is described on page 21 in the section on Open

OODB's extenders. Although the Distribution PM is currently unimplemented [63),

72

Open OODB is, nonetheless, partially distributed. The Exodus storage manager

maY be at a different site than Open OODB. Thus, Open OODB and Exodus can

communicate over a network, a key component of distribution. Also, the system could

accommodate multiple storage managers at different sites. Thus, Open OODB now

provides rudimentary distribution. However, if Open OODB's proposed architecture

were fully implemented, Open OODB would be fully distributed in the way DISWG

defines a distributed database. That is, Open OODB could manipulate multiple,

homogeneous databases at multiple sites. This capability should allow Open OODB

to be extended to be a DDBS. We now evaluate the eleven requirements of this class.

4.3.4 Distributed Query Processing

Tl1e NGCR DBMS interface standards shall provide the capability for

end users and application programmers to issue queries that access data

stored a.t multiple computer systems.

Requirements. There are no matching requirements. However, Open OODB's R4

Distribution requirement has a subrequirement, R4-9, that states an OODB must

support distributed queries. Also, under the R6 Query requirement, subrequirement

R6-12 states that an OODB must support queries over distributed data.

Proposed Architecture. This requirement is unmet because Open OODB's pro­

posed architecture does not provide support for a distributed database system. Since

queries exist inside of transactions and distributed transaction support is the next

DISWG requirement, a discussion of how the architecture relates to this requirement

is deferred until then.

Implementation. This is unmet by the implementation. Open OODB implemen­

tations have not been designed to talk to each other. Also, all data in the database

73

resides at the same site as determined by the Exodus storage manager. However, if

Open OODB were fully implemented, then the implementation would support dis­

tributed queries as managed by a single implementation of Open OODB. The query

capability of Open OODB has been designed to be "independent of the kinds of

extensions associated with the objects being queried. This means that it should be

possible to query objects independent of whether they are ... local or remote ... " [59].

Therefore, Open OODB could be extended to meet this requirement in the manner

discussed in the introduction to these requirements. That is, an implementation of

Open OODB could query other implementations of Open OODB across a CORBA­

like backplane.

4.3.5 Distribution Transaction Management

The NGCR DBMS interface standards shall provide the capability for

end users and application programmers to issue transactions that access

data stored at multiple computer systems. Concurrency control and re­

cove1y control shall be applied in such a way that the ACID properties of

transactions are maintained despite the distribution of data.

Open OODB

Requirements. There are no matching requirements because Open OODB is not a

distributed database system. However, subrequirements under the Open OODB's R4

Distribution requirement state that an OODB must support distributed transaction

management in a distributed database. For instance, R4-3 states that "applications

can access data stored on multiple object servers", R4-2 states that an OODB must al­

low "object transfer between workstations", R4-5 states that "arguments to messages

may be local or remote", R4-6 requires "local and remote invocation of methods"

and, finally, R4-8 states that distributed commits must be supported [69].

74

proposed Architecture. The proposed architecture does not meet this require­

ment. However, Open OODB has been designed with support for distributed trans­

actions in a distributed database in mind. There may be multiple Transaction PMs

running at any given time. Each transaction, Ti is the responsibility of one Trans­

action PM, in this case T P Mi. It is the responsibility of T P Mi to make all" needed

objects available to Ti. If the needed objects are distributed, T P Mi would use the ser­

vices of the appropriate ASMs and the Distribution PM, etc., to make the appropriate

data available.

Implementation. The implementation does not meet this requirement. Also, all

data is at one site as determined by Exodus. However, if the appropriate modules were

implemented, Open OODB would support distributed transaction management in a

distributed database and Open OODB could be extended to meet this requirement.

This DISWG requirement also mentions concurrency control and recovery. As noted

in the evaluation of the Transaction requirement in DISWG's Basic requirements

class, both concurrency control and recovery are handled by Exodus. The flexibility

of Open OODB's design certainly allows for this to be changed in the future.

4.3.6 Location Transparency

The NGCR DBMS interface standards shall enable the data stored in

the distributed databa.se system to be located at multiple interconnected

computer systems. To the end user and the application programmer, the

distribution of the data is transparent. That is, distributed queries and

transactions can be formula.ted as if the data were not distributed; they

have no dependence on the locations of the data that they reference.

75

Open OODB

Requirements. There are no matching requirements. However, there are matching

requirements in the context of a distributed database under the R14 Seamlessness

meta requirement. Specifically, Rl4-6 requires support for location transparency,

which "hides the mapping of a fragment to a particular object store" [69]. From a

high-level point of view, requiring Open OODB to be seamless implies that location

transparency is required.

Proposed Architecture. This is unmet by the proposed architecture. However, in

the context of a distributed database, Open OODB's architecture supports location

transparency. Open OODB is designed to be a transparent extension to C++. Thus,

the ASMs and Distribution PM, etc., would be invoked transparently and their actions

would take place unbeknownst to the end-user.

Implementation. The implementation does not meet this requirement. Also, all

the data is at one site. Implementation of the appropriate modules would allow

Open OODB to support location transparency in a distributed database and this

functionality could be extended to meet this DISWG requirement.

4.3. 7 Fragmentation Transparency

The NGCR DRMS interface standards shall enable data in a distributed

database system to be partitioned across multiple, interconnected com­

puter systems. For example, in relational DDBMSs, the fragmentation

can be horizontal or vertical. Horizontal fragmentation occurs when the

rows of a table are distributed across multiple sites, and vertical fragmen­

tation occurs when the columns are distributed. To the end user and the

application programmer, fragmentation is transparent. Distributed quer­

ies and tra.nsactions can be formulated as if data were not fragmented.

76

Open OODB

Requirements. This is unmatched. However, under R14 Seamlessness, R14-5 re­

quires fragmentation transparency in the context of a distributed database. Also,

R14-5 states that the details of the distribution of object components must be hid-

den.

Proposed Architecture. The proposed architecture does not meet this require­

ment. However, in the context of a distributed database, it would. All activities

as relates to where and how an object is stored are done transparently without user

knowledge.

Implementation. This is not met. Also, all data is at one site as determined

by Exodus. However, the fact that Open OODB is designed to be a transparent

extension to C++ would allow Open OODB to meet this requirement if it were on

a distributed database. Open OODB states that "A fragmented object is one that

logically exists in several address spaces and is physically composed of a collection

of object fragments connected by a connective object that acts as a communication

channel. ... The user sees the illusion of a single ?bject"[64]. Thus, Open OODB is

being designed with the ability to handle fragmented objects in mind and could be

extended to meet this requirement.

4.3.8 Replication Transparency

The NGCR DBMS interface standards shall enable the data in the distrib­

uted da.taba.se system to be replicated at the fragment level. For example,

in tl1e refational model, this means that tables, as well as horizontal and

vertical fragments of tables, can be replicated. To the end user and ap­

plication programmer, the replication is transparent; distributed queries

and tra.nsa.ctions can be formulated as if the data were not replicated.

77

open OODB

Requirements. There are no matching requirements. However, in the context of

distriquted databases, it is matched. Under R14 Seamlessness, R14-7 requires that

an OODB must support replication transparency, which means that management of

replicas is hidden from the application. Also, under R4 Distribution, R4-10 requires

an OODB to support replicated data for fault tolerance and availability. In a discus­

sion on Open OODB's objectives, it is stated that seamlessness adds functionalities

such as replication transparency [58].

Proposed Architecture. This is unmet by the current architecture. However,

from a distributed database point of view, replication has been considered by Open

OODB. Replication is not included in the alpha release of Open OODB, but is an

active research area. Open OODB considers replication to be a language exten­

sion worthy of being a separate PM [65]. Replication, or multiple instantiation, can

improve performance by increasing availability and can enhance fault tolerance ca­

pabilities. Indeed, in literature outside of the alpha release, Open OODB includes

a Replication PM responsible for keeping track of replicas and making the replicas

transparent to the user [66]. In this literature, a reference to a replicated object is

trapped by a sentry that passes ~ontrol to the Replication PM. The Replication PM

is responsible for maintaining consistency among replicated objects. OMG also sees

replication as a well-defined service module.

Implementation. This is unmet. As just noted, replication in a distributed data­

base is an active research area for Open OODB and the intent is to have a Replication

PM. Open OODB is being designed with support for fragmented objects in mind and

these fragmented objects could be replicated. Also, the Replication PM would al­

low replication at the object level, which is a grain of fragmentation with respect to

sets, etc. One of the problems in replica management is how to maintain consistency

78

arnong replicated objects. This is exacerbated by the fact that all objects in Open

ooDB have unique OIDs, which makes checks for equality more difficult [66]. This

problem helps to justify a separate Replication PM. A fully implemented Replication

PM ·would allow Open OODB to be extended to meet this requirement.

4.3.9 Data Definition

The NGCR DBMS interface standards shall provide data definition fa­

cilities used to control the distribution, fragmentation, and replication of

the data. in a. distributed data.base system. By exercising such data defini­

tion facilities, the DBA can design a distributed database that meets the .

reliability, a.va.ila.bility, a.nd performance requirements of the application.

Open OODB

Requirements. There are no matching requirements; Open OODB is not a dis-

tributed database system. However, Open OODB's R5 Data Dictionary requirement

states that "an OODB must be able to store, access, and manipulate meta-data" [69].

The information required includes: R5-l-8 environment information, R5-l-5 loca­

tion information, R5- l-9 replication information and R5-l-4 physical representation

information" [69].

Proposed Architecture. This is not met. However, in a distributed database im­

plementation of Open OODB, the data dictionary would contain information needed

by the Distribution and Replication PMs, etc.

Implementation. This is not currently met because Open OODB is not a dis­

tributed database system. Also, the Data Dictionary is only partially implemented

and the Distribution and Replication PMs are unimplemented. If Open OODB were

79

implemented as designed, this would be met in the context of a distributed database

and Open OODB could be extended to meet this requirement.

4.3.10 Local Autonomous Processing Capability

The NGCR DBMS interface standards shall enable the local database sys­

tem to autonomously execute local applications (programs or interactive

queries or transactions), i.e., applications that reference only local data.

(The data at ea.ch local computer system constitutes a local database.

Together, the loca.l database and the local instantiation of the DDBMS

constitute a loca.l database system.)

Open OODB

Requirements. There are no matching requirements. This requirement highlights

the difference between DISWG and Open OODB. DISWG is a set of requirements

on interfaces and must address such issues as different databases and their DBMSs

cooperating. Open OODB is not designed to be a distributed database system, but

rather, a DBMS in and of itself. Thus, local autonomous processing capability is

implicitly required in Open OODB.

Proposed Architecture. This is unmet. Open OODB is a DBMS and has not

been designed to be a distributed database system. This would imply that there are a

number of sites all running their own copy of Open OODB. Together, all the different

sites with their own copy of Open OODB would have to be able to appear as one to

an end-user. This type of functionality is not covered by the proposed architecture.

Implementation. This is unmet. DISWG has to worry about DBMSs communi­

cating with ea.ch other whereas Open OODB is a DBMS. However, since Open OODB

resides at one node, it certainly has local autonomous processing capability. Also,

80

the Exodus storage manager can act as an autonomous DBMS. Finally, as already

noted, Open OODB is actively working towards development of a DDBS usmg a

CORBA-like architecture which would allow this requirement to be met.

4.3.11 Continuous Operation

The NGCR DBMS interface standards shall not preclude the continuous

opera.tion of the database system.

Open OODB

Requirements. There is no direct match. However, the R16 Industrial Strength

meta requirement would seem to require continuous operation of a distributed data­

base.

Proposed Architecture. This is unmet because the requirement is on a DDBS

and Open OODB is not a DDBS. In the context of a distributed database, this is met

because of the wording of the requirement. Nothing in Open OODB would preclude

continuous operation. However, there are no special functionalities included in the

proposed architecture to ensure continuous operati9n.

Implementation. This is not met. Also, as a distributed database, Open OODB

provides no explicit way to delete data. Thus, the system must be flushed periodically

to provide more space as needed. During this time, the database would be unavailable.

This should be an easy problem to correct. It is interesting to note that OMG's OSA

includes an Object Lifecycle module to explicitly cover things such as object creation

and deletion [57]. Finally, in an early release of GemStone, which is a C++ based

distributed database, the system had to be stopped to perform backup [13].

81

4.3.12 Hardware Independent

The NGCR DBMS interface standards shall be hardware independent.

They shall allow data to be distributed across heterogeneous computer

systems.

Open OODB

Requirements. This is unmatched. However, hardware independence in a distrib­

uted database is mentioned in the R4 Distribution requirements. Specifically, R4-3

states that a.n OODB must allow applications access to data on multiple object servers

and R4-3-2 that the servers can be heterogeneous. Also, R4-4 requires a computing

environment that is R4-4-2 heterogeneous with respect to R4-4-2-1 machines. How­

ever, we a.gain point out that Open OODB is not designed to be what DISWG defines

as a distributed database system.

Proposed Architecture. This is not met. However, Open OODB's modular na­

ture and its ability to deal with different types of address spaces and data formats

account for hardware differences. Also, the Translation module in Open OODB is

designed to translate objects between hardware platforms [70].

Implementation. This is unmet. Refer to the evaluation of the hardware inde­

pendence requirement in DIS\VG's General requirements class on page 38 for more

details.

4.3.13 Operating System Independent

The NGCR DBMS interface standards shall be operating system inde­

pendent. They shall allow data to be distributed across heterogeneous

opera.ting systems.

82

Open OODB

Requirements. This is not matched. However under R4 Distribution, R4-4-2-2
'

that states that an OODB must support a computing environment that is heteroge-

neous with respect to operating systems. Also, under Rl6 Industrial Strength, R16-5

requires that an OODB must be portable and Rl6-5-2 that it must be 0 /S (operating

system) independent.

Proposed Architecture. This is unmet. However, Open OODB has been con­

structed with operating system independence in mind, which would allow it to be

ported to different systems. Open OODB's open, extensible and modular nature

- would facilitate any ports.

Implementation. This is unmet by the current implementation. Open OODB is

tied to UNIX [69]. However, being tied to UNIX is also a strength due to its wide

acceptance. For example, researchers at URI are interested in porting Open OODB to

a POSIX-compliant operating system to take advantage of the real-time properties of

such an opera.ting system. The fact that POSIX is based upon UNIX should facilitate ·

matters.

4.3.14 Network Independent

The NGCR DBMS interface standards shall be network independent.

They shall not require computer systems holding the distributed data

to be interconnected by any specifi.c communications network.

Open OODB

Requirements. This is not directly matched by any requirement. Refer to the

evaluation of DIS\VG's General requirement for network independence on page 39.

83

Proposed Architecture. This is not met by the proposed architecture. Open

QODB is not a DDBS. The proposed architecture's network independence capabilities

are covered on page 40 in the evaluation of DISWG's General requirement for network

independence.

Implementation. This is unmet. However, fully implemented Distribution PM,

Communications and Translation modules, etc., would allow this DISWG requirement

to be met in the context of a distributed database. Thes~ functionalities could be

extended to meet this DISWG requirement.

4.4 DISWG's Heterogeneity Requirements Class

"The NGCR DBMS interface standards shall provide facilities to promote the in­

tegration and interoperability of distributed, heterogeneous, autonomous database

systems" [32]. In this section, we first list some definitions. Then, we motivate why

this is an important issue. Next, we introduce some of the obvious problems and

proposed solution strategies. We follow with a discussion of how the 00 approach

may help solve some of the problems. Finally, we evaluate the requirements.

4.4.1 Definitions

Heterogeneous databases "vary with respect to DBMS, data model, query language

and/or data definition"[32]. Autonomous database systems are "under separate and

independent control" [32]. Interoperability is the problem of making heterogeneous,

distributed databases behave as if they formed part of a single database [84].

DISWG defines two ways that autonomous, heterogeneous database systems can

he integrated and/ or be made to interoperate. In a multi database system, "a mul­

tidatabase language is responsible for achieving interoperability of heterogeneous,

autonomous database systems" [32]. In a federated system, "users can query using a

classical query language against the federated schema with an illusion that he or she is

84

accessing a single system" [91]. As with distribution, definitions here vary. The terms

rnultidatabase and federated database have been used as synonyms [12, 78]. In [13],

federated distribution is defined as "cooperation among several logically independent

databases."

4.4.2 Important Issues

Recently, interoperability among heterogeneous databases has been rece1vmg more

and more attention. The primary reason is the vast quantity of pre-existing data under

the control of DBMSs and outside such control [9]. Also, the development of new data

models, platforms and algorithms precludes the prospects of any type of database

uniformity. This has caused the National Science Foundation (NSF) to conclude:

"It is unreasonable to expect all disciplines to converge on some unifying standard

for data model, data language, and communication; heterogeneity will continue to

be a complicating factor" [29). Thus, methodologies need to be developed to access

heterogeneous databases and data in an efficient manner.

The attention given to interoperability among heterogeneous databases has caused

many problems to become apparent. At the "heart of the interoperability issue" are

naming problems [54). How does one component. reveal its naming conventions to

another? The different components may use different concurrency control and locking

mechanisms, making problems such as deadlock prevention difficult [24). Varying

recovery techniques could impact reliability. Real-time deadlines could be next to

impossible. Security could pose some problems that are just unsolvable [89]. The list

is extensive!

To illustrate the complexity of the heterogeneity problems, we take a closer look

at the issue of local site autonomy. There appears to be a trade-off between local

site autonomy and the degree of interoperability [31]. Consider a concurrency control

problem. The most accepted way to implement concurrency control in a system of in-

85

shared with the outside world. Despite the drawbacks of the first approach, it has

been more widely used because of the complexity of the second approach.

4.4.3 OODBs and Heterogeneity

The 00 paradigm is expected to be of help in the development of heterogeneous

systems. As noted in the introduction to DISWG's Distribution requirements class,

heterogeneous database systems and DDBSs are very similar. Some would say that

heterogeneous database systems are DDBSs with different components. Therefore,

the arguments presented in evaluation of the Distribution class about the benefits

of the 00 paradigm apply here as well. Also applicable is Open OODB's vision of

incorporating Open OODB in a CORBA-like system. The databases connected to

the CORBA-like system may be heterogeneous.

The problems faced and the lack of solutions are illustrated by the fact that there

are only four DIS\VG Heterogeneity requirements. This is directly related to the

preliminary state of research towards solving these problems. With that in mind, we

now evaluate the four Heterogeneity requirements. The evaluations of each of the re­

quirements a.re similar. Open OODB is not a distributed, heterogeneous, autonomous

database system. Thus, like the Distribution requirements, the requirements here do

not apply to Open OODB. Therefore, none of these requirements are met by Open

OODB's proposed architecture or implementation. All we can do is point out that

work is underway at the Open OODB project to design a CORBA-like system hooked

up to possibly heterogeneous databases.

4.4.4 Remote Database Access

The NGCR DBMS interface standards provide the capability for a user

or application program to remotely access heterogeneous databases.

87

Open OODB

Requirements. This is matched Open OODB's Rll Access to Legacy Data func­

tional requirement.

Proposed architecture. This is not -met. This is an active research area for the

Open OODB project. Open OODB's extensible design will be of help.

