
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

1994

Performance Analysis of Multiprocessor Disk Array Systems Performance Analysis of Multiprocessor Disk Array Systems

Using Colored Petri Nets Using Colored Petri Nets

Kurt R. Almquist
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Almquist, Kurt R., "Performance Analysis of Multiprocessor Disk Array Systems Using Colored Petri Nets"
(1994). Open Access Master's Theses. Paper 1108.
https://digitalcommons.uri.edu/theses/1108

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1108?utm_source=digitalcommons.uri.edu%2Ftheses%2F1108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

PERFORMANCE ANALYSIS OF

MULTIPROCESSOR DISK ARRAY SYS1EMS

USING COLORED PETRI NETS

BY

KURT R. ALMQUIST

A THESIS SUBMITfED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR TI-IE DEGREE OF

MAS1ER OF SCIENCE

IN

ELECfRICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

1994

APPROVED:

MASTER OF SCIENCE THESIS

OF

KURT R. ALMQUIST

Thesis Committee

Major Professor

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

1994

Abstract

Due to the increasing gap between the performance of the

processors and secondary storage systems, the design of the storage

systems has become increasingly important. Arrays of interleaved

disks are a popular method of increasing the performance of

secondary storage systems. In order to optimize the performance

and configuration of the disk arrays, performance evaluations are

required. This paper presents a Colored Petri Net simulation model

which can represent various configurations of systems containing

multiple processors connected to a disk array system across a single

stage interconnection network. This flexible model allows many

system parameters to be varied such as number of processors,

buses and disks in the array and the delay distributions associated

with each. The performance estimates produced by this model are

validated in this paper against those found in other models and

found to be in good agreement. This paper shows that the CPN

model presented here is flexible and accurate enough to allow the

model to estimate the performance of "?-any widely varying system

configurations.

ii

List of Figures

1 System Configuration 6

2 Resource Contention Points in the System 7

3 Simplified Version of the CPN Model 1 1

4 Array Response Time vs Number of Disks 21

5 Disk Array Response Time vs Array Request Size 2 1

6 Disk Array Response Time vs Number of Buses 2 7

7 Utilization vs Number of Buses

8 Disk Array Response Time vs Proportion of

Small Accesses

A.1 Processor Page of the CPN Model

A.2 Interconnection Network Page of the CPN Model

A.3 Disk Array Page of the CPN Model

A.4 Declaration Page of the CPN Model

B.1 A Simple Resource Contention CPN Model

D.1 Typical Results from a CPN Simulation Run

IV

28

34

41

42

43

44 - 45

50

65

Chapter 1:

Introduction

The performance of processors and semiconductor memories is

increasing at a much greater rate than 1/0 systems such as

magnetic memories. Therefore, the performance of the 1/0 systems

is impacting increasingly upon the total system's performance to

the point where it can become the source of a performance

bottleneck in the system. The throughput of the 1/0 system can be

increased by replacing a single disk 1/0 system with a disk array in

which data may be placed on different disks so it can be accessed

concurrently. [1,2,3,4].

Many different organizations of disk arrays have been proposed in

the current literature [2,3,8]. In order to understand the benefits

and costs of each disk array configuration, it is important to have a

method for the estimation of the whole system's performance. This

will allow the system designer to unders~and the effects of various

system elements upon the. system's performance.

There are two types of models that are generally used for the

performance analysis of systems. The first is an analytical model,

which reduces the system's functionality to a set of equations. The

equations are then used to estimate the system's performance. The

second is a simulation model, which generally encapsulates the

system's functionality into a model in a more direct manner. The

1

simulation model is then executed to emulate the system's

performance.

Several analytical models have been developed which are based

upon many simplifying assumptions to allow the system to be

described by a usable set of equations. While these equations allow

the quick generation of results, they can also describe only a limited

or unrealistic set of system configurations. One such example is in a

paper by Lee and Katz where an analytical model is developed

which assumed that each processor issues a new request for a block

of data whenever any of the subblock data requests from the

previous request are finished.[3] This assumption implies that all

the sub block data requests generated from a request for a block of

data finish their disk accesses at the same time and that each

processor spends no time processing the data which it has just

received. This is not a realistic assumption because in a real system

each disk request may have a different service time because of the

starting position of the head on each disk, or a different number of

requests present at each disk.

In a paper by Yang, Hu and Yang, a more realistic set of

assumptions about the disk array and how it processes requests is

presented. However, this model can neither address the

relationships associated with the interconnection network (IN)

which connect the processors and the 1/0 system nor can it handle

different size data accesses within the same run.[1]

2

As shown above, a common problem associated with existing

models is that the assumptions which are made to enable the

system to be characterized by a set of equations also limit the

model's ability to handle all the different parameters which are

important in a system.

3

Chapter 2:

Guiding Assumptions and System Description

The model presented in this paper tries to more accurately describe

a real system by expanding upon the system assumptions described

in reference [1]. The assumptions are as follows:

1. Each processor generates a request for a block of data stored

on in the disk system. The request for a block of data, called a

logical disk request or an array request, is replaced by several

subblock requests, called disk requests. The disk requests are

then transferred to the appropriate disk where the subblock is

stored. The separate disks can then service the disk requests in

parallel.

2. The array request size, which is the number of disks accessed

by a single array request, can change depending upon various

attributes of the disk array such as the subblock size, the parity

scheme, the parity group size, and the request type. Therefore,

the array requests cannot be guarantet?d to access either only

one or all of the disks. ·

3. The individual disk requests of an array request may finish at

different times due to both the interference between disk

requests at each of the disks, and the different seek times on

each disk due to the random starting position of each disk's head.

4. It cannot be guaranteed that a new array request is always

issued upon the completion of a disk request. This depends upon

the workload of the 1/0 system and the frequency at which the

processor generates requests.

4

5. Each processor is capable of multiprocessing. Therefore, more

than one array request generated by the same processor may

exist at the same time.

6. The size of the traffic transferred across the interconnection

network, either the data requests or the data blocks, should be

allowed to be variable within a single simulation run. It cannot

always be assumed that each data block is the same size for all

processors in the system.

7. The interconnection network is made of one or more buses

which connect the processors to the disks in the disk array. The

number of buses in the system cannot always be assumed to be

enough to support the workload of the system.

These assumptions accurately describe a real system containing a

disk array 1/0 system. In the following a model based on the above

assumptions about a system containing a disk array is presented.

The model is a simulation model which was created using Colored

Petri Nets (CPN). CPNs, as most simulati~n modeling tools do, allow

the user the flexibility to model in detail whatever area is deemed

of interest in the system.

The model consists of several independent processors connected to

a single disk array 1/0 system via an interconnection network (IN)

as shown in Figure 1. Figure 2 shows the points of resource

contention which will be described in the following paragraphs.

/

5

A disk array is an I/0 system which replaces a single disk with a

collection of disks. In a single disk I/0 system a block of data is

stored usually together on the disk. In contrast, in a disk array

Interconnection Network

Figure 1 System Configuration

system this block of data can be broken into one or more subblocks

which are then stored on separate disks. Because each of the disks

in the disk array can be accessed concurrently, the block of data can

be accessed more rapidly than on a single disk system.

Each processor can generate a logical disk request, hereafter called
_,,,

an array request, for a block of data from the disk array which in

turn is broken into several disk requests. The number of disk

requests per array request varies depending upon several

6

parameters such as the size of the data requested, the amount of

interleaving between the disks and the parity scheme of the disks.

Thus one or more disks can be accessed by a single logical disk

request.

The disk requests are passed across a single stage IN in a first-in,

first-out (FIFO) queue as shown in figure 2. Once transferred to the

liJ
I

Resource Contention Points in the System

Figure 2

7

disk, the disk requests are distributed to the assigned disk. Each

disk handles its requests in a FIFO queue fashion.

The results of the individual disk requests are then transferred

back to the CPU via the IN using a FIFO queue like the one used to

transfer the request to the disks. As figure 2 shows, the IN queues

leading to and departing from the disks share the same IN

resources. If both IN queues are vying for a bus resource then one

would be chosen at random to be granted control of the bus.

An array request is considered finished only when all of its disk

requests have been handled and their responses have returned

across the IN to the originating CPU. Thus if looked on from a

system perspective, the whole disk array system cannot be looked

at as a FIFO system because some elements of the array request

may finish after other requests due to other array requests vying

for the same bus and disk resources at the same time. This

irregular queue behavior is what makes the development of

analytical models difficult. The CPN model presented in this paper

emulates this behavior to allow a performance analysis of this

system using various system parameters and configurations.

"-
The CPN model can predict the response time of an array request,

and analyze the disk, interconnection network and processor

utilization under various system configurations and workloads.

This model is validated through a series of measurements and

8

compared with the findings presented in [1]. This model is used to

perform a quantitative evaluation of the disk array's performance

for different IN and disk data integrity configurations. The model

presented is fairly general and could be used by disk array or

system designers to study the effects of various system parameters

and configurations.

9

Chapter 3:

The Colored Petri Net Disk Array Model

This chapter describes the Colored Petri Net model of a system

which contains a disk array 1/0 subsystem. The chapter is broken

up into two parts, the first describes the functionality of the system

and the second describes the parameters used in the model.

3.1 A Functional Description of the Disk Array Model

The following is a functional description of how a disk request is

generated and handled in the system which is modeled. The limits

and derivation of the model's variables, which are capitalized, are

described in section 3 .2.

Figure 3 shows a simplified version of the Colored Petri Net model

which will be used for discussion purposes. The actual CPN model is

included in Appendix A.

There are P independent processors that generate array requests.

The processors are represented by CPU tokens which reside in the

CPU Processing Data node of figure 3. One of the attributes

associated with each token is the time it is available for use. When

the simulated time reaches the time at which a processor token ts

enabled, that token moves to the Generate Disk Requests token

where a set of N disk access request (DAR) tokens are made. The

set of disk requests generated at the same time represents an array

request.

10

Generate
Disk Requests

Transfer Disk
Requests

@+Trans e Time

Make Disk
Idle

Transfer
Data to CPU

Simplified Version of the CPN Model

Figure 3

11

Another attribute of each array request is the assignment of disks.

The disk associated with the first disk request is chosen at random

from the disk array. Hereafter, the disks associated with the array

request are assigned sequentially.

