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ABSTRACT 

Oysters are keystone species in the coastal environment, providing ecological, 

economic, and cultural services. A significant ecosystem service is their ability to 

improve water quality by filtration and denitrification. These ecological functions are 

made possible by oyster-associated microbes, but may also be threatened by microbial 

pathogens. This positions the oyster as a model system for the study of marine host-

associated microbial diversity and function. However, studies of microbial diversity 

and function in shellfish are lacking, particularly in response to environmental 

perturbations. As coastal ecosystems change due to anthropogenic impacts and climate 

variability, it is important to understand how the oyster microbiome is affected and 

how this may impact the host. The aim of this dissertation is to determine the role of 

oyster associated microbiomes in response to selected environmental changes (i.e. 

probiotics, eutrophication, and nutrient enrichment).  

Chapter 1 is a literature review describing the crosstalk between microbial 

community structure and function in marine host-associated microbiomes, and the 

importance of oyster microbiomes. The ecological need for both compositional and 

functional microbiome data is emphasized.  

In Chapter 2, a survey of wild adult oyster gut microbiomes was performed to 

determine the effects of estuarine acidification and other environmental conditions. 

Oysters were collected at 5 sites along the north to south trophic gradient in 

Narragansett Bay, Rhode Island and the bacterial composition and function of their gut 

samples were analyzed using 16S rRNA amplicon sequencing and 

metatranscriptomics. Despite high variability in the bacterial community in oyster 



 

 

samples within each site, we found that gut bacterial communities were selected from 

the seawater microbiomes and varied throughout the Bay. In addition, the 

transcriptionally most active taxa (as detected through metatranscriptome analysis) 

were not the most abundant (as detected by 16S rRNA amplicon sequencing), 

suggesting plasticity in function as a result of redundancy. These active bacteria 

showed significantly increased expression of genes in stress response and phosphorus 

metabolism pathways at the northern, most nutrient-rich and anoxic sites, as compared 

to the other sites. At the southern sites, characterized by higher dissolved oxygen and 

lower nutrient levels, the oyster microbiomes showed a significant upregulation of 

genes involved in nitrogen metabolism. These shifts in microbial community 

composition and function inform how estuarine conditions may affect host-associated 

microbiomes. This research also evaluated the potential relationship between the 

health status of each oyster, evaluated using histology and pathogen-specific qPCR, 

and oyster gut microbial community composition and function (Appendix A).  

The influence of nutrient enrichment on farmed adult oyster microbiomes was 

investigated in Chapter 3. A field study was performed at two contrasting sites in Point 

Judith Pond, Rhode Island, where oysters were out-planted for 3 months. Half of the 

oysters at each site were treated with fertilizer pellets, while the other half were 

maintained at ambient site conditions. Gut, inner shell, and outer shell biofilm samples 

were collected and analyzed using both 16S rRNA amplicon and metatranscriptomic 

sequencing. We detected significant differences in microbial diversity between sample 

types, site, and treatment (nutrient enrichment). Nutrient enrichment caused significant 

differential expression of nitrogen metabolism genes, but this response varied 



 

 

according to oyster sample type and field site. Overall nitrogen fixation and ammonia 

assimilation were upregulated in gut tissues, while denitrification, nitrogen fixation, 

and ammonia assimilation were downregulated in the outer shell samples. These 

results inform how oyster microbiomes perform coupled nitrification-denitrification, 

and how this might change with increased nutrients. In addition, Appendix B 

highlights the significant changes between microbial functions performed in each 

sample type. 

In Chapter 4, we characterized bacterial community dynamics in an eastern oyster 

hatchery during the first 12 days after spawning and how it was affected by treatment 

with probiotic bacterium Bacillus pumilus RI06-95. Larvae, rearing water, and tank 

biofilm samples were collected from 3 separate probiotic trials and analyzed using 16S 

rRNA amplicon sequencing to determine the presence and relative abundances of 

bacteria. The bacterial community structures diverged by trial, sampling timepoint, 

and sample type, but there was no bulk effect of the probiotic. Instead, the probiotic 

acted by targeting selected taxa, amplifying Oceanospirillales in the rearing water and 

larvae, decreasing the relative abundance of Vibrionales, and increasing Vibrionales 

diversity. These targeted changes likely lead to a net decrease in potentially 

pathogenic species. 

This dissertation emphasizes the significance of oyster-associated microbiomes 

and their importance to aquaculture disease prevention, wild fishery sustainability, and 

coastal restoration efficacy. As urbanization, coastal acidification, and disease 

outbreaks increase, it is important to understand these oyster-associated microbial 

community dynamics and how they might vary with environmental change.   
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PREFACE 

This dissertation was written in accordance with the manuscript format guidelines 

established by the Graduate School of the University of Rhode Island. The dissertation 

includes the following four manuscripts and a summary chapter: 

1. “Microbial-Host Interactions in Coastal Ecosystems” prepared for submission 

to Applied and Environmental Microbiology. 

2. “Functional Plasticity in Oyster Gut Microbiomes Along an Estuarine Gradient 

in Narragansett Bay, Rhode Island” prepared for submission to The ISME Journal. 

3. “Nutrient Enrichment Affects Mechanisms of Nitrogen Cycling in Oyster-

Associated Microbiomes” prepared for submission to FEMS Microbiology Ecology. 

4. “Bacterial Community Dynamics in an Oyster Hatchery in Response to 

Probiotic Treatment” published in Frontiers in Microbiology in May 2019. 

5. In the final summary chapter, the contributions made in this dissertation are 

explored within the context of each other and current literature.   
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Abstract 

Understanding the interplay between microbial community structures and the 

physiological/ecological functions they encode, is central to the understanding of how 

host-associated microbes affect host performance and ecosystem function, as well as 

how they may offset environmental perturbations. In this review, we discuss recent 

advances on the study of the interplay between community structure and function of 

host-associated microbiomes within the context of coastal ecosystems, by focusing on 

selected case studies that showcase the impact of environmental perturbation (e.g. 

seasonal cycles, eutrophication, chemical pollution). We also explore the use of 

microbe-microbe interactions (i.e. through the use of microbial supplements, such as 

probiotics) as a mechanism to manipulate microbial community structure and function, 

and how such changes may ultimately impact host resilience. These examples 

highlight how both the environment and composition of microbial community 

structure determine function, underlining the need for more structural and functional 

data from host-associated microbiome studies. This review ends with a discussion of 

the importance of host-associated microbiomes in oysters and an outline of this 

dissertation. 
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Importance of Host-Associated Microbiomes in Coastal 

Environments 

There is increasing awareness that marine organisms interact with their associated 

microbiomes, and that these interactions influence many aspects of host and microbial 

fitness (Bahrndorff et al., 2016; McFall-Ngai et al., 2013). Several reviews have 

highlighted the importance and ubiquity of host-microbiome interactions across all 

trophic levels and domains of life, and elucidated their contributions to host fitness, 

performance, survival, etc. (Parfrey et al., 2018b; Thompson et al., 2017). It is 

estimated that humans host trillions of microbes in our gut and skin tissues alone and 

37% of our ~23,000 genes have bacterial or archaeal homologs (derived from descent 

or horizontal gene transfer) (Domazet-Lošo and Tautz, 2008; Sender et al., 2016). In 

marine organisms, a review by O’Brien et al. (2019) highlights the abundance of and 

variation in microbiome complexity from a single symbiont (bobtail squid) to 3000 

associated microbial taxa (sponges). 

Host-associated microbiomes are made up of both permanent (symbionts) and 

transient members that may have a mutualistic, parasitic, or commensal relationship 

with the host, as determined by their impacts (beneficial, negative, or neutral) on host 

and microbial fitness (Hammer et al., 2019). Marine host-associated microbiomes 

perform many beneficial functions to their hosts, including nutrient sharing and 

cycling (Fiore et al., 2010; Kneip et al., 2007; Yellowlees et al., 2008; Zhang et al., 

2015), protection against disease (Egan and Gardiner, 2016; Janssens et al., 2018; 

Longford et al., 2019; Vonaesch et al., 2018), acclimation to the environment (Carrier 

and Reitzel, 2018), and host access to their gene pool (Degnan, 2014). On the other 
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hand, marine microbes are also agents of disease, stress, and decay, especially to 

susceptible hosts (Groner et al., 2016; Lafferty et al., 2015). Microbial communities 

are abundant in the ocean and responsible for primary production, consequential 

nutrient cycling, and degradation of organic matter (Kirchman, 2008; Sogin et al., 

2006). Both transient and resident host-associated microbiomes also contribute to 

ocean ecosystem function, since marine hosts have many key attributes that position 

them as hotspots of microbial activity in the ocean (Apprill, 2017). These attributes 

include unique substrates for growth and metabolite sharing, since the microbiome is 

in close proximity to the host (Beinart, 2019; Nyholm and Graf, 2012).  

