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Abstract 

Due to the increasing gap between the performance of the 

processors and secondary storage systems, the design of the storage 

systems has become increasingly important. Arrays of interleaved 

disks are a popular method of increasing the performance of 

secondary storage systems. In order to optimize the performance 

and configuration of the disk arrays, performance evaluations are 

required. This paper presents a Colored Petri Net simulation model 

which can represent various configurations of systems containing 

multiple processors connected to a disk array system across a single 

stage interconnection network. This flexible model allows many 

system parameters to be varied such as number of processors, 

buses and disks in the array and the delay distributions associated 

with each. The performance estimates produced by this model are 

validated in this paper against those found in other models and 

found to be in good agreement. This paper shows that the CPN 

model presented here is flexible and accurate enough to allow the 

model to estimate the performance of "?-any widely varying system 

configurations. 
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Chapter 1: 

Introduction 

The performance of processors and semiconductor memories is 

increasing at a much greater rate than 1/0 systems such as 

magnetic memories. Therefore, the performance of the 1/0 systems 

is impacting increasingly upon the total system's performance to 

the point where it can become the source of a performance 

bottleneck in the system. The throughput of the 1/0 system can be 

increased by replacing a single disk 1/0 system with a disk array in 

which data may be placed on different disks so it can be accessed 

concurrently. [1,2,3,4]. 

Many different organizations of disk arrays have been proposed in 

the current literature [2,3,8]. In order to understand the benefits 

and costs of each disk array configuration, it is important to have a 

method for the estimation of the whole system's performance. This 

will allow the system designer to unders~and the effects of various 

system elements upon the. system's performance. 

There are two types of models that are generally used for the 

performance analysis of systems. The first is an analytical model, 

which reduces the system's functionality to a set of equations. The 

equations are then used to estimate the system's performance. The 

second is a simulation model, which generally encapsulates the 

system's functionality into a model in a more direct manner. The 
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simulation model is then executed to emulate the system's 

performance. 

Several analytical models have been developed which are based 

upon many simplifying assumptions to allow the system to be 

described by a usable set of equations. While these equations allow 

the quick generation of results, they can also describe only a limited 

or unrealistic set of system configurations. One such example is in a 

paper by Lee and Katz where an analytical model is developed 

which assumed that each processor issues a new request for a block 

of data whenever any of the subblock data requests from the 

previous request are finished.[3] This assumption implies that all 

the sub block data requests generated from a request for a block of 

data finish their disk accesses at the same time and that each 

processor spends no time processing the data which it has just 

received. This is not a realistic assumption because in a real system 

each disk request may have a different service time because of the 

starting position of the head on each disk, or a different number of 

requests present at each disk. 

In a paper by Yang, Hu and Yang, a more realistic set of 

assumptions about the disk array and how it processes requests is 

presented. However, this model can neither address the 

relationships associated with the interconnection network (IN) 

which connect the processors and the 1/0 system nor can it handle 

different size data accesses within the same run.[1] 
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As shown above, a common problem associated with existing 

models is that the assumptions which are made to enable the 

system to be characterized by a set of equations also limit the 

model's ability to handle all the different parameters which are 

important in a system. 
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Chapter 2: 

Guiding Assumptions and System Description 

The model presented in this paper tries to more accurately describe 

a real system by expanding upon the system assumptions described 

in reference [ 1]. The assumptions are as follows: 

1. Each processor generates a request for a block of data stored 

on in the disk system. The request for a block of data, called a 

logical disk request or an array request, is replaced by several 

subblock requests, called disk requests. The disk requests are 

then transferred to the appropriate disk where the subblock is 

stored. The separate disks can then service the disk requests in 

parallel. 

2. The array request size, which is the number of disks accessed 

by a single array request, can change depending upon various 

attributes of the disk array such as the subblock size, the parity 

scheme, the parity group size, and the request type. Therefore, 

the array requests cannot be guarantet?d to access either only 

one or all of the disks. · 

3. The individual disk requests of an array request may finish at 

different times due to both the interference between disk 

requests at each of the disks, and the different seek times on 

each disk due to the random starting position of each disk's head. 

4. It cannot be guaranteed that a new array request is always 

issued upon the completion of a disk request. This depends upon 

the workload of the 1/0 system and the frequency at which the 

processor generates requests. 
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5. Each processor is capable of multiprocessing. Therefore, more 

than one array request generated by the same processor may 

exist at the same time. 

6. The size of the traffic transferred across the interconnection 

network, either the data requests or the data blocks, should be 

allowed to be variable within a single simulation run. It cannot 

always be assumed that each data block is the same size for all 

processors in the system. 

7. The interconnection network is made of one or more buses 

which connect the processors to the disks in the disk array. The 

number of buses in the system cannot always be assumed to be 

enough to support the workload of the system. 

These assumptions accurately describe a real system containing a 

disk array 1/0 system. In the following a model based on the above 

assumptions about a system containing a disk array is presented. 

The model is a simulation model which was created using Colored 

Petri Nets (CPN). CPNs, as most simulati~n modeling tools do, allow 

the user the flexibility to model in detail whatever area is deemed 

of interest in the system. 

The model consists of several independent processors connected to 

a single disk array 1/0 system via an interconnection network (IN) 

as shown in Figure 1. Figure 2 shows the points of resource 

contention which will be described in the following paragraphs. 

/ 
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A disk array is an I/0 system which replaces a single disk with a 

collection of disks. In a single disk I/0 system a block of data is 

stored usually together on the disk. In contrast, in a disk array 

Interconnection Network 

Figure 1 System Configuration 

system this block of data can be broken into one or more subblocks 

which are then stored on separate disks. Because each of the disks 

in the disk array can be accessed concurrently, the block of data can 

be accessed more rapidly than on a single disk system. 

Each processor can generate a logical disk request, hereafter called 
_,,, 

an array request, for a block of data from the disk array which in 

turn is broken into several disk requests. The number of disk 

requests per array request varies depending upon several 
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parameters such as the size of the data requested, the amount of 

interleaving between the disks and the parity scheme of the disks. 

Thus one or more disks can be accessed by a single logical disk 

request. 

The disk requests are passed across a single stage IN in a first-in, 

first-out (FIFO) queue as shown in figure 2. Once transferred to the 

liJ 
I 

Resource Contention Points in the System 

Figure 2 
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disk, the disk requests are distributed to the assigned disk. Each 

disk handles its requests in a FIFO queue fashion. 

The results of the individual disk requests are then transferred 

back to the CPU via the IN using a FIFO queue like the one used to 

transfer the request to the disks. As figure 2 shows, the IN queues 

leading to and departing from the disks share the same IN 

resources. If both IN queues are vying for a bus resource then one 

would be chosen at random to be granted control of the bus. 

An array request is considered finished only when all of its disk 

requests have been handled and their responses have returned 

across the IN to the originating CPU. Thus if looked on from a 

system perspective, the whole disk array system cannot be looked 

at as a FIFO system because some elements of the array request 

may finish after other requests due to other array requests vying 

for the same bus and disk resources at the same time. This 

irregular queue behavior is what makes the development of 

analytical models difficult. The CPN model presented in this paper 

emulates this behavior to allow a performance analysis of this 

system using various system parameters and configurations. 

"-
The CPN model can predict the response time of an array request, 

and analyze the disk, interconnection network and processor 

utilization under various system configurations and workloads. 

This model is validated through a series of measurements and 
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compared with the findings presented in [1]. This model is used to 

perform a quantitative evaluation of the disk array's performance 

for different IN and disk data integrity configurations. The model 

presented is fairly general and could be used by disk array or 

system designers to study the effects of various system parameters 

and configurations. 
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Chapter 3: 

The Colored Petri Net Disk Array Model 

This chapter describes the Colored Petri Net model of a system 

which contains a disk array 1/0 subsystem. The chapter is broken 

up into two parts, the first describes the functionality of the system 

and the second describes the parameters used in the model. 

3.1 A Functional Description of the Disk Array Model 

The following is a functional description of how a disk request is 

generated and handled in the system which is modeled. The limits 

and derivation of the model's variables, which are capitalized, are 

described in section 3 .2. 

Figure 3 shows a simplified version of the Colored Petri Net model 

which will be used for discussion purposes. The actual CPN model is 

included in Appendix A. 

There are P independent processors that generate array requests. 

The processors are represented by CPU tokens which reside in the 

CPU Processing Data node of figure 3. One of the attributes 

associated with each token is the time it is available for use. When 

the simulated time reaches the time at which a processor token ts 

enabled, that token moves to the Generate Disk Requests token 

where a set of N disk access request (DAR) tokens are made. The 

set of disk requests generated at the same time represents an array 

request. 
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Another attribute of each array request is the assignment of disks. 