The size of the data subblock requested is also an attribute of the

DAR. Thus different size data blocks may be accessed from the disk

array within the same simulation. The size of data block accessed

affects both the disk's Service Time and the bus' Transfer Time.

When the disk requests have been generated, the CPU token then

returns to the CPU Processing Data node and the time at which the

token will be enabled next is updated by an amount calculated by

the ThinkTime function. The ThinkTime represents the amount of

time that all the processes for that processor are busy performing

internal operations which do not require the disk array.

In order to simulate a multiprocessing e~vironment, each processor

will generate another array request after a specified ThinkTime,

regardless of whether the other array requests made by that

processor have completed.

The disk requests then enter into CPU-to-Disk interconnection

network (IN) queue to be sent across the IN to the disk array. The

single stage IN will have B buses. A Disk-to-CPU IN queue exists to

handle the traffic from the disks to the processor. The elements

within each queue are handled in a first-in first-out (FIFO) fashion

12

but both queues contend for the same bus resources. If both IN

queues have an token contending for the same bus resource, then

one of the tokens is granted the bus resource at random. Therefore,

due to the possible contention between the two IN queues, the data

flowing through the IN cannot be considered to be FIFO as a whole.

The bus resource will remain busy for an amount of time, called the

Transfer Time, which is related to the size of the data being

transferred and the data transfer rate of the bus. The other queue

will wait until there is a bus resource available before proceeding.

Once the disk request token passes across the IN, it enters the disk

array. There are NumDisk disks in the disk array. The disk request

token will wait until the disk resource token it requires is available.

When the required disk is available, the disk request is granted

access to the disk. The disk is then unable to process another

request until this access is complete. The amount of time the access

takes is called the disk's Service Time which is a function of the

disk's SeekTime, the Rotational Latency a~d the Disk Access Time.

The disk request token is replaced by a data token which can be a

different size than the disk request. The data token is also not

available until the disk access is completed. If two DARs are

waiting for the same disk, then one is chosen at random to be

serviced. The other DAR must wait for the disk to become available

again before it can be serviced. Disk accesses to different disks can

be performed in parallel.

13

After the disk access has completed, the data enters the Disk-to

CPU IN queue to be transferred to the processor. As for the disk

request, this queue is served internally in a FIFO fashion and

externally in contention for bus resources with the CPU-to-Disk IN

queue.

Once across the IN, the data subblock waits at the processor for all

other data subblocks in its array request to arrive. Once all arrive,

the array access is complete. Therefore, in contrast with reference

[2] the array request processing does not complete when one of the

disk requests is finished. In addition, like reference [1] the array

request processing as a whole is not completed in a FIFO fashion

due to the handling of the various disk requests at each disk.

Although it may appear that this model only simulates reads from a

disk, it also accurately describes the case where a write to a disk is

performed in which the write has a completion handshake that is

the same size as a read disk request. This is true because, in a

system which has handshaking, the amount of time the IN and the

disk array are busy would be the same whether the piece of data is

passing to or from the disk.

The main disadvantage of a CPN is that if the modeler is not careful

the model can get too complex to be analyzed. This is due to the

direct relationship between the CPN model's complexity and the size

of the state matrix related to the model. In addition, as the state

matrix gets larger the simulation model executes more slowly. It

14

was found that performing the simulations on a higher performance

platforms with more RAM available resulted the ability to

simulated more complex models, and the current models can be

simulated more quickly. Therefore, the modeler must balance the

amount of detail in the model and the host computer's ability to

handle the complexity contained in the model.

In order to extract data from the model's outputs, a C program was

written which extracts the CPU, Bus and Disk utilization data from

the raw data produced in the simulation. This program is shown in

Appendix C. If different information were required by the modeler,

the program could easily be altered to extract it.

The system modeled has several irregular queue characteristics

which would make the development of analytical queuing models

difficult. The CPN model developed emulates this behavior to allow

a performance analysis of this system to be performed using

various system parameters and configur~tions.

3.2 Description of System Parameters

This section describes the formulas and limits of the parameters

which were referenced in the previous sections.

- The ThinkTime function is user definable and for this model

has been set to an independent, exponentially distributed

random variable with mean Z as it was in [1].

- N is the number of disk requests in an array request. Its value

is determined by several factors such as the amount of

15

declustering between disks and the parity scheme used. The

value of N can range from 1 to the number of disks in the disk

array. The number of disk requests generated by each

processor, N, can either be constant for all processors or variable

based upon the system being studied.

- A DAR is a disk access request. There are N DARs generated to

represent each array request. The information stored in a DAR

for this model is: The originating processor, which element of the

array request it is, the disk to be accessed, the number of

elements to be accessed, and the size of the data block request.

The assignment of disks to the different disk requests of an

array request is done sequentially. This means that the second

DAR accesses the disk ((Disk + 1) mod NumDisk) and so on until

the N-th DAR accesses disk ((Disk + N - 1) mod NumDisk). The

term NumDisk indicates the number of disks in the disk array.

Thus the 'mod NumDisk' term prevents accesses to disk numbers

greater than number of disks in the disk array.

- The bus's Transfer Time Tt

= (size of transferred · request or data (in bytes)
(transfer rate of bus (in bytes per sec))

- The disk's Service Time

= (Seek Time + Rotational Latency + Data Access Time)

as defined in references [1, 2, 3 and 4].

- Seek Time (Ts) = time to get the head to the correct track of the

disk

Ts = Ta *X + Tb * X + Tc

As defined in reference [4]

16

,
Ta = (lO*minSeek + 15*avgSeek -5*maxSeek)/{3*numCyl)

Tb = (7*minSeek - 15*avgSeek + 8*maxSeek) /{3*numCyl)

Tc = minSeek

where minSeek, avgSeek, maxSeek and numCyl are

parameters of the <:lisk drives used.

and as defined in reference [1]

x = l(tl) - (t2)1

where tl and t2 are random numbers from between 0 and

the number of tracks on a disk, T. This makes the model

more realistic by giving X a mean distribution of {T/3).

- Rotational Latency (Tr) = time to get head to correct data block

or sector with-in the track)

As defined in [1,4]

Tr = random (0.. time for a full disk rotation)

- Data Access Time (Ta) = time to read or write data to disk

As defined in [4]

Ta = (time for a full disk rotation) * (# of bytes accessed)
(number of bytes in a track)

17

Chapter 4:

Experimental Validation of the CPN Model Results

The method used to validate the CPN model described in the

previous chapter was to compare the results of the CPN model to

those found in models of similar systems presented in other papers.

In particular, the results of the analytical model developed in

reference [l] were compared to those of the CPN model for same

values of system parameters. The analytical model presented in

reference [1] was chosen because the assumptions made in

developing that model were very similar to those of the CPN model.

The assumptions made in reference [1] were the same as those

listed in Chapter 1 for the CPN model with the following exceptions:

In reference [1] it was assumed that the number of buses is always

adequate to support the system's load. To comply with this in the

CPN model, the number of buses in the IN was specified to be large

enough that the IN imposed no limitations on the rest of the model.

Another simplifying assumption made in reference [1] was that all

array requests made in a particular simulation were the same size.

This means that the size of the data accesses per disk and the array

request size N are both constant across all the processors for all

array requests made in a particular system configuration. This was

not difficult to comply with as the CPN model was designed to allow

these parameters to either be constant or varied. Finally, in

reference [1] the individual disk requests of each array request

were assumed to be independent of each other. To comply with

18

this would require the method of disk request generation to be

altered in the CPN model. Because this was determined to be a

weak relationship in reference [1], the method of disk request

generation in the CPN model was not altered. Thus, in the CPN

model the disk requests which originate from the same array

request will access disks sequentially from some arbitrary first disk

as described in Chapter 3. Therefore, it was possible to satisfy all

the assumptions made in reference [1], with the exception of the

independence of disk requests accessed by the same array request

which was considered a weak assumption.

Because of the complexity of the systems modeled in reference [l],

the length of time required for each simulation run using the CPN

model was quite long. Therefore, the length of the simulation runs

had to be limited. On average, for a system which was of the

complexity of the ones presented in this section, the amount of time

to perform a simulation run for a range of values would be around

24 hours. Limiting the length of the simulation runs can lead to

significant errors when the data varies a great deal such as at high

system load. Therefore, it cannot be guaranteed that the simulation

results produced are within the guidelines normally used for

determining when to end a simulation run. However, the

simulation runs were extended as long as time and RAM allowed in

order to minimize these errors.

As defined in reference [1], the utilization of the disk array system

is a function of the rate at which requests arrive at the disk array

19

and the service rate of the disk array. The service rate of the disk

array is generally constant and independent of the arrival rate.

Thus variations to the disk array's utilization are induced mainly by

variations the disk array's arrival rate, called Lambda. Lambda is

defined as follows:

Lambda = (N * P) /{NumDisks*Z)

where N, P, NumDisks and Z are defined in section 3.2

In order to exercise the CPN model at disk utilizations over its

range, lambda will be varied in two different simulation runs. In

the first run the number of disks in the array is varied and in the

second run the number of elements in an array request is varied.

As in reference [1], other system parameters, as defined in section

3.2, were set to typical values as follows: Ta = 0.4632ms, Tb =

0.0092ms, Tc = 2ms, NumCyl = 949, size of data accessed from each

disk, the subblock size, = 4 kbytes and the average transfer rate

was 0.6023 msec/kbyte across the IN. As in reference [1], the

disk's Data Access Time, which is the amount of time to actually

read the data from the disk, was not included in the disk's Service

Time calculation. In addition, number of processors P was set to 10

and the mean think time Z was set to 100 msec.

In the first comparison, which is shown in figure 4, the disk

utilization was varied by altering the number of disks from 30 to

100. The value of N was set to 10. It can be observed from this

20

figure that the CPN model's average disk array processing time

closely matches those found the analytical model in reference [1].

Array Response Time vs Number of Disks

G)

E
1 5 0 T- -

•
100 ~----------------------

·~
50

0-+-----...,._------+------+-------1
30 40 50 80 100

Number of Disks

Figure 4

--•- Reference 1

Results

---a-- CPN Results

The main reasons for the discrepancies which do exist are discussed

in the conclusion portion of this section.

G)
(I)
c
0
Q.
(I) G)

~ .~
I

>-co
ct

Disk Array Response Time vs N

150

N

Figure 5

21

---a-- Reference 1

Results

--·-- CPN Model

Results

In the second comparison, shown in figure 5, the size of the disk

array request size N was varied from 3 to 15 as was done in

reference [l]. The number of disks in the disk array was set to 50.