Coastal environments and their ecosystems are rapidly changing as urbanization, 

nutrient enrichment, toxin contamination, and other pollutants increase (Baumann et 

al., 2014; Wallace et al., 2014). These fluctuations have led to changes in benthic 

functioning (Hale et al., 2016; Linares et al., 2015), microbial diversity and activity 

(Paerl et al., 2002), algal toxicity (Hattenrath-Lehmann et al., 2015), and declined 

fisheries production (Haigh et al., 2015), which have widespread implications for 

coastal ecosystems. Since these changes are likely to increase, it is particularly 

important to understand the positive and negative interactions between marine hosts 

and their microbiomes (Melzner et al., 2013; Rheuban et al., 2018). In this review, we 

discuss how we might evaluate the impacts of environmental perturbation on host-

associated microbial community structure and function, with a focus on the effects of 

nutrient enrichment and the addition of antibiotics or probiotics.  
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Studying the Impact of Environmental Perturbations on Host-

Microbial Interactions: The Interplay between Microbial Community 

Structure and Function 

In this review, we will focus on two axes of variation in host-associated 

microbiomes – structure and function – to characterize how environmental 

perturbations may affect microbe-host interactions in coastal ecosystems (Figure 1). 

Until now, due to the relatively high costs of sequencing and the lack of high-

throughput functional assays that can be linked to specific members of the microbial 

community, few studies of host-associated microbiomes have attempted to dissect the 

functional responses of their resident microbial communities. A review of how 

microbiomes influence the ecosystems that surround them, proposed that microbial 

function is likely linked to a few select, “predictive” taxa that determine community 

aggregated traits (Hall et al., 2018). This would be particularly appropriate for disease 

phenotypes, where presence of a pathogen may predict the function and structure of an 

unbalanced, lower diversity microbiome (Lloyd and Pespeni, 2018; Longford et al., 

2019; Vonaesch et al., 2018).  

However, environmental microbiomes are notorious for breaking the rules (Hall 

et al., 2018) and there likely will be exceptions. For example, Graham et al. (2016) 

performed an extensive survey of the impact of including soil and sediment microbial 

community structures in global carbon and nitrogen cycling process predictions. They 

found that environmental conditions were the strongest predictor of metabolic rates, 

and only 29% of their 82 global datasets were improved with inclusion of microbial 

community composition data (16S rRNA amplicons). In this scenario, the microbial 
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function was much more influential than community structure (i.e. the same microbes 

may have been performing different functions or many microbes were performing the 

same function).  

Perhaps the most well-studied marine host-microbe interaction is that of the squid 

Euprymna scolopes and its primary bacterial symbiont Vibrio fischeri (Nyholm and 

McFall-Ngai, 2004). This bacterial symbiont enables the light organ of the squid. A 

recent study of this system used metagenomics and metatranscriptomics to show that 

each light organ has a distinct microbial function due to colonization by different 

environmental microbes (Belcaid et al., 2019). In soils, a study by Rath et al. (2019) 

used salinity as the “filtering variable” to show how microbial respiration and growth 

is determined by the environment, and then predict how microbial community 

structure may change as a result. They determined that microbial respiration and 

growth depend on salinity and these changes are linked to specific taxa. Using this 

variable-specific approach in host-associated microbiomes may explain how 

environmentally-driven function depends on structure, and vice versa. 

A system that is resilient to environmental change typically has high microbial 

diversity, functional redundancy, and high growth rates, which combine to promote 

functional plasticity (Nemergut et al., 2013; Shade et al., 2012). The key unknown in 

understanding how perturbations affect host-associated microbiomes is the 

identification of the factors that drive responses to a particular perturbation in a 

particular system. This may be driven by changes in microbial function because the 

same microbes are now performing new functions and/or by changes in community 

structure that allow for different physiological functions to be expressed (Louca et al., 
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2018; Orland et al., 2019). This interplay between microbial community structure and 

ecological function is significant to the understanding of host-associated microbiomes. 

If we know these dynamics, then we can use the structure to predict the function of 

diverse microbial communities and how they may affect their hosts.  

The composition and diversity of microbiomes is characterized using a variety of 

parameters. Microbial diversity is a function of the richness (how many) and evenness 

(relative abundances) of taxa in a microbial community. Host-associated microbial 

community structure is determined by the composition and diversity of microbial 

community members in the environment in which the host resides, as well as through 

selection exerted by the host itself (Webster et al., 2010). The host’s life history, diet, 

feeding mechanisms, and development contribute to the selection of a host-specific 

microbiome (McFall-Ngai et al., 2013; Parfrey et al., 2018a). Currently, the most 

common method to determine microbial community structures is through the 

sequencing of a marker gene, particularly with the 16S rRNA subunit for bacteria 

(Zoetendal et al., 1998), the 18S rRNA subunit for eukaryotes (Moon-Van Der Staay 

et al., 2001), and internal transcribed spacer (ITS) region for fungi (Schoch et al., 

2012). Increased affordability of high-throughput sequencing technologies have led to 

a deluge of new microbial community structure studies that characterize which 

microbes are present and their relative abundances (Pollock et al., 2018). However, 

marker gene (DNA) approaches cannot provide evidence of changes in microbial 

function. 

Host-associated microbial functions are thus determined by the prevailing 

conditions within a given host compartment and by the type of microbes that occupy 
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these different niches within the host. The genomes of the microbial population (in 

other words, what genes are present in the microbiome) determine the potential for 

physiological and ecological function. Gene expression and protein and metabolite 

measurements can be used to characterize the microbial acclimation response to 

environmental change, and how their outcomes determine host phenotypes like disease 

state, percent survival, growth rates etc. (Dantas et al., 2013; Louca et al., 2018). Gene 

expression can be determined using a variety of methods, including qPCR, RNA 

microarrays, and metatranscriptomics. When a study is targeting a limited number of 

genes to explain a process, then qPCR and RNA microarrays are used. However, these 

gene expression-based methods are limited to known functional genes and databases.  

Metatranscriptomic, metaproteomics, and metabolomic methods are used to 

characterize all coding mRNA, proteins or metabolites in a sample to determine total 

microbial activity (Gifford et al., 2014). Unfortunately, a major barrier to determining 

the function of microbial communities using metatranscriptomics, metaproteomics, or 

metabolomics is the lack of annotated protein databases. As of April 2019, 

experimentally confirmed protein functions made up less than 1% of the UniProt 

database (Bateman et al., 2017). The other 99% of the protein functions are either not 

characterized or, at best, their function is predicted for orthologs. Annotation of 

Mycoplasma mycoides, the bacterium with the smallest known genome, predicted only 

324 protein from a total of 473 genes (68%), highlighting the need for improved 

protein annotation techniques (Antczak et al., 2019).  

Based on the premise that an environmental perturbation affects the structure and 

function of a host-associated microbiome, then the structure and/or function will 
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change accordingly, leading to acclimation that seeks to offset the effects of 

perturbation (Louca et al., 2018; Robinson et al., 2010). The relative importance of the 

structure or the function depends on the perturbation, the environment, and the host. 

This model will be explained using 3 examples: nutrient enrichment and the addition 

of probiotics or antibiotics (Figure 2). 