The disk associated with the first disk request is chosen at random 

from the disk array. Hereafter, the disks associated with the array 

request are assigned sequentially. 

The size of the data subblock requested is also an attribute of the 

DAR. Thus different size data blocks may be accessed from the disk 

array within the same simulation. The size of data block accessed 

affects both the disk's Service Time and the bus' Transfer Time. 

When the disk requests have been generated, the CPU token then 

returns to the CPU Processing Data node and the time at which the 

token will be enabled next is updated by an amount calculated by 

the ThinkTime function. The ThinkTime represents the amount of 

time that all the processes for that processor are busy performing 

internal operations which do not require the disk array. 

In order to simulate a multiprocessing e~vironment, each processor 

will generate another array request after a specified ThinkTime, 

regardless of whether the other array requests made by that 

processor have completed. 

The disk requests then enter into CPU-to-Disk interconnection 

network (IN) queue to be sent across the IN to the disk array. The 

single stage IN will have B buses. A Disk-to-CPU IN queue exists to 

handle the traffic from the disks to the processor. The elements 

within each queue are handled in a first-in first-out (FIFO) fashion 
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but both queues contend for the same bus resources. If both IN 

queues have an token contending for the same bus resource, then 

one of the tokens is granted the bus resource at random. Therefore, 

due to the possible contention between the two IN queues, the data 

flowing through the IN cannot be considered to be FIFO as a whole. 

The bus resource will remain busy for an amount of time, called the 

Transfer Time, which is related to the size of the data being 

transferred and the data transfer rate of the bus. The other queue 

will wait until there is a bus resource available before proceeding. 

Once the disk request token passes across the IN, it enters the disk 

array. There are NumDisk disks in the disk array. The disk request 

token will wait until the disk resource token it requires is available. 

When the required disk is available, the disk request is granted 

access to the disk. The disk is then unable to process another 

request until this access is complete. The amount of time the access 

takes is called the disk's Service Time which is a function of the 

disk's SeekTime, the Rotational Latency a~d the Disk Access Time. 

The disk request token is replaced by a data token which can be a 

different size than the disk request. The data token is also not 

available until the disk access is completed. If two DARs are 

waiting for the same disk, then one is chosen at random to be 

serviced. The other DAR must wait for the disk to become available 

again before it can be serviced. Disk accesses to different disks can 

be performed in parallel. 
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After the disk access has completed, the data enters the Disk-to

CPU IN queue to be transferred to the processor. As for the disk 

request, this queue is served internally in a FIFO fashion and 

externally in contention for bus resources with the CPU-to-Disk IN 

queue. 

Once across the IN, the data subblock waits at the processor for all 

other data subblocks in its array request to arrive. Once all arrive, 

the array access is complete. Therefore, in contrast with reference 

[2] the array request processing does not complete when one of the 

disk requests is finished. In addition, like reference [ 1] the array 

request processing as a whole is not completed in a FIFO fashion 

due to the handling of the various disk requests at each disk. 

Although it may appear that this model only simulates reads from a 

disk, it also accurately describes the case where a write to a disk is 

performed in which the write has a completion handshake that is 

the same size as a read disk request. This is true because, in a 

system which has handshaking, the amount of time the IN and the 

disk array are busy would be the same whether the piece of data is 

passing to or from the disk. 

The main disadvantage of a CPN is that if the modeler is not careful 

the model can get too complex to be analyzed. This is due to the 

direct relationship between the CPN model's complexity and the size 

of the state matrix related to the model. In addition, as the state 

matrix gets larger the simulation model executes more slowly. It 
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was found that performing the simulations on a higher performance 

platforms with more RAM available resulted the ability to 

simulated more complex models, and the current models can be 

simulated more quickly. Therefore, the modeler must balance the 

amount of detail in the model and the host computer's ability to 

handle the complexity contained in the model. 

In order to extract data from the model's outputs, a C program was 

written which extracts the CPU, Bus and Disk utilization data from 

the raw data produced in the simulation. This program is shown in 

Appendix C. If different information were required by the modeler, 

the program could easily be altered to extract it. 

The system modeled has several irregular queue characteristics 

which would make the development of analytical queuing models 

difficult. The CPN model developed emulates this behavior to allow 

a performance analysis of this system to be performed using 

various system parameters and configur~tions. 

3.2 Description of System Parameters 

This section describes the formulas and limits of the parameters 

which were referenced in the previous sections. 

- The ThinkTime function is user definable and for this model 

has been set to an independent, exponentially distributed 

random variable with mean Z as it was in [1]. 

- N is the number of disk requests in an array request. Its value 

is determined by several factors such as the amount of 
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declustering between disks and the parity scheme used. The 

value of N can range from 1 to the number of disks in the disk 

array. The number of disk requests generated by each 

processor, N, can either be constant for all processors or variable 

based upon the system being studied. 

- A DAR is a disk access request. There are N DARs generated to 

represent each array request. The information stored in a DAR 

for this model is: The originating processor, which element of the 

array request it is, the disk to be accessed, the number of 

elements to be accessed, and the size of the data block request. 

The assignment of disks to the different disk requests of an 

array request is done sequentially. This means that the second 

DAR accesses the disk ((Disk + 1) mod NumDisk) and so on until 

the N-th DAR accesses disk ((Disk + N - 1) mod NumDisk). The 

term NumDisk indicates the number of disks in the disk array. 

Thus the 'mod NumDisk' term prevents accesses to disk numbers 

greater than number of disks in the disk array. 

- The bus's Transfer Time Tt 

= (size of transferred · request or data (in bytes) 
(transfer rate of bus (in bytes per sec)) 

- The disk's Service Time 

= (Seek Time + Rotational Latency + Data Access Time) 

as defined in references [ 1, 2, 3 and 4]. 

- Seek Time (Ts) = time to get the head to the correct track of the 

disk 

Ts = Ta *X + Tb * X + Tc 

As defined in reference [ 4] 
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, 
Ta = (lO*minSeek + 15*avgSeek -5*maxSeek)/{3*numCyl) 

Tb = (7*minSeek - 15*avgSeek + 8*maxSeek) /{3*numCyl) 

Tc = minSeek 

where minSeek, avgSeek, maxSeek and numCyl are 

parameters of the <:lisk drives used. 

and as defined in reference [ 1] 

x = l(tl) - (t2)1 

where tl and t2 are random numbers from between 0 and 

the number of tracks on a disk, T. This makes the model 

more realistic by giving X a mean distribution of {T/3). 

- Rotational Latency (Tr) = time to get head to correct data block 

or sector with-in the track) 

As defined in [ 1,4] 

Tr = random (0.. time for a full disk rotation) 

- Data Access Time (Ta) = time to read or write data to disk 

As defined in [ 4] 

Ta = (time for a full disk rotation) * (# of bytes accessed) 
(number of bytes in a track) 
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Chapter 4: 

Experimental Validation of the CPN Model Results 

The method used to validate the CPN model described in the 

previous chapter was to compare the results of the CPN model to 

those found in models of similar systems presented in other papers. 

In particular, the results of the analytical model developed in 

reference [l] were compared to those of the CPN model for same 

values of system parameters. The analytical model presented in 

reference [1] was chosen because the assumptions made in 

developing that model were very similar to those of the CPN model. 

The assumptions made in reference [1] were the same as those 

listed in Chapter 1 for the CPN model with the following exceptions: 

In reference [ 1] it was assumed that the number of buses is always 

adequate to support the system's load. To comply with this in the 

CPN model, the number of buses in the IN was specified to be large 

enough that the IN imposed no limitations on the rest of the model. 

Another simplifying assumption made in reference [1] was that all 

array requests made in a particular simulation were the same size. 

This means that the size of the data accesses per disk and the array 

request size N are both constant across all the processors for all 

array requests made in a particular system configuration. This was 

not difficult to comply with as the CPN model was designed to allow 

these parameters to either be constant or varied. Finally, in 

reference [ 1] the individual disk requests of each array request 

were assumed to be independent of each other. To comply with 

18 



this would require the method of disk request generation to be 

altered in the CPN model. Because this was determined to be a 

weak relationship in reference [ 1], the method of disk request 

generation in the CPN model was not altered. Thus, in the CPN 

model the disk requests which originate from the same array 

request will access disks sequentially from some arbitrary first disk 

as described in Chapter 3. Therefore, it was possible to satisfy all 

the assumptions made in reference [ 1], with the exception of the 

independence of disk requests accessed by the same array request 

which was considered a weak assumption. 

