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Abstract 

A primary challenge for science educators is to develop ways to help students 

understand new ideas that cannot be directly observed. The application of computer 

simulations is one method instructors may use to address the problem of teaching for 

conceptual understanding. The use of computer simulations for science teaching is 

increasing steadily because simulations provide students with the opportunity to witness 

or "perform" experiments that might otherwise be too expensive, too time consuming, or 

too dangerous for them to do in the lab. Simulation, in general, is a very effective way for 

both a student and a professional to visualize concepts and ideas and to check the 

accuracy of results generated theoretically. Typically, computer simulations represent 

real world events on the computer and allow students to observe new phenomena by 

performing various manipulations that affect the on-screen events. 

Here, at the University of Rhode Island, introductory computer science courses 

include computer organization and architecture with concepts that can often be difficult 

to grasp. This dilemma lays the foundation for the need for educational software 

"simulation" which better enables students to understand the concepts and ideas 

presented in class. In this project, we set to design and develop LogicCity, a prototype 

model of an on-line interactive digital logic design simulator that will be used as a 
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teaching aid by complementing class discussions. LogicCity can be used as a stand-alone 

application or it can be incorporated into the Web as an applet. Students may use this 

simulator as a tool to build combinational digital circuits and generate accurate results. It 

is also designed to work in conjunction with the coaching material of an introductory 

computer organization course. 
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Preface 

This thesis has been prepared in the standard format for theses as given in the 

Statement on Thesis and Dissertation Preparation of the Graduate School of the 

University of Rhode Island. 

This thesis is divided into six chapters. Chapter One is an introduction to the use 

of software in education. Chapter Two presents background and related research, and a 

discussion of the general uses of simulation in education. In Chapter Three, logic 

simulation, algorithms, and available products and their limitations are all introduced. A 

brief discussion of the Java programming language and the reasons behind our choice of 

Java for the implementation language are given in Chapter Four. An introduction to my 

prototype simulator model, LogicCity, and a detailed.presentation of its features are also 

included in Chapter Four. Chapter Five discusses the model's data structures, the various 

algorithms used, and the design challenges we faced and then overcame. Chapter Six is a 

conclusion to my thesis and discusses the limitations and potential future enhancements 

of LogicCity. 
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Chapter 1 

Introduction 

Developments in basic electronics and in hardware components of computer and 

communication systems by major corporations are proceeding very rapidly, independent 

of any educational considerations. Vast changes in the capability and economics of 

computing and communication systems imply a number of changes for education. In 

addition, changes in the efficiency of hardware has increasing impact on all aspects of 

business, government, industry, media and communication - changes to which education 

must respond [ 13]. 

Educational technologies are not single technologies but complex combinations of 

hardware and software [21]. Using the term "computer" means more than merely the 

basic components -- the monitor, ~eyboard, mouse, etc. It includes multimedia capability 

that computers can support, and peripheral devices connected with computers like 

modems. From the standpoint of education, importance is stressed on the material 

delivered, rather than the hardware delivering it. Currently, computerized education can 

be divided into four basic groups [13]: 

1. Typically a tutorial, presented in a workbook format, controls the material 

presented to the student. 



2. Exploratory education, such as an encyclopedia CD, permits the student to 

browse and view the information displayed. This kind of application presents 

complex tasks and engages students in active problem solving. 

3. Applications, such as word processors and spreadsheets, provide students with 

the tools to facilitate writing tasks or analysis of data. These applications also 

promote higher-order thinking by engaging the students within a collaborative 

learning context [21]. 

4. Communication education, allows students to exchange information among 

themselves through networks such as the Internet. This cooperative network 

allows long distance learning and gives students access to a broader range of 

resources. 

Computers have taken a major position in the world because they can execute 

many tasks more effectively and efficiently than humans. Computers play an important 

role in helping students to learn by communicating information more efficiently as well 

as by captivating the mind of the student. For computers to reach a higher level in 

educating, one new element is essential: they must be· allowed to teach students without a 

human intermediary between the student and the computer. The idea is that students learn 

better when they are forced to take an active constructive role. As tutors, computers can 

revolutionize education as thoroughly as they have transformed almost every commercial 

activity in the twentieth century [3]. The technological progress of modern society creates 

an ever-increasing need for improved training materials. However, producing high­

quality material for computer-based education is, and continues to be, very expensive. 

Widespread use and reuse of high-quality basic learning materials is the most practical 
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way to share the costs for the development of these educational systems. Interactive 

computer graphics and other multimedia components play a central role in the 

introduction of tools for higher quality learning material (See Figure 1.1 ). 

EDUCATIONAL SCIENCE 

Figure 1.1 - Place of computer simulation as educational software within instrumentation technology and 
educational science. The area of interest (shaded) is computer simulation. Within this area are to be 
distinguished: simulation CAL, simulators for training and non-educational computer simulations. 

One of the biggest advantages that a computer offers students of all ages is 

independence. This independence boosts a student's self-esteem and generates a drive 

that is imperative to learning. After initially grasping a basic understanding as to how a 

computer operates, students are free to explore a world of new and exciting things. 

Besides increasing a student's learning opportunities, motivation, and achievement, 
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computerized education helps them acquire skills that are rapidly becoming essential in 

the work place. In addition, it gives students more control and responsibility of their own 

learning. In our opinion, it is of the utmost importance to prepare students to be 

technically literate by the time they are ready to go out to the working world. 

Technological literacy is defined as the computer skills and the ability to use computers 

and other technology to improve learning, productivity and performance [19]. Students 

are entering a world in which 60% of the jobs will require technological competency, and 

students must continue to update their occupational and technological skills in order to be 

successful [20]. Technology can enhance traditional classroom presentations and engage 

students in more active learning. 

Since students respond well to visual stimuli, working on a computer is much 

more fun and effective than having a teacher lecture. Computers allow a student to work 

and progress at his or her own pace - a teacher's dream. If a teacher feels the majority of 

the class grasps a concept, s/he must move on and then offer extra help to those who are 

struggling. A computer on the other hand lets students learn at the pace that is right for 

them. 

The key to educational technology is how teachers and students use the software 

available to them. Easy to use multimedia-authoring applications, digital media 

collections, the Internet, and new educationally valid curriculem based software are all 

making the learning-centered classroom a reality [3]. Presentability is the software's 

overall appeal to the user (See Figure 1.2). Black and white, two-dimensional flip screen 

workbooks cannot possibly compete with the exciting, full-color media that students and 

teachers are exposed to daily. Rich, three-dimensional graphics, enhanced stereo sound, 
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captivating animation and video, and interactive devices that students can control and 

manipulate are all necessary elements of successful educational software. 

database : 
*with t.ext 
* with a language 
* with a graphic 

mathematical model 
expert S}'3t.em 

COMMUNICATION 1 

r1.____prog_____.= I~ 
ACCEPTATION 

keyboard: 
* signs/numbers 
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* functionke}'3 

without keyboard 
mouse: 
*in pull do"Wn menu's 
*in inclick regio's 

j0}'3tick 
lightpen 
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* word recognition 
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screen: 
*with t.ext 
*graphics 
*animation 
*video 

. *others 
student or tre1neTuudspeakerlheadphone : 

* human voice 
* speech generation 

extra monitor: 
*video 
*others 

Figure 1.2 - Presentation techniques, acceptation techniques and communication techniques (special media 
as well as special software procedures) as they occur in educational software. 

A good example of educational software with an interactive format that keeps the 

students attentive and stimulated is NEWTON (See Figure 1.3). This software has been 

designed and developed at the Computer Science Department at the University of Rhode 

Island. We have used it in graduate courses as well as undergraduate courses. NEWTON 

is a package that allows the students to solve mathematical equations. It has a very nice 

and effective interface that clearly displays the equation being manipulated along with all 
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the intermediate steps taken. Graphs are also an essential part of this system and are 

drawn in a sophisticated fashion. 

,.. s File Edit Basic Manip Eqn Lim Di ff Int RpproH Window Debug 

SHIFT 0 1 2 3 4 5 6 7 8 9 'I fl. c 8 

QUOTE a b c d e f g h i j 

= +1- ~D Worksheet # 1 

211 

x ~ f lim ( sin ex) dx =]_ sin 1 11 
I .,. ~ x--+O 3 

() f() - .!!... 
3 

, lim 

D J sin x cos x ~ 

abs -./ 
0 . 549 

exp ln 

sin (l)S 

tan cot 

arc hyp 

OPTION -5 -2 . 5 2 . 5 

Figure 1.3 - NEWTON Program 

The mam contribution of this thesis work 1s to introduce a new learning 

environment and a new tool to aid the beginning students in understanding the materials 

presented in class. "LogicCity" is designed and developed using the Java programming 

language, thereby it is accessible though the Internet. LogicCity enables students to build 

on-screen digital logic circuits and to simulate their behavior. This software has an 

interactive graphical interface format that help stimulate the students in achieving a 

higher level of conceptual cognition. In chapters 4 and 5, LogicCity is introduced in 

greater detail and a full discussion of its features and data structures are presented. 
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Chapter 2 

Background & Related Work 

The popularity of the Internet among students and teachers has stemmed from its 

ability to fulfill the needs of users to travel the world seeking knowledge. Through the 

advances of communications and fiber optics technology, anybody can surf the World 

Wide Web at a minimal cost. Email, for example, is used extensively between teachers 

and students. Class notes are no longer limited to paper productions, as the Web has 

become home to all sorts of publications -- among which are educational material. 

Leaming is no longer restricted to the classroom. An increasing numbers of teachers 

resort to the Internet for publishing their course mater!als. Time, energy and resources are 

greatly reduced with the use of electronic communication. Leaming in the digital age is 

about computer supported education and computer-based simulations in the form of 

interactive, graphical, and dynamic content. 

The Internet is the beginning of a new age m which electronic learning 

environments will have to try and obtain a firm footing at schools and on the home 

market. The Internet, therefore gives the electronic learning environment industry and 

Computer Based Leaming a new opportunity. The interactive multimedia has now 

entered its second stage due to the incorporation of audio and video content. Computer-
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based simulations have many applications in higher education. There are many different 

computer-based simulations: patient-simulations, model-driven simulations, animations 

and simulations in which modeling comes first. Simulation, in general, can be used as a 

learning tool to gain insight into some phenomena that is hard or may be impossible to 

demonstrate in a classroom. 

2.1 Educational Environments 

Learning environments, and simulations in particular, can only be justified as a 

learning environment when provided with proper instructions adapted to a lesson and 

with relevant assignments (See Figure 2.1 ). Assignments and instructional materials 

should be up-to-date and easy to modify for an individual teacher or school. An important 

aspect of learning environments is that teachers like to be able to add useful material or 

they may want to adapt something to the materials in question. It should be possible to 

make suitable assignments or easily accommodate existing instructional materials. All 

materials should be embedded into this electronic learning environment. For learning 

environments with simulations, the interactive simulator should be designed in such a 

way that modifications are simple and effortless. The instructional materials, and 

assignments, on the other hand, should be supplied with more flexibility, in order for the 

teacher to be able to distinguish him/herself, and gear his/her teaching materials and the 

accompanying materials to the needs of the target group. 
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screen: 

output ) 

B l
:echniq. 

~ comm uni c et ta _l _P_r_o 9_r_e_m __ •,..----· 
techniques input 

techni qu s 

learning environment 

Figure 2.1 - A program is educational software only when much attention has been paid to "presentation" 
(output), "acceptation" (input) and "communication" techniques. 

By usmg Java as the programmmg language, software developers can build 

computer-based simulations as components for teachers. No matter which platform is 

used to develop the software, applications and applets are platform-independent. These 

building modules can be embedded into any Web page. Applets are found on virtually 

any Web page and they are usually interactive, visual and dynamic; making them 

powerful despite the fact that they have to be interpreted by a browser. This particular 

form of education provides the most possibilities because an increasing number of 

applications in applet format are appearing on the I~ternet. SUN, Microsoft and Apple 

are working to upgrade their standard programs to Java in order not to lose the battle for 

the Web. The performance of a simulation program as a built in applet is generally 

sufficient enough to bring a concept across. A publisher or a Web designer can make an 

applet and a basic instruction with examples whereas a teacher can decide to do 

something completely different. However, the Internet does have limitations on the 

ability of application use. Even though security is not compromised, one of the Internet's 

greatest disadvantages is that the Web has a very rigid interface concept that results in 

certain limitations with respect to stand-alone software (applications). 
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2.2 Simulation and Education 

Attention will now be focused on computer simulation with special attention to 

computer simulation in education. Some questions that are addressed here include: 

• What is computer simulation? 

• How is computer simulation used in education? 

• What are the characteristics of a computer simulation? 

• What are the advantages of computer simulation? 

• What is meant by fidelity in relationship to computer simulation design? 

The word simulate means to imitate something. Generally, simulation involves some kind 

of model or representation. The model imitates important concepts of what is being 

simulated. A simulation model can be a mathematical model, a computer model, a 

physical model or even a combination of all [1]. Applications (models) range from 

biological systems to business and industrial systems. But what exactly is a model? 

A model is a carefully structured description of the simulated system. A model 

describes the state of the system and the possible transitions of the state of the system in 

the form of rules or equations. There are two types of models in general [ 14]: (1) 

qualitative models based on logical and/or conditional relations between variables and, 

(2) quantitative models based on mathematical equations of the relations between 

variables. Most computer simulations are based on quantitative models, which may 

contain parameters with fixed values that represent the properties of the system. 

The main purpose of an educational computer simulation program is to provide 

students with a representation of reality. Students are able to manipulate this 

representation by changing either the properties or the conditions under which the 
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representation operates. The behavior of this representation as a result of the 

modifications is similar to the represented part [18]. Computer simulation programs are 

discovery environments in the sense of experimenting with a model of a system in order 

to retrieve information about the model and the system. In addition, as mentioned earlier 

in the introduction, computer simulations are classified as exploratory environments that 

stimulate learning process (See Figure 2.2). The idea is that the meaningful incorporation 

of information into the student's cognitive structure becomes easier because the student is 

forced to take an active constructive attitude [ 5]. 

Hysteresis Applet 

A 64x64 2-dimensional simulation. 

Figure 2.2 - This applet simulates a simple model, which describes the sort of hysteresis seen in a magnetic 
tape. When you apply an external magnetic field to an initially unmagnetized tape, it becomes magnetized. 
However, when you remove the external magnetic field, the tape remains partially magnetized. (If not, 
there would be nothing recorded on our tapes!) 
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2.3 Advantages and Disadvantages of Simulation 

Although the advantages of computer simulations are numerous, they all boil down to 

one main concept. Computer simulations bring the real world into the classroom and 

provide a new and modem angle to our methods of education. According to most of the 

literature, the concept of computer simulation in education has many different names. 

Examples include educational computer simulation [14], computer-based simulation [17], 

and instructional simulation [10]. However, they all share the same characteristics, the 

most common of which are: 

1. A model that represents a part of reality, 

2. A model that is implemented in a computer program, 

3. The user can manipulate or experiment with this computer-implemented model 

4. The user explores and discovers the characteristics of the model. 

A computer simulation is mainly seen as an exercise or an experiment, which actively 

involves the student (See Figure 2.3). Computer simulations are claimed to have many 

advantages. These advantages, which assume that bringing the real world into the 

classroom promotes learning, are probably the reason why many researchers are 

investigating computer simulation. Several publications list the advantages of computer 

simulation. The most often quoted advantages are listed here. 

1. Costs: using computer simulation is often cheaper that doing real experiments. 

Costs of education, including time and resources, can be much higher when doing 

real lab experiments [14], [18]. 

2. Scale: some systems are too large or too small to study in reality, but for the 

purpose of computer simulation they can be scaled [18]. 
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3. Safety: the real system to be studied can be too dangerous [14], [18]. 

4. Speed: in reality, a system can react too fast or too slow. Computer simulation can 

slow down or speed up the process by changing the time scale [ 4]. 

5. Visualization: aspects of the real world can be brought into the classroom in a 

meaningful way. Abstract concepts can be visualized, which makes it easier for the 

student to construct a mental model of the system under study [ 18]. 

6. Ethics: experiments that are not allowed for ethical reasons can be simulated [18]. 

7. Didactics: computer simulation is learner-centered. The learner is much more 

involved in the learning task because s/he can experiment as much as he wants and 

feedback is instantaneous [5], [14], and [18]. 

8. Simplification: a computer simulation can be a simplified version of reality since 

the student is directed to the most important aspects of the system [ 4]. 

9. Reality: in reality actions have certain consequences. This can be made clear with 

computer simulation [14]. 

13 



An example simulation model 
Figure 2.3 

There are not only advantages connected with the use of computer simulation programs 

in education and training. Limitations are in some cases the result of the wrong or 

inappropriate use of such programs. Possible limitations of a general and educational 

kind are [14]: 

1. Simulation concerns the manipulation of a number of variables of a model 

representing a real system. However, manipulation of a single variable often means 

that the reality of the system as a whole can be lost. Certain systems or components of 

a realistic situation are not transparent. Some factors have a lot of influence on the 
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whole, but they have indistinct relations in the whole and can therefore not be 

represented in a model. 

2. A computer simulation program cannot develop the students' emotional and intuitive 

awareness whereas the use of simulations is specifically directed at establishing 

relations between variables in a model. This intuition has to be developed in a 

different way. 

3. Computer simulation cannot react to unexpected "sub-goals" which the student may 

develop during a learning-process. These sub-goals would be brought up during a 

teacher-student interaction but they remain unsaid during the individual student use of 

a simulation. 

4. Computer simulation programs may function well from a technical point of view, but 

they are sometimes viewed as difficult to fit into a curriculum. 

5. Often a computer simulation program cannot be adapted to take different student 

levels into account within a group or class. A computer simulation program can 

certainly be made to adapt to different circumstances if it is designed that way; 

however, for many computer simulation programs this has not happened. 

6. During the experience of interaction with a computer simulation program, the student 

is frequently asked to solve problems in which creativity is often the decisive factor to 

success. The fact that this creativity is more present in some pupils than in others is 

not taken into account by the simulation. Mutual collaboration and discussion among 

students while using the software could be a solution for this. 
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2.4 Instructional Design for Computer Simulation 

Fidelity is defined as how close a simulation imitates reality [8]. A linear relationship 

is assumed to exist between fidelity and the transfer of learning -- increase/ decrease the 

fidelity and you increase/decrease the transfer of learning. There is no concrete evidence 

regarding this assumption because [8]: 

• High fidelity means higher complexity which taxes memory and other cognitive 

abilities, and 

• Proven instructional techniques, which improve initial learning, tend to lower fidelity. 

These reasons lead to the hypothesis that the relationship between learning and fidelity is 

non-linear and depends on the instructional (knowledge) level of the student. The 

amateur student learns best from a relatively low-fiddity simulation, the experienced 

student learns best from an intermediate-fidelity simulation, and the advanced student 

learns best from a high-fidelity simulation. Some conflict is created here because 

increasing fidelity, which theoretically should increase transfer, may inhibit initial 

learning that in turn will backfire and inhibit transfer. This conflict should be taken into 

consideration for the inexperienced student. 

When working with simulations the student is exploring and discovering new 

knowledge. This knowledge is best gained wheri the computer-based simulation that is 

being used has been properly designed (See Figure 2.4). According to Reigeluth & 

Schwartz [17], one must consider three major design aspects: (1) a scenario that recreates 

the real life situation, the scenario determines what happens and how it takes place._ It 

also determines the role of the student and how s/he will interface with the simulation. (2) 

A mathematical model that reflects the relationships that govern the system and (3) an 
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instructional overlay. The instructional overlay is that part of the program that optimizes 

learning and motivation. The authors have found that the nature of the content being 

taught is the major influence on the instructional features a simulation should have. 

Figure 2.4 - The applet illustrates a simplified simulation of virtual memory implementation in a processor 
running multiple processes (four, in this example) and scheduling the processes based only on page faults 
by the processes. 

These authors further have identified three phases in the learning process. The 

learner must first acquire a basic knowledge of the content or behavior. Then s/he must 
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learn to apply this knowledge to the full range of relevant cases or situations. The final 

stage is an assessment of what has been learned. Therefore, the first set of instructional 

features in a general model for simulations should be concerned with acquisition of the 

content, the second set with application of the content, and the third with assessment of 

learning. The simulation is preceded by an introduction which should present to the 

student the scenario, goals and objectives, and directions and rules regarding the use of 

the program. During the acquisition stage the student should develop an understanding of 

the content. 

Simulation-based learning can be improved if the user is supported while working 

with the simulation (See Figure 2.5). Part of this instructional support can be achieved 

through off-screen material such as a workbook, and sometimes an individual tutor can 

be available to monitor and assist the student at work. A large part of the necessary 

support functionality can, however, be accommodated within the computer program 

itself. The challenge is to strike the right balance between exploratory freedom and 

instructional constraint. The instructional constraint is divided into non-directive support 

and directive support. The non-directive support is defined by the interface of the 

computer program. The interface is the component of an instructional system that 

mediates between a student and the system. This interface serves only as a 

communication aid and has nothing to do with instructional process itself (simulation). 

As for directive support, it depends on the characteristics of the simulation, the 

characteristics of the student and the characteristics of the learning goals. The authors 

have elaborated on the concept of instructional support for simulations. He has tried to 

derive from cognitive theory, from instructional design theory and from existing 
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exploratory learning environments instructional features (strategies, actions, approaches) 

that could be relevant to the design of simulations. 

student or trainee 

computer simulation system 

outp t 

computer si mul at ion pro~r m 

inpu 

worksheets 

Figure 2.5 - The learning environment for a computer simulation session with a complete computer 
simulation program, included worksheets, manuals, hardware, software and courseware. The mathematical 
model is the heart of such computer simulation programs. 

Properly designed systems for educational computer simulation programs have 

several distinct characteristics [ 18]: 

• The operating system of the ·computer is never shown to the user. 

• The underlying model is never shown to the user. 

• The only input device for the user is the mouse. 

• Some input can be accepted from the user. 

• The output of the program can be presented in a highly graphical display. 

• There are options with which the user can influence the running of the model. 

• Changing model elements is possible. 

• Some typical cases can be pre-programmed (sample situations). 

19 



• Additional coaching material can be provided on or off-screen. 

Research with such simulation programs show that the additional materials were of 

utmost importance in the instructional aspect for the student [14]. In light of this, the 

notion of the Parallel Instruction Theory was proposed. The Parallel Instruction Theory 

states that students are best served when the simulation as well as additional materials in 

a simulation-based learning environment are within reach. If the additional material is 

paper-based, it has been noticed that they are not used. Therefore, computer-based 

materials are preferred, because they are more available. This led to an additional 

guideline for designing simulation-based learning materials, when designing materials the 

designer should take notice that all material should be within reach when the material is 

presented to the student. 
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Chapter 3 

Digital Logic Simulation 

Logic simulation is the process of building and exercising a model of a digital 

circuit on a digital computer. When the user exercises the simulation, the evaluation of 

signal values in the modeled circuit occurs for applied input variables. There are two 

main applications for a logic simulator. The first type of application is concerned with the 

evaluation of a new design. The logic designer is interested in testing for logic 

correctness, as well as signal propagation characteristics. For VLSI circuits, where design 

errors are very costly and breadboarding is impractical, logic simulation is an invaluable 

aid. A second application for logic simulation exists in the area of fault analysis. Here, 

the test engineer or logic designer may desire info_rmation related to faults that are 

detected by a proposed test sequence, or related to the operational characteristic of the 

circuit under specific fault conditions. The scope of this thesis will be focused on the 

former application. 

3.1 Why Computer Simulation 

Digital logic design is typically taught m a "computer organization" course. 

Textbooks usually use a series of figures to illustrate the life cycle of a combinational 

digital circuit. Students see raw numeric output on the screen after a program executes. 
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Simulation will offer students an alternative method to better grasp ideas presented in a 

classroom by providing a visual and graphical interface. A more effective way of 

teaching would be to use graphics to illustrate concepts because: 

• Visualization is an extremely powerful form of education. 

• Drawing pictures provides an easier way for a better understanding. 

• Pictures present concepts better than numbers. 

• Graphical interfaces best match the human perception. 

• Graphics provide a more productive learning environment and promote the 

development of more intuitive understanding. 

An interactive graphic system allows the user to input commands and see real­

time pictorial output on the screen. The use of computer graphics in circuit design 

eliminates the need to draw and erase wires and gates on paper thereby saving 

considerable time. The manipulation of a circuit is easily updated graphically and 

eliminates errors generated by wiring inputs to the wrong gates. A typical student 

assignment will consist of designing a logic circuit and producing its correct output. 

Computer simulation enables the students to do their homework quicker and easier by 

building circuits on screen and verifying the correct output. In addition, it create a 

stimulating learning environment, better able to interest and educate computer science 

and computer engineering students. Students can experiment with the simulator at their 

own pace and investigate various logic circuits to reinforce conceptual understanding 

independent from the classroom and other students. 
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3.2 How Simulation Work 

The central idea of component-based logic simulation is to build a simulation 

environment using software components. On modern personal computers or 

workstations, windows, menus, and file folders are usually represented by software 

components, which are the breakthrough concept of Object Oriented Programming. 

Traditionally, logic simulation is first accomplished by mapping a circuit description into 

a data structure. Then a piece of code called "simulator," which is most commonly event 

driven, is needed to interpret the data structure and execute the input vector. When 

implemented using the event driven technique, the simulator is able to exploit the 

infrequency of logic switching in a digital circuit. Only the logic gates with changing 

inputs are processed. In the case of event-driven simulation, each component simulates 

itself and then drives another component into the next cycle thereby executing the whole 

computation of the circuit. The simulation method that describes the behavior of the 

component does its interaction with the external world through the input and the output 

objects. 

The event-driven technique is more adaptive, scalable, and efficient to perform 

simulation for digital systems with various complexities. The structural description might 

be at gate level, which consists of the topology ·of the circuit and the circuit element 

types, along with a list of primary inputs and primary outputs. A high level language is 

often used for describing input sequence, desired output format, etc. The simulator, 

therefore, is a program that interprets all the inputs, applies the input data to the digital 

system and computes the outputs. 
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3.3 Commercial Algorithms 

Most of the commercially available tools that perform digital simulation basically 

work in the same way. First, a simulator is synthesized by mapping the entire digital 

system at the gate level into a piece of runable code. Then the simulator is executed to 

check for the behavior of the design. The fundamental element of a simulation 

environment is the formation of an object by the encapsulation of the behavior of a 

functional block within a digital system. The complete simulation process can be 

characterized as the interaction of many different objects. Each individual object self­

describing its behavior is subject to external inputs, initial conditions, and the 

interchanging of inputs and outputs with each other. 

Although we do not intend to compete with the commercially available simulation 

products, we will give a brief introduction to some of what is available to the public. (In 

the next chapter, we will introduce more information specific to logic simulation and its 

terminology). 

• Time-Driven (Analog) 

In my undergraduate study in Electrical Engineering, I had the opportunity to use 

Spice, a VLSI simulation algorithm. Spice basically constructs a sparse matrix and 

solves design equations at transistor level by manipulating voltage and current. 

Disadvantages to the Time-Driven system are (1) huge calculations, (2) it is 

extremely time consuming, and (3) this system requires the user to read an extensive 

manual before any attempt can be made to use it. 

• Event-Driven 
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Verilog, Vhdl, RSIM (all of which are simulation algorithms) construct an event list 

using a data structure. This data structure holds all the events generated and executes 

them in the order in which they are received. These algorithms operate at the gate 

level, and logic states are used as variables 1 (high) and 0 (low). Although 

propagation delay time is considered to be a problem, statistics show that for big 

digital circuits, only 14 percent of the gates will frequently have events, thereby 

making it an efficient technique. 

• Compiled Mode 

Other software algorithms compile all the circuit description into one piece of 

executable code, and then define the initial and final states. The code is run during the 

cycle and pointers to the initial states and final states are swapped. This technique 

allows the next simulation to be run using the previous final state. Only state 

variables are of concern, and the intermediate values are not of the interest. This cycle 

based algorithm could be very efficient using native C code. 

