University of Rhode Island

DigitalCommons@URI

Open Access Master's Theses

1998

LogicCity: On-Line Digital Logic Simulator

Jihad Z. Almahayni
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/theses
Terms of Use
All rights reserved under copyright.

Recommended Citation

Almahayni, Jihad Z., "LogicCity: On-Line Digital Logic Simulator" (1998). Open Access Master's Theses.
Paper 1104.

https://digitalcommons.uri.edu/theses/1104

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.


https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1104?utm_source=digitalcommons.uri.edu%2Ftheses%2F1104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

LogicCity:
ON-LINE DIGITAL LOGIC SIMULATOR -
BY

JIHAD Z. ALMAHAYNI

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENT FOR THE DEGREE OF
MASTER OF SCIENCE
IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

1998



MASTER OF SCIENCE THESIS
OF

JIHAD Z. ALMAHAYNI

APPROVED:
Thesis Committee

Major Professor

DEAN UF 1HE GKRADUAILE SCHOUL

UNIVERSITY OF RHODE ISLAND

1998



Abstract

A primary challenge for science educators is to develop ways to help students
understand new ideas that cannot be directly observed. The application of computer
simulations is one method instructors may use to address the problem of teaching for
conceptual understanding. The use of computer simulations for science teaching is
increasing steadily because simulations provide students with the opportunity to witness
or "perform" experiments that might otherwise be too expensive, too time consuming, or
too dangerous for them to do in the lab. Simulation, in general, is a very effective way for
both a student and a professional to visualize concepts and ideas and to check the
accuracy of results generated theoretically. Typically, computer simulations represent
real world events on the computer and allow students to observe new phenomena by
performing various manipulations t.hat affect the on-screen events.

Here, at the University of Rhode Island, introductory computer science courses
include computer organization and architecture with concepts that can often be difficult
to grasp. This dilemma lays the foundation for the need for educational software
“simulation” which better enables students to understand the concepts and ideas
presented in class. In this project, we set to design and develop LogicCity, a prototype

model of an on-line interactive digital logic design simulator that will be used as a



teaching aid by complementing class discussions. LogicCity can be used as a stand-alone
application or it can be incorporated into the Web as an applet. Students may use this
simulator as a tool to build combinational digital circuits and generate accurate results. It
is also designed to work in conjunction with the coaching material of an introductory

computer organization course.

iii



Acknowledgments

I would like to thank my advisor, Dr. Gerard Baudet, for suggesting this topic and
helping me to see it through. Dr. Baudet has been very patient and showed me a desire to
make me understand the things it took me a while to grasp. Thanks to Dr. Joan Peckham
for her advice, encouragement and help. Also thanks to Dr. Betty Liu for serving on my
committee and to Dr. Norman Finizio for agreeing to chair my defense.

I want to thank my mother and family for their support, and especially my late
father, Zuhair Almahayni, who has been my main motivation all along. Thanks dad, you
are always in my thoughts. And most of all, I want to thank my wife Dania for
proofreading this thesis, for her faith, inspiration, and patience. With love and hope for

the future.

v



Preface

This thesis has been prepared in the standard format for theses as given in the
Statement on Thesis and Dissertation Preparation of the Graduate School of the
University of Rhode Island.

This thesis is divided into six chapters. Chapter One is an introduction to the use
of software in education. Chapter Two presents background and related research, and a
discussion of the general uses of simulation in education. In Chapter Three, logic
simulation, algorithms, and available products and their limitations are all introduced. A
brief discussion of the Java programming language and the reasons behind our choice of
Java for the implementation language are given in Chapter Four. An introduction to my
prototype simulator model, LogicCity, and a detailed presentation of its features are also
included in Chapter Four. Chapter ‘Five discusses the model's data structures, the various
algorithms used, and the design challenges we faced and then overcame. Chapter Six is a
conclusion to my thesis and discusses the limitations and potential future enhancements

of LogicCity.



Table of Contents

Abstract.

Acknowledgments.

Table of Contents.

List of Tables.

List of Figures.

Chapter 1 Introduction.

Chapter 2 Background & Related Research.
2.1 Educational Environments.
2.2 Simulation and Education.

2.3 Advantages and Disadvantages of Simulation.

2.4 Instructional Design for Computer Simulation.

Chapter 3 Digital Logic Simulation.
3.1 Why Computer Simulation.
3.2 How Simulation Work.
3.3 Commercial Algorithms.