Because of the complexity of the systems modeled in reference [l], 

the length of time required for each simulation run using the CPN 

model was quite long. Therefore, the length of the simulation runs 

had to be limited. On average, for a system which was of the 

complexity of the ones presented in this section, the amount of time 

to perform a simulation run for a range of values would be around 

24 hours. Limiting the length of the simulation runs can lead to 

significant errors when the data varies a great deal such as at high 

system load. Therefore, it cannot be guaranteed that the simulation 

results produced are within the guidelines normally used for 

determining when to end a simulation run. However, the 

simulation runs were extended as long as time and RAM allowed in 

order to minimize these errors. 

As defined in reference [1], the utilization of the disk array system 

is a function of the rate at which requests arrive at the disk array 
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and the service rate of the disk array. The service rate of the disk 

array is generally constant and independent of the arrival rate. 

Thus variations to the disk array's utilization are induced mainly by 

variations the disk array's arrival rate, called Lambda. Lambda is 

defined as follows: 

Lambda = (N * P) /{NumDisks*Z ) 

where N, P, NumDisks and Z are defined in section 3.2 

In order to exercise the CPN model at disk utilizations over its 

range, lambda will be varied in two different simulation runs. In 

the first run the number of disks in the array is varied and in the 

second run the number of elements in an array request is varied. 

As in reference [ 1], other system parameters, as defined in section 

3.2, were set to typical values as follows: Ta = 0.4632ms, Tb = 

0.0092ms, Tc = 2ms, NumCyl = 949, size of data accessed from each 

disk, the subblock size, = 4 kbytes and the average transfer rate 

was 0.6023 msec/kbyte across the IN. As in reference [1], the 

disk's Data Access Time, which is the amount of time to actually 

read the data from the disk, was not included in the disk's Service 

Time calculation. In addition, number of processors P was set to 10 

and the mean think time Z was set to 100 msec. 

In the first comparison, which is shown in figure 4, the disk 

utilization was varied by altering the number of disks from 30 to 

100. The value of N was set to 10. It can be observed from this 
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figure that the CPN model's average disk array processing time 

closely matches those found the analytical model in reference [1]. 

Array Response Time vs Number of Disks 
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In the second comparison, shown in figure 5, the size of the disk 

array request size N was varied from 3 to 15 as was done in 

reference [l]. The number of disks in the disk array was set to 50. 

As in the previous figure, the results of the CPN model closely 

match those produced in reference [ 1]. 

Conclusions: 

For the most part the results produced by the CPN model closely 

match those produced by the analytical model in reference [1], 

especially at low system utilization. It generally accepted that a 

model should estimate response times at low to medium loads 

within 15% of the actual system. In both figures, the CPN model's 

results for low to medium load were within 15% of the analytical 

model's results. The main areas of difference occur during the 

higher utilization of the IN and/or disk array subsystems. In 

particular, the areas of high load are in figure 4 when there are few 

disks and in figure 5 when N is large. The discrepancies are due to 

the following: 

1. When the number of array requests N is close to the number 

of disks in the disk array NumDisks there is a increased chance 

of difference between the results of the analytical model and the 

CPN model. This is due to the assumption made in the analytical 

model of independence between disk requests of the same 

logical array request. As stated in reference [1], when a large 

proportion of the disks is being accessed by the same array 

request then there is more parallelism within each array 

request. This parallelism makes the individual disk requests of 
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the same array request more dependent upon each other 

because they are less likely to collide with each other than if all 

disk requests are assigned randomly as in the model reference 

[l]. As disk requests collide, their array response time can 

increase greatly as one of disk requests must wait until the other 

request completes before it can access the disk. While the 

effects of this are minimal at low to medium system loads where 

few disk collisions occur, at high system loads the analytical 

model will have many more collisions than the CPN model. This 

problem was noted in reference [1]. 

2. When one or more of the subsystems is highly utilized there is 

more chance of error in the CPN model's results. When one of 

the subsystems becomes a bottleneck, it can cause the array 

response time to vary greatly from one array request to the 

next. In the CPN model it would take significant simulation time 

for these varied response times to average out to a consistent 

value. Since the amount of time for simulation was limited, the 

areas of high system utilization will have a greater amount of 

error m the CPN model results than when the system utilization 

is low. This is most apparent in figure 5 when N is greater than 

11. At this point the array response times do not have a smooth 

curve shape as desired. Therefore this portion of the CPN data is 

most suspect to error. 

Together these are the reasons for differences between the results 

of the CPN model and those of the analytical model in reference [1]. 
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overall, the CPN model appears to adequately model the operation 

of the system of interest, especially at low to medium load. 
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Chapter 5: 

Analysis Using the CPN Model 

The last chapter shows that the CPN model accurately estimates the 

response time of a disk array to various system loads. In this 

chapter, some of the assumptions made in reference [1] will be 

investigated and a performance evaluation will be done using the 

CPN model. 

S.1 A Study of the Effects of Varying the Number of 

Buses in the Interconnection Network 

In the other disk array model's studied, the effects of the 

interconnection network (IN) on the overall system performance 

were ignored. Therefore, the first assumption investigated will be 

to vary the number of buses in a single stage IN to determine how 

this affects the system's performance. The second assumption 

investigated will be to vary the size of data accessed by each disk 

request. This will be used to study the e.ff ects of various methods 

of ensuring data integrity in disk array upon the system's 

performance. 

To make the CPN model consistent with those used in reference 

[ 4] the following assumptions were made: 

1. The disk's Service Time now included the Data Access time as 

defined in references [2, 3 and 4]. The Service Time calculation 

was defined as in Section 3 .2 of this paper. 
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2. To study the delay effects of the IN on the array response 

time, the bus's Transfer Time Tt was associated with the 

TRANSFER DAR TO MEMORY and TRANSFER DATA TO CPU 

transitions in the Bus page of the CPN model. Therefore, Tt was 

not included in the ServiceTime calculation as it was in the last 

chapter. The data size assumed was 1 byte for each disk request 

and 4 kbytes for each subblock of data transferred to the 

processors. The bus transfer rate was assumed to be 0.6023 

ms/kbyte. The delay assigned to each transfer was calculated as 

in section 3.2. Therefore, the delay associated with the 

TRANSFER DAR TO MEMORY transition was 0.0006023 ms and 

the delay associated with the TRANSFER DATA TO CPU transition 

was 2.4092 ms. 

Note that while this model simulates the processing of a read 

disk access only, it also accurately maps the functionality for a 

system which performs a 4kbyte write with a lbyte 

acknowledge. 

3. The system configuration is as follows: 

P = 10 processors 

N = 10 disk requests per array request 

NumDisks = 50 disks 

4. The number of buses was varied from 1 to 30 in order to 

study the buses' impact upon the system's performance. It was 

originally intended to simulate through a full cross-bar 
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configuration where there is a bus present to connect each 

processor to each disk, which requires 500 buses, but simulation 

showed that the array response time was stable when the 

number of buses was greater than 10. Therefore, the addition of 

more buses would not bring any value to the study. 

Disk Array Response Time vs Number of 
Buses 
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Figure 6 shows the array response time versus the number of buses 

in the system. As is shown in this figure, · the disk array response 

time increases dramatically when the number of buses is two or 

less. This could be due to either the loa~ing on the IN or the disk 

array. To determine which subsystem is the bottleneck, figure 7 

shows the bus utilization versus number of buses and it also shows 

the disk utilization versus the number of buses. These figures show 

that for the cases where number of buses is less than three, the bus 

utilization is large and the disk utilization decreases. Over the rest 

of the range, the disk utilization is fairly constant. This indicates 

that when the IN utilization is very large, the IN can delay 
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communication to and from the disk array enough to cause the disk 

utilization to drop. Because the area where the IN utilization is high 

in figure 7 coincides with the area where the array response time is 

large in figure 6, the limiting factor for this case is the IN. 
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In conclusion, the bus system can severely limit the performance of 

the disk array when the number of buses is small. In contrast, once 

the number of buses reaches a certain point, more than 4 in this 

case, adding more buses dot{s not significantly alter the I/0 

subsystem's performance. Therefore, a system designer must 

ensure that there are enough buses to prevent the IN from limiting 

the system performance while not including too many buses in 

order minimize the cost of the system. 
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5• 2 A Study of the Effects of Various Disk Data Integrity 

Methods and Subblock Size on System Performance 

In the second analysis problem, the effects of the overhead induced 

by various Redundant Array of Inexpensive Disks (RAID) data 

integrity schemes and a new method proposed in reference [ 4] on 

the overall disk array response time will be studied. The RAID 

configurations are used to ensure that the disk array is fault 

tolerant. If a fault does cause a disk to lose the data, these methods 

allow the data to be fully reconstructed. 