 

Impacts of Environmental Perturbation on Host-Microbial 

Interactions in Marine Species: Eutrophication 

Marine organisms in coastal and estuarine environments are subjected to high 

levels of macronutrients (nitrogen, phosphorus) due to organic pollution and runoff 

(Nixon, 1995; Wallace et al., 2014). This nutrient enrichment phenomenon is 

becoming more prevalent due to increased urbanization and has a significant impact 

on trophic structures, particularly at the base of the food web (Meyer-Reil and Köster, 

2000). When nutrient enrichment occurs, the microbial function changes to 

compensate for the influx of nutrients (Bricker et al., 2008; Fowler et al., 2013). This 

leads to changes in the microbial composition since the microbes are interacting and 

competing for nutrients. An extreme result of coastal eutrophication is an algal bloom: 

when excess nutrients stimulate algal growth, leading to reduced oxygen and therefore 

changes in overall ecosystem function and microbial community composition 

(Hudnell, 2008; Landsberg, 2002; Paerl et al., 2003). Studies of the microbial 

community dynamics during an algal bloom show that the competition for nutrients 

and anoxia lead to a different microbial composition in seawater after the bloom 

(Hattenrath-Lehmann and Gobler, 2017; Shin et al., 2018; Zheng et al., 2018). 
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Unfortunately, studies on the effects of nutrient enrichment on marine host-

associated microbiomes are limited and there is no general consensus of its effects. 

Nutrient enrichment promoted the symbiosis between marine hydroid Myrionema 

amboinese and its dinoflagellate symbionts as a result of increased food supply to the 

host (Fitt and Cook, 2001). In the reef-building coral Porites asteroides, nutrient 

enrichment caused changes in symbiont function due to changes in prey abundance 

(Welsh et al., 2016). Microbial diversity of the staghorn coral decreased with nutrient 

enrichment and microbial communities were dominated by a Rickettsia-like organism 

(Shaver et al., 2017). A study of the effects of eutrophication on kelp microbiomes due 

to coastal urbanization uncovered differences in microbial community structure, but 

did not determine changes in microbial function (Marzinelli et al., 2018). Future 

studies should characterize how both the microbial community composition and 

function are affected by nutrient enrichment to fully understand the impact of 

increased eutrophication. 

 

Impacts of Environmental Perturbation on Host-Microbial 

Interactions in Marine Species: Antibiotic Treatment   

Antibiotics are substances used to kill bacteria or inhibit bacterial growth (Fajardo 

and Martínez, 2008); they have been used extensively for human therapy, agricultural, 

and farming applications, leading to high levels of antibiotic pollution in the 

environment (Knapp et al., 2008). As the use of antibiotics increases and their efficacy 

decreases, antimicrobial resistance is gaining awareness as a global health crisis 

(Ventola, 2015). As antimicrobial resistance grows, it is important to study their 
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effects on host-associated microbiomes, particularly in coastal environments 

(Stepanauskas et al., 2006). When antibiotics are added to a system, the microbial 

composition changes as targeted susceptible microbes are eradicated, leading to 

microbial community structure changes (Eckert et al., 2019; Nogales et al., 2011). 

This ultimately alters the function of the community after antibiotic treatment, since 

there will be a new microbial community structure and different microbes present after 

colonization of open niches by existing or new species.  

The overall effect of antibiotics on host microbial community structures and 

corresponding effects on the host physiology varies considerably between studies. 

Treatment with prophylactic antibiotics caused increased mortality after bacterial 

challenge in black molly fish, but no detectable effect on the microbial diversity 

(Schmidt et al., 2017). Antibiotic treatment with Streptomycin in zebrafish larvae or 

oxytetracycline in juvenile Atlantic salmon caused significant decreases in alpha-

diversity and increased larval mortality (Navarrete et al., 2008; Pindling et al., 2018). 

In adult Atlantic salmon intestinal samples treated with florfenicol and oxolinic acid, 

changes in beta-diversity and key taxa were observed (Gupta et al., 2019). 

Measurements of succession in seaweed microbiomes after antibiotic disturbance 

showed that functions and interactions within a microbiome were restored, leading to 

host protection (Longford et al., 2019). Despite the variability between studies, these 

observations in marine hosts confirm that antibiotics lead to microbial community 

composition (and likely function) changes that have impacts on the hosts. A better 

understanding of these compositional and functional changes in the microbial 
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community of the host would aid in managing the potential negative impacts of 

antibiotics on hosts. 

 

Exploiting Microbe-Microbe Interactions to Increase Host Resilience: 

Probiotics 

Probiotics have been used to improve host health and protection against disease in 

human, aquaculture, and agricultural settings (Chauhan and Singh, 2018; Pandey et 

al., 2015; Pérez-Sánchez et al., 2018). Probiotics are beneficial microorganisms that 

protect the host by pathogen interference, immunomodulation, or improvement of 

barrier function in the resident host microbiota (Sánchez et al., 2017). In humans, the 

benefits of probiotics have been widely studied, and shown to increase hormone 

regulation, alter cell proliferation, promote vitamin absorption, and promote immune 

cells (Reid et al., 2019). These impacts are modulated by the host microbiome: 

probiotics alter the microbial community composition to promote host health (Sánchez 

et al., 2017).  

In aquatic systems (marine and freshwater), probiotics have been shown to exert 

their effects through a variety of mechanisms of action, including competition for 

nutrients, improvement of water quality, pathogen inhibition, secretion of 

antimicrobials, and immunomodulation (Kesarcodi-Watson et al., 2012; Prado et al., 

2010). Many in vitro studies suggest that probiotics inhibit or decrease pathogens in 

the system, leading to a reduced chance of disease outbreak (Sohn et al., 2016). Little 

is known, however, about how probiotics affect the function of the microbial 

communities in the culture systems in which they are used.  
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The impact of probiotics on marine microbiomes has been studied in a variety of 

marine hosts to determine shifts in microbial community structure, often with 

emphasis on specific taxa. A study of the impact of Phaeobacter inhibens treatment on 

the microalga Emiliana huxleyi and the European flat oyster Ostrea edulis found 

significant changes in the relative abundance of Vibrios and Pseudoalteromonadales, 

with the most substantial impact observed in the oyster samples (Dittmann et al., 

2019). Probiotic treatment of juvenile Kumamoto oysters with Streptomyces N7 and 

NL8 resulted in increased species diversity and changes in Bacteriovorax and Vibrio 

taxa (García Bernal et al., 2017). A study of the effect of probiotic Bacillus pumilus 

RI06-95 on larval eastern oysters established that probiotics did not affect overall 

diversity, but affected key members of the microbiome to increase larval protection 

(Stevick et al., 2019, Chapter 2 of this dissertation). In shrimp, treatment with a 

probiotic mixture caused significant shifts in beta-diversity and the detection of 12 

new species in one study (Vargas-Albores et al., 2017), but this finding could not be 

confirmed in a parallel study (Huerta-Rábago et al., 2019). A multi-species probiotic 

applied in tilapia aquaculture caused decreased microbial diversity in the digestive 

gland (Merrifield and Carnevali, 2014). Altogether, these studies indicate that 

probiotic effects on microbial community structure are highly dependent on the host 

species, the probiotic, and the 16S rRNA amplicon analysis methods used. 

Notwithstanding detection of changes in microbial community structure, little is 

known about the effects of probiotics on microbial function, and how those changes in 

microbial community structure and function may protect and improve the health of the 

host. Future studies should address these questions, as well as the potential impact of 
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variability observed in marine host microbiomes on probiotic activity, using high-

resolution functional surveys.  

 

Conclusions and Perspectives: Factors to be Considered in Future 

Studies of Host-Microbial Associations 

Previous studies of host responses to environmental perturbations show high 

variability and differential responses that may be explained by aspects of the system 

(i.e. host variability, tissue type, ambient environmental conditions) other than 

microbial community structure and function. The role of host genotype, genetic 

potential, and the resulting phenotype and physiology is likely an important 

determinant of interactions within a microbiome. Many studies have alluded to the 

relationship between host genetics and associated microbiomes (Dishaw et al., 2014; 

Morrissey et al., 2019), but these interactions have not been characterized in marine 

systems. However, it is known that host genetics and lifestyle play a role in vertical 

microbiome transmission between generations for some species, especially in marine 

broadcast spawning organisms, such as corals (Gundel et al., 2011; Sharp et al., 2007). 

Additionally, the host is constantly placing pressure on its microbial community 

through immunomodulation and metabolism (Muñoz et al., 2019; Nyholm and Graf, 

2012; Pindling et al., 2018). This may lead to variation in microbiomes between hosts 

in a community, and differences in host success.  

In addition to host genetics, tissue function and physiology may also play a key 

role in determining the structure and function of its associated microbiome. Each 

compartment within an organism provides a distinct microbial niche that promotes a 
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certain microbiome, depending on its anatomy, physiology, and isolation. These are 

sub-environments that are significantly different than the host’s ambient environment. 

For example, different tissues give off different metabolites, maintain different acidity 

and pH, and have variable oxygen content (Belcaid et al., 2019; Lynch et al., 2019). 

