
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2017

Kodai: A Software Architecture and Implementation for Kodai: A Software Architecture and Implementation for

Segmentation Segmentation

Rick Rejeleene
University of Rhode Island, rrejeleene@cs.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation Recommended Citation
Rejeleene, Rick, "Kodai: A Software Architecture and Implementation for Segmentation" (2017). Open
Access Master's Theses. Paper 1107.
https://digitalcommons.uri.edu/theses/1107

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1107?utm_source=digitalcommons.uri.edu%2Ftheses%2F1107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

KODAI: A SOFTWARE ARCHITECTURE AND IMPLEMENTATION

 FOR SEGMENTATION

BY

RICK REJELEENE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2017

MASTER OF SCIENCE THESIS

OF

RICK REJELEENE

APPROVED:

 Thesis Committee:

 Major Professor: Joan Peckham

 Lisa DiPippo

Ruby Dholakia

Nasser H Zawia

 DEAN OF GRADUATE COMMITTEE

UNIVERSITY OF RHODE ISLAND

2017

ABSTRACT

The purpose of this thesis is to design and implement a software architecture for segmen-

tation models to improve revenues for a supermarket. This tool supports analysis of su-

permarket products and generates results to interpret consumer behavior, to give busi-

nesses deeper insights into targeted consumer markets. The software design developed is

named as Kodai. Kodai is horizontally reusable and can be adapted across various indus-

tries. This software framework allows testing a hypothesis to address the problem of in-

creasing revenues in supermarkets. Kodai has several advantages, such as analyzing and

visualizing data, and as a result, businesses can make better decisions. In addition to these

advantages, Kodai is open-source, which means any developer can access the code, and

develop into client requirements. With the described features, it is better than other simi-

lar tools such as Gephi, a free visualization and manipulation tool.

The retail industry has grown exponentially, resulting in increasing demand for software

tools to analyze consumer behavior. The analysis of consumer behavior helps businesses

to stay at the forefront of market competition and provide excellent service. By focusing

on consumer purchase behavior, Kodai can perform analyses, meaning it can classify

consumers based on variables that capture their behavior. An example is identifying con-

sumers who spend the most amount of money in a supermarket.

Segmentation models provide qualitative and quantitative methods to improve service for

the customer and revenues for the company. These models can be used in different

fields such as finance, education and healthcare. Another important feature of Gephi is

its interactive and visual modeling capabilities to help understand consumer behavior.

Additionally, the software is reusable and supports the integration of future tools, follow-

ing key extensibility concepts of software design.

This thesis explains the implementation of Kodai as a software architecture through seg-

mentation models using a web-based application that implements software engineering

methodology to improve revenues and consumer experience. This tool is developed to

facilitate segmentation of consumer data based on purchase behavior with the goal of al-

lowing the user to test a hypothesis to address the problem of increasing revenues in su-

permarkets. Most importantly, the software is reusable and can be adapted horizontally

across various industries.

ACKNOWLEDGEMENTS

I would like to give sincere thanks my advisor Dr. Joan Peckham, who allowed me to

work with complete independence in developing Kodai, a segmentation software on this

research. I would like to give thanks to the caring community of Bridges International, a

student club, who were like family to me. I wish to express my deepest appreciation to

Carla White, who cared for me and taught me about family. This research would

not be possible but for her. I wish to thank Romine Brooks for his constant encourage-

ment. I would like to thank Dr. Ruby Dholakia for agreeing to review

my work. I would also like to thank Dr.Lisa DiPippo for agreeing to review my work.

Finally, I wish to thank Dr. Richard Vaccaro for agreeing to be my defense chair in a

short possible time.

iv

TABLE OF CONTENTS

Abstract... ii

Acknowledgments.. iv

Table of Contents...v

List of Tables..ix

List of Figures.. x

CHAPTER 1 INTRODUCTION……..1

1.1 OUTLINE OF KODAI ... 1

1.2 SEGMENT: PRODUCT SELECTION BEHAVIOR 4

1.3 SEGMENT: OTHER BASES ... 4

 List of References ... 6

CHAPTER 2 BUSINESS BACKGROUND READING ……………………….......8

2.1 BUSINESS BACKGROUND READING ... 7

2.2 BUSINESS REQUIREMENTS .. 7

2.3. SEGMENTATION .. 8

2.4 PRICE ... 10

2.5 COUPON .. 11

 List of References ... 12

CHAPTER 3 SOFTWARE ENGINEERING BACKGROUND READING.....13

3.1 SOFTWARE ENGINEERING BACKGROUND READING………………13

3.2 SOFTWARE REQUIREMENTS ... 13

3.3 SUPERMARKET DATASET .. 14

3.4 CSV ... 17

 3.5 SOFTWARE PROCESS MODEL ... 18

v

3.5.1 WATERFALL MODEL .. 19

3.5.2 HYBRID - AGILE WATERFALL MODEL .. 20

3.6 GITHUB ... 21

3.7 WEB FRAMEWORK ... 21

3.8 DJANGO... 22

3.9 PYTHON .. 25

3.10 ELASTIC SEARCH ... 25

 3.11 ELASTIC SEARCH HEAD PLUGIN.. 27

 3.12 WHY KODAI IS BETTER .. 28

3.12.1 FLEXIBILITY ... 29

3.12.2 MEMORY ... 29

3.12.3 REUSABLE ... 30

3.12.4 SCALABLE ... 30

List of References ... 31

CHAPTER 4 ARCHITECTURE OF KODAI ……...……………………………..33

4.1 DIFFERENCE BETWEEN ARCHITECTURE AND FRAMEWORK….........33

4.2 ARCHITECTURAL STRUCTURE OF KODAI ... 34

4.3 A BEHAVIORAL DESCRIPTION OF KODAI:... 35

4.4 KODAI – TOP COUPONS REDEEMED .. 37

List of References ... 38

CHAPTER 5 IMPLEMENTATION OF KODAI...39

5.1 SOFTWARE IMPLEMENTATION .. 39

5.2 SOFTWARE FLOW DIAGRAM... 41

vi

5.3 SOFTWARE ENGINEERING MODEL .. 42

5.3.1 REQUIREMENTS ... 43

5.3.2 IMPLEMENTATION .. 43

5.3.2.a TOP USERS BY REVENUE ... 43

5.4 USAGE AND APPLICATION .. 48

5.4.1 EDUCATION SOFTWARE .. 48

5.4.2 AGRICULTURE SOFTWARE ... 49

5.4.3 FINANCE SOFTWARE .. 49

5.4.4 SOFTWARE REUSE .. 49

 List of References ... 50

CHAPTER 6 RESULTS... 51

6.1 IMPROVEMENT OF REVENUES ... 51

6.2 SOFTWARE AND ARCHITECTURAL REUSABILITY 53

List of References ... 55

CHAPTER 7 CONCLUSION AND FUTURE WORK..56

7.1 CONCLUSION ... 56

7.2 FUTURE WORK ... 58

7.2.1 SECURITY .. 58

7.2.2 USER PROFILE .. 59

7.2.3 MACHINE LEARNING ALGORITHMS 59

7.2.4 DATA VISUALIZATION ... 60

7.2.4.1 DEVELOPING AN INTERFACE TO ANALYZE
BASKETS OF PURCHASE……………………………………61

vii

7.2.4.2 CAPTURING PRICE ELASTICITY OVER
TIME…………………………………………………………….61

List of References ... 62

CHAPTER 8 APPENDIX ……………………………………………………………..63

8.1 DJANGO INSTALLATION .. 63

8.2 PYTHON SCRIPT FOR TOP CONSUMERS ... 66

BIBLIOGRAPHY………………..……………………………………………………..68

viii

LIST OF TABLES

Table Page

Table 1. Different dataset file names present household .. 15

Table 2. Comma Separated Value data format .. 17

Table 3. Sample example of comma separated value from table 2 18

Table 4 How Kodai meets software requirements .. 56

Table 5 How Kodai met business requirements ... 57

Table 6 Python Script for top consumers .. 66

ix

LIST OF FIGURES

Figure Page

Figure 1. How marketers define segmentation ... 8

Figure 2. Supermarket dataset from households ... 15

Figure 3. Phases in Hybrid Agile Waterfall model ... 20

Figure 4. Architecture describing overall framework of Django 24

Figure 5. Architecture of Elastic Search Data provider .. 26

Figure 6 GEPHI out of Memory uploading transaction file ... 28

Figure 7 Software architecture and implemntation for segmenation model 34

Figure 8: Kodai’s Activity Diagram……………………………………………………. 36

Figure 9 High-Level Architecture of Kodai .. 40

Figure 10 Software Flow of Kodai ... 41

Figure 11 Software Engineering model of Kodai ... 42

Figure 12 Elastic Search Head Plugin Graphical View .. 45

Figure 13 Elastic Search Query in head plugin .. 45

Figure 14 Kodai Software showing functions .. 47

Figure 15 Kodai showing Top Consumers by Revenue feature 47

Figure 16 Segments in Kodai .. 52

Figure 17 Kodai is able to test and add price increase column ... 53

Figure 18 Machine Learning categories ... 59

Figure 19 Weekly Visit Trend .. 61

Figure 20 User running Django Local Server ... 63

Figure 21 Run Locally Elastic Search Server……………………………………………64

x

Figure 22 Python Index script ... 65

xi

1

CHAPTER 1

INTRODUCTION

1.1 OUTLINE OF KODAI

The focus of this thesis is the design and implementation of Kodai as a software

architecture for segmentation models to improve revenues for a supermarket. Kodai runs

as a web-based application, using the Django Framework [1]. Web-based applications are

software, that can run in any browser with client and server architecture. The Django

Framework allows for the creation of fast, reusable software. The developed software is

named as Kodaia. Kodai is open-source software, horizontally reusable and can be

adapted across various industries such as education, agriculture, and finance. It allows for

the testing a hypothesis to address the problem of increasing revenues in supermarkets.