As in the previous figure, the results of the CPN model closely

match those produced in reference [1].

Conclusions:

For the most part the results produced by the CPN model closely

match those produced by the analytical model in reference [1],

especially at low system utilization. It generally accepted that a

model should estimate response times at low to medium loads

within 15% of the actual system. In both figures, the CPN model's

results for low to medium load were within 15% of the analytical

model's results. The main areas of difference occur during the

higher utilization of the IN and/or disk array subsystems. In

particular, the areas of high load are in figure 4 when there are few

disks and in figure 5 when N is large. The discrepancies are due to

the following:

1. When the number of array requests N is close to the number

of disks in the disk array NumDisks there is a increased chance

of difference between the results of the analytical model and the

CPN model. This is due to the assumption made in the analytical

model of independence between disk requests of the same

logical array request. As stated in reference [1], when a large

proportion of the disks is being accessed by the same array

request then there is more parallelism within each array

request. This parallelism makes the individual disk requests of

22

the same array request more dependent upon each other

because they are less likely to collide with each other than if all

disk requests are assigned randomly as in the model reference

[l]. As disk requests collide, their array response time can

increase greatly as one of disk requests must wait until the other

request completes before it can access the disk. While the

effects of this are minimal at low to medium system loads where

few disk collisions occur, at high system loads the analytical

model will have many more collisions than the CPN model. This

problem was noted in reference [1].

2. When one or more of the subsystems is highly utilized there is

more chance of error in the CPN model's results. When one of

the subsystems becomes a bottleneck, it can cause the array

response time to vary greatly from one array request to the

next. In the CPN model it would take significant simulation time

for these varied response times to average out to a consistent

value. Since the amount of time for simulation was limited, the

areas of high system utilization will have a greater amount of

error m the CPN model results than when the system utilization

is low. This is most apparent in figure 5 when N is greater than

11. At this point the array response times do not have a smooth

curve shape as desired. Therefore this portion of the CPN data is

most suspect to error.

Together these are the reasons for differences between the results

of the CPN model and those of the analytical model in reference [1].

23

overall, the CPN model appears to adequately model the operation

of the system of interest, especially at low to medium load.

24

Chapter 5:

Analysis Using the CPN Model

The last chapter shows that the CPN model accurately estimates the

response time of a disk array to various system loads. In this

chapter, some of the assumptions made in reference [1] will be

investigated and a performance evaluation will be done using the

CPN model.

S.1 A Study of the Effects of Varying the Number of

Buses in the Interconnection Network

In the other disk array model's studied, the effects of the

interconnection network (IN) on the overall system performance

were ignored. Therefore, the first assumption investigated will be

to vary the number of buses in a single stage IN to determine how

this affects the system's performance. The second assumption

investigated will be to vary the size of data accessed by each disk

request. This will be used to study the e.ff ects of various methods

of ensuring data integrity in disk array upon the system's

performance.

To make the CPN model consistent with those used in reference

[4] the following assumptions were made:

1. The disk's Service Time now included the Data Access time as

defined in references [2, 3 and 4]. The Service Time calculation

was defined as in Section 3 .2 of this paper.

25

2. To study the delay effects of the IN on the array response

time, the bus's Transfer Time Tt was associated with the

TRANSFER DAR TO MEMORY and TRANSFER DATA TO CPU

transitions in the Bus page of the CPN model. Therefore, Tt was

not included in the ServiceTime calculation as it was in the last

chapter. The data size assumed was 1 byte for each disk request

and 4 kbytes for each subblock of data transferred to the

processors. The bus transfer rate was assumed to be 0.6023

ms/kbyte. The delay assigned to each transfer was calculated as

in section 3.2. Therefore, the delay associated with the

TRANSFER DAR TO MEMORY transition was 0.0006023 ms and

the delay associated with the TRANSFER DATA TO CPU transition

was 2.4092 ms.

Note that while this model simulates the processing of a read

disk access only, it also accurately maps the functionality for a

system which performs a 4kbyte write with a lbyte

acknowledge.

3. The system configuration is as follows:

P = 10 processors

N = 10 disk requests per array request

NumDisks = 50 disks

4. The number of buses was varied from 1 to 30 in order to

study the buses' impact upon the system's performance. It was

originally intended to simulate through a full cross-bar

26

configuration where there is a bus present to connect each

processor to each disk, which requires 500 buses, but simulation

showed that the array response time was stable when the

number of buses was greater than 10. Therefore, the addition of

more buses would not bring any value to the study.

Disk Array Response Time vs Number of
Buses

CD
SOOT E

i= - •
0 600

CD E
0 400 c
0 c

200 0. ·-0-
CD 0 a:

T"'"

·---·--•-•f--•f--•f--•
C\I ('t') v <.O 0 0 0

T"'" C\I ('t')

Number of Buses

Figure 6

--•-- Disk Array

Response Time
(ms)

Figure 6 shows the array response time versus the number of buses

in the system. As is shown in this figure, · the disk array response

time increases dramatically when the number of buses is two or

less. This could be due to either the loa~ing on the IN or the disk

array. To determine which subsystem is the bottleneck, figure 7

shows the bus utilization versus number of buses and it also shows

the disk utilization versus the number of buses. These figures show

that for the cases where number of buses is less than three, the bus

utilization is large and the disk utilization decreases. Over the rest

of the range, the disk utilization is fairly constant. This indicates

that when the IN utilization is very large, the IN can delay

27

communication to and from the disk array enough to cause the disk

utilization to drop. Because the area where the IN utilization is high

in figure 7 coincides with the area where the array response time is

large in figure 6, the limiting factor for this case is the IN.

c
0 -~
ftS
N

Utilization vs Number of Buses

1 0 0 •-•.......;:..: -.,
8 0 - - - - - - - - - - -· - - - - - - - - - - - - - -

..- C\I M """° <O O O O
..- C\I M

Number of Buses

Figure 7

--•-- Bus Time Busy
(%)

---o- Disk Time
Busy (%)

In conclusion, the bus system can severely limit the performance of

the disk array when the number of buses is small. In contrast, once

the number of buses reaches a certain point, more than 4 in this

case, adding more buses dot{s not significantly alter the I/0

subsystem's performance. Therefore, a system designer must

ensure that there are enough buses to prevent the IN from limiting

the system performance while not including too many buses in

order minimize the cost of the system.

28

5• 2 A Study of the Effects of Various Disk Data Integrity

Methods and Subblock Size on System Performance

In the second analysis problem, the effects of the overhead induced

by various Redundant Array of Inexpensive Disks (RAID) data

integrity schemes and a new method proposed in reference [4] on

the overall disk array response time will be studied. The RAID

configurations are used to ensure that the disk array is fault

tolerant. If a fault does cause a disk to lose the data, these methods

allow the data to be fully reconstructed.

Each RAID configuration has different costs. These costs come in

terms of the performance impact that the overhead RAID

processing incurs upon the total disk array performance. The costs

are also monetary as each RAID configuration requires additional

disks in order to perform the specific RAID algorithm. Thus the

goal of the RAID disk array designer is to minimize both the costs

while maintaining the disk array's fault tolerance.

In reference [4], it was noted that the overhead caused by the RAID

configurations has the most impact when the disk accesses are for

small sized data. This is because for small accesses the amount of

time used to transfer the data across the IN is much less than the

amount of time required to access the data on the disk. This

imbalance results in a bottleneck in the disk array. Because the

disk array is already much slower than the rest of the system, the

impact of this bottleneck can be great.

29

The case which best exemplifies the overhead induced by small

disk accesses is the one in which the small accesses are Read

Modify-Write accesses. This type of access requires more accesses

between the disk and disk controller than a simple Read or Write

access. The transfers between the disk controller and the disk do

not use the IN, but instead are handled by a bus which is inside the

disk array. It is assumed that there is only one bus between the

disk controller and the disks. Therefore, each of the transfers

between the disk controller and a disk must occur sequentially.

This is the worst case scenario possible because the service time for

a Read-Modify-Write request will be the sum of the service times

for each of the several accesses required between the disk

controller and the disks. This assumption is consistent with

reference [4].

The overhead incurred is different for each RAID method because

each method causes a different amount of additional Read and

Writes between the disk controller and the. disk to perform the

actions to ensure the data consistency. In reference [4], four

different data integrity configurations were presented. They are

non-redundant disk array, RAID Level 1, RAID Level 5 and a new

scheme called Parity Logging. The details of each configuration will

be discussed in the following paragraphs.

The first configuration was the standard, non-redundant disk array

configuration where no data backup occurs. Each Read-Modify

Write operation requires a Read from the disk, the data is updated

30

by the disk controller and then the new data is written back to the

disk. There is no additional overhead associated with Read-Modify

Write operations. It was included to provide a point of reference to

be used for comparison with the other disk array configurations.

The second method was RAID Level 1 in which a second disk array

was added which contains a copy of all the data sent to the first

array. This method is often called "disk mirroring". For each Read

Modify-Write operation the data is read from the primary disk,

updated, and then written to both the primary disk and its mirror

disk. Therefore the performance overhead incurred is an additional

write to the second disk. Because the performance overhead is not

great, the main disadvantage to this method is the cost of a

complete second disk array.

The next configuration is a RAID Level 5. In this method, a single

disk is added to the primary disk array. This disk maintains parity

information about the data on the primary. array to ensure that

data can be reconstructed. For each Read-Modify-Write access, the

data must be read from and written to the disk array and in

addition the matching data on the parity disk is read from and

written to the parity disk. Thus the overhead incurred is an

additional read and write for the updating of the parity disk. In the

case of a small access to a disk array the overhead for a RAID Level

5 system can impose a significant system impact.

31

The method proposed m reference [4] is called the Parity Logging

method. The method proposed is similar to the RAID level 5

scheme except that a parity and a logging disk are added to the disk

array. Instead of directly writing the parity data to the parity disk,

it has a buffer in RAM which holds the amount of parity

information that can be stored in a disk track. When this buffer is

full of parity information then this buff er is written to a track on

the logging disk. This continues until the logging disk is full of

parity information, at which time all the data on the parity disk and

logging disk is read into memory, the parity data is updated and

then the new disk full of parity data is written back to the parity

disk. Therefore, if each data transfer is the one block and there are

X data blocks per track and Y cylinders per disk then once every X

accesses there is an additional track access and every X*Y accesses

there are 3 full disk accesses. Depending upon the block, track and

disk sizes, the overhead induced by this method can be quite small

compared to the RAID configurations while only adding two disks to

the disk array.