There are two types of event-driven simulation: discrete-event and continuous-event 

algorithms [2]. In discrete-event simulation, an event 1s defined as an incident that causes 

the system to change its state in some way. For example, a new event is created whenever 

a simulation component generates an output. A succession of these events provides an 

effective dynamic model of the system being simulated. The variables of a discrete 

system jump from one point to another and do not necessarily occupy intermediate 

values. Therefore, events in a discrete-event simulator can occur only during a distinct 

unit of time during the simulation. Discrete system simulations are often event oriented in 

that time is not advanced in uniform increments, and events are not permitted to occur in 
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between time units. In contrast, the variables of a continuous-event system undergo 

transition from one value to another m a smooth continuous manner, occupymg all 

intermediate values. 

In the case of digital simulation of continuous systems, time is usually subdivided 

into uniform intervals and the simulation is "clocked" in terms of the basic time interval. 

What separates discrete-event simulation from continuous simulation is the fact that 

discrete systems are often characterized by difference equations, while continuous 

systems are described by differential equations. Discrete event simulation is generally 

more popular than continuous simulation because it is usually faster while also providing 

a reasonably accurate approximation of a system's behavior. 

3.4 Limitations of Available Models 

One of the digital logic simulators currently used by the Computer Science 

Department at the University of Rhode Island is Dizzy (See Figure 3 .1) [22]. When the 

user first opens the software, a menu with several gate options as well as some editing 

options, is displayed to the side. The editing options include shifting the grid display 

around using a "hand" icon, deleting an object from the screen using a "zapper" icon, 

saving a circuit to a file, and opening a previously built circuit. Dizzy also custom saves a 

random circuit in the form of a black box, which allows for the use of modules. Although 

Dizzy works fine and allows the user to build many large circuits, it does have some 

rather serious limitations. 
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Figure 3 .1 - Dizzy program shows the application window and its tool menu. Several 
objects are displayed that all have the same "square" box shape. 

The first major limitation is that when Dizzy initially starts up it opens a fixed 

window. In particular, the user can not build a circuit larger than the size of the 

application window or screen thereby eventually limiting the number of gates that can be 

placed on screen. Secondly, all the gates offered in the menu have the same square box 

shape. Whether, an AND gate or a NOT gate is used, all objects look alike. This design is 

very confusing to students, especially students in an introductory level course. Logic 

gates should be displayed using the conventional logic symbols. In general, a clear 

graphical presentation is very important when introducing new material, not to mention 

when the software is used as a teaching tool. Thirdly, although Dizzy does save and open 

circuits, it does so without any safety feature. That is, Dizzy can save a circuit into a file 

that has a previous circuit already built in by overriding the existing circuit and saving the 

new one on top of the old one. Imagine the frustration of a student who has spent a 
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considerable amount of time designing and building a logic circuit, only to have it erased 

by accident. A better design would be to provide a confirmation dialog box that asks the 

student to confirm the save operation needed once the save icon is clicked. 

A greater limitation to Dizzy's functionality is that it is built only to operate on 

Macintosh platforms. It can not run on either a Windows platform or on Unix. Apple 

computers represent about 5% of the computer market worldwide, which gives an 

indication as to the serious limitations on Dizzy. Students cannot access Dizzy from the 

Internet because it is very platform dependent, and it cannot be easily embedded in a Web 

page as an applet because Dizzy is written in C. 

Another logic simulator, called Logg-0 [23], can be found on the Web (See 

Figure 3 .2). Logg-0 also starts up by opening a window with a menu of basic logic gates 

on one side. An editing menu, which makes correcting easy, is also added at the bottom 

of the screen. Logg-0 allows the user to build a digital circuit on screen and provides a 

clear output signal in the shape of a light bulb which "glows" if the output evaluates to 

True. When a simple circuit was constructed on Logg-0, the correct output resulted. 

However, Logg-0 does have limitations as well. 

28 



Figure 3 .2 - Logg-0 Program 

When the program starts up, a fixed window is displayed, which, as discussed 

earlier, limits the size of the circuits built. In addition, the size of a single logic gate is so 

large that only a handful of gates may be placed on the screen at a time. This is the reason 

the test circuit used to demo the system is simple. The behavior of the program may be 

undetermined if a large circuit is constructed. The only way to "test drive" the stability of 

this system is to construct a large circuit, and this is not feasible. Furthermore, if an input 

signal is introduced into the system using a considerable circuit, evaluation time. may be 

unacceptably long. 

Although both Dizzy and Logg-0 produce accurate results and are fully 

functional, both seem to be unintuitive to an amateur student. An interface design with an 

intuitive approach enables the user to operate the software in a very timely manner and 

without much struggle. Students encounter enough challenges with class assignments, 
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never mind spending more time trying to figure out how a program works. It is always 

imperative for a graphical interface to be as clear as possible and follow industry 

standards. 
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Chapter 4 

System Specification and Features 

One of the objectives of this thesis is to prototype a simulation system, using the 

Java programming language, that will allow students to access the internet from 

anywhere to run the simulation program. The development of this digital logic simulation 

provides a good demonstration of object-oriented technology. In the next few paragraphs, 

Java is briefly discussed in order to show why we chose to use it, and why it is 

revolutionizing the Internet. Features and drawbacks of Java are also presented. Then we 

will introduce LogicCity, our prototype model simulator and instructional software. 

LogicCity contains many features and functions, which will all be presented in detail. A 

thorough discussion of the internals of the system will be discussed in the following 

chapter. 

4.1 The Java Programming Language 

According to Cornell [3], the promise of Java is to become the universal glue that 

connects users with information, from Web servers, databases, and any other imaginable 

source. It is a very well designed language with a solid foundation that incorporates 

syntax very familiar to programmers. Object-oriented programming is considered the 
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break through in practice, and Java is thoroughly object-oriented even more so than C++. 

Everything in Java is an object (except for basic types like numbers). Yet like all other 

programming languages, Java does have its advantages and disadvantages. 

A main key advantage is Java's run time library that provides platform 

independence; that is, you can use a Java program on any other operating system 

including Windows, Solaris, and Macintosh. The compiler generates a neutral byte code, 

which is easy to interpret and execute on many processors. Debugging a Java program is 

much easier than debugging a C++ program. Manual memory allocation and deallocation 

is eliminated in Java because memory is automatically garbage collected. True arrays that 

eliminate pointer arithmetic are introduced, and multiple inheritance is replaced with a 

much easier interface that has the same functionality. Java has an extensive library of 

methods for dealing with TCP /IP protocols like HTTP and FTP. Java applications can 

open and access objects across a network via URLs as easily as accessing a local file 

system. Also since Java is intended to be used in networks and distributed environments, 

much consideration has been placed on security. Basically, Java's security system 

prevents a program from corrupting memory outside its own process space and prohibits 

reading and writing local files. 

Java is simple; a user can download Java byte code from the internet and run it on 

a local machine. Java programs that work on Web pages are called applets. To use an 

applet, one needs a Java-enabled Web browser that will interpret the byte code 

downloaded. A Java program can also be run on a stand-alone basis, in this case, it is 

referred to as an application. Both applets and applications have advantages and 
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disadvantages, which are summarized in Table 1. Following are a few common 

misconceptions of Java, which are based on a review done by Cornell [3]: 

• Java is not an extension of HTML. They have nothing in common except that 

there are HTML extensions for placing Java applets on a Web page. 

• No programming language as powerful as Java is as easy as Java to learn. 

• The native Java development environment is not an easy environment to use. 

• Java is interpreted, but it is not too slow for serious applications. All 

programs, regardless of the language used, will detect mouse events in 

adequate time. There are no serious performance issues once an interpreter is 

used to translate the byte code. 

• Not all Java programs run inside a Web page. All Java applets do run inside a 

Web page. However, stand-alone programs that run independent of a Web 

browser cannot always be run in a Web page. 

Operation Applet Application 
Access local files N y 
Delete a local file N y 

Run another program N y 
Find out your name N y 
Connect back to the host y y 
Connect to another host N y 
Load the Java library N y 
Create a pop-up window y y 
Call System to exit N y 
Create or list directories N y 

Table 1 - Comparison of Applications vs. Applets 
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4.2 The System's Web Site 

LogicCity's design and implementation usmg this programmmg language, is 

based on the many advantages of Java and its ability to use the Internet. LogicCity 

consists of two integrated parts, suitable text-based material and interactive software. As 

students access LogicCity's Web page, they are presented with the relevant material for 

that course (See Figure 4.1 ). The course material is divided into several parts and each 

part is linked to the next. A student can browse through the various parts as desired as 

well as link to the software. At any time, the student is able to intermix reading with 

using the software provided, which we feel, provides students with the exploratory 

environment we mentioned earlier. 

Figure 4.1 - Main Web Page 
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When accessmg the simulator page, students have the option of usmg the 

simulator directly while on-line in an "applet" format or downloading the full-featured 

"application" version (See Figure 4.2). 

Figure 4.2 - Simulator Web Page 

A recommendation is given to read the simulator manual and documentation in 

the link provided if a question arises regarding how to use the simulator. The zipped file 

received is quickly and easily decompressed using standard system utilities found on 

many platforms. In this case, the simulator is considered a stand-alone application and 

only needs a Java interpreter to run the program. 
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4.3 LogicCity 

Assuming that the application version is downloaded and after the simulator 

program begins, a new frame (window) with the title "Welcome to LogicCity" appears at 

the top (See Figure 4.3). This circuit window is to be used for drawing a logic circuit 

schematic. This frame has standard window functionalities meaning that it can be moved 

around the screen, minimized, iconized or even closed. The default is set to maximize the 

window to the screen size in order to provide the greatest workspace. This workspace 

(window) is not fixed in size so students may use the scroll bars provided to scroll up or 

down as well as right and left. This scrolling ability increases the magnitude of the 

workspace by adding several screen size pages to both the height and width of the 

original window. The extra space allows for the construction of many large circuits, 

thereby eliminating the worry of running out of room to place additional circuit 

components. 

~Welcome lo Log1c[lly P1r.J £J 

Figure 4.3 - LogicCity's Window 
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Menus are available at the top and on the left side of the window. The default 

setting for the simulator is the edit or build mode. In build mode, students can click on 

any gate from the gate menu and place it on the screen. There are several basic logic 

gates provided on that menu, namely, AND, OR, NOT, XOR, NAND, NOR. There is 

also a menu for inputs, outputs and connectors (See Figure 4.4). These are used to input 

signals into a constructed circuit, and to receive output signals from that circuit. 

Connectors can be used to tie components together and route wires around in a clean and 

neat manner. The prototype's graphical interface lets the student select and modify 

different input scenarios. The user is also given options for the canvas background color. 

At the top of the simulator window, there is yet another menu for editing which provides 

facilities for opening a circuit saved to a file, or saving a circuit currently being built. The 

edit menu also has means for the deletion of a single component from the circuit being 

built or the option of deleting the whole circuit, thus, clearing the entire screen. 

Figure 4.4 - Basic Gates 

37 



The intuitive and appealing format of the simulator's graphical interface allows a 

student to merely look at the window in order to figure out the functionality of the 

interface. This intuitive design reduces the difficulty the learner will have with the system 

and allows the student to concentrate on the circuit being designed rather than on how the 

system works. The simulator interface, which operates via the mouse, is fully interactive. 

The user need not use a keyboard or any other input device. The consistency of functions 

makes the system easy to learn and use. This form of interactive interface provides a 

more dynamic and stimulating environment for the student that encourages learning and 

exploration. To start building a combinational digital logic circuit, the user just needs to 

click on the desired gate from the gate menu. The gate menu is composed of buttons so 

that once a gate button is clicked, the user moves the mouse over to the canvas area and 

places the selected gate at the desired location with another mouse click. The user can 

continue to place gates on canvas in the same manner. 

4.4 Software Features 

To draw a connection line (wire) between two gates, the user can click on the 

input or output pins of one gate and move the mouse over to the second gate (See Figure 

4.5). As the mouse is being moved, a line, which ·basically mirrors the mouse ' s motion 

and shows the connection made between two gates, is drawn on the canvas. A second 

mouse click at the receiving gate will make the line connection permanent, thereby 

creating what is called a solder point. Other gates can be created and connected in the 

same fashion. In order to provide straight routing wires around gates a connector object is 

created and placed on the canvas in the same manner as gates are. Any gate can send 
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input into the connector object; however, there is no limit as to the number of outputs the 

connector can send out. The simplicity created here is that one gate can be used to send 

many outputs to several other gates. As a matter of fact, all gates can equally send 

multiple output lines to any other object available. Logically, a gate can accept only one 

input signal at a time, but it does not matter how many output signals are sent out. 

Once a logic circuit is designed and constructed, input and output objects are 

needed to facilitate the introductions of signals into and out of the circuit (See Figure 

4.5). For that reason, two more buttons are displayed next to the connector button that 

allow for the creation of input signals as well as output signals. Input signals are 

displayed as a square box with an outgoing line and their default value is set to either low 

or logic zero. A blue color was chosen for this box to visually give the illusion of an 

initial low (cold) input signal. The output object is displayed in the form of a light gray 

square box and is initially set to low. The gray color gives the illusion of a low (dimmed) 

signal to indicate a "dead" output line but when in simulation mode this box glows in red 

if the output signal evaluates to high. 
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Figure 4.5 - Digital Logic Circuit 

If errors occur while building a circuit, components can be easily erased by 

simply clicking on the erase button from the edit menu at the top of the screen and then 

clicking back on the object to be erased. Like the other buttons this erase button is 

activated only once per mouse click in order to prevent the accidental erasure of more 

gates. Any time an object is deleted, all the attached wires connected to this object are 

deleted as well. In addition, all objects that were connected to the deleted component are 

reset to their initial defaults. If the user wishes to delete everything on the screen s/he 

simply clicks on the "clear all" button. A warning dialog box (standard window) will then 

pop up to confirm the deletion of the entire circuit (See Figure 4.6). If the user chooses 

"cancel", nothing happens and the dialog box disappears, but if the user chooses "ok", 

then the canvas is cleared and the whole circuit is deleted. The "clear all" button is 
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deactivated if clicked on an empty screen, and control is given back to the user to rebuild 

a new circuit, go in a different direction, or just close the application. 

Figure 4.6 - Deletion Confirmation Dialog Box 

A scroll bar is provided to give the user the ability to build circuits larger than the 

size of the screen. Students can "tum" pages easily while viewing or working on a large 

circuit design. With several pages of available space in both screen dimensions, logic 

circuits may grow to be quite complex. This complexity necessitates a save button on the 

edit menu to allow students to save their work to a file at the end of a session. After a 

circuit is put together, a student may easily save his/her work by clicking on the save 

button. A dialog box, which permits the user to enter the name of the file to be saved, 

pops up (See Figure 4.7). This modal window has the same functions and appearance as 

in a Windows environment and is provided by Java. Briefly, modal dialog boxes cease 

the running application until some command or option is entered. This prevents the 

accidental mistakes that could prove devastating. As soon as a valid name is entered, the 

simulator saves the current circuit to file and confirms this operation by displaying the 

new name of this file at the top of the window. If the canvas is empty, that is, there is no 

circuit displayed on screen, the save button is deactivated. 
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Figure 4.7 - Save File Dialog Box 

Students are able to recover their saved work by clicking on the open button. 

Then, if the canvas is empty, a window with the standard Windows format appears. (See 

Figure 4. 7). As in the save situation Java provides the functionality of the open dialog 

box that looks exactly the same as the "save" box. 

The name of the file selected will be displayed at the top of the window; the 

simulator always displays the name of the file or circuit being worked on at the top of the 

screen. The name of the open file changes appropriately as the student moves from one 

circuit to another. If there is a circuit currently occupying the canvas at the time the open 

button is clicked, a safety feature is activated which prevents the destruction of the 

present circuit and prompts the user to save the existing work. A modal dialog window 

with the options "ok", "no", or "cancel", pops up (See Figure 4.8). The student is then 

given the option to either save the current circuit first, or to open a new one on top of it. 

Students also have the option to cancel the open file call altogether. The circuit recovered 

at that point is ready either for editing, addition, or just simulation. Before any circuit is 
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opened or placed on the canvas, the entire screen 1s first cleared to eliminate any 

confusion or mistakes. 

Figure 4.8 - Save Confirmation Dialog Box 

Another very useful feature provided, is the ability to move objects around the 

canvas in order to scatter any congestion in any one spot of the screen or to pack together 

some components to save some room and present them in a distinct manner. A student 

can click the mouse on a component, hold it down and move the mouse to any 

coordinates on the canvas. The simulator then automatically updates the canvas by 

showing the component in the new location. If this component happens to be connected 

to other objects by means of wires, then all the attached wires are automatically moved 

along with the component. 

Designing and building logic circuits may take many sessions of extended periods 

of time. Students' eyes often get irritated . with the screen glare, especially from 

applications with the standard white background color. To help minimize this irritation, 

several "dimmed" colors are provided for background schemes. A student can click on 

any color item listed in the pull-down menu to instantly change the canvas background. A 

click on the canvas afterwards activates the new color selected. These colors also aid in 
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the overall appearance of the graphical interface. Pull-down menus provide content and 

composition support through choices. 

All circuit editing is done with the function button set to "build" mode, which acts 

as a master switch that separates the edit functions from the simulation part. Once the 

button is clicked to simulate, all menus and edit functions are disabled so that a student 

may no longer add or connect an object to the canvas, or save and open a file. To 

simulate a circuit, a simple click on the function button begins the evaluation of all 

signals entered into the circuit. These signals are propagated from the origin of each input 

object all the way through to the end of each logic route. State values are then displayed 

on each part of each object in the circuit (See Figure 4.9). Low state values (zero) are 

shown in black while high (one) values are shown in red. This visually provides a clear 

distinction of low and high signal in a circuit. It also enables students to easily track 

changes in the behavior of the circuit. 

Figure 4.9 - Simulated Logic Circuit 
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Initially, all input signals are set to low; however circuit design always necessitate 

the introduction of several high input signals (See figure 4.10). This is accomplished by 

clicking on the input object desired. A click toggles the state of the input object from low 

to high; another click on the same object resets it back to low. Only input objects are 

allowed to change their states when reacting to mouse clicks because any other way 

would defeat the purpose of the object. Once an input signal is toggled to high, its state 

value is displayed in red along with the sending wire. The output object (if any) that is 

getting this high signal will glow in red to visually confirm the "hot" line just received. 

~4 bit Full Adder Pi(iiJEJ 

Figure 4.10 - Example Circuit (4-bit Adder) 

The next chapter will discuss the data structures used to implement the simulator 

software. Algorithm design and implementation will be detailed along with challenges 

that were presented in the implementation phase. 
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Chapter 5 

Data Structures 

LogicCity is an easy to use tool for entering a logic circuit schematic and 

performing simulations of its behavior. The creation of LogicCity was done in three 

major stages. The first stage, the design stage, entailed careful planning of the necessary 

data structure used for the design of the prototype. In the second stage we implemented 

the methods specified in the design stage. The final stage tests the overall performance of 

the software for accurate results and for proper functionality and appearance on the Web. 

In the following paragraphs, a detailed analysis and discussion of all three stages, as well 

as a discussion of the challenges we had to overcome, will be presented. 

5.1 System Design 

Since there is usually more than one way to go about solving a problem, it is 

always worthwhile to imagine several solutions and then compare their advantages and 

disadvantages in order to insure a complete and thorough search. Solutions to more 

complex problems might typically involve multiple layers of data representations and 

many iterations of the stepwise refinement process. In addition, an important skill for 

computer scientists to master is reasoning because it is key when creating and debugging 
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algorithms, when figuring out how to improve an algorithm's performance, and when 

verifying that methods inside a larger program work correctly. 

Deciding on a "good" data structure is crucial because data handling and 

manipulation can be extremely simplified. We took a divided approach, both "top-down" 

and "bottom-up" design techniques, to develop the data structure for the simulator 

application. We eventually arrived at an executable Java program. In the "top-down" 

approach, we began at the highest conceptual level by imagip.ing a general abstract 

solution and by sketching a program strategy in outline form before choosing any 

particular low-level data representations or algorithms. Then, step-by-step in progressive 

refinements, we filled in the details to implement the parts of the previously sketched 

solution in higher-level description. In order to implement the parts in parallel, we found 

it easier to use the "bottom-up" approach, where we first considered what information 

was needed, and then how to obtain this information. Next, we made a draft of definitions 

for the methods before using them inside other higher-level methods. This brought us to 

the details of the bottom layers of the overall program before filling in the higher levels 

that use the methods we had already written at the fower levels. This approach is not 

always the best approach for programming because one may reach a point where the 

methods already defined become inadequate and need to be redefined as the application 

evolves. 

The design process began by developing the model's data structure. This data 

structure must be able to hold all the information needed to run the simulator application 

while simultaneously providing the user the ease of running the application. The data 

structure must have a clear interface while concealing all the details of implementation 
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from the user because in reality a user does not care how a system is built as long as s/he 

can use it satisfactorily. The second step in the design stage was researching, selecting, 

and then developing the programming language. One of the big advantages to this 

simulator is that it is accessible to the public through the Internet, so we chose Java, the 

Internet language, as the programming language for LogicCity. Since LogicCity is 

platform-independent, any person with a computer and a Java savvy browser can run the 

simulator applet. Java is currently the only language that brings dynamic web pages to 

life and allows for animated graphics and multimedia. 

The topmost level of the object-oriented design for the simulator application 

consists of three interacting Java objects, each of which encapsulates its own hidden, 

private data fields. These objects interact only by making method calls on each other's 

"services" (where the services are the publicly available methods in each object's 

interface). There are no global variables that hold shared values or data structures on 

which different objects operate. Consequently, the design is an example of pure modular 

programming in which the modules (the Java objects) interact only in clean simple ways 

through their interfaces with their internal mechanisms .hidden from view. 

In the design stage, we had to declare the major objects of the data structure 

essential to holding the data to be processed. Several drafts were made before a final one 

was realized. The higher level abstraction of the data structure is divided into three main 

parts. One part declares the attributes of the basic logic component (gate), the second part 

declares the operations (methods) invoked on such a component, and the third part builds 

the actual graphical interface. There are no dependencies on any particular operating 
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system since Java is platform independent. However sufficient memory, which 1s 

available in almost all computers today, is required to run the simulation program. 

LogicCity is totally object-oriented in design, meaning that an object bundles 

together data and some behavior. An object's data can be a collection of variables whose 

values give the object's internal state, whereas an object's behaviors can be a set of 

operators that change its state. These data and variables are hidden from the user and are 

encapsulated in a "module" package that a user can have access to only through invoking 

its available methods. There are a couple of benefits to the encapsulated object format 

used for this project. One benefit is that the application's GUI (Graphical User Interface) 

is an event-driven interface in which mouse events (generated by the user clicking the 

mouse on the screen) must be handled by event-handler code. The application and GUI 

must be set up to handle mouse events so as to trigger method calls on the problem­

solving objects, to receive the computed solutions they return, and to display the results 

graphically on screen. Another benefit is that the canvas code that translates from mouse 

events to computed solutions is not completely trivial. The event handling and data 

manipulation mechanisms are complex enough that using the module as an encapsulated 

entity saves us from the effort of having to reinvent them and debug them in another 

program. This benefit creates important enhancements for software productivity for the 

future. 

5.2 System Implementation 

The overall organization of the data structure is composed of an abstract object 

(super class) of a logic gate, and a simulator object that sets up the graphical interface 
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which in turn calls methods for acting on a logic circuit. The simulator object is one of 

the main components in the data structure that creates the top-level window (See Figure 

5.1). This top-level window is derived from the Frame class supplied by Java. The 

simulator object uses one of the most sophisticated Java supplied layout managers. The 

layout manager, called Grid Bag Layout, arranges all components in a panel into rows 

and columns. Each component is told to occupy one or more of the little boxes on the 

screen. The idea is that this layout manager allows you to align components without 

requiring that they all be the same size since you are only concerned with which cells 

they will occupy. Incidentally, the purpose of layout managers is to keep the arrangement 

of the components reasonable under different font sizes and operating systems. The 

simulator object controls the master switch that enables the system to either build a logic 

circuit or simulate its behavior. It also owns the main() method that starts up the entire 

system. In main(), a simulator object is created, initialized, and displayed to the viewer. 

The simulator object is parent to three panel components -- the editMenu, the 

gateMenu, and thePanel. The editMenu contains circuit edit buttons such as "save", 

"open", "erase" and "clear all". These buttons invoke actions to be taken on an individual 

basis when the user triggers specific events. That is, each button calls on its 

actionPerformed method to process the particular event. The gateMenu contains all 

circuit parts in a palette format that a user can choose from and consists of several basic 

logic gates, a connector object, and input and output objects. 

The third component that exists in the simulator top level window and created by 

the simulator object is thePanel object. This one acts only as an intermediary by setting 

up the stage for the system to initiate the graphical interface by creating theCanvas 
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object. A canvas is simply a rectangular area in which you can draw, while a panel is a 

rectangular area into which you can place user interface components. thePanel class is 

needed to satisfy the Java compiler's requirement to have a panel object create a canvas 

component. Consequently, this panel object has no other important role except creating 

the scrollbars object. The scrollbars object has the same hierarchy as the canvas and has 

to be instantiated by thePanel object. This component allows the user to 'turn pages' on 

screen by displaying vertical and horizontal scrollbars on each dimension of the canvas 

window, thereby allowing the creation of circuits larger than the actual size of the 

application window. 

The primary component that thePanel creates is theCanvas object. theCanvas is a 

component derived (inherited) from the Canvas class that is supplied by Java and accepts 

input from the user. The main attributes (variables) to theCanvas object are logicCircuit 

that holds the gate objects created. Here, logicCircuit is implemented using the Java 

Vector class. Vectors in Java are basically dynamic arrays that expand at run time on 

demand. We chose to use vectors because they can hold any object type and due to the 

nature of the logic circuit. Components in a vector are easily and quickly located so that 

if a method needs to access the ninth gate in the circuit, it can go directly to that position 

by calling on the array index at that location. This feature simplified the design of 

LogicCity. 

The fact that vectors are dynamic arrays means that a circuit can grow and evolve 

without limits (assuming sufficient memory is available). Logic gates are initially 

instantiated and placed in the canvas component in order for the user to visually see them 

on the screen. Gates are easily manipulated in theCanvas, which offers flexibility since 
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they can be moved around the canvas, erased, or even totally cleared from the screen. 

Logic gates can be connected (wired) to each other by simply applying the proper mouse 

clicks and then theCanvas automatically takes over to do the rest of the work. Then, wires 

are drawn in the proper positions and the data structure that stores the wire connections is 

adjusted accordingly. 

Another attribute of theCanvas is that it has two variables, currentState and 

currentGate, that indicate the current status of the circuit, as well as a third variable, 

mouseClickPoint, that holds mouse clicks. Gate positions are also kept track of in 

xCoordinate and yCoordinate. Because the simulator application is interactive in nature, 

many responsibilities, such as handling mouse clicks, are placed on theCanvas. The 

constructor (initializer) of theCanvas object registers the object to receive triggered 

events of mouse actions from all the buttons in the interface. Each time the mouse button 

is pressed on a component by the user, a mouse event is generated and is passed as a 

parameter to its designated listener to be handled. This mouse event parameter is called 

MouseEvent object and contains data fields giving the x and y coordinates of the "mouse 

down" point. Events generated by the mouse account for several different events 

including events triggered when the mouse is clicked, moved, dragged, entered a 

component, exited a component, or if it is pressed or released. Once an event is trapped, a 

notification is sent to any registered component in order for the programmed response to 

take effect. 

Since the simulator application is a totally interactive graphical interface, mouse 

event handlers do most of the necessary work. For example, dragging the mouse around 

moves a gate around the screen. Therefore the mouseDragged method must be defined in 
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a way that accomplishes this task. In order for theCanvas to handle all mouse events, it 

must define the interfaces that supply these mouse events. There are three interfaces in 

theCanvas -- ActionListener, MouseMotionListener, and MouseListener. Combined they 

provide several mouse methods, all of which must be defined to handle certain conditions 

of the system. ActionListener has only one method, actionPerformed, to be defined. The 

objective of actionPerformed is to tell the canvas which button in the system has been 

clicked. For this method we had to invent analysis techniques to determine which button 

is clicked since the most current version of Java does not provide facilities for doing this 

yet. Once a button is identified, this method sets a pointer to the object. 