Implementation. This is not met. However, work is underway to provide such

access. As already discussed, Open OODB envisions a CORBA-like system serving

multiple data.bases. Those databases could be heterogeneous. The designers of Gem­

Stone [13] have developed relational "gateways" that allow the users of GemStone to

query remote, relational databases.

4.4.5 Global Transactions

The NGCR DBMS interface standards shall provide the capability for a

user to execute global tra.nsactions. In particular, the standard shall spec­

ify application program interfaces for communication between tra.nsaction

managers a.nd resource managers. (i.e., DBM$s).

Open OODB

Requirements. Open OODB has no matching requirement.

Proposed architecture. This is not met.

Implementation. This is not met. Successful implementation of the previously

discussed COREA-like system would allow this to be met.

88

6 Multidatabase Systems 4.4.

The NGCR DBMS interface standards shall provide multibase language

features that enable a user or application program integrated access to

multiple, autonomous database systems.

Open OODB

Requirements. There are no matching requirements.

Proposed architecture. This is not met.

Implementation. This is not met. The Open OODB project is not taking the

multidataba.se approach. This is because the CORBA-like system would not use a

multidataba.se language that is characteristic of a multidatabase system.

4.4. 7 Federated Database Systems

The NGCR DBMS interface standards shall provide facilities for estab­

lishing federated database systems.

Open OODB

Requirements. There are no matching requirements. Rl 7 Other DBMS Require­

ments does mention heterogeneous DBMSs. However, Rl 7 does not require support

for heterogeneous DBMSs, it only says that heterogeneous DBMSs are outside the

current scope of Open OODB.

Proposed architecture. This is not met.

Implementation. This is not met. The CORBA-like system appears to be closer to

a federated data.base system than to a multidatabase system and its implementation

89

would allow this to be met.

4.5 DISWG 's Real-Time Requirements Class

"Most mission-critical computing systems have a real-time component which must

interact with the environment to produce timely and reliable results for successful

performance of the mission at hand" [32]. The requirements in this class deal with

the characteristics of the real-time components in next-generation DBMSs. "Some

of the requirements in this section cannot be met by a DBMS implementation un­

less its underlying operating system provides certain real-time processing capabilities

... "[32]. In the rest of this section, we first provide some definitions. Next, we look

at some important issues in real-time databases. Then, we point to areas of future

research and follow with a discussion RTSORAC's incorporation into Open OODB.

The section ends with the evaluations of DISWG's requirements.

4.5.1 Definitions

Real-time is "Characterized by the presence of timing constraints. Various levels of

real-time can be distinguished as follows:

• Hard real-time. Hard real-time means that failure to execute within timing

constraints produces catastrophic results.

• Firm real-time. Firm real-time means that failure to execute within timing

constraints produces no useful results.

• Soft real-time. Soft real-time means that failure to execute within timing

constraints produces less desirable results than would be produced by meeting

timing constraints" [32].

Real-time database systems (RTDBS) can be defined as a database system where

transactions are associated with real-time constraints typically in the form of deadlines

90

[gO]. A real-time DBMS can be defined as "A DBMS that manages time-constrained

data and time-constrained transactions" [32].

4.5.2 Important Issues in Real-time Databases

"Implementation of RTDBSs is difficult due to the conflicting requirements of meeting

deadlines and maintaining data consistency" [90]. It is not enough to simply integrate

"concepts, mechanisms, and tools from database systems with those from real-time

systems" (75]. In this subsection, we examine some of the important issues raised by

RTDBSs.

In non-real-time database systems, performance can be measured in terms of

average throughput. However, in a RTDBS, performance measurements are more

concerned with the timing constraints of individual transactions [2] and the percentage

of transactions that meet their deadlines (98]. In a non-real-time database system,

acceptable performance can mean nothing more than the job eventually gets done.

In a RTDBS, jobs must be done in a predictable amount of time.

Unfortunately, there is much unpredictability in the traditional database domain

[28]. It can not be predicted how often a data reference will result in a main memory

access as opposed to a disk access [75]. Since, in many cases, real-time schedules are

based on worst-case performance, this I/ 0 problem can severely impact performance

[98]. It can not be predicted how often recovery may be needed and how long those

recoveries may take. Recoveries usually involve unpredictable rollbacks and restarts

[75]. It can not be predicted how the active nature of things like integrity constraints

and security checks will affect performance.

There are problems other than predictability presented by RTDBSs. There is

no agreed upon data model. There is no agreed upon "best" scheduling algorithm.

For instance, the earliest-deadline-first algorithm appears to work best under some

circumstances, but in an overloaded system, the least-slack-time algorithm performs

91

I I
I
I

better [2, 98]. Also, there is no "best" concurrency control mechanism [2]. Locks are

very undesirable in real-time applications [98], which means that RTDBSs probably

do not want to rely on the popular two-phase locking protocol [37]. Various methods

of assigning and adjusting priorities are being studied to circumvent this problem

[2, 75].

The problems presented by RTDBSs necessitate trade-offs and sacrifices. Serializ-

ability requirements will have to be relaxed because of the unpredictability of blocking

and restarts [28, 90, 98]. It might be acceptable to enforce external correctness while

temporarily allowing internal inconsistencies [90]. Recovery will have to be looked at

differently, meaning that it might be better not to recover in certain applications [28].

The traditional ACID properties will have to be relaxed [28, 96] because, for example,

transactions must communicate in many real-time applications. Interestingly, relax-

ation of the ACID properties is also being looked at outside the realm of real-time

databases [17]. Transactions may have to be partitioned to allow early commits [28].

Thus, RTDBSs require a rethinking of DBMSs at a very basic level.

4.5.3 The Future of RTDBSs

Most of the work towards developing RTDBSs ''uses the relational data model,

which has restrictions in repres~nting complex data, constraints and concurrency

control" [73]. This necessitates considering other data models such as the 00 model.

Also, the problem of disk 1/0 has fueled research into main memory databases [90]. If

main memory becomes sufficient to handle large databases, then much of the unpre­

dictability of RTDBSs will go away. Main memory databases also offer the potential

for increased speed because they would eliminate time consuming disk 1/0 [34]. Ad­

ditionally, since SQL is now the basis for query language standards [82], work is

underway to extend SQL with real-time features [28]. SQL is also being extended to

include 00 features and those two extensions would bring a real-time, next-generation

92

database that much closer to reality.

4.5.4 RTSORAC and Open OODB

At present, Open OODB has no real-time capabilities and does not meet any of

DISWG's real-time requirements. Therefore, the evaluations of most of these require­

ments are similar in format. We find that Open OODB has no matching requirements

and that its proposed architecture and implementation do not meet the requirements.

There are several problems in extending Open OODB with real-time functional­

ities. One is that Open OODB is based upon transparently extending C++. Thus,

many possibly nested extensions can all be going on at once. This situation, which is

at the heart of Open OODB's computational model, creates unpredictability. Also,

Open OODB currently relies on the Exodus storage manager which has no real-time

capabilities. However, the extensible, modular nature of Open OODB and the fact

that it uses an SQL-based query language [62, 81], make Open OODB a prime can­

didate for real-time extensions.

At URI, we are extending Open OODB with RTSORAC features to allow many of

DISWG's Real-Time requirements to be met. This fact is alluded to throughout the

discussions of the requirements in this class. We know of no other work towards the

implementation of a real-time OODB as developed as RTSORAC. For more details

on RTSORAC, refer to the section on RTSORAC starting .on page 26 or to [73]. At

URI, we are also working on porting Open OODB to a real-time, POSIX-compliant

operating system. This is essential, because DISWG states in its own introduction to

~his class that many of these requirements rely on the support of a real-time operating

system. OMG is also interested in POSIX compliance [57]. We now evaluate the

eleven requirements in this class.

93

5 Modes of Real-Time 4.5.

The NGCR DBMS interface standards shall provide support for hard real­

time, firm real-time, and soft real-time modes of operation.

Hard, firm and soft real-time are defined in the introduction to this class.

Open OODB

Requirements. This is not matched.

Proposed architecture. This is not met.

Implementation. This is not met. We first point out that Open OODB would

have to be ported to a real-time operating system for this to be met. URI is work­

ing towards porting Open OODB to a real-time, POSIX-compliant operating system.

Next, not everyone acknowledges that there are three distinct real-time modes. Some

omit firm real-time [90]. That being said, the problems presented by hard real-time

constraints are different than those presented by firm or soft real-time constraints.

Extending Open OODB with the features of RTSORAC would allow the firm and

soft requirements to be met. Hard real-time in an OODB is an area that needs more

research. Even in non-00 systems, many restrictions have to be placed on trans­

actions and "poor resource utilization may result given the worst-case assumptions

made about the activities" [75]. This is because, in hard real-time, all deadlines must

he met to avoid catastrophe.

As already noted, many factors hinder predictably meeting deadlines and this

problem is exacerbated in hard real-time. In hard real-time, the whole system must

he predictable and POSIX does not provide that kind of support. Also, Open OODB

does not provide system wide predictability. Problems like locking and disk 1/0 are

compounded by data that is evolving and quickly becoming out-of-date [28]. The

94

real world is constantly changing, a situation hard to correctly reflect in a database.

Sometimes, we may have to accept timely results that are not correct.

Main Memory databases are expected to help towards the implementation of hard

real-time OODBs due to their increased predictability [90] and potential for increased

speed [34].

4.5.6 Real-Time Transactions

The NGCR DBMS interface standards shall provide the capability for

users to issue real-time transactions where ACID properties (such as the

isolation property, which can be relaxed via the specification of alternative

concurrency control correctness criteria) are applied selectively, and where

start events, deadlines, periods, and criticality of the real-time transac­

tions are specified.

Concurrency control correctness criteria is looked at more closely in the next re­

quirement. A start event is "An occurrence in the system (e.g., reaching a specified

wall-clock time, activation of a database trigger) constraining the start of a time

interval" [32]. A deadline is "An absolute (wall-clock) time constraining the end of a

time interval" [32]. "A period esta~lishes regular time intervals of a constant relative

time duration where the start of the ith interval is the end of the i - 1st interval. A

periodic constraint requires that execution appear once and only once within every

generated period" [91].

Open OODB

Requirements. This is partially matched under R3 Concurrent Access, by R3-2-9

which requires support for cooperating transactions. This is the same as relaxing the

Isolation component of the ACID properties as required by DISWG above. Also, other

95

I

subrequirements of R3-2 require support for different concurrency control correctness

criteria.

Proposed architecture. This is not met.

Implementation. This is not met. Open OODB's only transaction facility, as we

discussed in DISWG's Basic DBMS requirement for transaction support on page 60,

is conservative and based on Exodus. Also, Open OODB would have to be ported to

a real-time operating system for this to be met, otherwise the expression of deadlines,

etc., would be meaningless. Once ported, extending Open OODB with the features

of RTSORAC [73] would allow this to be met. RTSORAC allows for the ACID

properties to be relaxed and for start events, deadlines and periods to be expressed.

In RTSORAC, "A transaction consists of six components, < Nt, 0, OC, PreCond,

PostC ond, Result >" [73], as discussed on page 26. The OC component is where

constraints on transactions are represented. These include precedence, execution and

timing constraints. The DBMS, when provided with that information, could decide

on the criticality of a particular transaction. That decision would then be passed on

to the operating system.

The real-time transaction model presented in. [2] is similar, but in a non-00

environment. In [2], transactions have three parameters that directly correspond to

the three specifics mentioned in this requirement. Those parameters are: "a release

time r, a deadline d, and a runtime estimate E" [2]. These three parameters are used

to set schedules. It is worth noting that in [2], the attempt is to enforce serializability

with combinations of scheduling, locks and priorities. The authors note that enforcing

serializability adversely affects performance. In GemStone [13], though not real-time,

serializability may be relaxed by allowing dirty reads. With dirty reads, the ACID

properties ' Isolation and Consistency components are relaxed.

96

4.5. 7 Concurrency Control Correctness Criteria

The NGCR DBMS interface standards shall provide the capability for

users to specify concurrency control correctness criteria.

Concurrency control correctness criteria is "The criteria that establish the allowable

interleavings of concurrent execution sequences. Serializability is an example of a

typical concurrency control correctness criteria" (32]. Under serializability, a schedule

is said to be serializable if it is equivalent to some serial schedule [26].

Open OODB

Requirements. This is not matched.

Proposed architecture. This is not met. Concurrency control mechanisms would

most likely be included in the Transaction PM which is currently unimplemented.

However, nothing in Open OODB's design precludes this from being met in the

future.

Implementation. This is not met. Open OODB uses the strict locking mechanisms

of Exodus to enforce serializability as a correctness criteria. We already pointed

out that many do not think serializability is adequate to handle real-time needs

[28, 90, 98]. In the RTSORAC model, one component of each object is CF or a

compatibility function [73]. This function allows for concurrency on the granularity

of individual methods. A boolean value is used to represent whether concurrent

execution is allowed for every pair of an object's methods. The designer of an object

18 responsible for the definition of the compatibility function. Note that CF handles

intra-object concurrency control. It is unclear how to handle inter-object concurrency

control.

97

In [2], various concurrency control methods are compared. This is done by pairing

different scheduling algorithms with different locking mechanisms in different types

of systems. The scheduling algorithms include earliest-deadline-first, least-slack-time

and first-come-first served. 22 The locking mechanisms are variations on two-phase

locking obtained by using different priority schemes including wait, wait-promote

and highest. The systems are disk and main memory resident, as well as normal and

overloaded. The authors conclude that in a disk resident system, which represents

the current reality, a combination of least-slack-time and wait-promote works best.

4.5.8 Temporal Consistency

The NGCR DBJHS interface standards shall provide the capability for

users to specify data temporal consistency constraints.

Temporal consistency is "A property of data. Data exhibits temporal consistency if

it meets specified timing constraints" [32].

Open OODB

Requirements. This is unmatched. ·

Proposed architecture. This is unmet.

Implementation. This is unmet. RTSORAC uses an object's C, or constraint,

component to maintain temporal consistency. "Each constraint is of the form <

Ne, AttrSet, Pred, ER >" where Ne is the name of the constraint and AttrSet is a

subset of the object's attributes [73]. Pred is a boolean that can be used to express

the temporal consistency of an object's data by "referring to the value, time, and

imprecision fields of the attributes" [73]. The ER, or enforcement rule, is triggered
22

We do not discuss these algorithms here, the reader is referred to [2] for a complete treatment.

98

when the boolean value of Pred evaluates to false. Open OODB extended with this

RTSORAC functionality would meet this DISWG requirement.

In [75], it is concluded that the effect of maintaining temporal consistency on

transaction timing is an open question.

4.5.9 Real-Time Scheduling

The NGCR DBMS interface standards shall provide DBMS real-time

scheduling that attempts to maximize meeting timing constraints and

critica.lity (the synthesis of these two requirements is left undefined here)

of tra.nsa.ctions, as well as attempting to maintain both logical and tem-

poral consistency of data. The NGCR DBMS interface standards shall

require that real-time scl1eduling support analysis of predictable timing

behavior (e.g., by bounding priority inversion).

Open OODB

Requirements. This is not matched.

Proposed architecture. This is unmet.

Implementation. This is unmet. This requirement points to a problem brought

up earlier in this thesis: where is the interface between the operating system and

DBMS? If the DBMS schedules real-time transactions, how is this affected by the

operating system scheduling tasks? Clearly, it would be most efficient to have the

scheduling performed only once. At any rate, Open OODB would have to be ported

to a real-time operating system in order to meet this requirement.

This requirement mentions many things; we look at them one at a time. The

first thing mentioned in this requirement is maximizing meeting timing constraints.

URI is porting Open OODB to the real-time, POSIX-compliant, Lynx operating

99

I

I I

I

I I

I

system. Additionally, the scheduling capabilities of Lynx have been improved upon

to allow more tasks to meet deadlines [79]. Next mentioned is the maintenance of

logical and temporal consistency while meeting real-time schedules. The capabilities

of RTSORAC as concerns logical and temporal consistency will be looked at in other

requirements in this class. We have already noted that the impact of meeting real-time

schedules while preserving consistencies is an open research area [75].

The last subject mentioned is support for analysis of predi~table timing behav­

ior, "e.g., by bounding priority inversion." This again points to the operating sys­

tem/DBMS interface. If a DBMS is granting locks and using a priority scheme to

bound inversion, what is the impact of the operating system also assigning priorities

and locks? This is an open question.

This requirement could be met by extending Open OODB with URI's work on

the Lynx operating system and RTSORAC. However, it is clear that a more efficient

implementation could be realized if operating systems were designed with support for

DBMSs in mind.

4.5.10 Bounded Logical Imprecision

The NGCR DBMS interface standards shall .allow logical imprecision of

data; it sha.11 provide the capability to constrain these imprecisions.

DISWG defines logical imprecision is "the degree to which data fails to meet integrity

constraints" [32].

Open OODB

Requirements. This is not matched.

Proposed architecture. This is unmet.

100

Implementation. This is unmet. Extending Open OODB with RTSORAC fea­

tures would allow this to be met. RTSORAC has several mechanisms that bound

logical imprecision. The C, or constraint, component of an object, as previously de­

tailed in the temporal consistency requirement of this class, is one mechanism. Also,

each object has an A, or attribute component. Each "attribute is characterized by

< Na, V, T, I>", where Na is the name and V the value [73]. T is a timestamp and

J "is used to store the amount of imprecision associated with the attribute" [73]. The

object's C component can write constraints on I. Furthermore, it has been proven

that the amount of this imprecision can be bounded [16].

4.5.11 Bounded Temporal Imprecision

The NGCR DBMS interface standards shall allow temporal imprecision

of data; it shall provide the capability to constrain these imprecisions.

DISWG defines temporal imprecision as "The degree to which data fails to meet

timing constraints" [32].

Open OODB

Requirements. This is unmatched.

Proposed architecture. This is unmet.

Implementation. This is unmet. Extending Open OODB with RTSORAC fea­

tures would allow this to be met. As just discussed in the evaluation of the last

requirement, each attribute of an object in RTSORAC may have a T, or a times­

tamp, component. This component would be watched over by the object's C, or

constraint, component.

A slightly different approach is taken in [75] where temporal consistency is con­

sidered to have two components: absolute consistency and relative consistency. In

101

[75] data, d, is a triple: (value, avi, timestamp). "dvalue denotes the current state of

d, and dtimestamp denotes the real-time when the observation relating to d was made.

davi denotes d's absolute validity interval, i.e., the time interval following dtimestamp

during which d is considered to have absolute validity" [75]. If data items are used to

derive a new data item, a relative consistency set, R, is formed. Each R has a relative

validity interva.l or Rrvi which defines the maximum allowable difference between the

timestamps of the data involved.

4.5.12 Main Memory Data

The NGCR DBMS interface standards shall provide the capability to spec-

ify tha.t certain parts of the database should be maintained exclusively in

main memory. The NGCR DBMS interface standards shall require that

the DBMS still be responsible for maintaining persistence of this main

memoiy da.ta.

Open OODB

Requirements. This is partially matched. Under R3 Concurrent Access, R3-3-1

requires "controllable commits - (e.g., we can force everything to stay in memory

for performance reasons)" [69]. Also, under Rl 7 Other DBMS Requirements, Rl 7-1

requires support for a main memory DBMS [69]. However, there is no requirement

for maintaining the persistence of this main memory data.