In reference [4], it is stated that the impact of small accesses is

greatest on Read-Modify-Write accesses to the disk and then

proceeds by presenting the worst case scenario where all the

accesses are small. To do performance analysis of a system it would

be helpful to see the overhead caused by each data integrity

method for more than one data access size. In this study it was

assumed that the size of the data accessed will have two possible

types: a small access which performs a Read-Modify-Write on a

3,2

single data block and a large access which reads a whole track from

a single disk. The proportion of the large to small accesses will be

altered to study the effects of the large and small accesses on the

system performance.

The disk array configuration was the same as those used in

references [3] and [4] for an IBM Lightning drive as follows:

numCyl = 949 cylinders per disk, 14 tracks per cylinder, 48 data

blocks per track, 512 bytes per block, 13.9ms for time of full

disk rotation, cylinder seek time = 2ms, avgSeek (block) =
12.6ms, minSeek (block) = 2ms, maxSeek (block) = 25ms, and

there were 22 disks in the disk array

- The SeekTime is calculated as in section 3 .2:

- Because the amount of time which is required to actually access

the data on the disk varies significantly for small and large disk

accesses and to be consistent with reference [4], the Data Access

time is entered into the model to help accurately portray the

disk array's performance. The Data Access Time (Ta) was

defined as in section 3.2. Thus:

Tab = Block access time = 0.289853333 ms

Tat = Track access time = 13.9 ms

Tad = Disk Access time = 13191.1 ms

In addition, the CPN model had the following system parameters:

10 processors; the processor's Think Time was exponentially

distributed with mean of 100 ms; and 1 disk request per array

request (the size of the array request is not an important

parameter in this particular study).

33

It was assumed that there was enough buses in the system so

that the IN is not a bottleneck for the I/0 subsystem. In

addition,

the bus's Transfer Time Tt is different for large and small

accesses and was calculated as in section 3.2 which produced:

Track Transfer Time = Ttt = 13.65 ms

Block Transfer Time = Ttb = 0.284ms

Because the IN was assumed that there were enough buses in

the system, the bus's transfer time was included into the service

time calculation in the Access Data in Disk transition.

Disk Array Response Time vs Proportion of

Small Accesses (%)

., 1 0 0 t----------------------------~.
CD 'i) ~·-g E 80 --------------.~-----------
a. - ·-------c ...ai---a
: 6 0 ±•· !?_i" jrwu -- -- -.-- -- -- - -_
a: e 4 o -~ - - - - - - ••

- 20 ------------------------------f' 1- o I I I I

6 Non Redundant

---0- RAID Level 1

--•--RAID Level 5 ...
cc 0 25 50 75 100

Percentage of Accesses Which
--•-- Parity Logging

Are Small (%)

Figure 8

The disk array response times of each of the data integrity

configurations are shown in figure 8. As the figure shows, the

effects of the small write problem talked about in reference [4] is

more prevalent when there are more small accesses than large

accesses. When most of the accesses are small, the overhead effects

are greatest. As the percentage of large accesses increases, the

34

difference between the disk array configurations is reduced. This

continues until the case where all the accesses are large when there

is no difference between the various disk array configurations.

As expected the RAID Level 5 response imposes the largest amount

of overhead. In addition, its impact is greatest in the case where

there is all small writes. At this point it more than doubles the disk

array response time of the non-redundant disk array.

The RAID Level 1 imposes much less overhead than RAID Level 5

while still maintaining complete data integrity. The main problem

with RAID Level 1 is that two complete disk arrays are required

which can be costly.

The parity logging appears to not impose almost no overhead upon

the system while providing similar data integrity protection as

RAID Level 5. From this data it appears that the CPN model

underestimates the overhead incurred by the parity logging

methodology. As stated in i:eference [4], the expected overhead was

to be around 25% of the disk response time. It did not appear from

the simulation data that the parity full disk transfers occurred. The

parity disk updates account for a large portion of the overhead in

this scheme. Therefore, unless this transfer occurs the CPN model

will underestimate the response time for this model. Because the

model appears to be correct, the way to increase the likelihood of

getting the disk accesses to occur is to run the simulation for longer

periods.

35

The complexity of these system configurations was less than the

complexity of the models presented earlier in this paper. This was

mainly due to reducing the number of disks and setting the array

size N to 1. Because the model is simpler, the simulation could

proceed much more quickly than earlier models. Therefore, the

simulations for this particular performance analysis was run for

twice as much simulation time as the simulation runs in the

validation section of this paper. This leads to more simulation data

which produces more reliable results. This can be observed in

figure 8 as the data series for each disk data integrity configuration

appears to be nearly linear as expected. However the fact that the

Parity Logging results are less than expected indicates that there

still is some error in the results. Therefore, the longer the

simulation run and the less complex the model is, the more accurate

the results of the simulation.

Small writes are prevalent in many applications. Small accesses can

impose a severe performance penalty for certain disk array data

integrity configurations, in particular RAID Level 5. Therefore a

system designer must balance the performance degradation

brought on by the data integrity configuration, the proportion of

small accesses to large ones, the system's data integrity needs and

the cost constraints of the system.

36

Chapter 6:

conclusions

This paper presents a Colored Petri Net simulation model which

emulates a system comprised of a multiprocessor subsystem

connected across an interconnection network to a disk array 1/0

subsystem. The following is a listing of the assumptions which

governed the model, grouped by subsystem:

Processors:

- the number of processors can vary

- the think time of the processors can vary

- the number of disk requests in the array request can vary

- the size of data requested for each disk request can vary

- the disks generate array requests which can fork into

several disk requests.

- once all the disk requests which belong to the same array

have all been handled, they all join back together to complete

the array request cycle.

the size of the IN can vary

- the configuration of . the IN is a single stage

- the delay across the IN can vary with the size of the data

crossing it

- The data crossing the IN can be processed in a non-FIFO

fashion due to contention for resources between the buses

entering and the buses leaving the processors.

37

Disk~
~

- the service time of the disks can vary

- the disks in the array can service

- the number of disks can vary

The Colored Petri Net model presented is very flexible and allows

many of the system parameters to be altered. For example if a

constant think time for the processors was desired, only a minimal

change to the model would be required. This allows the CPN model

to overcome most of the limitations of analytical models which are

brought on ~y the simplifying assumptions required to develop the

state equations of the analytical model. In addition, this allows the

user to model in detail only the portions of the model which are

pertinent to the study. For example, the whole interconnection

network page of the model could be eliminated if it was not

pertinent.

This model can be used to do performanc~ analysis's of systems

which conform to the basic · system architecture and can be

characterized in a functional or procedural fashion. It can be used

to validate analytical models such as ones presented in references

[l] and [4].

While this model can estimate system performance on systems

which have much larger state spaces than generally is possible with

Petri Nets, its main limitation is still the complexity of the state

space. If the model is very complex, then if the model can be

38

simulated at all, it must be performed on a high performance

computer platform. To ensure that the model will run, the model

complexity must be minimized.

In addition, the amount of time it takes to perform a simulation is a

function of the complexity of the system's state space. To ensure

accurate simulation results, the simulation time must be maximized.

In conclusion, the model developed emulates the system described

and is flexible enough to emulate many different system

configurations. This system can produce data about the service

time of an array request, the utilization of the interconnection

network and the disk array. The outputs of this model have been

satisfactorily validated against the results produced in other studies

of similar system over a range of all workloads. This model can be

used to characterize a multiprocessing, disk array system at most

levels of detail required and in the areas of interest specified in the

assumptions above. The price of this flex~bility is increased

modeling and simulation time over analytical models. Thus, the

user of this model or this modeling tool must carefully balance the

amount of detail in the model required to produce useful results

against the complexity of that model.

39

Appendix A:

The CPN model contains 4 CPN model pages: One for the processors

and the generation of the disk requests, one for the interconnection

network (IN), one for the disk array and one which contains the

color, variable and function descriptions. These pages are logically

connected and therefore act as though the model is on one page.

The model was separated into these pages so that the model would

be more understandable.

The separation of the model into pages also gives the user the

flexibility to remove a whole subsystem's functionality from the

model to simplify the model when the subsystem is not needed. In

this model the interconnection network page of the model could be

removed but only if it is assumed that the interconnection network

is large and fast enough not to impose any limitation on the rest of

the system. This simplification of the model would lead to faster

simulation runs due to the smaller state spa.ce of the model.

40

II
--'·

tO
c
)
CD

)::>

..........

-0
-s

~ 0
() 1--l
CD
(/)

(/)

0
-s

-0
OJ
tO

CD

0
-ti

(}

-0
:z

3:
0
0...
CD

fl nput cpusta t e; t;PUstate- }'{Cpu:sl Id-1S11rtldles.QOl+l'1Cvu=2 Jd,.l Stutldle=:Ml
+l'/Cou=3 Jd,.l Startldlc=OO}tl'ICpu=4 ld=l Startldle=OOl
+J'/Cou=S ld=l S11rt!d)e:OO\tl'/Cpu==6ld=l Staald)r==OO\
+l'ICoua7 ld=l Startldlc=OO\tr!Cpu-8 ld-I Startldle=OOl
tl'{Cou=9 M•l S11nldlc:QOltl'fCpu==!O ld=l StartL l~

:output (mar,newcpustat e);
I
I
I

:a ction
:1 e t
l val disk - ran'DISK();
: val limit - 0. 75;
: val process - 4; (* disk Type*)
1 va l proc - Ge nSlze(llmlt,process);

I
I
I
I
I
I
I
I
I
I
I

vat dar-(
CPUid •fCpu cpus t ate,
DARid - fld cpus t ate,
Element - O,
Disk - disk,
N • 0,
Process• proc);

val newcpustate·(
Cpu•tCpu cpusta t e,
Id - tld cpustate +1,
Startldle - time ()I;

I
I
I
I
I
I
I
I
I
I
I
I
I
I

l (dar,newcpustate) l
·------------~--------------------------.)