Gephi [2], a visualization and manipulation software, is constrained by random

access memory in a system. It takes an average of 10 minutes to import a file size of 141

megabytes. Meanwhile, Kodai takes only an average of 4 minutes to index into Elastic

Search (see Section 3.10). Gephi is not able to test a hypothesis to address the problem of

increasing revenues, thus Kodai is more efficient and reusable to better to test our hy-

pothesis.

yED [3] is a powerful diagram editor that can be used to create diagrams from

manually exported data for analysis and arrange large data sets by using a simple button.

It provides an extensive class library for analysis, visualization graphs and network dia-

grams. Common tasks that can be accomplished by yED are visualization, creating and

a Kodai is named after famous hill-station Kodaikanal, Tamil Nadu. Kodai means umbrella in Tamil Lan-
guage.

2

editing of graphs. Unfortunately, yED cannot meet the requirement of uploading raw da-

ta, or the testing of a hypothesis such as one related to increasing revenues through exam-

ining segments of data.

Raw Graphs [4] is an open source visualization framework with the goal of mak-

ing visualization of complex data easy for everyone. It aims to provide a link between

spreadsheet and vector graphics editors. Although it is an open source tool, that can han-

dle raw file uploads, it is not able to handle file sizes above a gigabyte. It cannot help in

testing of a hypothesis of improvement about revenues. Kodai is able to able to handle

large file sizes, and can support testing a hypothesis of increasing revenues through ex-

amining segments of data.

Tableau [5] is a data analysis and visualization software product from Stanford

University that allows users to drag and drop to analyze data. In a few clicks, users can

connect data to the software and create data visualizations. Although Tableau has state of

the art features such as vizQL, which translates drag and drop data into a visualization, it

is not open-source. Kodai is open-source.

This is an interdisciplinary project that contributes to the disciplines of software

engineering and marketing. Many organizations are obsessed with big data, as leading

companies are now able to characterize people simply by observing their behavior. In a

market analysis environment, the starting point is frequently the introduction of a web

application to analyze different segments from collected data. Market segmentation iden-

tifies patterns of differences among groups responding to communications, products, and

services [6]. The assumption is that if segments can be identified, described and reached

selectively and efficiently, then an organization may increase sales and profits, and im-

3

prove customer experience. Segmentation categorizes people based on a range of varia-

bles that allows for analysis of groups of people. The most frequently used variables are

drawn from demographics, behaviors, or benefits sought by the customer. Kodai is em-

pirically driven and based on segmentation models specified by the market analyst. The

aim is to segment consumers based on purchase behavior and to identify customers who

exhibit similar purchase behaviors.

The above is the central basis for all segmentation. Segmentation can be broadly

divided into two different classes [6]: a priori segmentation and post hoc segmentation.

A priori segmentation involves selecting certain groups from a population. Pre-

determined segments are defined by demographics, psychographics or some readily ob-

servable behavior such as consumer spending. Post hoc segments intend to identify and

classify segments based on actual market investigation and analyses of particular answers

to survey questions. Because this software measures only purchase behavior, it can be

classified as a priori segmentation.

Our a priori approach is implemented when the consumer data divides the market popula-

tion into two or more groups. Pre-determined or a priori segmentation involves selecting

categories in data based on the business requirements. By selecting certain pre-

determined groups, we create segments in the dataset. In Kodai, pre-determined segments

are selected based on the consumers who have spent the most, revenues of consumers,

products, and coupons redeemed.

In Kodai, we do not use Post-hoc segmentation, as it is used for introducing new

products in the market. The Post-hoc method tries to identify segments based on actual

investigations, particularly using analysis of answers to survey questions intending to

4

predict marketplace responses. Rather than shaping a product to serve existing consumer

behavior as in a priori segmentation, posthoc segmentation is useful for introducing new

products based on consumers’ opinions. The following gives an outline of selecting seg-

ments in a dataset:

1.2 SEGMENT: PRODUCT SELECTION BEHAVIOR

a) Usage rates and occasions — This contains the number of times a consumer visited a

supermarket and the number of products purchased.

b) A Number of different brands used regularly — Consumers selection of brands. We

have observed that frequently people are loyal to the same brand.

1.3 SEGMENT: OTHER BASES

a) Stage in life cycle – Different stages include, single, married and retired.

b) Socio-economic status – Income demographics of consumers

c) Other demographics – Household size of consumers

It is a well-known maxim in business that 20% of consumers provide 80% of

sales [7]. In reference to this statistics, Kodai’s goal is to identify areas of growth. It

identifies consumers who are increasing their purchases within a two-year period of busi-

ness. Kodai accomplishes it by building an index from supermarket data through Elastic

Search. Elastic Search is a software tool, that allows Kodai to send queries into built in-

dexes [8]. These indexes provide the efficiency that other products are unable to provide

(See Section 1.1)

5

The main work of this thesis is outlined as the following:

• Applying software architecture by building a web-based tool for segmentation,

focusing on the architecture and software development methodology for the tool

that supports the analysis of consumer behavior patterns.

• Implementation of the framework for the web based tool.

• Analysis of the software to test hypotheses regarding consumer buying pattern.

The remainder of this thesis is composed of three chapters

• First, we discuss background information regarding segmentation models, pricing

and related work in order to achieve maximum comprehension for readers of any

background.

• Next, the thesis discusses key parts of the implementation. This portion includes

details about the software architecture, the software framework, the software

methodology, and the technologies used to support segmentation.

• Finally, we discuss the results generated by the tool — all code is uploaded to

GitHub [9], is a repository and internet hosting service. The chapter ends with

concluding remarks and thoughts for future research.

6

List of References

[1] Holovaty, A., & Willison, S. (2008, June 4). Django. Django at a glance. Retrieved
January 22, 2017, from https://docs.djangoproject.com/en/1.9/intro/overview/

[2] Bastian, M. (2008, July 31). Gephi. Gephi Quick Start. Retrieved January
22,2017, from https://gephi.org/users/quick-start/

[3] yWorks GmbH 2016 (2016, March 24). yWorks, Documentation. Retreived January
22, 2017, from http://www.yworks.com/products/yfiles/documentation

[4] Caviglia, G., Mauri, M., Uboldi, G., & Azzi, M. (2014, January 6). About Raw
Graphs. Raw Graphs. Retrieved January 22, 2017, from http://rawgraphs.io/about/

[5] Tableau Corporation. (n.d.). Business Intelligence and Analytics | Tableau Software.
Retrieved from https://www.tableau.com

[6] Struhl, S. (2013). Market Segmentation: An Introduction and Review. Create Space
Independent Platform Publishing.

[7] Newman, M. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary
Physics, 323-351.

 [8] Banon, S. (2010, February 21). Elastic Search. Preface. Retrieved January 22, 2017,
from https://www.elastic.co/guide/en/elasticsearch/guide/current/_preface.html

 [9] Preston-Werner, T., Wanstrath, C., & Hyett, P. (2008, April). Github. Github
Help. Retrieved January 22, 2017, from https://help.github.com/

7

CHAPTER 2

2.1 BUSINESS BACKGROUND READING

 In this chapter, we explain the basic background material and tools necessary for

the reader. Understanding the business requirements will help the reader to gain compre-

hension of the requirements for Kodai. Next, we discuss a high-level view of business

concepts, and tools needed for Kodai. This involves segmentation models, the supermar-

ket dataset, and software process models.

A Segmentation model is an abstract defined model created in Kodai based on patterns of

differences in purchasing behavior of consumers. The Supermarket dataset that we used

here contains raw data collected from a supermarket [1]. Kodai is applied and tested us-

ing this supermarket dataset. This chapter contains an outline of segmentation models as

they pertain to some aspects of prices and coupons.

2.2 BUSINESS REQUIREMENTS

As this thesis is an interdisciplinary project, it requires expertise in multiple disci-

plines. Kodai must be able to do the following to satisfy the business requirements:

• The software should be able to quickly identify top consumers of a supermarket

from any demographic.

• The software should be able to determine the households that spend the most in a

supermarket.

8

• The software should be able to identify coupons with the highest number of con-

sumer redemptions.

• The software should allow the developer and other users to test out hypotheses to

improve revenues.

• The software should be able to run on any operating system, including Windows,

Mac, Linux.

• The software should be open source and able to handle at least a gigabyte of raw

data.

• The software should be extensible to other similar segmentation applications.

2.3. SEGMENTATION

Figure 1. How marketers define segmentation [2]

Segmentation models help us to understand consumer behavior, allowing businesses to

improve products and services for consumers.

9

In Figure 1, marketers define markets and try to understand the value of markets. Next,

they determine value propositions, which can be benefits sought out by consumers. These

values are delivered and monitored creating an asset base. An asset base refers to the im-

portant value created through markets. One example of an asset base could be brand

recognition from consumers. For example, brands such as Apple, Microsoft, Google have

a strong brand recognition that creates consumer loyalty to specific brand.

Segmentation as a concept did not appear until 1956. The most influential discus-

sion of market segmentation appeared in an article by the former president of the Ameri-

can Marketing Association, Smith, addressing product strategies and the use of their ap-

plication. In his paper, Wendall Smith rejected the classical economic theory of perfect

competition [3]. Perfect competition is defined by market holding to conditions such as

perfect information about buyers, well-defined property rights, and profit maximization

of sellers. Using variety became the norm of contemporary markets. Wendall Smith said

segmentation worked more efficiently than a strategy of maximizing output or simply

producing as many products as possible.