Proposed architecture. This is not met.

Implementation. This is not met. This requirement is on the DBMS maintaining

persistence of pa.rts of the database in main memory. Use of the ASM abstraction

allows parts of a database maintained by Open OODB to reside in main memory.

102

However, the user does not control which parts and main memory data is not persisted

beyond the lifetime of a program unless sent to a persistent store.

On a more general level, the algorithms to maintain parts of the database in

main memory would have to be similar to the algorithms to maintain the entire

database in main memory. Main memory databases are outside the current scope of

Open OODB and it is "hard to predict the amount of rework involved to add this

capability" (69]. We mentioned main memory databases briefly in the introduction to

this class. Main memory databases hold promise for RTDBMSs due to their increased

predictability over disk based systems [90] and the potential for increased performance

(34]. However, implementation of large, main memory databases awaits technological

advances and it is unclear when they will become a reality. When they do, nothing

in Open OODB's design precludes it from taking advantage of the added speed and

predictability that would be provided.

4.5.13 Time Fault Tolerance

The NGCR DBMS interface standards shall support time fault tolerance.

That is, violations of transaction timing constraints and data temporal

consistency constraints are faults and shall be treated as such by the

fault-tolerance capabilities of"the standard, as specified [... previously}.

Open OODB

Requirements. This is unmatched.

Proposed architecture. This is unmet.

Implementation. This is unmet. In order to meet this requirement, Open OODB

would have to be ported to a real-time operating system that can detect time faults.

Also, there would have to be some way to express time faults in the database.

103

Fault tolerance, like real-time, is an issue that raises the operating system/DBMS

interface question. Certainly, transaction recovery is different than task recovery.

However, even the best transaction recovery algorithms are dependent on the un­

derlying operating system providing adequate fault tolerance support. For instance,

what good is the best logging algorithm if the operating system, due to a fault, jum­

bles up the files involved? We look at fault tolerance more closely in evaluation of

the next DISvVG requirements class: Fault Tolerance.

4.5.14 Resource Utilization Limits

The NGCR DBMS interface sta.nda.rds shall allow the specification of

worst-ca.se resource utilization limits (at least, CPU time, memory, de­

vices, a.nd da.ta. objects) for transactions. Violations of these limits a.re

faults and shall be treated as such by the fa.ult-tolerance capabilities of

the sta.nda.rd, as specified { . . . earlier}.

Open OODB

Requirements. This is unmatched.

Proposed architecture. This is unmet.

Implementation. This is unmet. Once again, where is the division between the

operating system and the DBMS? Limits for CPU time, memory and devices are

best handled by the operating system, while limits on data objects are best handled

by the DBMS. Therefore, to meet this requirement, the underlying operating system

would have to tabulate resource limits and allow that information to be used by the

DBMS. Also, the DBMS would have to provide support for the definition of data

limits such as the maximum size of a set, etc. Once a fault of this type is detected, a

104

fault tolerance mechanism must be invoked. Fault tolerance is looked at more closely

in its own requirements class.

4.5.15 Compilable DML

The NGCR DBMS interface standards shall provide a compilable DML

that yields a minimal run-time burden.

Open OODB

Requirements. There is no matching requirement.

Proposed architecture. This is met. The DML is C++, which is compilable.

Implementation. This is met as noted above.

4.6 DISWG's Fault Tolerance Requirements Class

"The requirements in this section specify fault management capabilities which must be

provided by NGCR DBMS Interface Standards"[32]. DISWG's requirements are on

military systems possibly involved in life-or-death situations. These "Mission-critical

database systems must be reliable" [32]. As with the Real-Time requirements class,

DISWG states that "Some of the requirements specified herein cannot be met by a

DBMS implementation unless its underlying operating system provides certain fault

management capabilities ... " (32]. Obviously, the best database recovery23 scheme is

ineffective if the underlying operating system, due to a fault, mismanages files. In the

rest of this section, we first review some definitions. Next, we examine some popular

fault tolerance strategies. Then, we look at Open OODB and fault tolerance. Finally,

Open OODB is evaluated with respect to DISWG's requirements.
2~Typically the term recovery is used in database literature instead of the term fault tolerance,

which has more often been used with respect to operating systems. However, in the DISWG require­
ments, database fault tolerance encompasses database recovery and. the necessary operating system
support.

105

1 Definitions 4.6.

The DISWG Fault Tolerance requirements are based on failure of a DBMS compo­

nent that could be viewed as a fault in the overall system. A DBMS component is "A

physical device or logical execution entity used or controlled by the DBMS. DBMS

components include, by are not limited to, data objects, transactions, database man­

agers, database sites, communication media among database sites, processors, mem­

ory, and secondary memory"[32]. A failure is when a DBMS component "deviates

from its specified behavior" [32]. A fault is a failed component "from the viewpoint

of higher-level components that encompass it" (32]. Fault tolerance is "The ability of

a component to maintain its specified correct behavior in the presence of faults (e.g.,

failures of subcomponents)" (32].

4.6.2 Popular Strategies

In this subsection, we discuss two of the most popular database fault tolerance

schemes. To initiate this discussion, we first look at exactly what is meant by a

failure. There are three types of failures (51, 53]. Perhaps the most typical failure is

a transaction abort due to errors, deadlock or initiated by the user for some reason.

The second type is a system crash and the third type is media, or device failure.

DBMS recovery techniques typically involve one of two strategies [53]. The most

common strategy is based upon keeping logs of a transaction's actions. Upon failure,

these logs can be used to bring the database back to a previous state known to be

consistent. The most popular of these strategies is the write-ahead log based ARIES

[51] recovery method. In this strategy, effects of transactions must be logged before

being entered into the database. Upon failure, a redo is performed to reestablish the

state of the data.base at the time of failure. Then, an undo is performed to bring the

database back to a consistent state. Many systems use an ARIES based or ARIES-like

strategy including ObjectStore [48], ORION [43] and the Exodus storage manager.

106

The second strategy is shadow-paging. In shadow-paging, all a transaction's up­

dates are performed on a copy of the appropriate database page. The locations of the

copy and the original page are kept in tables. Therefore, upon failure, the copy can be

discarded and the table that points to the original can be used to restore the database

to a consistent state. "The advantage of shadow paging is that it makes undoing the

effect of the executing tr ~ ' saction very simple" [26). "One problem with the shadow­

ing approach is ... it requires maintaining a very large page table" (53] and another is

that it is "difficult to keep related database pages close together on disk without com­

plex storage management strategies" [26]. GemStone uses a shadow-paging recovery

scheme [13].

4.6.3 Important Issues

Redundancy is the key to any recovery or fault tolerance scheme. Logging is a form

of redundancy. A transaction's results are not only written to a page, but also redun­

dantly written to a log. Shadow-paging also involves redundancy at the page level. A

more obvious form of redundancy can occur at the hardware level. Redundant disks

and CPUs, etc., are used to protect mission-critical systems.

Redundancy at the hardware level introduces a Bew level of complexity: distribu­

tion. With data.bases, the main problem with redundancy and distribution is to make

sure that all data copies remain consistent while not overburdening the system with

replication management [l]. Typical replicated data management schemes involve

forming groups of replicas and voting (76]. Distribution in DBMSs has been cited

as one of the most difficult next-generation functionalities to implement (13). Thus,

we have the paradox that replicated, distributed components enhance fault tolerance,

hut complicate the needed algorithms.

Another next-generation concern is implementing fault tolerance under real-time

constraints. Fault tolerance is achieved by redundancy, which immediately increases

107

overhead. Also, we certainly can not accurately predict how many failures will occur,

and each failure further increases overhead. Thus, there is a performance trade-off

and an unpredictable factor in bounding execution time. That unpredictability is in

addition to the fact that, as we noted on page 91 in the introduction to DISWG's

Real-Time requirements class, traditional recovery methods do not satisfy real-time

needs (28].

The issue of fault tolerance begs the same question that real-time does: where

does the operating system end and the DBMS begin? In a fault tolerance scheme

proposed for UNIX [11], a checkpoint of a consistent state is taken between tasks. A

record is kept of all changes to that state. Upon failure, the system is rolled back to

the consistent state and then the changes are redone. In a typical database recovery

scheme, a checkpoint of a consistent state is taken between transactions. A log is

kept of all changes made to that state. Upon failure, the system is restored to the

consistent state and the changes redone.

The parallels are obvious. However, transactions are not supported by operating

systems due to the high overhead of maintaining consistency through serializability. 24

Despite that fa.ct, due to the similarities of the fault tolerance algorithms in the

operating system and in the DBMS, more cooperation between the two could greatly

improve efficiency.

4.6.4 Open OODB and Fault Tolerance

Open OODB does not meet any of the requirements in DISWG's Fault Tolerance

class. Open OODB does not implement a recovery strategy, but instead relies on the

ARIES based algorithms of the underlying Exodus storage manager. Open OODB's

recovery requirements are undeveloped and do not even merit a separate category

(they are lumped in with integrity). Also, Open OODB rests on the UNIX operating
24

This is from an unfinished pa.per by Paul Fortier and Joan Peckham entitled Operating System
Support for Next Generation Database Management Systems.

108

system which does not have fault tolerance capabilities. In addition, Open OODB's

computational model with (possibly ~ested) transparently extended events would

make recovery ''very complicated" (68].

Therefore, the evaluations of the DISWG Fault Tolerance requirements are, for

the most part, all the same. The DISWG requirement is found to be unmatched

and the requirement is found to be unmet by both the proposed architecture and

the implementation. Also, we note that many of the requirements need underlying

operating system support.

We suggest the definition of an additional Policy Manager to handle fault toler­

ance. The Fault Tolerance PM could do many of things called for in these DISWG

requirements. Included under the scope of a Fault Tolerance PM could be setting

fault limits , initiating tests and collection of fault information, etc. These functional­

ities are orthogonal to the functionalities of the rest of the PMs. These functionalities

should also be accessible to application programs. Orthogonality and application ac­

cessibility are two of the main justifications for the development of a separate PM

in Open OODB. Of course, Open OODB would still have to be ported to a fault

tolerant operating system. The Fault Tolerance PM would have an interface into

the fault tolerance mechanisms of the operating system. We now evaluate the nine

requirements in this class.

4.6.5 Collection of Fault Information

The NGCR DBMS interface standards shall specify the fault information

(e.g., the component that failed , the number of times the fault occurred,

when the faults occurred) to be collected. The standard shall also specify a

minima.I set of faults for which the specified information shall be collected.

This set sha.11 include, but is not limited to, the following faults:

• Da.ta.ba.se constraint violations (e.g., range constraints, referential in-

109

tegrity constraints, temporal consistency constraints).

• Transaction timing faults.

• Transaction resource utilization violations.

Open OODB

Requirements. This is not directly matched. Under R5 Data Dictionary, R5-

1-10 requires support for mechanisms to collect and maintain information such as

configurations and replications.

Proposed architecture. This is not met.

Implementation. This is not met. Open OODB would have to be extended in

several ways in order for this to be met. First, Open OODB would have to provide

support for integrity constraints. We look at this problem in more detail in the

evaluation of DIS\VG's Integrity requirements class. Second, Open OODB would have

to be extended with real-time features to be able to express things like transaction

timing faults. Third, Open OODB would need an operating system with more fault

tolerance capabilities than UNIX. Finally, a mechanism would be needed to coordinate

the specification of fault information that is to be collected from the DBMS and from

the operating system. One way to do this would be to define a Fault Tolerance PM

as discussed earlier.

Extending Open OODB with features of RTSORAC (73] would help. RTSORAC

supports the expression of both integrity constraints and real-time constraints. The

Fault Tolerance PM could watch for violations of theses constraints.

4.6.6 Retrieval of Fault Information

The NGCR DBMS interface standards shall provide for the retrieval of

DBMS fault information.

110

Open OODB

Requirements. This is unmatched.

Proposed architecture. This is unmet.

Implementation. This is unmet. Information on some faults, particularly hard­

ware, would best be collected by the operating system. Therefore, to meet this

requirement, an interface from the DBMS to that information in the operating sys­

tem would be needed. In Open OODB's case, that would mean that either UNIX is

extended to collect fault information and allow a DBMS access to that information, or

Open OODB would have to be ported to a different operating system. As suggested

in the introduction to this class, a separate Fault Tolerance PM should be considered

for Open OODB. This PM could perform such duties as retrieving fault information.

4.6. 7 Initiation of Diagnostic Tests

The NGCR DBMS interface standards shall provide for the initiation of

DBMS diagnostic tests.

Open OODB

Requirements This is unmatched.

Proposed architecture. This is unmet.

Implementation. This is unmet. Some tests, particularly on hardware compo­

nents, should be performed by the operating system. Currently, Open OODB rests

on UNIX, which does not provide the necessary support to meet this requirement.

Therefore, either UNIX would have to be extended or Open OODB would have to be

ported to a new operating system. Diagnostic tests would also be needed on Open

111

QODB modules such as Policy Managers. Many modules are currently unimple­

mented. However, Open OODB's design goals of well-defined modules arid interfaces

would facilitate the implementation of appropriate tests.

4.6.8 Retrieval of Results of Diagnostic Tests

Tl1e NGCR DBMS interface standards sliall provide for the retrieval of

the results of DBMS diagnostic tests.

Open OODB

Requirements. There is no matching requirement.

Proposed architecture. This is unmet.

Implementation. This is unmet. Diagnostic tests on hardware should be handled

by the operating system. To meet this requirement, the operating system would have

to make the results of those tests available to the DBMS via an interface. The Fault

Tolerance PM of the DBMS, as suggested in the introduction to this class, would

access those results as well as the results of tests performed on software components

of the DBMS.

4.6.9 Operational Status

The NGCR DBMS interface standards shall provide access to the opera­

tional status of DBMS components.

Open OODB

Requirements. This is unmatched.

Proposed architecture. This is unmet.

112

Jinplementation. This is unmet. The operational status of hardware components

should be tracked by the operating system. As for software components of the DBMS,

we recommend the development of a Fault Tolerance PM as described in this class's

introduction. This Fault Tolerance PM would need an interface into the fault toler­

ance mechanisms of the underlying operating system.

6 lo Fault Detection Thresholds 4 •.

The NGCR DBMS interface standards shall provide for the specification

of fault detection thresholds, which shall include, but not be limited to, the

number of faults that if detected within a certain amount of time is treated

as a failure (e.g., the number of retry attempts of aborted transactions

before a failure of tliat is reported).

Open OODB

Requirements. There are no matching requirements.

Proposed architecture. This is unmet.

Implementation. This is unmet. Once again, operating system support would

he needed to meet this requirement. Also, a Fault Tolerance PM would facilitate

meeting this requirement. Allowing applications access to the Fault Tolerance PM

would allow users to fine-tune fault thresholds on a needs-be basis. For instance, in

some applications, we may not wish to retry many transactions, whereas in others,

we may wish to retry all transactions.

4.6.11 Specification of Fault Responses

The NGCR DBMS interface standards shall provide for the specification

of actions to be ta.ken at the occurrence of a fault. They shall support at

113

]east the following actions:

• Restart of a speciEed set of transactions at a database's specified

past state or with only a specified part of the database replaced by

its pa.st state.

• Roll ba.ck of specified transactions that have started, but no yet com­

mitted, so that their effects are not realized in the database.

• Use of specified backup components as primary components (e.g.,

other versions of the data.base).

• Providing notification of a fault to a specified set of DBMS compo-

nents to a.llow them to initiate recovery.

• Providing notification of a fault to a specified location outside of the

DBMS.

• Reconfiguration of DBMS components (see next requirement).

Furthermore, the NGCR DBMS interface standards shall allow for each

of these a.ctions to be applied selectively. Also, these actions may fall un-

der time-constrained execution described in the "Real-Time Processing"

section.

Open OODB

Requirements. This is unmatched. However, some Open OODB requirements

provide a partial match. Under R5 Concurrent Access, R5-1-9 requires mechanisms

for collection of replication and configuration information. Also, under R16 Industrial

Strength, Rl6-l requires the system to be fault tolerant, R16-1-1 requires logging and

Rl6-l-2 requires automatic recovery after crashes. R16-2 requires "backup, restore

and archiving" [69]. Also, under R9 Data Integrity and Recovery, a system must

support R9-5 recovery and R9-6 backup and restore.

114

Proposed architecture. This is unmet.

Implementation. This is unmet. To meet this requirement, operating system

support would be needed. As we have noted earlier in this evaluation of the Fault

Tolerance class, UNIX would have to be extended or replaced with a fault tolerant

operating system. Also, a separate Fault Tolerance PM would be a good way to

extend Open OODB to meet this requirement.

This requirement mentions several distinct issues involved in fault response. The

first issue is the use past states and rollbacks. We have already mentioned that Open

OODB considers this a very complicated issue due to transparent extensions [68].

Many of the other issues could only be met by cooperation between the DBMS and

the operating system. For instance, hardware reconfiguration in the face of hardware

failure should be handled by the operating system. Selectivity could be handled by

bundling fault tolerance capabilities into a PM with an applications interface. Real­

time processing, as we noted in the introduction to this class, is an open question

with respect to fault tolerance.

4.6.12 Reconfiguration

The NGCR DBMS interface standards shall support dynamic reconfigu­

ration of the DBMS components based on reconfiguration of the underly­

ing opera.ting system and hardware. Reconfiguration includes, but is not

limited to, enabling/disabling components, adding/deleting components

as members of specified groups and reassigning resources to components.

Reconfigura.tion must be allowed as a response to a fault, as in the previous

requirements, or at the discretion of certain DBMS components.

115

Open OODB

Requirements. This is not directly matched. However, under R5 Data Dictionary,

R5-l- 7 requires that the data dictionary maintain configuration information. Also,

Open OODB has been designed with configurability in mind and has many require­

ments in this area. vVe discussed this at length in the configurability requirement of

DISW G's General class on page 4 7.

Proposed architecture. This is unmet.

Implementation. This is unmet because UNIX, Open OODB's operating system,

does not provide the support called for in this requirement. Open OODB does provide

limited support for enabling and disabling software components. For instance, trans-

actions can be aborted, and, theoretically, different address spaces can be added or

deleted. However, none of this is done "based on reconfiguration of of the underlying

operating system and hardware", to quote the requirement.

Hardware reconfiguration would have to be tracked by the operating system. The

DBMS, possibly in the form of a Fault Tolerance PM, would need access to this infor-

mation. The DBMS would also need to monitor software configuration. Open OODB

has been designed with configurability in mind, which should facilitate reconfiguration

for fault tolerance purposes at the software level.

4.6.13 Replicated Components

The NGCR DBMS interface standards shall not preclude the use of repli-

cated components.

Open OODB

Requirements. This is not directly matched. However, under R4 Distribution,

R4-10 requires support for replicated data for fault tolerance.

116

11

I

proposed architecture. This is met due to the wording of the requirement, e.g.,

nothing in Open OODB's proposed architecture precludes the use of replicated com­

ponents. Open OODB's designers have proposed a Replication PM outside of the

scope of the alpha release to handle replicated data objects (67]. Replicated hard­

ware could be supported by the services of the ASMs, the Distribution PM, and the

Communications and Translation modules. Even though nothing in Open OODB's

proposed architecture has been designed to specifically handle replicated hardware,

this functionality is not precluded by Open OODB's design.