11 n
I

DAR_ LIST

CPU PROCESSING
DATA

cpustate newcpustate @+Exp_Dlst()

GENERATE ARRAY
REQUEST

@]

gen_DARs(dar)

BUFFER DARs 1DAR

dar

[#CPUld first. #CPUld element,
#DARld first. #DARld element,
newflrst • {CPUld-#CPUld first,
DA Rid - #DA Rid first,
Element - #Element first + 1,
Disk • #Disk first,
N - #N first,

noWTlrst

Process • #Process first}] / ...

GET NEXT
ELEMENT

[#Element first +1 >• #N first]

RECEIVE COMPLETE
ARRAY REQUEST

FROM DISK

first

DATA
ELEMENTS

BUFFER
DAR

first first

#Element first - OJ

GET FIRST
ELEMENT

MAKE DISK
ACCESS REQUESTS

(DA Rs)

element first

DARs FROM
CPU

Dl

FG I cpu·net1 DAR_L/ST

data

DATA
ELEMENTS TO

CPU

Dl

FG I not·cpu

·· '· .. , ,. .:I

~
['._)

1.: ' , I . I 'l l ;

11
-'·

tO
c
)
(D

)>

N

~
r+
ro
)

\J
0
~
~

ro
\J
r+
-' ·

0
~

:z
ro
r+
:E:
0
)

7'

"'O
OJ

lO
ro

0
-h

n
--0
:z

::::s:
0
0..
ro

DAR_L/ST DARs FROM
CPU

1Jl

FG I cpu-net 1

dar_list
dar::dar_llst

TRANSFER DAR
TO DISK

dar_ lists dar_ llsts /\./\ (dar]

DAR_L/ST
DARsTO

DISK ARRAY

.Lil

FG I net-mem

BUSstate IDLE BUS

busstate

usstate newbusstate

buss ta ta
busstale busstate

BUSstate BUS BUSY

l(• Code segment for MAKE BUS READY *)

!m?Jt busstatc;
:Output ncwbusstatc;

lactioo
hct
l val ncwbusstate •{
l Busld£#Buald busstatc,

l Startldle-timc 0};
I
I
I
~ (ncwbussute)

lend;

'-----------------------------------

' DAR_LIST
DATA

ELEMENTS
TO CPU

i:.u

FG I net-cpu

data_llsts M [data) data_llsts

TRANSFER DATA
ELEMENT TO CPU

data::data_llst data_ list

DAR_ LIST

.lJl

DATA

ELEMENTS FROM I FG I mem-net
DISK ARRAY

' ~ rr· · ~

,,
-'·

<.O
c
)

ro
)>

w
0
-'·
Vl
7'"

)>
)
) .t:::.
OJ w
~

-0
OJ

<.O
ro
0
-ti

()

-0
:z

3:
0
0...
ro

I _, &:

DAR_ LIST

DISKstat9

net-mem

dar_llst

Break DAR
from List

(" Initial State for Place DISK IDLE 'I

[#Disk OAR• #Olskld dlskstate,
data-{
CPUld • #CPUld OAR,
DARld • #DARld OAR,
Element - #Element DAR,
Disk • #Disk DAR,
N ·#N DAR,
Process - #Process DAR})

ACCESS DATA
IN DISK

data

@+Service Time(#Process dar)

dlskstate

newdlskstate

MAKE
DISK READY

DAR

dlskstate

disk state

--
(*Code segment for MAKE DISK READY*)
· iput di.sksute;

utput newdisutatc;
action
ct

val newdiskstatc •(
Disk Id=# Di.skid Disk state,

Startldlc=time Q};

in (newdisk.statc}
d;

data_ llsts

Join Data
to List

DISK
BUSY

data_llsts""(data)

DISKstate

1 · {Dlskld-0 Stan ldle-0 Ol+l ' (Plskld-1 Startldle-0 0)+1 '/Dlskld-2 Startldle-0 0!+1 '/Dlskld-3 Stanld!e-0 Ol+l ' {Plskld-4 Startldle-0Oh1 '/Dlskld-5 Startldla-0 QI

t]' /Dlskld-8 Startldle-0 QI+ J' ID!skld-7 Stan ldle-0 O}+]' /Olskld-8 Startldle-o Ol+J' /Dlskld-9 Startldle-0 Q}+ r /Dlskld-10 Stanldle-0 01 + J' IDjskld-11 Start ldle- 0 01
+1 '(D!skld-12 Stanldle..O 01+1 '(Plskld-13 Startldle-0 0!+1 ' (Plskld-14 Startldle-0 Ol+l'(Olskld-15 Startldle-0 0}+1 ' (0iskld-16 Stanld!q-0 0)
+ 1 · (D!skld-17 Stan ldle-0 Ol+l · !Dlskld-18 Startldle-0 O}+ 1 ' (Olskld-19 Startld!e-0 QI+ 1 'ID!skld-20 Startldla-o 0\+1 ' /Dlskld-21 Stanld la-0 0)

,, ,, :-,, , , , ti

al Time= t.ime; (* allows the current t.ime to be accessed from CPN regions *)

c•const.anl declarations •)
val NumCPU = 1 O; (*allows for 12S different CPUs*)

val NwnDAR = 10000; (• 10000 DARs allowed per CPU *)
val Length ""49; (* this is the length of a vector, *)

val NwnDISK = 22; (* allows 50 disk. *)
val NumBUS = 50; (*number of buses possible*)

(*CPU st.ate colors *)
color ST ARTIDLE =real; (*holds the time that a CPU.BUS or disk starts bcing unused *)
color CPU= int with 1 .. NumCPU; (* CPU identifier•)
color ID =int with 1 .. NumDAR; (* disk access request identifier*)
colorCPUst.at.e =record Cpu:CPU * ld :ID • Stanldle:STARTIDLE timed;(* represents the st.ate of the CPU*)

(*DAR gene..-ation colors*)
color PROCESS= int; (*holds wruch what type of process caused this DAR lO be sent: maps to the RAID coo.figuration in this model*)
color DISK= int ·wi th O .. NurnDISK-1; (* IJO disk identifier*)

(*DAR colors *)
color ELEMENT= int with O .. Length-1; (*identifies wruch vector element it is.*)

color DAR= record CPUld :CPU • DARld :ID • Element:El..EMENT • Disk:DISK • N:ELEMENT • Procc.Y:PROCESS timed;

(*represents information in a DAR *)
color DAR_UST =list DAR; (* holds DARs in a list structure *)

(* Disk st.ate colors *)
color DISKstate =record IP.sk.ld:DISK • Startldle:ST ARTIDLE timed;

(*Identifies which disk. is being used and when it started being idle*)

(* BUS colors *)
color BUS= int with O .. NumBUS-1 timed;(* identifies which bus is used*)

color BUSstate =record Busld:B US! Startldle:ST ARTIDLE; (•Identifies which bus and what time it started bc:ing idle*)

color X= real with 0.0 .. 949.0; (* random number holder*)
color TR= real with 0.0 .. 14.0; (* rotation latency color*)
color XD =real with 0.0 .. 0.999999; (*random number holder for CPU th.ink time*)
color TVD =int with l .. 23322624; (*random number holder for which element is being accessed. Only used in Parity logging model*)
color TT = real; (* trans[er time color*)
color SERVICE= real;(* service time color*)

(* variable declanitions *)
var n:ELEMEN'T;

YU disk: DISK;
var dar,newdar,data,dement,fi.rst,newfirst,y ,new _y :DAR;

var cpustate, newcpusune: CPCst.atc;
var busstate,ncwbusrutc : BUSstate;

var diskstate,ncwdisht.ate: DISKst.ate;
var dar_list,dar_lists,data_list,dat.a_lists,element_list,fi.rst_list : DAR_LlST;
var x,x 1,x2 : X; (* random number holders *)

var Tr : TR; (*rotational latency holder*)
var xd,h.li.rn.it : XD; (*CPU think t.i..-ne holder•)

var Ttb,Tu: TT; (* time to transfer a block of data across the bus *)

var Tab,Tat,Tad : TT; (*time LO read/write a block, track,dis.k. worth of data from the disk and send to the 1/0 cootroller <>CPU*)

var AO.Al ,A2,A3,A4,A5 : SERVICE;(* variables to hold the seek and rotation and read/.,..rrite times for the various update schemes*)
var process ,proc : PROCESS;

(*identifies what type of 1/0 system is being modeled : 1 = nonredundant, 2.=mirror, 3=RAID5, 4= parity logging*)
YU access : TYD; (•random number represent.i.."1g which access of TVD accesses*)

(* this function determines the size of the data requested *)
fun Gen Size (lirnit,proc)=

Figure A. 4 Declaration page of CPN Model

44

}el

val h ::: ran'XDO;
val GcnSize = (if h > limit then 0 else proc);

in (GenSi.ze)

end;

c• this function generates the seek time associated with a disk access•)

fun SeckTune 0-
let

val xl • ran'XO;
val x2 = ran'XO;
val x = abs(xl-12);
val Tr::: ranTRO;
val SeckTime= (0.4761 *sqrt(x)+(0.0088*x)+2.0+Tr);

(* the above line generates the Savice Time for a read and write access of a disk drive *)

in (ScckTime)

end;

(*this function generates the Service time for a dis.k access: including sc:ck time, data access time and overhead for each RAID level•)

fun ScrviccTimc(procc:ss)=

let
val Ttb = 5120 / 1800.0;
val Ttt = 48.0 • Ttb;
val Tab = 13.9/48.0;
val Tat• 13.9;
val Tad= 949.0 • 13.9;

val access = ran TVDO;
val AO = SeckTimcO + Tat + Tn; (* service time if large block *)
val Al • SeckTimcO + Sc:ckTimcO + (2.0*Tab); (*read/write time of block: All types have th.is delay*)
val A2 =(if process = 2 then (ScckTimcQ +Tab) else 0.0); (* mirror ovc:rllcad *)
val A3 •(if process • 3 then (SeckTimcO + SeckTuncQ +Tab+ Tab) else 0.0); (*RAID 5 ovchcad *)
val A4 =(if process = 4 then (if (access mod 48 = 0) then (SeekTimeO +Tat) else 0.0) else 0.0);

c• parity logging track write overhead •)
val A5 •(if process -= 4 then (if (access • 23322624) then (3.0*(SeckTime O +Tad)) else 0.0) else 0.0);

c• parity logging disk (2read +write) overhead•)
val Service Times (if process = 0 then AO else (A 1 + A2 + A3 + A4 + A5 + Ttb)); (* total service time for an acccsa *)

in (Sc:rviccTime)
end;

c· this function generates all the dis.k access tokens for each array request taken it reccivcs *)
fun gen_DARs(y) =
let
val new_y = {

in

CPUid = #CPUid y,
DARld = #DARld y,
Element = #Element y + 1,
Disk = ((#Disk y + 1) mod N'umDISK),
N =#Ny,
Process = #Process y);

if (#Element new _y) < ((#N new__)'))
then l'y + gen_D.~(new_y)
else 1 'y

end;

(*this functioo calcula tes the think time associated with a processor based on an exponential distribution *)

fun fap_Dist O=
let

val xd = ranXDO;

Figure A.4 Declaration page of CPN Model (cont.)