In order to understand the importance and role of host-associated microbiomes, it 

is essential to determine both the structure and function of the microorganisms. 

Increased functional studies using a combination of approaches able to measure 

microbial community function (e.g. qPCR, metatranscriptomics, metaproteomics, 

metabolomics) and relate it to changes in host function (e.g. growth, survival, health 

status, host transcriptomics) in the context of controlled environmental perturbations 

are necessary to supplement microbial surveys and provide context for changes in 

community structures and their potential impacts on their hosts.  

 

Oysters as a Model System in the Study of the Impact of 

Environmental Perturbation on Host-Microbial Associations  

Oysters are keystone species in marine ecosystems, providing economic growth 

in terms of seafood harvest and ecological services (Barbier et al., 2011; Grabowski et 

al., 2012; Wijsman et al., 2018). A 2019 survey by the Food and Agriculture 

Organization of the United Nations (FAO) valued global wild oyster fishery exports at 

$148 million USD and aquaculture at $6.8 trillion USD (FAO, 2019). This value has 

increased exponentially in the past decade due to continually increasing seafood 

demands (FAO, 2018). In Rhode Island, USA, total aquaculture products were valued 

at $6.09 million USD in 2018, and oysters were the largest aquaculture export, with a 
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total sale of 8,515,950 specimens (Beutel, 2018). Besides the commercial value of the 

shellfish, the Rhode Island oyster shellfishery comprises an industry that adds 

historical and cultural value (Schumann, 2015).  

Wild and restored oyster reefs provide a multitude of ecosystem services 

including water filtration, erosion control, and habitat provision (Grabowski et al., 

2012; Kellogg et al., 2014; La Peyre et al., 2014; Rodriguez et al., 2014). A one-acre 

oyster reef can clean the equivalent of up to 36 Olympic swimming pools per day, 

clearing out excess nutrients, chlorophyll-a, toxic compounds, metals, and particles in 

the coastal environment (Coen et al., 2007). Oysters are also hosts to nitrogen 

metabolizing bacteria, which remove environmental nitrogen in both wild and restored 

populations (Humphries et al., 2016). Oyster reefs can provide a physical barrier to 

stabilize shorelines against storm surge or erosion (Meyer et al., 1997). Finally, oyster 

reefs provide habitat for fish, other benthic invertebrates, and epibenthic fauna. The 

value of these ecosystem services has been estimated to range from $5,500 to $99,000 

per hectare of oyster reef per year (Grabowski et al., 2012). 

Oysters have long been used as a model system for studying host-microbial 

interactions (King et al., 2019; Le Roux et al., 2016; Pierce and Ward, 2018; Robledo 

et al., 2018). Oysters are commonly found in coastal waters around the globe and, due 

to their commercial value, their genetics have been studied extensively (Gómez-

Chiarri et al., 2015; Guo et al., 2008). As filter feeders that ingest large volumes of 

water containing phytoplankton and microbes from the water, oysters are especially 

susceptible to pathogens and thus to changes in their overlying bacterial communities 

(Burge et al., 2016). This includes protozoan, bacterial, and viral diseases that all have 
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significant economic and ecological impacts (Burge et al., 2016; Lafferty et al., 2015). 

Many studies have investigated the specific mechanisms of infection (especially 

Vibrio spp, Perkinsus spp., and Alliroseovarius crassostreae) in oysters using targeted 

functional assays (Zannella et al., 2017). However, current knowledge of oyster-

associated microbiomes is largely limited to purely descriptive studies during ambient 

conditions in adult oysters. This knowledge is summarized below. 

 

Microbial Community Structure in Oysters 

There has been a surge in oyster microbiome projects over the past decade, likely 

due to increased accessibility and affordability of high-throughput sequencing 

technologies (Pollock et al., 2018). Many recent studies have used 16S rRNA 

amplicon sequencing to characterize the presence and relative abundances of bacteria 

in oyster tissue(s) in a variety of conditions. Oyster microbiomes differ by location, 

season, and overall environmental conditions (Khan et al., 2018; King et al., 2012; 

Lokmer et al., 2016b; Pierce et al., 2016; Wendling et al., 2014). Oyster microbial 

communities also vary with tissue type and developmental stage (Dubé et al., 2019; 

Green and Barnes, 2010; Hernández-Zárate and Olmos-Soto, 2006; Lokmer et al., 

2016b; Trabal Fernández et al., 2014).  

Despite overall variability in community structure, there are abundant bacterial 

taxa shared across all oyster microbiome studies, particularly in the phyla 

Proteobacteria (mainly Vibrionales, Oceanospirillales), Bacteroidetes, and 

Tenericutes (Pierce and Ward, 2018). Not surprisingly, these are bacteria that are 

commonly found in the marine environment (Fuhrman et al., 2006; Logares et al., 
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2014). An abundance of Cyanobacteria is often observed in oyster stomach and gut 

samples from shallow waters, likely due to a combination of 16S amplicon region 

bias, transient algal food consumed by the oyster, and environmental conditions 

(Trabal Fernández et al., 2014). The oyster microbiome structure is, however, distinct 

from microbial communities in the seawater and sediment, implying oyster hosts 

select for bacteria that have the ability to survive within their tissues (Lokmer and 

Wegner, 2015; Pujalte et al., 1999; Stevick et al., 2019; Thomas et al., 2014; Vezzulli 

et al., 2018); as determined by host-microbe interactions described in sections above. 

Moreover, oyster tissue samples collected from the same site have diverse 

microbiomes, despite their identical environments. Factors influencing variability in 

oyster microbiomes within a site include differences in an individual oyster’s filter 

feeding behavior and subsequent ingestion or rejection of food as pseudofeces (host 

selection) (Kramer et al., 2016; Ward and Shumway, 2004); the presence of tissue 

microenvironments within oysters (King et al., 2012; Trabal Fernández et al., 2014); 

and host genetics and physiological status (Lokmer et al., 2016a; Wegner et al., 2013).  

The crosstalk between the host, its environment, and its microbiota is largely 

unexplored in oysters. For example, in an aquaculture setting, four microbiome studies 

of Crassostrea gigas larvae found that, even though the microbial community in the 

rearing water changes throughout the year, there is little effect of UV treatment, algae, 

and other rearing conditions (Asmani et al., 2016; Laroche et al., 2018; Powell et al., 

2013; Trabal Fernández et al., 2014). A study that tested the effect of algal feed on 

larval Pacific oyster fecal microbiomes found that they change as a function of algal 

feed and its associated microbes (Simons et al., 2018). A recent study compared the 
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microbiomes of the extrapallial fluid from Crassostrea gigas and Ostrea lurida and 

found no effect of chalky deposits (Banker and Vermeij, 2018). There is a need for 

more information on the biotic and abiotic drivers influencing microbial community 

structure in oysters, and their relative contribution to determining that structure (e.g. 

host health, nutrient load, probiotics). Moreover, studies of direct environmental 

manipulation to determine oyster microbiome responses to nutrients, oxygen levels, 

disease, and other factors are lacking. 

Another relatively unexplored area of oyster-associated microbiome research is 

the impact of parasitic infection and disease (King et al., 2019). Many studies have 

focused on Vibrio diversity, since it is a taxon of commonly studied bivalve pathogens 

(Le Roux et al., 2016; Lemire et al., 2015; Lokmer and Wegner, 2015; Preheim et al., 

2011; Wendling et al., 2014). However, few studies have considered microbial 

community-wide responses to disease in oysters. A study of Sydney rock oysters 

infected with the protozoan parasite Marteilia sydneyi discovered disease-induced 

shifts in diversity and changes in abundant Operational Taxonomic Units (OTUs) 

relative to non-infected specimens (Green and Barnes, 2010). Changes in the Vibrio 

taxa and relative abundances were observed in oysters diseased with “summer 

mortality” or OsHV-1 (King et al., 2018; Pathirana et al., 2019). Given that these 

infections and diseases are environmentally-driven, it is difficult to determine if the 

change in oyster microbial community structure is due to the environment or the 

disease (King et al., 2019). Controlled experiments are necessary to tease apart the 

relationship between the oyster microbial community structure and disease, 

independent of environmental conditions. For example, it would be advantageous to 



 

20 

 

study the effects of diseases like Dermo (caused by the protozoan parasite Perkinsus 

marinus) or Juvenile Oyster Disease (caused by the bacterial pathogen 

Alliiroseovarius crassostreae) on eastern oyster associated microbial composition and 

function through challenges experiments performed in an environmentally controlled 

system.  