3.4 Limitations of Available Models.

vi

S

il

. 1v

. vl

vil

10

12

16

21

.21

. 23

. 24

.26



Chapter 4 System Specification and Features. . . . . . . . . . . . . . .3l
4.1 The Java Programming Language. . . . . . . . . . . . . . . . 31
4.2 The System's WebSite. . . . . . . . . . . . . . ... ... 34
43 LogicCity. . . . . . . . . . . . . . . . .. ... ... .36
4.4 Software Features. . . . . . . . . . . . . . . . . ... .. 38
Chapter 5 Data Structures. . . . . . . . . . . . . . . . . .. ... .46
5.1 SystemDesign. . . . . . . . . . . .. ... .. ... ...46
5.2 System Implementation . . . . . . . . . . . . . . . . ... .49
5.3 SystemTesting. . . . . . . . . . . . . .. . .. ... ...61
5.4 Design Challenges. . . . . . . . . . . . . . . .. ... . .63
Chapter 6 Conclusion. . . . . . . . . . . . . . . . .. ... .. ..65
6.1 Future Work. . . . . . . . . . . . . . . . . . . . . ... .68
6.2 System Evaluation. . . . . . . . . . . . ... ... ... .68
References. . . . . . . . . . . . . . . . .. ... .00
Appendix A: Program Listing. . . . . . . . . . . . . ... .. .. ..73
Appendix B: System Manual. . . . . . . . . . . . ... .0 0. 142
B.1 How to Build Circuits‘. T 1 9
B.2 Entering Input Signals / Trapping Output Signals. . . . . . . . . .143
B.3 HowtoEditaCircuit. . . . . . . . . . . . . . . . ... . .144
B.4 Howto Save and Open a Circuit. . . . . . . . . . . . . . . . .145
B.5 How to Simulatea Circuit. . . . . . . . . . . . . . . . . . .146
B.6 How to Change the Background Color. . . . . . . . . . . . . . 146

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . ... .148

vii



List of Tables

Table 1: Comparison of Applications vs. Applets.

viii

. 33



List of Figures

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 3.1:
Figure 3.2:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:

Figure 4.8:

Place of Computer Simulation as Educational Software.

Presentation Techniques.
NEWTON Program.

Learning Environment.

An Example Simulation Model ( Hysteresis Applet) . . .
An Example Simulation Model (Harmonic Oscillator).
An Example Simulation Model (Virtual Memory).

Complete Simulation Environment.

Dizzy Program.
Logg-O Program.
Main Web Page.
Simulator Web Page.
LogicCity's Window.
Basic Gates.

Digital Logic Circuit.

Deletion Confirmation Dialog Box.

Save File Dialog Box.

Save Confirmation Dialog Box.

ix

11

.14

17

. 19

27

. 29

.34

35

. 36

.37

. 40

41

42

. 43



Figure 4.9: Simulated Logic Circuit.
Figure 4.10: Example Simulated Circuit.

Figure 5.1: System Architecture .

Figure 5.2: Main Attributes of Logic Gate Object .

44

. 45

.51

59



Chapter 1

Introduction

Developments in basic electronics and in hardware components of computer and
communication systems by major corporations are proceeding very rapidly, independent
of any educational considerations. Vast changes in the capability and economics of
computing and communication systems imply a number of changes for education. In
addition, changes in the efficiency of hardware has increasing impact on all aspects of
business, government, industry, media and communication - changes to which education
must respond [13].

Educational technologies are not single technologies but complex combinations of
hardware and software [21]. Using the term "computer" means more than merely the
basic components -- the monitor, keyboard, mouse, e‘éc. It includes multimedia capability
that computers can support, and peripheral devices connected with computers like
modems. From the standpoint of education, importance is stressed on the material
delivered, rather than the hardware delivering it. Currently, computerized education can
be divided into four basic groups [13]:

1. Typically a tutorial, presented in a workbook format, controls the material

presented to the student.












captivating animation and video, and interactive devices that students can control and

manipulate are all necessary elements of successful educational software.

database: {passive)
* with text
* with a language
* writh a graphic
mathematical model
eXpert sysem
(active)
COMMUNICATION
input output
program —l
ACCEPTATION PRESENTATION
keyboand: screen:
* signsinumbers * with text
* wrords * graphics
* functionkeys * animation
without keyboard : wt%:o
mouse: ; others
* in pull down menu's student or trame%ﬁspemﬂmsdpmlw
* in inclick regio's uman voice
joystick ¢ * speech generation
lightpen e::(tmg Monitox:
microphone: video
* wrord recognition * others
* speech recognition

Figure 1.2 - Presentation techniques, acceptation techniques and communication techniques (special media
as well as special software procedures) as they occur in educational software.

A good example of educational software with an interactive format that keeps the
students attentive and stimulated is NEWTON (See Figure 1.3). This software has been
designed and developed at the Computer Science Department at the University of Rhode
Island. We have used it in graduate courses as well as undergraduate courses. NEWTON
is a package that allows the students to solve mathematical equations. It has a very nice

and effective interface that clearly displays the equation being manipulated along with all
































































































































































































































































































































































































}// end if(simulator.buildCircuit)
else // else run the simulation

runSimulation();
}// end else if(simulator.buildCircuit)
}// end mouseClicked

public void deleteGate()
//** This method when invoked on a gate, erases this gate from the canvas
//** and deletes it also from the data structure. Then it refreshes the screen.
{
LogicGate theGateJustErased = null;
LogicGate theGateConnected = null;
LogicGate tempGate = null;
int topIndex = -1; // position of the gate connected to this gate's top input pin is set to null.
int bottomIndex = -1; //position of the gate connected to this gate's bottom input pin is set to null.
int deletedGatelndex = -1;
final int topPin = 1;  // digit value of top input pin.
final int bottomPin = 2; // digit value of bottom input pin.