45

Appendix B:

Colored Petri Nets

This Appendix contains 2 parts, the first section describes the main

concepts behind Colored Petri Nets and the second section presents

a short overview of the functionality of Colored Petri Nets (CPNs).

Petri Nets have been used in performance studies of systems in

many cases, the results of which show that Petri Nets are useful in

systems that are not too complex [5,6,7]. A traditional Petri Net

(PN) is a graphical and mathematical model which can be used to

describe and study information processing systems that can be

characterized as being distributed, concurrent, asynchronous, time

varying, nondeterministic and/or stochastic. As a graphical tool,

PNs can be applied to almost any application which can be

described graphically like a flow diagram or state diagrams. In

addition, when simulating the user can observe tokens flow through

the model as they simulate the dynamic and concurrent activities of

the system. As a mathematical tool, there is a mathematical

formalism associated with PNs which completely defines what a PN

is and how it behaves. Although PNs are generally represented as a

directed graph, a PN is actually a mathematical object that exists

independently of any physical representation. The actual

implementation of a PN model is a state matrix which describes the

set of possible states in that model. As a mathematical tool it is also

possible to set up state equations, algebraic expression and other

mathematical models governing the behavior of the system.[5].

46

A Colored Petri Net (CPN) is the type of PN used in this study. The

CPN tool's main strength is its ability to study applications of higher

complexity than is generally possible with traditional PN tools. A

CPN differs from traditional PN s in the following ways: A CPN has

the added ability to declare data types, hereafter called colors; it

provides many modeling capabilities which simplify the modeling

process; and most drastically, it does not offer the ability to perform

the mathematical operations on the state matrix of the system that

a mathematically formal PN tool would. In traditional PNs only a

single data type can be handled by a node. Thus additional nodes

would be required to handle each different data type. In CPNs

multiple data types can flow through a single node which reduces

the number of nodes in the system. In addition, Meta Software's

CPN tool also provides many additional features, like simulated time

and code segments which allow functionality to be entered into a

model while keeping it understandable. The reason that the

mathematical manipulations have not been offered for CPN is that

additional functionality such as color declarations and other

features makes the state space associated with a CPN is too large for

matrix reduction techniques.

The main disadvantage of a CPN is that if the modeler is not careful

the model can get too complex to be analyzed. This is due to the

direct relationship between the CPN model's complexity and the size

of the state matrix related to the model. In addition, as the state

matrix gets larger the simulation model executes more slowly. Also,

if a host computer platform is used which has limited RAM

47

available, then a model can get too large to execute. For example,

even a fairly high performance personal computer, such as the

Macintosh Ilci with 32Mb of RAM used for this study, can quickly

be overwhelmed by a model of moderate complexity. Even when

the model's complexity is adequately controlled to make simulation

possible, the amount of time required to simulate most models is

quite large. When the model was executed on a higher performance

computer, such as a Quadra 750 with 40 Mb of RAM, the simulation

times were reduced by about one half. Therefore, the modeler

must balance the amount of detail in the model and the host

computer's ability to handle the complexity contained in the model.

Another disadvantage of the CPN tool is that the built-in charting

tools, which are meant to extract data from a model, impose too

much overhead to operate with this paper's model on either of the

computer platforms described above. Therefore, the state of the

system was saved in a text report. This report recorded any

changes to the state of the system. Becau~e this report contained

much information which was not pertinent to this study, a program

was written in C which extracted the relevant information. It

gathered information about disk array's response time and the

utilization of the bus and disk arrays. The program is included for

reference in Appendix C. An example of the raw CPN data and the

output of the data extraction program are presented in Appendix D.

Together, the features provided by Meta Software's Colored Petri

Nets allow great flexibility for the modeler. A model can be easily

48

created and detail can be added to any area of the model it is

required. The graphical nature of a CPN can make it easier to

understand the functionality of the model and therefore does not

require the audience to have much background using this tool.

Because a CPN is a simulation model, it does not inherently require

simplifying assumptions to be made to create a model although one

has to be careful to limit the complexity of the model. The ability to

declare colors and encode functionality can help limit the

complexity of a model and make the model more understandable.

In addition, since CPN is a mature, commercial modeling tool which

has been available for several years and used on many diverse

models, it is believed that the results produced by the tool are

reliable.

Colored Petri Net Functionality: An Overview

In figure B.1, a simple resource contention model is shown. CPNs

are made of three types of objects: A token,. a place and a transition.

The role that each of these play in the CPN model will be described

in the following paragraphs.

A token which represents the data flowing through the model is

represented by the small circle with a number inside it. These

tokens are defined by data type or "color". In the figure the tokens

have two possible colors which are specified in the color declaration

section of the diagram: A Resource color which can have values

Printer or Modem and a Process color which can have a value

49

DataTransfer or PrintRequest. Colors can represent more complex

Process

Process

'DataTransfer1 + 1 'PrintRequest1 +
1 'PrintRequest2

[(proc =DataTransfer and res= Modem) orelse
(proc = PrintRequest and res= Printer)]

Obtaining
Resource

proc

res

1 'Printer+
1'Modem

.---..... --.... if (proc = DataTransfer)
Releasing then 1 'Modem else 1 'Printer

roe

Resource
@+5

(* color Declarations *)
color Process:DataTransferl ,DataTransfer2,
PrintRequest1, PrintRequest2;
color Resource: Modem, Proinger;

(* variable declarations *)
var proc: Process;
res: Resource;

A Simple Resource Contention CPN Model

Figure B.1

data types such as records or combinations of previously declared

colors.

Tokens are held in "places" which are represented by ovals in the

figure. The set of tokens in all the places represents the state of the

model at any point in a simulation run. The number and value of

50

tokens in each place or "marking" is shown by the circle with the

number in it which indicates the number of tokens in that place and

the optional full marking, shown in bold by the place, which shows

the number and the value of each token. Each place may hold only

one color of tokens. This may seem to be a major limitation but it is

not because a color may be defined to be a combination of other

colors. This allows more than one of the colors to be allowed in a

place. The color which is associated with this place is shown in

italics near the place in the figure. For example the A waiting

Resources place can only hold tokens of the color Process.

A token moves from one place to another by passing through a

"transition" which is represented by a rectangle in the figure. A

transition represents an action in a CPN. A transition may have a

"guard" which indicates some requirements on the type, value or

number of tokens which may pass through it. A guard is

represented by a set of expressions enclosed in brackets "[]" as

shown in the Obtain Resources transition in. the figure. The guard

for this transition requires that the values of tokens coming into the

transition match before allowing them to pass. Note that the "res"

token is consumed by this transition. A guard may also determine

what the output of the transition will be. For example a token could

be generated and assigned a value based upon the value of the

token entering the transition. Thus a transition may change the

value or type of a token as a token leaves it.

51

A transition can fire only when all the input requirements and

guard requirements are met. An example of an input requirement

is that all places which go to the transition must have tokens which

enable the transition. A transition which is enabled to fire is drawn

with a thicker border as both are in the figure. If more than one

combination of input tokens have enabled a transition to fire, then

either a set is chosen at random or the guard determines which are

selected. Thus in the Obtain Resources transition, there are three

possible markings which fire this transition: (DataTransferl,

Modem), (PrintRequestl, Printer) or (PrintRequest2, Printer).

A CPN transition can pass more than one marking through a

transition at a time if there are enough resources to allow it. For

example, the Obtain Resources transition could allow both the

(DataTransferl, Modem), (PrintRequestl, Printer) tokens to pass

through it at the same simulation step. This allows the simulation

to advance using fewer simulation steps which reduces the

overhead which is incurred by each simulation step.

An arc, represented by an arrow, is the connection between a place

and transition. It can have a set of requirements which are similar

to the guard associated with a transition. These requirements could

specify a token color or a required number of tokens which may

pass across it. For example in the arc leading from the Release

Resources transition to the Resource Pool place the value of the

token which will goes across it is determined by the value of the

token which enters the transition.

52

A CPN also has the optional ability to simulate time. The ability to

represent time allows quantitative results to be produced by the

model. The method for implementing time is that a delay can be

associated with any transition or arc. Thus some transitions could

be required to take time and others would take no time. This

allows functionality to be included, such as data extraction, which

does not have an effect on time associated with a token. The format

for a this is: @ + delaytime where @ indicates the current time and

delaytime could either be a constant or conditional numeric

assignment. In figure B .1, the Release Resource transition has a

delay time associated with it. Therefore when a token passes

through this transition, it is not available for use until the time

advances to (Current Time + 5 time units).

A code segment is a function which can be associated with an arc or

transition which can be much like a procedure in a computer

program. A code segment allows more coµiplex operations to be

performed than would easily be possible using a guard or arc

inscription. A code segment is written in the CPN variant of the ML

language. An example of a code segment can be found in Appendix

A associated with the Generate Array Request transition on the

processor page. This code segment builds a token of the "record"

color which represents an array request.

Functions can also be defined to perform operations which are done

repeatedly. A function is written in the CPN variant of the ML

53

language. A function could be associated an arc inscription, a time

delay, a guard or a code segment. The functions are generally

defined in the Declaration Node page. One example is the Exp_Dist

function which calculates the exponential distribution for the

processor think time. This function is on the arc between the CPU

Processing Data place and the Generate Start Address and Stride

transition. The body of the function is located on the Declaration

Node page.