Each RAID configuration has different costs. These costs come in 

terms of the performance impact that the overhead RAID 

processing incurs upon the total disk array performance. The costs 

are also monetary as each RAID configuration requires additional 

disks in order to perform the specific RAID algorithm. Thus the 

goal of the RAID disk array designer is to minimize both the costs 

while maintaining the disk array's fault tolerance. 

In reference [4], it was noted that the overhead caused by the RAID 

configurations has the most impact when the disk accesses are for 

small sized data. This is because for small accesses the amount of 

time used to transfer the data across the IN is much less than the 

amount of time required to access the data on the disk. This 

imbalance results in a bottleneck in the disk array. Because the 

disk array is already much slower than the rest of the system, the 

impact of this bottleneck can be great. 
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The case which best exemplifies the overhead induced by small 

disk accesses is the one in which the small accesses are Read

Modify-Write accesses. This type of access requires more accesses 

between the disk and disk controller than a simple Read or Write 

access. The transfers between the disk controller and the disk do 

not use the IN, but instead are handled by a bus which is inside the 

disk array. It is assumed that there is only one bus between the 

disk controller and the disks. Therefore, each of the transfers 

between the disk controller and a disk must occur sequentially. 

This is the worst case scenario possible because the service time for 

a Read-Modify-Write request will be the sum of the service times 

for each of the several accesses required between the disk 

controller and the disks. This assumption is consistent with 

reference [ 4]. 

The overhead incurred is different for each RAID method because 

each method causes a different amount of additional Read and 

Writes between the disk controller and the. disk to perform the 

actions to ensure the data consistency. In reference [4], four 

different data integrity configurations were presented. They are 

non-redundant disk array, RAID Level 1, RAID Level 5 and a new 

scheme called Parity Logging. The details of each configuration will 

be discussed in the following paragraphs. 

The first configuration was the standard, non-redundant disk array 

configuration where no data backup occurs. Each Read-Modify

Write operation requires a Read from the disk, the data is updated 
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by the disk controller and then the new data is written back to the 

disk. There is no additional overhead associated with Read-Modify

Write operations. It was included to provide a point of reference to 

be used for comparison with the other disk array configurations. 

The second method was RAID Level 1 in which a second disk array 

was added which contains a copy of all the data sent to the first 

array. This method is often called "disk mirroring". For each Read

Modify-Write operation the data is read from the primary disk, 

updated, and then written to both the primary disk and its mirror 

disk. Therefore the performance overhead incurred is an additional 

write to the second disk. Because the performance overhead is not 

great, the main disadvantage to this method is the cost of a 

complete second disk array. 

The next configuration is a RAID Level 5. In this method, a single 

disk is added to the primary disk array. This disk maintains parity 

information about the data on the primary. array to ensure that 

data can be reconstructed. For each Read-Modify-Write access, the 

data must be read from and written to the disk array and in 

addition the matching data on the parity disk is read from and 

written to the parity disk. Thus the overhead incurred is an 

additional read and write for the updating of the parity disk. In the 

case of a small access to a disk array the overhead for a RAID Level 

5 system can impose a significant system impact. 
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The method proposed m reference [ 4] is called the Parity Logging 

method. The method proposed is similar to the RAID level 5 

scheme except that a parity and a logging disk are added to the disk 

array. Instead of directly writing the parity data to the parity disk, 

it has a buffer in RAM which holds the amount of parity 

information that can be stored in a disk track. When this buffer is 

full of parity information then this buff er is written to a track on 

the logging disk. This continues until the logging disk is full of 

parity information, at which time all the data on the parity disk and 

logging disk is read into memory, the parity data is updated and 

then the new disk full of parity data is written back to the parity 

disk. Therefore, if each data transfer is the one block and there are 

X data blocks per track and Y cylinders per disk then once every X 

accesses there is an additional track access and every X*Y accesses 

there are 3 full disk accesses. Depending upon the block, track and 

disk sizes, the overhead induced by this method can be quite small 

compared to the RAID configurations while only adding two disks to 

the disk array. 

In reference [ 4 ], it is stated that the impact of small accesses is 

greatest on Read-Modify-Write accesses to the disk and then 

proceeds by presenting the worst case scenario where all the 

accesses are small. To do performance analysis of a system it would 

be helpful to see the overhead caused by each data integrity 

method for more than one data access size. In this study it was 

assumed that the size of the data accessed will have two possible 

types: a small access which performs a Read-Modify-Write on a 
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single data block and a large access which reads a whole track from 

a single disk. The proportion of the large to small accesses will be 

altered to study the effects of the large and small accesses on the 

system performance. 

The disk array configuration was the same as those used in 

references [3] and [4] for an IBM Lightning drive as follows: 

numCyl = 949 cylinders per disk, 14 tracks per cylinder, 48 data 

blocks per track, 512 bytes per block, 13.9ms for time of full 

disk rotation, cylinder seek time = 2ms, avgSeek (block) = 
12.6ms, minSeek (block) = 2ms, maxSeek (block) = 25ms, and 

there were 22 disks in the disk array 

- The SeekTime is calculated as in section 3 .2: 

- Because the amount of time which is required to actually access 

the data on the disk varies significantly for small and large disk 

accesses and to be consistent with reference [4], the Data Access 

time is entered into the model to help accurately portray the 

disk array's performance. The Data Access Time (Ta) was 

defined as in section 3.2. Thus: 

Tab = Block access time = 0.289853333 ms 

Tat = Track access time = 13.9 ms 

Tad = Disk Access time = 13191.1 ms 

In addition, the CPN model had the following system parameters: 

10 processors; the processor's Think Time was exponentially 

distributed with mean of 100 ms; and 1 disk request per array 

request (the size of the array request is not an important 

parameter in this particular study). 
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It was assumed that there was enough buses in the system so 

that the IN is not a bottleneck for the I/0 subsystem. In 

addition, 

the bus's Transfer Time Tt is different for large and small 

accesses and was calculated as in section 3.2 which produced: 

Track Transfer Time = Ttt = 13.65 ms 

Block Transfer Time = Ttb = 0.284ms 

Because the IN was assumed that there were enough buses in 

the system, the bus's transfer time was included into the service 

time calculation in the Access Data in Disk transition. 

Disk Array Response Time vs Proportion of 

Small Accesses ( % ) 
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The disk array response times of each of the data integrity 

configurations are shown in figure 8. As the figure shows, the 

effects of the small write problem talked about in reference [ 4] is 

more prevalent when there are more small accesses than large 

accesses. When most of the accesses are small, the overhead effects 

are greatest. As the percentage of large accesses increases, the 
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difference between the disk array configurations is reduced. This 

continues until the case where all the accesses are large when there 

is no difference between the various disk array configurations. 

As expected the RAID Level 5 response imposes the largest amount 

of overhead. In addition, its impact is greatest in the case where 

there is all small writes. At this point it more than doubles the disk 

array response time of the non-redundant disk array. 

The RAID Level 1 imposes much less overhead than RAID Level 5 

while still maintaining complete data integrity. The main problem 

with RAID Level 1 is that two complete disk arrays are required 

which can be costly. 

The parity logging appears to not impose almost no overhead upon 

the system while providing similar data integrity protection as 

RAID Level 5. From this data it appears that the CPN model 

underestimates the overhead incurred by the parity logging 

methodology. As stated in i:eference [4], the expected overhead was 

to be around 25% of the disk response time. It did not appear from 

the simulation data that the parity full disk transfers occurred. The 

parity disk updates account for a large portion of the overhead in 

this scheme. Therefore, unless this transfer occurs the CPN model 

will underestimate the response time for this model. Because the 

model appears to be correct, the way to increase the likelihood of 

getting the disk accesses to occur is to run the simulation for longer 

periods. 
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The complexity of these system configurations was less than the 

complexity of the models presented earlier in this paper. This was 

mainly due to reducing the number of disks and setting the array 

size N to 1. Because the model is simpler, the simulation could 

proceed much more quickly than earlier models. Therefore, the 

simulations for this particular performance analysis was run for 

twice as much simulation time as the simulation runs in the 

validation section of this paper. This leads to more simulation data 

which produces more reliable results. This can be observed in 

figure 8 as the data series for each disk data integrity configuration 

appears to be nearly linear as expected. However the fact that the 

Parity Logging results are less than expected indicates that there 

still is some error in the results. Therefore, the longer the 

simulation run and the less complex the model is, the more accurate 

the results of the simulation. 