/1 go through all the gates in the circuit.
for(int counter = 0; counter < logicCircuit.size(); ++counter)

// find out the gate just clicked.
theGateJustErased = ((LogicGate) logicCircuit.clementAt(counter)).whichGate(mouseClickPoint);
if(theGateJustErased !=null) //if gate is found.
{
deletedGateIndex = theGateJustErased.gatelndex;
if(theGateJustErased.topPinConnection != null)
{
topIndex = theGateJustErased.topPinConnection.gateIndex;
theGateConnected = ((LogicGate) logicCircuit.elementAt(topIndex));
theGateConnected.connectionVector.removeElement(theGateJustErased);
theGateConnected = null;
}// end if(theGateJustErased.topPinConnection != null)

if(theGateJustErased.bottomPinConnection != null)

bottomIndex = theGateJustErased.bottomPinConnection.gateIndex;
theGateConnected = ((LogicGate) logicCircuit.elementAt(bottomIndex));
theGateConnected.connectionVector.removeElement(theGateJustErased);
theGateConnected = null;

}// end if(theGateJustErased.bottomPinConnection != null)

theGateJustErased.connectionVector.removeAllElements();

logicCircuit.removeElement(theGateJustErased);

theGateJustErased = null;

}// end if(theGateJustErased != null)
}// end for

// the following loop is designed to sweep through a circuit and

// reset any tempGate's information that has been changed after deletion
/1 of a gate connected to this tempGate.

for(int count = 0; count < logicCircuit.size(); ++count)

// go through all gates in circuit.
tempGate = ((LogicGate) logicCircuit.elementAt(count));
if(tempGate.topPinConnection != null) // if top pin is connected.

// and the gate deleted is the one connected to this tempGate.

if(tempGate.topPinConnection.gatelndex == deletedGatelndex)

{

133













public void mouseEntered(MouseEvent event)
//** This method is called every time the mouse enters a registered component.
//** Tt is used here to initialize a logic circuit to the correct pin values
//** of each gate.

{
String myString ="";
String string = event.getComponent().getClass().getName();
StringTokenizer stringTokenizer = new StringTokenizer(string,".");
while (stringTokenizer.hasMoreTokens()) // parse the info string.

{

myString = stringT okenizer.nextToken(); // get next token in string.
}// end while

if(myString.compareTo("Button") == 0) //is the click on the function button?

// run initial simulation when function button clicked.
initializeCircuit();

}// end mouseEntered

public void mouseExited(MouseEvent event)
}// end mouseExited

public void mousePressed(MouseEvent ¢)

//** this method is called every time the mouse is pressed down.

{
this.xCoordinate = e.getX(); //set the cursor coords to this mouse position.
this.yCoordinate = e.getY();

String colorString;
colorString = simulator.colorChoice.getSelectedItem();

if(colorString.equals("LAVENDER")) // is the click on the default setting?
setBackground(new Color(204, 204, 255));
i}f(colorString.equals("WHITE")) // is the click on the default setting?
{ setBackground(new Color(255, 255, 255));
gf(colorString.equals("GREY”)) /1 is the click on the default setting?
setBackground(new Color(217, 217, 217));
i}f(colorString.equals("BEIGE")) // is the click on the default setting?
setBackground(new Color(255, 255, 204)),
i}f(colorString.equals("OLIVE")) // is the click on the default setting?
setBackground(new Color(66, 99, 66));
i}f(colorString.equals("BLUE")) // is the click on the default setting?
setBackground(new Color(99, 204, 255));
i}f(colorString.equals("P[NK")) /I is the click on the default setting?
setBackground(new Color(255, 204, 255));

}
if(colorString.equals("GREEN")) // is the click on the default setting?

137



{
setBackground(new Color(66, 255, 204));

}
if(colorString.equals("ORANGE")) // is the click on the default setting?
setBackground(new Color(255, 204, 99));

}
if(colorString.equals("YELLOW™)) // is the click on the default setting?

{
setBackground(new Color(255, 255, 66));

)
repaint();
}// end mousePressed

public void mouseMoved(MouseEvent ¢)
//** this method is called every time the mouse is moved.

if(simulator.buildCircuit)
if(currentState == connectGate)

this.xCoordinate = e.getX();
this.yCoordinate = e.getY();
repaint(); // to show the line connection is following the mouse.

}// end if(simulator.buildCircuit)
¥// end mouseMoved

public void mouseDragged(MouseEvent ¢)
//** this method is called every time the mouse is dragged.

{

Point anchorPoint = null;

if(anchorPoint == null) // get mouse click position.

{

anchorPoint = new Point(e.getPoint());

)

else

{

anchorPoint.x = e.getX();
anchorPoint.y = e.getY();

if(simulator.buildCircuit)

/1 go through all the gates in the circuit.
for(int counter = 0; counter < logicCircuit.size(); ++counter)

if(logicGate == null)

// find out the gate just clicked.
logicGate = ((LogicGate) logicCircuit.elementAt(counter)). whichGate(anchorPoint);
)
}// end for
if(logicGate !=null) // if a gate is found.
{
/freposition it at the new location.
GetUpdatedLocation(e.getX(),e.getY());
repaint();  // refresh screen display.

}// end if(simulator.buildCircuit)
}// end mouseDragged

138



private void propagateState()
//** This method is used to connect logically two gates together, by propagating
//** a signal from the output of one gate to an input of another gate.

{
final int topPin = 1,  // digit value of top input pin.
final int bottomPin =2;  // digit value of bottom input pin.

if(whichInputPin == topPin) // if the top pin is selected.