Implementation. This is unmet. Replicated hardware would be best handled by

the operating system. The DBMS would need to interface that replication informa­

tion. Open 00 DB's proposed Replication PM could handle replicated data. How­

ever, it is not clear how to best handle replicated software components, such as PMs,

for fault tolerance purposes. Also unclear is how to handle replicated transactions

(transactions are DBMS components).

4.7 DISWG's Integrity Requirements Class

The Navy, just like business and industry, bases important decisions on data retrieved

from databases. "In order for the right decisions to be made, stored data used for

such decisions must be correct and consistent. That is, the integrity of the stored

data must be upheld" (32]. In this introduction, we first look at some of the problems

involved in expressing integrity constraints, and then look at how the 00 paradigm

may be of help. Next, we take a brief look at integrity constraints in RTSORAC [73].

Finally, we perform the evaluations.

Data integrity must be maintained under pressure from concurrency control, re­

covery and other factors. The constant checking involved in maintaining data integrity

can impact performance. Also, constraint checking could cascade, with unpredictable

results [93]. Many constraints may not be computable, and some may not even be

117

expressible (24].

4.7.1 OODBs and Integrity

The "role of integrity constraints in OODB's is not very well-defined" [93]. Conse­

quently, Open OODB lumps data integrity and recovery together into one, rather

undeveloped requirement. This is reflected in the proposed architecture. For exam-

ple, while there may be a matching Open OODB requirement for a particular DISWG

requirement, none of these DISWG requirements are met by the proposed architec­

ture of Open OODB. Open OODB envisions that the sentry mechanism can be used

to enable integrity extensions.

The nature of the 00 paradigm appears to lend itself well to the expression

of integrity constraints. We can look at two types of integrity constraints. Intra-

object constraints exist within an object and inter-object constraints exist between

objects. Some intra-object integrity constraints are automatically captured through

the type system and class hierarchies. For example, every student object is also a

person object [39]. Also, intra-object data values can be protected or watched using

constraint methods. Since objects can be constructed so that nothing but its own

methods can touch its data, the implementation appears straightforward. Thus, the

expression of intra-object constraints in an OODB is very natural.

The expression of inter-object constraints is not so straightforward. Some feel that

these inter-object constraints should not be encapsulated within the object (39, 93].

In the RTSORAC25 [73] model proposed at URI, intra-object constraints may be ex-

pressed within an object and inter-object constraints within relationship objects. Re­

lationship objects in RTSORAC "represent aggregations of two or more objects" [73].

In [23], details on how to implement relationship objects are provided. Formal models

of relationship objects are provided in [73, 96]. It is also worth noting that OMG sees
25

More details on RTSORAC are provided in the evaluation of DISWG's Real-Time requirements
class and in the review of current research at URI.

118

relationships as first class objects in its OSA (57]. Extending Open OODB to include

relationship objects would allow for most of DISWG's Integrity requirements to be

met. We now evaluate the eight requirements presented here with respect to Open

OODB.

4.7.2 Domains

The NGCR DBMS interface standards shall provide the capability to de­

fine domains and to declare attributes as having values drawn from spec­

ified domains.

A domain is a pool "of legal values for an attribute of an object ... " (32].

Open OODB

Requirements. · There is no matching requirement.

Proposed Architecture. This is met. The C++ type system mechanism estab­

lishes domains as well or better than most DDLs. However, there is no explicit

mention of domains in Open OODB's literature.

Implementation. This is met: As just noted, C++ 's type mechanism provides

support for domain definition. Also, where needed, it should be straightforward to

express any additional domain constraints. The basic nature of the 00 paradigm

encapsulates data, and that data can be monitored by methods to make sure it

stays in the exceptable range of values. ORION allows for domain checking to be

including in an object [43]. In RTSORAC (73], domains can be expressed as intra­

object constraints. Therefore, it should be possible to do the same in Open OODB.

119

4.7.3 Keys

The NGCR DBMS interface standards shall provide the capability to de-

dare a specified attribute or set of attributes as a key.

A key is an attribute, "or set of attributes, that uniquely identifies an object within

"[3''] a class . · · ..., ·

Open OODB

Requirements. There is no matching requirement.

Proposed Architecture. This is unmet by the proposed architecture. Open

OODB makes no mention of keys, or of special functionalities to handle keys.

Implementation. This is unmet by the implementation. Keys are more of an issue

in other data models, such as the relational model. Keys can be seen as artificial since

they necessitate all records to have a unique value [23]. The unique OIDs in an OODB

offer more flexibility than keys. For instance, whereas keys in the relational model

do not allow for two rows of a table to have the same values, OIDs allow for two

objects to have the same values. OIDs give objects· an identity independent of their

value [15, 23]. This allows for more natural modeling of the real world where different

things can have the same value.

However, 0 IDs do not eliminate the need for keys. 0 IDs are determined by

the system and have no semantic meaning with regard to the object they identify.

Therefore, "It is more convenient for the user to be able to fetch one or more objects

using user-defined keys" (46]. The advantage of the OODB approach is that keys do

not have to be unique because OIDs can be used to determine uniqueness. Thus,

instead of using keys in the traditional sense, objects are searched over the domains

of attributes [45].

120

1 1

7 4 Referential Integrity Constraints 4 ..

The NGCR DBMS interface standards shall provide the capability to de-

dare referential integrity constraints.

"Referential integrity holds when all referenced objects exist in the database" [32].

Open OODB

Requirements. This is a matched requirement. Under R9 Integrity and Recovery,

R9-4 states that it must be possible to state referential integrity constraints. Also,

under Rl 00 Data Model, Rl .. 1-14-5 states that an OODB must support some of a

given list of functionalities. Included in that list is referential integrity constraints.

Proposed Architecture. The proposed architecture does not meet this require-

ment. This type of functionality is not explicitly proposed in Open OODB's archi-

tecture.

Implementation. Open OODB's implementation does not meet this requirement.

Open OODB's designers state that this requirement could be met by its proposed

architecture with minimal rework [69]. References "fo objects are manipulated by all

Open OODB modules" and thus, "are a part of the common glue defined by the meta

architecture" [68]. One problem here is that its much easier to determine to where an

object reference points than it is to determine from where that reference came [64].

This problem makes it difficult to tell if a deleted object was pointed to by another

object(s).

One approach to solving the referential integrity problem in an OODB is the

approach ta.ken in Ode (39]. In Ode, each reference is implemented as an object that

uses inverse pointers: if A points to B, then B must point to A. Ode's designers see

three ways to implement referential integrity upon an object delete. A NULL value

121

I 1

I I

11

I I

I,

could be placed in the reference pointer, the referencing object could be deleted or the

delete action could be aborted. In each reference object, the application programmer

includes which of the three actions to take upon deletion of a particular object. A

similar method involving inverse pointers and user input is used in ObjectStore (48].

Finally, GemStone [13], based on C++, fully supports referential integrity constraints.

The reference objects described by Ode, ObjectStore and even Open OODB, are

specific examples of the more general relationship object presented in RTSORAC

(73]. In a relationship object, referential integrity constraints can be expressed, as

can other inter-objects constraints.

4. 7.5 Assertions

The NGCR DBMS interface standards shall provide the capability to de-

dare assertions.

An assertion is a "constraint, possibly involving multiple classes of objects (and thus

more powerful than a domain), on the data values that can be stored in a database.

If the assertion fails to hold for an insert or update being submitted to the database

system, then the operation is not performed, and an error is reported to the operator

of that operation" [32]. Thus, an ass.ertion is a statement of fact. For example, consider

a hierarchy with the superclass ship. We have different types, or subclasses of ships

such as freighters and tankers, etc. An assertion could be that that the speed of any

ship can not exceed 100 knots. If it does, something is wrong because ships just can

not go that fast.

Open OODB

Requirements. Open OODB has a matching requirement. Under Rl 00 Data

Model, Rl-1-14-2 states that an OODB may support assertions. Also, under R5

122

Data Dictionary, R5-l-1 states that the data dictionary must be able to represent

data model information such as assertions.

Proposed Architecture. This is not met by the proposed architecture.

Implementation. As of yet, this is unmet by Open OODB's implementation, but

minimal rework is predicted to incorporate the features needed to meet this require­

ment (69]. The encapsulation of data inherent in the 00 paradigm is expected to help

with this, and other, integrity constraints. One way to handle inter-object constraints

like assertions in an OODB is through the use of relationship objects. These objects

express the relationships between other objects or tell how different objects reference

each other. This is an integral part of ongoing research at URI. In RTSORAC [73] and

also in (96], relationship objects are described in detail and in [23], implementation

specifics concerning assertions are provided.

4.7.6 Triggers

The NGCR DBMS interface standards provide the capability to specify

triggers.

A trigger is a "mechanism for sp.ecifying that a sequence of database updates is to

be performed upon the occurrence of a given event (e.g., access to a given object).

Triggers can be used to propagate updates to maintain database consistency and

can be used to maintain constraints. For example, a trigger could initiate a position

update if a ship's speed changes.

Open OODB

Requirements. This requirement is matched. Under Rl 00 Data Model, Rl-1-

14-6 states that the OODB may include trigger integrity constraints.

123

Proposed Architecture. This is unmet by the proposed architecture. There is no

provision to include a trigger mechanism.

Implementation. This is unmet by the implementation. There is little discussion

in OODB literature on triggers and other integrity constraints. Most OODBs do

not support triggers [46). One OODB, ORION, mentions triggers only to say that

they are unimplemented [43). The fact that methods watch over data in the 00

paradigm should facilitate incorporiation of triggers. Implement~tion of triggers in

Open OODB can be patterned after work underway at URI. Triggers can be expressed

in relationship objects that are designed to specifically watch over other objects [23].

A formal model of the relationship object is presented in [73] and [96]. A similar

approach is taken in Jasmine (38_]. Triggers in Jasmine are implemented as demon

classes which \Vatch for such actions as references, insertions and updates, etc. When

a watched for action is detected by the demon class, an appropriate action, or method,

is triggered.

4. 7. 7 Alerters

The NGCR DBMS interface standards shall provide capability to specify

alerters.

An alerter is a "mechanism for specifying that a message is to be sent to a specified

process or user upon the occurrence of a given event (e.g., access to a given object).

For example, if a ship changes course, all other ships could be automatically notified.

Open OODB

Requirements. There is no matching requirement.

Proposed Architecture. This is not included in the proposed architecture.

124

Implementation. This is not met by the implementation. However, Open OODB's

designers do not predict much rework will be needed to incorporate alerters. Alerters

could be modeled using RTSORAC's relationship objects [73], although there is no

specific mention made of alerters.

4. 7 .8 Enabling/Disabling of Constraint Enforcement

The NGCR DBMS interface standards shall provide the capability to en-

able and disable the enforcement of specified integrity constraints. To

restrict a.ccess to the ca.pa.bility, privileges shall be associated with this

capability.

Open OODB

Requirements. This is unmatched.

Proposed Architecture. This is unmet. As stated earlier, DISWG's Integrity

requirements are unmet by Open OODB's proposed architecture. Therefore, the

integrity constraints, which are not there, can not be enabled/ disabled or restricted.

Implementation. The implem~ntation, while not meeting this requirement, does

nothing to preclude it being met in future implementations. The modular nature of

Open OODB's design should facilitate building in mechanisms to adjust constraint

checking. This requirement also mentions privileges. This topic is covered in the

discussion of DISWG's Security requirements class.

4.7.9 Null Values

The NGCR DBMS interface standards shall provide the capability to store

and retrieve null values. Null-valued attributes shall be ignored in the

computation of aggregate functions. For example, an averaging query

125

shall exclude null values from its computation of the average value of an

attribute.

Open OODB

Requirements. There is no matching requirement.

Proposed Architecture. This is not met by the current architecture. There is no

mention of treatment of null values.

~ Implementation. This is not met by the current implementation for reasons just

stated. This appears to be more of a concern of other data models, such as the

relational data model, that rely on keys, etc. In such models, it is important to

make sure that no key has a null value. OODBs do not rely on keys. The DISWG

requirement specifically mentions an averaging algorithm. Since Open OODB is an

extension of c++, treatment of null values in such an algorithm could be handled in

the same way as they would be in any C++ program. The treatment of null pointers

in an OODB is an entirely different subject. For instance, what if we are dealing

with a collection of composite objects, not all of which are complete? This is an open

research area and currently would have to be done on an ad hoc basis.

4.8 DIS"WG's Security Requirements Class

DISWG offers no explicit definition of database security. Instead, twenty-two defi­

nitions are presented that deal with various aspects of security. Then, DISWG list

its twenty security requirements. When considering the needs of the next-generation,

the problems presented by security are not well understood. Due to this and perhaps

other reasons, DISvVG has deemphasized its security requirements. 26 Additionally,

security is outside the scope of Open OODB's current effort. Therefore, our evalu-

26Minutes of the April 1994 Meeting, ·Alexandria, VA.

126

ation of this class is different than that of DISWG's eight other classes. We do not

evaluate each DISvVG requirement individually, but instead discuss security issues

generally.

The rest of this section is organized as follows. We first discuss some of the

most common security policies and strategies to date. Then, we look at 00 D Bs and

security. Next, we review what the Open OODB project has to say about security. We

conclude with a brief look at some of the challenges that next-generation needs pose

for security. For completeness, we include a list of the twenty DISWG requirements

in this class.

4.8.1 Security Policies and Strategies

"Computer security is concerned with the ability of a computer system to enforce a se-

curity policy governing the disclosure, modification, or destruction of information" [50].

We now take a brief look at the two most popular security policies: mandatory access

control and discretionary access control. "Mandatory security (or multilevel security)

policies restrict access to classified information to cleared personnel" [50]. Basically, all

data is classified as either top secret, secret or confidential, etc., and users are cleared

based on their trustworthiness [72]. Mandatory access control can be summarized by

two rules :

1. A subject S is not allowed to read data of access class c unless class(S) ~ c,

and

2. A subject S is not allowed to write data of access class c unless class(S) :s; c.

The first rule means that subjects can not access data unless they are cleared to

access that data. The second rule means that a subject can not write data that could

then be accessed by other subjects with less clearance.

Mandatory security has primarily been used in military applications, many of

which are very important. This does not imply that there are no problems with

127

I

I'

ll
I

11

mandatory security. Indeed, computer systems at both NASA and NATO have been

breached (72], despite the fact that every read and write is checked under mandatory

security (40]. Also, users at different clearances are presented different views of the

same database. This has an adverse impact on integrity concerns such as null keys

and dangling pointers, etc. [50, 72].

"Discretionary security policies ... define access restrictions based on the identity

of the users (or groups), the type of access (e.g., select, update, insert, delete), the spe­

cific object being accessed, and perhaps other factors" [50]. "To support [discretionary

access control], user-role based security (URBS) has been proposed, which dictates

that the responsibilities of the end-users within the application be the guiding factor

when assigning privileges" [20]. Thus, one way to implement discretionary policies is

to associate both users and data with roles. A key problem with the discretionary

approach is that it does not prevent malicious access (72].

There are other security strategies varying from armed guards to locked rooms.

One of the most effective security measures taken aboard submarines is to close the

hatch! As a final note on security strategies, security algorithms in general can be

seen as very similar to the algorithms for integrity constraints, i.e., they both protect

data [26, 4 7].

4.8.2 OODBs and Security

The 00 paradigm could be of help in the area of security. Data hiding should support

data security [10]. Some see OODBs shifting the emphasis from mandatory policies

to discretionary policies [20, 50, 72]. This is due to how well the 00 paradigm can be

used to model user-role based discretionary access control. Roles can be associated

with methods and users with roles (20]. Users can also be associated with groups and

groups with roles, easing the burden on the implementor (55].

There are some concerns. Inheritance, one of the strengths of the 00 paradigm,

128

I I

I

11

I

tends fo complicate matters. Security could be implemented in an OODB with in­

heritance by allowing access to be inherited to inherited methods, but not to subclass

defined methods (30]. Another concern is that the analysis needed to associated users,

groups and methods with roles could be very complicated and fragile [55]. For in­

stance, any role changes could necessitate a complete reanalysis. Also, OODBs are

more complex that simpler, relational databases. Therefore, security algorithms as­

sociated with OODBs may be more complex (56]. Finally, there is no agreement on

just what an OODB should be, so how can there be any agreement on how security

should be handled in an OODB environment (72]?

4.8.3 Open OODB and Security

Security is outside the current scope of the Open OODB project and it is hard to

predict the a.mount of rework that would be needed to incorporate security [69).

Some feel that security must be designed into, rather than added onto, a database

(72]. Nonetheless, adding security features is an ongoing research area for the Open

OODB project.

Open OODB does not ignore the issue of security. Open OODB's functional

requirement RlO states that "an OODB must support security" [69]. RlO is rather

undeveloped and preliminary, with only seven subrequirements. To illustrate, RlO-

2 requires support for "authorization" while Rl0-5 requires support for "security

authorization and access control" (69]. What is the difference between authorization

and security authorization? Also, RlO's subrequirements call for security support in

a very general manner. For instance, Rl0-6 requires support for "Various sorts of

security" [69].

Open OODB 's designers state that security constraints could be a dimensional ex­

tension to the system architecture on a par with persistence and replication, etc. (64].

Even though ''security access control is often bundled with transaction concurrency

129

I
-- I

control ... it is clearly something that is orthogonal" [65]. Nonetheless, Open OODB's

designers are considering joining security and concurrency control into a single Policy

Manager with both being checked at the transaction boundary [65].

4.8.4 The Next-Generation and Security

In the field of database security, there are still more concerns than controls and se­

curity systems lag behind the technologies they need to protect [72]. Security is seen

as a major failing in current DBMSs [84]. "In spite of its importance, the issue of

security has been relegated to a secondary status by researchers" [40]. One of the

complications with security is that all the levels in a computer database system must

be secure. In [72], four levels are discussed: hardware, operating system, DBMS

and communication. The open systems interconnection (OSI) reference model con­

tains seven layers [97]. All seven layers must be secure for the system to be secure.

For instance, at the application level, resource access must be protected and at the

transport level, encryption may be needed [97].

Clearly, to move into the next-generation of databases, this situation must change.

There will be more information of more importance accessible to more users. How­

ever, next-generation needs present many challenges. The simple fact that networks

are expanding highlights the need.for increased security [72]. Distribution makes the

security problem more difficult [88], but security is particularly critical in a distrib­

uted environment [31]. Heterogeneity complicates matters (88], causing (89] to con­

clude, "it is clear that the steps to achieving secure interoperability are by no means

straightforward, and we believe that some of them are impossible." Also, real-time

deadlines may be unenforceable under the constant checking of security constraints.

We now list twenty requirements included in DISWG's Security requirements class.

Remember, as mentioned above, Open OODB is not evaluated with respect to these

requirements.

130

8 5 Multilevel Security 4 ..

The NGCR DBMS interface standards shall have the ability to handle

multilevel security.

4.8.6 Labeling

The NGCR DBMS interface standards shall provide the support for (1)

labeling data and information (response, query, transaction, metadata,

etc.) , (2) handling different types of labeling granularity, (3) labeling

DBMS subjects, (4) handling application-specific labeling constraints, and

(5) exporting a.nd importing labeled data and information.