 

Microbial Function in Oysters 

The function of targeted oyster-associated microbes has been broadly studied, 

particularly in the context of economically and ecologically relevant issues such as 

infectious disease and ecosystem function (e.g. nitrogen metabolism). Microbial 

function in oysters is an outcome of the environment, host biology (e.g. genetics, 

physiology, immunity), and overall microbial diversity (Bachère et al., 2015; Bruto et 

al., 2017; Le Roux et al., 2016; Lozupone, 2018). For example, the pathogenicity of 

Vibrio spp. in oysters changes depending on the resident population of Vibrios in 

oysters and the oysters’ ability to fight off the infection (Bruto et al., 2017; Lemire et 

al., 2015). Studies of nitrogen gas production in live oysters versus naked shells found 

differences in denitrification and nitrification rates, suggesting that microbial nitrogen 

metabolism differs between the gut microbiota and outer shell biofilms (Caffrey et al., 

2016; Ray et al., 2019).  

There have been, however, few studies of the oyster-associated overall 

microbiome function using high-throughput sequencing technologies. Recent studies 

have used qPCR and functional inference from 16S rRNA sequencing to estimate the 

genetic potential of the oyster gut, shell, and/or sediment bacteria (Arfken et al., 2017; 
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Dubé et al., 2019; Murphy et al., 2019). These studies found that the functional 

diversity of the oyster microbiome is tissue-specific and the predicted function 

changes between bivalves as well as field locales. However, these methods are based 

on orthologous functional genes among phylogenetically related species and ignore 

genome-level variation within a species or genus. The majority of functional traits are 

not monophyletic, and there can be high levels of variation in protein-coding genes 

within a species (Aguilar et al., 2004; Martiny et al., 2013, 2015). To our knowledge, 

no studies have so far determined potential functional roles of oyster microbiomes 

using shotgun metagenomics, RNA-based microarrays, or shotgun metatranscriptome 

methods.  

 

Goals of this Dissertation 

Despite an abundance of historic and emerging literature on the oyster 

microbiome, there are many unanswered questions. These questions touch on many 

aspects of the microbiome, particularly spatial and temporal dynamics, evolutionary 

and phylogenetic traits, and environmental impacts. For example, how does the oyster 

microbiome structure and function change within an oyster, within a field site, 

between sites in an estuary, between estuaries, or on a global scale? What effect do 

host, population, species, or genus genetics have on the selection of an oyster’s 

microbiome? Integrating descriptive and functional microbiome analyses will help in 

addressing these questions, and improve the understanding of marine microbial-host 

interactions.  
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The overall goal of this dissertation is to characterize microbiomes of farmed 

and wild specimens of the eastern oyster (Crassostrea virginica) in Narragansett Bay, 

Rhode Island and determine how they change with environmental perturbation (i.e. 

eutrophication and probiotics). Changes in microbial community structure and 

function will be measured to assess how these perturbations impact the microbial 

community function (Figure 2). This analysis will allow for the prediction of changes 

in ecosystem function and host health, characterization of microbiomes in climate 

change scenarios, and a greater understanding of host-associated microbial ecology in 

marine systems. 

Chapters 2 and 3 address environmental impacts on the microbiome of adult 

eastern oysters through evaluation of: a) the influence of the estuarine acidification 

gradient in Narragansett Bay, Rhode Island on the composition of gut microbiomes in 

oysters and oyster health, and b) the effect of nutrient enrichment (eutrophication) on 

oyster-associated microbial communities within the context of nitrogen cycling. A 

combination of metatranscriptomics, 16S rRNA amplicon sequencing, histology, and 

qPCR methods were used to address these goals. In Chapter 4, we explored the 

mechanisms of action of probiotic Bacillus pumilus RI06-95 to protect larval eastern 

oysters through associated microbial activity in the hatchery setting. An extensive 16S 

rRNA amplicon study was performed using control and treated larvae, tank biofilm, 

and rearing water samples collected from at least 2 timepoints during 3 separate 

hatchery probiotic trials. 
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Figures 

 

Figure I-1. Examples of interactions between the environment, host, and microbial diversity or function. 
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Figure I-2. Working model of how perturbations affect microbial community 

composition and function.  

The hypothesized effects of antibiotics, probiotics, and nutrients are shown. A 

functional change is denoted with an arrow, and a change in structure is denoted by 

changes in the percent abundance bar plots.  
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Abstract 

Oysters in coastal and estuarine environments are subject to fluctuating 

environmental conditions, including nutrient loading, runoff, pollution, and anoxia, 

that may impact their health and the ecosystem services they provide. We propose that 

these variations in environmental conditions cause changes in their associated 

microbial community structure and function. Adult wild oyster gut and seawater 

samples were collected at 5 sites along an estuarine nutrient gradient in Narragansett 

Bay, Rhode Island, USA in August 2017. Samples were analyzed by 16S rRNA 

sequencing of the V6 region to characterize bacterial community structures and 

metatranscriptomes were sequenced to determine oyster gut microbial function. A 

North to South estuarine gradient was observed, with increasing salinity, pH, and 

dissolved oxygen, and decreasing nitrate, nitrite and phosphate concentrations. There 

were significant differences in bacterial composition between the oyster gut and water 

samples (ASV level, Bray-Curtis k=2), suggesting niche selection of certain taxa by 

the oyster host. The community structure of the most transcriptionally active bacterial 

taxa was similar at each site, but expression of genes involved in nutrient utilization 

varied throughout the Bay, based on nutrient availability, pH, and dissolved oxygen 

level at each site. At the northern sites, characterized by higher nutrients and anoxia, 

the oyster gut microbial community showed significant upregulation of genes 

associated with stress response and phosphorus metabolism. This response was 

opposite to the southern sites, where the oyster gut microbiomes showed upregulation 

in genes associated with nitrogen metabolism and downregulation of stress response 

genes. The most transcriptionally active bacteria in oyster gut samples were not the 



 

42 

 

most abundant, suggesting plasticity due to functional redundancy. Microbial gene 

expression varied according to the eutrophication gradient, providing insight into how 

environmental conditions shape host-associated microbial functions. 
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Introduction 

Coastal ecosystems, and estuaries in particular, serve as habitat for highly diverse 

communities that contribute up to 77% of worldwide ecosystem services (Costanza et 

al., 1997; Martínez et al., 2007). Humans directly rely on these environments for 

ecosystem functions and biodiversity but also for human activities like tourism and 

fisheries (Bulleri and Chapman, 2010; Firth et al., 2016; Liquete et al., 2013). 

Environmental conditions in estuarine ecosystems fluctuate rapidly due to changes in 

nutrient loading, river runoff, and other physical, chemical, and biological factors 

(Nixon, 1995; Sunda and Cai, 2012; Waldbusser and Salisbury, 2014). For example, 

pH values in coastal waters can vary by as much as one pH unit over daily and 

seasonal cycles, reflecting changes in biological inputs, microbial activity, ambient 

dissolved oxygen, and pCO2 (Alexandre et al., 2012; Baumann et al., 2014). These 

frequent changes in estuarine water chemistry (known as estuarine acidification) are 

also affected by human activity and coastal geomorphology, and these influences will 

likely increase over the coming decades (Wallace et al., 2014). In particular, increased 

coastal urbanization has disrupted natural shorelines and concentrated sewage effluent 

and nutrient inputs near estuaries (Duarte et al., 2008; McKinney, 2006). This 

increased pollution may lead to surges in algal blooms and invasive species, and 

decreased ecosystem and human health (Duh et al., 2008; Firth et al., 2016). 

Estuaries such as Narragansett Bay, Rhode Island, USA, provide a natural 

gradient to study the impacts of eutrophication and coastal acidification. The head of 

the Bay, located in a highly urbanized area, is highly eutrophic while trophic levels at 

the mouth are more similar to those found over the continental shelf (Calabretta and 
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Oviatt, 2008; Oczkowski et al., 2008). Previous studies have shown eutrophication in 

Narragansett Bay affects many physical and biological systems, including nitrification 

rates (Berounsky and Nixon, 2006), primary productivity (Oviatt, 2008), animal 

physiology (e.g. Widdows et al., 1981), and benthic biodiversity (Hale et al., 2016; 

Pelletier et al., 2017). Over the last 20 years, Narragansett Bay has undergone 

dramatic changes as a result of targeted efforts in reducing nutrient impacts and 

improving overall water quality. This has led to changes in the ecosystem functioning 

and position Narragansett Bay as an model estuary for the study of eutrophication 

(Oviatt et al., 2017).  