MouseMotionListener is responsible for providing two mouse action methods, 

mouseMoved and mouseDragged. The objective of the mouseMoved method is to keep 

track of mouse motion by setting the xCoordinate and the yCoordinate variables 

accordingly because this method is invoked every time the mouse is moved on screen. 

The mouseDragged method is called for every time the mouse is dragged on an object on 

screen and is responsible for locating the dragged component, updating its canvas 

coordinates, and refreshing the screen display. 

MouseListener provides several mouse-related methods, which are mouseEntered, 

mouseExited, mouse Pressed, mouseReleased, and mouseClicked. The mouseEntered 

method is utilized to initialize a logic circuit once the mouse has entered the dimensions 

of the "Function" button that switches to simulate mode. The mouseExited and 

mouseReleased methods are left undefined at this time. They are included in the 

implementation however to satisfy the compiler's requirement. The mousePressed 

method is defined to select one of the several color options provided by the Choice 

54 



object. The latter is a pull down menu that allows for different canvas background colors. 

The mouseClicked function is the most important mouse event method. This method is 

sensitive to the user's communication with the simulator and is called for every time the 

mouse is clicked on a registered component. The mouseClicked method is responsible for 

the instantiation of new gate objects and placing them into theCanvas component. Input 

values to the circuit are toggled with mouse clicks. In addition, all menus on the interface 

are operated through mouse clicks. It is also responsible for the wiring of the different 

objects. Moreover, it is through the mouseClicked method that gate objects can be edited 

or simulated. 

The runSimulation method is responsible for performing the actual simulation of 

the behavior of the logic circuit and displaying the results of this simulation on screen by 

displaying the logic states of every individual gate object in the circuit. This method 

displays "O" to denote a logic low or "1" to denote a logic high. The runSimulation 

method also allows the user to change the states of any arbitrary gate object on the screen 

depending on the circuit design. By clicking on the input objects to a particular 

component, the user can easily change the state value of the component. 

The canvas also allows for two dialog boxes to be instantiated. These dialog 

boxes serve as a safety feature against the accidental destruction of an unsaved logic 

circuit. Input is received form the user through these dialogs and processed accordingly. 

We accomplished this by creating two new objects, each handling a dialog box 

separately, which allows for providing a different warning message on each dialog box 

plus different option buttons. 
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In Java the various GUI building blocks, such as buttons, input areas for text, and 

scrollbars, are usually called components. The user interface is constructed using these 

various building blocks, and one can program the interface to respond to various events. 

These building blocks are called "controls" in Windows programming and "widgets" in 

X-Windows programming. To build the user interface, we needed to first decide how the 

interface should look, particularly what components are needed and how they should 

appear. Unfortunately since Java lacks a form designer (like Visual Basic has that 

generates code templates), we had to write code for most everything. We had to write 

code to make the components in the user interface look the way we want them to look, 

and we had to layout (position) the user interface components where we want them to be 

inside the window. We also had to handle user input by programming the components to 

recognize the events to which we want them to respond. 

In order for the system to display the animation resulting from the circuit, the 

paint method in theCanvas must be overridden. The paint method handles the drawing of 

the whole simulation in one central location, which eliminates the need to pass the circuit 

around among the different objects. This also simplifies the implementation of the 

method since theCanvas holds the information about the circuit. In addition, memory 

resources and run time are saved which is important for large and intricate circuits. The 

paint method checks if a gate is being moved around on screen, and if it is, then the gate 

is removed from its position and visually moved to its new location. The paint method 

loops through the circuit vector extracting the ith circuit object with a method called 

logicCircuit.elementAt(i), typecasting it to be a LogicGate object, and finally sending the 

message displayGate(g) which essentially tells each gate to draw itself into the canvas. 
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When each individual circuit object receives this displayGate message, it invokes 

its own custom displayGate method that overrides the abstract displayGate method of the 

abstract LogicGate class. This is the true power of type polymorphism since each object 

knows how to draw itself. A variable tempGate, declared to be of abstract type 

LogicGate, holds an actual object whose type is that of one of the customized subclasses 

in the LogicGate class hierarchy. When the abstract displayGate message is passed to the 

object tempGate, it uses its own customized individual displayGate method to do the 

actual drawing. Thus if the value of tempGate is of type LogicAnd, an AND gate gets 

drawn, whereas if the type of tempGate is LogicXor, an Xor gate gets drawn, and so 

forth. This is very powerful, and would require the use of awkward and time consuming 

techniques to express in non-object oriented language. 

The paint method implementation was changed at a later point. It simply passes 

the responsibility for its action to the update method. The paint method calls the update 

method when it wants to update those portions of the screen that have changed and need 

to be redrawn. The update method is responsible for the actual drawing of the gates in the 

circuit to the screen. The gates are drawn into an offscreen image by sending the 

displayGate message to each gate on the list and then transferring the completed image of 

all drawn gates from the offscreen image to the actual screen visible to the user. This way 

it eliminates the flashing and flickering effect that would have occurred had it drawn the 

entire list of gates in background-to-foreground order each time the mouse position 

changes during mouse dragging. The update method also handles conditions where two 

gates are being connected. A connection line (wire) is drawn as needed at the correct 

locale between the two gates. 
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A logic circuit consists of a combination of logic gates, and in turn, a logic gate is 

an object that is instantiated by the user during the design of a circuit. The way we 

implemented logic objects is by creating a super (parent) class, which is a stand-alone 

entity; that is, it is not derived from any existing Java object. The super class, called 

LogicGate, declares several methods that p.roduce necessary information at different 

stages of the life cycle of a logic gate. Some of these methods are defined within the 

super class itself whereas several others are declared as abstract, which is the equivalent 

of virtual functions in C++. From the super class, many objects are derived as children 

and inherit the attributes of the parent object. These objects represent the basic logic 

gates, the connector object, and the input and output objects. Each child derived from the 

parent class declares additional, exclusive methods. 

Careful consideration was given as to what attributes a logic gate must have (See 

Figure 5 .2). The attributes of a logic gate consist of: 

1) The gate index that specifies its position in the circuit, 

2) A point location represented by x and y coordinates that specifies the gate's 

location on the canvas, 

3) The states of input pins and whether they are connected and to what object, 

4) A connection Vector that stores all the wire connections for each gate (all 

connection information for each gate is stored in this dynamic array), and 

5) Boolean variables, which are declared to hold the state values of input pins, 

and the output pin. 

Methods declared for a gate object return important information about the location of the 

object on canvas and the total environment state at any moment in time. Each gate object 
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is capable of returning sufficient information to the requester. Information such as the 

state of the input pins and the output pin. A gate object can also identify itself by 

returning its type as a reference, its position in the circuit, and its canvas location. A gate 

can tell what part of it is clicked by trapping mouse events and processing them, and a 

gate can draw itself, calculate its operation, and change its input states. 

The constructor for the super class, LogicGate, is the one responsible for 

instantiating all logic objects in the circuit. As theCanvas requests that a specific gate 

object be created, it passes the necessary information to the super class of that gate. This 

information is the gate number in the circuit (its position) and its canvas location. Then 

LogicGate places the selected gate object in the center of the grid specified by these 

coordinates. LogicGate defines the method whichGate that returns the gate being clicked 

once a mouse click position is given. After a gate is identified, LogicGate can return the 

part of the gate selected, which can be either inputs or the output pin. Fine-tuning is 

further done in the event input is selected in order for the canvas to determine which 

input pin is clicked. LogicGate can also return a Boolean value of True or False if an 

output of a gate is clicked. Further more, LogicGate c·an return to theCanvas the position 

of the gate selected. 

Logic objects derived from the super class, LogicGate, inherit all the attributes 

and methods of the parent. In addition, each "child" subclass further defines the 

functionality specific to it such as the logic operation of each gate. All abstract methods 

that are declared in the parent class must be defined in any inheriting child. However a 

subclass can of course declare methods that do not exist in the super class. Each subclass 

object can display itself on screen through a request from theCanvas. Obviously each 
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paint method is different among the logic gates. The paint method draws the object it 

belongs to and then draws all wire connections to this object. Wire connections for each 

gate are stored separately in each gate's connection Vector. A logic gate can change its 

input state with the togglelnput method. This method allows the user to change the input 

states between 'high' and 'low.' A gate generates its correct output by simply following 

two rules at all times. 

One rule is to always keep the output value consistent with the inputs received on 

the input side. Performing the appropriate logic operation of the gate on the inputs 

received validates the consistency. This condition must be true at any time. As one or 

more input pins changes states, the output consequently must be rechecked and 

recalculated. Correction is done by changing the value of the output pin in accordance 

with the result of the logic operation. This leads to the second rule -- if the output changes 

states then all gates that are connected to it must be reevaluated. The output value of a 

gate must at all times be consistent with the value of all input pins connected to it. 

5.3 System Testing 

The final stage of building this prototype's model was to test its performance to 

assure its correct output in accordance with the speCifications theoretically generated. We 

tested the simulator program to insure its accurateness by using it for designing and 

simulating many circuits. Initially, each gate object was tested separately for accurate 

output. Next, simple circuits were constructed and tested, and their results were verified. 

Finally larger circuits, such as a 4-bit full adder, 1-bit ALU (arithmetic logic unit), and 1-

bit left/right shift register, were built. All circuits generated accurate results and 

61 



performed satisfactorily regardless of their size or complexity. This is important to 

predict the stability of the system under various circuit designs and sizes. 

The next step was to transform the application to an applet format in order to 

incorporate it into the Web. Several changes had to be made for this transformation. First, 

an HTML page with an applet tag was constructed. Second, the main() method had to be 

eliminated since the Web browser does the initiation for the applet automatically. Next, 

the application title was also removed as it interferes with the browser's naming 

mechanism. Applets do not have title bars, but one can title the Web page itself using the 

<title> HTML tag. Then the simulator class had to be modified so that it is derived from 

the Applet class instead of from the Frame class. Next, the simulator class constructor 

had to be replaced with a method called init. When the browser creates an object of the 

applet class, it calls it's init() method. If the application's frame implicitly uses a border 

layout (for placing components), the layout manager for the applet must be set in the init 

method. Additionally, all menus must be replaced with buttons since applets cannot have 

menu bars. 

Finally, the instructional materials of the course were transformed into HTML so 

that they can be viewed on the Web. This way, a student can read the course text and 

use the simulator in parallel, which stresses conceptual understanding. A manual for the 

simulator is added on the site through a hyper link. Afterwards, an extensive test is 

performed on the whole Web site for the following: 

• To ensure the readability of the course materials, 

• To validate the correct links among the site's many pages, 

• To verify the ability of the Web browser to initiate the simulator applet, 
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• To inspect for accurate functionality of the simulator, and 

• To confirm the ability of the Web browser to download the application 

version of the simulator. 

5.4 Design Challenges 

We came across many challenges while building the prototype's model. In the 

beginning, it was difficult to determine what object should have what functionality. 

Dividing responsibilities among the different classes took some time to establish. 

Initially, the gate objects super class was given numerous responsibilities that later 

proved to be inadequate, so LogicGate had to be redefined and carefully redesigned. 

Thereafter the objective became apparent -- a gate must handle only gate operations. The 

isolation or abstraction technique proved very effective in designing the simulator as 

totally object-oriented. 

Another challenge we faced in the implementation of the program to learn Java 

and new Java oriented techniques. Luckily Java does not use explicit pointers, so 

programming was somewhat simplified as compared to C++ for example. Yet we still 

had to gain sufficient knowledge of the internals of the Java language and the different 

libraries it offers in order to use them effectively. · 

One of the principal challenges that we encountered was how to implement the 

methods declared for each object. On several occasions we had to re-implement methods 

that we would later discover did not cover all the necessary bases. We had difficulty 

deciding how to pass information around from one method to another or between 

different objects. On occasion we had to decide whether a variable should be declared 
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"global' or should be created as a temporary variable inside a method that uses it. We 

were able to carefully distinguish when to use each case and why by isolating a variable 

to a method if it is used in that method alone. If several methods may need such a 

temporary variable, each method should create its own temporary variable. The variable's 

scope stays within the method definition and disappears as the method exits. On the other 

hand if many methods need to have access to the same variable then it is best to declare it 

globally. Actually the term global does not exist in Java, as the language is completely 

object-oriented. Instead a global variable is declared at the object level and it can be 

private, protected, or public. 

The single most significant programming challenge that we faced was debugging 

the application. We spent a great deal of time debugging using the time-honored method 

of inserting print statements into the code. However, we can tell you that debugging with 

print statements is not one of life's more joyful experiences. We constantly had to add 

and remove the print statements, then recompiling the program. Using a debugger is 

better because a debugger runs a program in full motion until it reaches a breakpoint, and 

then one can look at everything that is of interest. One can purchase excellent debuggers 

on most platforms, but if you are on a budget or working on an unusual platform, you 

may still need to resort to the print statements. The Java development kit includes an 

extremely primitive command-line debugger, and its user interface is so minimal that you 

will not find it useful. In my opinion, this debugger is really more a proof of concept 

than a useful tool. 
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Chapter 6 

Conclusion 

Computer simulation is the discipline of designing a model for an actual or 

theoretical physical system, executing the model on a digital computer, and analyzing the 

executed output. Simulation embodies the principle of "learning by doing." The use of 

simulation is an activity that is as natural as a child who role-plays. Children understand 

the world around them by simulating (with the use of toys and figures) most of their 

interactions with other people, animals, and objects. To understand reality and all of its 

complexity, we must build artificial objects and dynamically act out roles with them. 

Computer simulation is the electronic equivalent of this type of role-playing and it serves 

to drive synthetic environments and virtual worlds. 

Computer simulations are currently used in a wide range of applications in the 

physical sciences, as well as in the social sciences and economics. For example, much of 

what is known about the likely behavior of nuclear reactors during accidents is derived 

from computer simulation models. Needless to say, testing actual reactors or even scaled 

down models under emergency conditions would involve excessive risks. Thus, computer 

simulation is of critical importance. Computer simulations are also used in meteorology 

to forecast the weather. Chemists use computer simulations to explain and view chemical 

reactions occurring at the molecular level. 
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Technologies such as simulation will dominate the entertainment and science 

forefronts well into the next century. While what we may do today may be primitive by 

standards set in science fiction movies such as "Star Trek" (The Holodeck) and 

"Lawnmower Man," the present computer simulation discipline will lead the way to these 

eventual goals. The key word is "digital," as pointed out by many such as Nicholas 

Negroponte at the MIT Media Lab in his recent text "Being Digital". Scientists want to 

create digital replicas of everything we see around us. Digital objects may soon be 

located anywhere on the Internet, and users will be able to use some help tools to locate 

the building block objects for a digital world. Some of this type of work is being done in 

Distributed Interactive Simulation, a major project pioneered by the Department of 

Defense. The implications of these distributed interactive simulations are profound since 

this idea has enormous potential with the Department of Defense as well as in the 

industrial and entertainment fields. 

The primary purpose of writing simulations in the Java programming language is 

to allow "live diagrams" to be incorporated into documents. With Java, people can 

experiment with a working simulation model by clicking on a Web link. This is different 

from simulations written in a traditional simulation language, C++ for example, where 

exporting simulation code requires recompilation and installation on each different 

platform. Java incorporates the language features necessary for simulation, notably 

objects and threads. Current Java implementations compile down to an intermediate byte 

code which is then interpreted. Thus, the main disadvantage of using Java, as compared 

to C++, is longer simulation run times. 
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The focus of this thesis is on the application of computer simulation for learning 

purposes. Educational computer simulation programs are available for many subjects 

such as biology, chemistry, medicine, physics, and economics. Many experiments with 

high educational value cannot be executed in the classroom. Some systems are too large 

(planetary systems) or too small (molecular systems) to be studied. Others may involve 

processes, which are too slow (the growth of biological systems) or too fast (chemical 

reactions and electronic circuits). In addition, there are experiments that are never 

executed because they are too dangerous (medical experiments), or unethical, or too 

costly. Furthermore, some experiments deal with systems that are much too complicated 

to be fully understood by students. Problems with these complex experiments can be 

overcome by using educational computer simulation programs. 

The objective of this project is to construct a component based logic simulation 

environment using the Java programming language. This simulation environment will 

provide electronic designers and students a more scalable, more reliable, and more 

efficient way of performing verification for digital logic circuits. LogicCity is designed 

and developed as a computer simulation program that aids students in learning the subject 

material by enabling them to enter a circuit schematic and run a simulation of its 

behavior. 

As for the computer science field, some computer organization and architecture 

courses teach digital logic design as an introduction. Some material can be difficult to 

grasp or visualize, thus necessitating some other form of educational aid to help drive 

home those tough parts of the subject. Digital logic simulation is an essential tool in 

helping students emphasize conceptual understanding, while complementing class 
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discussions. LogicCity has a very user: friendly, interactive graphical interface that allows 

students to validate the accuracy of their designs and helps them to do their homework. 

6.1 Future Work 

LogicCity has many features and benefits as an educational tool but like all 

programs further improvements are necessary. The architectural structure of the system 

operates at the gate level. Many arbitrary circuits can be designed and built using the 

simulator however efficiency might be compromised for very large circuits if they are to 

be built at the gate level. One can go one abstraction level up by wrapping all the smaller 

components (gates) to represent the basic building block for a more complex system, thus 

utilizing the "chip" formats in building more complex circuit modules. Modularity allows 

for the construction of virtually any electronic circuit with speed and ease. 

The graphical interface for the simulator, though intuitive and clear, can still be 

additionally improved by employing the standard Windows format. Additionally, more 

sophisticated options can be added in the form of pull down menus that add various 

useful functionalities. 

6.2 System Evaluation 

Although the perfect way to evaluate this software would be to have it utilized by 

actual students for a semester, this was not feasible due to time constraints. However, we 

did have several graduate and undergraduate students evaluate LogicCity for 

performance. Some of the key points tested were accuracy of results generated, clarity, 

intuitiveness, ease of use, and overall presentation. Feedback was very encouraging and 
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positive. The initial success of the simulation program prompted the instructor of an 

undergraduate computer science course to use LogicCity by incorporating it into the 

course material. 
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Appendix A: 

Program Listing 

!/*************************************************************************** 
//* * Application Version. 
!/** 1998 
~*************************************************************************** 

importjava.awt.*; //Java's class library for basic GUI programming. 
importjava.util.*; //utility library. 
import java.awt.event. *; II library for handling mouse events 
importjava.awt.Toolkit. *; II to get system properties (i.e. screen size). 
importjava.io.* ; //for file saving/opening functionality. 
importjava.lang.*; //for math functions. 

abstract class LogicGate 
~*************************************************************************** 

/!**This is the super class for the logic gates used. It provides 
II** functionality that is common to all gates derived. Nine subclasses 
//**(gates+ others) will be derived with more specific functionality to each gate. 
//** A class is defined as abstract if at least one of its methods is abstract. 
//**All abstract methods are to be implemented by any derived subclass. 
//*************************************************************************** 

protected Vector connection Vector = new Vector(); // holds connection data. 
protected LogicGate topPinConnection = null; II gate connected to this's top input pin. 
protected LogicGate bottomPinConnection =null; II gate connected to this's top input pin. 
protected int gatelndex = O; //position of gate in circuit. 
protected final int gridWidth = 45 ; II width of grid that holds the gate. 
protected final int gridHeight = 22; II height of grid that holds the gate. 
protected int xCoordinate = O; II x coords of grid. · 
protected int yCoordinate = O; II y coords of grid. 
protected final int nietherPin = O; II if no input pin was clicked. 
protected final int topPin = 1; II top pin of a gate. 
protected final int bottomPin = 2; II bottom pin of a gate. 
protected final int outputPin = 3; II output pin of a gate. 
protected boolean isNotGate =false; //a flag to determine when dealing with a NOT gate. 
protected boolean isConnectorObject =false; //a flag to determine when dealing with a Connector object. 
protected boolean islnputObject =false; //a flag to determine when dealing with an Input object. 
protected boolean isOutputObject = false; //a flag to determine when dealing with an Output object. 

II Display the logic gate. 
abstract public void displayGate(Graphics g); 

II Execute the gate's operation. 
abstract public void calculateGateOperation(); 

II Toggle the gate input state between high and low. 
abstract public void togglelnput(int whichPin); 

II Return the state of the gate's input. 
abstract public boolean getlnputState(int whichPin); 
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II Return the state of the gate's output. 
abstract public boolean getOutputState(); 

II Show the gate input and output states at simulation time. 
abstract public void displayStates(Graphics g); 

public LogicGate(int x, int y, int gatePosition) 
II** The class constructor positions a new gate into the center of the selected grid. 

{ 
gatelndex = gatePosition; 11 set gate position into the circuit. 
11 x coords for this gate. 
this.xCoordinate = ((x I gridWidth) * gridWidth) + (gridWidth I 2); 
II y coords for this gate. 
this.yCoordinate = ((y I gridHeight) * gridHeight) + (gridHeight I 2); 

}II end constructor 

public LogicGate whichGate(Point point) 
II** Given a mouse click position, this method returns the gate being 
II** clicked (if valid), null otherwise. 

{ 
Point p = returnGatePosition(xCoordinate,yCoordinate ); 

if((point.x > p.x) && (point.x < p.x + gridWidth) 
&& (pointy > p.y) && (pointy < p.y + gridHeight)) 

{ 
return this; 

} 
else 

return null ; 
} 

}II end whichGate 

public int whichGatePart(Point point) 
II** Returns the part of the gate being clicked. Once the gate is determined, 
II** fine-tuning is done to find out what part of that gate was clicked. 
II** Options are: either one of the two inputs or the output. 

{ 
int whichPin = whichlnput(point); 
boolean isitOutput = isOutput(point); 

11 get the pin selected. 
11 check the output also. 

if(whichPin > 0) 
{ 

return whichPin; 
} 
else if(isltOutput) II output pin was clicked. 
{ 

return outputPin; 
} 
else 
{ 

return nietherPin; II nothing valid was clicked. 
} 

}II end whichGatePart 

public int whichlnput(Point point) 
II** Returns which one of two inputs to a gate has been clicked. It is 
II** a helper function to whichGatePart. 

{ 
Point position= returnGatePosition(xCoordinate, yCoordinate); 
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II is the mouse at the input area? 
if((pointx > position.x) && (pointx < position.x + 9) 

&& (pointy> position.y) && (pointy< position.y + gridHeight)) 

{ 
if(pointy < position.y + 12) II is it the top pin? 
{ 

return topPin; 
} 
else 
{ 

return bottomPin; 11 else it must be the bottom pin. 
} 

} 
else 
{ 

return nietherPin; 11 or it could be neither. 
} 

}II end whichlnput 

public boolean isOutput(Point point) 
II** Returns true ifthe gate's output has been clicked. This is another helper 
II** function to whichGatePart. 

{ 
Point position= returnGatePosition(xCoordinate, yCoordinate); 

if((pointx > position.x + 35) && (pointx < position.x + gridWidth) 
&& (pointy> position.y + 5) && (pointy < position.y + gridHeight - 5)) 

{ 
return true; 

} 
else 
{ 

return false; 11 not at the output pin. 
} 

}II end isOutput 

public Point returnGatePosition(int x, int y) 
II** Returns the canvas position of the gate being clicked. The canvas is 
II** divided into square grids, once the grid coords are known, the gate 
11* * position is also identified inside the grid. 

{ 
Point point= new Point(((x * gridWidth) I gridWidth) - (gridWidth I 2), 
((y * gridHeight) I gridHeight) - (gridHeight i 2)); 

return point; 
} 

}II end LogicGate class 

II** LogicAnd class has a detailed documentation. The other eight classes 
II** are derived from the same super class have pretty similar functionality 
11* * and therefore documentation. 

class LogicAnd extends LogicGate 
V*************************************************************************** 
II** This class is derived from its super class LogicGate and implements the 
11* * abstract methods declared. This class performs the operation of logic AND. 
II*************************************************************************** 

boolean toplnputPin = false ; 
boolean bottomlnputPin = false ; 
boolean OutputPin = false ; 
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;; The constructor positions a new gate in one of the grids selected. 
public LogicAnd(int x, int y, int gatePosition) 

{ . . ) 
super(x,y,gatePos1t10n ; 
cal cu lateGateOperati on(); 

}// end constructor 

public void displayGate(Graphics g) 
/!**Displays the AND gate, along with any wire connections. 

{ 
II get location of gate. 
Point p = retumGatePosition(xCoordinate,yCoordinate ); 

g.drawLine(p.x + 9,p.y + 22,p.x + 24,p.y + 22); II bottom edge 
g.drawLine(p.x + 9,p.y + 2,p.x + 9,p.y + 22); II left edge 
g.drawLine(p.x + 9,p.y + 2,p.x + 24,p.y + 2); II top edge 
g.drawLine(p.x + 4,p.y + 7,p.x + 8,p.y + 7); II top input pin 
g.drawLine(p.x + 4,p.y + 17,p.x + 8,p.y + 17); //bottom input pin 
g.drawLine(p.x + 35,p.y + 12,p.x + 40,p.y + 12); //output pin 
g.drawArc(p.x + 14,p.y + 2,20,20,90,-180); II right side arc 
g.fillOval(p.x + 0, p.y + 5,4,4); II bubble on top input pin 
g.fillOval(p.x + 0, p.y + 15,4,4); II bubble on bottom input pin 
g.fillOval(p.x + 41, p.y + 10,4,4); II bubble on output pin 

paintConnections(g,p ); II draw all wire connections. 
}//end displayGate 

public void paintConnections(Graphics g, Point p) 
//**This method displays all wire connections of a gate. 
II** Point p is the position of the gate. 

{ 
LogicGate tempGate =null ; //gate connected to "this". 

II for all connections to this gate. 
for(int counter= O; counter< connection Vector.size(); ++counter) 
{ 

tempGate = (LogicGate) connectionVector.elementAt(counter); 
Point position= retumGatePosition(tempGate.xCoordinate, tempGate.yCoordinate); 

11 firstOccurance is the index of tempGate in the connection array. 
int firstOccurance = connection Vector. ind~xOf( tempGate ); 
if(firstOccurance > -1) II if the gate is connected. 
{ 

//secondOccuance is the second time tempGate appears in the same connection array. 
int secondOccuance =connection Vector.indexOf(tempGate,firstOccurance+ 1 ); 

if(secondOccuance > firstOccurance) //both inputs of tempGate are connected to "this" . 
{ 

} 

II these Objects has one input, draw first connection to the top pin of tempGate. 
if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 
} 
else //else it's a top pin 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 
//draw second connection to the bottom pin of tempGate. 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 

else// else tempGate has only one input from "this". 
{ 
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II is this (this object) connected to tempGate's top input pin? 
if(tempGate.topPinConnection =this) 
{ 

if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) II these Objects has 

one input. 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 
} 
else II else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 

}II end if(tempGate.topPinConnection =this) 
else 11 or the bottom pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 
} 

}II end else 
}II end if(firstOccurance > -1) 
tempGate =null; II reset to null. 

}II end for 
}II end paintConnections 

public void togglelnput(int whichPin) 
II** Toggles the gate input state between high and low. 
II** It allows the user to change the value of an input pin between 0 and 1. 

{ 
if(whichPin = topPin) II if top input pin being changed 
{ 

toplnputPin = !toplnputPin; II change state. 
} 
else II else bottom input pin being changed 
{ 

bottomlnputPin = ! bottomlnputPin; 
} 
calculateGateOperation(); II recompute the gate's logic operation. 

}II end togglelnput 

public void calculateGateOperation() 
II** This method computes the logic AND operation for the gate. 
11* * The result of this calculation is broadcasted on the output pin. 