4.8. 7 Mandatory Access Control

The NGCR DBMS interface standards shall support a security policy

based on subject and object labels. They shall also support the manipu­

lation of the labels based on security policy.

4.8.8 Discretionary Access Control

The NGCR DBMS interface ?tandards shall support (1) a mechanism for

the enforcement of discretionary access control based on users and groups

and (2) the manipulation of access rights to specifically include or exclude

access ba.sed on users or groups. They shall also provide controls to limit

propagation of access rights.

4.8.9 User Role-Based Access Control

The NGCR DBMS interface standards shall support the identification of

users ba.sed on roles. They shall also support access control based on roles

of users and tra.nsactions to be carried out.

131

4.8.10 Integrity

The NGCR DBMS interface standards shall support features which can

be used to validate the accuracy of data and information.

4.8.11 Consistency

The NGCR DBMS interface standards shall support the enforcement of

(1) application independent integrity constraints, (2) application specific

semantic integrity constraints, (3) concurrency control techniques, and (4)

recovery techniques, all without compromising security via covert covert

channels or otherwise.

4.8.12 Identification and Authentication

The NGCR DBMS interface standards shall provide a protected mecha­

nism to a.utl1enticate users' identities.

4.8.13 Security Auditing

The NGCR DBMS interface standards shall support (1) the generation of

audit records that uniquely identify the user~, events, and objects being

operated upon, (2) the storage and maintainability of audit data, and (3)

manipula.tion of audit data.

4.8.14 Least Privilege

The NGCR DBMS interface standards shall support the principle of least

privilege.

4.8.15 Trusted Path

The NGCR DBMS interface standards shall support a trusted communi-

132

cation path between the user and the DBMS exclusively activated by the

user.

4.8.16 Trusted Recovery

The NGCR DBMS interface standards shall provide procedures and/or

mechanisms to assure that, after a failure, recovery without a security

compromise is obtained.

4.8.17 Inference and Aggregation

The NGCR DBA1S interface standards shall support features to control

unauthorized inferences and aggregation problems.

4.8.18 Multilevel Data Model

Different MLS/DBMSs utilize different multilevel relational data models.

These include (1) models with polyinstantiation, (2) models with secu­

rity constra.ints, a.nd (3) models based on schema design. The NGCR

DBMS interface standards shall have the ability to handle different types

of multilevel data models.

4.8.19 SQL Extensions

Different MLS/DBMSs propose differing extensions to SQL. These include

extensions to support polyinstantia.tion and extensions to support secu­

rity constraints. The NGCR DBMS interface standards shall provide the

ability to support differing extensions~

4.8.20 OS Interface

The NGCR DBMS interface standards shall provide the ability to handle

133

any type of multilevel secure operation system or MLS/DBMS design.

4.8.21 Network Interface

The NGCR DBMS interface standards shall provide the ability to handle

any type of distributed architecture.

4.8.22 Heterogeneity

The NGCR DBMS interface standards shall provide the a-bility to han­

dle heterogeneity with respect to query languages, query processing and

optimization, transaction processing, data models, and security policies.

4.8.23 Next-Generation MLS/DBMS

Next-generation MLS/DBMSs include secure object-oriented DBMSs, se­

cure deductive DBMSs, and MLS/DBMSs which can handle multimedia.

data types as well as data processing in real time. The NGCR DBMS

interface standards shall have the capability to handle different kinds of

MLS/DBMSs, multimedia data types, and real-time transaction process­

ing algorithms.

4.8.24 Trusted Database Interpretation

The NGCR DBMS interface standards shall have the ability to handle the

evolution of the Trusted Database Interpretation.

4.9 · DISWG's Advanced DBMS Requirements Class

"This category captures the directions in which DBMSs need to evolve in order to

be able to support applications beyond traditional business data processing. Such

applications tend to involve the management of complex data and rules Much of

134

this advanced functionality is typically associated with object-oriented DBMSs and

knowledge base management systems" [32]. Obviously, many of the 00 requirements

included here are matched and met. However, Open OODB falls short of the knowl­

edge base requirements. Now, we evaluate the eighteen requirements of this class.

4.9.1 Persistent Objects

The NGCR DBMS interface standards shall provide database manage­

ment support for persistent objects in accordance with the concept of

object-oriented database management discussed {previously}.

Open OODB

Requirements. This is matched by R2 Persistence. R2 states, "an oodb must sup­

port persistent storage of object instances and classes supported by its object-oriented

data model(s)"[69]. Since Open OODB is an OODB, it has much stronger require­

ments on persistent objects than does the more general DISWG. Subrequirements

R2-l through R2-8 deal with many important issues in object persistence.

Proposed Architecture. Open OODB's proposed architecture meets this require­

ment. Open OODB is modeled as a persistent, 00 programming language [66]. Open

OODB handles persistence with a separate Persistence PM, but mentions that per­

sistence could be handled by a combination of other PMs.

Implementation. Open OODB's implementation allows this requirement to be

met for reasons similar to those just discussed. The Persistence PM is the only fully

modularized PM implemented in Open OODB [63]. It must be noted, however, that

the low level storing and retrieving of objects is done by the Exodus storage manager.

135

4.9.2 Object Identifiers

The NGCR DBMS interface standards shall provide the capability to as­

sociate OIDs with objects and the capability to establish a relationship

between objects by reference to an OID.

Open OODB

Requirements. Open OODB has a matching requirement. Under functional re­

quirement Rl 00 Data Model, Rl-1 states that the 00 data model must support

Rl-1-1: object identity and inter-object references. Rl-1-15 requires that the inter­

object reference scheme must be extensible. Also, under functional requirement R2

Persistence, R2-2 states that an OODB must "support object identity and interob­

ject reference" (69]. Additional subrequirements under R2-2 strengthen the required

support for 0 IDs.

Proposed architecture. Open OODB's proposed architecture meets this DISWG

requirement. "Object identity is a crucial aspect of object-oriented systems" (68).

All proposed Open OODB modules can manipulate OIDs and references to objects.

Many "behavioral extensions are modeled and/ or implemented in terms of references

to objects ... " and a "reference c~nsists of an object identifier (OID) that names the

object, and a mechanism for mapping from the OID to the object's state" (68]. Open

OODB, however, never explicitly uses the term "relationship" that is in the DISWG

requirement.

Implementation. This is met. As just noted, OIDs are basic to the 00 paradigm

and many objects in Open OODB are reached through references. The DISWG defini­

tion also mentions relationships. In Open OODB, references to objects are themselves

objects. These reference objects could be incorporated into the relationship objects as

presented in RTSORAC [73]. Relationships can be considered to be generalizations of

136

references. That is, all references are relationships, but relationships are much more

than just references.

4.9.3 Collection Data Type Constructors

The NGCR DBMS interface standards shall provide collection data type

constructors that enable users to define collection-valued attributes.

Open OODB

Requirements. Open OODB has a matching requirement. Under Rl 00 Data

Model, Rl-1-11, states that the data model must support the following: "collection,

complex objects, composite objects ... "(69]. Rl-1-11-1 further refines collections as

sets, lists, sequences and arrays, etc. Also, under the R6 Query Capability functional

requirement, R6-l states that OODBs must support "a set data type and user-defined

sets of class-compatible object instances" (69].

Proposed Architecture. Open OODB's proposed architecture meets this require­

ment.

Implementation. Open OOD~'s implementation meets this requirement. Open

OODB provides support for sets which are implemented as linked lists.

4.9.4 User-Defined Data Types

The NGCR DBMS interface standards shall provide a mechanism that

enables users to define their own data types.

Open OODB

Requirements. There is no explicit, matching requirement. However, since Open

OODB is an extension of C++, this requirement is implicitly matched.

137

Proposed Architecture. This is met for the same reason presented above.

Implementation. This is met because Open OODB is an extension to c++.

4.9.5 Sorting Order

The NGCR DBMS interface standards shall provide the capability to spec­

ify a sorting order, at lea.st one of a set of pre-defi.ned sorting orders, for

given data types, including at lea.st the traditional character data type.

After initially reading this requirement, it was hard to determine exactly what DISWG

meant. Does sorting order imply indexing? However, this must not be the case

because the term "indexing" is well defined in database jargon. Indeed, it is interesting

to note that "indexing" is never mentioned in the DISWG requirements. This must

be an oversight because objects are usually referenced through some sort of index

[85].

Open OODB

Requirements. There is no matching Open OODB requirement.

Proposed Architecture. This is met. Although Open OODB provides no special

functionalities to do sorting, Open OODB is an extension to C++. Therefore, sorting

routines could be written as needed.

Implementation. This DISWG requirement is met for the reason just stated.

4.9.6 Temporal Data

The NGCR DBMS interface standards shall provide for management of

tempora.1 data, i.e., data augmented by a time point (or interval) at which

its value applies.

138

Open OODB

Requirements. There is no directly matching requirement. However, under R5

Data Dictionary, R5-1-6 requires support for timestamps.

Proposed Architecture. This requirement is unmet. The Open OODB project

makes no mention of support for temporal data.

Implementation. This requirement is unmet. Temporal data is not a concern of

Open OODB. In [84], it is pointed out that no current commercial system supports

temporal data in a general way. Also, in [74], it is observed that "there is still no

common definition for an object data model and no common consensus over what

features are expected in an object database system, let alone a temporal object da­

tabase system." Work is underway to develop both a Temporal SQL, and a list of

common definitions for temporal databases [41].

However, it would be straightforward to add an attribute to an object expressing

the time at which it was written. For instance, in the RTSORAC model [73], an

attribute of an object is represented as a tuple with four fields. More formally, an

attribute is characterized by < Na, V, T, I>. Na is_ the attributes name, V its value

and T a timestamp used to check the temporal consistency of V, the value. I, the

tuple's last field, represents imprecision and is discussed in a subsequent DISWG

requirement for uncertain data. However, simply expressing a time attribute is one

thing, efficiently using it in the context of a temporal database is another. There are

many open questions in this area [7 4].

4.9. 7 Spatial Data

The NGCR DBMS interface standards shall provide for management of

spatial data, i.e., data augmented by a spatial location at which its cor­

responding object exists.

139

Open OODB

Requirements. There is no matching requirement.

Proposed Architecture. This facility is not included in Open OODB.

Implementation. Open OODB's implementation does not meet this requirement.

It would be straightforward to include attributes for spatial data in an object. Manip­

ulation of those spatial attributes is, however, another matter. Efficient manipulation

of spatial data has been identified as a primary concern for next-generation databases

[84].

Indeed, a major motivating factor behind the development of OODBs is the ability

to handle complex, spatial data such as maps. A map could be modeled as a collection

of smaller maps, or objects. Each object would have spatial data attributes to tell

how to put them together to form the larger map. New methods to organize and

query data must be developed to handle spatial data [84]. Currently, such methods

are handled on an ad hoc basis [35].

4.9.8 Uncertain Data

The NGCR DBMS interface ·sta.ndards shall provide for the management

of uncertain data., i.e., data augmented by an indication of the likelihood

that its value is accurate.

Open OODB

Requirements. There is no matching requirement.

Proposed Architecture. This is not a design issue for Open OODB.

140

Implementation. This is unmet. Research on uncertainty in the relational model

has focused on fuzzy sets [52]. However, "Reasoning under uncertainty, especially

when a conclusion must be derived ... " needs further research [84].

Uncertain data is an area of research at URI and will most likely be included in

any extension to Open OODB. As discussed previously, attributes in the RTSORAC

model have an imprecision field, I, which is used "to store the amount of impre­

cision associated with the attribute ... " [73). Furthermore, it is proven in [16] that

this imprecision can be bounded. Extending Open OODB with this feature of the

RTSORAC model would allow this DISWG requirement to be met.

4.9.9 Derived Attributes

The NGCR DBMS interface standards shall provide a mechanism that

enables users to define derived attributes.

A derived attribute is an "attribute whose value is defined procedurally or declar­

atively rather than stored explicitly" [91). For example, instead of representing a

person's age as an explicit value, the age could be represented as a function that sub­

tracts the person's birth date from the current date. DISWG lists derived attributes

as one of the distinguishing characteristics of an OODB.

Open OODB

Requirements. There is no matching requirement. However, as stated above, de­

rived attributes are a characteristic of an OODB. Thus, we can say that Open OODB

implicitly matches the requirement because it has the necessary characteristic.

Proposed Architecture. Open OODB's proposed architecture meets this DISWG

requirement for the reason stated above.

141

r

Implementation. This is met. Open OODB is an extension of C++, which allows

for the declaration and procedural derivation of attributes.

4.9.10 Composite Objects

The NGCR DBMS interface standards shall support composite objects.

A composite object is an object that contains other objects (32]. This definition can

be refined to say that a composite object is an object with a hierarchy of exclu-

sive, component objects [8]. "A component of a composite object may have at most

one containing object" (43]. A composite object. can be used to model the "part-of"

or ownership concepts. It "may be viewed as a scope containing several contained

objects" (60]. DISWG views composite object support as a distinguishing characteris-

tic of an OODB (32]. Open OODB states that, "Objects that are considered atomic

by an application are often realized as a composite of many other objects. Such a

composite object is called a configuration"[65].

Open OODB

Requirements. This requirement is matched. U nde~ Rl 00 Data Model, Rl-1-11

states that an OODB may support composite objects.

Proposed Architecture. Open OODB's proposed architecture allows this require­

ment to be met. Support for composite objects is basic to the 00 paradigm, and

Open OODB is based on the 00 paradigm. Also, Open OODB's Change Manage-

ment PM provides support for configurations, some of which are composite objects.

Implementation. This is partially met. When an object is persisted in Open

OODB, objects pointed to by the persisted object will also be persisted. This is

done to a depth of one level. For instance, consider an object A which points to an

142

object B and object B points to an object C. If object A is persisted, object B will

also be persisted, but object C will not be persisted. However, there are no other

functionalities in Open OODB geared specifically towards manipulating composite

objects.

ObjectStore handles composite, or complex objects with relationships [48]. In

QbjectStore's relationships, if one object points to another, there is also an inverse

pointer. The relationship is responsible for maintaining the integrity of these pointers

when faced with a deletion, etc. Thus, in ObjectStore, the ability to handle complex

objects is similar to the problem of maintaining referential integrity. ORION super­

imposes an IS-PART-OF relationship over the appropriate references in a composite

object [44]. In ORION, "direct support for composite objects as a unit for one type of

semantic integrity, physical clustering, and locking" is provided [43]. In the extended

relational system Starburst, complex objects can be treated in a manner similar to

that used in treating BLOBs. That is, the whole complex object is stored contiguously

with a Manager that maintains pointers into the complex object. Finally, composite,

or complex, objects could certainly be modeled using the relationship facilities of

RTSORAC [73].

4.9.11 Object Type Hierarchies

The NGCR DBMS interface standards shall implement inheritance and

provide mechanisms for the establishment of object type hierarchies based

on inherita.nce.

DISWG recognizes that hierarchies and inheritance are intrinsic to OODBs [32].

Open OODB

Requirements. This requirement is matched by Open OODB. Under Rl 00 Data

Model, Rl-1-5 requires that an OODB support inheritance. The fact that Open

143

QODB is an extension to C++ implies that this requirement is matched, since C++

supports both inheritance and hierarchies.

Proposed Architecture. Open OODB's proposed architecture meets this DISWG

requirement. As just mentioned, support for hierarchies and inheritance is character­

istic of OODBs.

Implementation. Open OODB's implementation meets this requirement due the

nature of the 00 paradigm.

4.9.12 Object Encapsulation

The NGCR DBMS interface standards shall provide a mechanism to as­

sociate a procedure with an object in support of object encapsulation.

Object encapsulation is the "hiding of attributes and implementation details of an

object from the client (or user) of the object"[32]. Object encapsulation is a distin­

guishing characteristic of an OODB.

Open OODB

Requirements. This is matched under the Rl 00 Data Model requirement. Rl-

1-2 states that an OODB must support encapsulation.

Proposed Architecture. This requirement is met by the proposed architecture.

Implementation. This requirement is met by the implementation. Encapsulation

is part of the basic nature of the 00 paradigm.

144

4.9.13 Versions and Configurations

The NGCR DBMS interface standards shall support versions and config-

urations.

A version is "a variant of the initial value of an object" [60] . DISWG says that a

version is "a mechanism that can be used for concurrency control, recovery control

and configuration management" [91]. A configuration is "an enhancement to versions.
,'

A configuration is a group of mutually consistent versions of related objects" [32].

Both versions and configurations are basic to OODBs (32].

Open OODB

Requirements. This requirement is matched by the R7 Change Mangement func-

tional requirement which states that an OODB must support both R7-1 version man-

agement and R7-2 configuration management. Since versions and configurations are

basic to the 00 paradigm, Open OODB's requirements for their support are strength-

ened by subrequirements. For instance, management of both versions and configura-

tions must be able to be turned on or off and must be able to deal with persistent

and transient objects. Also, under R5 Data Dictionary, R5-1-7 requires that the

data dictionary contain configuration information and R5-4 requires that it maintain

information on configuration relationships.

Proposed Architecture. Open OODB's proposed architecture allows this require­

ment to be met. The Change Management PM is responsible for versions and config-

urations. Versions and configurations are extensions to C++. This means that when

either are used, they cause a virtual event. 27 This virtual event is the invocation of

the Change Management PM, which then chooses the next appropriate action(s) [68].

27
Remember that a virtual event seamlessly replaces a direct event when an extension is detected

by a sentry. Refer to the section describing Open OODB's computational model for more details.

145

Implementation. This is unmet because the Change Management PM is not im­

plemented. Indeed, most OODBs do not support versioning [46] and "While there has

been much discussion and many proposals for proper version and configuration mod­

els in different domains, little has been implemented" [84]. Open OODB has worked

towards incorporating these facilities [59]. Typically, versions in an OODB can be

represented by disconnected, directed, acyclic graphs with the direction representing

successor /predecessor relationships and the nodes representing different versions [4].

The problem then becomes how to reconcile the differences between the versions in

the graph. ObjectStore takes a merge approach which lets the user define what to

do on an ad hoc basis [48]. ORION treats versions somewhat differently. In ORION,

there is a distinction between working and transient versions [43]. A working version

is stable and can not be updated. A transient version may be deleted, updated or

promoted to a working version. It is worth noting that ORION's designers are not

satisfied with their implementation of version management.

Space is a also major consideration in version management because the version

graphs can grow large. Most systems allow for users to decide whether a particular

object can be versioned, instead of allowing all objects to be versioned. Versions

pose complicated problems and are an active research area. Since configurations are

refinements of versions, the same arguments apply to them.

4.9.14 Archival Storage

The NGCR DBMS interface standards shall provide management of arch­

ival storage.

Open OODB

Requirements. This requirement is matched by a subrequirement of the R16 In­

dustrial Strength meta requirement. R16-2-1 states that the database administrator

146

utilities must include backup, restore and archiving capabilities.

Proposed Architecture. This is unmet as there is no mention of the management

of archival storage in Open OODB's architecture literature. Note that OMG includes

an "archival mapping" service to handle mappings in and out of archival storage.

At present, OMG is not sure if archival storage should be a separate service, or a

component of persistence or change management.