54

Appendix C:

(* The program to extract the chart data from raw CPN data *)

#include <stdio.h>
#define MAXLINE 300 /*defines the maximum line length */
main ()

{
double GetNumFl();
FILE *in, *out, *out2, *out3, *out4;
char infile[20];
int i,j;
char ch;
char Gen;
char Rec;
char Join;
int line;
int Numlnt;
int numspace;
double TimeNow;
double TimeStart;

int CPU;
int N;
int Disk;
int Element;
int Process;
double CPU Start[11] [100]; /* holds the amount of time a CPU was

idle */
char text[300];
double CPUWait; /* time a CPU has waited */
double CPUWaitPerEl; /* time that CPU waited per element */
double TotalCPUWait; /* time that all CPUs have waited */
int TotalN; /* total number of elements sent *I
int ReqNum; /* number of data requests performed for a CPU thus

far */
char Direction; /* which direction data went on bus */
float Busy; /* how long Bus was held busy */
char Bus; /* whether a Bus data line was read */
float BusWait; /* idle time for bus */
int B usld; /* which bus it is *I
int Diskld; /* which memory bank is it */

55

float DiskBusy; /* what the total access time of a bank was for a
certain access *I

float Diskldle[50]; /* holds the amount of time a bank was idle for
an access */

char DiskA,DiskB; /* whether the current line is 'Access' or
'Make'(Disk), respectively */

printf ("Enter the input file name. \n ");
scanf("%s ",infile);
if (((in = fopen(infile,"r")) !=NULL) && ((out= fopen("CPU.txt","a"))

!=NULL) &&((out2 = fopen("BUS.txt","a")) !=NULL) && ((out3 =
fopen("Mem.txt","a")) != NULL)&& ((out4 = fopen("Join.txt","a")) !=
NULL));

{
line =0;
Gen= 'f;
Rec='f;
Bus='f;
DiskA='f;
DiskB='f;
Join='f;
Direction=' ';
Busy=O.O;
EraseArray(text,MAXLINE);

i=O;
j=O;
TotalCPUWait=O;
TotalN=O;
while ((ch=getc(in)) != EOF)
{
text[i] = ch;
if (line==O)
{

}

if (ch == \n')
{
line =1;

EraseArray(text,MAXLINE);
numspace = 0;

i=-1;
}

if (line == 1)

56

't')

{
if (ch == '\n' && numspace != 0)
{

EraseArray(text,MAXLINE);
numspace = O;
i=-1;
line=2;
ch='\O';
}

if (ch=='')
{

}

numspace = numspace + 1;
if (numspace == 4)
j=i+l;

if (numspace == 4 && text[j] == 'G' && text[j+2] == 'N' && Gen !=

{
TimeNow = GetNumF1(3,text);

Gen= 't';
}
if (numspace == 4 && text[j] == 'R' &&Rec != 't')
{

TimeNow = GetNumF1(3,text);
Rec = 't';
}
if (numspace == 4 && text[j] == 'J' &&Join != 't')
{

TimeNow = GetNumF1(3,text);
Join= 't';
}
if (numspace == 4 && text[j] == 'd' &&Bus != 't')
{

TimeNow = GetNumF1(3,text);
Bus= 't';
Busy = 0.4; /* data going to CPU*/

}
if (numspace == 4 && text[j] == 'T' &&Bus != 't')
{

TimeNow = GetNumF1(3,text);
Bus= 't';

Busy = 0.0001; /* DAR going to memory bank*/
}

57

r
if (numspace == 4 && textUJ == 'A' &&DiskA != 't')
{

TimeNow = GetNumF1(3,text);
DiskA = 't';
}
if (numspace == 4 && text[j] == 'M' && textU+8] == 'M' && DiskA

!= 't')
{

TimeNow = GetNumF1(3,text);
DiskB = 't';
}
} /*end of line = 1 processing *I

if (line == 2 && Gen == 't' && ch == '\n')
{

CPU = GetNumlnt(9,text);
ReqNum = GetNumlnt(l 1,text);

CPUStart[CPU][ReqNum] = TimeNow;
Gen= 'f;

EraseArray(text,MAXLINE);
i=-1;
j=O;
line =1;
numspace=O;

}
if (line == 2 && Rec == 't' && ch == '\n')
{

CPU = GetNumlnt(9,text);
ReqNum = GetNumlnt(ll,text);
Disk = GetNumlnt(15,text);
N = GetNumlnt(17,text);"
Process = GetNumlnt(19,text);

CPUWait = TimeNow - CPUStart[CPU][ReqNum];
CPUWaitPerEl = CPUWait IN;
TotalCPUWait= TotalCPUWait + CPUWait;
TotalN= TotalN + N;
fprintf(out,"%f %d %f %d %d %d %d

\n", TimeN ow, CPU, CPUW ai t,
Process,N,Disk,ReqNum);

Rec ='f;
EraseArray(text,MAXLINE);

i=-1;
j=O;
line =1;

58

numspace=O;
}

if (line == 2 && Join == 't' && ch == '\n')
{

CPU = GetNumlnt(9,text);
ReqNum = GetNumlnt(l 1,text);
Element = GetNumlnt(13,text);
Disk = GetNumlnt(15,text);
N = GetNumlnt(l7,text) +1;
CPUWait = TimeNow - CPUStart[CPU][ReqNum];

fprintf(out4,"%f %d %f %d %d %d %d
\n", TimeN ow ,CPU ,CPUWait,Element,N ,Disk,ReqN um);

Join ='f;
EraseArray(text,MAXLINE);

i=-1;
j=O;
line =1;
numspace=O;

}
if (line == 2 && Bus == 't' && ch == \n')
{

Busld = GetNumlnt(9,text);
TimeStart = GetNumFl(l 1,text);
BusWait = TimeNow - TimeStart;

fprintf(out2,"%f %d %f %f \n",TimeNow,Busld,BusWait,Busy);
Bus ='f;

Busy= 0.0;
Erase Array(text,MAXLINE);

i=-1;
j=O;
line =1;
numspace=O;

}
if (line == 2 && DiskA == 't' && ch == '\n')
{

Diskld = GetNumlnt(15,text);
TimeStart = GetNumF1(39,text);
Diskldle[Diskld] = TimeNow - TimeStart;

DiskA ='f;
EraseArray(text,MAXLINE);

i=-1;
j=O;
line =1;

59

numspace=O;
}

if (line == 2 && DiskB == 't' && ch == '\n')
{

Diskld = GetNumlnt(9,text);
TimeStart = GetNumFl(ll,text);
DiskBusy = TimeNow - TimeStart - Diskldle[Diskld];

fprintf(out3,"%f %d %f %f
\n", TimeN ow ,Diskld,Diskldle [Diskld] ,DiskB usy);

DiskB ='f;
EraseArray(text,MAXLINE);

i=-1;
j=O;
line =1;
numspace=O;

}
if (line ==2 && Rec != 't' && ch == '\n')
{ .

}
}

line =1;
EraseArray(text,MAXLINE);

i=-1;
j=O;

numspace=O;
}

i++;
}

fclose(in);
fclose(out);
fclose(out2);
fclose(out3);
fclose(out4);

/* GetNumFl function */

double GetNumFl(spaces,arrln)
int spaces;
char arr In[];
{
int m,n,o;
double NumFl;
char greater; /* greater than zero flag *I

60

r
double tens; /* power of 10 holder */

/* enter in to the beginning of the number */
m=O; /* 'arrln' array pointer */
n=O; /* number of spaces counter */

tens = 10.0;
greater = 't';

NumFl = 0.0;
while (n < spaces)
{
if (arrln[m] == ' ')
{
n++;
}

m++;
}
/* convert the array to a number */

while (arrln[m] != ' ' && arrln[m] >= 48 && arrln[m] <= 57)
{

if (arrln[m] != '.' && greater == 't')
{

NumFl = (NumFl * 10.0) +(arrln[m]-48.0);
m++;
}
if (arrln[m] == '.')
{

greater='f;
m++;
o=l;
}
if (greater == 'f && o<7)
{

NumFI = NumFl + ((arrln[m]-48.0) I tens);
tens = tens * 10.0;

m++;
o++;
}

if (greater == 'f && o >= 7)
m++;

}
return(NumFl);

}

61

/* GetNumlnt function */

GetNumlnt(spaces,arrln)
int spaces;
char arrln[];
{
int m,n,o;
int Numlnt;

/* enter in to the beginning of the number */
m=O; /* 'arrln' array pointer */
n=O; /* number of spaces counter */

Numlnt=O;
while (n < spaces)
{
if (arrln[m] == ' ')
{
n++;
}

m++;
}
/* convert the array to a number */

while (arrln[m] != ' ' && arrln[m] >= 48 && arrln[m] <= 57)
{

Numlnt = (Numlnt * 10) +(arrln[m]-48);
m++;
}
retum(Numlnt);

}

/* EraseArray function */
EraseArray(arr ,length)

char arr[];
int length;

{
int k;
for(k=O;k<length;k++)
{

}

arr[k]='\D';
}

62

Appendix D:

Raw CPN Data (excerps)
Simulation Report
1A@0.0 GENERATE@(l:CPU#l)

{ cpustate = {Cpu = 10,Id = 1,Startldle = 0.0},mar = {CPUid =
10,DARid = !,Element= O,Disk = 45,N = 10,Process = l},newcpustate
= { Cpu = 1 O,Id = 2,Startldle = 0.0} }
2 A@ 0.0 GENERATE@(l:CPU#l)

{ cpustate = {Cpu = 9,Id = 1,Startldle = 0.0},mar = {CPUid =
9,DARid = 1,Element = O,Disk = 59,N = 10,Process = 1 },newcpustate =
{ Cpu = 9,Id = 2,Startldle = 0.0}}
3 A@ 0.0 MAKE@(l:CPU#l)

{ mar= {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N =
1 O,Process = 1} ,mar_lists = []}

7 A@ 0.0 TRANSFER@(l:BUS#3)
{ busstate = {Busld = 9,Startldle = 0.0},mar = {CPUid = 10,DARid =

1,Element = 9 ,Disk = 54,N = 1 O,Process = 1 } ,mar_list = [{ CPUid =
10,DARid = 1,Element = 8,Disk = 53,N = 10,Process = l}],mar_lists =
m
14 A@ 0.0 ACCESS@(l:MEMORY#5)

{ data= {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N =
10,Process = 1 },mar = {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N
= 1 O,Process = 1} ,diskstate = { Diskld = 54,Startldle = 0.0} }