{ 
if(OutputPin != (toplnputPin & bottomlnputPin)) II if output is incorrect. 
{ 

11 if output is wrong, change it. 
OutputPin = (toplnputPin & bottomlnputPin); 

for(int counter= O; counter < connection Vector.size(); ++counter) 
{ 

II for all connections, if the gate's input is connected to "this" gate's output. 
if(((LogicGate) connectionVector.elementAt(counter)).topPinConnection =this) 
{ 

II and the input does not match the output coming? 
if(((LogicGate) connectionVector.elementAt(counter)).getlnputState(topPin) != getOutputState()) 
{ 

II change the value of the top input pin. 
( (LogicGate) connection Vector.elementAt( counter)). togglelnput( top Pin); 

} 
} 
else II do the same for the bottom input pin 
{ 

if( ( (LogicGate) connection Vector.elementAt( counter) ).getlnputState(bottomPin) ! = getOutputState()) 
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{ 
( (LogicGate) connection Vector. elementAt( counter)). togglelnput(bottomPin ); 

} 
}II end else 

}II end for 
}II end if(OutputPin != (toplnputPin & bottomlnputPin)) 

}II end calculateGateOperation 

public boolean getlnputState(int whichPin) 
II** Returns the state of the gate's input. Given which pin was clicked, this 
II** method returns the value of that input pin whether high or low. 
II** Returns true if the pin is high , false otherwise. 

{ 
if(whichPin = topPin) 
{ 

return toplnputPin; 
} 
else 
{ 

return bottomlnputPin; 
} 

}II end getlnputState 

public boolean getOutputState() 
II** Returns the state of the gate's output. this method returns the value 
II** of the output pin whether high or low. 

{ 
return OutputPin; 

}II end getOutputState 

public void displayStates(Graphics g) 
II** Shows the gate input and output states at simulation time. If an input 
II** to a gate is changed, this change is passed throughout the whole circuit. 
II** High value is indicated with a red color, black for low value. 

{ 
g.setFont(new Font("Helvetica", Font.BOLD,9)); 
Point position = returnGatePosition(xCoordinate, yCoordinate ); 

if( toplnputPin) 
{ 

II top pin is high 

g.setColor(Color.red); 
g.drawString(" 1 ",position.x + 3 , position.y + 6); 

} . 
else 11 top pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O" ,position.x + 3 , position.y + 6); 

} 
if(bottomlnputPin) II bottom pin is high 
{ 

g.setColor(Color.red); 
g.drawString(" 1 ",position.x + 3, position.y + 16); 

} 
else 11 bottom pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O" ,position.x + 3, position.y + 16); 

} 
if(OutputPin) II output pin is high 
{ 

g.setColor(Color.red); 
g.drawString("l ",position.x + 37, position.y + 11); 
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else II output pin is low 

{ 

} 

g.setColor(Color.black); 
g.drawString("O",position.x + 37, position.y + 11); 

}II end displayStates 
}II end LogicAnd class 

class LogicOr extends LogicGate 
II*************************************************************************** 
II** This class is derived from its super class LogicGate and implements the 
II** abstract methods declared. This class performs the operation of logic OR. 

II** 
~*************************************************************************** 

boolean toplnputPin = false ; 
boolean bottomlnputPin = false; 
boolean OutputPin = false; 

II The constructor positions a new gate in one of the free grids selected. 
public LogicOr(int x, int y, int gatePosition) 
{ 

super(x,y ,gatePosition ); 
calculateGateOperation(); 

}II end constructor 

public boolean getlnputState(int whichPin) 
II** Returns the state of the gate's input. Given which pin was clicked, this 
II** method returns the value of that input pin whether high or low. 
II** Returns true of the pin is high, false otherwise. 

{ 
if(whichPin = topPin) 
{ 

return toplnputPin; 
} 
else 
{ 

return bottomlnputPin; 
} 

}II end getlnputState 

public boolean getOutputState() 
II** Returns the state of the gate's output. this method returns the value 
II** of the output pin whether high or low. 

{ 
return OutputPin; 

}II end getOutputState 

public void displayGate(Graphics g) 
II** Displays the OR gate, along with any wire connections. 

{ 
II get location of gate. 
Point p = returnGatePosition( xCoordinate,yCoordinate ); 

g.drawLine(p.x + 4, p.y + 7, p.x + 11 ,p.y + 7); II top input pin 
g.drawLine(p.x + 4, p.y + 17, p.x + 11, p.y + 17); II bottom input pin 
g.drawLine(p.x + 34, p.y + 12, p.x + 40, p.y + 12);11 output pin 
g.drawArc(p.x + l ,p.y + 2,12,20,90,-180); II left side arc 
g.drawArc(p.x - 17,p.y + 2,50,20,90,-180); II right side arc 
g.fillOval(p.x + 0, p.y + 5,4,4); II bubble on top input pin 
g.fillOval(p.x + 0, p.y + 15,4,4); II bubble on bottom input pin 
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g.fillOval(p.x + 41, p.y + 10,4,4); II bubble on output pin 

paintConnections(g,p ); 
}//end displayGate 

public void paintConnections(Graphics g, Point p) 
/!** This method displays all wire connections of a gate. 

{ 
LogicGate tempGate = null; II gate connected to "this". 

//for all connections to this gate. 
for(int counter = O; counter < connection Vector. size(); ++counter) 
{ 

tempGate = (LogicGate) connectionVector.elementAt(counter); 
Point position= returnGatePosition(tempGate.xCoordinate, tempGate.yCoordinate); 

II firstOccurance is the index of tempGate in the connection array. 
int firstOccurance = connection Vector. index Of( tempGate ); 
if(firstOccurance > -1) 
{ 

//secondOccuance is the second time tempGate appears in the same connection array. 
int secondOccuance = connection Vector. index Of( tempGate,firstOccurance+ 1 ); 

if(secondOccuance > firstOccurance) //both inputs of tempGate are connected to "this". 
{ 

} 

II these Objects has one input, draw first connection to the top pin of tempGate. 
if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 
} 
else II else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 
//draw second connection to the bottom pin of tempGate. 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 

else // else tempGate has only one input from "this". 
{ 

II is this (this object) connected to tempGate's top input pin? 
if(tempGate.topPinConnection ==this) 

{ . 
if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) II these Objects has 

one input. 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 
} 
else II else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 

}//end if(tempGate.topPinConnection ==this) 
else II or the bottom pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 
} 

}//end else 
} // end if( firstOccurance > -1) 
tempGate =null; //reset to null. 

}//end for 
}//end paintConnections 

public void togglelnput(int whichPin) 
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II** Toggles the gate input state between high and low. 
II** It allows the user to change the value of an 
II** input pin between 0 and I . 

{ 
if(whichPin = topPin) 
{ 

toplnputPin = !toplnputPin; 
} 
else 
{ 

bottomlnputPin = !bottomlnputPin; 
} 
cal cu lateGateOperation(); 

}II end togglelnput 

public void calculateGateOperation() 
II** This method computes the logic OR operation between the two gate's 
II** input pins. The result of this calculation is broadcasted on the 
II** output pin. 

{ 
if(OutputPin != (toplnputPin I bottomlnputPin)) 
{ 

OutputPin = (toplnputPin I bottomlnputPin); 
for( int counter= O; counter < connection Vector.size(); ++counter) 
{ 

if(((LogicGate) connectionVector.elementAt(counter)).topPinConnection =this) 
{ 

if(((LogicGate) connection Vector.elementAt( counter) ).getlnputState(topPin) != getOutputState()) 
{ 

( (LogicGate) connection Vector.elementAt( counter)). togglelnput( topPin ); 
} 

else 
{ 

if( ( (LogicGate) connection Vector.elementAt( counter) ).getlnputState(bottomPin) != getOutputState()) 
{ 

} 
} 

((LogicGate) connectionVector.elementAt(counter)).togglelnput(bottomPin); 

}II end for 
}II end if(OutputPin != (toplnputPin I bottomlnputPin)) 

}II end calculateGateOperation 

public void displayStates(Graphics g) 
11* * Shows the gate input and output states at simulation time. 
II** High values are indicated with a red color, black for a low values. 

{ 
g.setFont(new Font("Helvetica", Font.BOLD,9)); 
Point position= retumGatePosition(xCoordinate, yCoordinate); 

if( toplnputPin) 
{ 

II top pin is high 

g.setColor(Color.red); 
g.drawString(" I" ,position.x + 3 , position.y + 6); 

} 
else 11 top pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O",position.x + 3 , position.y + 6); 

} 
if(bottomlnputPin) II bottom pin is high 
{ 
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g. setColor( Color.red); 
g.drawString("l ",position.x + 3, position.y + 16); 

} 
else II bottom pin is low 

{ 

} 

g.setColor(Color.black); 
g.drawString("O",position.x + 3, position.y + 16); 

if(OutputPin) II output pin is high 
{ 

g.setColor(Color.red); 
g.drawString("l ",position.x + 37, position.y + 11); 

} 
else II outp.ut pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O",position.x + 37, position.y + 11); 

} 
}II end displayStates 

}II end LogicOr class 

class LogicNot extends LogicGate 
~*************************************************************************** 
II** This class is derived from its super class LogicGate and implements the 
II** abstract methods declared. This class performs the operation oflogic NOT. 
II** 
~*************************************************************************** 

boolean toplnputPin = false; 
boolean bottomlnputPin = false; 
boolean OutputPin = false; 

II The constructor positions a new gate in one of the grids selected. 
public LogicNot(int x, int y, int gatePosition) 
{ 

super(x,y ,gatePosition ); 
isNotGate =true; 
calculateGateOperation(); 

} 11 end constructor 

public boolean getlnputState(int whichPin) 
II** Returns the state of the gate's input. 
11* * true if the pin is high , false otherwise. 

{ 
return toplnputPin; 

}II end getlnputState 

public int whichlnput(Point point) 
II** Returns which one of two inputs to a gate has been clicked. It is modified 
11* * here since a not gate has only one input. 

{ 
Point position= returnGatePosition(xCoordinate, yCoordinate); 

II is the mouse at the input area? 
if((point.x > position.x) && (point.x < position.x + I 0) 

&& (pointy> position.y - 4) && (pointy< position.y + 25)) 
{ 

return topPin; 
} 
else 
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{ 
return nietherPin; //or it could be neither. 

} 
}// end whichlnput 

public boolean getOutputState() 
/!**Returns the state of the gate's output. this method returns the value 
/!**of the output pin whether high or low. 

{ 
return OutputPin; 

}// end getOutputState 

public void displayGate(Graphics g) 
//* * Displays the NOT gate, along with any wire connections. 

{ 
II get location of gate. 
Point p = retumGatePosition(xCoordinate,yCoordinate ); 
g.drawLine(p.x + 9,p.y + 22,p.x + 27,p.y + 12); //bottom edge 
g.drawLine(p.x + 9,p.y + 2,p.x + 9,p.y + 22); //left edge 
g.drawLine(p.x + 9,p.y + 2,p.x + 27,p.y + 12); //top edge 
g.drawLine(p.x + 4,p.y + 12,p.x + 9,p.y + 12); //input pin 
g.drawLine(p.x + 34,p.y + 12,p.x + 40,p.y + 12); // output pin 
g.fillOval(p.x + 0, p.y + 10,4,4); II bubble on input pin 
g.fillOval(p.x + 41 , p.y + 10,4,4); II bubble on output pin 
g.drawOval(p.x + 28,p.y + 9,6,6); II negation bubble 

paintConnections(g,p ); 
}// end displayGate 

public void paintConnections(Graphics g, Point p) 
II** This method displays all wire connections of a gate. 

{ 
LogicGate tempGate =null ; //gate connected to "this". 

11 for all connections to this gate. 
for( int counter= O; counter < connection Vector.size(); ++counter) 
{ 

tempGate = (LogicGate) connection Vector.elementAt( counter); 
Point position= returnGatePosition(tempGate.xCoordinate, tempGate.yCoordinate); 

11 firstOccurance is the index of tempGate in the connection array . 
int firstOccurance = connection Vector.ind~xOf(tempGate ); 
if(firstOccurance > -1) 
{ 

//secondOccuance is the second time tempGate appears in the same connection array. 
int secondOccuance = connection Vector. index Of( tempGate,firstOccurance+ 1 ); 

if(secondOccuance > firstOccurance) //both inputs of tempGate are connected to "this". 
{ 

} 

11 these Objects has one input, draw first connection to the top pin of tempGate. 
if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 
} 
else II else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 
//draw second connection to the bottom pin oftempGate. 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 

else II else tempGate has only one input from "this" . 
{ 
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II is this (this object) connected to tempGate's top input pin? 
if(tempGate.topPinConnection =this) 
{ 

if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) II these Objects has 
one input. 

{ 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 

} 
else 11 else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 

}II end if(tempGate.topPinConnection ==this) 
else 11 or the bottom pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 
} 

}II end else 
}II end if(firstOccurance > -1) 
tempGate =null; II reset to null. 

}II end for 
}II end paintConnections 

public void togglelnput(int whichPin) 
II** Toggles the gate input state between high and low. 
II** It allows the user to change the value of an 
II** input pin between 0 and I. 

{ 
toplnputPin = !toplnputPin; 
calculateGateOperation(); 

}II end togglelnput 

public void calculateGateOperation() 
II** This method computes the logic NOT operation on the gate's 
II** input pin. The result of this calculation is broadcasted on the 
II** output pin. 

{ 
if(OutputPin = toplnputPin) 
{ 

OutputPin = !toplnputPin; 
for(int counter= O; counter< connection Vector.size(); ++counter) 
{ 

if(((LogicGate) connectionVector.elemeritAt(counter)).topPinConnection ==this) 
{ 

if( ( (LogicGate) connection Vector.elementAt( counter) ).getlnputState(topPin) ! = getOutputState()) 
{ 

((LogicGate) connection Vector.elementAt( counter)). togglelnput(topPin); 
} 

else 
{ 

if( ( (LogicGate) connection Vector.elementAt( counter) ).getlnputState(bottomPin) != getOutputState()) 
{ 

} 
} 

( (LogicGate) connection Vector.elementAt( counter)). togglelnput(bottomPin ); 

}II end for 
} II end if(OutputPin == toplnputPin) 

}II end calculateGateOperation 

public void displayStates(Graphics g) 
11* * Shows the gate input and output states at simulation time. If the input 
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II** to the gate is changed, this change is passed throughout the whole circuit. 
II** High value is indicated with a red color, black for low value. 

{ . 
g.setFont(new Font("Helvet1ca", Font.BOLD,9)); 
Point position = returnGatePosition(xCoordinate, yCoordinate ); 

if(toplnputPin) 
{ 

g.setColor(Color.red); 
g.drawString(" 1 ",position.x + 3 , position.y + 11 ); 

} 
else 
{ 

g.setColor(Color.black); 
g.drawString("O" ,position.x + 3 , position.y + 11 ); 

} 
if(OutputPin) 
{ 

g.setColor(Color.red); 
g.drawString("l ",position.x + 37, position.y + 11); 

} 
else 
{ 

g.setColor(Color.black); 
g.drawString("O",position.x + 37, position.y + 11); 

} 
}II end displayStates 

}II end LogicNot class 

class LogicXor extends LogicGate 
II*************************************************************************** 
II** This class is derived from its super class LogicGate and implements the 
II** abstract methods declared. This class performs the operation of logic XOR. 
~*************************************************************************** 

boolean toplnputPin = false; 
boolean bottomlnputPin = false; 
boolean OutputPin = false; 

II The constructor positions a new gate in one of the grids selected. 
public LogicXor(int x, int y, int gatePosition) 
{ 

super(x,y,gatePosition); 
calculateGateOperation(); 

} 11 end constructor 

public boolean getlnputState(int whichPin) 
II** Returns the state of the gate's input. Given which pin was clicked, this 
II** method returns the value of that input pin whether high or low. 
II** Returns true of the pin is high, false otherwise. 

{ 
if(whichPin = topPin) 
{ 

return toplnputPin; 
} 
else 
{ 

return bottomlnputPin; 
} 

}II end getlnputState 
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public boolean getOutputState() 
II** Returns the state of the gate's output. this method returns the value 
/!**of the output pin whether high or low. 

{ 
return OutputPin; 

}//end getOutputState 

public void displayGate(Graphics g) 
/!**Displays the XOR gate, along with any wire connections. 

{ 
II get location of gate. 
Point p = returnGatePosition(xCoordinate,yCoordinate ); 
g.drawLine(p.x + 4, p.y + 7, p.x + 9,p.y + 7); II top input pin 
g.drawLine(p.x + 4, p.y + 17, p.x + 9, p.y + 17); II bottom input pin 
g.drawLine(p.x + 36, p.y + 12, p.x + 40, p.y + 12);// output pin 
g.drawArc(p.x - l ,p.y + 2,12,20,90,-180); II left side arc 
g.drawArc(p.x - 15,p.y + 2,50,20,90,-180); II right side (big) arc 
g.drawArc(p.x + 4,p.y + 2,12,20,90,-180); II middle arc 
g.fillOval(p.x + 0, p.y + 5,4,4); //bubble on top input pin 
g.fillOval(p.x + 0, p.y + 15,4,4); //bubble on bottom input pin 
g.fillOval(p.x + 41, p.y + 10,4,4); //bubble on output pin 

paintConnections(g,p ); 
}//end displayGate 

public void paintConnections(Graphics g, Point p) 
II** This method displays all wire connections of a gate. 

{ 
LogicGate tempGate =null; // gate connected to "this" . 

II for all connections to this gate. 
for(int counter= O; counter < connection Vector.size(); ++counter) 
{ 

tempGate = (LogicGate) connection Vector.elementAt( counter); 
Point position = returnGatePosition(tempGate.xCoordinate, tempGate.yCoordinate ); 

11 firstOccurance is the· index of tempGate in the connection array. 
int firstOccurance = connection Vector.indexOf(tempGate ); 
if(firstOccurance > -1) 
{ 

//secondOccuance is the second time tempGate appears in the same connection array. 
int secondOccuance = connectionVector.indexOf(tempGate,firstOccurance+ l); 

if(secondOccuance > firstOccurance) //both inputs of tempGate are connected to "this". 
{ 

} 

II these Objects has one input, draw first connection to the top pin of tempGate. 
if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 
} 
else //else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 
//draw second connection to the bottom pin of tempGate. 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 

else// else tempGate has only one input from "this" . 
{ 

II is this (this object) connected to tempGate's top input pin? 
if(tempGate.topPinConnection ==this) 
{ 
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if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) II these Objects has 

one input. 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 

} 
else II else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 

}II end if(tempGate.topPinConnection ==this) 
else 11 or the bottom pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 
} 

}II end else 
}II end if(firstOccurance > -1) 
tempGate =null; II reset to null. 

}II end for 
}II end paintConnections 

public void togglelnput(int whichPin) 
II** Toggles the gate input state between high and low. 
11* * It allows the user to change the value of an 
II** input pin between 0 and I. 

{ 
if(whichPin = topPin) 
{ 

toplnputPin = !toplnputPin; 
} 
else 
{ 

bottomlnputPin = ! bottomlnputPin; 
} 
calculateGateOperation(); 

}II end togglelnput 

public void calculateGateOperation() 
II** This method computes the logic XOR operation between the two gate's 
11* * input pins. The result of this calculation is broadcasted on the 
11* * output pin. 

{ 
if(OutputPin != (toplnputPin /\ bottomlnputPin)) 
{ . 

OutputPin = (toplnputPin /\ bottomlnputPin); 
for(int counter= O; counter< connection Vector.size(); ++counter) 
{ 

if( ( (LogicGate) connection Vector.elementAt( counter)). topPlnConnection = this) 
{ 

if(((LogicGate) connection Vector.elementAt( counter)).getlnputState(topPin) != getOutputState()) 
{ 

( (LogicGate) connection Vector.elementAt( counter)). togglelnput( topPin ); 
} 

else 
{ 

if( ( (LogicGate) connection Vector.elementAt( counter) ).getlnputState(bottomPin) ! = getOutputState()) 
{ 

} 
} 

( (LogicGate) connection Vector.elementAt( counter) ).togglelnput(bottomPin ); 

}II end for 
} 
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}II end calculateGateOperation 

public void displayStates(Graphics g) 
II** Shows the gate input and output states at simulation time. If an input 
II** to a gate is changed, this change is passed throughout the whole circuit. 
II** High value is indicated with a red color, black for low value. 

{ 
g.setFont(new Font("Helvetica", Font.BOLD,9)); 
Point position = retumGatePosition(xCoordinate, yCoordinate ); 

if(toplnputPin) II top pin is high 
{ 

g.setColor(Color.red); 
g.drawString(" 1 ",position.x + 3 , position.y + 6); 

} 
else II top pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O" ,position.x + 3 , position.y + 6); 

} 
if(bottomlnputPin) II bottom pin is high 
{ 

g.setColor(Color.red); 
g.drawString("l ",position.x + 3, position.y + 16); 

} 
else 11 bottom pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O",position.x + 3, position.y + 16); 

} 
if(OutputPin) II output pin is high 
{ 

g.setColor(Color.red); 
g.drawString("l ",position.x + 37, position.y + 11); 

} 
else II output pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O",position.x + 37, position.y + 11); 

} 
}II end displayStates 

}II end LogicXor class 

class LogicNand extends LogicGate 
II*************************************************************************** 
II** This class is derived from its super class LogicGate and implements the 
II** abstract methods declared. This class performs the operation of logic NAND. 
II** 
II*************************************************************************** 

boolean toplnputPin = false ; 
boolean bottomlnputPin = false ; 
boolean OutputPin = false ; 

II The constructor positions a new gate in one of the grids selected. 
public LogicNand(int x, int y, int gatePosition) 
{ 

super(x,y,gatePosition); 
calculateGateOperation(); 

}II end constructor 

public boolean getlnputState(int whichPin) 
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II** Returns the state of the gate's input. Given which pin was clicked, this 
II** method returns the value of that input pin whether high or low. 
II** Returns true of the pin is high , false otherwise. 

{ . ) 
if(whichPin == topPm 
{ 

return toplnputPin; 
} 
else 
{ 

return bottomlnputPin; 
} 

}II end getlnputState 

public boolean getOutputState() 
II** Returns the state of the gate's output. this method returns the value 
II** of the output pin whether high or low. 

{ 
return OutputPin; 

}II end getOutputState 

public void displayGate(Graphics g) 
II** Displays the NAND gate, along with any wire connections. 

{ 
II get location of gate. 
Point p = retumGatePosition(xCoordinate,yCoordinate ); 
g.drawLine(p.x + 9,p.y + 22,p.x + 19,p.y + 22); II bottom edge 
g.drawLine(p.x + 9,p.y + 2,p.x + 9,p.y + 22); II left edge 
g.drawLine(p.x + 9,p.y + 2,p.x + 19,p.y + 2); II top edge 
g.drawLine(p.x + 4,p.y + 7,p.x + 8,p.y + 7); II top input pin 
g.drawLine(p.x + 4,p.y + 17,p.x + 8,p.y + 17); II bottom input pin 
g.drawLine(p.x + 37,p.y + 12,p.x + 40,p.y + 12); II output pin 
g.drawArc(p.x + 9,p.y + 2,21 ,20,90,-180); II right side arc 
g.fillOval(p.x + 0, p.y + 5,4,4); II bubble on top input pin 
g.fillOval(p.x + 0, p.y + 15,4,4); II bubble on bottom input pin 
g.fillOval(p.x + 41 , p.y + 10,4,4); II bubble on output pin 
g.drawOval(p.x + 31 , p.y + 9,6,6); II negation bubble 

paintConnections(g,p ); 
}II end displayGate 

public void paintConnections(Graphics g, Point p) 
II** This method displays all wire connections of a gate. 

{ 
LogicGate tempGate =null ; II gate connected to "this". 

II for all connections to this gate. 
for(int counter= O; counter < connection Vector.size(); ++counter) 
{ 

tempGate = (LogicGate) connection Vector.elementAt( counter); 
Point position= retumGatePosition(tempGate.xCoordinate, tempGate.yCoordinate); 

11 firstOccurance is the index of tempGate in the connection array. 
int firstOccurance = connection Vector.indexOf(tempGate ); 
if( firstOccurance > -1) 
{ 

I lsecondOccuance is the second time tempGate appears in the same connection array . 
int secondOccuance = connection Vector.indexOf(tempGate,firstOccurance+ 1 ); 

if(secondOccuance > firstOccurance) II both inputs oftempGate are connected to "this". 
{ 

II these Objects has one input, draw first connection to the top pin of tempGate. 
if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) 
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} 

{ 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 

} 
else //else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 
//draw second connection to the bottom pin of tempGate. 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 

else// else tempGate has only one input from "this" . 
{ 

II is this (this object) connected to tempGate's top input pin? 
if(tempGate.topPinConnection ==this) 
{ 

if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) II these Objects has 
one input. 

{ 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 

} 
else //else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 

}//end if(tempGate.topPinConnection =this) 
else // or the bottom pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 
} 

}//end else 
} // end if( firstOccurance > -1) 
tempGate =null ; //reset to null. 

}//end for 
}// end paintConnections 

public void togglelnput(int whichPin) 
II** Toggles the gate input state between high and low. 
//* * It allows the user to change the value of an 
//* * input pin between 0 and 1 . 

{ 
if(whichPin = topPin) 
{ 

toplnputPin = !toplnputPin; 
} 
else 
{ 

bottomlnputPin = ! bottomlnputPin; 
} 
calculateGateOperation(); 

}// end togglelnput 

public void calculateGateOperation() 
II** This method computes the logic NAND operation between the two gate's 
11* * input pins. The result of this calculation is broadcasted on the 
II** output pin. 

{ 
if(OutputPin != !(toplnputPin & bottomlnputPin)) 
{ 

OutputPin = !(toplnputPin & bottomlnputPin); 
for(int counter= O; counter < connection Vector.size(); ++counter) 
{ 

if(((LogicGate) connectionVector.elementAt(counter)).topPinConnection =this) 
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{ 
if(((LogicGate) connectionVector.elementAt(counter)).getlnputState(topPin) != getOutputState()) 

{ 
((LogicGate) connection Vector.elementAt( counter)). togglelnput(topPin); 

} 
} 
else 
{ 

if( ( (LogicGate) connection Vector.elementAt( counter) ).getlnputState(bottomPin) ! = getOutputState()) 
{ 

} 
} 

( (LogicGate) connection Vector.elementAt( counter)). togglelnput(bottomPin ); 

}II end for 
}II end if(OutputPin != !(toplnputPin & bottomlnputPin)) 

}II end calculateGateOperation 

public void displayStates(Graphics g) 
11* * Shows the gate input and output states at simulation time. If an input 
II** to a gate is changed, this change is passed throughout the whole circuit. 
II** High value is indicated with a red color, black for low value. 

{ 
g.setFont(new Font("Helvetica", Font.BOLD,9)); 
Point position = retumGatePosition(xCoordinate, yCoordinate ); 

if(toplnputPin) II top pin is high 
{ 

g.setColor(Color.red); 
g.drawString(" 1 ",position.x + 3 , position.y + 6); 

} 
else 11 top pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O",position.x + 3 , position.y + 6); 

} 
if(bottomlnputPin) II bottom pin is high 
{ 

g.setColor(Color.red); 
g.drawString("l" ,position.x + 3, position.y + 16); 

} 
else 11 bottom pin is low 
{ 

} 

g.setColor(Color.black); 
g.drawString("O",position.x + 3, position.y + 16); 

if(OutputPin) II output pin is high 
{ 

g.setColor(Color.red); 
g.drawString(" l ",position.x + 3 7, position.y + 11 ); 

} 
else II output pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O",position.x + 37, position.y + 11); 

} 
}II end displayStates 

}II end LogicNand class 

class LogicNor extends LogicGate 
II*************************************************************************** 
II** This class is derived from its super class LogicGate and implements the 
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II** abstract methods declared. This class performs the operation of logic NOR. 

II** 
II*************************************************************************** 

boolean toplnputPin = false; 
boolean bottomlnputPin = false; 
boolean OutputPin = false; 

II The constructor positions a new gate in one of the grids selected. 
public LogicNor(int x, int y, int gatePosition) 
{ 

super(x,y,gatePosition); 
calculateGateOperation(); 

}II end constructor 

public boolean getlnputState(int whichPin) 
II** Returns the state of the gate's input. Given which pin was clicked, this 
II** method returns the value of that input pin whether high or low. 
II** Returns true of the pin is high, false otherwise. 