Using a differentiation strategy, the manufacturer would try to make something

for everybody, without an in-depth study of any particular group within the market.

Meanwhile, Smith compared product differentiation strategies as trying to take a layer of

a marketing pie-chart and segmenting it into slices. A truly successful organization must

find segments and then create products and services fitting their needs rather than creat-

ing consumer needs or demands.

 Segmentation is defined as patterns of differences among a group’s responses to

communications, products, and services. Here we consider responses to purchases in a

10

supermarket and raw data that we assume is static. The key idea is that different groups

have different patterns of responses in a supermarket environment. These distinctions are

inferred from analyzing the supermarket dataset, thus following a priori, empirically-

driven segmentation. Segmentation is broadly classified into apriori and posthoc model.

We briefly discussed these two models of segmentation in Section 1.1.

2.4 PRICE

In this chapter, we give a brief outline of price and sample price as defined in the

supermarket dataset used by Kodai. In the book Pricing and Revenue Optimization [4], a

historical example demonstrates the importance of price in the business. During the rule

of the Dutch Republic, speculative bubbles such as “Tulipomania” caused prices of tulips

to rise more than a hundredfold within 18 months. This begs the question, “What were

prices exactly? And how are they defined?” We define price not as intrinsic but rather

based on what consumers perceive: supply and demand. Milton Friedman in his book,

Price Theory, defines prices as not determined by any one individual firm, but rather is

determined by the market [5]. The supermarket dataset used by Kodai does not contain

the price of products, but we can easily configure Kodai to include sample price in the

dataset to determine potential impact of price change on revenues. Revenues are incomes

from all units sold in the dataset.

 In the dataset, we target the top 20% of consumers for increasing revenues; by

increasing the prices of products that have been sold the most, we are able to gauge po-

tential revenue increase. We proceed as follows; we define a sample price for items in our

dataset. We define a sample price increase variable in our software Kodai for items in

supermarket. The number of items sold in the dataset is listed under quantity. We have

11

sample revenue, and sample increased revenue. We can then calculate potential revenue

increase.

2.5 COUPON

In marketing, a coupon is an incentive or ticket that consumers can use to get fi-

nancial discounts for purchasing a product. Coupons are part of sales promotions. Cou-

pons are likely to be redeemed by price sensitive consumers, thus software using this data

can segment price-sensitive consumers. We assume that buyers, who collect coupons, are

more price sensitive than buyers who do not collect coupons. Therefore, from our hy-

pothesis of price sensitive consumers, it follows that consumers who do not collect cou-

pons would not be affected by a small increase in prices. In Kodai, we find products that

have been redeemed the most, and details about consumers who have redeemed coupons.

12

List of References

[1] Rajkumar, V. (2011, April 22). Dunnhumby - Customer Science & Consultancy for
Retailers & Manufacturers (CPGs). Source Files | dunnhumby. Retrieved January 22,
2017, from http://www.dunnhumby.com/sourcefiles

 [2] McDonald, M., & Wilson, H. (2016). Marketing Plans: How to prepare them, how to
profit from them. Italy: Wiley.

[3] Smith, W. (n.d.). Marketing Masters. Product Differentiation and Market Segmenta-
tion as Alternative Marketing Strategies. Retrieved January 22, 2017, from
https://archive.ama.org/archive/ResourceLibrary/MarketingManagement/documents/9602
131166.pdf

[4] Phillips, R. (2005). Pricing and Revenue Optimization. Stanford Business Books,
Stanford University Press.

[5] Friedman, M. (1962). Price Theory. Chicago: Aldine Transaction.

13

CHAPTER 3

3.1 SOFTWARE ENGINEERING BACKGROUND READING

This chapter contains a basic outline of the software engineering process and tools

involved in the development of Kodai. We begin with an outline of the supermarket

dataset, and the data format used. We also describe the software used to develop Kodai

including the programming languages and applications as well as the software framework

used. Also, Kodai is compared to Gephi, a visualization and manipulation software to

help the reader understand, how Kodai is better and meets both software and business

requirements (See Section 2.2).

3.2 SOFTWARE REQUIREMENTS

Software requirements are computing pre-requisites needed for the software to run on any

computer and produce needed service to the customer or user. Kodai must be able to do

the following to satisfy the computer science requirements:

• The software must be reusable and applicable across many industries. This is con-

sistent with the principles of software engineering.

• The software must be extensible for future add-ons.

• The software should import data and analyze data according to the business re-

quirements. The section below explains our specific dataset used for Kodai to

function.

14

3.3 SUPERMARKET DATASET

In this section, we give a thorough explanation of the supermarket dataset and de-

scribe necessary details for the reader to understand it. First, Segmentation is created

from raw datasets. We define data as a collection of values of qualitative or quantitative

variables, which is measured, collected, analyzed and visualized using graphs, images or

other analysis tools. In the supermarket dataset, data is information about habits of con-

sumers based on demographics, revenues, coupons. This dataset contains supermarket

household level transactions.

The below dataset represents household level transactions which were collected

from over two years from 2,500 households. It contains details of household purchases

such as unique id, age category, homeowner, household size. Coupon data provides in-

formation about specific coupon campaigns sent to households. The data is in CSV or

comma separated files (see section 3.4). These files contain the following information

described below: Figure 2 shows the files and their attributes and Table 1 lists the file

names.

15

Figure 2. Supermarket dataset from households [1]

• The CAMPAIGN_TABLE file contains information about 1,584 households that

received 30 campaigns via mail. A campaign occurs when the business owner de-

Table 1. Different dataset file names present household [1]

• CAMPAIGN_TABLE

• CAMPAIGN_DESCRIPTION

• COUPON_REDEMPT

• HH_DEMOGRAPHIC

• COUPON

• TRANSACTION_DATA

• PRODUCT

• CAUSAL_DATA

16

cides to send coupons to select consumers. It lists the campaigns received by

each household.

• The CAMPAIGN_DESCRIPTION file contains the campaign’s running length of

time. Any coupons received as a part of a campaign are valid within the dates

contained in this table.

• The COUPON_REDEMPT file contains information about households that redeemed

coupons sent by a supermarket.

• The HH_DEMOGRAPHIC FILE contains household demographics, which includes

age, marital status, income, homeowner, and household size.

• The COUPON file contains all the coupons sent to customers as a part of a cam-

paign. There are some products that are redeemable. The dataset lists different

campaign names such as A, B, and C. A customer participating in Campaign A,

for instance, might have received 16 coupons out of the pool.

• The TRANSACTION_Data file contains all products purchased by households with-

in this study. It has a household key, basket ID (which identifies purchase occa-

sion), day, product identification, quantity, sales value, and coupon match. All in-

formation pertaining to transactions are contained in this category.

• The PRODUCT file contains information on each product such as product identifi-

cation, department, manufacturer, brand, and current product size.

• The CAUSAL_DATA file contains information about products that were displayed

in a weekly mail or in-store display. All the above tables are organized and stored

in comma separated file format.

17

3.4 CSV

Digital data is commonly stored in Comma Separated File (CSV). It stores tabular

data in plain text [2]. Each line of the file is a data record separated by commas. All rec-

ords have the same number of fields in the same order. Because most data processing ap-

plications use this format, this makes the data easy and straightforward to access & pro-

cess by software applications. Kodai only uses CSV files for segmentation.

Year Company Car Model Price

2004 Hindustan Ambassador 3000.00

2008 BMW B8 4900.00

2009 AUDI A4 5000.00

2011 TATA Indica 4799.00

Table 2. Comma Separated Value data format [2]

The data shown in Table 2 above can be represented in comma separated value format as

shown in Table 3 below.

18

Kodai takes CSV files as an input and the software process model helps the developer to

take this file as an input, and process the data using Kodai.

3.5 SOFTWARE PROCESS MODEL

Every software needs thorough planning, and detailed design before a developer

begins to code. Without a plan, developers cannot know the direction, and goal of their

software. A software process models helps developers to systematize and plan their soft-

ware development process. Software process model is an abstract representation of a

software development process. It presents a description of the process from some particu-

lar perspective. We integrated two software models in developing this software, the wa-

terfall model and an agile model. Kodai’s need for constant iterations required us to fol-

low this hybrid agile development model.

Year, Company, Car Model, Price

2004, Hindustan, Ambassador, 3000.00

2008, BMW,"B8", 4900.00

2009, AUDI," A4”, 5000.00

2011, TATA,” Indica”, 4799.00

Table 3. Sample example of comma separated value from table 2

19

3.5.1 WATERFALL MODEL

As software was being developed over time, each phase of software development

was abstracted and systematized to build software faster and more efficiently. The water-

fall model is the classical model of software engineering. The Waterfall model is a

framework for software development process, where each phase of software development

is developed in stages. It starts with the requirements phase and ends with maintenance. If

requirements for the software are collected, this makes planning more efficient, and better

quality software can be built. The Waterfall model does not allow for reflection or revi-

sion, thus there is high amount of risks and uncertainty. Due to need of iterative process

in our prototyping phase, we integrated the iterative aspects of agile development. Ko-

dai’s software development process integrated waterfall and agile as hybrid agile water-

fall model.

The Spiral software development model is a type of software process model. It

starts with the following phases of development: identification of business requirements,

design phase (involves architectural design), construction or building (involves produc-

tion of actual software) and finally evaluation and risk analysis. Also, each step in the

spiral process can be revisited, repeated to examine risks at each stage. It is perhaps too

cumbersome for small software products, and is suited for medium to large scale software

products. As Kodai is a small software framework, the spiral software process model was

not chosen.