// set both ends of the line connecting the two gates to be equal.
theDestinationGate.topPinConnection = theOriginatingGate;

else if(whichInputPin == bottomPin) // same case as above.

{

theDestinationGate.bottomPinConnection = theOriginatingGate;

}

// store this connection into the connectionVector.
theOriginatingGate.connectionVector.addElement(theDestinationGate);
theDestinationGate = null; // deselect the receiving gate.
theOriginatingGate = null; // deselect the sending gate.
currentState = createGate;

}// end propagateState

private void GetUpdatedLocation(int newXCoordinate, int newY Coordinate)
//** this method updates the gate position on the canvas.

{

boolean gatePositionChanged = false;
if(logicGate != null)

if((newXCoordinate / logicGate.gridWidth) * logicGate.gridWidth) + (logicGate.gridWidth / 2) 1=
logicGate.xCoordinate)

logicGate.xCoordinate = ((newXCoordinate / logicGate.gridWidth) * logicGate.gridWidth) +
(logicGate.gridWidth / 2);
gatePositionChanged = true;

}

if(((newYCoordinate / logicGate.gridHeight) * logicGate.gridHeight) + (logicGate.gridHeight / 2) !=
logicGate.yCoordinate)

logicGate.yCoordinate = ((newYCoordinate / logicGate.gridHeight) * logicGate.gridHeight) +
(logicGate.gridHeight / 2),
gatePositionChanged = true;

}

if(gatePositionChanged)

{
repaint();

)
¥/ end if(logicGate != null)
}// end GetUpdatedLocation

public void paint(Graphics g)
// paint specifies how object g is to be displayed.
{
update(g);
}// end paint

public void update(Graphics g)
//** this method is used to override the class's update function. it paints

139



//** objects to an off-screen image and then displays this image on screen.
//** this way, flashing of moving objects and signals changing is eliminated.

{

final int topPin=1;  // digit value of top input pin.

final int bottomPin = 2; // digit value of bottom input pin.

final int outputPin = 3; // digit value of output pin.

Dimension d = getSize(); // get dimensions of the canvas's drawing area.

// create an off-screen graphics drawing environment if none existed
// or if the user resized the drawing area to a different size.
if((offScreenGraphics = null) || (d.width != offScreenDimension.width)
|| (d.height != oftScreenDimension.height))
{
offScreenDimension = d;
offScreenlmage = createlmage(d.width, d.height);
offScreenGraphics = offScreenlmage.getGraphics();
}

// erase the previous image.
offScreenGraphics.setColor(getBackground());
offScreenGraphics.fillRect(0,0,d.width,d.height);
offScreenGraphics.setColor(Color.black);

// paint a border around the drawing area.
offScreenGraphics.draw3DRect(0,0,d. width - 1,d.height - 1,true);
offScreenGraphics.draw3DRect(0,0,d.width - 2.d.height - 2,true);

// draw all gates in the circuit onto the off-screen image.
for(int counter = 0; counter < logicCircuit.size(); ++counter)

((LogicGate) logicCircuit.elementAt(counter)).displayGate(offScreenGraphics);

if(simulator.buildCircuit) // if in build mode.

{
if(logicGate !=null) // if dragging a gate, display it onto the off-screen image.

logicGate.displayGate(offScreenGraphics);
)

if(currentState == connectGate) // if connecting up gates.

if(theDestinationGate !=null) // if there is a gate receiving a connection.
{
/I if a gate is selected by clicking its top input pin, draw a
// connection line from that pin to where ever the mouse goes.
if(whichInputPin == topPin)
{

if(theDestinationGate.isConnectorObject)

offScreenGraphics.drawLine(theDestinationGate.xCoordinate - 24,
theDestinationGate.yCoordinate, xCoordinate, yCoordinate);

else if(theDestinationGate.isNotGate)
offScreenGraphics.drawLine(theDestinationGate.xCoordinate - theDestinationGate.gridWidth / 2 ,

theDestinationGate.yCoordinate - theDestinationGate.gridHeight /4 + 5,
xCoordinate,yCoordinate);
}

else

offScreenGraphics.drawLine(theDestinationGate.x Coordinate - theDestinationGate.gridWidth / 2 ,

140



theDestinationGate.yCoordinate - theDestinationGate.gridHeight / 4 ,
xCoordinate,yCoordinate);

}

else if(whichInputPin == bottomPin)
// if a gate is selected by clicking its bottom input pin, draw a
// connection line from that pin to where ever the mouse goes.

if(theDestinationGate.isConnectorObject)

offScreenGraphics.drawLine(theDestinationGate.x Coordinate,
theDestinationGate.yCoordinate, xCoordinate, yCoordinate);

)

else

offScreenGraphics.drawLine(theDestinationGate.xCoordinate - theDestinationGate.gridWidth / 2,
theDestinationGate.yCoordinate + theDestinationGate.gridHeight / 4,
xCoordinate,yCoordinate);

)

}// end if(theDestinationGate != null)
else if(theOriginatingGate != null) // if there is a gate sending a connection.
{
/I if a gate is selected by clicking its output pin, draw a
// connection line from that pin to where ever the mouse goes.
if(theOriginatingGate.isConnectorObject)

offScreenGraphics.drawLine(theOriginatingGate.xCoordinate - 15,
theOriginatingGate.yCoordinate, xCoordinate, yCoordinate);
}

else

offScreenGraphics.drawLine(theOriginatingGate.xCoordinate + theOriginatingGate.gridWidth / 2,
theOriginatingGate.yCoordinate ,
xCoordinate,yCoordinate);