Small writes are prevalent in many applications. Small accesses can 

impose a severe performance penalty for certain disk array data 

integrity configurations, in particular RAID Level 5. Therefore a 

system designer must balance the performance degradation 

brought on by the data integrity configuration, the proportion of 

small accesses to large ones, the system's data integrity needs and 

the cost constraints of the system. 
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Chapter 6: 

conclusions 

This paper presents a Colored Petri Net simulation model which 

emulates a system comprised of a multiprocessor subsystem 

connected across an interconnection network to a disk array 1/0 

subsystem. The following is a listing of the assumptions which 

governed the model, grouped by subsystem: 

Processors: 

- the number of processors can vary 

- the think time of the processors can vary 

- the number of disk requests in the array request can vary 

- the size of data requested for each disk request can vary 

- the disks generate array requests which can fork into 

several disk requests. 

- once all the disk requests which belong to the same array 

have all been handled, they all join back together to complete 

the array request cycle. 

the size of the IN can vary 

- the configuration of . the IN is a single stage 

- the delay across the IN can vary with the size of the data 

crossing it 

- The data crossing the IN can be processed in a non-FIFO 

fashion due to contention for resources between the buses 

entering and the buses leaving the processors. 
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Disk~ 
~ 

- the service time of the disks can vary 

- the disks in the array can service 

- the number of disks can vary 

The Colored Petri Net model presented is very flexible and allows 

many of the system parameters to be altered. For example if a 

constant think time for the processors was desired, only a minimal 

change to the model would be required. This allows the CPN model 

to overcome most of the limitations of analytical models which are 

brought on ~y the simplifying assumptions required to develop the 

state equations of the analytical model. In addition, this allows the 

user to model in detail only the portions of the model which are 

pertinent to the study. For example, the whole interconnection 

network page of the model could be eliminated if it was not 

pertinent. 

This model can be used to do performanc~ analysis's of systems 

which conform to the basic · system architecture and can be 

characterized in a functional or procedural fashion. It can be used 

to validate analytical models such as ones presented in references 

[l] and [ 4]. 

While this model can estimate system performance on systems 

which have much larger state spaces than generally is possible with 

Petri Nets, its main limitation is still the complexity of the state 

space. If the model is very complex, then if the model can be 
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simulated at all, it must be performed on a high performance 

computer platform. To ensure that the model will run, the model 

complexity must be minimized. 

In addition, the amount of time it takes to perform a simulation is a 

function of the complexity of the system's state space. To ensure 

accurate simulation results, the simulation time must be maximized. 

In conclusion, the model developed emulates the system described 

and is flexible enough to emulate many different system 

configurations. This system can produce data about the service 

time of an array request, the utilization of the interconnection 

network and the disk array. The outputs of this model have been 

satisfactorily validated against the results produced in other studies 

of similar system over a range of all workloads. This model can be 

used to characterize a multiprocessing, disk array system at most 

levels of detail required and in the areas of interest specified in the 

assumptions above. The price of this flex~bility is increased 

modeling and simulation time over analytical models. Thus, the 

user of this model or this modeling tool must carefully balance the 

amount of detail in the model required to produce useful results 

against the complexity of that model. 
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Appendix A: 

The CPN model contains 4 CPN model pages: One for the processors 

and the generation of the disk requests, one for the interconnection 

network (IN), one for the disk array and one which contains the 

color, variable and function descriptions. These pages are logically 

connected and therefore act as though the model is on one page. 

The model was separated into these pages so that the model would 

be more understandable. 

The separation of the model into pages also gives the user the 

flexibility to remove a whole subsystem's functionality from the 

model to simplify the model when the subsystem is not needed. In 

this model the interconnection network page of the model could be 

removed but only if it is assumed that the interconnection network 

is large and fast enough not to impose any limitation on the rest of 

the system. This simplification of the model would lead to faster 

simulation runs due to the smaller state spa.ce of the model. 
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al Time= t.ime; (* allows the current t.ime to be accessed from CPN regions *) 

c•const.anl declarations • ) 
val NumCPU = 1 O; (*allows for 12S different CPUs*) 

val NwnDAR = 10000; (• 10000 DARs allowed per CPU *) 
val Length ""49; (* this is the length of a vector, *) 

val NwnDISK = 22; (* allows 50 disk. *) 
val NumBUS = 50; (*number of buses possible*) 

(*CPU st.ate colors *) 
color ST ARTIDLE =real; (*holds the time that a CPU.BUS or disk starts bcing unused *) 
color CPU= int with 1 .. NumCPU; (* CPU identifier•) 
color ID =int with 1 .. NumDAR; (* disk access request identifier*) 
colorCPUst.at.e =record Cpu:CPU * ld :ID • Stanldle:STARTIDLE timed;(* represents the st.ate of the CPU*) 

(*DAR gene..-ation colors*) 
color PROCESS= int; (*holds wruch what type of process caused this DAR lO be sent: maps to the RAID coo.figuration in this model*) 
color DISK= int ·wi th O .. NurnDISK-1; (* IJO disk identifier*) 

(*DAR colors *) 
color ELEMENT= int with O .. Length-1; (*identifies wruch vector element it is.*) 

color DAR= record CPUld :CPU • DARld :ID • Element:El..EMENT • Disk:DISK • N:ELEMENT • Procc.Y:PROCESS timed; 

(*represents information in a DAR *) 
color DAR_UST =list DAR; (* holds DARs in a list structure *) 

(* Disk st.ate colors *) 
color DISKstate =record IP.sk.ld:DISK • Startldle:ST ARTIDLE timed; 

(*Identifies which disk. is being used and when it started being idle*) 

(* BUS colors *) 
color BUS= int with O .. NumBUS-1 timed;(* identifies which bus is used*) 

color BUSstate =record Busld:B US! Startldle:ST ARTIDLE; (•Identifies which bus and what time it started bc:ing idle*) 

color X= real with 0.0 .. 949.0; (* random number holder*) 
color TR= real with 0.0 .. 14.0; (* rotation latency color*) 
color XD =real with 0.0 .. 0.999999; (*random number holder for CPU th.ink time*) 
color TVD =int with l .. 23322624; (*random number holder for which element is being accessed. Only used in Parity logging model*) 
color TT = real; (* trans[ er time color*) 
color SERVICE= real;(* service time color*) 

(* variable declanitions *) 
var n:ELEMEN'T; 

YU disk: DISK; 
var dar,newdar,data,dement,fi.rst,newfirst,y ,new _y :DAR; 

var cpustate, newcpusune: CPCst.atc; 
var busstate,ncwbusrutc : BUSstate; 

var diskstate,ncwdisht.ate: DISKst.ate; 
var dar_list,dar_lists,data_list,dat.a_lists,element_list,fi.rst_list : DAR_LlST; 
var x,x 1,x2 : X; (* random number holders *) 

var Tr : TR; (*rotational latency holder*) 
var xd,h.li.rn.it : XD; (*CPU think t.i..-ne holder•) 

var Ttb,Tu: TT; (* time to transfer a block of data across the bus *) 

var Tab,Tat,Tad : TT; (*time LO read/write a block, track,dis.k. worth of data from the disk and send to the 1/0 cootroller <>CPU*) 

var AO.Al ,A2,A3,A4,A5 : SERVICE;(* variables to hold the seek and rotation and read/.,..rrite times for the various update schemes*) 
var process ,proc : PROCESS; 

(*identifies what type of 1/0 system is being modeled : 1 = nonredundant, 2.=mirror, 3=RAID5, 4= parity logging*) 
YU access : TYD; (•random number represent.i.."1g which access of TVD accesses*) 

(* this function determines the size of the data requested *) 
fun Gen Size (lirnit,proc)= 

Figure A. 4 Declaration page of CPN Model 
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}el 

val h ::: ran'XDO; 
val GcnSize = (if h > limit then 0 else proc); 

in (GenSi.ze) 

end; 

c• this function generates the seek time associated with a disk access•) 

fun SeckTune 0-
let 

val xl • ran'XO; 
val x2 = ran'XO; 
val x = abs(xl-12); 
val Tr::: ranTRO; 
val SeckTime= (0.4761 *sqrt(x)+(0.0088*x)+2.0+Tr); 

(* the above line generates the Savice Time for a read and write access of a disk drive *) 

in (ScckTime) 

end; 