20

3.5.2 HYBRID - AGILE WATERFALL MODEL

Figure 3. Phases in Hybrid Agile Waterfall model [3]

In the Hybrid Agile waterfall model, there’s an iterative step at every step of waterfall

methodology. We start with basic requirement identification; in Kodai, we identified that

some of our product requirements need a framework to allow access to supermarket data;

the user interface especially needs to be a web-based application that can be on a cloud.

Next, the initial prototype consists of the development of basic requirements mentioned

above in section 2.2. This includes user interfaces, with high-level functions such as an

ability to view on a web browser, reusing software for different disciplines. In Kodai, we

enable a given supermarket business to collect, analyze and better understand their con-

sumers, as a result of capabilities of the software. Finally, revision and enhancing proto-

type feedback focus on reviewing comments to incorporate features into our new proto-

type, this includes functions to view the trend of consumer visits in a supermarket. Agile

is ideal for new technology such as web application and flexibility for changes.

21

 By using both the Waterfall and Agile methodology, we involve users of Kodai in

the production process even before implementation. As the working model is displayed,

the user gets a better understanding of the system being developed. Also, the waterfall

models help to increase quality by catching possible design flaws at the testing stage.

3.6 GITHUB

 After deciding on a software methodology, all software requires iterative updates

and versions as software development takes place. In order to document and store all our

code for Kodai, we need to use version control and a code hosting platform. We use

Github for this purpose. GitHub [4] is a code-hosting platform for version control and

collaboration. It lets software developers work together on projects from anywhere. A

repository is usually used to organize a single project and contains folders, files, spread-

sheets, and datasets. Kodai has all the necessary files stored in GitHub. The link to the

software repository: https://github.com/ludwigwittgenstein2/supermarket_elasticsearch.

We use GitHub to maintain version control, future development of Kodai, and a Web

framework for developers to build efficient software.

 3.7 WEB FRAMEWORK

In this section, we explain about Web framework, and the specific framework, Django

used for Kodai to be developed. This allows the reader to gain sufficient knowledge in

Web frameworks and Django. A Web framework is an implemented extensible abstrac-

tion of software development tools required for developers to build web applications. A

web framework encapsulates developers’ experience from over twenty years [5]. It helps

to support the development of web applications that are geared towards applications used

22

by clients on the internet. These frameworks make it easier to reuse common HTTP oper-

ations and structure so that other developers with knowledge of a framework can quickly

build and maintain the application. The common operations that can be performed with

Django framework are session storage, database manipulation, security, URL routing,

accessing JavaScript object notion. Session Storage and retrieval help developers store

information about users’ browsing activity, and later retrieve to help them identify unique

users. Database manipulation helps developers to constantly update and remove data

stored in a database. Security against cross-site request forgery helps to prevent common

attacks to gain access to username and passwords within the web-application. URL rout-

ing lets developers quickly categorize URLs within Django. Django gives developers ac-

cess to the above commonly performed operations.

3.8 DJANGO

In Django’s documentation, the authors define, “Django as an open-source, high-

level Python Web framework that encourages rapid development and clean, pragmatic

design” [6]. Django allows us to create complex database-driven websites emphasizing

reusability, plug ability of components, rapid development, and prevention of unneces-

sary repetition. Django is designed to help developers take an application from concept to

reality in a short period of time. It includes dozens of options for handling common web

development tasks such as URL configuration and security. We compare Django with

FLASK, a Python web application development framework. Django has web modules

built-in, thus making it faster and efficient to develop a web application development in

23

comparison with the FLASK web development framework. We describe FLASK at the

end of this section.

Django prioritizes security and helps developers avoid many common forms of cyber at-

tacks having built-in security modules. It prevents cyber attacks such as cyber-intrusion,

such as SQL injection, cross-site scripting, cross-site request forgery, and clickjacking.

SQL injection is an injection technique using code to destroy the database. Cross-site re-

quest refers to applying injection attacks using code on a web application by executing

malicious scripts, where an attacker can gain information. Clickjacking tricks users into

redirecting into a malicious website to collect user information. Some of the busiest glob-

al sites use Django to scale to meet the heaviest traffic demands, including Pinterest and

the Washington Post. Companies, organizations, and governments have used Django to

build all sorts of things — from content management systems to social networks, and sci-

entific computing platforms. Django was selected for this project because it exists to

solve a real-world problem through development of powerful web applications. It also

provides built-in security to prevent the above security issues.

Django arose out of the need to address inherently challenging deadlines in the news in-

dustry, which are often mere days, if not hours. As such, Django permits software devel-

opers to build large, high-quality sites far faster than earlier methods. A frequent saying

among the Django community is, “If the Romans had used Django, they would have built

Rome in a day” [6]. Every bit of the framework is designed with efficiency in mind. Be-

cause of all these advantages, we chose Django to build Kodai.

24

Some features of the Django framework shown in Figure 4 are explained below. The

URL dispatcher maps the requested URL to a view function and calls it. If caching is en-

abled, then the view function can check to see if a cached version of the page exists and

bypass all further steps, returning the cached version instead. The view function performs

the requested action, which typically involves reading or writing to the database. It may

include other tasks as well. The model defines the data in Python and interacts with it.

Templates return HTML pages. After performing any requested tasks, the view returns an

HTTP response object to the web browser

Flask is a micro-framework for Python [8]. It can be used to develop a web-based

application, but it does not support Elastic Search. Django has the most active communi-

ty, compared to Flask with more than 80,000 developers with blogs. The service provides

a full-featured Model-View-Controller framework and could ostensibly even be used to

make an extensible application. Django’s REST framework generates pages to browse

Figure 4. Architecture describing overall framework of Django [7]

25

and execute all APIs. Thus, we can execute GETs and POSTs quickly and test it in the

browser. Thus, we choose to use Django because it meets our requirements and allows us

to use Elastic Search. It is written in the Python programming language.

3.9 PYTHON

 Python is a high-level programming language that emphasizes code readability,

meaning the syntax is closer to written English. Python also has a large and comprehen-

sive standard library which includes an extensive documentation [9]. Python was chosen

to develop Kodai because it complements the use of Django and Elastic Search. In Kodai,

Python supports importing Django and Elastic Search library. Due to these reasons, Py-

thon is a more prudent choice than other programming languages such as Java, C++.

3.10 ELASTIC SEARCH

In the business requirements from Section 2.2, we understand that our software must be

able to quickly find top consumers in a supermarket. In order to achieve this requirement,

Kodai need tools to send queries to accomplish it. We use Elastic Search to transform raw

data from supermarket to build as an index. Elastic search is a distributed search engine

with a RESTful API. A distributed search engine has no central server, and query is dis-

tributed among several connected computers over a network. “RESTful API is a service

that supports HTTP methods, to create, retrieve, update and delete access to service’s re-

sources” [10]. It is used by developers to access information from a web-application. This

information might include web application’s usage statistics, clicks, the number of users.

Elastic search indexes raw data, and lets us perform queries and combine many types of

searches, thus we use it to analyze our data to explore trends and patterns in our data. The

software is distributed, which means that indices are divided into shards. A shard is a hor-

26

izontal partition of data in a search engine. Related data is often stored in the same index.

Below is an outline of Elastic Search’s architecture:

Figure 5. Architecture of Elastic Search Data provider [11]

In Figure 5, Elastic Search starts from building an index connected to a dash builder us-

ing RESTful API. In Kodai, we use a head plugin as the dash builder that transforms su-

permarket data set. Kodai built in Django and Elastic Search allows the user to view the

dataset, shown in the figure above. Some key features of the Elastic search are distributed

and highly available search engine, support for more than one type of index, document

oriented. Distributed search engine allows the user to search in real-time through indexes;

indexes are stored set of information about data. Multiple indexes allow the developer to

send real-time queries about the data. Document orientation refers to a top-down level

that is stored as a JavaScript Object Notation in a unique ID; allowing Python to access

our software. By using Elastic Search, we are able to build 1-gigabyte comma separated

file of raw supermarket data into an easily accessible index. We use Elastic Search be-

27

cause it supports the Python language to send queries. In order for us to see sample re-

sults of Elastic Search, we use the Elastic Search Head Plugin.

3.11 ELASTIC SEARCH HEAD PLUGIN

The Elastic Search head is a web frontend for browsing and interacting with in-

dexed data [12], featuring major operations such as:

a) A Cluster Overview, which shows the index built within Elastic Search

b) Search interface, that allows us to query the cluster of indices and retrieve results

in raw JavaScript Object Notation

c) Tabs that show statuses of clusters

d) An input section that allows an arbitrary call to RESTful API. RESTful API lets

developers access information from the web application

We use Elastic search to index and view the data. Our main goal is to extract actionable

knowledge. It helps to explore data in a short time and is capable of scaling petabytes of

structured and unstructured data. By indexing, we can quickly access our data at high

speed, without the need to create a database.

28

3.12 WHY KODAI IS BETTER

 In this section, we first describe Gephi, a visualization software. Next, we com-

pare Gephi to Kodai against the business requirements given above.

Gephi is a visualization and manipulation software [13]. It is a tool for data analysts and

scientists keen to explore and understand graphs. In addition to understanding graphs,

Gephi is similar to Adobe Photoshop — but for graph data — the user can interact with

representations, manipulate structures, and colors, as well as reveal hidden patterns. It can

be used for exploratory data analysis and visual analytics.

In Gephi, the task of uploading data and manipulating data depends on the instal-

lation of the software. In the above Figure 6, Gephi is out of Memory while uploading

transaction file. It cannot process SQL queries to manipulate data. Kodai is open-source

and can run on a server without installation into a specific system. Let’s consider

TRANSACTION_DATA file from Figure 2; to upload this file to GEPHI, the average

Figure 6 GEPHI uploading transaction file

29

time is approximately 10 minutes, meanwhile, it takes approximately 4 minutes in Kodai

to build it into the Elastic Search index.