)
}// end else if(theOriginatingGate != null)
}// end if(currentState == connectGate)
} // end if(simulator.buildCircuit)
else  // else display the results of running the simulation,
{ /I by showing the states of the pins of all gates in the circuit.
for(int counter = 0; counter < logicCircuit.size(); ++counter)

((LogicGate) logicCircuit.elementAt(cdunter)).displayStates(offScreenGraphics);
}// end if(simulator.buildCircuit)
// paint the off-screen image to the application's viewing window.
g.drawlmage(offScreenlmage,0,0,this);

}// end update
}// end MyCanvas class

141



Appendix B

System Manual

LogicCity is a digital logic simulator used for entering a logic circuit schematic
and performing simulations of its behavior. You will only need a few minutes before you
begin to use the system. The next few paragraphs detail how to use the simulator
software. If you have questions that are left unanswered, please feel free to contact your

instructor for further explanations.

B.1 How to Build Circuits

When LogicCity software is started, a circuit window used for drawing a logic
circuit schematic opens up. This window (canvas) has a menu on the left side of the
canvas composed of buttons with each button representing a different gate or circuit part.
To create a gate and display it on the canvas, simply foHow these three easy steps.

1. First make sure that the master switch button is set to build mode. The master switch
is found at he top left of the screen (labeled Function). A label, displaying the current
mode of the switch, is placed next to the master switch.

2. Next, simply click the mouse on the desired gate button from the menu and move the
mouse over to the canvas area.

3. Finally, choose a location for your gate and click the mouse again at that position.

The selected gate or circuit part will appear at the desired location.

142



To create additional gates, just follow the above steps as many times as needed.

Once you have loaded a few gates into the canvas, they can easily be wired
together.
1. First, decide which two gates are to be connected.
2. Then choose the gate that is sending the output signal and click its output pin.
3. Next, move the mouse over to the second gate to be connected and click the mouse

over an input pin to finalize the connection procedure.

The simulator draws a line between the two selected pins. If you want to route wires
around the gates to keep the circuit clean and comprehendible, connector objects are
available in the parts menu. To place connector objects on the canvas, follow the same
steps used to place logic gates. A connector simply acts as a pass through buffer; it has no
value to the logic circuit except to make it look cleaner by routing wires around in neat

manner.

B.2 Entering Input Signals / Trapping Output Signals

Once you have built a log.ic circuit, you will need to create one or more input
objects depending on your circuit design. Input objects are used to enter input signals into
a circuit. Again, placing input objects is done exactly the same way as placing logic
gates. After you create an input object:

1. First click the pin used to send the signal out to the circuit
2. Then move the mouse over to the desired location

3. Finally, click the mouse once more to connect the input object to the circuit.

143



You can continue in this manner to wire other input objects. To obtain an output from a
circuit, you will need to create and connect an output object (in the same fashion you
created and connected the input object) to the logic circuit. Output signals are provided to

present the circuit outputs in a clear visual way.

B.3 How to Edit a Circuit

Making a mistake while building a logic circuit is inevitable. So an edit menu
composed of four buttons is provided at the top of the canvas. The four buttons are —
“open,” “save,” “erase,” and “clear all.” If you wish to erase a gate from the canvas,
simply click the “erase” button (this activates the erase mode), and then click the object
that you want to delete. The simulator will delete the selected gate by clearing its position
on canvas. Every time you need to erase an object from the canvas, you will need to click
the erase button first and then the object second. The erase mode is activated only once
per click for security reasons to avoid the accidental erasure of an object if the user is not
paying attention.

If the entire screen is desired to be cleared, just click on the “clear all” button. A
pop up dialog box, with two optioﬁs, will appear to confirm your request. You have the
option to:

e Click on the “cancel” button to get back to the circuit or
e Click on the “ok” button to go ahead and delete the whole circuit. If the circuit is

deleted entirely, the canvas is refreshed and displays an empty screen. At that point,

the simulator is ready to either build another circuit or open an existing one.

144



When in the early stages of development, you can never predict how a circuit will
actually look. Some components may be too close to each other or in the wrong lécation,
or you may need to scatter some congested areas of the circuit for better clarity. Moving a
circuit component around the canvas is easy to do. Just click and hold down the mouse
over the desired object and then drag the component to any new location. Gates will
easily move around even if they are connected. All wire connections will follow along

with the relocated object.

B.4 How to Save and Open a Circuit

Saving a circuit is easily accomplished by clicking on the “save” button after a
logic circuit is built. A dialog box with standard Windows format will pop up. Inside the
box one can see the file system of the computer used. The user can navigate to the desired
directory and then type in a name for the new circuit. If the name given is already used,
the system will advise to that fact and prompts again for another file name. Pushing
“enter” sends the new name to the simulator program, which then displays the new file
name at the top of the canvas.

To open an already existing circuit, just click on the “open” button from the edit
menu at the top of the screen. If there is a circuit in the canvas at the time the “open”
button is clicked, a dialog box that asks the user what to do with the present circuit
appears. At this point, you can:

o First save the circuit before opening another one or
e Ignore the dialog box, which will automatically delete the present circuit once the

new circuit appears.