Marine microbial communities play a central role in ecosystem function by 

forming a base for primary production and nutrient cycling. Microbial communities in 

coastal seawater and sediment exhibit plastic responses to environmental changes or 

gradients (Highton et al., 2016; Meyer and Riebesell, 2015; Nogales et al., 2011; Paerl 

et al., 2002). This may lead to changes in primary productivity, and therefore coastal 

ecosystem functioning (Paerl et al., 2003). Studies of bacterial community structures 

and nitrogen cycling in several coastal lagoons found that physical gradients and 

nutrients affect sediment microbial interactions and function (Highton et al., 2016; 

Kieft et al., 2018). In marine sediments, studies have detected no significant difference 

in microbial community structure when exposed to high nutrients, but reported 

dramatic changes in ecological function (Bowen et al., 2011; Bulseco et al., 2019; 

Chen et al., 2019).  

Host-associated microbiomes are gaining importance as major contributors to 

ecosystem services and host functioning (Beinart, 2019; Fiore et al., 2010; Harris, 
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1993; Nyholm and Graf, 2012). However, little is known about how fluctuating 

environmental conditions affect the composition and function of microbes associated 

with filter feeders like oysters, or how changes in their host-associated microbiomes 

change host physiology or ecosystem function (Apprill, 2020; Moulton et al., 2016; 

Pfister et al., 2014). Various studies have found that environmental conditions affect 

microbial community structures in marine hosts, including corals (Shaver et al., 2017), 

sponges (Cleary et al., 2019), eelgrass (Lin et al., 1996), seagrass (Crump et al., 2018), 

oysters (Pierce et al., 2016) and mussels (Li et al., 2019). Varying pollution levels 

change the microbial community structures and susceptibility to chemicals in Manila 

clams (Milan et al., 2018). A study of the effects of urban pollution on kelp showed 

changes in microbial community structures (Marzinelli et al., 2018). Studies that 

examine host-associated microbial functional responses to environmental change are 

very limited and focus on model organisms (i.e. corals or zebrafish) in lab-based 

studies (Rocca et al., 2018). 

In Narragansett Bay, as in other coastal estuaries, oysters are an integral part of 

the local history, culture, and fishing industries. In addition to making up a large 

percentage of annual seafood consumption, oysters, as keystone species, provide many 

ecosystem functions, including clearing of overlying waters, coastal erosion 

prevention, and nutrient cycling (Grabowski et al., 2012). Oyster-associated 

microbiomes are responsible for many of the ecosystem services provided by oysters. 

As oysters filter out bacteria, plankton, algae, and other microorganisms from the 

water, they retain and provide a habitat for specific bacteria that perform 

denitrification and assimilate excess phosphorus (Caffrey et al., 2016; Kellogg et al., 
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2014). Microbes may also aid in maintaining oyster health and homeostasis by 

controlling infection, performing nutrient removal, or providing metabolites (Lokmer 

and Wegner, 2015; Trabal Fernández et al., 2014; Wegner et al., 2013). However, 

oysters are also susceptible to accumulating bacterial and protozoan pathogens that 

impact host and human health (King et al., 2019a; Lafferty et al., 2015; Romalde and 

Barja, 2010).  

Previous studies of microbial ecology in oysters have been limited to surveys of 

microbial community structures in different compartments of the oyster. The makeup 

of the microbiome in adult oysters, as determined by 16S rRNA amplicon sequencing 

or other genetic markers, varies with location, season, tissue type, disease status, and 

environmental conditions (King et al., 2019a; Pierce and Ward, 2018). Some studies 

have attempted to infer oyster-associated microbial function from 16S rRNA amplicon 

sequencing (Arfken et al., 2017; Murphy et al., 2019). However, the effects of 

eutrophication on the response of the oyster microbiome using RNA-based methods 

have not been reported so far. In situ studies of combined environmental effects on 

host-associated microbiomes are needed to accurately predict ecosystem functions and 

how they might change in the future.  

In this study, we evaluated the oyster gut microbiome structure and functional 

response using 16S rRNA amplicon sequencing and metatranscriptomics at 5 sites 

along the trophic gradient in Narragansett Bay. This survey provides a snapshot of the 

oyster microbiomes in a relatively small geographic area in a temperate coastal estuary 

affected by eutrophication, and how these host-associated microbiomes are affected by 

their local environment. We hypothesized that the environmental gradient in 
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Narragansett Bay will cause differential responses in oyster gut microbial community 

structure, stress response, and nutrient cycling. The results of this study inform how 

environmental stressors may affect ecosystem services provided by oysters and 

understanding of host-associated microbial function.  

 

Methods 

Sample Collection 

Five sites were selected along the Western coastline of Narragansett Bay: 1.PVD 

(Providence River: Bold Point Park), 2.GB (Greenwich Bay: Goddard Memorial State 

Park), 3.BIS (Bissel Cove: Rome Point), 4.NAR (Narrow River), and 5.NIN (Ninigret 

Pond) (Figure 1). These sites are representative of a diversity of environmental 

conditions (i.e. nutrients, dissolved oxygen, pH, salinity) within a coastal estuary and 

varying levels of anthropogenic inputs (Table 1). Wild oysters were collected from the 

northern 4 sites, and farmed oysters were collected from 5.NIN (no wild oysters were 

found). Environmental data for temperature, pH, DO, salinity, and chlorophyll-a were 

collected using a YSI 6 Series Multiparameter Water Quality Sonde (Model 6920VS) 

probe at all sites every 30 seconds for 15 minutes during the morning and afternoon 

hours on one day of the week of sampling.  

Sample collections were completed from August 17-25, 2017 and consisted of 

oyster and water samples at each of the 5 sites with scientific collector's permit #212 

granted by the RI Department of Environmental Management. A total of 150 oysters 

were collected from 5 sites (30 per site) and processed on the day of collection. The 

oysters were weighed and measured, and samples of gut tissues (around 300 mg) were 
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preserved in RNAlater for RNA/DNA extractions. All preserved tissue samples were 

stored at -80 °C until nucleic acid extractions. Up to 1 L of seawater from each site 

was filtered onto a 0.22 μm Sterivex filter, filled with RNAlater, and then stored at -80 

°C until DNA extraction. An additional sample of seawater (30 mL) was filtered 

through a 0.22 μm syringe-top PES filter and frozen at -80 °C for nutrient analyses. 

Nutrient concentrations (nitrite, nitrate, ammonium, and phosphate) in three replicate 

samples of seawater per site collected at the time of oyster collection were analyzed 

using a Lachat QuickChem QC8500 automated ion analyzer operated by the 

University of Rhode Island Marine Sciences Research Facility.  

Gut DNA and RNA Extraction  

Total nucleic acids (TNA) were extracted from 150-200 mg of gut tissue (n=10 

oysters per site; 50 total) using the Qiagen Allprep PowerViral DNA/RNA extraction 

kit with modifications as follows. The gut tissue sample was added directly to a 0.1 

mm glass bead tube (Qiagen), along with 600 μL of Solution PV1 and 6 μL of sterile 

β-mercaptoethanol to minimize RNA degradation. The samples were subjected to 

bead beating for 5 minutes, followed by proteinase K digestion at 55 °C for 1 hour in a 

shaker at 300 rpm. The supernatant was transferred to a new microcentrifuge tube and 

the protocol continued according to the manufacturer’s recommendations. Following 

TNA extraction, the concentration was quantified using a Nanodrop 2000 instrument 

(ThermoFisher), and 5 μL was allocated for RNA and 30 μL was allocated for DNA.  