A developer can use the same file, and index all files in Kodai using an elastic search, as

well as manipulate transaction data and view the results. Gephi would not be able to meet

the requirements to find top consumers in supermarket data.

3.12.1 FLEXIBILITY

Gephi has three panes, overview, data laboratory and previews to provide an

overview of data laboratory data and previews to display the results. In order for devel-

opers to take features in Gephi and implement them according to their respective re-

quirements, they would need to uninstall the software and change features within Gephi.

In Kodai, we can create our own flexible view of results by implementing different que-

ries using Elastic Search without going through the process of the uninstallation of soft-

ware. Thus, Kodai has more flexibility than Gephi.

3.12.2 MEMORY

Gephi depends on a local computer’s random access memory to run the software.

To upload a comma separated file of transaction data from supermarket data into Gephi,

it takes an average time of 10 minutes to import the file than an average time of 3 minutes

in Kodai. With Kodai, we can store data as an index that makes queries faster to access

and visualize according to the requirements. Finally, we are also able to use Kodai

through Amazon Cloud or other servers.

30

3.12.3 REUSABLE

Gephi can be used for a variety of different data but is not reusable for a specific

purpose such as calculating top revenues, top products, and top coupons renewed. With

our Supermarket data, Kodai able to calculate top revenues, top products purchased, and

top coupons renewed. Therefore, Kodai reusable to meet both business and software re-

quirements. But Gephi is not able to meet these requirements.

3.12.4 SCALABLE

Gephi is constrained by a limitation on large files. Kodai could be horizontally

scalable by deploying an Amazon Cloud server and creating clusters within Elastic

Search, which is part of our software. Due to Gephi’s failure to satisfy these require-

ments, Kodai provides a more suitable framework for data analysis, and visualization to

researchers, and businesses.

31

List of References

[1] Rajkumar, V. (2011, April 22). Dunnhumby – Customer Science & Consultancy for
Retailers & Manufacturers (CPGs). Source Files | dunnhumby. Retrieved January 22,
2017, from http://www.dunnhumby.com/sourcefiles

[2] (2005, October). Wikipedia. Comma separated values. Retrieved January 22, 2017,
from https://en.wikipedia.org/wiki/Comma-separated_values

[3] Semantics, B. (2010, May 1). Software Development Process. Binary Seman-
tics. Retrieved January 22, 2017, from
http://binarysemantics.com/images/agile_waterfall_model.jpg

[4] Hello World (2017, January 22). GitHub documentation [Website]. Retrieved from
https://help.github.com/

[5] Makai, M. (n.d.). Full Stack Frameworks. Web Frameworks. Retrieved January 22,
2017, from Makai, Full Stack Python (2017, January 22). Documentation[Website]. Re-
trieved from www.fullstackpython.com/web-frameworks.html

[6] Holovaty, A., & Willison, S. (2008, June 4). Django. Django at a glance. Retrieved
January 22, 2017, from https://docs.djangoproject.com/en/1.9/intro/overview/

[7] Crott, J. (n.d.). Django. Tardis Documentation. Retrieved January 22, 2017, from
http://mytardis.readthedocs.io/en/2.5/_images/DjangoArchitecture-JeffCroft.png

[8] Ronacher, A. (n.d.). Flask. Welcome | Flask. Retrieved January 22, 2017, from
http://flask.pocoo.org

[9] Van Rossum, G. (2004, March 22). Wikipedia. Python History. Retrieved January 22,
2017, from https://en.wikipedia.org/wiki/Python_%28programming_language%29

[10] Lamos, B., Pasic, A., Wells, J., & Xueyuan, H. (2017, July 3). Azure REST API
Reference. Microsoft Azure. Retrieved June 20, 2017, from
https://docs.microsoft.com/en-us/rest/api/

[11] Martinez, R. (n.d.). The Dashbuilder Project. Dashbuilder. Retrieved January 22,
2017, from http://dashbuilder.blogspot.com/2015/10/uf-dashbuilder-real-time-dashboard-
with.html

[12] Birch, B. (n.d.). Elastic Search Head. Documentation. Retrieved January 22, 2017,
from http://mobz.github.io/elasticsearch-head/

32

[13] Bastian, M. (n.d.). Home. Gephi. Retrieved January 22, 2017, from
https://github.com/32ephi/32ephi/wiki

33

CHAPTER 4

ARCHITECTURE OF KODAI

In this section, we describe the architecture of Kodai. We begin with the general descrip-

tion of software architecture, then we show differences between an architecture and

framework. Next, we describe the behavioral aspects of Kodai. Finally, we show top

coupons, one feature of Kodai, to understand the implementation.

4.1 DIFFERENCE BETWEEN ARCHITECTURE AND FRAMEWORK

Software architecture refers to the structure of software solutions needed to solve tech-

nical and operational problems. In Kodai, architecture refers to the guiding principles and

code components for applying segmentation models in improving revenues. The goal of a

software architecture is to build a bridge between business requirements and technical

requirements. In software architectures, the structure of the system is exposed, but im-

plementation is hidden. Architectures are built to support change in the design, Kodai is

built to support future changes, reusability and development of new features [1].

Software framework refers to a set of software libraries, to address a general domain pur-

pose such a web application. A framework is an extensible implementation that can be

used to solve problems as we build an application or system. In Kodai, Django is a web-

application framework to implement web based tools, and applications.

34

Most complex systems need a solid foundation, likewise, Kodai requires solid foundation

in software architecture. Failing to consider software architecture will likely create unsta-

ble software in the long-run. A Software Architecture allows extension of software to

multiple other domains. It represents an abstraction of a system, that allows mutual un-

derstanding, negotiation, communication among software stakeholders. An architecture is

transferable, and reusable for future implementations [2].

4.2 ARCHITECTURAL STRUCTURE OF KODAI:

Figure 7: Software architecture and implementation for segmentation models

In Figure 7, we show an example of Kodai’s software architecture. The Django module,

and Elastic Search are loosely coupled, which means the modules do not interact exten-

35

sively. It provides more flexibility, as Kodai can be horizontally applied to fields such as

agriculture, finance and education. Kodai’s architecture contains two components from

Django and Elastic Search, which are used to apply segmentation models through fea-

tures such as TopUsers, TopProducts, TopCoupons, IncreaseRevenues(). Each of these

feature can be easily modified and used in the disciplines mentioned above. In this thesis,

we focus on revenues, however if we focus on agriculture, we could use this architecture

to implement a system that focuses on yield per crop instead of revenues. For example,

instead of a sample revenue column, we might implement it as a yield per crop column.

And, instead of sample revenue increase, we might implement it as yield per increase of

crops.

4.3 A BEHAVIORAL DESCRIPTION OF KODAI:

In this section, we describe the behavioral activity within Kodai. A behavioral activity

describes orchestrated, repeatable pattern of process in a software system. In the below

figure, Kodai’s activity diagram explains the flow of control through the structure of sys-

tem.

36

 Figure 8: Kodai’s Activity Diagram

In Figure 8, we show an example of the behavioral description of Kodai. This describes

not only static activity but dynamic interactions between different components within

Kodai [3]. In the first step, the user opens the web-application of Kodai, and clicks Create

Segments. This sends a request to Django framework, within the django framework,

Django handles and matches url requests. Once Django matches url requests, it generates

an authorization request and sends it to Elastic Search. In Elastic Search, the request is

sent to an index, and it pulls dictionary data from the index. Now, this is returned back to

Django views, and displayed in the browser.

37

4.4 KODAI – TOP COUPONS REDEEMED

We build the implementation of the Top Coupons Redeemed feature through Kodai. In

the dataset, we have coupons redeemed by consumers. A coupon is an advertisement that

entitles certain benefit to the consumers when they purchase their products and redeem

the coupon.

‘TOP COUPONS REDEEMED’ displays the top coupons redeemed by consumers in the

data. This allows businesses to identify their most valuable coupon, products and to target

consumers to improve revenues. We require tools such as Elastic Search and Django to

run locally on our server for this feature.

As we described in Section 1.1, we use a priori segmentation based on business require-

ments. An a-priori segment is defined by assuming pre-conceived categorizes before

looking the data. In this instance, Top Coupons Redeemed, we use usage rates and occa-

sions of coupons in the data.

We begin by explaining an outline of how this function works. The user opens Kodai

through a web browser, and clicks, ‘Create Segments’ menu at the navigation bar. In the

navigation bar, the user clicks Top Coupons, and this sends a request using Django urls.

Django lets Kodai navigate through different urls. Django requests data to Elastic Search

index, and then returns data through Django views. Django views takes an HTTP Request

and returns an HTTP Response to the user. Django views displays, ‘Top Consumers by

revenue.’ This displays the total amount of units purchased by consumers in each prod-

uct.

38

List of References:

[1] Braude, Eric., Bernstein, Michael. (2016). Software Engineering: Modern Approach-
es. Waveland Press.

[2] Sommerville, I. (2008). Software Engineering. Essex, England: Pearson.

[3] Bass, Len., Clements, Paul., Kazman, Rick., (2012). Software Architecture in Prac
tice. Addison-Wesley Professional.

39

CHAPTER 5

IMPLEMENTATION OF KODAI

In the last chapter we described how, Kodai is a software architecture for segmen-

tation models. In this chapter, we describe Kodai’s implementations through software

frameworks and tools. We begin by explaining software implementation; software devel-

opment model and details of an example component in the system from an implementa-

tion perspective. At the end, we describe the process to achieve results. Software imple-

mentation explains implementation details of Kodai. It allows the software developers to

evaluate the tools necessary to develop a web-application for the business requirements.