Implementation. This is unmet. There is no special functionality in Open OODB

to handle archival storage. This. would have to be handled by a systems administrator

in the same way any files are backed up. In [85], it is pointed out that support for

archival storage is rare in current OODBs. Archival storage is essential for a system to

recover from disk crashes. In [43], it is noted that ORION does not provide support for

recovery from disk crashes because it does not provide support for archival dumping.

OMG is working towards defining an archival mapping service and Open OODB

could use their ideas as a basis for implementation. Note that another C++ based

DffMS, ObjectStore, "provides backup to long-term storage media such as tapes,

allowing full dumps as well as continuous archive logging" [48]. A main consideration

here is to determine an efficient ~rchival storage organization and representation.

For instance, consider a three stage memory hierarchy: main memory, disk memory

and archive memory. Objects in main memory use pointers and can be efficiently

organized using AVL trees. Objects on disk use OIDs and are better accessed using

B++ trees. Similar issues must be resolved for archival storage.

4.9.15 Schema Evolution

The NGCR DBMS interface standards shall support schema evolution.

That is, they sha.11 provide facilities tha.t enable users "to modify a schema

with minimum impa.ct on existing a.pplications"{Cattell 91}. Such facilities

147

may include a "run-time capability to rename, add, and drop properties

of object types, and to a.dd and drop object types themselves"{Cattell 91}.

Open OODB

Requirements. There is a matching requirement under the R 7 Change Manage­

ment functional requirement. R7-4 requires that schema evolution must be supported.

Open OODB defines schema evolution as the "process of manipulating the Data Dic­

tionary to add , remove or reconfigure existing class definitions" [60]. A subrequirement

of the R5 Data Dictionary functional requirement, R5-1-6, states that the Data Dic­

tionary must be able to represent schema version information. A subrequirement

of the R15 Performance meta requirement, R15-1-13, states that the cost of schema

evolution must be measured.

Proposed Architecture. The proposed architecture would meet this DISWG re­

quirement. Users using C++ could "manipulate schema meta data in the data

dictionary" (69].

Implementation. This is not met. Most OODBs do not s~pport schema evolution

[46] and there is no clear cut path on how to incorporate schema evolution into an

OODB [69]. Schema evolution is outside the current scope of Open OODB, but is an

active research area. Indeed, an objective of the Open OODB project is to seamlessly

add functionalities such as schema evolution [58]. Open OODB's designers have

observed that schemas, as well as many other database aspects (i.e., platforms), are

subject to change simply due to the passing of time [59].

Schema evolution is also listed as work in progress in ObjectStore, which like

Open OODB , is an extension to C++ [48]. Another OODB, 0 2 , tackles the problem

of class deletion, a subset of schema evolution, by not allowing the deletion if the

class has any instances or if any other classes depend on the class. The developers

148

of ORION [43] present a more detailed look at schema evolution. For example, if a

class C is deleted, any subclasses of C now become subclasses of C's former parent.

Any method or attribute that was inherited from C would be dropped. All objects

of class C are automatically deleted. If C were in the domain of another class, C's

former parent would be inserted. Finally, all references to C must be modified by the

user. That last step, involving undesirable user interaction, highlights the problems

involved in implementing schema evolution.

A different problem surfaces in another area covered by schema evolution: object

migration to a new class. We have already mentioned that Open OODB recognizes

the difficulty in telling from where a reference came. If an object is to be deleted

or to join a new class, all references to that object must be updated. ORION sees

the solution to this problem as very expensive. The problems presented by schema

evolution are complex, and we have only scratched the surface. However, ORION's

techniques, or ones similar, are applicable to Open OODB.

4.9.16 Long Transactions

The NGCR DBMS interface standards shall support long transactions.

DISWG defines a long transaction is a "transaction representing a computation that

may take up to hours, days or even longer to complete. Such transactions are in­

compatible with conventional transaction concurrency control and recovery control

policies and mechanisms" (91]. Open 0 0 DB defines a long duration transaction as

"a transaction or collection of transactions that survive system crashes and do not

block short duration transactions" (60]. In an article by the designers of ObjectStore,

long transactions are defined as, "extended editing sessions on private, checked-out

versions ... " (48].

149

Open OODB

Requirements. There is a matching requirement under the R3 Concurrent Access

functional requirement. R3-2 states that an OODB must support some of a list of

functionalities. One member of that list is R3-2-5: long duration transactions.

Proposed Architecture. Open OODB's proposed architecture does not meet this

requirement. However, nothing would preclude it from being met.

Implementation. Open OODB's implementation does not meet this requirement.

Long transactions are not supported by most OODBs (46). Open OODB states that

support for long transactions is not fully implemented [69]. Whether a transaction

is short or long, it must do the same thing: "ensure database consistency in the

presence of simul ta.neous accesses to the system by multiple users and in the presence

of system era.shes" [46].

A key problem with long duration transactions is their potential to lock up re­

sources for long durations. If long transactions are broken down into smaller trans­

actions, like the saga approach, then recovery becomes more of a problem (18]. User­

defined compensation routines have to be writte~ as a solution. Another method

proposes using triggers and rule·s as a way to modularize control flow and, thus,

to help implement long transactions [18]. Extending Open OODB with RTSORAC

could help with long transactions due to the potential to relax locking in RTSORAC.

4.9.17 Rule Processing

The NGCR DBMS interface standards shall support rule processing, in­

cluding the enforcement of assertions, the initiation of triggers and alert­

ers, and deductive query processing.

150

- I

Open OODB

Requirements. This is partially matched. Under Rl 7 Other DBMS Requirements,

Rl 7-4 mentions, but does not require support for, rules based systems. This require­

ment is outside of Open OODB's current scope. Also, subrequirements of Open

OODB's Rl 00 Data Model functional requirement match this partially. Specifi­

cally, Rl-1-14 requires support for integrity constraints and Rl-1-14-3 rules, Rl-1-14-2

assertions and invariant conditions, Rl-1-14-6 triggers and Rl-1-14-4 user-defined val­

idation procedures. Under R9 Integrity and Recovery, R9-5 requires that an OODB

to support integrity constraints. The R5 Data Dictionary requirement states that

information a.bout rules and assertions be represented in the data dictionary.

Proposed Architecture. This requirement is not met by Open OODB's proposed

architecture. Rules based systems are currently out of Open OODB's scope.

Implementation. This requirement is not met by the implementation. Open

OODB is uncertain of the amount of rework that would be required to meet this

requirement [69] and rules processing is out of the scope of the current Open OODB

project. In (83], the authors note that most systei:ns already have "simple-minded"

rules to support referential integrity and "special purpose" rules for protection and

integrity constraints. The authors conclude that "It is clear to us that all DBMS's

need a rules system."

4.9.18 Domain Specific Standards

The NGCR DBMS interface standards shall provide enhanced portabil­

ity and interoperability of MCCR applications by adopting and endorsing

domain-specific standards (at least for data representation or format) for

those data types that are expected to be common in both MCCR appli­

cations a.nd a.lso in commercial applications. These data types include the

151

following:

• Text

• Documents

• Graphics

• Image

• Audio

• Video

• f\,f ultimedia

• Geographic

The NIST Application Portability Profile (APP) {NIST 93} lists several

data interchange standards, covering many of these data types. In ad­

dition, {Gallagher and Sullivan 92} propose generic abstract data type

pa.ckages for many of these data types. They are working with ANSI and

ISO SQL standardization committees to determine the best process and

mechanism for standardization.

Open OODB

Requirements. There is no matching requirement. However, a subrequirement of

the R16 Industrial Strength meta requirement, R16-10, mentions standards. R16-

10-1 requires an OODB to be available from multiple sources. R16-10-2 requires an

OODB to be available as a X3/IEEE/ISO standard. R16-10-3 states that an OODB

must be CAD Framework Initiative compliant. R16-10-4 requires that an OODB

meet standards for Unix, SQL, C++ and Motif, etc.

Proposed Architecture. The proposed architecture does not meet this require­

ment. However, its modular nature would facilitate extending Open OODB to meet

152

a specific domain standard.

Implementation. The implementation does not meet this requirement. However,

nothing would preclude Open OODB from meeting it in the future. Indeed, the

development of OODBs has been motivated in large part by the need to efficiently

manipulate multimedia data. "Objects can contain very large values, such as audio,

video, or text" (14].

5 Conclusion

This thesis evaluated Open OODB with respect to DISWG's requirements. This eval­

uation was performed from three distinct perspectives: Open OODB's requirements,

its proposed architecture and its implementation. For each DISWG requirement, we

first determined if Open OODB had a matching requirement. Then, we decided if

Open OODB's proposed architecture would meet the requirement. Finally, we evalu­

ated Open OODB 's implementation with respect to the requirement. If a requirement

was found to be unmet , we included a brief discussion either on how Open OODB

could be extended to meet the requirement or on the topic covered by the requirement.

In the rest of this conclusion, we summarize the evaluations of each of DISWG's re­

quirements classes. These summaries follow the same evaluation format used through­

out this thesis. However, instead of looking at each individual requirement, we look

at each DIS\VG requirements class with respect to Open OODB's requirements, pro­

posed architecture and implementation. We end with some overall observations of

Open OODB.

5.1 DISWG's General Requirements Class

These are requirements that any . computer system in general, not just databases,

should meet. Example requirements include portability, different types of indepen­

dence (i.e. , hardware, operating system, etc.), modularity and extensibility.

153

Open OODB

Requirements. We found that about one half of these requirements are matched.

The main reason that more are not matched is due, once again, to the main differ­

ence between DISvVG and Open OODB. DISvVG wants to accommodate all types of

databases in its requirements, whereas Open OODB is a specific implementation. For

instance, DISWG requires support for six different types of queries, but Open OODB

only requires support for two types. Also, DISWG requires support for different data

models, i.e., relational, network and hierarchical, but Open OODB supports the 00

data model.

Proposed Architecture. We found that many of these are met due to the open,

extensible nature of Open OODB. Requirements are unmet for mainly two reasons.

The first is that they are outside the scope of Open OODB's current effort. For

instance, there are two requirements for security in this class and security is not

currently included in Open OODB. The second is due to the main difference between

Open OODB and DISWG.

Implementation. We found that most of these are met. Most of these would be

met by any database, which is DISWG's intent. Most of the unmet requirements are

unmet for the two reasons just stated in the summary of the evaluations of Open

OODB's proposed architecture.

5.3 DISWG's Distribution Requirements Class

These requirements are for a distributed database system which DISWG defines as

multiple, distributed copies of a DBMS managing distributed databases. Open OODB

does not fit this definition. Consequently, none of these requirements are matched

or met. However, Open OODB is designed to be a distributed database. Also, the

Open OODB project is currently working on an architecture using a CORBA-like

155

backplane that would fit this definition. Therefore, we evaluated these requirements

as if they were for distributed databases. We assume that the same properties that

would allow Open OODB to meet requirements for distributed databases would allow

it to be extended to meet those for distributed database systems.

Open OODB

Requirements. We found that Open OODB would match most of these require­

ments if they were for distributed databases. Two unmatched DISWG requirements

of note are for continuous operation and for network independence.

Proposed Architecture. \Ve found that all of these requirements would be met

if they were for distributed databases.

Implementation. We found that almost none of these requirements are met by

Open OODB's current implementation, even when making the mentioned assump­

tion. While Open OODB's proposed architecture allows for flexibility, in the imple­

mentation, concrete choices have to be made. For instance, Open OODB's modules

have a proposed design that should be hardware independent. However, those mod­

ules are currently tied to the machine upon which they are implemented. If Open

OODB were fully implemented as proposed, then these requirements would all be

met in the context of a distributed database. Furthermore, Open OODB's extensible

nature should allow it to be incorporated into a COREA-like system, which would

then meet these DIS\i\TG requirements for a distributed database system.

5.4 DISWG's Heterogeneity Requirements Class

These requirements are in an undeveloped state due to the current lack of under­

standing of the problems posed by heterogeneity. Also, these requirements highlight

the difference between DISWG and Open OODB. DISWG has to allow for interoper-

156

ating, heterogeneous systems, while Open OODB is a particular system. Nonetheless,

as just mentioned in the summary of DISWG's Distribution requirements class, the

Open OODB project is working on incorporating Open OODB into a CORBA-like

system. The other DBMSs in this system could be Open OODB implementations,

which would allow DISWG's Distribution requirements to be met, or they could be

heterogeneous DBMSs, which would allow these Heterogeneity requirements to be

met.

Open OODB

Requirements. vVe found that Open OODB requires support for remote database

access. Otherwise, these are unmatched.

Proposed Architecture. We found none of these are met. The proposed archi­

tecture, as it stands in the alpha release, has no special functionalities to handle

interoperation with heterogeneous databases.

Implementation. These are unmet. Implementation of the previously discussed

CORBA-like system would allow these to be met.

5.5 DISWG's Real-Time Requirements Class

These are all requirements that a next-generation, real-time database should meet.

Since Open OODB is not real-time, it does not match or meet these requirements.

At URI, we are developing RTSORAC: a next-generation, real-time OODB. In our

evaluations of this class, we mentioned that extending Open OODB with RTSORAC

features would allow for these requirements to be met.

Open OODB

Requirements. We found that these are all unmatched.

157

Proposed Architecture. We found these unmet.

Implementation. vVe found these are unmet with one exception: DISWG requires

a compilable DML which Open OODB's C++ implementation meets.

5.6 DISWG 's Fault Tolerance Requirements Class

These requirements are for fault management capabilities, an area of particular con­

cern for the mission-critical database systems in the Navy. However, no DBMS cur­

rently meets these requirements. For these to be met in the future, there would

have to be more cooperation between operating systems and DBMSs. We proposed

the development of a Fault Tolerance Policy Manager in Open OODB to handle the

DBMS's responsibilities. To handle the operating system's responsibilities, either

UNIX would have to be extended to include fault tolerance capabilities, or Open

OODB would have to be ported to a fault tolerant, operating system.

Open OODB

Requirements. We found that these requirements are unmatched. Open OODB

does require that the "System must support recovery" [69]. However, that statement

is too vague to say that any of DI.S\VG's Fault Tolerance requirements are matched.

Proposed Architecture. We found that none of these are met. The proposed

architecture has no special functionalities to handle fault tolerance. Open OODB

relies on the Exodus storage manager for all of its recovery capabilities.

Implementation. We found that these are all unmet. We proposed a Fault Toler­

ance PM to handle Open OODB's fault tolerance responsibilities and noted that the

underlying operating system must provide support.

158

5. 7 DIS"WG's Integrity Requirements Class

These are requirements to ensure that the database provides users with correct infor­

mation. The role of integrity in OODBs is an active research area and Open OODB

contains no special functionalities to enforce integrity constraints. Consequently, we

found that most of these requirements are unmatched and unmet. We noted that

extending Open OODB with relationships as proposed in URI's RTSORAC model

would allow most of these requirements to be met.

Open OODB

Requirements. \Ve found that the majority of these are unmatched. However,

Open OODB does require support for referential integrity, assertions and triggers.

Proposed Architecture. We found that these are unmet as Open OODB includes

no functionalities to handle integrity constraints.

Implementation. vVe found that these are mostly unmet. However, OODBs ap­

pear to be a natural vehicle for the expression of integrity constraints. Extending

Open OODB with relationships such as those proposed in RTSORAC would allow

most of these to be met.

5.8 DISWG's Security Requirements Class

These are requirements that ensure that users do not gain unauthorized access to

information. We noted that DISWG has deemphasized its Security requirements and

that security is outside the scope of Open OODB. Therefore, we did not perform

a detailed evaluation of DISWG's twenty Security requirements. Instead, we talked

about security issues in general. Thus, there are no summaries of our findings on

Open OODB's requirements, proposed architecture and implementation as there are

for DISWG's eight other classes.

159

5.9 DISVVG's Advanced Requirements Class

These requirements encompass the functionalities of non-traditional DBMSs such as

OODBs and knowledge base management systems. Support is required for many of

the basic characteristics of OODBs. For instance, support is required for OIDs, object

encapsulation, composite objects and versions, etc. However, this class is very much

a mixed-bag. There are also requirements for support of temporal data, spatial data,

uncertain data, archiving, long transactions and rules. Thus, its hard to imagine any

database matching or meeting substantially more than one half of these requirements.

Open OODB

Requirements. We found that Open OODB matches the requirements that di­

rectly pertain to OODBs. Additionally, Open OODB has matching requirements for

archiving, long transactions and rules.

Proposed Architecture. We found that the requirements that deal with OODBs

are met. None of the others are met.

Implementation. We found that the implement~tion meets most of the require­

ments that relate to OODBs. The unmet OODB requirements include support for

versions, configurations and schema evolution. These are all active research areas at

the Open OODB project. The other, non-OODB requirements, are all unmet. In

our evaluations, we briefly discussed the main issues of topics such as temporal data,

spatial data, archiving and long transactions. These are all active research areas.

5.10 Overall Observations of Open OODB

Open OODB is the leading effort to develop a next-generation OODB. We have iden­

tifiedthe following overall strengths and weaknesses. Open OODB's main weakness is

that its all encompassing scope has impeded implementation. It is hard to determine

160

exactly how all the many, different modules should interact. Also, it is very difficult to

decide which functionalities deserve separate modules and which functionalities may

coexist in a module. Another weakness is Open OODB's dependence on Exodus for

transaction control, distribution control and recovery. This dependency has caused

Open OODB to omit these important functionalities from its current implementation.

Open OODB's main strength is the thought put behind its proposed architecture.

Its extensible, modular design with well defined functionalities allows it to be cus­

tomized for special purposes. Much of this strength is derived from the basic nature

of the 00 paradigm. In an 00 design, well defined interfaces, modularity and object

encapsulation come almost for free. Due to this strength, URI is finding Open OODB

to be a convenient testbed for the extensions we wish to make.

161

References

[1] Abbadi, A., D. Skeen and F. Cristian. An Efficient, Fault-tolerant Protocol for

Replicated Data Management. in (87].

[2] Abbott, R. and H. Garcia-Molina. Scheduling Real-time Transactions: A Per­

formance Evaluation. ACM Transactions on Database Systems, Vol. 17, No. 3,

1992.

[3] Abiteboul, S. and A. Bonner. Objects and Views. Proceedings of the 1991 ACM

SIGMOD International Conference on Management of Data, Vol. 20, Issue 2,

1991.

[4] Ahmed, R. and S. Navathe. Version Management of Composite Objects in CAD

Databases. Proceedings of the 1991 ACM SIGMOD International Conference on

Management of Data, Vol. 20, Issue 2, 1991.

[5] Atkinson, M., et al. The Object-Oriented Database System Manifesto. in [87).

(6] Babaogu, 6. Fault Tolerant Computing Based on Mach. ACM Operating Sys­

tems Review, Vol. 24, No. 1, 1990.

[7] Bancilhon, F. and W. Kim. Object-Oriented Database Systems: In Transition.

SIGMOD Record, Vol. 19, No. 4, 1990.

[8] Banerjee, J., H.Chou, J. Garza, W. Kim, D. Woelk, N. Ballou and H. Kim. Data

Model Issues for Object-Oriented Applications. in [87].

[9] Barbara, D. Extending the Scope of Database Services. SIGMOD Record, Vol.

22, No. 1, 1993.