{ 
if(whichPin = topPin) 
{ 

return toplnputPin; 
} 
else 
{ 

return bottomlnputPin; 
} 

}II end getlnputState 

public boolean getOutputState() 
II** Returns the state of the gate's output. this method returns the value 
II** of the output pin whether high or low. 

{ 
return OutputPin; 

}II end getOutputState 

public void displayGate(Graphics g) 
II** Displays the NOR gate, along with any wire connections. 

{ 
II get location of gate. 
Point p = retumGatePosition(xCoordinate,y~oordinate ); 
g.drawLine(p.x + 4, p.y + 7, p.x + 1 O,p.y + 7); II top input pin 
g.drawLine(p.x + 4, p.y + 17, p.x + 10, p.y + 17); II bottom input pin 
g.drawLine(p.x + 35, p.y + 12, p.x + 40, p.y + 12);/I output pin 
g.drawArc(p.x + O,p.y + 2,12,20,90,-180); II left side arc 
g.drawArc(p.x - 17,p.y + 2,45,20,90,-180); II right side arc 
g.fillOval(p.x + 0, p.y + 5,4,4); II bubble on top input pin 
g.fillOval(p.x + 0, p.y + 15,4,4); II bubble on bottom input pin 
g.fillOval(p.x + 41, p.y + 10,4,4); II bubble on output pin 
g.drawOval(p.x + 29, p.y + 9,6,6); II negation bubble on output pin 

paintConnections(g,p ); 
}II end displayGate 

public void paintConnections(Graphics g, Point p) 
II** This method displays all wire connections of a gate. 

{ 
LogicGate tempGate =null; II gate connected to "this". 

II for all connections to this gate. 
for(int counter= O; counter< connection Vector.size(); ++counter) 
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{ 
tempGate = (LogicGate) connectionVector.elementAt(counter); 
Point position= returnGatePosition(tempGate.xCoordinate, tempGate.yCoordinate); 

// firstOccurance is the index of tempGate in the connection array. 
int firstOccurance = connectionVector.indexOf(tempGate); 
if(firstOccurance > -1) 
{ 

//secondOccuance is the second time tempGate appears in the same connection array. 
int secondOccuance = connection Vector.indexOf(tempGate,firstOccurance+ 1 ); 

if(secondOccuance > firstOccurance) II both inputs oftempGate are connected to "this" . 
{ 

} 

II these Objects has one input, draw first connection to the top pin of tempGate. 
if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 
} 
else II else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 
//draw second connection to the bottom pin of tempGate. 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 

else // else tempGate has only one input from "this" . 
{ 

II is this (this object) connected to tempGate's top input pin? 
if(tempGate.topPinConnection =this) 
{ 

if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) II these Objects has 
one input. 

{ 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 

} 
else II else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 

}//end if(tempGate.topPinConnection ==this) 
else II or the bottom pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 
} . 

}//end else 
}II end if(firstOccurance > -1) 
tempGate =null; II reset to null. 

}// end for 
}//end paintConnections 

public void togglelnput(int whichPin) 
II** Toggles the gate input state between high and low. 
11* * It allows the user to change the value of an 
11* * input pin between 0 and 1. 

{ 
if(whichPin == topPin) 
{ 

toplnputPin = !toplnputPin; 
} 
else 

bottomlnputPin = ! bottomlnputPin; 
} 
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calculateGateOperation(); 
}II end togglelnput 

public void calculateGateOperation() 
II** This method computes the logic NOR operation between the two gate's 
II** input pins. The result of this calculation is broadcasted on the 
II** output pin. 

{ 
if(OutputPin != !(toplnputPin I bottomlnputPin)) 
{ 

OutputPin = !(toplnputPin I bottomlnputPin); 
for(int counter= O; counter < connection Vector.size(); ++counter) 
{ 

if( ( (LogicGate) connection Vector.elementAt( counter)). topPinConnection == this) 
{ 

if(((LogicGate) connection Vector.elementAt( counter)).getlnputState(topPin) != getOutputState()) 
{ 

( (LogicGate) connection Vector.elementAt( counter)). togglelnput( topPin ); 
} 

else 
{ 

if( ( (LogicGate) connection Vector.elementAt( counter) ).getlnputState(bottomPin) != getOutputState()) 
{ 

} 
} 

((LogicGate) connectionVector.elementAt(counter)).togglelnput(bottomPin); 

}II end for 
} 

}II end calculateGateOperation 

public void displayStates(Graphics g) 
II** Shows the gate input and output states at simulation time. If an input 
11* * to a gate is changed, this change is passed throughout the whole circuit. 
II** High value is indicated with a red color, black for low value. 

{ 
g.setFont(new Font("Helvetica", Font.BOLD,9)); 
Point position = returnGatePosition(xCoordinate, yCoordinate ); 

if(toplnputPin) II top pin is high 
{ 

g.setColor(Color.red); . 
g.drawString(" 1 ",position.x + 3 , position.y + 6); 

} 
else II top pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O" ,position.x + 3 , position.y + 6); 

} 
if(bottomlnputPin) II bottom pin is high 
{ 

g.setColor(Color.red); 
g.drawString("l ",position.x + 3, position.y + 16); 

} 
else II bottom pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O" ,position.x + 3, position.y + 16); 

} 
if(OutputPin) II output pin is high 
{ 

g.setColor(Color.red); 
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g.drawString("l ",position.x + 37, position.y + 11); 

} 
else II output pin is low 
{ 

} 

g.setColor(Color.black); 
g.drawString("O",position.x + 37, position.y + 11); 

}II end displayStates 

}II end LogicNor class 

class Connector extends LogicGate 
II*************************************************************************** 
II** This class is derived from its super class LogicGate and implements the 
II** abstract methods declared. This class provides a Connector object for 
II** the ease and clarity of routing wires around gates. 
II*************************************************************************** 

boolean toplnputPin = false ; 
boolean bottomlnputPin = false ; 
boolean OutputPin = false ; 

II The constructor positions a new connector in one of the grids selected. 
public Connector(int x, int y, int gatePosition) 
{ 

super(x,y ,gatePosition ); 
isConnectorObject =true; 
calculateGateOperation(); 

}II end constructor 

public void displayGate(Graphics g) 
II** Displays the connector object. 

{ 
II get location of connector object. 
Point p = retumGatePosition(xCoordinate,yCoordinate); 
g.fillRect(p.x, p.y + 7, 7, 11 ); II connector object. 
paintConnections(g,p ); 

}II end displayGate 

public void paintConnections(Graphics g, Point p) 
11* * This method displays all wire connections of a gate. 

{ 
LogicGate tempGate =null ; II gate connected to "this" . 

II for all connections to this gate. 
for(int counter= O; counter< connection Vector.size(); ++counter) 
{ 

tempGate = (LogicGate) connection Vector.elementAt( counter); 
Point position= returnGatePosition(tempGate.xCoordinate, tempGate.yCoordinate); 

11 firstOccurance is the index of tempGate in the connection array. 
int firstOccurance = connectionVector.indexOf(tempGate); 
if(firstOccurance > -1) 
{ 

llsecondOccuance is the second time tempGate appears in the same connection array. 
int secondOccuance =connection Vector.indexOf(tempGate,firstOccurance+ 1 ); 

if(secondOccuance > firstOccurance) II both inputs of tempGate are connected to "this". 
{ 

II these Objects has one input, draw first connection to the top pin of tempGate. 
if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) 
{ 
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} 

g.drawLine(p.x + 3, p.y + 12, position.x + 3, position.y + 12); 
} 
else // else it's a top pin 
{ 

g.drawLine(p.x + 3, p.y + 7, position.x + 3, position.y + 7); 
} 
//draw second connection to the bottom pin of tempGate. 
g.drawLine(p.x + 3, p.y + 17, position.x + 3, position.y + 17); 

else// else tempGate has only one input from "this". 
{ 

II is this (this object) connected to tempGate's top input pin? 
if( tempGate. topPinConnection = this) 
{ 

if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) // these Objects has 
one input. 

{ 
g.drawLine(p.x + 3, p.y + 12, position.x + 3, position.y + 12); 

} 
else //else it's a top pin 
{ 

g.drawLine(p.x + 3, p.y + 7, position.x + 3, position.y + 7); 
} 

}//end if(tempGate.topPinConnection =this) 
else // or the bottom pin 
{ 

g.drawLine(p.x + 3, p.y + 17, position.x + 3, position.y + 17); 
} 

}// end else 
}//end if(firstOccurance > -1) 
tempGate =null; II reset to null. 

}// end for 
}// end paintConnections 

public void togglelnput(int whichPin) 
II** Toggles the gate input state between high and low. 
//* * It allows the user to change the value of an 
//* * input pin between 0 and 1. 

{ 
toplnputPin = ! toplnputPin; // no change, since this object is just a buffer. 
calculateGateOperation(); · 

}//end togglelnput 

public void calculateGateOperation() 
II** This method passes the signal through from the connector's 
II** input pin. The result of this calculation is broadcasted on the 
//* * output pin. 

{ 
if(OutputPin != toplnputPin) 
{ 

II if output is wrong, change it. 
OutputPin = toplnputPin; 

for(int counter= O; counter < connection Vector.size(); ++counter) 
{ 

II for all connections, if the gate's input is connected to this output. 
if( ( (LogicGate) connection Vector.elementAt( counter)). topPinConnection == this) 
{ 

11 and the output is inaccurate? 
if(((LogicGate) connection Vector.elementAt( counter)).getlnputState(topPin) != getOutputState()) 
{ 

II change the value. 
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((LogicGate) connectionVector.elementAt(counter)).togglelnput(topPin); 
} 

} 
else II do the same for the bottom input pin 
{ 

if(((LogicGate) connection Vector.elementAt( counter)).getlnputState(bottomPin) != getOutputState()) 
{ 

( (LogicGate) connection Vector.elementAt( counter)). togglelnput(bottomPin ); 
} 

}II end else 
}II end for 

}II end if(OutputPin != toplnputPin) 
}II end calculateGateOperation 

public boolean getlnputState(int whichPin) 
II** Returns the state of the gate's input. 
II** true if the pin is high , false otherwise. 

{ 
return toplnputPin; 

}II end getlnputState 

public int whichlnput(Point point) 
II** Returns which one of two inputs to a gate has been clicked. It is modified 
II** here since a connector object has only one input. 

{ 
Point position = returnGatePosition(xCoordinate, yCoordinate ); 

II is the mouse at the input area? 
if((point.x > position.x - 5) && (point.x < position.x + 5) 

&& (pointy> position.y + 2) && (pointy< position.y + gridHeight - 2)) 
{ 

return topPin; 
} 
else 

return nietherPin; 11 or it could be neither. 
} 

}II end whichlnput 

public boolean getOutputState() 
II** Returns the state of the gate's output. this method returns the value 
II** of the output pin whether high or low. 

{ 
return OutputPin; 

}II end getOutputState 

public boolean isOutput(Point point) 
II** Returns true ifthe gate's output has been clicked. This is a helper 
11* * function to whichGatePart. 

{ 
Point position = returnGatePosition(xCoordinate, yCoordinate ); 

if((point.x > position.x + 4) && (point.x < position.x + 15) 
&& (pointy> position.y + 2) && (pointy< position.y + gridHeight - 2)) 

{ 
return true; 

} 
else 
{ 

return false ; II not at the output pin. 
} 

}II end isOutput 
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public void displayStates(Graphics g) 
11* * Shows the gate input and output states at simulation time. If an input 
II** to a gate is changed, this change is passed throughout the whole circuit. 
II** High value is indicated with a red color, black for low value. 

{ 
g.setFont(new Font("Helvetica", Font.BOLD,9)); 
Point position = retumGatePosition(xCoordinate, yCoordinate ); 

if( topinputPin) 
{ 

g. setColor( Color.red); 
g.drawString(" l ",position.x + 7, position.y + 6); 

} 
else 
{ 

g.setColor(Color.black); 
g.drawString("O",position.x + 7, position.y + 6); 

} 
}II end displayStates 

}II end Connector class 

class Input extends LogicGate 
II*************************************************************************** 
II** This class is derived from its super class LogicGate and implements the 
II** abstract methods declared. This class provides an Input object for 
II** the ease and clarity of entering a signal into the circuit. 
~*************************************************************************** 

boolean topinputPin = false; 
boolean bottominputPin = false; 
boolean OutputPin = false; 

II The constructor positions a new Input object in one of the grids selected. 
public Input(int x, int y, int gatePosition) 
{ 

super(x,y,gatePosition); 
isinputObject =true; 
calculateGateOperation(); 

} 11 end constructor 

public void displayGate(Graphics g) 
II** Displays the Input object, along with any wire connections. 

{ 
II get location oflnput object. 
Point p = retumGatePosition(xCoordinate,yCoordinate); 

g.setColor(Color.blue ); 
g.drawRect(p.x + 9, p.y + 4, 16, 16); II input object. 
g.drawLine(p.x + 25, p.y + 12, p.x + 40, p.y + 12);11 output pin 
g.fillOval(p.x + 41, p.y + 10,4,4); II bubble on output pin 
g.setColor(Color.black); 

paintConnections(g,p ); 
}II end displayGate 

public void paintConnections(Graphics g, Point p) 
11* * This method displays all wire connections of a gate. 

{ 
LogicGate tempGate =null ; II gate connected to "this". 
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//for all connections to this gate. 
for(int counter= O; counter< connection Vector.size(); ++counter) 
{ 

tempGate = (LogicGate) connectionVector.elementAt(counter); 
Point position= returnGatePosition(tempGate.xCoordinate, tempGate.yCoordinate); 

// firstOccurance is the index of tempGate in the connection array. 
int firstOccurance = connectionVector.indexOf(tempGate); 
if(firstOccurance > -1) 
{ 

//secondOccuance is the second time tempGate appears in the same connection array. 
int secondOccuance = connection Vector.indexOf(tempGate,firstOccurance+ 1 ); 

if(secondOccuance > firstOccurance) //both inputs oftempGate are connected to "this". 
{ 

} 

II these Objects has one input, draw first connection to the top pin of tempGate. 
if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 
} 
else //else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 
//draw second connection to the bottom pin of tempGate. 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 

else // else tempGate has only one input from "this". 
{ 

II is this (this object) connected to tempGate's top input pin? 
if(tempGate.topPinConnection =this) 

. ( if((tempGate.isConnectorO~~) II (tempGate.isNotGate) II (tempGate.isOutputObject)) // these Objects has 
one mput. 

{ 
g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 12); 

} 
else //else it's a top pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 7); 
} 

}//end if(tempGate.topPinConnection =this) 
else // or the bottom pin 
{ 

g.drawLine(p.x + gridWidth, p.y + 12, position.x, position.y + 17); 
} 

}//end else 
}//end if(firstOccurance > -1) 
tempGate = null; // reset to null. 

}//end for 
}//end paintConnections 

public void togglelnput(int whichPin) 
II** Toggles the gate input state between high and low. 
II** It allows the user to change the value of an 
II** input pin between 0 and 1. 

{ 
toplnputPin = ! toplnputPin; // change input value. 
calculateGateOperation(); 

}//end togglelnput 

public void calculateGateOperation() 
II** This method passes the signal through from the connector's 
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11* * input pin. The result of this calculation is broadcasted on the 
/I** output pin. 

{ 
if(OutputPin != toplnputPin) 
{ 

II if output is wrong, change it. 
OutputPin = toplnputPin; 

for(int counter= O; counter < connection Vector.size(); ++counter) 
{ 

II for all connections, if the gate's input is connected to this output. 
if(((LogicGate) connectionVector.elementAt(counter)).topPinConnection ==this) 
{ 

II and the output is inaccurate? 
if(((LogicGate) connection Vector.elementAt( counter)).getlnputState(topPin) != getOutputState()) 
{ 

II change the value. 
( (LogicGate) connection Vector.elementAt( counter)). togglelnput(topPin ); 

} 
} 
else II do the same for the bottom input pin 
{ 

if(((LogicGate) connectionVector.elementAt(counter)).getlnputState(bottomPin) != getOutputState()) 
{ 

( (LogicGate) connection Vector.elementAt( counter)). togglelnput(bottomPin ); 
} 

}II end else 
}II end for 

}II end if(OutputPin != toplnputPin) 
}II end calculateGateOperation 

public boolean getlnputState(int whichPin) 
II** Returns the state of the gate's input. 
II** true if the pin is high , false otherwise. 

{ 
return toplnputPin; 

}II end getlnputState 

public int whichlnput(Point point) 
II** Returns which one of two inputs to a gate has been clicked. It is modified 
II** here since a connector object has only one input. · 

{ 
return nietherPin; 11 Input object does not receive input. 

}II end whichlnput 

public boolean getOutputState() 
II** Returns the state of the gate's output. this method returns the value 
II** of the output pin whether high or low. 

{ 
return OutputPin; 

}II end getOutputState 

public void displayStates(Graphics g) 
II** Shows the gate input and output states at simulation time. If an input 
II** to a gate is changed, this change is passed throughout the whole circuit. 
II** High value is indicated with a red color, black for low value. 

{ 
g.setFont(new Font("Helvetica", Font.BOLD,9)); 
Point position = retumGatePosition(xCoordinate, yCoordinate ); 

if( toplnputPin) 
{ 
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} 

g.setColor(Color.red); 
g.drawLine(position.x + 25, position.y + 12, position.x + 40, position.y + 12);/I output pin 
g.fillOval(position.x + 41 , position.y + 10,4,4); II bubble on output pin 
g.drawString(" 1 ",position.x + 16, position.y + 16); 

else 
{ 

} 

g.setColor(Color.black); 
g.drawString("O",position.x + 16, position.y + 16); 

}II end displayStates 
}II end Connector Input 

class Output extends LogicGate 
II*************************************************************************** 
II** This class is derived from its super class LogicGate and implements the 
II** abstract methods declared. This class provides an Output object for 
II** the ease and clarity of exiting a signal from the circuit. 
II*************************************************************************** 

boolean toplnputPin = false; 
boolean bottomlnputPin = false; 
boolean OutputPin = false ; 

II The constructor positions a new Output object in one of the grids selected. 
public Output(int x, int y, int gatePosition) 
{ 

super(x,y ,gatePosition ); 
isOutputObject = true; 
calculateGateOperation(); 

}II end constructor 

public void displayGate(Graphics g) 
II** Displays the Output object, along with any wire connections. 

{ 
II get location of Output object. 
Point p = retumGatePosition(xCoordinate,yCoordinate); 

g.setColor(Color.gray); 
g.drawRect(p.x + 20, p.y + 4, 16, 16); II output object. 
g. setColor(Color.black); 
g.drawLine(p.x + 4, p.y + 12, p.x + 19, p.y + 12);/I output pin 
g.fillOval(p.x + 0, p.y + 10,4,4); II bubble on output pin 

II for all connections to this object. 
for( int counter= O; counter < connection Vector.size(); ++counter) 
{ 

LogicGate tempGate = (LogicGate) connectionVector.elementAt(counter); 
Point position = retumGatePosition(tempGate.xCoordinate, tempGate.yCoordinate ); 

II is this (this object) connected to tempGate's input top pin? 
if(tempGate.topPinConnection =this) 
{ 

if((tempGate.isConnectorObject) II (tempGate.isNotGate) II (tempGate.isOutputObject)) II these Objects has 
one input. 

{ 
g.drawLine(p.x + 0, p.y + 12, position.x, position.y + 12); 

} 
else II else it's a top pin 
{ 

g.drawLine(p.x + 0, p.y + 12, position.x, position.y + 7); 
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} 
} 
else 11 or the bottom pin 
{ 

g.drawLine(p.x + 0, p.y + 12, position.x, position.y + 17); 
} 

}II end for 
}II end displayGate 

public void togglelnput(int whichPin) 
II** Toggles the gate input state between high and low. 
II** It allows the user to change the value of an 
II** input pin between 0 and 1. 

{ 
toplnputPin = ! toplnputPin; II no change, since this object is just a buffer. 
calculateGateOperation(); 

}II end togglelnput 

public void calculateGateOperation() 
II** This method passes the signal through from the connector's 
II** input pin. The result of this calculation is broadcasted on the 
II** output pin. 

{ 
if(OutputPin != toplnputPin) 
{ 

II if output is wrong, change it. 
OutputPin = toplnputPin; 

for(int counter= O; counter< connection Vector.size(); ++counter) 
{ 

II for all connections, if the gate's input is connected to this output. 
if( ( (LogicGate) connection Vector.elementAt( counter)). topPinConnection = this) 
{ 

II and the output is inaccurate? 
if( ( (LogicGate) connection Vector.elementAt( counter) ).getlnputState(topPin) ! = getOutputState()) 
{ 

11 change the value. 
( (LogicGate) connection Vector. elementAt( counter)). togglelnput( top Pin); 

} 
} 
else II do the same for the bottom input pin 
{ 

if( ( (LogicGate) connection Vector.elementAt( counter) ).getlnputState(bottomPin) != getOutputState()) 
{ 

( (LogicGate) connection Vector.elementAt( counter)). togglelnput(bottomPin ); 
} 

}II end else 
}II end for 

}II end if(OutputPin != toplnputPin) 
}II end calculateGateOperation 

public boolean getlnputState(int whichPin) 
II** Returns the state of the gate's input. 
II** true ifthe pin is high , false otherwise. 

{ 
return toplnputPin; 

}II end getlnputState 

public int whichlnput(Point point) 
11* * Returns which one of two inputs to a gate has been clicked. It is modified 
II** here since a connector object has only one input. 

{ 
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Point position = retumGatePosition(xCoordinate, yCoordinate ); 

// is the mouse at the input area? 
if((point.x > position.x - 10) && (point.x < position.x + 8) 

&& (pointy> position.y + 5) && (pointy< position.y + gridHeight - 5)) 
{ 

return topPin; 
} 
else 
{ 

return nietherPin; // or it could be neither. 
} 

}// end whichlnput 

public boolean isOutput(Point point) 
/!**Returns true ifthe gate's output has been clicked. This is a helper 
//* * function to whichGatePart. 

{ 
return false ; II Output object does not send output signal. 

}//end isOutput 
public boolean getOutputState() 

/!** Returns the state of the gate's output. this method returns the value 
/!**of the output pin whether high or low. 

{ 
return OutputPin; 

}// end getOutputState 

public void displayStates(Graphics g) 
II** Shows the gate input and output states at simulation time. If an input 
II** to a gate is changed, this change is passed throughout the whole circuit. 
II** High value is indicated with a red color, black for low value. 

{ 
g.setFont(new Font("Helvetica", Font.BOLD,9)); 
Point position = returnGatePosition(xCoordinate, yCoordinate ); 

if(OutputPin) //output pin is high 
{ 

} 

g.setColor(Color.red); 
g.drawRect(position.x + 20, position.y + 4, 16, 16); // input object. 
g.drawString("l ",position.x + 26, position.y + 16); 

else II output pin is low 
{ 

g.setColor(Color.black); 
g.drawString("O" ,position.x + 26, position.y + 16); 

} 
}//end displayStates 

} // end Output class 

public class Simulator extends Frame implements ActionListener, WindowListener 
!!*************************************************************************** 
II** This is the main class that runs the simulation. It inherits from Frame 
II** which opens the drawing window. This object is responsible for setting up 
//* * the graphical interface. 
~*************************************************************************** 

My Panel thePanel; //declaration needed here for the paint call in actionPerformed. 
MyCanvas theCanvas ; //declaration needed here for processResult. 
public boolean buildCircuit = true; II master switch for setting the simulator mode. 
Button functionButton, clearAIIButton, eraseButton, saveButton, openButton; 
Button andButton, orButton, notButton, xorButton, nandButton, norButton; 
Button stopButton, connectorButton, inputButton, outputButton; 
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private Label currentState; II declaration needed here for the GridBagLayout. 
Choice colorChoice; II choice list for canvas background colors. 

public Simulator() II class constructor 
{ 

setTitle("Welcome to LogicCity"); II window title 
Font font= new Font("Helvetica", Font.BOLD, 12); II select font 
setFont(font); 
addWindowListener(this); II allows simulator to detect if the window is manipulated. 

II GridBagLayout arranges all components in rows and columns. 
GridBagLayout gridBagLayout = new GridBagLayout(); 
setLayout(gridBagLayout ); 

II The GridBagConstraints class specifies constraints for components 
II that are laid out using the GridBagLayout class. 
II Constructor creates a GridBagConstraint object with all of its fields set 
II to their default value. 
GridBagConstraints gridBagConstraints = new GridBagConstraints(); 

II Creating the function button. 
functionButton = new Button("FUNCTION"); 
functionButton.addActionListener(this ); 
II fill indicates the fill behavior of component inside cell, 

II one of NONE, BOTH, HORIZONTAL, VERTICAL. This field is used when the 
II component's display area is larger than the component's requested size. 
gridBagConstraints.fill = GridBagConstraints.HORIZONT AL; 
II weightx and weighty indicates capacity of cell to grow. 
gridBagConstraints.weightx = 0.0; 
gridBagConstraints.weighty = 0.0; 
gridBagConstraints.gridwidth = 1; 
gridBagLayout. setConstraints( functionB utton, gridBagConstraints ); 
add( functionButton); 

II Creating the label that displays the simulator status. 
currentState =new Label("BUILD"); 
gridBagConstraints.weightx = 1.0; 
gridBagConstraints.weighty = 1.0; 
II REMAINDER specifies that this component is the last component in 
II its column or row. · 
gridBagConstraints.gridwidth = 1; 
gridBagLayout.setConstraints( currentState, gridBagConstraints ); 
add( currentState ); 

II Creating the edit menu. 
Panel editMenu = new Panel(); 
editMenu.setLayout(new BorderLayout()); 

Panel clearAllPanel = new Panel(); II creating the clear all button 
clear AllPanel. setLayout( new BorderLayout() ); 
clearAllPanel.add(clearAllButton =new Button("CLEAR ALL")); 
editMenu.add("West",clearAllPanel); 

Panel erasePanel = new Panel(); II creating the erase button 
erasePanel.setLayout(new BorderLayout()); 
erasePanel.add(eraseButton =new Button("ERASE")); 
clearAllPanel.add("West" ,erasePanel); 

Panel savePanel =new Panel(); II creating the save button 
savePanel. setLayout(new Border Layout()); 
savePanel.add(saveButton =new Button("SAVE")); 
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erasePanel.add("West" ,savePanel); 

Panel openPanel =new Panel(); II creating the open button 
openPanel.setLayout(new BorderLayout()); 
openPanel.add(openButton =new Button("OPEN")); 
savePanel.add("West" ,openPanel); 

gridBagConstraints.weightx = 1.0; 
gridBagConstraints.weighty = 1.0; 
gridBagConstraints.fill = GridBagConstraints.HORIZONT AL; 
gridBagConstraints.gridwidth = GridBagConstraints.REMAINDER; 
gridBagLayout. setConstraints( editMenu, gridBagConstraints ); 
add( editMenu); 

II Creating the gates menu. 
Panel gateMenu = new Panel(); 
gateMenu.setLayout(new BorderLayout()); 

Panel andPanel =new Panel(); II creating the AND button 
andPanel. setLayout(new Border Layout()); 
andPanel.add(andButton =new Button("AND")); 
gateMenu.add("N orth" ,andPanel); 

Panel orPanel =new Panel(); II creating the OR button 
orPanel.setLayout(new BorderLayout()); 
orPanel.add(orButton =new Button("OR")); 
andPanel.add(" South" ,orPanel); 

Panel notPanel =new Panel(); II creating the NOT button 
notPanel.setLayout(new BorderLayout()); 
notPanel.add(notButton =new Button("NOT")); 
or Panel.add(" South" ,notPanel); 

Panel xorPanel =new Panel(); II creating the XOR button 
xorPanel.setLayout(new BorderLayout()); 
xorPanel.add(xorButton =new Button("XOR")); 
notPanel.add("South" ,xorPanel); 

Panel nandPanel =new Panel(); II creating the NAND button 
nandPanel.setLayout(new BorderLayout()); 
nandPanel.add(nandButton =new Button("NAND")); 
xorPanel.add("South" ,nandPanel); 

Panel norPanel =new Panel(); II creating the NOR button 
norPanel .setLayout(new BorderLayout()); 
norPanel.add(norButton =new Button("NOR")); 
nandPanel.add("South" ,norPanel); 

Panel connectorPanel =new Panel(); II creating the NOR button 
connector Panel. setLayout( new Border Layout()); 
connectorPanel.add( connectorButton =new Button("CONN")); 
norPanel.add("South" ,connectorPanel); 

Panel inputPanel =new Panel(); II creating the INPUT button 
inputPanel .setLayout(new BorderLayout()); 
inputPanel.add(inputButton =new Button("INPUT")); 
connector Panel. add(" South" ,inputPanel ); 

Panel outputPanel =new Panel(); II creating the OUTPUT button 
outputPanel.setLayout( new BorderLayout() ); 
outputPanel.add(outputButton =new Button("OUTPUT")); 
inputPanel.add(" South" ,outputPanel); 
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II creating the choice list of background colors. 
colorChoice = new Choice(); 
colorChoice.addltem("LA VENDER"); 
colorChoice.addltem("WHITE"); 
colorChoice.addltem("GREY"); 
colorChoice.addltem("BEIGE"); 
colorChoice.addltem("OLIVE"); 
colorChoice.addltem("BLUE"); 
colorChoice.addltem("PINK"); 
colorChoice.addltem("GREEN"); 
colorChoice.addltem("ORANGE"); 
colorChoice.addltem("YELLOW"); 
gateMenu.add("South",colorChoice); 

gridBagConstraints.weightx = 1.0; 
gridBagConstraints.weighty = 1.0; 
gridBagConstraints.fill = GridBagConstraints.VERTICAL; 
gridBagConstraints.gridwidth = I; 
gridBagLayout.setConstraints(gateMenu, gridBagConstraints); 
add(gateMenu ); 

II Creating the drawing window. 
thePanel =new MyPanel(this); 
gridBagConstraints. weightx = I 00; 
gridBagConstraints. weighty = 100; 
gridBagConstraints.fill = GridBagConstraints.BOTH; 
gridBagConstraints.gridwidth = GridBagConstraints.REMAINDER; 
gridBagLayout. setConstraints( thePanel, gridBagConstraints ); 
add(thePanel); 

}II end constructor 

II The next seven window-related methods are included to satisfy the 
II compiler's demand when implementing the interface WindowListener. 

public void windowClosing(WindowEvent event) 
11 Closes the simulator window and aborts the program. 