Software methodology provides the guidelines for developers to successfully implement

the requirements for software development. We use hybrid waterfall agile methodology

to help us develop the software as explained in Section 3.5.1 and Section 3.5.2. While the

implementation involves many components, we chose to explain only the ‘Top Consum-

er’ feature of Kodai, as the other components of the software were developed using a

similar methodology.

5.1 SOFTWARE IMPLEMENTATION

We explain the implementation of Kodai through a high-level architecture. A high

level architecture is a description of the structure of the Kodai Software [1]. It specifies

how we will develop the important components from the business requirements. In addi-

tion to showing important components, it provides the platform or the system used to de-

velop Kodai. The architecture describes how we connected the Django framework and

40

Elastic Search to develop a software for the business requirements. Below is a high-level

architecture of our software:

Figure 9 High-Level Architecture of Kodai

The High-Level Architecture begins with raw data, which consists of supermarket data in

comma-separated-files. A Python script is used to build an indexinto the raw data. The

index is sent to Elastic Search. This index allows the software developer to send queries

and access data at a faster pace. Elastic Search contains the indices from supermarket da-

ta in comma-separated-file as transactions, coupons, products, demographics.

Django Views allows the software developer to capture the business require-

ments, and display the results. It contains, features such as ‘Top Consumers’, ‘Top Prod-

ucts’, ‘Top Coupons’, and allows the developer to test a hypothesis about the goal of im-

proving revenues. The Django apps contain configuration files to load the Django

framework for the software developer.

41

5.2 SOFTWARE FLOW DIAGRAM

The software flow diagram represents activity of actions in the software. It is a dynamic

outline of activities contained in the software. It helps us to develop the important activi-

ties that the software needs to perform the business requirements. In addition to meeting

the requirements, it allows the developer to understand the flow of activities in the soft-

ware. Below is a high-level software flow diagram.

The flow diagram begins with uploading raw data (comma-separated-files) and also con-

structing an index to an Elastic Search index. This index data can be viewed with an elas-

tic search head-plugin. The software developer can upload large volume of raw data and

Figure 10 Software Flow of Kodai

42

develop an Elastic Search index. Based on the business requirements provided, a segment

model is chosen to display results.

5.3 SOFTWARE ENGINEERING MODEL

In the below diagram, we describe hybrid agile waterfall steps used to develop

Kodai.

The software engineering model provides the steps necessary for developers to imple-

ment this software. In order for the architecture to meet the requirements, we made con-

stant iterations. We used this process in building similar features of the software. In de-

veloping, the whole software architecture for Kodai, first we built the, “Top Users by

Revenue feature” as a prototype and then iterated through various prototypes. Below we

describe the steps we used to develop the features of Kodai that help the user to analysis

revenues using segmentation.

Figure 11 Software Engineering model of Kodai

43

5.3.1 REQUIREMENTS

In the requirement phase, we collected important business requirements to devel-

op Kodai. As we explained in the chapter above in 2.2, The important requirements for

the software are the ability to import raw data, to view data and to allow the software de-

veloper to view different segments of the data.

5.3.2 IMPLEMENTATION

 In this section, we explain one feature of Kodai developed to meet the criteria of

business requirements. The developed feature allows the software to display the top con-

sumers in supermarket data. Kodai acts as an open-source data analytics framework tool

that lets users from various disciples to view and understand their data. The Data Analyt-

ics framework gives users a platform to easily transform raw data into understandable

categories according to their requirements. As this software is open-source, any software

developer can reuse the framework and add additional features.

5.3.2.a TOP USERS BY REVENUE

As discussed in the beginning of this chapter, we here explain the implementation

of the Top Consumers by Revenue feature. Since the other features are implemented sim-

ilarly, this serves as a representative example. Top Consumers by Revenue displays the

gross revenue generated by each consumer. This allows businesses to identify their most

valuable customers to target their main profit base.

44

The user will need to install Django 1.9.1 and Elastic Search 2.4.4, refer Appen-

dix for installation of Django [2]. We developed a Python script that builds an index. For

example, if we wanted to build an index for a comma-separated file such as ‘transac-

tion.csv,’ we would store this file as a variable within the script. The python script would

access the raw data [3], sort it, and store it using the Elastic Search tool in an easily

searchable format.

In the Python script, we import transaction comma-separated file in our raw data and

store it as a variable to build an index. In order to view and understand this index, we use

Elastic Search head-plugin [4].

Figure 12. Elastic Search Head Plugin Graphical View

 The Elastic Search head plugin gives a graphical representation of the stored in-

dex. There are five tables within the head plugin there are five tabs, each of which allows

the developer to access different information about the stored index. To get a fast statis-

tics concerning the data; we go to the ‘Any Request tab’, run the following command: {}

and click search.

45

 The results, which will summarize statistics such as total rows and number of in-

stances of each category, are generated in a few milliseconds. The below picture gives us

a statistic on education data.

Now that we have explained how to build an index and how to view it through a head

plugin, we outline the implementation of Top Consumers by Revenue. The following

files are required to find Top Consumers by Revenue: ‘transaction.csv,’ ‘product.csv,’

and ‘hh_demographic.csv.’

'products = SELECT SUM(SALES_VALUE) FROM transactions GROUP BY house-

hold_key ORDER BY SUM(SALES_VALUE) DESC LIMIT 160'

Once we have built an index from the above files, using Python we send this SQL query

to the Elastic Search Index and store it as a variable.

Figure 13. Elastic Search Query in head plugin

46

Elastic Search receives this query from Python and sends back results in a dictionary.

 Elastic Search Dictionary

In above example of Elastic Search Dictionary, we can see how Elastic search builds a

dictionary from an index. Each dictionary has key, and value pair. In order to access this

dictionary, we define the key that we need for our feature in a Python script. For exam-

ple: In Top Visits, we define in our for loop, the name of dictionary, ‘household_key’, to

access household keys from products.

for product in products['aggregations']['household_key']['buckets']

After Elastic Search has received these results in the form of a dictionary, the

same Python script allows us to access the values and keys. After this, the results are

passed to the Django template file, which renders the results in an HTML file.

{
 "took": 25,
 "timed_out": false,
 "_shards": {
 "total": 5,
 "successful": 5,
 "failed": 0
 },
 "hits": {
 "total": 1048000,
 "max_score": 0,
 "hits": [] },
"aggregations": { "household_key":
{"doc_count_error_upper_bound": -1,"sum_other_doc_count":
802982,"buckets": [
{ "key": "2322","doc_count": 2863,
"SUM(SALES_VALUE)":
{ "value": 11752.409999999993}},
 { "key": "2459","doc_count":
3642,"SUM(SALES_VALUE)":
{ "value": 11558.11999999999}},
 { "key": "1023","doc_count":
1242,"SUM(SALES_VALUE)":
 { "value": 11060.49}},
{ "key": "1609","doc_count": 2815,"SUM(SALES_VALUE)":
{ "value": 10837.880000000005}},}

47

To display the results, we open web browser, ‘Google Chrome’ and type the

address of local server, “127.0.0.1:8080”, which results in the following screen:

Within moments our software provides the Top Consumers in Supermarket.

Hence, we have explained one component of our software as mentioned in above chapter.

In a similar way, Kodai gives:

• Top Products by revenue

• Top Products by units sold

• Top Coupons redeemed

• Products bought by Top Consumers

Figure 15 Kodai Software showing functions

Figure 14 Kodai showing Top Consumers by Revenue feature

48

• Products redeemed by Coupons

• Improve Revenues

5.4 USAGE AND APPLICATION

Our tool is simple, and easy for developers to understand and apply for various

needs. It can be used in education, agriculture, real estate, financial and retail industries.

5.4.1 EDUCATION SOFTWARE

While our Software is designed to import supermarket data and allow the devel-

oper to experiment to improve revenues, it is not limited to this specific purpose. For ex-

ample, it also could aid educational institutions in the admissions process. In an interview

with Cynthia Bonn, the dean of Higher Education for Admission at the University of

Rhode Island, the following functions of software were determined as reusable in her

work:

• Finding Likely Students who would be admitted to URI

• Enabling the dean of admissions to have a software framework to work on student

data collected from high schools

• Storing the collected data to track trends in admissions

5.4.2 AGRICULTURE SOFTWARE

In addition to education, our software would allow farmers to improve crop yield and

overall agricultural efficiency. The following functions of the software could be used to

improve productivity by:

• Providing a software framework for accessing crop data

49

• Storing the collected crop data to track trends

• Enabling the farmer to experiment with strategies to

improve farming revenues

5.4.3 FINANCE SOFTWARE

In banking, our software could allow bankers to safely store the clients’ usage data, and

improve public relations with clients. This can be done through:

• Accessing client activity

• Providing a software framework to quickly access client data

• Enabling the bankers to track client behavior

• Enabling the bankers to experiment with strategies to improve banking revenues

5.4.4 SOFTWARE REUSE

Although the software was initially intended for use with analyzing supermarket

data, it is a highly reusable software with significant applications in agriculture, educa-

tion, and finance. The software can be used in tracking school admissions, crop produc-

tion, and banking client trends, in addition to its primary purpose in supermarkets. There-

fore, the software crosses domains and is horizontally reusable. As such, it meets the cri-

teria for software reusability.

50

List of References

[1] Sommerville, I. (2008). Software Engineering. Essex, England: Pearson.