[10] Bertino, E. Data Hiding and Security in Object-oriented Databases. Proceedings

of the Eightl1 IEEE International Conference on Data Engineering, 1992.

162

[11] Borg, A., W. Blau, W. Graetcsh, F. Herrmann and W. Oberle. Fault Tolerance

under UNIX. ACM Operating Systems Review, Vol. 7, No. 1, 1989.

(12] Breitbart Y. Multidatabase Interoperability. SIGMOD Record, Vol. 19, No. 3,

1990.

(13] Butterworth, P., A. Otis and J. Stein. The GemStone Object Database Manage­

ment System. Communications of the ACM, Vol. 34, No. 10, 1991.

(14] Cattell, R. Introduction to Special Section on Next Generation Database Sys­

tems. Communications of the ACM, Vol. 34, No. 10, 1991.

(15] Cheng, J. and A. Hurson. Effective Clustering of Complex Objects in Object­

Oriented Databases. Proceedings of the 1991 ACM SIGMOD International Con­

ference on Management of Data, Vol. 20, Issue 2, 1991.

[16] Cingiser DiPippo, L. and Fay Wolfe, V. Distributed Object-Based Real-Time

Concurrency Control with Bounded Imprecision. University of Rhode Island,

Technical Report TR93-227, 1994.

[17] Chrysanthis, P. and K. Ramamritham. ACTA: .A Framework for Specifying and

Reasoning about Transaction-Structure and Behavior. in (87].

[18] Dayal, U., M. Hsu and R. Ladin. Organizing Long-Running Activities with Trig­

gers and Transactions. in (87].

[19] Decorte, G., A. Eiger, D. Kroenke and T. Kyte. An Object-Oriented Model

for Capturing Data Semantics. Proceedings of the Eighth IEEE International

Conference on Data Engineering, 1992.

[20] Demurjia.n, S., M.-Y. Hu, T. Ting and D. Kleinman. Towards an Authorization

Mechanism for User-Role Based Security in an Object-Oriented Design Model.

163

Proceedings of tl1e 1993 Phoenix Conference on Computers and Communications,

1993.

[21] de Paula, E. and M. Nelson. Clustering in Object-Oriented Dat~bases. OOPS

Messenger, Vol. 3, No. 3, 1992.

[22] Deux, 0., et al. The 0 2 System. IEEE Transactions on Knowledge and Data

Engineering, March 1990.

[23] Doherty, M. Implementing Relationships in an Object-Oriented Database. Mas­

ter's Thesis, University of Rhode Island, 1992.

[24] P. Drew, R. King, D. McLeod, M. Rusinkiewicz and A. Silbershatz. Report of

the vVorkshop on Semantic Heterogeneity and Interoperation in Multidatabase

Systems. SIGJ\1f OD Record, Vol. 22, No. 3, 1993.

[25] Eliasen, F. and R. Karlsen. Interoperability and Object ID. SIGMOD Record,

Vol. 20, No. 4, 1991.

[26] Elmasri, R. and S. Navathe. Fundamentals of Database Systems. Benja­

min/Cummings Publishing Co., Inc., Redwood City, Ca., 1989.

[27] Fang, D., S. Ghanderharizadeh, D. McLeod and A. Si. The Design Implementa­

tion and Evaluation of an Object-based Sharing Mechanism for Federated Data­

base Systems. Proceedings of the Ninth IEEE International Conference on Data

Engineering, 199:3.

[28] Fourtier, P. and J. Prichard. Concepts for a Real-time Structured Database

Query Language. Unpublished, University of Rhode Island, 1994.

[29] French, J., A. Jones and J. Pfaltz. NSF Workshop on Scientific Database Man­

agement. SIGMOD Record, Vol. 19, No. 4, 1990.

164

(30] Gal-Oz, N ., E. Gudes and E. Fernandez. A Model of Methods Access Authori­

zation in Object-oriented Databases. Proceedings of the 19th IEEE Very Large

Databases Conference, 1993.

[31] Garcia-Molina, H. and B. Lindsay. Research Directions for Distributed Data­

bases. SIGMOD Record, Vol. 19, No. 4, 1990.

(32] Gordon, K. Requirements for Military Database Management Systems. Next­

Generation Computer Resources (NGCR) Technical Document No. 010 ver. 1.0,

NGCR SPA\i\TAR 331-2, 2451, Crystal Dr., Alexandria, Va. 22245, November 15,

1993.

[33] Graefe, G. and vV. McKenna. The Volcano Optimizer Generator: Extensibility

and Efficient Search. Proceedings of the Ninth IEEE International Conference

on Transactions on Data Engineering, 1993.

[34] Gruenwald, L. and S. Liu. A Performance Study of Concurrency Control in a

Real-Time Main Memory Database System. SIGMOD Record, Vol. 22, No. 4,

1993.

[35] Guenther, 0. and A. Buchmann. Research Issues in Spatial Databases. SIGMOD

Record, Vol. 19, No. 4, 1990.

[36] Hanson, E., T. Harvey and M. Roth. Experiences in DBMS Implementation

Using an Object-oriented Persistent Programming Language and a Database

Toolkit. Object-Oriented Programming: Systems, Languages and Applications,

1991.

[37] Hung, S. and K. Lam. Locking Protocols for Concurrency Control in Real-Time

Database Systems. SIGMOD Record, Vol. 21, No. 4, 1992.

165

[38] Ishikawa, H. and K. Kubota. An Active Object-Oriented Database: A Multi­

Paradigm Approach to Constraint Management. Proceedings of the 19th Very

La.rge Da.ta.ba.ses Conference, 1993.

(39] Jagadish, H., and X. Qian. Integrity Maintenance in an Object-Oriented Data­

base. Proceedings of the 18th Very La.rge Databases Conference, 1992.

(40] Jajodia, S. and R. Sandhu. Database Security: Current Status and Key Issues.

SIGMOD Record, Vol. 19, No. 4, 1990.

(41] Jensen, C. et al. A Glossary of Temporal Database Concepts. SIGMOD Record,

Vol. 21, No. 3, 1992.

(42] Kilov, H. A Review of Object-oriented Papers. SIGMOD Record, Vol. 18, No. 4,

1989.

(43] Kim, W., J. F. Garza, N. Ballou and D. Woelk. Architecture of the Orion Next

Generation Database System. IEEE Transactions on Knowledge and Data Engi­

neering, March 1990.

(44] Kim, vV., E. Bertino and J. Garza. Composite Objects Revisited. Proceedings

of the 1989 ACM SIGMOD. International Conference on Management of Data,

Volume 18, Number 2, 1989.

[45] Kim, W., N. Ballou, J. Garza and D. Woelk. A Distributed Object-Oriented

Database System Supporting Shared and Private Databases. ACM Transactions

on Information Systems, Vol. 9, No. 1, 1991.

[46] Kim, \V. Object-Oriented Database Systems: Promises, Reality, and Future.

Proceedings of the Nineteenth International Conference on Very Large Data

Bases, 1993.

166

[4 7] Krishnamurthy, E. and A. Mcguffin. On the Design nd Implementation of Secure

Database Transactions. SIGSAC Review, Vol. 10, Nos. 2 & 3, 1992.

[48] Lamb, C., G. Landis, J. Orenstein and D. Weintreb. The ObjectStore Database

System. Communications of the ACM, Vol. 34, No. 10, 1991.

[49] Lohman, G., B. Lindsay, H. Pirahesh and K. B. Schiefer. Extensions to Starburst:

Object Types, Functions and Rules. Communications of the ACM, Vol. 34, No.

10, 1991.

[50] Lunt, r. and E. Fernandez. Database Security. SIGMOD Record, Vol. 19, No. 4,

1990.

[51] Mohan, C., D. Haderle, B. Lindsay, H. Pirahesh and P. Schwarz. ARIES: A

Transaction Recovery Method Supporting Fine-granularity Locking and Partial

Rollbacks Using \Vrite-ahead Logging. in [87].

[52] Motro, A. Accommodating Imprecision in Database Systems: Issues and Solu­

tions. SIGI\JOD Record, Vol. 19, No. 4, 1990.

[53] Mourad, A., W. Fuchs and D. Saab. Database ~ecovery Using Redundant Disk

Arrays. Proceedings of the Eighth IEEE International Conference on Data En­

gineering, 1992.

[54] Nicol, J., C. Thomas, T. Wilkes and F. Manola. Object Orientation in Hetero­

geneous Distributed Computing Systems. IEEE Computer, June 1993.

[55] Nyanchama, M. and S. Osborn. Role-Based Security, Object-oriented Databases

& Separation of Duty. SIGMOD Record, Vol. 22, No. 4, 1993.

[56] Olivier, M. and S. Von Solms. A Taxonomy for Secure Object-Oriented Data­

bases. ACM Transactions on Database Systems, Vol. 19, No. 1, 1994.

167

(57] Object Management Group, Inc. Object Services Architecture, Revision 6.0,

Document 92.8.4. Object Management Group, Inc., Framingham Corporate Cen­

ter, 492 Old Connecticut Path, Framingham, Massachusetts, 01701-4568, Au­

gust , 1992.

[58] Open OODB Project. Open OODB Executive Summary Release 0.2 (Alpha).

Texas Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

[59] Open OODB Project. Open OODB Technical Overview Release 0.2 (Alpha).

Texas Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

[60] Open OODB Project. Open OODB Glossary. Texas Instruments, Inc., P.O. Box

655474, M/S 238, Dallas, Texas, 75265, 1993.

[61] Open OODB Project. Open OODB C++ API User Manual Release 0.2 (Alpha).

Texas Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

[62] Open OODB Project. Open OODB Query Language User Manual Release 0.2

(Alpha). Texa.s Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas,

75265, 1993.

[63] Open OODB Project. Open OODB Release Notes Release 0.2 (Alpha). Texas

Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas , 75265, 1993.

(64] Open OODB Project. Open OODB Meta Architecture Document. Texas Instru­

ments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

[65] Open OODB Project. Open OODB System Architecture Document. Texas In­

struments, Inc. , P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

[66] Open OODB Project. Open OODB Architecture Specifications Document. Texas

Instruments , Inc. , P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

168

[67] Open OODB Project. ARPA Open Object-Oriented Database Architecture Spec­

ification. Texas Instruments , Inc., P.O. Box 655474, M/S 238, Dallas, Texas,

75265, 1993.

[68] Open OODB Project. ARPA Open Object-Oriented Database Module Specifi­

cation Meta Architecture Support. Texas Instruments, Inc., P.O. Box 655474,

A1/S 238, Dalfas, Texas, 75265, 1993.

[69] Open OODB Project. Open OODB Requirements Document. Texas Instruments,

Inc. , P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

[70] Open OODB Project. The Open Object-Oriented Database: Obtaining Database

Functionality by Extension. Readings in Object-Oriented Systems and Applica­

tions., IEEE Press, 1993.

[71] Ozsu, 1\.1., U. Dayal and P. Valduriez. WORKSHOP REPORT International

Workshop on Distributed Object Management. SIGMOD Record, Vol. 22, No.

1, 1993.

(72] Pangalos, G. Database Systems Sec.urity. University of Rhode Island, Technical

Report T R93-225, 1993,

(73] Peckham, J., V. Fay Wolfe, J . Prichard and L. Cingiser DiPippo. RTSORAC:

Design of a Real-Time Object-Oriented Database System. University of Rhode

Island, Department of Computer Science, Technical Report 94-231, 1994.

[74] Pissinou, N., K. Makki and Y. Yesha. On Temporal Modeling in the Context of

Object Databases. SIGMOD Record, Vol. 22, No. 3, 1993.

[75] Ramamritham, K. Real-Time Databases. International Journal of Distributed

and Pa.ra.llel Databases, 1992.

169

[76] Rangarajan, S., S. Setia and S. Tripathi. A Fault-Tolerant Algorithm for Repli­

cated Data Management. Proceedings of the Eighth IEEE International Confer­

ence on Da.ta Engineering, 1992.

[77] Saltor, F., M. Castellanos and M. Garcia-Solaco. On Canonical Models for Fed­

erated DBs. SIGMOD Record, Vol. 20, No. 4, 1991.

[78] Scheuermann, P., et al. Report on the Workshop on Heterogeneous Database

Systems. SIGMOD Record, Vol. 19, No. 4, 1990.

[79) Senerchia, J. A POSIX-Compliant Dynamic Real-Time Scheduler. Master's The­

sis, University of Rhode Island, 1993.

[80) Sheth, A., and J. Larson. Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Databases. ACM Computing Survey, Vol. 22,

No. 3, 1990.

[81] Sreewastav, K. Prototype of the Object Query Language (OQL): an Associative

Query Facility for Zeitgeist. Texas Instruments, Inc., 1990.

[82) Stonebraker, M., et al. Third Generation Database System Manifesto. SIGMOD

Record, Vol. 19, No. 3, 1990.

[83] Stonebraker, M., and G. Kemnitz. The POSTGRES Next-Generation Database

Management System. IEEE Transactions on Knowledge and Data Engineering,

March 1990.

[84] Stonebraker, M., A. Silbershatz and J. Ullman. Database Systems: Achievements

and Opportunities. Communications of the ACM, Vol. 34, No. 10, 1991.

[85) Stonebraker, M. l\fanaging Persistent Objects in a Multi-Level Store. Proceedings

of the 1991 ACM SIGMOD International Conference on Management of Data,

Volume 20, Issue 2, 1991.

170

(86] Stonebraker, M. and M. Olson. Large Object Support in POSTGRES. Proceed­

ings of the Ninth IEEE International Conference on Data Engineering, 1993.

[87] Stonebraker, M., editor. Rea.dings in Database Systems, Morgan Kaufmann Pub­

lishers, San Mateo, California, 1994.

(88] Stonebraker, M. Operating System Support for Database Management. in [87].

(89] Thuraisingham, B. Secure Interoperability of Trusted Database Management

Systems. SIGSAC Review, Vol. 10, Nos. 2 & 3, 1992.

(90] Ulusoy, 6. Current Research on Real-time Databases. SIGMOD Record, Vol. 21,

No. 4, 1992.

(91] United States Navy. NGCR DISWG Draft Glossary and Acronyms. NGCR

DISlVG Requirements Subgroup, June 17, 1993.

(92] United States Navy. POSIX Delta Document for the Next-Generation Computer

Resources Operating System Interface Standard (Version 2). NUWC-NPT Tech­

nical Document 10,076, June 1, 1992.

[93] Urban, S., A. Karadimce and R. Nannapaneni .. The Implementation and Evalua­

tion of Integrity Maintenance Rules in an Object-Oriented Database. Proceedings

of the Eighth IEEE International Conference on Data Engineering, 1992.

(94] Wells, D., J. Blakeley and C. Thompson. Architecture of an Open Object­

Oriented Database Management System. IEEE Computer, 1992.

[95] Wilkinson, K., P. Lyngbaik and W. Hasan. The Iris Architecture and Implemen­

tation. IEEE Transactions on Knowledge and Data Engineering, March 1990.

(96] Wolfe, V., L. Cingiser and J. Peckham. A Model for Real-Time Object-Oriented

Databases. Proceedings of the Tenth IEEE Workshop on Real-Time Operating

Systems and Software, 1993.

171

[97] \tVright, 1\1. Security Services in the OSI Reference Model. SIGMOD Review, Vol.

10, No. 1, 1992.

[98] Yu, P., K. \Vu, K. Lin and S. Son. On Real-Time Databases: Concurrency

Control and Scheduling. Proceedings of the IEEE, Vol. 82, No. 1, 1994.

172

Bibliography

Abbadi, A., D. Skeen and F. Cristian. An Efficient, Fault-tolerant Protocol for

Replicated Data Management. in [87].

Abbott, R. and H. Garcia-Molina. Scheduling Real-time Transactions: A Perfor­

mance Evaluation. ACM Transactions on Database Systems, Vol. 17, No. 3,

1992.

Abiteboul, S. and A. Bonner. Objects and Views. Proceedings of the 1991 ACM

SIGMOD Interna.tiona.l Conference on Management of Data, Vol. 20, Issue 2,

1991.

Ahmed, R. and S. Navathe. Version Management of Composite Objects in CAD

Databases. Proceedings of the 1991 ACM SIGMOD International Conference

on Management of Data, Vol. 20, Issue 2, 1991.

Atkinson, M., et al. The Object-Oriented Database System Manifesto. in [87].

Babaogu, 6. Fault Tolerant Computing Based on Mach. ACM Operating Systems

Review, Vol. 24, No. 1, 1990.

Bancilhon, F. and vV. Kim. Object-Oriented Database Systems: In Transition.

SIGMOD Record, Vol. 19, No. 4, 1990.

Banerjee, J., H.Chou, J. Garza, W. Kim, D. Woelk, N. Ballou and H. Kim. Data

Model Issues for Object-Oriented Applications. in [87].

Barbara, D. Extending the Scope of Database Services. SIGMOD Record, Vol. 22,

No. 1, 1993.

Bertino, E. Data Hiding and Security in Object-oriented Databases. Proceedings of

the Eighth IEEE International Conference on Data Engineering, 1992.

173

Borg, A., vV. Blau, W. Graetcsh, F. Herrmann and vV. Oberle. Fault Tolerance

under UNIX. ACM Operating Systems Review, Vol. 7, No. 1, 1989.

Breitbart Y. Multidatabase Interoperability. SIGMOD Record, Vol. 19, No. 3,

1990.

Butterworth, P., A. Otis and J. Stein. The GemStone Object Database Management

System. Communications of the ACM, Vol. 34, No. 10, 1991.

Cattell, R. Introduction to Special Section on Next Generation Database Systems.

Communications of the ACM, Vol. 34, No. 10, 1991.

Cheng, J. a.nd A. Hurson. Effective Clustering of Complex Objects in Object­

Oriented Databases. Proceedings of the 1991 ACM SIGMOD International

Conference on Management of Data, Vol. 20, Issue 2, 1991.

Cingiser DiPippo, L. and Fay vVolfe, V. Distributed Object-Based Real-Time Con­

currency Control with Bounded Imprecision. University of Rhode Island, Tech­

nical Report TR93-227, 1994.

Chrysanthis, P. and K. Ramamritharri. ACTA: A Framework for Specifying and

Reasoning about Transaction Structure and Behavior. in [87].

Dayal, U., M. Hsu and R. Ladin. Organizing Long-Running Activities with Triggers

and Transactions. in [87].

Decorte, G., A. Eiger, D. Kroenke and T. Kyte. An Object-Oriented Model for

Capturing Data Semantics. Proceedings of the Eighth IEEE International Con­

ference on Data. Engineering, 1992.

Demurjian, S., M.-Y. Hu, T. Ting and D. Kleinman. Towards an Authorization

Mechanism for User-Role Based Security in an Object-Oriented Design Model.

174

Proceedings of the 1993 Phoenix Conference on Computers and Communica­

tions, 1993.

de Paula, E. and M. Nelson. Clustering in Object-Oriented Databases. OOPS

Messenger, Vol. 3, No. 3, 1992.

Deux, 0., et al. The 0 2 System. IEEE Transactions on Knowledge and Data

Engineering, March 1990.

Doherty, M. Implementing Relationships in an Object-Oriented Database. Master's

Thesis, University of Rhode Island, 1992.