(*this function generates the Service time for a dis.k access: including sc:ck time, data access time and overhead for each RAID level•) 

fun ScrviccTimc(procc:ss)= 

let 
val Ttb = 5120 / 1800.0; 
val Ttt = 48.0 • Ttb; 
val Tab = 13.9/48.0; 
val Tat• 13.9; 
val Tad= 949.0 • 13.9; 

val access = ran TVDO; 
val AO = SeckTimcO + Tat + Tn; (* service time if large block *) 
val Al • SeckTimcO + Sc:ckTimcO + (2.0*Tab); (*read/write time of block: All types have th.is delay*) 
val A2 =(if process = 2 then (ScckTimcQ +Tab) else 0.0); (* mirror ovc:rllcad *) 
val A3 •(if process • 3 then (SeckTimcO + SeckTuncQ +Tab+ Tab) else 0.0); (*RAID 5 ovchcad *) 
val A4 =(if process = 4 then (if (access mod 48 = 0) then (SeekTimeO +Tat) else 0.0) else 0.0); 

c• parity logging track write overhead •) 
val A5 •(if process -= 4 then (if (access • 23322624) then (3.0*(SeckTime O +Tad)) else 0.0) else 0.0); 

c• parity logging disk (2read +write) overhead•) 
val Service Times (if process = 0 then AO else (A 1 + A2 + A3 + A4 + A5 + Ttb )); (* total service time for an acccsa *) 

in (Sc:rviccTime) 
end; 

c· this function generates all the dis.k access tokens for each array request taken it reccivcs *) 
fun gen_DARs(y) = 
let 
val new_y = { 

in 

CPUid = #CPUid y, 
DARld = #DARld y, 
Element = #Element y + 1, 
Disk = ((#Disk y + 1) mod N'umDISK), 
N =#Ny, 
Process = #Process y); 

if (#Element new _y) < ((#N new__)')) 
then l'y + gen_D.~(new_y) 
else 1 'y 

end; 

(*this functioo calcula tes the think time associated with a processor based on an exponential distribution *) 

fun fap_Dist O= 
let 

val xd = ranXDO; 

Figure A.4 Declaration page of CPN Model (cont.) 

45 



Appendix B: 

Colored Petri Nets 

This Appendix contains 2 parts, the first section describes the main 

concepts behind Colored Petri Nets and the second section presents 

a short overview of the functionality of Colored Petri Nets (CPNs). 

Petri Nets have been used in performance studies of systems in 

many cases, the results of which show that Petri Nets are useful in 

systems that are not too complex [5,6,7]. A traditional Petri Net 

(PN) is a graphical and mathematical model which can be used to 

describe and study information processing systems that can be 

characterized as being distributed, concurrent, asynchronous, time 

varying, nondeterministic and/or stochastic. As a graphical tool, 

PNs can be applied to almost any application which can be 

described graphically like a flow diagram or state diagrams. In 

addition, when simulating the user can observe tokens flow through 

the model as they simulate the dynamic and concurrent activities of 

the system. As a mathematical tool, there is a mathematical 

formalism associated with PNs which completely defines what a PN 

is and how it behaves. Although PNs are generally represented as a 

directed graph, a PN is actually a mathematical object that exists 

independently of any physical representation. The actual 

implementation of a PN model is a state matrix which describes the 

set of possible states in that model. As a mathematical tool it is also 

possible to set up state equations, algebraic expression and other 

mathematical models governing the behavior of the system.[5]. 

46 



A Colored Petri Net (CPN) is the type of PN used in this study. The 

CPN tool's main strength is its ability to study applications of higher 

complexity than is generally possible with traditional PN tools. A 

CPN differs from traditional PN s in the following ways: A CPN has 

the added ability to declare data types, hereafter called colors; it 

provides many modeling capabilities which simplify the modeling 

process; and most drastically, it does not offer the ability to perform 

the mathematical operations on the state matrix of the system that 

a mathematically formal PN tool would. In traditional PNs only a 

single data type can be handled by a node. Thus additional nodes 

would be required to handle each different data type. In CPNs 

multiple data types can flow through a single node which reduces 

the number of nodes in the system. In addition, Meta Software's 

CPN tool also provides many additional features, like simulated time 

and code segments which allow functionality to be entered into a 

model while keeping it understandable. The reason that the 

mathematical manipulations have not been offered for CPN is that 

additional functionality such as color declarations and other 

features makes the state space associated with a CPN is too large for 

matrix reduction techniques. 

The main disadvantage of a CPN is that if the modeler is not careful 

the model can get too complex to be analyzed. This is due to the 

direct relationship between the CPN model's complexity and the size 

of the state matrix related to the model. In addition, as the state 

matrix gets larger the simulation model executes more slowly. Also, 

if a host computer platform is used which has limited RAM 
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available, then a model can get too large to execute. For example, 

even a fairly high performance personal computer, such as the 

Macintosh Ilci with 32Mb of RAM used for this study, can quickly 

be overwhelmed by a model of moderate complexity. Even when 

the model's complexity is adequately controlled to make simulation 

possible, the amount of time required to simulate most models is 

quite large. When the model was executed on a higher performance 

computer, such as a Quadra 750 with 40 Mb of RAM, the simulation 

times were reduced by about one half. Therefore, the modeler 

must balance the amount of detail in the model and the host 

computer's ability to handle the complexity contained in the model. 

Another disadvantage of the CPN tool is that the built-in charting 

tools, which are meant to extract data from a model, impose too 

much overhead to operate with this paper's model on either of the 

computer platforms described above. Therefore, the state of the 

system was saved in a text report. This report recorded any 

changes to the state of the system. Becau~e this report contained 

much information which was not pertinent to this study, a program 

was written in C which extracted the relevant information. It 

gathered information about disk array's response time and the 

utilization of the bus and disk arrays. The program is included for 

reference in Appendix C. An example of the raw CPN data and the 

output of the data extraction program are presented in Appendix D. 

Together, the features provided by Meta Software's Colored Petri 

Nets allow great flexibility for the modeler. A model can be easily 
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created and detail can be added to any area of the model it is 

required. The graphical nature of a CPN can make it easier to 

understand the functionality of the model and therefore does not 

require the audience to have much background using this tool. 

Because a CPN is a simulation model, it does not inherently require 

simplifying assumptions to be made to create a model although one 

has to be careful to limit the complexity of the model. The ability to 

declare colors and encode functionality can help limit the 

complexity of a model and make the model more understandable. 

In addition, since CPN is a mature, commercial modeling tool which 

has been available for several years and used on many diverse 

models, it is believed that the results produced by the tool are 

reliable. 

Colored Petri Net Functionality: An Overview 

In figure B.1, a simple resource contention model is shown. CPNs 

are made of three types of objects: A token,. a place and a transition. 

The role that each of these play in the CPN model will be described 

in the following paragraphs. 

A token which represents the data flowing through the model is 

represented by the small circle with a number inside it. These 

tokens are defined by data type or "color". In the figure the tokens 

have two possible colors which are specified in the color declaration 

section of the diagram: A Resource color which can have values 

Printer or Modem and a Process color which can have a value 
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DataTransfer or PrintRequest. Colors can represent more complex 

Process 

Process 

'DataTransfer1 + 1 'PrintRequest1 + 
1 'PrintRequest2 

[(proc =DataTransfer and res= Modem) orelse 
(proc = PrintRequest and res= Printer)] 

Obtaining 
Resource 

proc 

res 

1 'Printer+ 
1'Modem 

.---..... --.... if (proc = DataTransfer) 
Releasing then 1 'Modem else 1 'Printer 

roe 

Resource 
@+5 

(* color Declarations *) 
color Process:DataTransferl ,DataTransfer2, 
PrintRequest1, PrintRequest2; 
color Resource: Modem, Proinger; 

(* variable declarations *) 
var proc: Process; 
res: Resource; 

A Simple Resource Contention CPN Model 

Figure B.1 

data types such as records or combinations of previously declared 

colors. 

Tokens are held in "places" which are represented by ovals in the 

figure. The set of tokens in all the places represents the state of the 

model at any point in a simulation run. The number and value of 
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tokens in each place or "marking" is shown by the circle with the 

number in it which indicates the number of tokens in that place and 

the optional full marking, shown in bold by the place, which shows 

the number and the value of each token. Each place may hold only 

one color of tokens. This may seem to be a major limitation but it is 

not because a color may be defined to be a combination of other 

colors. This allows more than one of the colors to be allowed in a 

place. The color which is associated with this place is shown in 

italics near the place in the figure. For example the A waiting 

Resources place can only hold tokens of the color Process. 

A token moves from one place to another by passing through a 

"transition" which is represented by a rectangle in the figure. A 

transition represents an action in a CPN. A transition may have a 

"guard" which indicates some requirements on the type, value or 

number of tokens which may pass through it. A guard is 

represented by a set of expressions enclosed in brackets "[ ]" as 

shown in the Obtain Resources transition in. the figure. The guard 

for this transition requires that the values of tokens coming into the 

transition match before allowing them to pass. Note that the "res" 

token is consumed by this transition. A guard may also determine 

what the output of the transition will be. For example a token could 

be generated and assigned a value based upon the value of the 

token entering the transition. Thus a transition may change the 

value or type of a token as a token leaves it. 
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A transition can fire only when all the input requirements and 

guard requirements are met. An example of an input requirement 

is that all places which go to the transition must have tokens which 

enable the transition. A transition which is enabled to fire is drawn 

with a thicker border as both are in the figure. If more than one 

combination of input tokens have enabled a transition to fire, then 

either a set is chosen at random or the guard determines which are 

selected. Thus in the Obtain Resources transition, there are three 

possible markings which fire this transition: (DataTransferl, 

Modem), (PrintRequestl, Printer) or (PrintRequest2, Printer). 