[2] Holovaty, A., & Willison, S. (2008, June 4). Django. Django at a glance. Retrieved
January 22, 2017, from https://docs.djangoproject.com/en/1.9/intro/overview/

[3] Rajkumar, V. (2011, April 22). Dunnhumby – Customer Science & Consultancy for
Retailers & Manufacturers (CPGs). Source Files | dunnhumby. Retrieved January 22,
2017, from http://www.dunnhumby.com/sourcefiles

[4] Birch, B. (n.d.). Elastic Search Head. Documentation. Retrieved January 22, 2017,
from http://mobz.github.io/elasticsearch-head/

51

CHAPTER 6

RESULTS

As we proposed, we developed Kodai as a software architecture for segmentation

models to improve revenues in a supermarket applied. This allows users to upload data,

and analyze methods to experiment with revenue increasing strategies. This allows the

business to effectively analyze and access data through our software. We analyzed su-

permarket data, found top consumers, top units of products and top coupons, and hypoth-

esized how to improve revenues with Kodai.

In addition to methods to experiment with revenue increasing strategies, our soft-

ware is reusable, meeting the criteria of business requirements [1].

6.1 IMPROVEMENT OF REVENUES

The following hypothetical example helps to show how Kodai could allow for ex-

periments to explore increasing revenue. Kodai allows a developer to easily test out this

hypothetical example, by adding an additional column. It takes approximately 5 minutes

to add this column to test out this hypothetical example. This is implemented in a similar

way explained in 3.3.2.a ‘Top Users by Revenue.’ Due to lack of price in our dataset, we

give a sample price of $2 for the top twenty items. We begin to add additional columns in

the software that would allow experiment revenue increase. Next, we hypothesize an in-

crease of 10 cents in each of the items. We select one product from top products by units

sold feature.

52

Let us assume the cost of each pound of bananas is $2. In our dataset, we assign

the value 2 to the variable SAMPLE_PRICE for bananas. The number of bananas sold in

the dataset is 29760, and the cost of each pound of bananas that we assigned is $2, there-

fore the total sample revenue of the banana is $59,520.

Now, we increase the sample price of each pound of bananas by 10 cents in our

data set. We assigned the value 2.10 to the sample banana price. Therefore, the total sam-

ple revenue of the banana after increasing 10 cents is $62,496.

However, if we collect purchase data over time, it might indicate increasing the

cost of bananas might decrease the volume of sales. This is referred to as price elasticity.

Price elasticity is the measure of relationship between change in quantity to change in

price. If the developer is able to upload subsequent measurements of quantity and price,

Kodai is able to measure price elasticity.

Hence, our software is able to test out this hypothesis of how to improve revenues

through use of Kodai.

Figure 16. Segments in Kodai

53

6.2 SOFTWARE AND ARCHITECTURAL REUSABILITY

As mentioned in the previous section, Kodai is not limited to supermarket data, but it can

be reused in the following fields of Education, Finance, Agriculture, new features can be

easily developed, and added to our software through Django [2].

In Agriculture, Kodai can be used in analyzing crop data. In order to use Kodai, the

farmer has to have crop data. This can be collected through devices such as Lidar sensors,

and drones, human observation [3]. In the recent age of big data, we know that there is no

lack of data available in crops. However, a platform to understand, and study the data us-

ing segmentation models is not available. In Kodai, the objective was revenues, however,

in agriculture, the farmer will be able to apply segmentation models to find crop yield

instead of revenues.

Figure 17 Kodai is able to test and add price increase column

54

In Education, Kodai can be used to find out patterns of student behavior, likelihood of

students passing a class. In order to use Kodai, educators ought to have student’s data on

behavior, and performance. In using Kodai as a platform, educators would be able to ap-

ply segmentation models to determine how they might help most students to succeed in

their classes, and programs.

In Finance, Kodai can be used as a platform to find out client activity, trends and revenue

improvement for banks. If the bank has data on consumers’ activity, then it is possible for

the bank to use Kodai. Kodai’s features such as Top Consumers, Top Products can be

implemented to find Top Clients by usage, Top Clients by Revenue. On using Kodai,

bankers will be able to apply segmentation models to find trends, and methods to im-

prove revenues.

For each of the applications outlined above the user would need to collect the data to be

explored using Kodai, and place it into CSV format.

55

List of References

[1] Sommerville, I. (2008). Software Engineering. Essex, England: Pearson.

[2] Holovaty, A., & Willison, S. (2008, June 4). Django. Django at a glance. Retrieved
January 22, 2017, from https://docs.djangoproject.com/en/1.9/intro/overview/

[3] Hall, David., Jellen, Mike., Neese, Marty. Velodyne Lidar. Retrieved October 20,
2017, from
https://velodynelidar.com/docs/datasheet/LiDAR%20Comparison%20chart_Rev-
A_Web.pdf

56

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

Our work in this thesis helps to show that Kodai is a software architecture for

segmentation models to improve revenues for a supermarket. It can test a hypothesis to

address the problem of increasing revenues in supermarkets. We achieved this by allow-

ing the user to upload supermarket data within the software framework, using a web-

based application that implements software engineering methodology to improve reve-

nues, allowing the developer to complete business requirements to be built into the soft-

ware. The following tables explain how Kodai met both software and business require-

ments.

Software Requirements How Kodai met requirements

Import data and analyze data according to the

business requirements

Kodai is able to build an index

through Elastic Search

The software must be reusable and applica-

ble across many industries in guidance with

principles of software engineering

Kodai is applicable to agriculture,

finance, and education.

The software must be extensible for future

add-ons and other segmentation applications

Kodai can import Machine Learn-

ing Package such as Graph Lab

The software should be able to run on any

operating system, including windows, mac,

Linux

Kodai can run on a cloud server.

This has been shown through our

implementation in Chapter 5.

Table 4 How Kodai meets software requirements

57

Business Requirements How Kodai met requirements

The software should be able to quickly identify

top consumers of a supermarket from any demo-

graphic

Top Consumers feature of Kodai

shows top consumers

The software should be able to determine the

households who spend the most in a supermarket

Top Revenues feature of Kodai shows

households who spent the most

The software should be able to identify coupons

with the highest number of consumer redemp-

tions

Top Coupons feature of Kodai shows

coupons that were redeemed the most.

The software should allow the developer and oth-

er users to test out hypotheses to improve reve-

nues

Increase Revenue feature of Kodai en-

ables to test out hypotheses to improve

revenues

The software should be open source and able to

handle at least a gigabyte of raw data

Kodai’s code is available in GitHub

platform for reuse. Kodai by using

Elastic Search it is able to build index

of more than gigabyte of raw data

Table 4 How Kodai met business requirements

Kodai has implications beyond the supermarket, enabling users to analyze and store data

faster. As Kodai is open-source, any developer can freely access the code and develop it

into the client requirements. In addition to open-source, our software is reusable in fields

such as agriculture, finance, and education. Whether we are trying to ascertain who loves

58

stewed tomatoes in Aisle 4 or whether Liberty University churns out admissions on the

regular basis, Kodai is applicable to a multitude of real life situations.

7.2 FUTURE WORK

The future applications of Kodai could focus on the security of accessing this

software, as well as features such as the implementation of user profiles and building

more visualization tools. In addition to such features, Kodai can also integrate machine

learning algorithms. One example of machine learning package is Graph Lab that can be

integrated into Kodai for prediction of purchases, coupons, revenues [1].

7.2.1 SECURITY

Security is quality or state of being secure. In any exchange of data or transaction, there is

a vulnerability for hijacking the transaction. To protect against hijacking of data or trans-

action, we required various security measures. In our software, uploading, and

data analysis can be openly accessed. If Kodai is run on a cloud, there is high security

risk of any user accessing it through the internet. In order to prevent such access,

we can add secure login and access to our software. This would secure our software from

unauthorized access.

59

7.2.2 USER PROFILE

In order to stop unauthorized access, Kodai could focus on the implementation of

user-profiles. A user profile can customize individual data and stores information for

each user. A user is any person who uses our software. User profiles helps to individual

-ize data and content to each user. This can be implemented further through the Django

framework.

7.2.3 MACHINE LEARNING ALGORITHMS

Kodai has given a platform to visualize, analyze, and find details about supermarket data.

Our future work will focus on integrating Machine Learning algorithms into Kodai. This

enables a program to learn through experience. A Machine learning algorithm learns by

analyzing large amounts of data [2]. This allows the development of systems that can au-

tomatically adapt and customize recommendations to individual users. It can learn from

data, rather from a pre-determined model.

Figure 18: Machine Learning categories [2]

Machine Learning can be classified into supervised and unsupervised learning. In super-

vised learning, we have a set of input variables (x) and an output variable from which an

inferred function is produced to be used on later examples. Unsupervised learning anal-

60

yses sets of label data for patterns. Supervised learning focuses more on classification and

regression. In Figure 18, classification techniques would predict categorical responses. In

Kodai classification techniques could be applied to predict if a consumer is likely to visit

supermarket. Regression involves continuous prediction, changes in weather might be

correlated with consumers buying some products more than others. In the event of a

snow-storm, there is a greater likelihood that customers will buy milk, bread and snow

shovels. Clustering is the most common unsupervised learning. It is used for exploratory

data analysis.

In Kodai, future work should focus on supervised learning to predict individualizing cou-

pons to each consumer. Supervised learning can classify output variable based on an in-

put dataset. This can be implemented by adding data science machine learning packages

such as the GraphLab. The GraphLab is a Python package that allows developers to im-

plement machine learning algorithms. This would help in building predictive models

within Kodai.

7.2.4 DATA VISUALIZATION

In addition to predictive models built through machine learning package, to understand

the results of predictive models, Kodai needs future work on data visualization. Kodai

includes buying trends built on the Graphos library for Django. However, this could be

extended to predictive models on purchases.

61

Figure 19 Kodai Weekly Visit Trend

In Figure 19, Kodai shows weekly visit trend of customers using Data Visualization. Data

visualization is using graphics to communicate results of an analysis to the user. This can

be implemented through data visualization packages such as D3 JavaScript library to help

developers produce dynamic, interactive data visualization in web browsers.