{ 
System.exit(O); II terminate the program. 

} 

public void windowClosed(WindowEvent event) 
{ . 

} 

public void windowlconified(WindowEvent event) 
{ 
} 

public void windowDeiconified(WindowEvent event) 
{ 
} 

public void windowActivated(WindowEvent event) 
{ 
} 

public void windowDeactivated(WindowEvent event) 
{ 
} 

public void windowOpened(WindowEvent event) 
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public void actionPerformed(ActionEvent evt) 
II** This method determines whether to build a circuit or run the simulator. 
II** Initially, it's set for building a circuit after which the user can 
II** select the mode desired. 

{ 
String myString =" "; 
String string= evt.paramString(); II get all info about button clicked. 
StringTokenizer stringTokenizer =new StringTokenizer(string,"="); 
while (stringTokenizer.hasMoreTokens()) II parse the info string. 
{ 

myString = stringTokenizer.nextToken(); II get next token in string. 
}II end while 

if(myString.compareTo("FUNCTION") == 0) II is the click on the xor button? 
{ 

} 

if(theCanvas.logicCircuit.size() > 0) II if there is a circuit to simulate 
{ 

buildCircuit = !buildCircuit; 
if(buildCircuit) II if in edit mode 
{ 

currentState.setText("BUILD"); 
} 
else 11 else in simulation mode 
{ 

currentState. setT ext(" SIMULA TE"); 
} 

} 

thePanel.repaint(); II repaint the window 
}II end actionPerformed 

public void processResult(Dialog source, Object object) 
II** this method implements the method in the 
II** interface resultProcessor. Its purpose is to allow the programmer 
11* * to reuse a dialog box in other programs. 

{ 
if( source instanceof WamingDialog) II is source of type dialog 
{ 

if(buildCircuit) II if in build mode 
{ 

setTitle("W elcome to LogicCity"); 11 window title 
theCanvas.logicCircuit.removeAllElements(); II clear all gates in circuit. 
theCanvas.currentState = theCanvas.createGate; II reset mode to pointing. 
theCanvas.repaint(); II refresh screen. 

}II end if(simulator.buildCircuit) 
}II end if( source instanceof WarningDialog) 

}II end processResult 

public void executeDecision(Dialog source, boolean decision) 
11* * this method implements the method in the 
11* * interface resultProcessor. Its purpose is to allow the programmer 
11* * to reuse a dialog box in other programs. 

{ 
if( source instanceof OpenFileDecision) II is source of type dialog 
{ 

if(buildCircuit) II if in build mode 
{ 

if( decision) II if user wants to save current circuit first. 
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{ 

} 

theCanvas.doSaveFile(); //save circuit first. 
theCanvas.doOpenFile(); //then open desired file. 

else 
{ 

theCanvas.doOpenFile(); // if save is not of interest, then just open. 
} 

}// end if(simulator.buildCircuit) 
}//end if( source instanceof WarningDialog) 

}// end processResult 

public static void main(String[] args) 
//**This is the main function where it all starts. It's cancelled if the 
//**application is converted into an applet. 

{ 
Frame simulator = new Simulator(); 
//simulator.setSize(Toolkit.getDefaultToolkit().getScreenSize()); 
simulator.setSize(550,400); 
simulator.setBackground(new Color(0.98f, 0.95f, 0.60f)); 
simulator.show(); //makes a component visible, its typical use is for a Frame. 

}// end main 
}// end Simulator class 

interface ResultProcessor 
~*************************************************************************** 

//** This is a generic interface to enable the reuse of the dialog box code 
!/** in another program. 
~*************************************************************************** 

{ 
public void processResult(Dialog source, Object object); II declaration 
public void executeDecision(Dialog source, boolean decision); //declaration 

}//end interface ResultProcessor 

class MyPanel extends Panel 
//*************************************************************************** 
//* * This class is used as an intermediate step to creating the drawing 
//** canvas. It's used to set the GridLayout where this method 
II** is defined in class Panel and not in class Canvas. To create a GUI 
II** application, place the GUI functionality in a class that extend Panel. 
//**********************************************************•**************** 

Simulator simulator; II needed for paint. 

public MyPanel(Simulator simulator)// need to pass simulator object. 
{ 

super(); //call the parent constructor, must be first line here. 
setLayout(new GridLayout(l ,O)); 
11 Creates a grid layout with the specified number of rows and columns. 
II All components in the layout are given equal size. 
II One, but not both, of rows and cols can be zero, which means that any 
II number of objects can be placed in a row or in a column. 
this.simulator= simulator; II pass the simulator object. 
simulator.theCanvas =new MyCanvas(simulator); //create drawing canvas. 
simulator.theCanvas.setBackground(new Color(204, 204, 255)); 
add(simulator.theCanvas); //add the drawing canvas to the layout. 
ScrollPane pane= new ScrollPane(); //create scrollable pane. 
setLayout(new BorderLayout()); //select type of layout. 
pane.add(simulator.theCanvas); //add drawing canvas to the scrollable pane. 
add("Center" , pane); //position the pane into the center of the screen. 
Adjustable horizontal= pane.getHAdjustable(); //get the horizontal scroll object. 
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horizontal.setUnitlncrement( 40); II change the horizontal scroll increment. 
Adjustable vertical= pane.getV Adjustable(); II get the vertical scroll object. 
vertical.setUnitlncrement(20); II change the vertical scroll increment. 

}II end constructor 

public void paint(Graphics g) 
II paint specifies how object g is to be displayed. All drawing in Java 
II must go through a graphics object. note: any time you need to put text or 
II graphics into a window, you need to override the paint method from the 
II Component class, so you need to write a new class for this that overrides 
II the paint method. 

{ 
simulator. theCanvas. repaint(); 

}II end paint 
}II end MyPanel class 

class OpenFileDecision extends Dialog implements WindowListener, ActionListener 
II*************************************************************************** 
II** This class is used to create a dialog box that asks the user for 
II** confirmation in the event that the open file button is clicked. this 
II** confirmation prevents the accidental deletion of the current circuit. 
II*************************************************************************** 
{ 

Button okButton, noButton, cancelButton; 

public OpenFileDecision(Simulator parent) II class constructor. 
{ 

super(parent, "WARNING: CONFIRM FIRST", true); II set title and parent. 
Panel p 1 = new Panel(); 11 create a panel to house the two buttons needed. 
pl.add(okButton =new Button("OK")); II create OK button. 
p 1.add(noButton =new Button("NO")); II create OK button. 
pl.add(cancelButton =new Button("CANCEL")); II create CANCEL button. 
okButton.addActionListener(this); II register the OK button 
noButton.addActionListener(this); II register the NO button 
cancelButton.addActionListener(this); II register the CANCEL button 
add("South", pl); II add to bottom of panel. 

Panel p2 =new Panel(); II create a panel to house the warning needed. 
p2.add(new Label("Do you want to save the current circuit first?")) ; 
add("Center", p2); II add the warning text above the buttons. 
setSize(350, 150); II set the warning dialog box size. 
addWindowListener(this); II allows simulator to detect if the window is manipulated. 

} 11 end constructor 

public void actionPerformed(ActionEvent evt) 
11* * This method decides what to do if one of the two buttons in the 
II** warning dialog box is clicked. 

{ 
String myString =" "; 
String string= evt.paramString(); II get all info about button clicked. 
StringTokenizer stringTokenizer =new StringTokenizer(string,"="); 
while (stringTokenizer.hasMoreTokens()) II parse the info string. 
{ 

myString = stringTokenizer.nextToken(); II get next token in string. 
}II end while 

if(myString.compareTo("OK") = 0) II is the click on the ok button? 
{ 

dispose(); II closes the dialog box. 
((Simulator) getParent()).executeDecision(this, true); II deal with this event. 

} 
if(myString.compareTo("NO") == 0) II is the click on the ok button? 
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{ 
dispose(); II closes the dialog box. 
((Simulator) getParent()).executeDecision(this, false) ; II deal with this event. 

} 
else if((myString.compareTo("CANCEL") = 0)) II is the click on the cancel button? 
{ 

dispose(); II no need to do any thing, just close the dialog box. 
} 

}II end actionPerformed 

II The next seven window-related methods are included to satisfy the 
II compiler's demand when implementing the interface WindowListener. 

public void windowClosing(WindowEvent event) 
II Closes the simulator window and aborts the program. 

{ 
dispose(); II enables the user to close the dialog window if the X is clicked. 

} 

public void windowClosed(WindowEvent event) 
{ 
} 

public void windowlconified(WindowEvent event) 
{ 
} 

public void windowDeiconified(WindowEvent event) 
{ 
} 

public void windowActivated(WindowEvent event) 
{ 
} 

public void windowDeactivated(WindowEvent event) 
{ 
} 

public void windowOpened(WindowEvent event) 
{ 
} 

}II end class OpenFileDecision 

class WarningDialog extends Dialog implements WindowListener, ActionListener 
II*************************************************************************** 
II** This class is used to create a dialog box that asks the user for 
II** confirmation in the event that the clearAll button is clicked. this 
11* * confirmation prevents the accidental deletion of the entire circuit. 
II*************************************************************************** 

Button okButton, cancelButton; 

public WarningDialog(Simulator parent) II class constructor. 
{ 

super(parent, "PLEASE CONFIRM DELETION", true); II set title and parent. 
Panel p 1 =new Panel(); II create a panel to house the two buttons needed. 
p 1.add(okButton =new Button("OK")); II create OK button. 
pl.add(cancelButton =new Button("CANCEL")); II create CANCEL button. 
okButton.addActionListener(this); II register the OK button 
cancelButton.addActionListener(this); II register the CANCEL button 
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add("South" , pl); II add to bottom of panel. 

Panel p2 = new Panel(); II create a panel to house the warning needed. 
p2.add(new Label("Are you sure you want to delete the entire circuit?")); 
add(" Center" , p2); II add the warning text above the buttons. 
setSize(350, 150); II set the warning dialog box size. 
addWindowListener(this); II allows simulator to detect if the window is manipulated. 

}II end constructor 

public void actionPerformed(ActionEvent evt) 
II** This method decides what to do if one of the two buttons in the 
II** warning dialog box is clicked. 

{ 
String myString =" "; 
String string= evt.paramString(); II get all info about button clicked. 
StringTokenizer stringTokenizer =new StringTokenizer(string,"="); 
while (stringTokenizer.hasMoreTokens()) II parse the info string. 
{ 

myString = stringTokenizer.nextToken(); II get next token in string. 
}II end while 

if(myString.compareTo("OK") = 0) II is the click on the ok button? 
{ 

dispose(); 11 closes the dialog box. 
((Simulator) getParent()).processResult(this, evt); II deal with this event. 

} 
else if((myString.compareTo("CANCEL") = 0)) II is the click on the cancel button? 
{ 

dispose(); II no need to do any thing, just close the dialog box. 
} 

}II end actionPerformed 

II The next seven window-related methods are included to satisfy the 
II compiler's demand when implementing the interface WindowListener. 

public void windowClosing(WindowEvent event) 
11 Closes the simulator window and aborts the program. 

{ 
dispose(); II enables the user to close the dialog window ifthe Xis clicked. 

} 

public void windowClosed(WindowEvent event) 
{ . 

} 

public void windowlconified(WindowEvent event) 
{ 
} 

public void windowDeiconified(WindowEvent event) 
{ 
} 

public void windowActivated(WindowEvent event) 
{ 
} 

public void windowDeactivated(WindowEvent event) 
{ 
} 

public void windowOpened(WindowEvent event) 
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}II end class WarningDialog 

class MyCanvas extends Canvas implements MouseListener, MouseMotionListener, ActionListener 
II*************************************************************************** 
II** This class controls the functionality of the simulator. 
II** If graphics are used, make an extra class that extend Canvas. This class 
II** must provide a paint method and a public method for communication. A 
II** canvas can receive input from the user in the form of mouse events. 
II*************************************************************************** 
{ 

protected Vector logicCircuit = new Vector(); II circuit that holds all the gates. 
private int xCoordinate, yCoordinate; II used to keep track of a gate's Coords and mouse motion. 
private int whichlnputPin ; 11 need declared here for sharing. 
private int currentGate = O; 11 the gate currently selected. 
protected int currentState = O; 11 the current state of the simulator. 
private final int and = 1; 11 digit value of the and gate. 
private final int or= 2; II digit value of the or gate. 
private final int not= 3; II digit value of the not gate. 
private final int xor = 4; II digit value of the xor gate. 
private final int nand = 5; 11 digit value of the nand gate. 
private final int nor= 6; II digit value of the nor gate. 
private final int connector= 7; II digit value of the connector object. 
private final int input= 8; II digit value of the input object. 
private final int output= 9; II digit value of the output object. 
protected final int createGate = O; 11 pointing state. 
private final int connectGate = 1; 11 connecting state. 
private final int eraseGate = 2; 11 delete state. 
private final int clearAll = 3; II erase entire circuit state. 
private LogicGate theDestinationGate = null; 11 gate selected as the destination point. 
private LogicGate theOriginatingGate =null; II gate selected as the originating source. 
private LogicGate logicGate = null; 11 current gate being manipulated, declared here for paint. 
protected Point mouseClickPoint =null; II mouse position at click time. 
protected Simulator simulator; II declare simulator object for canvas. 
Dimension offScreenDimension; 11 size of off-screen images. 
Image offScreenlmage; 11 to use in double buffering. 
Graphics offScreenGraphics; II object to eliminate flashing. 

public MyCanvas(Simulator simulator) II class constructor 
{ . 

super(); II call the parent constructor, must be first line here. 
this.simulator= simulator; II pass the simulator to this object. 
addMouseListener(this); II register class to receive mouse events. 
addMouseMotionListener(this); II register class for mouse motion events. 
simulator.andButton.addActionListener(this); II register the and button 
simulator.orButton.addActionListener(this); II register the or button 
simulator.notButton.addActionListener(this); II register the not button 
simulator.xorButton.addActionListener(this); II register the xor button 
simulator.nandButton.addActionListener(this);ll register the nand button 
simulator.norButton.addActionListener(this); II register the nor button 
simulator.connectorButton.addActionListener(this); II register the connector button 
simulator.openButton.addActionListener(this); II register the open button 
simulator.saveButton.addActionListener(this); II register the save button 
simulator.eraseButton.addActionListener(this); II register the erase button 
simulator.clearAllButton.addActionListener(this); II register the clearAll button 
simulator.inputButton.addActionListener(this); II register the input button 
simulator.outputButton.addActionListener(this); II register the output button 
simulator.functionButton.addMouseListener(this); II register the function button for initial simulation. 
simulator.colorChoice.addMouseListener(this); II register the color menu. 
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}II end constructor 

public Dimension getMinimumSize() 
II** This method returns the screen minimum size. 

{ 
Dimension minimum Size = new Dimension(l 00,50); 
return minimumSize; 

}II end getMinimumSize 

public Dimension getPreferredSize() 
II** This method returns the screen preferred size. 

{ 
Dimension preferredSize = new Dimension(2000,2000); 
return preferredSize; 

}II end getPreferredSize 

public void actionPerformed(ActionEvent event) 
II** This method determines which button in the tool menu or gate menu is 
II** clicked and takes the appropriate action. 

{ 
String myString =" "; 
String string= event.paramString(); II get all info about button clicked. 
StringTokenizer stringTokenizer =new StringTokenizer(string,"="); 
while (stringTokenizer.hasMoreTokens()) II parse the info string. 
{ 

myString = stringTokenizer.nextToken(); II get next token in string. 
}II end while 

if(myString.compareTo("AND") = 0) II is the click on the and button? 
{ 

currentGate = and; 
} 
else if(myString.compareTo("OR") = 0) II is the click on the or button? 
{ 

currentGate = or; 
} 
else if(myString.compareTo("NOT") = 0) II is the click on the not button? 
{ 

currentGate = not; 
} 
else if(myString.compareTo("XOR") = 0) II is the click on the xor button? 
{ 

currentGate = xor; 
} 
else if(myString.compareTo("NAND") = 0) II is the click on the nand button? 
{ 

currentGate = nand; 
} 
else if(myString.compareTo("NOR") = 0) II is the click on the nor button? 
{ 

currentGate = nor; 
} 
else if(myString.compareTo("CONN") = 0) II is the click on the connector button? 
{ 

currentGate = connector; 
} 
else if(myString.compareTo("INPUT") = 0) II is the click on the input button? 
{ 

currentGate = input; 
} 
else if(myString.compareTo("OUTPUT") = 0) II is the click on the output button? 
{ 
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currentGate = output; 
} 
else if(myString.compareTo("OPEN") == 0) II is the click on the open button? 
{ 

if(simulator.buildCircuit) II if in build mode 
{ 

if(logicCircuit.size() > 0) 
{ 

} 

OpenFileDecision decision= new OpenFileDecision(this.simulator); 
decision.show(); 

else 
{ 

doOpenFile(); 
} 
currentState = createGate; 

}II end if(simulator.buildCircuit) 
}II end else if(myString.compareTo("OPEN") = 0) 

else if(myString.compareTo("SA VE")= 0) II is the click on the save button? 
{ 

if(simulator.buildCircuit) II if in build mode 
{ 

if(logicCircuit.size() > 0) II ifthere is a circuit to be saved. 
{ 

doSaveFile(); II call the save method. 
currentState = createGate; 11 return to initial state. 

}II end if(logicCircuit.size() > 0) 
}II end if(simulator.buildCircuit) 

}II end else if(myString.compareTo("SA VE")= 0) 

else if(myString.compareTo("ERASE") = 0) II is the click on the erase button? 
{ 

currentState = eraseGate; 
}II end else if(myString.compareTo("ERASE") = 0) 

else if(myString.compareTo("CLEAR ALL")= 0) II is the click on the clearAll button? 
{ 

if(simulator.buildCircuit) II if in build mode 
{ 

if(logicCircuit.size() > 0) 
{ 

WarningDialog warning= new WarningDialog(this.simulator); 
warning.show(); 

}II end if(logicCircuit.size() > 0) 
}II end if(simulator.buildCircuit) 

}II end else if(myString.compareTo("CLEAR ALL")= 0) 
}II end actionPerformed 

public void doOpenFile() 
11* * This method reconstructs a digital logic circuit, that was saved at an 
II** earlier time, from a file. The circuit's total environment is restored 
11* * in the order it was saved. 

{ 
LogicGate tempGate = null ; 
int andCounter, orCounter, notCounter, xorCounter, nandCounter, 

norCounter, connectorCounter, inputCounter, outputCounter; 
int gateCode = O; II integer code of gate found. 
int gatelndex = -1; II position of gate in circuit. 
String openfileName; II name of file to be opened. 
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FileDialog fileDialog =new FileDialog(simulator,"OPEN FILE",FileDialog.LOAD); 
fileDialog.setDirectory("."); II keep in same directory. 
fileDialog.show(); II display the dialog box. 
openfileName = fileDialog.getFile(); II get the file name from the user. 
simulator. setTitle( openfileN ame ); 11 window title 
if(simulator.buildCircuit) II if in build mode 
{ 

if( openfileName != null) 11 if a file is selected. 
{ 

try 
{ 

if(logicCircuit.size() > 0) II clear screen first. 
{ 

logicCircuit.removeAllElements(); 
} 
BufferedReader inputStream =new BufferedReader(new FileReader(openfileName)); 
int numberOfLines = Integer.parseint(inputStream.readLine()); II find out how many lines are there in the file 

opened. 
int xcoord = O; int ycoord = O; 

for(int i = O; i < numberOfLines; ++i) llnumberOfLines is the number of gates in saved circuit. 
{ 

String string= inputStream.readLine(); II read one line from file opened. 
StringTokenizer stringTokenizer =new StringTokenizer(string); 
11 gateCode = Integer. parse Int( stringTokenizer .nextT oken()); 
gateCode = Integer. parse Int( stringTokenizer.nextToken()); 
switch (gateCode) 
{ 

case 1: II AND gate is found. 
gateindex = Integer.parseint(stringTokenizer.nextToken()); 
xcoord = Integer. parse Int( stringTokenizer .nextT oken() ); 
ycoord = Integer. parseint( stringTokenizer.nextT oken() ); 

tempGate =new LogicAnd(xcoord,ycoord,gateindex); 
II check to see if on top of another gate (i.e. grid is already occupied). 
for(andCounter = O; andCounter < logicCircuit.size() && 

!((((LogicGate) logicCircuit.elementAt(andCounter)).xCoordinate == 
tempGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
(andCounter)).yCoordinate = tempGate.yCoordinate)); ++andCounter); 

if(andCounter = logicCircuit.size()) II if grid is free. 
{ 

} 

logicCircuit.addElement(tempGate); II add gate to circuit at this grid 
tempGate = null; 

break; 

case 2: II OR gate is found. 
gateindex = Integer.parseint(stringTokenizer.nextToken()); 
xcoord = Integer. parse Int( string Tokenizer .nextT oken() ); 
ycoord = Integer. parseint( stringTokenizer.nextT oken() ); 

tempGate =new LogicOr(xcoord,ycoord,gateindex); 
II check to see if on top of another gate (i.e. grid is already occupied). 
for( orCounter = O; orCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( orCounter) ).xCoordinate = 

tempGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
( orCounter) ). yCoordinate = tempGate. yCoordinate) ); ++orCounter); 

if(orCounter = logicCircuit.size()) II if grid is free. 
{ 

} 

logicCircuit.addElement(tempGate); II add gate to circuit at this grid 
tempGate = null; 
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break; 

case 3: II NOT gate is found. 
gatelndex = Integer.parselnt(stringTokenizer.nextToken()); 
xcoord = Integer. parselnt( stringTokenizer.nextToken() ); 
ycoord = Integer. parse Int( stringTokenizer .nextT oken()); 

tempGate =new LogicNot(xcoord,ycoord,gatelndex); 
II check to see if on top of another gate (i .e. grid is already occupied). 
for(notCounter = O; notCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt(notCounter) ).xCoordinate == 
tempGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
(notCounter)).yCoordinate = tempGate.yCoordinate)); ++notCounter); 

if(notCounter == logicCircuit.size()) II if grid is free. 
{ 

} 

logicCircuit.addElement(tempGate); II add gate to circuit at this grid 
tempGate = null; 

break; 

case 4: II XOR gate is found. 
gate Index = Integer. parse Int( string Tokenizer .nextT oken() ); 
xcoord = Integer. parse Int( stringTokenizer. nextT oken()); 
ycoord = Integer. parse Int( stringTokenizer .nextT oken() ); 

tempGate =new LogicXor(xcoord,ycoord,gatelndex); 
II check to see if on top of another gate (i .e. grid is already occupied). 
for(xorCounter = O; xorCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt(xorCounter) ).xCoordinate = 

tempGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
(xorCounter)).yCoordinate = tempGate.yCoordinate)); ++xorCounter); 

if(xorCounter = logicCircuit.size()) II if grid is free. 
{ 

} 

logicCircuit.addElement(tempGate); II add gate to circuit at this grid 
tempGate = null; 

break; 

case 5: II NAND gate is found. 
gatelndex = Integer.parselnt(stringTokenizer.nextToken()); 
xcoord = Integer.parselnt(stringTokenizer.nextToken()); · 
ycoord = Integer. parse Int( stringT okenizer. nextT oken()); 

tempGate =new LogicNand(xcoord,ycoord,gatelndex); 
II check to see if on top of another gate (i.e. grid is already occupied). 
for(nandCounter = O; nandCounter < logicCircuit.size() && 

!((((LogicGate) logicCircuit.elementAt(nandCounter)).xCoordinate == 
tempGate.xCoordinate) && (((LogicGate) logicCircuit.elernentAt 
( nandCounter) ). yCoordinate == tempGate. yCoordinate) ); ++nandCounter); 

if(nandCounter = logicCircuit.size()) II if grid is free. 
{ 

logicCircuit.addElement(tempGate); II add gate to circuit at this grid 
tempGate = null ; 

} 
break; 

case 6: II NOR gate is found. 
gatelndex = Integer.parselnt(stringTokenizer.nextToken()); 
xcoord = Integer. parse Int( stringTokenizer.nextT oken() ); 
ycoord = Integer. parse Int( stringTokenizer.nextToken() ); 

tempGate = new LogicNor(xcoord,ycoord,gatelndex); 
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II check to see if on top of another gate (i.e. grid is already occupied). 
for(norCounter = O; norCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( norCounter) ).xCoordinate == 
tempGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
(norCounter)).yCoordinate == tempGate.yCoordinate)); ++norCounter); 

if(norCounter == logicCircuit.size()) II if grid is free. 
{ 

} 

logicCircuit.addElement(tempGate); II add gate to circuit at this grid 
tempGate =null; 

break; 

case 7: II CONNECTOR object is found. 
gate Index = Integer. parseint( stringTokenizer.nextToken() ); 
xcoord = Integer. parseint( stringTokenizer.nextT oken() ); 
ycoord = Integer. parse Int( stringT okenizer .nextT oken()); 

tempGate =new Connector(xcoord,ycoord,gateindex); 
II check to see if on top of another gate (i.e. grid is already occupied). 
for(connectorCounter = O; connectorCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( connectorCounter) ).xCoordinate == 
tempGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
( connectorCounter)).yCoordinate = tempGate.yCoordinate )); ++connectorCounter); 

if( connectorCounter == logicCircuit. size()) 11 if grid is free. 
{ 

} 

logicCircuit.addElement(tempGate); II add gate to circuit at this grid 
tempGate =null; 

break; 

case 8: II INPUT object is found. 
gateindex = Integer. parse Int( stringTokenizer.nextToken() ); 
xcoord = Integer. parse Int( string T okenizer. nextT oken() ); 
ycoord = Integer. parse Int( string Tokenizer. nextT oken() ); 

tempGate =new Input(xcoord,ycoord,gateindex); 
II check to see if on top of another gate (i.e. grid is already occupied). 
for(inputCounter = O; inputCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( inputCounter) ).xCoordinate == 
tempGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
( inputCounter) ). yCoordinate = tempGate. yCoordinate)); ·++inputCounter ); 

if(inputCounter = logicCircuit.siz.e()) II if grid is free. 
{ 

} 

logicCircuit.addElement(tempGate); II add gate to circuit at this grid 
tempGate = null; 

break; 

case 9: II OUTPUT object is found . 
gate Index = Integer. parse Int( stringTokenizer.nextT oken()); 
xcoord = Integer.parseint(stringTokenizer.nextToken()); 
ycoord = Integer.parseint(stringTokenizer.nextToken()); 

tempGate =new Output(xcoord,ycoord,gateindex); 
II check to see if on top of another gate (i.e. grid is already occupied). 
for( outputCounter = O; outputCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( outputCounter) ).xCoordinate == 
tempGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
( outputCounter)).yCoordinate == tempGate.yCoordinate )); ++outputCounter); 

if(outputCounter == logicCircuit.size()) II if grid is free . 
{ 

logicCircuit.addElement(tempGate); II add gate to circuit at this grid 
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tempGate = null; 
} 
break; 

default: 
break; 

}//end switch (myString) 
}//end for 
inputStream.close(); 
readFileAgain( openfileName ); 

}// end try 
catch(IOException e) 
{ 

System.out.print("Error: "+ e); 
} 

}// end if(openfileName !=null) 
}// end if(simulator.buildCircuit) 
repaint(); 

}// end doOpenFile 

public void readFileAgain(String openfileName) 
II** This method reads information from a file in order to reconstruct a 
//** digital circuit that has been saved. 