A CPN transition can pass more than one marking through a 

transition at a time if there are enough resources to allow it. For 

example, the Obtain Resources transition could allow both the 

(DataTransferl, Modem), (PrintRequestl, Printer) tokens to pass 

through it at the same simulation step. This allows the simulation 

to advance using fewer simulation steps which reduces the 

overhead which is incurred by each simulation step. 

An arc, represented by an arrow, is the connection between a place 

and transition. It can have a set of requirements which are similar 

to the guard associated with a transition. These requirements could 

specify a token color or a required number of tokens which may 

pass across it. For example in the arc leading from the Release 

Resources transition to the Resource Pool place the value of the 

token which will goes across it is determined by the value of the 

token which enters the transition. 
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A CPN also has the optional ability to simulate time. The ability to 

represent time allows quantitative results to be produced by the 

model. The method for implementing time is that a delay can be 

associated with any transition or arc. Thus some transitions could 

be required to take time and others would take no time. This 

allows functionality to be included, such as data extraction, which 

does not have an effect on time associated with a token. The format 

for a this is: @ + delaytime where @ indicates the current time and 

delaytime could either be a constant or conditional numeric 

assignment. In figure B .1, the Release Resource transition has a 

delay time associated with it. Therefore when a token passes 

through this transition, it is not available for use until the time 

advances to (Current Time + 5 time units ). 

A code segment is a function which can be associated with an arc or 

transition which can be much like a procedure in a computer 

program. A code segment allows more coµiplex operations to be 

performed than would easily be possible using a guard or arc 

inscription. A code segment is written in the CPN variant of the ML 

language. An example of a code segment can be found in Appendix 

A associated with the Generate Array Request transition on the 

processor page. This code segment builds a token of the "record" 

color which represents an array request. 

Functions can also be defined to perform operations which are done 

repeatedly. A function is written in the CPN variant of the ML 
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language. A function could be associated an arc inscription, a time 

delay, a guard or a code segment. The functions are generally 

defined in the Declaration Node page. One example is the Exp_Dist 

function which calculates the exponential distribution for the 

processor think time. This function is on the arc between the CPU 

Processing Data place and the Generate Start Address and Stride 

transition. The body of the function is located on the Declaration 

Node page. 
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Appendix C: 

(* The program to extract the chart data from raw CPN data *) 

#include <stdio.h> 
#define MAXLINE 300 /*defines the maximum line length */ 
main () 

{ 
double GetNumFl(); 
FILE *in, *out, *out2, *out3, *out4; 
char infile[20]; 
int i,j; 
char ch; 
char Gen; 
char Rec; 
char Join; 
int line; 
int Numlnt; 
int numspace; 
double TimeNow; 
double TimeStart; 

int CPU; 
int N; 
int Disk; 
int Element; 
int Process; 
double CPU Start[ 11] [ 100]; /* holds the amount of time a CPU was 

idle */ 
char text[300]; 
double CPUWait; /* time a CPU has waited */ 
double CPUWaitPerEl; /* time that CPU waited per element */ 
double TotalCPUWait; /* time that all CPUs have waited */ 
int TotalN; /* total number of elements sent *I 
int ReqNum; /* number of data requests performed for a CPU thus 

far */ 
char Direction; /* which direction data went on bus */ 
float Busy; /* how long Bus was held busy */ 
char Bus; /* whether a Bus data line was read */ 
float BusWait; /* idle time for bus */ 
int B usld; /* which bus it is *I 
int Diskld; /* which memory bank is it */ 
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float DiskBusy; /* what the total access time of a bank was for a 
certain access *I 

float Diskldle[50]; /* holds the amount of time a bank was idle for 
an access */ 

char DiskA,DiskB; /* whether the current line is 'Access' or 
'Make'(Disk), respectively */ 

printf ("Enter the input file name. \n "); 
scanf("%s ",infile ); 
if (((in = fopen(infile,"r")) !=NULL) && ((out= fopen("CPU.txt","a")) 

!=NULL) &&((out2 = fopen("BUS.txt","a")) !=NULL) && ((out3 = 
fopen("Mem.txt","a")) != NULL)&& ((out4 = fopen("Join.txt","a")) != 
NULL)); 

{ 
line =0; 
Gen= 'f; 
Rec='f; 
Bus='f; 
DiskA='f; 
DiskB='f; 
Join='f; 
Direction=' '; 
Busy=O.O; 
EraseArray(text,MAXLINE); 

i=O; 
j=O; 
TotalCPUWait=O; 
TotalN=O; 
while ((ch=getc(in)) != EOF) 
{ 
text[i] = ch; 
if (line==O) 
{ 

} 

if (ch == \n') 
{ 
line =1; 

EraseArray(text,MAXLINE); 
numspace = 0; 

i=-1; 
} 

if (line == 1) 
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't') 

{ 
if (ch == '\n' && numspace != 0) 
{ 

EraseArray(text,MAXLINE); 
numspace = O; 
i=-1; 
line=2; 
ch='\O'; 
} 

if (ch=='') 
{ 

} 

numspace = numspace + 1; 
if (numspace == 4) 
j=i+l; 

if (numspace == 4 && text[j] == 'G' && text[j+2] == 'N' && Gen != 

{ 
TimeNow = GetNumF1(3,text); 

Gen= 't'; 
} 
if (numspace == 4 && text[j] == 'R' &&Rec != 't') 
{ 

TimeNow = GetNumF1(3,text); 
Rec = 't'; 
} 
if (numspace == 4 && text[j] == 'J' &&Join != 't') 
{ 

TimeNow = GetNumF1(3,text); 
Join= 't'; 
} 
if (numspace == 4 && text[j] == 'd' &&Bus != 't') 
{ 

TimeNow = GetNumF1(3,text); 
Bus= 't'; 
Busy = 0.4; /* data going to CPU*/ 

} 
if (numspace == 4 && text[j] == 'T' &&Bus != 't') 
{ 

TimeNow = GetNumF1(3,text); 
Bus= 't'; 

Busy = 0.0001; /* DAR going to memory bank*/ 
} 

57 



r 
if (numspace == 4 && textUJ == 'A' &&DiskA != 't') 
{ 

TimeNow = GetNumF1(3,text); 
DiskA = 't'; 
} 
if (numspace == 4 && text[j] == 'M' && textU+8] == 'M' && DiskA 

!= 't') 
{ 

TimeNow = GetNumF1(3,text); 
DiskB = 't'; 
} 
} /*end of line = 1 processing *I 

if (line == 2 && Gen == 't' && ch == '\n') 
{ 

CPU = GetNumlnt(9,text); 
ReqNum = GetNumlnt(l 1,text); 

CPUStart[CPU][ReqNum] = TimeNow; 
Gen= 'f; 

EraseArray( text,MAXLINE); 
i=-1; 
j=O; 
line =1; 
numspace=O; 

} 
if (line == 2 && Rec == 't' && ch == '\n') 
{ 

CPU = GetNumlnt(9,text); 
ReqNum = GetNumlnt(ll,text); 
Disk = GetNumlnt(15,text); 
N = GetNumlnt(17,text);" 
Process = GetNumlnt(19,text); 

CPUWait = TimeNow - CPUStart[CPU][ReqNum]; 
CPUWaitPerEl = CPUWait IN; 
TotalCPUWait= TotalCPUWait + CPUWait; 
TotalN= TotalN + N; 
fprintf(out,"%f %d %f %d %d %d %d 

\n", TimeN ow, CPU, CPUW ai t, 
Process,N,Disk,ReqNum); 

Rec ='f; 
EraseArray(text,MAXLINE); 

i=-1; 
j=O; 
line =1; 
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numspace=O; 
} 

if (line == 2 && Join == 't' && ch == '\n') 
{ 

CPU = GetNumlnt(9,text); 
ReqNum = GetNumlnt(l 1,text); 
Element = GetNumlnt(13,text); 
Disk = GetNumlnt(15,text); 
N = GetNumlnt(l7,text) +1; 
CPUWait = TimeNow - CPUStart[CPU][ReqNum]; 

fprintf(out4,"%f %d %f %d %d %d %d 
\n", TimeN ow ,CPU ,CPUWait,Element,N ,Disk,ReqN um); 

Join ='f; 
EraseArray(text,MAXLINE); 

i=-1; 
j=O; 
line =1; 
numspace=O; 