145




If the canvas is empty at the time the “open” button is clicked, then the “open” dialog box
will appear and wait for the user to select a circuit from the computer's filing system. The
user can type the name of the desired circuit or just click on its icon to select it. Pushing
“enter” sends the message to the simulator, which will search the filing system, locate the

selected file, and produce the circuit as a logic schematic on screen.

B.5 How to Simulate a Circuit

When the circuit is ready for simulation, you can click on the master switch to
switch from the edit mode to the simulate mode. After this button is clicked, the states of
all objects in the circuit are displayed. All input pins and output pins have either a ‘0’ or a
‘1’ next to them. A ‘0’ value represents logic ‘low’ and is displayed in black, while ‘1’
represent logic ‘high’ and is displayed in red. Initially all input signals to the circuit are
set by default to ‘low,” but you can change the input state by toggling the input object.
Toggling is achieved by clicking inside the body of the input object. Input objects are
initially displayed in blue, but once toggled to ‘high’ its output pin is drawn in red to
visually display that a ‘high’ signal is being sent. If an output of the circuit (drawn in
light Grey) receives a ‘high’ signal, the whole body of the output object distinctly glows
in red. When input objects are toggled, the effect propagates throughout the entire circuit

changing the states of all affected gates.

B.6 How to Change the Background Color

The window's background color can easily be changed in either build or simulate

modes by using the pull-down menu provided at the bottom left of the canvas. A click on

146



the menu extends the body of the menu to show the ten color selections available. By
clicking on the color of interest and then clicking on the canvas once, the new color takes

effect immediately.

147



Bibliography

Amico, Vince, and Clymer A. Ben, "All About Simulators". Proceedings of the SCS
Simulators Conference. A Publication of the Society for Computer Simulation. 1984.
Anderson David, Roberts, Nancy, Real Ralph, Garet, Michael, and Shaffer, William.
Introduction to Computer Simulation: A System Dynamics Modeling Approach.
Productivity Press. 1994.

Bennett, A. Wayne. Introduction to Computer Simulation. pp 429-442. West Publishing
Cor any. 1974.

Bennett, Frederick, Ph.D., Computers as Tutors: Solving the Crisis in Education. pp 10-
34. http://www.cris.com/~Fabenl. 1996.

Bishop, Judy M., Java Gently, Programming Principles Explained, Addison-Wesley
Publishing Co., 1997.

Berkum, J.J.A. van, Hijne, H., de Jong, T., van Joolingen, W.R., Njoo, M., "Learning
processes, learner attributes and simulations". Education & Computing, Volume 6, pp
231-239, 1991.

Berkum, J.J.A. van, & de Jong, T., "Instructional environments for simulations".
Education & Computing, Volume 6, pp 305-358, 1991.

Blease, Derek. Evaluating Educational Software. Croom Helm. 1986.

148



Campione, Mary, and Walrath, Kathy. The Java Tutorial: Object-Oriented Programming
for the Internet. Addison-Wesley Publishing Co., 1996.

Coburn, Peter, Kelman, Peter, Roberts, Nancy, Snyder, Thomas, F.F., Watt, Daniel H.,
and Weiner Cheryl. Practical Guide to Computer Education. Addison-Wesley Publishing
Co., 1982.

Cornell, Gary and Hortsmann, Cay S., Core Java, Second Edition. The Sunsoft Press, A
Prentice Hall Title, 1997.

Dean, Christopher, and Whitlock, Quentin. 4 Handbook of Computer Based Training,
Second Edition. Kogan Page, L.ondon/Nichols Publishing Co., 1989.

Deitel, H. M. and Deitel, P. J., Java, How to Program, Second Edition. Prentice Hall,
1998.

Doll, Carol A. Evaluating Educational Software. American Library Association. 1987.
Ellington, H.I., Addinall, E., Percival, R. Games and simulations in science education.
London: Kogan Page. 1981.

Foley, J. D., and Van Dam, A., Fundamentals of interactive Computer Graphics,
Addison-Wesley Publishing Co., 1990.

Foley, J. D., Van Dam, Andries,- Feiner, Stephen K., Hughes, John F. and Phillips,
Richard L., Introduction to Computer Graphics, Second Edition. Addison-Wesley
Publishing Co., 1994.

Hamacher, V. Carl, Vranesic, Zvonko, G., Zaky, Safwat G., Computer Organization.
McGraw-Hill Book Company. 1978.

Hays, R.T., and Singer, M.J., Simulation Fidelity in Training System Design: Bridging

the Gap Between Reality and Training. Springer-Verlag Publishing. 1989.

149



Heimler, Charles, Cunningham, James, and nevard Michael. Authoring Educational
Software. Mitchell Publishing, Inc. 1987.

Hoog, R. de, Jong, T. de & Vries, F. de, "Interfaces for instructional use of simulations".
Education & Computing, Volume 6, pp 359-385. 1991.

Joolingen, W.R. van & de Jong, T., "Characteristics of simulations for instructional
settings". Education & Computing, Volume 6, pp 241-262. 1991.

Kain, Richard Y., Computer Architecture. Software and Hardware. Prentice Hall, Inc.,
1989.