{ 
int gateCode = O; II integer code of gate found . 
int gateindex = -1 ; 11 position of gate in circuit. 

try 
{ 

BufferedReader inputStream2 =new BufferedReader(new FileReader(openfileName)); 
int numberOfLines = Integer.parseint(inputStream2.readLine()); //find out how many lines are there in the file 

opened. 
int xcoord = O; int ycoord = O; int top = O; int bottom = O; 
int topconn = O; int bottomconn = O; int out= O; 

for(int i = O; i < numberOfLines; ++i) //numberOfLines is the number of gates in saved circuit. 
{ 

String string2 = inputStream2.readLine(); //read one line from file opened. 
StringTokenizer stringTokenizer2 =new StringTokenizer(string2); 
gateCode = Integer. parse Int( stringTokenizer2.nextToken() ); 
switch (gateCode) 
{ 

case I : // AND gate is found. 
LogicAnd tempGate I = ((LogicAnd) logicCircuit.elementAt(i)) ; 
while (stringTokenizer2.hasMoreTokens()) //get all info. for this gate .. 
{ 

gateindex = Integer. parse Int( stringTokenizer2.nextT oken() ); 
xcoord = Integer. parselnt( stringTokenizer2.nextToken() ); 
ycoord = Integer.parseint(stringTokenizer2.nextToken()); 
top= Integer.parselnt(stringTokenizer2.nextToken()); 
topconn = Integer.parseint(stringTokenizer2.nextToken()); 
bottom = Integer. parseint( stringTokenizer2.nextToken()); 
bottomconn = Integer. parse Int( stringTokenizer2.nextT oken() ); 
out= Integer.parseint(stringTokenizer2.nextToken()); 

}//end while 

if(top == I) 
{ 

tempGate l .topinputPin =true; 
} 
else 
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tempGate 1. topinputPin = false; 
} 

if(bottom = 1) 
{ 

tempGate 1. bottominputPin = true; 
} 
else 
{ 

tempGatel .bottominputPin =false; 
} 

if( out== 1) 
{ 

tempGate l .OutputPin =true; 
} 
else 
{ 

tempGate l .OutputPin =false; 
} 

if(topconn != -1) 
{ 

whichinputPin = 1; 
theDestinationGate = tempGate 1; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(topconn)); 
propagate State(); 

}//end if(topconn != -1) 

if(bottomconn != -1) 
{ 

whichinputPin = 2; 
theDestinationGate = tempGate 1; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(bottomconn)); 
propagate State(); 

}// end if(bottomconn != -1) 
tempGatel =null; 
break; 

case 2: II OR gate is found. 
LogicOr tempGate2 = ((LogicOr) logicCircuit.elementAt(i)) ; · 
while (stringTokenizer2.hasMoreTokens()) //get all info. for this gate .. 
{ 

gate Index = Integer. parseint( stringTokenizer2.nextToken() ); 
xcoord = Integer. parseint( stringTokenizer2.nextToken()); 
ycoord = Integer.parseint(stringTokenizer2.nextToken()); 
top= Integer.parseint(stringTokenizer2.nextToken()); 
topconn = Integer. parse Int( stringTokenizer2.nextToken() ); 
bottom = Integer. parseint( stringTokenizer2.nextToken() ); 
bottom conn = Integer. parse Int( stringTokenizer2.nextT oken() ); 
out= Integer.parseint(stringTokenizer2.nextToken()); 

}//end while 

if(top = 1) 
{ 

tempGate2.topinputPin =true; 
} 
else 
{ 

tempGate2.toplnputPin =false; 
} 
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if(bottom == 1) 
{ 

tempGate2.bottominputPin =true; 
} 
else 
{ 

tempGate2.bottominputPin =false; 
} 

if( out= 1) 
{ 

tempGate2.0utputPin =true; 
} 
else 
{ 

tempGate2.0utputPin =false; 
} 

if(topconn != -1) 
{ 

whichinputPin = 1; 
theDestinationGate = tempGate2; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(topconn)); 
propagate State(); 

}//end if(topconn != -1) 

if(bottomconn != -1) 
{ 

whichinputPin = 2; 
theDestinationGate = tempGate2; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(bottomconn)); 
propagate State(); 

}//end if(bottomconn != -1) 
tempGate2 = null ; 
break; 

case 3: //NOT gate is found. 
LogicNot tempGate3 = ((LogicNot) logicCircuit.elementAt(i)); 
while (stringTokenizer2.hasMoreTokens()) //get all info. for this gate .. 
{ 

gateindex = Integer. parse Int( stringTokenizer2.nextT oken()); 
xcoord = Integer. parseint( stringTokenizer2.nextToken() ); 
ycoord = Integer.parseint(stringTokenizer2.nextToken()); 
top= Integer.parseint(stringTokenizer2.nextToken()); 
topconn = Integer.parseint(stringTokenizer2.nextToken()); 
bottom= Integer.parseint(stringTokenizer2.nextToken()); 
bottomconn = Integer. parseint( stringTokenizer2.nextToken() ); 
out= Integer.parseint(stringTokenizer2.nextToken()); 

}//end while 

if(top == 1) 
{ 

tempGate3.topinputPin =true; 
} 
else 
{ 

tempGate3.topinputPin =false; 
} 

if(bottom = 1) 
{ 

tempGate3 .bottominputPin =true; 
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else 
{ 

tempGate3. bottominputPin = false; 
} 

if(out= 1) 
{ 

tempGate3.0utputPin =true; 
} 
else 
{ 

tempGate3. OutputPin = false; 
} 

if(topconn != -1) 
{ 

whichinputPin = l; 
theDestinationGate = tempGate3; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(topconn)); 
propagate State(); 

}//end if(topconn != -1) 

if(bottomconn != -1) 
{ 

whichinputPin = 2; 
theDestinationGate = tempGate3; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(bottomconn)); 
propagateState(); 

}//end if(bottomconn != -1) 
tempGate3 =null; 
break; 

case 4: //XOR gate is found. 
LogicXor tempGate4 = ((LogicXor) logicCircuit.elementAt(i)) ; 
while (stringTokenizer2.hasMoreTokens()) //get all info. for this gate .. 
{ 

gateindex = Integer.parseint(stringTokenizer2.nextToken()); 
xcoord = Integer. parseint( stringTokenizer2.nextToken() ); 
ycoord = Integer. parse Int( stringTokenizer2.nextToken() ); 
top= Integer.parseint(stringTokenizer2.nextToken()); 
top conn = Integer. parseint( stringT pkenizer2. nextT oken() ); 
bottom = Integer. parse Int( stringTokenizer2.nextToken() ); 
bottomconn = Integer. parse Int( stringTokenizer2.nextToken() ); 
out = Integer. parse Int( stringTokenizer2. nextT oken()); 

}//end while 

if(top = 1) 
{ 

tempGate4.topinputPin =true; 
} 
else 

tempGate4.topinputPin =false; 
} 

if(bottom = 1) 
{ 

tempGate4.bottominputPin =true; 
} 
else 
{ 
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tempGate4.bottomlnputPin =false; 
} 

if( out== 1) 
{ 

tempGate4.0utputPin =true; 
} 
else 
{ 

tempGate4.0utputPin =false; 
} 

if( topconn ! = -1) 
{ 

whichlnputPin = 1; 
theDestinationGate = tempGate4; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(topconn)); 
propagate State(); 

}//end if(topconn != -1) 

if(bottomconn != -1) 
{ 

whichlnputPin = 2; 
theDestinationGate = tempGate4; 
theOriginatingGate = ( (LogicGate) logicCircuit.elementAt(bottomconn) ); 
propagateState(); 

}//end if(bottomconn != -1) 
tempGate4 = null; 
break; 

case 5: // NAND gate is found. 
LogicNand tempGate5 = ((LogicNand) logicCircuit.elementAt(i)); 
while (stringTokenizer2.hasMoreTokens()) //get all info. for this gate .. 
{ 

gate Index = Integer. parselnt( string Tokenizer2. nextT oken() ); 
xcoord = Integer. parselnt( stringTokenizer2.nextToken() ); 
ycoord = Integer. parselnt( stringTokenizer2.nextT oken() ); 
top = Integer. parse Int( stringTokenizer2.nextT oken() ); 
topconn = Integer. parseint( stringTokenizer2.nextToken() ); 
bottom = Integer. parse Int( stringTokenizer2.nextToken() ); 
bottom conn = Integer. parse Int( stringTokenizer2.nextT oken(}); 
out = Integer. parse Int( stringTokenizer2.nextToken() ); 

}//end while · 

if(top = 1) 
{ 

tempGate5.topinputPin =true; 
} 
else 
{ 

tempGate5.topinputPin =false; 
} 

if(bottom == 1) 
{ 

tempGate5.bottominputPin =true; 
} 
else 
{ 

tempGate5 . bottomlnputPin = false; 
} 
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if( out= 1) 
{ 

tempGate5.0utputPin =true; 
} 
else 
{ 

tempGate5 .0utputPin =false; 
} 

if( topconn ! = -1) 
{ 

whichinputPin = 1; 
theDestinationGate = tempGate5; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(topconn)); 
propagateState(); 

}//end if(topconn != -1) 

if(bottomconn != -1) 
{ 

whichinputPin = 2; 
theDestinationGate = tempGate5; 
theOriginatingGate = ( (LogicGate) logicCircuit.elementAt(bottomconn) ); 
propagate State(); 

}//end if(bottomconn != -1) 
tempGate5 = null; 
break; 

case 6: II NOR gate is found. 
LogicNor tempGate6 = ((LogicNor) logicCircuit.elementAt(i)); 
while (stringTokenizer2.hasMoreTokens()) //get all info. for this gate .. 
{ 

gateindex = Integer.parseint(stringTokenizer2.nextToken()); 
xcoord = Integer. parse Int( stringTokenizer2.nextToken() ); 
ycoord = Integer. parse Int( stringTokenizer2.nextToken() ); 
top= Integer.parseint(stringTokenizer2.nextToken()); 
topconn = Integer. parseint( string Tokenizer2. nextT oken() ); 
bottom = Integer. parse Int( stringTokenizer2.nextToken() ); 
bottomconn = Integer. parse Int( stringTokenizer2.nextT oken() ); 
out = Integer. parse Int( stringTokenizer2.nextToken() ); 

}//end while 

if(top = 1) 
{ 

tempGate6.topinputPin =true; 
} 
else 
{ 

tempGate6.topinputPin =false; 
} 

if(bottom == 1) 
{ 

tempGate6. bottominputPin = true; 
} 
else 
{ 

tempGate6.bottominputPin =false; 
} 

if( out= 1) 
{ 

tempGate6.0utputPin =true; 
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else 
{ 

tempGate6.0utputPin = false; 
} 

if(topconn != -1) 
{ 

whichinputPin = 1; 
theDestinationGate = tempGate6; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(topconn)); 
propagateState(); 

}//end if(topconn != -1) 

if(bottomconn != -1) 
{ 

whichinputPin = 2; 
theDestinationGate = tempGate6; 
theOriginatingGate = ( (LogicGate) logicCircuit.elementAt(bottomconn) ); 
propagateState(); 

}//end if(bottomconn != -1) 
tempGate6 = null ; 
break; 

case 7: //CONNECTOR object is found. 
Connector tempGate7 =((Connector) logicCircuit.elementAt(i)); 
while (stringTokenizer2.hasMoreTokens()) //get all info. for this gate .. 
{ 

gate Index = Integer. parseint( stringTokenizer2.nextT oken() ); 
xcoord = Integer. parse Int( stringTokenizer2.nextToken() ); 
ycoord = Integer. parse Int( stringTokenizer2.nextToken() ); 
top= Integer.parseint(stringTokenizer2.nextToken()); 
topconn = Integer.parseint(stringTokenizer2.nextToken()); 
bottom = Integer. parse Int( stringTokenizer2.nextToken() ); 
bottomconn = Integer. parse Int( string Tokenizer2.nextT oken() ); 
out= Integer.parseint(stringTokenizer2.nextToken()); 

}//end while 

if(top = 1) 
{ 

tempGate7.topinputPin =true; 
} 
else 
{ 

tempGate7.topinputPin =false; 
} 

if(bottom = 1) 
{ 

tempGate7.bottominputPin =true; 
} 
else 
{ 

tempGate7.bottominputPin =false; 
} 

if( out= 1) 
{ 

tempGate7.0utputPin =true; 
} 
else 
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tempGate7.0utputPin =false; 
} 

if(topconn != -1) 
{ 

whichinputPin = 1; 
theDestinationGate = tempGate7; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(topconn)); 
propagateState(); 

}//end if(topconn != -1) 

if(bottomconn != -1) 
{ 

whichinputPin = 2; 
theDestinationGate = tempGate7; 
theOriginatingGate = ( (LogicGate) logicCircuit.elementAt(bottomconn) ); 
propagateState(); 

}//end if(bottomconn != -1) 
tempGate7 = null ; 
break; 

case 8: //INPUT object gate is found. 
Input tempGate8 =((Input) logicCircuit.elementAt(i)) ; 
while (stringTokenizer2.hasMoreTokens()) //get all info. for this gate .. 
{ 

gateindex = Integer. parse Int( stringTokenizer2. nextT oken()); 
xcoord = Integer. parse Int( stringTokenizer2.nextToken() ); 
ycoord = Integer. parseint( stringTokenizer2.nextToken() ); 
top= Integer.parseint(stringTokenizer2.nextToken()); 
topconn = Integer.parseint(stringTokenizer2.nextToken()); 
bottom = Integer. parse Int( stringTokenizer2.nextToken() ); 
bottom conn = Integer. parseint( string T okenizer2. nextT oken() ); 
out= Integer.parseint(stringTokenizer2.nextToken()); 

}//end while 

if(top = 1) 
{ 

tempGate8.topinputPin =true; 
} 
else 
{ 

tempGate8.topinputPin = false; 
} 

if(bottom == 1) 
{ 

tempGate8.bottominputPin =true; 
} 
else 
{ 

tempGate8.bottominputPin =false; 
} 

if( out= 1) 
{ 

tempGate8.0utputPin =true; 
} 
else 
{ 

tempGate8.0utputPin =false; 
} 

125 



if(topconn != -1) 
{ 

whichinputPin = I; 
theDestinationGate = tempGate8; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(topconn)); 
propagate State(); 

}//end if(topconn != -1) 

if(bottomconn != -1) 
{ 

whichinputPin = 2; 
theDestinationGate = tempGate8; 
theOriginatingGate = ( (LogicGate) logicCircuit.elementAt(bottomconn) ); 
propagate State(); 

}//end if(bottomconn != -1) 
tempGate8 = null; 
break; 

case 9: //OUTPUT object gate is found. 
Output tempGate9 =((Output) logicCircuit.elementAt(i)); 
while (stringTokenizer2.hasMoreTokens()) //get all info. for this gate .. 
{ 

gateindex = Integer.parseint(stringTokenizer2.nextToken()); 
xcoord = Integer. parse Int( stringTokenizer2.nextToken() ); 
ycoord = Integer. parse Int( stringTokenizer2.nextToken() ); 
top= Integer.parseint(stringTokenizer2.nextToken()); 
topconn = Integer.parselnt(stringTokenizer2.nextToken()); 
bottom = Integer. parse Int( stringTokenizer2.nextToken() ); 
bottomconn = Integer.parseint(stringTokenizer2.nextToken()); 
out= Integer.parseint(stringTokenizer2.nextToken()); 

}//end while 

if(top = 1) 
{ 

tempGate9.topinputPin =true; 
} 
else 
{ 

tempGate9.topinputPin =false; 
} 

if(bottom = I) 
{ 

tempGate9.bottominputPin =true; 
} 
else 
{ 

tempGate9.bottominputPin =false; 
} 

if( out= 1) 
{ 

tempGate9.0utputPin =true; 
} 
else 
{ 

tempGate9.0utputPin =false; 
} 

if( topconn ! = -1) 
{ 

whichinputPin = 1; 

126 



theDestinationGate = tempGate9; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(topconn)); 
propagate State(); 

}II end if(topconn != -1) 

if(bottomconn != -1) 
{ 

whichlnputPin = 2; 
theDestinationGate = tempGate9; 
theOriginatingGate = ((LogicGate) logicCircuit.elementAt(bottomconn)); 
propagateState(); 

}II end if(bottomconn != -1) 
tempGate9 = null; 
break; 

default: 
break; 

}II end switch (myString) 
}II end for 
inputStream2.close(); 

}II end try 
catch(IOException e) 
{ 

System.out.print("Error: "+ e); 
} 

}II end readFileAgain 

public int returnEncodedGate(int gateNumber) 
II** Given a gate number (position in array), this method returns a code for 
11* * the gate being clicked (if valid), -1 otherwise to indicate a null value. 

{ 
int gateCode = -1 ; 
String myString = null; 
String gate String = String. valueOf( ( (LogicGate) logicCircuit.elementAt(gateNumber)) ); 
StringTokenizer stringTokenizer =new StringTokenizer(gateString,"@"); 
myString = stringTokenizer.nextToken(); 

if(myString.compareTo("LogicAnd") = 0) 
{ 

gateCode = 1; 11 LogicAnd gate has code 1. 
} 
else if(myString.compareTo("LogicOr") = 0) 
{ . 

gateCode = 2; 11 LogicOr gate has code 2. 
} 
else if(myString.compareTo("LogicNot") = 0) 
{ 

gateCode = 3; II LogicNot gate has code 3. 
} 
else if(myString.compareTo("LogicXor") = 0) 
{ 

gateCode = 4; II LogicXor gate has code 4. 
} 
else if(myString.compareTo("LogicNand") = 0) 
{ 

gateCode = 5; II LogicNand gate has code 5. 
} 
else if(myString.compareTo("LogicNor") == 0) 
{ 

gateCode = 6; II LogicNor gate has code 6. 
} 
else if(myString.compareTo("Connector") = 0) 
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{ 
gateCode = 7; II Connector gate has code 7. 

} 
else if(myString.compareTo("Input") = 0) 
{ 

gateCode = 8; //Input gate has code 8. 
} 
else if(myString.compareTo("Output") = 0) 
{ 

gateCode = 9; II Output gate has code 9. 
} 
else 
{ 

gateCode = -1; 11 else -1 indicates a null value. 
} 
return gateCode; 

}//end returnEncodedGate 

public void doSaveFile() 
II** This method saves a digital logic circuit into a file to be retrieved at 
//** a later time. The circuit's total environment is saved in the order 
//** it was created. 

{ 
int topPin = 1; II digit value of top input pin. 
int bottomPin = 2; II digit value of bottom input pin. 
int outputPin = 3; II digit value of output pin. 
int encoded Gate= -1 ; II integer code of gate (initially set to null). 
String savefileName; 

FileDialog fileDialog =new FileDialog(simulator,"SAVE FILE",FileDialog.SAVE); 
fileDialog.setDirectory(". "); // set file to current directory. 
fileDialog.show(); //display the dialog box. 
savefileName = fileDialog.getFile(); //get name of file from the user. 
simulator.setTitle(savefileName); //window title 
if(savefileName !=null) //if file was found. 
{ 

LogicGate tempGate = null; 
try 
{ 

PrintWriter outputStream =new PrintWriter(new FileOutputStrearri(savefileName)); 
outputStream.print(logicCircuit.size()); //~ave number of gates in circuit. 
outputStream. print("\n"); 

for(int i = O; i < logicCircuit.size(); ++i) II for all the gates in a circuit. 
{ 

tempGate = ((LogicGate) logicCircuit.elementAt(i)); II find the gate. 
encodedGate = returnEncodedGate(i); //return this gate's code number. 
outputStream. print( encoded Gate); //save the type of gate found. 
outputStream. print(" "); 

outputStream.print(i); //save gate position as an index. 
outputStream. print(" "); 

outputStream.print(tempGate.xCoordinate); //save gate's x coordinate. 
outputStream.print(" "); 

outputStream.print(tempGate.yCoordinate);//save gate's y coordinate. 
outputStream.print(" "); 

if(tempGate.getlnputState(topPin)) //if gate's top pin is high. 
{ 
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outputStream.print(l); //save gate's top pin state as 1. 
} 
else 
{ 

outputStream.print(O); //else save gate's top pin state as 0. 
} 
outputStream.print(" "); 

if(tempGate.topPinConnection !=null) 
{ 

outputStream. print( tempGate. topPinConnection.gatelndex ); 
} 
else 
{ 

outputStream. print(-1 ); 
} 
outputStream.print(" "); 

if(tempGate.getlnputState(bottomPin)) //if gate's bottom pin is high. 
{ 

outputStream.print(l ); //save gate's bottom pin state as 1. 
} 
else 
{ 

outputStream.print(O); //else save gate's bottom pin state as 0. 
} 
outputStream. print(" "); 

if(tempGate.bottomPinConnection !=null) 
{ 

outputStream. print( tempGate. bottomPinConnection.gatelndex ); 
} 
else 
{ 

outputStream. print(-1 ); 
} 
outputStream.print(" "); 

if(tempGate.getOutputState()) //if gate's output pin is high. 
{ 

outputStream.print(l ); //save gate's output pin state as 1. 
} 
else 

outputStream.print(O); //else save gate's output pin state as 0. 
} 
outputStream. print("\n "); 

}//end for 

outputStream.close(); 
}//end try 
catch(IOException e) 
{ 

System.out.print("Error: "+ e); 
} 

}//end if(savefileName !=null) 
}//end doSaveFile 

public void mouseClicked(MouseEvent e) 
II** this method is called every time the mouse is clicked. The simulator 
I I** is totally run by mouse events. 

{ 
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int andCounter, orCounter, notCounter, xorCounter, nandCounter, 
norCounter, connectorCounter, inputCounter, outputCounter; 

if(mouseClickPoint ==null) II get mouse click position. 
{ 

mouseClickPoint = new Point( e.getPoint()); 
} 
else 
{ 

} 

mouseClickPoint.x = e.getX(); 
mouseClickPoint.y = e.getY(); 

if(simulator.buildCircuit) II if in build mode 
{ 

if( ( currentState = createGate) II ( currentState == connectGate)) 
{ 

if(currentGate > 0) II if any gate is selected (mouse clicked in gate menu). 
{ 

switch ( currentGate) II which gate is clicked. 
{ 

case and: II if and gate is selected, create it 
logicGate =new LogicAnd(mouseClickPoint.x, mouseClickPoint.y, logicCircuit.size()); 
II check to see if on top of another gate (i.e. grid is already occupied). 
for(andCounter = O; andCounter < logicCircuit.size() && 

!((((LogicGate) logicCircuit.elementAt(andCounter)).xCoordinate = 
logicGate.xCoordinate) && ( ( (LogicGate) logicCircuit.elementAt 
(andCounter)).yCoordinate = logicGate.yCoordinate)); ++andCounter); 

if(andCounter = logicCircuit.size()) II if grid is free. 
{ 

logicCircuit.addElement(logicGate ); 11 add gate to circuit at this grid 
logicGate =null; II deselect gate 

} 
currentGate = O; II deselect button clicked 
lltheDestinationGate =null; II deselect the receiving gate. 
lltheOriginatingGate =null; II deselect the sending gate. 
break; 

case or: 
logicGate =new LogicOr(mouseClickPoint.x, mouseClickPoint.y, logicCircuit.size()); 
II go through all the gates in the circuit. · 
for( orCounter = O; orCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( orCounter) ).xCoordinate == 
logicGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
( orCounter)).yCoordinate = logicGate.yCoordinate )); ++orCounter); 

if(orCounter == logicCircuit.size()) 
{ 

} 

logicCircuit.addElement(logicGate ); 
logicGate =null; 

currentGate = O; 
lltheDestinationGate =null; 
II theOriginatingGate =null; 
break; 

case not: 
logicGate =new LogicNot(mouseClickPoint.x, mouseClickPoint.y, logicCircuit.size()); 
for(notCounter = O; notCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( notCounter) ).xCoordinate = 

logicGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
(notCounter)).yCoordinate = logicGate.yCoordinate)); ++notCounter); 

if(notCounter == logicCircuit.size()) 
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{ 

} 

logicCircuit.addElement(logicGate ); 
logicGate = null; 

currentGate = O; 
theDestinationGate = null; 
theOriginatingGate = null ; 
break; 

case xor: 
logicGate =new LogicXor(mouseClickPoint.x, mouseClickPoint.y, logicCircuit.size()); 
for(xorCounter = O; xorCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt(xorCounter) ).xCoordinate = 

logicGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
(xorCounter)).yCoordinate = logicGate.yCoordinate)); ++xorCounter); 

if(xorCounter = logicCircuit.size()) 
{ 

} 

logicCircuit.addElement(logicGate ); 
logicGate = null; 

currentGate = O; 
theDestinationGate = null ; 
theOriginatingGate = null ; 
break; 

case nand: 
logicGate =new LogicNand(mouseClickPoint.x, mouseClickPoint.y, logicCircuit.size()); 
for(nandCounter = O; nandCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( nandCounter) ).xCoordinate = 

logicGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
(nandCounter)).yCoordinate = logicGate.yCoordinate)); ++nandCounter); 

if(nandCounter = logicCircuit.size()) 
{ 

} 

logicCircuit.addElement(logicGate ); 
logicGate = null ; 

currentGate = O; 
theDestinationGate =null ; 
theOriginatingGate = null ; 
break; 

case nor: . 
logicGate =new LogicNor(mouseClickPoint.x, mouseClickPoint.y, logicCircuit.size()); 
for(norCounter = O; norCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( norCounter) ).xCoordinate = 

logicGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
(norCounter)).yCoordinate = logicGate.yCoordinate)); ++norCounter); 

if(norCounter == logicCircuit.size()) 
{ 

} 

logicCircuit.addElement(logicGate ); 
logicGate = null; 

currentGate = O; 
theDestinationGate = null; 
theOriginatingGate = null; 
break; 

case connector: II if connector object is selected, create it 
logicGate =new Connector(mouseClickPoint.x, mouseClickPoint.y, logicCircuit.size()) ; 
II check to see if on top of another gate (i.e. grid is already occupied). 
for( connectorCounter = O; connectorCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( connectorCounter) ).xCoordinate = 
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logicGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
(connectorCounter)).yCoordinate = logicGate.yCoordinate)); ++connectorCounter); 

if( connectorCounter == logicCircuit.size()) II if grid is free. 
{ 

logicCircuit.addElement(logicGate ); II add gate to circuit at this grid 
logicGate =null; II deselect gate 

} 
currentGate = O; II deselect button clicked 
theDestinationGate =null ; II deselect the receiving gate. 
theOriginatingGate = null ; II deselect the sending gate. 
break; 

case input: II if input object is selected, create it 
logicGate =new Input(mouseClickPoint.x, mouseClickPoint.y, logicCircuit.size()); 
II check to see if on top of another gate (i.e. grid is already occupied). 
for(inputCounter = O; inputCounter < logicCircuit.size() && 

!((((LogicGate) logicCircuit.elementAt(inputCounter)).xCoordinate == 
logicGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
(inputCounter) ).yCoordinate == logicGate. yCoordinate) ); ++inputCounter ); 

if(inputCounter = logicCircuit.size()) II if grid is free. 
{ 

logicCircuit.addElement(logicGate); II add gate to circuit at this grid 
logicGate =null ; II deselect gate 

} 
currentGate = O; II deselect button clicked 
theDestinationGate =null; II deselect the receiving gate. 
theOriginatingGate =null; II deselect the sending gate. 
break; 

case output: II if output object is selected, create it 
logicGate =new Output(mouseClickPoint.x, mouseClickPoint.y, logicCircuit.size()); 
II check to see if on top of another gate (i.e. grid is already occupied). 
for( outputCounter = O; outputCounter < logicCircuit.size() && 

! ( ( ( (LogicGate) logicCircuit.elementAt( outputCounter) ).xCoordinate == 
logicGate.xCoordinate) && (((LogicGate) logicCircuit.elementAt 
( outputCounter) ). yCoordinate = logicGate.yCoordinate) ); ++outputCounter ); 

if(outputCounter = logicCircuit.size()) II if grid is free. 
{ 

logicCircuit.addElement(logicGate); II add gate to circuit at this grid 
logicGate = null; 11 deselect gate 

} 
currentGate = O; II deselect button clicked 
theDestinationGate =null; II deselect the receiving gate. 
theOriginatingGate =null ; II deselect the sending gate. 
break; 

default: 
break; 

}II end switch (currentGate) 
}II end if(currentGate > 0) 
else if(logicCircuit.size() > 0) II else if connecting gates (mouse clicked in canvas). 
{ 

doConnection(); 
}II end if(logicCircuit.size() > 0) 

}II end if((currentState = createGate) II (currentState == connectGate)) 

else if( currentState == eraseGate) 11 if erase button is clicked. 
{ 

deleteGate(); II delete the selected gate. 
}II end else if(currentState == eraseGate) 
repaint(); 
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}//end if(simulator.buildCircuit) 

else // else run the simulation 
{ 

runSimulation(); 
}// end else if(simulator.buildCircuit) 

}// end mouseClicked 

public void deleteGate() 
II** This method when invoked on a gate, erases this gate from the canvas 
II** and deletes it also from the data structure. Then it refreshes the screen. 