P. Drew, R. King, D. McLeod, M. Rusinkiewicz and A. Silbershatz. Report of

the Workshop on Semantic Heterogeneity and Interoperation in Multidatabase

Systems. SIGMOD Record, Vol. 22, No. 3, 1993.

Eliasen, F. and R. Karlsen. Interoperability and Object ID. SIGMOD Record, Vol.

20, No. 4, 1991.

Elmasri, R. and S. Navathe. Fundamentals of Database Systems. Benjamin/Cum­

mings Publishing Co., Inc., Redwood City, C~., 1989.

Fang, D., S. Ghanderharizadeh, D. McLeod and A. Si. The Design Implementation

and Evaluation of an Object-based Sharing Mechanism for Federated Database

Systems. Proceedings of the Ninth IEEE International Conference on Data

Engineering, 1993.

Fourtier, P. and J. Prichard. Concepts for a Real-time Structured Database Query

Language. Unpublished, University of Rhode Island, 1994.

French, J., A. Jones and J. Pfaltz. NSF Workshop on Scientific Database Manage­

ment. SIGMOD Record, Vol. 19, No. 4, 1990.

175

Gal-Oz, N ., E. Gudes and E. Fernandez. A Model of Methods Access Authoriza­

tion in Object-oriented Databases. Proceedings of the 19th IEEE Very Large

Databases Conference, 1993.

Garcia-Molina, H. and B. Lindsay. Research Directions for Distributed Databases.

SIGMOD Record, Vol. 19, No. 4, 1990.

Gordon, K. Requirements for Military Database Management Systems. Next-Gener­

ation Computer Resources (NGCR) Technical Document No. 010 ver. 1.0,

NGCR SPAvVAR 331-2, 2451, Crystal Dr., Alexandria, Va. 22245, November

15, 1993.

Graefe, G. and vV. McKenna. The Volcano Optimizer Generator: Extensibility and

Efficient Search. Proceedings of the Ninth IEEE International Conference on

Transactions on Data Engineering, 1993.

Gruenwald, L. and S. Liu. A Performance Study of Concurrency Control in a Real­

Time Main Memory Database System. SIGMOD Record, Vol. 22, No. 4,

1993.

Guenther, 0. and A. Buchmann. Research Issues in Spatial Databases. SIGMOD

Record, Vol. 19, No. 4, f990.

Hanson, E., T. Harvey and M. Roth. Experiences in DBMS Implementation Using

an Object-oriented Persistent Programming Language and a Database Toolkit.

Object-Oriented Programming: Systems, Languages and Applications, 1991.

Hung, S. and K. Lam. Locking Protocols for Concurrency Control in Real-Time

Database Systems. SIGMOD Record, Vol. 21, No. 4, 1992.

Ishikawa, H. and K. Kubota. An Active Object-Oriented Database: A Multi­

Paradigm Approach to Constraint Management. Proceedings of the 19th Very

Large Data.bases Conference, 1993.

176

Jagadish, H., and X. Qian. Integrity Maintenance in an Object-Oriented Database.

Proceedings of the 18th Very Large Databases Conference, 1992.

Jajodia, S. and R. Sandhu. Database Security: Current Status and Key Issues.

SIGMOD Record, Vol. 19, No. 4, 1990.

Jensen, C. et al. A Glossary of Temporal Database Concepts. SIGMOD Record,

Vol. 21, No. 3, 1992.

Kilov, H. A Review of Object-oriented Papers. SIGMOD Record, Vol. 18, No. 4,

1989.

Kim, W., J. F. Garza, N. Ballou and D. Woelk. Architecture of the Orion Next

Generation Database System. IEEE Transactions on Knowledge and Data En­

gineering, March 1990.

Kim, W., E. Bertino and J. Garza. Composite Objects Revisited. Proceedings of

the 1989 ACM SIGMOD International Conference on Management of Data,

Volume 18, Number 2, 1989.

Kim, W., N. Ballou, J. Garza and D. Woelk. A Distributed Object-Oriented Data­

base System Supporting Shared and Private Databases. ACM Transactions on

Information Systems, Vol. 9, No. 1, 1991.

Kim, \V. Object-Oriented Database Systems: Promises, Reality, and Future. Pro­

ceedings of the Nineteenth International Conference on Very Large Data Bases,

1993.

Krishnamurthy, E. and A. Mcguffin. On the Design nd Implementation of Secure

Database Transactions. SIGSAC Review, Vol. 10, Nos. 2 & 3, 1992.

Lamb, C., G. Landis, J. Orenstein and D. Weintreb. The ObjectStore Database

System. Communications of the ACM, Vol. 34, No. 10, 1991.

177

Lohman, G., B. Lindsay, H. Pirahesh and K. B. Schiefer. Extensions to Starburst:

Object Types, Functions and Rules. Communications of the ACM, Vol. 34,

No. 10, 1991.

Lunt, T. and E. Fernandez. Database Security. SIGMOD Record, Vol. 19, No. 4,

1990.

Mohan, C., D. Haderle, B. Lindsay, H. Pirahesh and P. Schwarz. ARIES: A Trans­

action Recovery Method Supporting Fine-granularity Locking and Partial Roll­

backs Using Write-ahead Logging. in [87].

Motro, A. Accommodating Imprecision in Database Systems: Issues and Solutions.

SIGMOD Record, Vol. 19, No. 4, 1990.

Mourad, A., W. Fuchs and D. Saab. Database Recovery Using Redundant Disk

Arrays. Proceedings of the Eighth IEEE International Conference on Data

Engineering, 1992.

Nicol, J., C. Thomas, T. \Vilkes and F. Manola. Object Orientation in Heteroge­

neous Distributed Computing Systems. IEEE Computer, June 1993.

Nyanchama, M. and S. Osborn. Role-Based Security, Object-oriented Databases &

Separation of Duty. SIGMOD Record, Vol. 22, No. 4, 1993.

Olivier, M. and S. Von Solms. A Taxonomy for Secure Object-Oriented Databases.

ACM Transactions on Database Systems, Vol. 19, No. 1, 1994.

Object Management Group, Inc. Object Services Architecture, Revision 6.0, Docu­

ment 92.8.4. Object Management Group, Inc., Framingham Corporate Center,

492 Old Connecticut Path, Framingham, Massachusetts, 01701-4568, August,

1992.

178

Open OODB Project. Open OODB Executive Summary Release 0.2 (Alpha). Texas

Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

Open OODB Project. Open OODB Technical Overview Release 0.2 (Alpha). Texas

Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

Open OODB Project. Open OODB Glossary. Texas Instruments, Inc., P.O. Box

655474, M/S 238, Dallas, Texas, 75265, 1993.

Open OODB Project. Open OODB C++ API User Manual Release 0.2 (Alpha).

Texa.s Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

Open OODB Project. Open OODB Query Language User Manual Release 0.2 (Al­

pha). Texas Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265,

1993.

Open OODB Project. Open OODB Release Notes Release 0.2 (Alpha). Texas

Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

Open OODB Project. Open OODB Meta Architecture Document. Texas Instru­

ments, Inc., P.O. Box 655474, M/S 238, DalJas, Texas, 75265, 1993.

Open OODB Project. Open OODB System Architecture Document. Texas Instru­

ments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

Open OODB Project. Open OODB Architecture Specifications Document. Texas

Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

Open OODB Project. ARPA Open Object-Oriented Database Architecture Spec­

ification. Texas Instruments, Inc., P.O. Box 655474, M/S 238, Dallas, Texas,

75265, 1993.

179

Open OODB Project. ARPA Open Object-Oriented Database Module Specification

Meta Architecture Support. Texas Instruments, Inc., P.O. Box 655474, M/S

238, Dallas, Texas, 75265, 1993.

Open OODB Project. Open OODB Requirements Document. Texas Instruments,

Inc., P.O. Box 655474, M/S 238, Dallas, Texas, 75265, 1993.

Open OODB Project. The Open Object-Oriented Database: Obtaining Database

Functionality by Extension. Readings in Object-Oriented Systems and Appli­

cations., IEEE Press, 1993.

Ozsu, M., U. Dayal and P. Valduriez. WORKSHOP REPORT International Work­

shop on Distributed Object Management. SIGMOD Record, Vol. 22, No. 1,

1993.

Pangalos, G. Database Systems Security. University of Rhode Island, Technical

Report TR93-225, 1993,

Peckham, J., V. Fay Wolfe, J. Prichard and L. Cingiser DiPippo. RTSORAC: Design

of a Real-Time Object-Oriented Database System. University of Rhode Island,

Department of Computer Science, Technical Report 94-231, 1994.

Pissinou, N., K. Makki and Y. Yesha. On Temporal Modeling in the Context of

Object Databases. SIGMOD Record, Vol. 22, No. 3, 1993.

Ramamritham, K. Real-Time Databases. International Journal of Distributed and

Parallel Databases, 1992.

Rangarajan, S., S. Setia and S. Tripathi. A Fault-Tolerant Algorithm for Replicated

Data Management. Proceedings of the Eighth IEEE International Conference

on Data Engineering, 1992.

180

Saltor, F., M. Castellanos and M. Garcia-Solaco. On Canonical Models for Federated

DBs. SIGMOD Record, Vol. 20, No. 4, 1991.

Scheuermann, P., et al. Report on the Workshop on Heterogeneous Database Sys­

tems. SIGMOD Record, Vol. 19, No. 4, 1990.

Senerchia, J. A POSIX-Compliant Dynamic Real-Time Scheduler. Master's Thesis,

University of Rhode Island, 1993.

Sheth, A., and J. Larson. Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Databases. ACM Computing Survey, Vol. 22,

No. 3, 1990.

Sreewastav, K. Prototype of the Object Query Language (OQL): an Associative

Query Facility for Zeitgeist. Texas Instruments, Inc., 1990.

Stonebraker, M., et al. Third Generation Database System Manifesto. SIGMOD

Record, Vol. 19, No. 3, 1990.

Stonebraker, M., and G. Kemnitz. The POSTGRES Next-Generation Database

Management System. IEEE Transactions on. Knowledge and Data Engineering,

March 1990.

Stonebraker, 1\.1., A. Silbershatz and J. Ullman. Database Systems: Achievements

and Opportunities. Communications of the ACM, Vol. 34, No. 10, 1991.

Stonebraker, M. Managing Persistent Objects in a Multi-Level Store. Proceedings

of the 1991 ACM SIGMOD International Conference on Management of Data,

Volume 20, Issue 2, 1991.

Stonebraker, M. and M. Olson. Large Object Support in POSTGRES. Proceedings

of the Ninth IEEE International Conference on Data Engineering, 1993.

181

Stonebraker, M., editor. Rea.dings in Da.ta.ba.se Systems, Morgan Kaufmann Pub­

lishers, San Mateo, California, 1994.

Stonebraker, M. Operating System Support for Database Management. in [87].

Thuraisingham, B. Secure Interoperability of Trusted Database Management Sys­

tems. SIGSAC Review, Vol. 10, Nos. 2 & 3, 1992.

Ulusoy, 6. Current Research on Real-time Databases. SIGMOD Record, Vol. 21,

No. 4, 1992.

United States Navy. NGCR PISWG Draft Glossary and Acronyms. NGCR DISWG

Requirements Subgroup, June 17, 1993.

United States Navy. POSIX Delta Document for the Next-Generation Computer Re­

sources Operating System Interface Standard (Version 2). NUWC-NPT Tech­

nical Document 10,076, June 1, 1992.

Urban, S., A. Karadimce and R. Nannapaneni. The Implementation and Evaluation

of Integrity Maintenance Rules in an Object-Oriented Database. Proceedings

of the Eighth IEEE International Conference on Data Engineering, 1992.

Wells, D., J. Blakeley and C. Thompson. Architecture of an Open Object-Oriented

Database Management System. IEEE Computer, 1992.

Wilkinson, K., P. Lyngbaik and W. Hasan. The Iris Architecture and Implementa­

tion. IEEE Transactions on Knowledge a.nd Data Engineering, March 1990.

Wolfe, V., L. Cingiser and J. Peckham. A Model for Real-Time Object-Oriented

Databases. Proceedings of the Tenth IEEE Workshop on Rea.I-Time Opera.ting

Systems a.nd Software, 1993.

Wright, M. Security Services in the OSI Reference Model. SIGMOD Review, Vol.

10, No. 1, 1992.

182

Yu, P., K. Wu, K. Lin and S. Son. On Real-Time Databases: Concurrency Control

and Scheduling. Proceedings of the IEEE, Vol. 82, No. 1, 1994.

183

	An Evaluation of the Open Object-Oriented Database
	Terms of Use
	Recommended Citation

	thesis_alsop_1994_001
	thesis_alsop_1994_002
	thesis_alsop_1994_003
	thesis_alsop_1994_004
	thesis_alsop_1994_005
	thesis_alsop_1994_006
	thesis_alsop_1994_007
	thesis_alsop_1994_008
	thesis_alsop_1994_009
	thesis_alsop_1994_010
	thesis_alsop_1994_011
	thesis_alsop_1994_012
	thesis_alsop_1994_013
	thesis_alsop_1994_014
	thesis_alsop_1994_015
	thesis_alsop_1994_016
	thesis_alsop_1994_017
	thesis_alsop_1994_018
	thesis_alsop_1994_019
	thesis_alsop_1994_020
	thesis_alsop_1994_021
	thesis_alsop_1994_022
	thesis_alsop_1994_023
	thesis_alsop_1994_024
	thesis_alsop_1994_025
	thesis_alsop_1994_026
	thesis_alsop_1994_027
	thesis_alsop_1994_028
	thesis_alsop_1994_029
	thesis_alsop_1994_030
	thesis_alsop_1994_031
	thesis_alsop_1994_032
	thesis_alsop_1994_033
	thesis_alsop_1994_034
	thesis_alsop_1994_035
	thesis_alsop_1994_036
	thesis_alsop_1994_037
	thesis_alsop_1994_038
	thesis_alsop_1994_039
	thesis_alsop_1994_040
	thesis_alsop_1994_041
	thesis_alsop_1994_042
	thesis_alsop_1994_043
	thesis_alsop_1994_044
	thesis_alsop_1994_045
	thesis_alsop_1994_046
	thesis_alsop_1994_047
	thesis_alsop_1994_048
	thesis_alsop_1994_049
	thesis_alsop_1994_050
	thesis_alsop_1994_051
	thesis_alsop_1994_052
	thesis_alsop_1994_053
	thesis_alsop_1994_054
	thesis_alsop_1994_055
	thesis_alsop_1994_056
	thesis_alsop_1994_057
	thesis_alsop_1994_058
	thesis_alsop_1994_059
	thesis_alsop_1994_060
	thesis_alsop_1994_061
	thesis_alsop_1994_062
	thesis_alsop_1994_063
	thesis_alsop_1994_064
	thesis_alsop_1994_065
	thesis_alsop_1994_066
	thesis_alsop_1994_067
	thesis_alsop_1994_068
	thesis_alsop_1994_069
	thesis_alsop_1994_070
	thesis_alsop_1994_071
	thesis_alsop_1994_072
	thesis_alsop_1994_073
	thesis_alsop_1994_074
	thesis_alsop_1994_075
	thesis_alsop_1994_076
	thesis_alsop_1994_077
	thesis_alsop_1994_078
	thesis_alsop_1994_079
	thesis_alsop_1994_080
	thesis_alsop_1994_081
	thesis_alsop_1994_082
	thesis_alsop_1994_083
	thesis_alsop_1994_084
	thesis_alsop_1994_085
	thesis_alsop_1994_086
	thesis_alsop_1994_087
	thesis_alsop_1994_088
	thesis_alsop_1994_089
	thesis_alsop_1994_090
	thesis_alsop_1994_091
	thesis_alsop_1994_092
	thesis_alsop_1994_093
	thesis_alsop_1994_094
	thesis_alsop_1994_095
	thesis_alsop_1994_096
	thesis_alsop_1994_097
	thesis_alsop_1994_098
	thesis_alsop_1994_099
	thesis_alsop_1994_100
	thesis_alsop_1994_101
	thesis_alsop_1994_102
	thesis_alsop_1994_103
	thesis_alsop_1994_104
	thesis_alsop_1994_105
	thesis_alsop_1994_106
	thesis_alsop_1994_107
	thesis_alsop_1994_108
	thesis_alsop_1994_109
	thesis_alsop_1994_110
	thesis_alsop_1994_111
	thesis_alsop_1994_112
	thesis_alsop_1994_113
	thesis_alsop_1994_114
	thesis_alsop_1994_115
	thesis_alsop_1994_116
	thesis_alsop_1994_117
	thesis_alsop_1994_118
	thesis_alsop_1994_119
	thesis_alsop_1994_120
	thesis_alsop_1994_121
	thesis_alsop_1994_122
	thesis_alsop_1994_123
	thesis_alsop_1994_124
	thesis_alsop_1994_125
	thesis_alsop_1994_126
	thesis_alsop_1994_127
	thesis_alsop_1994_128
	thesis_alsop_1994_129
	thesis_alsop_1994_130
	thesis_alsop_1994_131
	thesis_alsop_1994_132
	thesis_alsop_1994_133
	thesis_alsop_1994_134
	thesis_alsop_1994_135
	thesis_alsop_1994_136
	thesis_alsop_1994_137
	thesis_alsop_1994_138
	thesis_alsop_1994_139
	thesis_alsop_1994_140
	thesis_alsop_1994_141
	thesis_alsop_1994_142
	thesis_alsop_1994_143
	thesis_alsop_1994_144
	thesis_alsop_1994_145
	thesis_alsop_1994_146
	thesis_alsop_1994_147
	thesis_alsop_1994_148
	thesis_alsop_1994_149
	thesis_alsop_1994_150
	thesis_alsop_1994_151
	thesis_alsop_1994_152
	thesis_alsop_1994_153
	thesis_alsop_1994_154
	thesis_alsop_1994_155
	thesis_alsop_1994_156
	thesis_alsop_1994_157
	thesis_alsop_1994_158
	thesis_alsop_1994_159
	thesis_alsop_1994_160
	thesis_alsop_1994_161
	thesis_alsop_1994_162
	thesis_alsop_1994_163
	thesis_alsop_1994_164
	thesis_alsop_1994_165
	thesis_alsop_1994_166
	thesis_alsop_1994_167
	thesis_alsop_1994_168
	thesis_alsop_1994_169
	thesis_alsop_1994_170
	thesis_alsop_1994_171
	thesis_alsop_1994_172
	thesis_alsop_1994_173
	thesis_alsop_1994_174
	thesis_alsop_1994_175
	thesis_alsop_1994_176
	thesis_alsop_1994_177
	thesis_alsop_1994_178
	thesis_alsop_1994_179
	thesis_alsop_1994_180
	thesis_alsop_1994_181
	thesis_alsop_1994_182
	thesis_alsop_1994_183
	thesis_alsop_1994_184
	thesis_alsop_1994_185
	thesis_alsop_1994_186
	thesis_alsop_1994_187
	thesis_alsop_1994_188
	thesis_alsop_1994_189
	thesis_alsop_1994_190
	thesis_alsop_1994_191
	thesis_alsop_1994_192
	thesis_alsop_1994_193
	thesis_alsop_1994_194
	thesis_alsop_1994_195
	thesis_alsop_1994_196