7.2.4.1 DEVELOPING AN INTERFACE TO ANALYZE BASKETS OF PURCHASE

Kodai will be enhanced with data visualization tools to analyze baskets of purchase. This

permits the identification of loss leaders. Loss leader is a pricing strategy, where a prod-

uct is sold at a price below its market, to gain new customers for the product.

7.2.4.2 CAPTURING PRICE ELASTICITY OVER TIME

As we mentioned in Improvement of Revenues in Section 6.1, Kodai would be able to

measure price elasticity. Price elasticity is the measure of relationship between change in

quantity purchased to change in price. If the developer uploads subsequent measurements

of quantity and price, Kodai will be able to measure price elasticity.

62

List of References

[1] Guestrin, C. (2011, June 28). Learn Turi. GraphLab. Retrieved April 24, 2017, from
https://turi.com/learn/userguide/

[2] Moler, Cleve. (1984). Machine Learning in MATLAB. Retrieved October 20, 2017,
from https://www.mathworks.com/help/stats/machine-learning-in-
matlab.html?requestedDomain=fr.mathworks.com

63

CHAPTER 8

APPENDIX

This chapter explains how to install the software tools necessary to develop a system sim-

ilar to Kodai.

8.1 DJANGO INSTALLATION

The user will need to install Django 1.9.1. In order to run Django, we require the user to

follow these steps:

a) Open Terminal or Command Line, and run the following:

'Python manage.py runserver 8080'

This command uses the Python language to run the Django server locally at the 8080

port. The user will need to install Elastic Search 2.4.4. We run Elastic Search through the

following:

Figure 20 User running Django Local Server

64

Open another Terminal or Command Line and run the following, within the bin folder of

Elastic Search 2.4.4, type: './elasticsearch' to run Elastic Search.

Next, we must use Elastic Search to build an index that contains any necessary raw data

for the Top Consumer by Revenue feature described in 3.3.2.a. This index stores raw data

and makes it searchable. Each entry in the index must be assigned a type, and each type

has specific properties.

Figure 21 Run Locally Elastic Search Server

65

All the Python script used to build an index in Elastic Search is located in Github in the

following link:

https://github.com/ludwigwittgenstein2/supermarket_elasticsearch/tree/master/elasticSearch_index_script

Figure 22 Python Index script

66

8.2 PYTHON SCRIPT FOR TOP CONSUMERS

Below is the Python script that we developed for Top Consumers:

Table 6 Python Script for top consumers

#==#

Author: Rick Rejeleene

Advisor: Joan Peckham

#!/usr/bin/Python

Top Customers

#Arranging based on household_key not SALES_VALUE

import requests

import json

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

#Send SQL query to Elastic Search

products = requests.post('http://localhost:9200/_sql', data = 'SELECT SUM(SALES_VALUE) FROM

transactions GROUP BY household_key ORDER BY SUM(SALES_VALUE) DESC LIMIT 160 ').json()

#print 'name, quantity, value'

N = 10

value = []

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

household_key_list = []

{

 "SUM(SALES_VALUE)": {

67

 "value": 11558.11999999999

 },

 "key": "2459",

 "doc_count": 3642

 }

rank = 0

for product in products['aggregations']['household_key']['buckets']:

 household_key = product['key']

 print 'rank, household_key, value spent, Married, Age, Home Status, Household_Size'

 values = product['SUM(SALES_VALUE)']['value']

 name_json = requests.post('http://localhost:9200/_sql', data='SELECT * FROM demographics WHERE

household_key = "'+ str(household_key)+'"').json()

 if len(name_json['hits']['hits']):

 rank += 1

 name = name_json['hits']['hits'][0]['_source']

 household_key_list.append(household_key)

print rank,'\t', household_key, '\t', '\t', val-

ues,'\t',name['MARITAL_STATUS_CODE'],'\t',name['AGE_DESC'],'\t',

name['HOMEOWNER_DESC'],'\t',name['HOUSEHOLD_SIZE_DESC']

#==#

68

BIBLIOGRAPHY

Armstrong, H. (2004, June 20). Pearson Higher Education. Marketing Re-
search. Retrieved January 22, 2017, from
http://catalogue.pearsoned.co.uk/assets/hip/images/catalog/uploads/Solch3.pdf

Armstrong, M. (2006). Advances in Economics and Econometrics: Volume 2: Theory
and Applications, Ninth World Congress (Vol. 2). New York: Cambridge University
Press.

Banon, S. (2010, February 21). Elastic Search. Preface. Retrieved January 22, 2017, from
https://www.elastic.co/guide/en/elasticsearch/guide/current/_preface.html

Birch, B. (n.d.). Elastic Search Head. Documentation. Retrieved January 22, 2017, from
http://mobz.github.io/elasticsearch-head/

Capell, K. (2008, January 29). Business Week. Tesco: 'Wal-Mart's Worst Night-
mare'. Retrieved January 22, 2017, from http://shawndra.pbworks.com/f/Tesco_+'Wal-
Mart's+Worst+Nightmare+-+BW.pdf

Cardoso, M., & Fonseca, J. (September 2007). Supermarket Customers segments stabil-
ity. Journal of Targeting, Measurement and Analysis for Marketing, 15(4), 220-221.

Chamberlin, D., & Boyce, R. (2004, April 14). Wikipedia. History of SQL. Retrieved
January 22, 2017, from https://en.wikipedia.org/wiki/SQL

Crott, J. (n.d.). Django. Tardis Documentation. Retrieved January 22, 2017, from
http://mytardis.readthedocs.io/en/2.5/_images/DjangoArchitecture-JeffCroft.png

Decker, E. (2016, February 6). Central District of California. No. ED -15-0451
M. Retrieved January 22,2017, from
https://assets.documentcloud.org/documents/2755241/031123088014.pdf

Donnelly, C. (2012, September 1). Role of action research in the study of small business
marketing and retailer loyalty card data, National University of Ireland Maynooth,
Queens Management School, University of Ulster. Retrieved January 22, 2017, from
http://eprints.maynoothuniversity.ie/4091/1/CD_Action_Research.pdf

Friedman, M. (2012). Capitalism and Freedom. Chicago: University of Chicago.

Friedman, M. (1962). Price Theory. Chicago: Aldine Transaction.

Furman, J., & Simcoe, T. (2015, February 6). The White House President Barack
Obama. The Economics of Big Data and Differential Pricing. Retrieved January 22,
2017, from https://obamawhitehouse.archives.gov/blog/2015/02/06/economics-big-data-
and-differential-pricing

69

Holovaty, A., & Willison, S. (2008, June 4). Django. Django at a glance. Retrieved Janu-
ary 22, 2017, from https://docs.djangoproject.com/en/1.9/intro/overview/

Kadet, A. (2008, May). Smart Money, Price Profiling. Wall Street Journal Magazine

Kaplan-Moss, J. (2006, January 27). Jacobian. Why you should use Django. Retrieved
January 22, 2017, from https://jacobian.org/writing/why-django/

Lipovetsky, S., Magnan, S., & Zanetti-Polzi, A. (2011). Pricing Models in Marketing Re-
search. Scientific Research an Academic Publisher, 167-174.

Madden, M. (2014, November 12). Pew Research Center. “Public Perceptions of Privacy
and Security in the Post-Snowden Era,”. Retrieved January 22, 2017, from
http://www.pewinternet.org/2014/11/12/public-privacy-perceptions/

Makai, M. (n.d.). Full Stack Frameworks. Web Frameworks. Retrieved January 22, 2017,
from Makai, Full Stack Python (2017, January 22). Documentation[Website]. Retrieved
from www.fullstackpython.com/web-frameworks.html

Marn, M., & Rosiello, R. (n.d.). Harvard Business Review. Managing Price, Gaining
Profit. Retrieved January 22, 2017, from
http://web.nchu.edu.tw/~hjlee/files/Pricing_Strategy/03_Managing%20price,%20Gaining
%20Profit.pdf

Martinez, R. (n.d.). The Dashbuilder Project. Dashbuilder. Retrieved January 22, 2017,
from http://dashbuilder.blogspot.com/2015/10/uf-dashbuilder-real-time-dashboard-
with.html

Perez, Fernando. (2010, June 5). Notebook Guide. IPython. Retrieved January 21, 2017,
from ipython.org

Preston-Werner, T., Wanstrath, C., & Hyett, P. Github Help. Retrieved January 22, 2017,
from https://help.github.com/

Provost, F., & Fawcett, T. (2013). Data Science for Business. CA: O'Reilly Media.

Rajkumar, V. (2011, April 22). Dunnhumby - Customer Science & Consultancy for Re-
tailers & Manufacturers (CPGs). Source Files | dunnhumby. Retrieved January 22, 2017,
from http://www.dunnhumby.com/sourcefiles

Ronacher, A. (n.d.). Flask. Welcome | Flask. Retrieved January 22, 2017, from
http://flask.pocoo.org

Sommerville, I. (2008). Software Engineering. Essex, England: Pearson.

70

Smith, W. (n.d.). Marketing Masters. Product Differentiation and Market Segmentation
as Alternative Marketing Strategies. Retrieved January 22, 2017, from
https://archive.ama.org/archive/ResourceLibrary/MarketingManagement/documents/9602
131166.pdf

Struhl, S. (2013). Market Segmentation: An Introduction and Review. CreateSpace Inde-
pendent Platform Publishing.

Van Rossum, G. (2004, March 22). Wikipedia. Python History. Retrieved January 22,
2017, from https://en.wikipedia.org/wiki/Python_%28programming_language%29

	Kodai: A Software Architecture and Implementation for Segmentation
	Recommended Citation

	Microsoft Word - Thesis_V_0.58_OCT_27.docx