RNA purification from the 5 μL TNA aliquot was performed using the DNase 

Max I kit according to the manufacturer’s protocol in a 50 μL reaction volume. DNA 

purification of the 30 μL TNA aliquot was performed using an adapted version of the 
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DNeasy PowerLyzer PowerSoil Kit. In brief, the TNA aliquot was transferred to a 

new 2 mL microcentrifuge tube and 1200 μL of Solution C4 was added, then vortexed 

to mix. Next, 4 μL of RNase A solution was added to the sample and incubated for 2 

minutes at room temperature. The treated DNA was then purified using the spin 

column and an ethanol wash with Solution C5. The final DNA sample was eluted in 

50 μL of Solution C6. Following extraction, DNA and RNA concentrations were 

quantified with both a Nanodrop 2000 instrument (ThermoFisher) and Qubit 

Fluorometer High-Sensitivity reagents (Invitrogen).  

 

Seawater DNA extraction 

Total DNA from water samples was extracted from the Sterivex filters using the 

Qiagen Allprep PowerViral DNA/RNA and DNeasy PowerLyzer PowerSoil kits with 

modifications as follows. The RNAlater was flushed out of the filters using a sterile 

syringe, then the filters were rinsed with 2 mL of 1X sterile nuclease-free Phosphate 

Buffer Saline (PBS, pH 7.4, Invitrogen). Solution PV1 (1800 μL) and 18 μL of sterile 

β-mercaptoethanol were added directly to the filter cartridge and incubated at 37 °C 

for 30 minutes. Next, 20 μL of proteinase K was added to the filter and digested at 

55°C for 1 hour. The supernatant was flushed from the filter, transferred to 3 new 

microcentrifuge tubes and the protocol continued according to the manufacturer’s 

recommendations. DNA was purified from the entire TNA product using the methods 

described above. Following extraction, DNA concentrations were quantified with both 

a Nanodrop 2000 instrument (ThermoFisher) and Qubit Fluorometer High-Sensitivity 

reagents (Invitrogen).  
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Nucleic Acid Amplification and Sequencing 

In order to obtain a comprehensive representation of the gut microbial 

community and their activities, 2 types of sequencing were performed: 16S rRNA 

amplicon of the V6 region (DNA, a measure of overall composition) and whole 

shotgun metatranscriptomes (RNA, a snapshot of functional activity at the time of 

collection) (Graham et al., 2016). 16S rRNA gene amplicons were prepared using 

967F/1064R primers to amplify the V6 region in the 50 gut DNA samples (10 per site) 

and the 5 water samples, along with a mock community and blank control. A two-step 

PCR reaction using 300ng of gut DNA or 10ng of water DNA was performed in 

triplicate following protocols from the Keck Sequencing Center at the Marine 

Biological Laboratory (https://vamps.mbl.edu/resources/primers.php). The PCR 

products were analyzed with 75bp paired-end sequencing to obtain overlapping reads 

on an Illumina MiSeq at the Genomics and Sequencing Center at the University of 

Rhode Island. 

The metatranscriptomic libraries were prepared from 2μg of gut RNA (n=5 per 

site), fragmented at 500nt using Covaris ultrasonification, and treated with the 

Illumina Ribo-Zero Gold rRNA Removal Epidemiology Kit prior to library prep to 

remove both host and bacterial rRNA. Illumina TruSeq PCR-free library kits were 

used to prepare the libraries, and then verified using both a KAPA library 

quantification kit and an Agilent Bioanalyzer. The resulting metatranscriptomic 

libraries were sequenced on an Illumina NovaSeq S4 to obtain 2x150bp paired-end 

reads at the Yale Center for Genome Analysis. 
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Processing and Analysis of Sequencing Data 

16S rRNA amplicon sequences were demultiplexed and quality filtered using 

DADA2 (v1.6.0) implemented in R (v3.4.1) in QIIME2 (v2018.4.0) with parameters --

p-trunc-len-r 65 \ --p-trunc-len-f 76 \ --p-trim-left-r 19 \ --p-trim-left-f 19 to determine 

analysis sequence variants (ASVs) (Callahan et al., 2016; Caporaso et al., 2010). All 

ASVs were analyzed with the QIIME2 pipeline (v2018.4.0) and classified directly 

using the SILVA database (99% similarity, release #132) (Bokulich et al., 2018; 

Bolyen et al., 2019). Taxonomy data was normalized by percentage to the total ASVs 

in each sample and then exported as a matrix for analysis in R (v3.4.1). All descriptive 

and statistical analyses were performed in the R statistical computing environment 

with the vegan v2.5.5 and phyloseq v1.28.0 packages (Dixon, 2003; McMurdie and 

Holmes, 2013). Additional visualizations were computed using the ComplexHeatmap 

v3.9 and UpSetR v1.4.0 packages (Conway et al., 2017; Gu et al., 2016) 

Raw reads from the microbial community metatranscriptomes were first quality 

controlled with Trimmomatic software v0.36 (Bolger et al., 2014). Metatranscriptomic 

analysis was performed using scripts from the SAMSA2 pipeline (Westreich et al., 

2018), with the following modifications. The quality-controlled paired-end reads were 

combined using PEAR v0.9.10 and then rogue rRNA reads were removed from the 

merged reads using SortMeRNA v2.1 (Kopylova et al., 2012; Zhang et al., 2014). 

These cleaned, merged reads were classified to the Species level using Kraken2 v2.0.7 

and relative percent abundances per Phylum and Order were calculated using Bracken 

v2.2 (Lu et al., 2017; Wood and Salzberg, 2014). Functional annotation of the data 

was performed against SEED Subsystem databases using DIAMOND v0.9.23 
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(Buchfink et al., 2014). Finally, custom scripts using DESeq2 v1.14.1 were used to 

calculate differential expression between sites or groups (Love et al., 2014). The 

resulting changes in expression were exported to R for analysis and visualization using 

ggplot2 v3.2.1 and cowplot v1.0.0 (R Development Core Team, 2011; Wickham, 

2009; Wilke, 2019).  

 

Statistical Analysis 

All statistical analyses of environmental and sequencing data were performed in 

R (v3.4.1 R Development Core Team, 2011) as follows. The environmental principal 

component analysis (PCA) was calculated using the prcomp(scale=TRUE) command 

implemented in base stats v3.6.1, and then plotted using autoplot() enabled by 

ggfortify v0.4.7 (Tang et al., 2016). Significant differences in environmental 

parameters between sites were determined using all raw data subset by site and 

parameter. The data per site was compared using the compare_means() command 

from the ggpubr v0.2.2 package (Kassambara, 2019). The method for each 

comparison was defined as “anova” for initial testing, then “t.test” for pairwise 

comparisons. Adjusted p-values were calculated by adding “p.adjust.method = BH” to 

the command, to determine using the Benjamini-Hochberg method (Love et al., 2014). 

Statistical summary tables are included as Supplementary Tables S2-S7.  
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Results 

Sampled Sites showed Variability in Environmental Conditions 

A summary of all measurements collected and correlations with latitude is 

presented in Table 1. A North-South estuarine gradient was detected, especially in 

nutrient concentrations. Salinity, pH, and DO increased down the Bay from 

Providence (1.PVD; North) to Ninigret Pond (5.NIN; South), as coastal eutrophication 

and the influence of river inputs decreased (Table 1, Spearman’s Correlation 

Coefficients, SCC =-0.8, -0.8, -0.9). Nitrite, nitrate, and phosphate concentrations 

decreased along the North-South gradient (Table 1, SCC=0.7, 0.6, 0.9), with 1. PVD 

showing significantly higher concentrations of nitrite, nitrate, and phosphate than all 

other sites (t-test, p <0.01). A PCA analysis showed that environmental factors, each 

averaged per site, explained 80% of the variation between sites (Figure 2). Each site 

was characterized by a subset of environmental factors over the sampling period 

(Figure 2). The 1. PVD site was characterized by the highest nutrient levels (nitrite, 

nitrate, phosphate, p <0.01, compared to all other sites), 2. GB by the highest 

chlorophyll-a, 3. BIS by the highest ammonium concentrations (t-test, p<0.001), 

4.NAR site by a higher temperature (NS) and significantly lower salinity than all other 

sites (t-test, p<0.045), and 5.NIN by significantly higher pH than all other sites (t-test, 

p=0.023). The average mass, length, and width of oysters at each site decreased down 

the Bay, with the exception of oysters from 3.BIS, which were significantly heavier 

and larger than oysters collected at other sites (Table 1, SCC=0.7,0.7,0.8; t-test, 

p<0.001).  
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Differences in Microbial Community Structures were Observed between Sites 

and Sample Types  

A total of 2,217,804 quality-controlled, bacterial 16S rRNA sequences were 

analyzed from 50 gut samples and 10 water samples from 5 sites (Table S1). Sequence 

variant analysis and taxonomic classification resulted in the detection of 304 bacterial 

Orders across 45 Phyla across all samples. The most dominant phyla in the oyster gut 

samples, averaged for all oysters at all sites, were Cyanobacteria (38±18%) 

Proteobacteria (21±13%), Tenericutes (6±12%) and Actinobacteria (3±2%). The most 

dominant phyla in the water column, averaged from all sites, were Proteobacteria 

(62±10%), Cyanobacteria (15±12%), Bacteroidetes (15±7%), and Actinobacteria 

(3±2%). Differences in bacterial community structures were observed between the 

oyster gut and water samples, in addition to between sites for both sample types (gut 

and water) (Figures 3 and S1). 