} 
if (line == 2 && Bus == 't' && ch == \n') 
{ 

Busld = GetNumlnt(9,text); 
TimeStart = GetNumFl(l 1,text); 
BusWait = TimeNow - TimeStart; 

fprintf(out2,"%f %d %f %f \n",TimeNow,Busld,BusWait,Busy); 
Bus ='f; 

Busy= 0.0; 
Erase Array( text,MAXLINE ); 

i=-1; 
j=O; 
line =1; 
numspace=O; 

} 
if (line == 2 && DiskA == 't' && ch == '\n') 
{ 

Diskld = GetNumlnt(15,text); 
TimeStart = GetNumF1(39,text); 
Diskldle[Diskld] = TimeNow - TimeStart; 

DiskA ='f; 
EraseArray(text,MAXLINE); 

i=-1; 
j=O; 
line =1; 
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numspace=O; 
} 

if (line == 2 && DiskB == 't' && ch == '\n') 
{ 

Diskld = GetNumlnt(9,text); 
TimeStart = GetNumFl(ll,text); 
DiskBusy = TimeNow - TimeStart - Diskldle[Diskld]; 

fprintf(out3,"%f %d %f %f 
\n", TimeN ow ,Diskld,Diskldle [Diskld] ,DiskB usy ); 

DiskB ='f; 
EraseArray( text,MAXLINE); 

i=-1; 
j=O; 
line =1; 
numspace=O; 

} 
if (line ==2 && Rec != 't' && ch == '\n') 
{ . 

} 
} 

line =1; 
EraseArray( text,MAXLINE); 

i=-1; 
j=O; 

numspace=O; 
} 

i++; 
} 

fclose(in); 
fclose( out); 
fclose( out2); 
fclose( out3 ); 
fclose(out4); 

/* GetNumFl function */ 

double GetNumFl(spaces,arrln) 
int spaces; 
char arr In[]; 
{ 
int m,n,o; 
double NumFl; 
char greater; /* greater than zero flag *I 
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double tens; /* power of 10 holder */ 

/* enter in to the beginning of the number */ 
m=O; /* 'arrln' array pointer */ 
n=O; /* number of spaces counter */ 

tens = 10.0; 
greater = 't'; 

NumFl = 0.0; 
while (n < spaces) 
{ 
if (arrln[m] == ' ') 
{ 
n++; 
} 

m++; 
} 
/* convert the array to a number */ 

while (arrln[m] != ' ' && arrln[m] >= 48 && arrln[m] <= 57) 
{ 

if (arrln[m] != '.' && greater == 't') 
{ 

NumFl = (NumFl * 10.0) +(arrln[m]-48.0); 
m++; 
} 
if (arrln[m] == '.') 
{ 

greater='f; 
m++; 
o=l; 
} 
if (greater == 'f && o<7) 
{ 

NumFI = NumFl + ((arrln[m]-48.0) I tens); 
tens = tens * 10.0; 

m++; 
o++; 
} 

if (greater == 'f && o >= 7) 
m++; 

} 
return(NumFl); 

} 
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/* GetNumlnt function */ 

GetNumlnt(spaces,arrln) 
int spaces; 
char arrln[]; 
{ 
int m,n,o; 
int Numlnt; 

/* enter in to the beginning of the number */ 
m=O; /* 'arrln' array pointer */ 
n=O; /* number of spaces counter */ 

Numlnt=O; 
while (n < spaces) 
{ 
if (arrln[m] == ' ') 
{ 
n++; 
} 

m++; 
} 
/* convert the array to a number */ 

while (arrln[m] != ' ' && arrln[m] >= 48 && arrln[m] <= 57) 
{ 

Numlnt = (Numlnt * 10) +(arrln[m]-48); 
m++; 
} 
retum(Numlnt); 

} 

/* EraseArray function */ 
EraseArray( arr ,length) 

char arr[]; 
int length; 

{ 
int k; 
for(k=O;k<length;k++) 
{ 

} 

arr[k]='\D'; 
} 
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Appendix D: 

Raw CPN Data (excerps) 
Simulation Report 
1A@0.0 GENERATE@(l:CPU#l) 

{ cpustate = {Cpu = 10,Id = 1,Startldle = 0.0},mar = {CPUid = 
10,DARid = !,Element= O,Disk = 45,N = 10,Process = l},newcpustate 
= { Cpu = 1 O,Id = 2,Startldle = 0.0} } 
2 A@ 0.0 GENERATE@(l:CPU#l) 

{ cpustate = {Cpu = 9,Id = 1,Startldle = 0.0},mar = {CPUid = 
9,DARid = 1,Element = O,Disk = 59,N = 10,Process = 1 },newcpustate = 
{ Cpu = 9,Id = 2,Startldle = 0.0}} 
3 A@ 0.0 MAKE@(l:CPU#l) 

{ mar= {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N = 
1 O,Process = 1} ,mar_lists = []} 

7 A@ 0.0 TRANSFER@(l:BUS#3) 
{ busstate = {Busld = 9,Startldle = 0.0},mar = {CPUid = 10,DARid = 

1,Element = 9 ,Disk = 54,N = 1 O,Process = 1 } ,mar_list = [ { CPUid = 
10,DARid = 1,Element = 8,Disk = 53,N = 10,Process = l}],mar_lists = 
m 
14 A@ 0.0 ACCESS@(l:MEMORY#5) 

{ data= {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N = 
10,Process = 1 },mar = {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N 
= 1 O,Process = 1} ,diskstate = { Diskld = 54,Startldle = 0.0} } 

726 A @ 20.3440527255964 Join@(l :MEMORY#5) 
{ data= {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N = 

1 O,Process = 1 } ,data_lists = []} 
727 A @ 20.3440527255964 MAKE@(l:MEMORY#5) 

{ diskstate = {Diskld = 54,Startldle = 0.0},newdiskstate = {Diskld 
= 54,Startldle = 20.3440527255964}} 
728 A @ 20.3440527255964 ACCESS@(l :MEMORY#5) 

{ data= {CPUid = 2,DARid = 1,Element = 1,Disk = 54,N = 
1 O,Process = 1} ,mar = { CPUid = 2,DARid = 1,Element = 1,Disk = 54,N 
= 1 O,Process = 1 } ,diskstate = {Di skid = 54,Startldle = 
20.3440527255964}} 
729 A @ 20.3440527255964 d@(l :BUS#3) 

{ busstate = {Busld = 3,Startldle = 17.2029297094067},data = 
{CPUid = 10,DARid = 1,Element = 9,Disk = 54,N = 10,Process = 
1} ,data_list = [],data_lists = []} 

63 



730 A @ 20.3440527255964 MAKE@(l:BUS#3) 
{ busstate = {Busld = 3,Startldle = 

17.2029297094067},newbusstate = {Busld = 3,Startldle = 
20.3440527255964}} 
731 A @ 20.3440527255964 q@(l:CPU#l) 

{ data= {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N = 
1 O,Process = 1 },data_list = []} 

872 A @ 26.7412681559373 h@(l:CPU#l) 
{ first= {CPUid = 10,DARid = 1,Element = O,Disk = 45,N = 

10,Process = 1}} 
873 A @ 26.7412681559373 GET@(l:CPU#l) 

{ element = {CPUid = 10,DARid = 1,Element = 1,Disk = 46,N = 
10,Process = l},first = {CPUid = 10,DARid = 1,Element = O,Disk = 
45,N = 10,Process = 1},newfirst = {CPUid = 10,DARid = 1,Element = 
1,Disk = 45,N = 10,Process = 1}} 
874 A @ 26.7412681559373 GET@(l:CPU#l) 

{ element = {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N = 
10,Process = 1 },first = {CPUid = 10,DARid = 1,Element = 1,Disk = 
45,N = 10,Process = 1 },newfirst = { CPUid = 1 O,DARid = l ,Element = 
2,Disk = 45 ,N = 1 O,Process = 1 } } 

888 A @ 26.8354260254611 RECEIVE@(l:CPU#l) 
{ first= {CPUid = 10,DARid = 1,Element = 9,Disk = 45,N = 

10,Process = 1}} 

When this raw CPN data is run through Strip.c it results in four files: 

CPU.txt which contains the response times for each array request 

(from processor back to processor), Bus.txt which contains the 

utilization data of each bus in the interconnection network and 

Mem.txt which contains the utilization of each disk in the disk 

array. 

The data produced is best shown in chart. The following is the data 

produced from the complete file above from the CPU.txt file: 
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Figure D.1 Typical Results From a CPN Simulation Run 

The average value from this chart is then used as a data point on 

one of charts used to characterize the system's performance over a 

range of system parameters. For example, the above chart's data 

produces the D=80 data point in Figure 4 of this report. 
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