726 A @ 20.3440527255964 Join@(l :MEMORY#5)
{ data= {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N =

1 O,Process = 1 } ,data_lists = []}
727 A @ 20.3440527255964 MAKE@(l:MEMORY#5)

{ diskstate = {Diskld = 54,Startldle = 0.0},newdiskstate = {Diskld
= 54,Startldle = 20.3440527255964}}
728 A @ 20.3440527255964 ACCESS@(l :MEMORY#5)

{ data= {CPUid = 2,DARid = 1,Element = 1,Disk = 54,N =
1 O,Process = 1} ,mar = { CPUid = 2,DARid = 1,Element = 1,Disk = 54,N
= 1 O,Process = 1 } ,diskstate = {Di skid = 54,Startldle =
20.3440527255964}}
729 A @ 20.3440527255964 d@(l :BUS#3)

{ busstate = {Busld = 3,Startldle = 17.2029297094067},data =
{CPUid = 10,DARid = 1,Element = 9,Disk = 54,N = 10,Process =
1} ,data_list = [],data_lists = []}

63

730 A @ 20.3440527255964 MAKE@(l:BUS#3)
{ busstate = {Busld = 3,Startldle =

17.2029297094067},newbusstate = {Busld = 3,Startldle =
20.3440527255964}}
731 A @ 20.3440527255964 q@(l:CPU#l)

{ data= {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N =
1 O,Process = 1 },data_list = []}

872 A @ 26.7412681559373 h@(l:CPU#l)
{ first= {CPUid = 10,DARid = 1,Element = O,Disk = 45,N =

10,Process = 1}}
873 A @ 26.7412681559373 GET@(l:CPU#l)

{ element = {CPUid = 10,DARid = 1,Element = 1,Disk = 46,N =
10,Process = l},first = {CPUid = 10,DARid = 1,Element = O,Disk =
45,N = 10,Process = 1},newfirst = {CPUid = 10,DARid = 1,Element =
1,Disk = 45,N = 10,Process = 1}}
874 A @ 26.7412681559373 GET@(l:CPU#l)

{ element = {CPUid = 10,DARid = 1,Element = 9,Disk = 54,N =
10,Process = 1 },first = {CPUid = 10,DARid = 1,Element = 1,Disk =
45,N = 10,Process = 1 },newfirst = { CPUid = 1 O,DARid = l ,Element =
2,Disk = 45 ,N = 1 O,Process = 1 } }

888 A @ 26.8354260254611 RECEIVE@(l:CPU#l)
{ first= {CPUid = 10,DARid = 1,Element = 9,Disk = 45,N =

10,Process = 1}}

When this raw CPN data is run through Strip.c it results in four files:

CPU.txt which contains the response times for each array request

(from processor back to processor), Bus.txt which contains the

utilization data of each bus in the interconnection network and

Mem.txt which contains the utilization of each disk in the disk

array.

The data produced is best shown in chart. The following is the data

produced from the complete file above from the CPU.txt file:

64

-fl)
E -
CD
E
i=
CD
fl)
c
0
Q.
fl)
CD a:

90
80
70
60
50
40
30
20
1 0

0
II)
('t)
co
CD
C\I

Disk Array Response Time vs Time
(Disk Varied Model, 80 Disk Case)

---------- --- ________ • !':'~!~~~ ~~S_P.?_!1~!3-~i~~ :_ 43.2 ~?.f!l~ •.

co ,.... C\I_ co CD C\I_
C\I .q- ,.... ('t)

CD O> co co
C\I ,...._ II) II) C\I ('t) II)

O> .q- CD 0 ,.... ('t) II)_
,.... O> ,.... ,.... ,.... ,....

Simulated Time (ms)

Figure D.1 Typical Results From a CPN Simulation Run

The average value from this chart is then used as a data point on

one of charts used to characterize the system's performance over a

range of system parameters. For example, the above chart's data

produces the D=80 data point in Figure 4 of this report.

65

References

[l] Tao Yang, Shengbin Hu and Qing Yang, "A Closed-Form Formula

for Queuing Delays in Disk Arrays," Proceedings of the 1994

International Conference on Parallel Processing, Vol. 2, pp. 189-

192, August 1994.

[2] Randy H. Katz, Garth A. Gibson and David A. Patterson, "Disk

System Architectures for High Performance Computing,"

Proceedings of the IEEE, Vol. 77, No. 12, pp. 1842-1858,

December 1989.

[3] Edward K. Lee and Randy H. Katz, "An Analytic Performance

Model of Disk Arrays," Performance Evaluation Review:

Proceeding of ACM SIGMETRICS, Vol. 21, No. 1, pp. 98-102, June

1993.

[4] Daniel Stodolsky, Garth Gibson and Mark Holland, "Parity

Logging Overcoming the Small Write . Problem in Redundant

Disk Arrays," IEEE Computer Architecture News, Vol. 21, No. 2,

pp. 64-75, May 1993.

[5] Tadao Murata, "Petri Nets: Properties, Analysis and

Applications," Proceedings of the IEEE, Vol. 77, No. 4, pp. 541-

580, April 1989.

[6] Mark A. Holliday and Mary K. Vernon, "Exact Performance

Estimates for Multiprocessor Memory and Bus Interference,"

66

IEEE Transactions on Computers, Vol. C-36, No. 1, pp. 76-85,

January 1987.

[7] Mary K. Vernon and Mark A. Holliday, "Performance Analysis

of Multiprocessor Cache Consistency Protocols Using Generalized

Timed Petri Nets," ACM Performance Evaluation Review:

Proceedings of ACM SIGMETRICS, pp. 9-17, 1986.

[8] Prithviraj Banerjee and A. L. Narasimha Reddy, "An Evaluation

of Multiple-Disk 1/0 Systems", IEEE Transactions on Computers,

Vol. 38, No. 12, pp. 1680-1690, December 1989.

67

Bibliography

Banerjee, Prithviraj and A. L. Narasimha Reddy and , "An Evaluation

of Multiple-Disk . 1/0 Systems", IEEE Transactions on Computers, Vol.

38, No. 12, pp. 1680-1690, December 1989.

Holliday, Mark A. and Mary K. Vernon, "Exact Performance

Estimates for Multiprocessor Memory and Bus Interference," IEEE

Transactions on Computers, Vol. C-36, No. 1, pp. 76-85, January

1987.

Katz, Randy H., Garth A. Gibson and David A. Patterson, "Disk System

Architectures for High Performance Computing," Proceedings of the

IEEE, Vol. 77, No. 12, pp. 1842-1858, December 1989.

Lee, Edward K. and Randy H. Katz, "An Analytic Performance Model

of Disk Arrays," ACM Performance Evaluation Review: Proceedings

of ACM SIGMETRICS, Vol. 21, No. 1, pp. 98 - 109, June 1993.

Murata, Tadao, "Petri Nets: Properties, Analysis and Applications,"

Proceedings of the IEEE, Vol. 77, No. 4, pp. 541-580, April 1989.

Stodolsky, Daniel, Garth Gibson and Mark Holland, "Parity Logging

Overcoming the Small Write Problem in Redundant Disk Arrays,"

Computer Architecture News, Vol. 21, No. 2, pp. 64-75, May 1993.

68

Vernon, Mary K. and Mark A. Holliday, "Performance Analysis of

Multiprocessor Cache Consistency Protocols Using Generalized Timed

Petri Nets," ACM Performance Evaluation Review: Proceedings of

ACM SIGMETRICS. pp. 9-17, 1986.

Yang, Tao, Shengbin Hu and Qing Yang, "A Closed-Form Formula for

Queuing Delays in Disk Arrays," Proceedings of the 1994

International Conference on Parallel Processing, Vol. 2, pp. 189 -

192, August 1994.

69

	Performance Analysis of Multiprocessor Disk Array Systems Using Colored Petri Nets
	Terms of Use
	Recommended Citation

	thesis_almquist_1994_001
	thesis_almquist_1994_002
	thesis_almquist_1994_003
	thesis_almquist_1994_004
	thesis_almquist_1994_005
	thesis_almquist_1994_006
	thesis_almquist_1994_007
	thesis_almquist_1994_008
	thesis_almquist_1994_009
	thesis_almquist_1994_010
	thesis_almquist_1994_011
	thesis_almquist_1994_012
	thesis_almquist_1994_013
	thesis_almquist_1994_014
	thesis_almquist_1994_015
	thesis_almquist_1994_016
	thesis_almquist_1994_017
	thesis_almquist_1994_018
	thesis_almquist_1994_019
	thesis_almquist_1994_020
	thesis_almquist_1994_021
	thesis_almquist_1994_022
	thesis_almquist_1994_023
	thesis_almquist_1994_024
	thesis_almquist_1994_025
	thesis_almquist_1994_026
	thesis_almquist_1994_027
	thesis_almquist_1994_028
	thesis_almquist_1994_029
	thesis_almquist_1994_030
	thesis_almquist_1994_031
	thesis_almquist_1994_032
	thesis_almquist_1994_033
	thesis_almquist_1994_034
	thesis_almquist_1994_035
	thesis_almquist_1994_036
	thesis_almquist_1994_037
	thesis_almquist_1994_038
	thesis_almquist_1994_039
	thesis_almquist_1994_040
	thesis_almquist_1994_041
	thesis_almquist_1994_042
	thesis_almquist_1994_043
	thesis_almquist_1994_044
	thesis_almquist_1994_045
	thesis_almquist_1994_046
	thesis_almquist_1994_047
	thesis_almquist_1994_048
	thesis_almquist_1994_049
	thesis_almquist_1994_050
	thesis_almquist_1994_051
	thesis_almquist_1994_052
	thesis_almquist_1994_053
	thesis_almquist_1994_054
	thesis_almquist_1994_055
	thesis_almquist_1994_056
	thesis_almquist_1994_057
	thesis_almquist_1994_058
	thesis_almquist_1994_059
	thesis_almquist_1994_060
	thesis_almquist_1994_061
	thesis_almquist_1994_062
	thesis_almquist_1994_063
	thesis_almquist_1994_064
	thesis_almquist_1994_065
	thesis_almquist_1994_066
	thesis_almquist_1994_067
	thesis_almquist_1994_068
	thesis_almquist_1994_069
	thesis_almquist_1994_070
	thesis_almquist_1994_071
	thesis_almquist_1994_072
	thesis_almquist_1994_073