Kennedy, David M., "Interactive Multimedia: Educational Desert or Educational Oasis".
Paper, Multimedia Education Unit. The University of Melbourne, Australia.

Korn, Granino A., Interactive Dynamic System Simulation. McGraw-Hill Book
Company. 1989.

Lewis, John and Loftus, William. Java Software Solutions, Preliminary Edition.
Addison Wesley Longman, Inc., 1998.

McTear, Michael F., Understanding Cognitive Science, John Wiley & Sons, Inc.,
Publishers. 1988.

Milson, Marliese. "Educational Tec;hnology: Hype or Help in Reforming Education".
EDUC 420, The Professional Teaching and American Education. Mary Washington
College.

Min, F.B.M., "Parallel Instruction, a Theory for Educational Computer Simulation".

Interactive Learning International, Volume 8, No. 3, pp 177-183. 1992.

150



Nievergelt, Jay, Ventura, Andrea, and Hinterberger, Hans. Inferactive Computer
Programs for Education: Philosophy, Techniques, and FExamples. Addison-Wesley
Publishing Co., 1986.

Perkins, David N., Schwartz, Judah L., West, Mary M., and Wiske, Marth S. Software
Goes to School. pp 106. Oxford University Publishing, 1995.

Reigeluth, Charles M., Instructional-Design Theories and Models: An Overview of their
Current Status. Lawrence Erlbaum associates, Inc. Publishers. 1983.

Reigeluth, C.M. & Schwartz, E., "An instructional theory for the design of computer-
based simulations". Journal of computer-based instruction, Volume 16, No. 1, pp 1-10.
1989.

Romiszowski, A.J., "Designing Instructional Systems: Decision Making in Course
Planning and Curriculum Design". Kogan Page, London/Nichols Publishing Co., 1981.
Schaick Zillesen, P.G. van & Min, F.B.M, "MacTHESIS: a design system for educational
computer simulation programs". Wheels for the mind of Europe, pp 23-33. 1987.
Schofield, Janet Ward. Computers and Classroom Culture. Cambridge University Press.
1995.

Sewell, David F., New Tools for New Minds. St. Martin's Press. 1990.

Standish, Thomas A., Data Structures in Java, Addison-Wesley Publishing Co., 1998.
Tanenbaum, Andrew S., Structured Computer Organization, Third Edition. Prentice Hall,
1990.

United States. U.S. Department of Education. "Getting America's Students Ready for the

21st Century". pp 5-20. U.S. Government Printing Office, 1996.

151



United States. U.S. Department of Education. Office of Educational Technology.
"Making It Happen". Report of the Secretary's Conference on Educational Technology.
pp 16-24. U.S. Government Printing Office, 1995.

United States. U.S. Department of Education. Office of Educational Research and
Improvement. "Using Technology to Support Education”. pp 1-28. U.S. Government
Printing Office, 1993.

Dizzy: By Jim Munki, 1990. URL:

ftp://ftp.symantec.com/public/english_us canada/products/c++/mac/samples/source _code
/dizzy.sit.hgx

Logg-O URL: http://www.pws.com/aeonline/course/7/2/index.html, Lab 7.2: "Bill's
Gates". Rick Decker and Stuart Hirshfield, PWS Publishing Company, 1998.

Weiss, Mark Allen, Data Structures & Problem Solving Using Java. Addison-Wesley
Publishing Co., 1998.

Whicker, Marcia Lynn, and Sigelman, Lee. Computer Simulation Applications: An
Introduction. Sage Publications. 1991.

Williams, Frederick and Williams, Victoria. Success with Educational Software. Praeger
Publishers. 1985. |

Zeigler Bernard P., Theory of Modeling and Simulation, John Wiley & Sons, Inc.,
Publishers. 1976.

Zobrist, George W., and Leonard, James V., Progress in Simulation, Volume One. Ablex

Publishing Corp. 1992.