{ 
LogicGate theGateJustErased = null; 
LogicGate theGateConnected = null; 
LogicGate tempGate =null; 
int toplndex = -1; II position of the gate connected to this gate's top input pin is set to null. 
int bottomlndex = -1 ; //position of the gate connected to this gate's bottom input pin is set to null. 
int deletedGatelndex = -1 ; 
final int topPin = 1; 11 digit value of top input pin. 
final int bottomPin = 2; 11 digit value of bottom input pin. 

11 go through all the gates in the circuit. 
for(int counter= O; counter < logicCircuit.size(); ++counter) 
{ 

II find out the gate just clicked. 
theGateJustErased = ( (LogicGate) logicCircuit.elementAt( counter)). whichGate(mouseClickPoint ); 
if(theGateJustErased !=null) II if gate is found . 
{ 

deletedGatelndex = theGateJustErased.gatelndex; 
if(theGateJustErased.topPinConnection !=null) 
{ 

toplndex = theGateJustErased.topPinConnection.gatelndex; 
theGateConnected = ((LogicGate) logicCircuit.elementAt(toplndex)); 
theGateConnected. connection Vector. removeElement( theGateJ ustErased); 
theGateConnected = null; 

}//end if(theGateJustErased.topPinConnection !=null) 

if(theGateJustErased.bottomPinConnection !=null) 
{ 

bottom Index = theGateJustErased. bottomPinConnection.gatelndex; 
theGateConnected = ((LogicGate) logicCircuit.elementAt(bottonilndex)); 
theGateConnected. connection Vector. re!lloveElement( theGateJ ustErased); 
theGateConnected = null; 

}//end if(theGateJustErased.bottomPinConnection !=null) 
theGateJustErased.connection Vector.removeAllElements(); 
logicCircuit.removeElement(theGateJustErased); 
theGateJustErased = null; 

}//end if(theGateJustErased !=null) 
}// end for 

II the following loop is designed to sweep through a circuit and 
II reset any tempGate's information that has been changed after deletion 
II of a gate connected to this tempGate. 
for(int count= O; count< logicCircuit.size(); ++count) 
{ 

11 go through all gates in circuit. 
tempGate = ((LogicGate) logicCircuit.elementAt( count)); 
if(tempGate.topPinConnection !=null)// if top pin is connected. 
{ 

II and the gate deleted is the one connected to this tempGate. 
if( tempGate. topPinConnection. gate Index = deletedGatelndex) 
{ 
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tempGate.topPinConnection =null;// free tempGate's top pin. 
if(tempGate.getlnputState(topPin)) //if pin value is high. 
{ 

} 
} 

tempGate.togglelnput(topPin); //reset pin value to low. 

}//end if(theOutputGateConnected.topPinConnection !=null) 

if(tempGate.bottomPinConnection !=null) II same case for bottom pin. 
{ 

if( tempGate. bottomPinConnection.gatelndex = deletedGatelndex) 
{ 

tempGate.bottomPinConnection =null; 
if(tempGate.getlnputState(bottomPin)) 
{ 

tempGate. togglelnput(bottomPin ); 
} 

} 
}//end if(tempGate.bottomPinConnection !=null) 

}//end for 

II the following loop is designed to sweep through a circuit and 
II decrement all gates indices with a value higher than the gate deleted. //of a gate connected to this tempGate. 
for(int index= O; index< logicCircuit.size(); ++index) 
{ 

} 

tempGate = ((LogicGate) logicCircuit.elementAt(index)); 
tempGate.gatelndex = index; 

currentState = createGate; //return to pointing mode. 
repaint(); // refresh screen display after deletion. 

}//end deleteGate 

public void doConnection() 
II** This method connects two gates together. 
{ 

LogicGate theGateClicked = null; 

11 go through all the gates in the circuit. 
for(int counter= O; counter < logicCircuit.size(); ++counter) 
{ 

if(theGateClicked ==null) 
{ 

11 find the gate clicked. 
theGateClicked = ((LogicGate) logicCircuit.elementAt(counter)).whichGate(mouseClickPoint); 

} 
}//end for 

if(theGateClicked != null) 
{ 

final int top Pin = 1; 11 digit value of top input pin. 
final int bottomPin = 2; II digit value of bottom input pin. 
final int outputPin = 3; II digit value of output pin. 

II find the part of the gate that is clicked. 
int tempGatePart = theGateClicked.whichGatePart(mouseClickPoint); 

switch (tempGatePart) 
{ 

case topPin: //if the top input pin is selected. 
II if this input pin is free (not connected) 
if((theGateClicked.topPinConnection =null) 
II and not connecting an input pin to another. 
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{ 
&& (theDestinationGate =null)) 

11 set the gate clicked as the receiving gate. 
theDestinationGate = theGateClicked; 
whichlnputPin = topPin; // pin selected is the top pin. 
11 if no other gate is selected as the sending gate. 
if(theOriginatingGate ==null) 
{ 

currentState = connectGate; II wait to select another gate 
} 
else // else there are two gates to be connected together. 
{ 

propagateState(); //so, do the connection. 
} 

} 
break; 

case bottomPin: // same conditions as above. 
if((theGateClicked.bottomPinConnection ==null) 

&& (theDestinationGate =null)) 
{ 

theDestinationGate = theGateClicked; 
whichlnputPin = bottomPin; 
if(theOriginatingGate == null) 
{ 

currentState = connectGate; 
} 
else 
{ 

propagate State(); 
} 

} 
break; 

case outputPin: 
//if this output pin is free (not connected) 
if(theOriginatingGate =null) 
{ 

II set the gate clicked as the gate sending the output. 
theOriginatingGate = theGateClicked; 
II if no other gate is selected as the receiving gate. 
if(theDestinationGate =null) 
{ 

currentState = connectGate; // wait to select another gate 
} 
else // else there are two gates to be connected together. 
{ 

} 
} 

propagateState(); 

break; 

default: 
theOriginatingGate = null ; // handles a dangling wire. 
theDestinationGate = null ; 
break; 

}//end switch(tempGatePart) 
}//end if(theGateClicked !=null) 

}// end doConnection 

public void initializeCircuit() 
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II** This method sets all inputs in a circuit initially to low and 
II** propagates the results through out the whole circuit. 

{ 
int topPin = 1; II digit value of top input pin. 
int bottomPin = 2; II digit value of bottom input pin. 
LogicGate tempGate =null ; 

for(int count= O; count < logicCircuit.size(); ++count) 
{ 

tempGate = ((LogicGate) logicCircuit.elementAt(count)); 
if(tempGate.topPinConnection !=null) 
{ 

if( tempGate. getlnputState( top Pin) ! = tempGate. topPinConnection. getOutputState()) 
{ 

} 

II recalculation is simply done by toggling the input pin of the receiving gate. 
( (LogicGate) logicCircuit.elementAt( count)). togglelnput(topPin ); 

}II end if 
if(tempGate.bottomPinConnection !=null) 
{ 

if( tempGate.getlnputState(bottomPin) ! = tempGate. bottomPinConnection.getOutputState()) 
{ 

} 

II recalculation is simply done by toggling the input pin of the receiving gate. 
( (LogicGate) logicCircuit.elementAt( count)). togglelnput(bottomPin ); 

}II end if 
}II end for 
repaint(); II refresh screen display. 

}II end initializeCircuit 

public void runSimulation() 
II** This method runs the simulation part if the function button is clicked 
11* * to simulate mode. 

{ 
currentState = createGate; II deselect any menu buttons clicked before simulation. 
LogicGate temp = null ; 
final int top Pin = 1; 11 digit value of top input pin. 

11 go through all the gates in the circuit. 
for(int counter= O; counter < logicCircuit.size(); ++counter) 
{ 

temp= ((LogicGate) logicCircuit.elementAt(counter)); 
if(temp.islnputObject) 
{ 

if((mouseClickPoint.x > temp.xCoordinate - 15)&& (mouseClickPoint.x < temp.xCoordinate + 5) 
&& (mouseClickPoint.y > temp.yCoordinate - 7) && (mouseClickPoint.y < temp.yCoordinate + 10)) 

{ 
II toggle the state of this pin, this will cause recalculation of the gate's function. 

( (LogicGate) logicCircuit.elementAt( counter)). togglelnput( top Pin); 
repaint(); 

} 
} 

}II end for 
initializeCircuit(); 

}II end runSimulation 

public void mouseReleased(MouseEvent e) 
11* * this method is called every time the mouse is released. 

{ 
logicGate = null; 11 deselect gate. 

}II end mouseReleased 
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public void mouseEntered(MouseEvent event) 
//**This method is called every time the mouse enters a registered component. 
//** It is used here to initialize a logic circuit to the correct pin values 
//** of each gate. 

{ 
String myString =" "; 
String string= event.getComponent().getClass().getName(); 
StringTokenizer stringTokenizer =new StringTokenizer(string,"."); 
while (stringTokenizer.hasMoreTokens()) //parse the info string. 
{ 

myString = stringTokenizer.nextToken(); //get next token in string. 
}//end while 

if(myString.compareTo("Button") == 0) II is the click on the function button? 
{ 

} 

II run initial simulation when function button clicked. 
initializeCircuit(); 

} // end mouseEntered 

public void mouseExited(MouseEvent event) 
{ 
}//end mouseExited 

public void mousePressed(MouseEvent e) 
//**this method is called every time the mouse is pressed down. 

{ 
this.xCoordinate = e.getX(); //set the cursor coords to this mouse position. 
this.yCoordinate = e.getY(); 

String colorString; 
colorString = simulator.colorChoice.getSelectedltem(); 

if(colorString.equals("LAVENDER")) //is the click on the default setting? 
{ 

setBackground(new Color(204, 204, 255)); 
} 
if(colorString.equals("WHITE")) //is the click on the default setting? 
{ 

setBackground(new Color(255, 255, 255)); 
} 
if(colorString.equals("GREY")) //is the click on the default setting? 
{ . 

setBackground(new Color(217, 217, 217)); 
} 
if( colorString.equals("BEIGE")) //is the click on the default setting? 
{ 

setBackground(new Color(255, 255, 204)); 
} 
if( colorString.equals("OLIVE")) //is the click on the default setting? 
{ 

setBackground(new Color(66, 99, 66)); 
} 
if(colorString.equals("BLUE")) //is the click on the default setting? 
{ 

setBackground(new Color(99, 204, 255)); 
} 
if(colorString.equals("PINK")) //is the click on the default setting? 
{ 

setBackground(new Color(255, 204, 255)); 
} 
if(colorString.equals("GREEN")) II is the click on the default setting? 
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{ 
setBackground(new Color(66, 255, 204)); 

} 
if(colorString.equals("ORANGE")) II is the click on the default setting? 
{ 

setBackground(new Color(255, 204, 99)); 
} 
if(colorString.equals("YELLOW")) //is the click on the default setting? 
{ 

setBackground(new Color(255, 255, 66)); 
} 
repaint(); 

} // end mousePressed 

public void mouseMoved(MouseEvent e) 
//* * this method is called every time the mouse is moved. 

{ 
if( simulator. buildCircuit) 
{ 

if( currentState == connectGate) 
{ 

this.xCoordinate = e.getX(); 
this.yCoordinate = e.getY(); 
repaint(); //to show the line connection is following the mouse. 

} 
}//end if(simulator.buildCircuit) 

}//end mouseMoved 

public void mouseDragged(MouseEvent e) 
//* * this method is called every time the mouse is dragged. 

{ 
Point anchorPoint = null; 

if(anchorPoint =null) //get mouse click position. 
{ 

anchor Point = new Point( e.getPoint()); 
} 
else 
{ 

anchorPoint.x = e.getX(); 
anchorPoint.y = e.getY(); 

} 
if(simulator.buildCircuit) 
{ 

11 go through all the gates in the circuit. 
for(int counter= O; counter < logicCircuit.size(); ++counter) 
{ 

if(logicGate == null) 
{ 

11 find out the gate just clicked. 
logicGate = ((LogicGate) logicCircuit.elementAt(counter)).whichGate(anchorPoint); 

} 
}//end for 
if(logicGate !=null) //if a gate is found. 
{ 

} 

//reposition it at the new location. 
GetUpdatedLocation(e.getX(),e.getY()); 
repaint(); // refresh screen display. 

}//end if(simulator.buildCircuit) 
}//end mouseDragged 

138 



private void propagateState() 
II** This method is used to connect logically two gates together, by propagating 
II** a signal from the output of one gate to an input of another gate. 

{ 
final int topPin = I ; 11 digit value of top input pin. 
final int bottomPin = 2; II digit value of bottom input pin. 

if(whichlnputPin = topPin) II ifthe top pin is selected. 
{ 

} 

II set both ends of the line connecting the two gates to be equal. 
theDestinationGate. top Pin Connection = theOriginatingGate; 

else if(whichlnputPin == bottomPin) II same case as above. 
{ 

theDestinationGate. bottomPinConnection = theOriginatingG ate; 
} 

II store this connection into the connection Vector. 
theOriginatingGate.connection Vector.addElement(theDestinationGate ); 
theDestinationGate =null; II deselect the receiving gate. 
theOriginatingGate = null; 11 deselect the sending gate. 
currentState = createGate; 

}II end propagateState 

private void GetUpdatedLocation(int newXCoordinate, int newYCoordinate) 
II** this method updates the gate position on the canvas. 

{ 
boolean gatePositionChanged = false; 

if(logicGate != null) 
{ 

if(((newXCoordinate I logicGate.gridWidth) * logicGate.gridWidth) + (logicGate.gridWidth I 2) != 
logicGate.xCoordinate) 

{ 
logicGate.xCoordinate = ((newXCoordinate I logicGate.gridWidth) * logicGate.gridWidth) + 

(logicGate.gridWidth I 2); 
gatePositionChanged = true; 

} 

if(((newYCoordinate I logicGate.gridHeight) * logicGate.gridHeight) + (logicGate.gridHeight I 2) != 
logicGate. yCoordinate) · 

{ . 
logicGate.yCoordinate = ((newYCoordinate I logicGate.gridHeight) * logicGate.gridHeight) + 

(logicGate.gridHeight I 2); 
gatePositionChanged = true; 

} 

if(gatePositionChanged) 
{ 

repaint(); 
} 

}II end if(logicGate !=null) 
}II end GetUpdatedLocation 

public void paint(Graphics g) 
II paint specifies how object g is to be displayed. 

{ 
update(g); 

}II end paint 

public void update(Graphics g) 
II** this method is used to override the class's update function. it paints 
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II** objects to an off-screen image and then displays this image on screen. 
II** this way, flashing of moving objects and signals changing is eliminated. 

{ 

final int topPin = I; II digit value of top input pin. 
final int bottomPin = 2; II digit value of bottom input pin. 
final int outputPin = 3; II digit value of output pin. 
Dimension d = getSize(); II get dimensions of the canvas's drawing area. 

II create an off-screen graphics drawing environment if none existed 
11 or if the user resized the drawing area to a different size. 
if((offScreenGraphics =null) II (d.width != offScreenDimension.width) 

{ 

} 

II (d.height != offScreenDimension.height)) 

offScreenDimension = d; 
offScreenlmage = createlmage(d.width, ct.height); 
offScreenGraphics = offScreenlmage.getGraphics(); 

11 erase the previous image. 
offScreenGraphics. setCo l or(getBackground() ); 
offScreenGraphics. fi llRect(O, O,d. width,d.height ); 
offScreenGraphics.setColor(Color.black); 

11 paint a border around the drawing area. 
offScreenGraphics.draw3DRect(O,O,d.width - l,d.height - l,true); 
offScreenGraphics.draw3DRect(O,O,d.width - 2,d.height - 2,true); 

11 draw all gates in the circuit onto the off-screen image. 
for(int counter= O; counter < logicCircuit.size(); ++counter) 
{ 

((LogicGate) logicCircuit.elementAt(counter)).displayGate(offScreenGraphics); 
} 

if(simulator.buildCircuit) II if in build mode. 
{ 

if(logicGate !=null) II if dragging a gate, display it onto the off-screen image. 
{ 

logicGate.displayGate( offScreenGraphics ); 
} 
if( currentState = connectGate) 11 if connecting up gates. 
{ 

if(theDestinationGate !=null) II if there is a gate receiving a connection. 
{ 
11 if a gate is selected by clicking its top input pin, draw a 
II connection line from that pin to where ever the mouse goes. 

if(whichlnputPin == topPin) 
{ 

if( theDestinationGate. isConnectorObject) 
{ 

} 

offScreenGraphics.drawLine(theDestinationGate.xCoordinate - 24, 
theDestinationGate.yCoordinate, xCoordinate, yCoordinate ); 

else if( theDestinationGate. isNotGate) 
{ 

} 

offScreenGraphics.drawLine(theDestinationGate.xCoordinate - theDestinationGate.gridWidth I 2, 
theDestinationGate.yCoordinate - theDestinationGate.gridHeight I 4 + 5 , 
xCoordinate,yCoordinate ); 

else 
{ 

offScreenGraphics.drawLine(theDestinationGate.xCoordinate - theDestinationGate.gridWidth I 2 , 
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} 
} 

theDestinationGate.yCoordinate - theDestinationGate.gridHeight I 4 , 
xCoordinate,yCoordinate ); 

else if(whichlnputPin = bottomPin) 
II if a gate is selected by clicking its bottom input pin, draw a 
II connection line from that pin to where ever the mouse goes. 
{ 

} 

if( theDestinationGate. isConnectorObject) 
{ 

} 

offScreenGraphics.drawLine(theDestinationGate.xCoordinate, 
theDestinationGate. yCoordinate, xCoordinate, yCoordinate ); 

else 
{ 

} 

offScreenGraphics.drawLine(theDestinationGate.xCoordinate - theDestinationGate.gridWidth I 2, 
theDestinationGate.yCoordinate + theDestinationGate.gridHeight I 4, 
xCoordinate,yCoordinate ); 

}II end if(theDestinationGate !=null) 
else if(theOriginatingGate !=null) II if there is a gate sending a connection. 
{ 

11 if a gate is selected by clicking its output pin, draw a 
11 connection line from that pin to where ever the mouse goes. 
if( theOriginatingGate. isConnectorObj ect) 
{ 

} 

offScreenGraphics.drawLine(theOriginatingGate.xCoordinate - 15, 
theOriginatingGate.yCoordinate, xCoordinate, yCoordinate ); 

else 
{ 

} 

offScreenGraphics.drawLine(theOriginatingGate.xCoordinate + theOriginatingGate.gridWidth I 2 , 
theOriginatingGate. yCoordinate , 
xCoordinate,yCoordinate ); 

}II end else if(theOriginatingGate !=null) 
}II end if(currentState = connectGate) 

} II end if(simulator.buildCircuit) 
else 11 else display the results of running the simulation, 

11 by showing the states of the pins of all gates in the circuit. 
for(int counter= O; counter< logicCircuit.size(); ++counter) 
{ 

((LogicGate) logicCircuit.elementAt( counter)).displayStates( offScreenGraphics); 
} 

}II end if(simulator.buildCircuit) 

II paint the off-screen image to the application's viewing window. 
g.draw Image( offScreenlmage, 0, 0, this); 

}II end update 
}II end MyCanvas class 
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Appendix B 

System Manual 

LogicCity is a digital logic simulator used for entering a logic circuit schematic 

and performing simulations of its behavior. You will only need a few minutes before you 

begin to use the system. The next few paragraphs detail how to use the simulator 

software. If you have questions that are left unanswered, please feel free to contact your 

instructor for further explanations. 

B.1 How to Build Circuits 

When LogicCity software is started, a circuit window used for drawing a logic 

circuit schematic opens up. This window (canvas) has a menu on the left side of the 

canvas composed of buttons with each button representing a different gate or circuit part. 

To create a gate and display it on th~ canvas, simply follow these three easy steps. 

1. First make sure that the master switch button is set to build mode. The master switch 

is found at he top left of the screen (labeled Function). A label, displaying the current 

mode of the switch, is placed next to the master switch. 

2. Next, simply click the mouse on the desired gate button from the menu and move the 

mouse over to the canvas area. 

3. Finally, choose a location for your gate and click the mouse again at that position. 

The selected gate or circuit part will appear at the desired location. 
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To create additional gates, just follow the above steps as many times as needed. 

Once you have loaded a few gates into the canvas, they can easily be wired 

together. 

1. First, decide which two gates are to be connected. 

2. Then choose the gate that is sending the output signal and click its output pin. 

3. Next, move the mouse over to the second gate to be connected and click the mouse 

over an input pin to finalize the connection procedure. 

The simulator draws a line between the two selected pins. If you want to route wires 

around the gates to keep the circuit clean and comprehendible, connector objects are 

available in the parts menu. To place connector objects on the canvas, follow the same 

steps used to place logic gates. A connector simply acts as a pass through buffer; it has no 

value to the logic circuit except to make it look cleaner by routing wires around in neat 

manner. 

B.2 Entering Input Signals I Trapping Output Signals 

Once you have built a logic circuit, you will need to create one or more input 

objects depending on your circuit design. Input objects are used to enter input signals into 

a circuit. Again, placing input objects is done exactly the same way as placing logic 

gates. After you create an input object: 

1. First click the pin used to send the signal out to the circuit 

2. Then move the mouse over to the desired location 

3. Finally, click the mouse once more to connect the input object to the circuit. 
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You can continue in this manner to wire other input objects. To obtain an output from a 

circuit, you will need to create and connect an output object (in the same fashion you 

created and connected the input object) to the logic circuit. Output signals are provided to 

present the circuit outputs in a clear visual way. 

B.3 How to Edit a Circuit 

Making a mistake while building a logic circuit is inevitable. So an edit menu 

composed of four buttons is provided at the top of the canvas. The four buttons are -

"open," "save," "erase," and "clear all." If you wish to erase a gate from the canvas, 

simply click the "erase" button (this activates the erase mode), and then click the object 

that you want to delete. The simulator will delete the selected gate by clearing its position 

on canvas. Every time you need to erase an object from the canvas, you will need to click 

the erase button first and then the object second. The erase mode is activated only once 

per click for security reasons to avoid the accidental erasure of an object if the user is not 

paying attention. 

If the entire screen is desired to be cleared, just click on the "clear all" button. A 

pop up dialog box, with two options, will appear to confirm your request. You have the 

option to: 

• Click on the "cancel" button to get back to the circuit or 

• Click on the "ok" button to go ahead and delete the whole circuit. If the circuit is 

deleted entirely, the canvas is refreshed and displays an empty screen. At that point, 

the simulator is ready to either build another circuit or open an existing one. 
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When in the early stages of development, you can never predict how a circuit will 

actually look. Some components may be too close to each other or in the wrong location, 

or you may need to scatter some congested areas of the circuit for better clarity. Moving a 

circuit component around the canvas is easy to do. Just click and hold down the mouse 

over the desired object and then drag the component to any new location. Gates will 

easily move around even if they are connected. All wire connections will follow along 

with the relocated object. 

B.4 How to Save and Open a Circuit 

Saving a circuit is easily accomplished by clicking on the "save" button after a 

logic circuit is built. A dialog box with standard Windows format will pop up. Inside the 

box one can see the file system of the computer used. The user can navigate to the desired 

directory and then type in a name for the new circuit. If the name given is already used, 

the system will advise to that fact and prompts again for another file name. Pushing 

"enter" sends the new name to the simulator program, which then displays the new file 

name at the top of the canvas. 

To open an already existing circuit, just click on the "open" button from the edit 

menu at the top of the screen. If there is a circuit in the canvas at the time the "open" 

button is clicked, a dialog box that asks the user what to do with the present circuit 

appears. At this point, you can: 

• First save the circuit before opening another one or 

• Ignore the dialog box, which will automatically delete the present circuit once the 

new circuit appears. 
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If the canvas is empty at the time the "open" button is clicked, then the "open" dialog box 

will appear and wait for the user to select a circuit from the computer's filing system. The 

user can type the name of the desired circuit or just click on its icon to select it. Pushing 

"enter" sends the message to the simulator, which will search the filing system, locate the 

selected file, and produce the circuit as a logic schematic on screen. 

B.5 How to Simulate a Circuit 

When the circuit is ready for simulation, you can click on the master switch to 

switch from the edit mode to the simulate mode. After this button is clicked, the states of 

all objects in the circuit are displayed. All input pins and output pins have either a 'O' or a 

'1' next to them. A 'O' value represents logic 'low' and is displayed in black, while '1' 

represent logic 'high' and is displayed in red. Initially all input signals to the circuit are 

set by default to 'low,' but you can change the input state by toggling the input object. 

Toggling is achieved by clicking inside the body of the input object. Input objects are 

initially displayed in blue, but once toggled to 'high' its output pin is drawn in red to 

visually display that a 'high' signal is being sent. If an output of the circuit (drawn in 

light Grey) receives a 'high' signal, the whole body of the output object distinctly glows 

in red. When input objects are toggled, the effect propagates throughout the entire circuit 

changing the states of all affected gates. 

B.6 How to Change the Background Color 

The window's background color can easily be changed in either build or simulate 

modes by using the pull-down menu provided at the bottom left of the canvas. A click on 
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the menu extends the body of the menu to show the ten color selections available. By 

clicking on the color of interest and then clicking on the canvas once, the new color takes 

effect immediately. 
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