152



	LogicCity: On-Line Digital Logic Simulator
	Terms of Use
	Recommended Citation

	thesis_almahaynt_1998_001
	thesis_almahaynt_1998_002
	thesis_almahaynt_1998_003
	thesis_almahaynt_1998_004
	thesis_almahaynt_1998_005
	thesis_almahaynt_1998_006
	thesis_almahaynt_1998_007
	thesis_almahaynt_1998_008
	thesis_almahaynt_1998_009
	thesis_almahaynt_1998_010
	thesis_almahaynt_1998_011
	thesis_almahaynt_1998_012
	thesis_almahaynt_1998_013
	thesis_almahaynt_1998_014
	thesis_almahaynt_1998_015
	thesis_almahaynt_1998_016
	thesis_almahaynt_1998_017
	thesis_almahaynt_1998_018
	thesis_almahaynt_1998_019
	thesis_almahaynt_1998_020
	thesis_almahaynt_1998_021
	thesis_almahaynt_1998_022
	thesis_almahaynt_1998_023
	thesis_almahaynt_1998_024
	thesis_almahaynt_1998_025
	thesis_almahaynt_1998_026
	thesis_almahaynt_1998_027
	thesis_almahaynt_1998_028
	thesis_almahaynt_1998_029
	thesis_almahaynt_1998_030
	thesis_almahaynt_1998_031
	thesis_almahaynt_1998_032
	thesis_almahaynt_1998_033
	thesis_almahaynt_1998_034
	thesis_almahaynt_1998_035
	thesis_almahaynt_1998_036
	thesis_almahaynt_1998_037
	thesis_almahaynt_1998_038
	thesis_almahaynt_1998_039
	thesis_almahaynt_1998_040
	thesis_almahaynt_1998_041
	thesis_almahaynt_1998_042
	thesis_almahaynt_1998_043
	thesis_almahaynt_1998_044
	thesis_almahaynt_1998_045
	thesis_almahaynt_1998_046
	thesis_almahaynt_1998_047
	thesis_almahaynt_1998_048
	thesis_almahaynt_1998_049
	thesis_almahaynt_1998_050
	thesis_almahaynt_1998_051
	thesis_almahaynt_1998_052
	thesis_almahaynt_1998_053
	thesis_almahaynt_1998_054
	thesis_almahaynt_1998_055
	thesis_almahaynt_1998_056
	thesis_almahaynt_1998_057
	thesis_almahaynt_1998_058
	thesis_almahaynt_1998_059
	thesis_almahaynt_1998_060
	thesis_almahaynt_1998_061
	thesis_almahaynt_1998_062
	thesis_almahaynt_1998_063
	thesis_almahaynt_1998_064
	thesis_almahaynt_1998_065
	thesis_almahaynt_1998_066
	thesis_almahaynt_1998_067
	thesis_almahaynt_1998_068
	thesis_almahaynt_1998_069
	thesis_almahaynt_1998_070
	thesis_almahaynt_1998_071
	thesis_almahaynt_1998_072
	thesis_almahaynt_1998_073
	thesis_almahaynt_1998_074
	thesis_almahaynt_1998_075
	thesis_almahaynt_1998_076
	thesis_almahaynt_1998_077
	thesis_almahaynt_1998_078
	thesis_almahaynt_1998_079
	thesis_almahaynt_1998_080
	thesis_almahaynt_1998_081
	thesis_almahaynt_1998_082
	thesis_almahaynt_1998_083
	thesis_almahaynt_1998_084
	thesis_almahaynt_1998_085
	thesis_almahaynt_1998_086
	thesis_almahaynt_1998_087
	thesis_almahaynt_1998_088
	thesis_almahaynt_1998_089
	thesis_almahaynt_1998_090
	thesis_almahaynt_1998_091
	thesis_almahaynt_1998_092
	thesis_almahaynt_1998_093
	thesis_almahaynt_1998_094
	thesis_almahaynt_1998_095
	thesis_almahaynt_1998_096
	thesis_almahaynt_1998_097
	thesis_almahaynt_1998_098
	thesis_almahaynt_1998_099
	thesis_almahaynt_1998_100
	thesis_almahaynt_1998_101
	thesis_almahaynt_1998_102
	thesis_almahaynt_1998_103
	thesis_almahaynt_1998_104
	thesis_almahaynt_1998_105
	thesis_almahaynt_1998_106
	thesis_almahaynt_1998_107
	thesis_almahaynt_1998_108
	thesis_almahaynt_1998_109
	thesis_almahaynt_1998_110
	thesis_almahaynt_1998_111
	thesis_almahaynt_1998_112
	thesis_almahaynt_1998_113
	thesis_almahaynt_1998_114
	thesis_almahaynt_1998_115
	thesis_almahaynt_1998_116
	thesis_almahaynt_1998_117
	thesis_almahaynt_1998_118
	thesis_almahaynt_1998_119
	thesis_almahaynt_1998_120
	thesis_almahaynt_1998_121
	thesis_almahaynt_1998_122
	thesis_almahaynt_1998_123
	thesis_almahaynt_1998_124
	thesis_almahaynt_1998_125
	thesis_almahaynt_1998_126
	thesis_almahaynt_1998_127
	thesis_almahaynt_1998_128
	thesis_almahaynt_1998_129
	thesis_almahaynt_1998_130
	thesis_almahaynt_1998_131
	thesis_almahaynt_1998_132
	thesis_almahaynt_1998_133
	thesis_almahaynt_1998_134
	thesis_almahaynt_1998_135
	thesis_almahaynt_1998_136
	thesis_almahaynt_1998_137
	thesis_almahaynt_1998_138
	thesis_almahaynt_1998_139
	thesis_almahaynt_1998_140
	thesis_almahaynt_1998_141
	thesis_almahaynt_1998_142
	thesis_almahaynt_1998_143
	thesis_almahaynt_1998_144
	thesis_almahaynt_1998_145
	thesis_almahaynt_1998_146
	thesis_almahaynt_1998_147
	thesis_almahaynt_1998_148
	thesis_almahaynt_1998_149
	thesis_almahaynt_1998_150
	thesis_almahaynt_1998_151
	thesis_almahaynt_1998_152
	thesis_almahaynt_1998_153
	thesis_almahaynt_1998_154
	thesis_almahaynt_1998_155
	thesis_almahaynt_1998_156
	thesis_almahaynt_1998_157
	thesis_almahaynt_1998_158
	thesis_almahaynt_1998_159
	thesis_almahaynt_1998_160
	thesis_almahaynt_1998_161
	thesis_almahaynt_1998_162
	thesis_almahaynt_1998_163