Effect of sample type on microbial community structures 

The structure of the gut microbiome was distinct from the water microbial 

community, regardless of the sampling site (Figure S1B, adonis2 p=0.001). Of the 304 

Orders detected in the 16S amplicon data, the water and gut samples had 135 (44.4%) 

Orders in common, while 8 (2%) were exclusively found in the water and 161 (52.9%) 

were found only in the oyster gut, suggesting selection by the host (Figure 3A). 

Flavobacteriales, Rhodobacterales, Rhodospirillales, and Oceanospirillales were 

proportionally more abundant in all of the water samples than the gut samples (Figure 

3B, t-test, p<0.001). Conversely, Corynebacteriales, Vibrionales, Desulfobacterales, 

and Mycoplasmatales were relatively more abundant in the gut samples (Figure 3B, t-
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test, p<0.05). Significantly more unknown bacterial Orders were detected in the oyster 

gut samples, compared to the water (Figure 3B, t-test, p<0.001). 

Effect of site on microbial community structures 

The oyster gut bacterial communities from each site were significantly different at 

the Analysis Sequence Variant (ASV) level (Figures S1B, adonis2 p=0.001), with 

samples from 1.PVD, 2.GB and 3.BIS showing significantly lower alpha-diversity 

(Figure S1A, Simpson’s Index; p<0.01) than samples at other sites. This appears to be 

driven by specific microbial signatures found at each site. For example, 

Corynebacteriales and Synechoccales were significantly more abundant in the water 

and gut samples from 4.NAR and 5.NIN than at other sites, and Verrumicrobia were 

significantly more abundant at 4.NAR than in others sites (Figure 3, t-test, p<0.05). 

Oyster gut samples at 2.GB showed higher percentages of chloroplast-associated 16S 

rRNA amplicons (50±27%), which is consistent with high chlorophyll-a levels 

measured at this site (Figure 2). Oyster gut samples from all sites share 105 Orders 

(34.5% of 304 total), while 9-31 (3-10%) Orders were distinct to gut samples at 

certain sites (Figure S2). For example, 2.GB has the fewest number of distinct orders 

(9), which belong to diverse phyla, including Bacteroidetes, Latescibacteria, and 

Proteobacteria.  

 

Comparison of Transcriptionally Active Microbial Community Structures 

A total of 409 million metatranscriptomic 150 bp-long, quality-controlled 

paired-end reads were obtained from 25 gut samples (n=5 per site; Table S1). Direct 

taxonomic annotation of these merged paired-end reads classified 32±15% of the 
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reads, which is comparable with other studies (Antczak et al., 2019; Crump et al., 

2018; Kieft et al., 2018). This level of annotation is most probably due to incomplete 

taxonomic coverage in reference databases. Marker gene classification was not 

possible due to the rRNA depletion performed during library prep and subsequent 

biased removal of common taxonomy markers (Petrova et al., 2017). Of the 

taxonomically annotated reads, 68 bacterial Orders across 29 Phyla were detected, of 

which 36 (53%) were also detected in the gut 16S amplicon data. The most active 

annotated phyla in the gut samples (all oysters) were Firmicutes (35±1%) and 

Proteobacteria (27±1%) (Figure 3B). The most active taxa (Bacillales, 

Pseudomonadales, and Rhizobiales; as detected in the metatranscriptomes) were not 

the most abundant taxa (as detected by 16S rRNA amplicon analysis) (Figure 3B). 

There were 260 (out of 296, 87%) Orders detected in the oyster gut 16S amplicons 

that were not detected in the metranscriptomes (Figure 3A). While microbiome 

structures of oyster gut samples (as detected by 16S rRNA amplicon analysis) showed 

differences by site (Figure S1B), microbiome structures of the active taxa (as 

determined by taxonomic annotation of metatranscriptomic reads) in the gut samples 

were not different between sites (Figure S3).  

 

Transcriptional Responses in the Oyster Gut Microbial Community Reflect the 

Estuarine Gradient in Narragansett Bay 

Although no significant differences were detected between sites on the 

taxonomy of the transcriptionally active microbial taxa in the gut tissue (Figure S3), 

their transcriptional responses varied based on the environmental conditions at each 
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site (Figure 4). In order to increase statistical power in the identification of pathways 

to be targeted for further analysis, the microbial transcriptional response at the more 

eutrophic northern sites (1-3) was compared to that of the southern sites (4-5; 

considered as the “control group”). This resulted in eleven SEED Level-1 pathways 

that showed significantly differential gene expression between northern and southern 

sites, including a significant upregulation of stress responses and general metabolic 

activities (carbohydrates, respiration, amino acids, fatty acids, lipids etc.) in northern 

sites, as well as a downregulation of photosynthesis, metabolic transport, and motility 

and chemotaxis (Benjamini-Hochberg adjusted p<0.05; Figure 4A).  

Stress Response 

Based on the focus of this research on the effects of anthropogenic factors (e.g. 

eutrophication, urbanization) on oyster microbial community and function, a more in-

depth analysis of differences in the expression of genes involved in stress responses 

and nutrient cycling was performed (SEED level 2 annotation). Differential expression 

of genes in stress response and nutrient pathways at each of the sites was compared to 

the mean level of expression at all sites (Figures 4B and 5). A significant upregulation 

in the expression of microbial genes involved in dealing with osmotic stress was 

detected in samples from 2.GB (as compared to the mean of all sites), as well as a 

significant downregulation in genes involved in periplasmic stress (p<0.05). 

Conversely, a significant upregulation in genes involved in periplasmic stress (e.g. 

rseA, degS, deQ) and downregulation in genes involved in osmotic stress (e.g. genes 

coding for betaine aldehyde dehydrogenase and choline dehydrogenase) and oxidative 

stress (e.g. genes coding for NAD G3P dehydrogenase) was detected in oyster gut 
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samples from 5.NIN (p<0.05, Figure 4B, S4, and S5). Expression of microbial genes 

involved in other acute stress responses, including acid stress, cold shock, and heat 

shock, was not significantly different between sites.  

Nitrogen Metabolism 

Nutrient cycling is central to ecosystem services provided by oysters. Nitrogen 

and phosphorus are especially important, since they are the major components of 

eutrophication and often limiting factors to primary production (Howarth, 1988; 

Wallace et al., 2014). Overall, no significant changes in expression of genes involved 

in nitrogen metabolism (SEED level 2 annotation) was observed in the gut oyster 

microbiome from the different sites (Figure 5A top), despite the significant differences 

in levels of nitrate, nitrite, and ammonium levels detected between sites (Table 1). 

High levels of variability in the expression of genes involved in the different pathways 

involved in nitrogen metabolism were observed between oysters within sites. 

However, significant differences between sites were observed in the patterns of 

expression of genes from specific pathways involved in nitrogen metabolism (Figure 

5A bottom), reflecting differences in the responses of oyster gut microbes to the 

environmental conditions at each site. At the northernmost site (1.PVD), there was a 

significant downregulation of denitrification genes (e.g. nosF and cytochrome c-

dependent nitric oxide reductase (cNor)) compared to the mean of all sites, while at 

the southernmost site (5.NIN), a significant upregulation of genes involved in 

ammonia pathways (e.g. genes coding for NR(I), GlnE, and nitrate reductase) and a 

downregulation of nitrilase genes was observed (p<0.05, Figure S6).  
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Phosphorus Metabolism 

Expression of genes in the oyster gut microbiome involved in phosphorus 

metabolism decreased down the Bay, with microbial communities in the guts of 

oysters from the most southern (5. NIN) and northern (1. PVD) sites respectively 

showing significantly lower and higher levels of expression of genes involved in 

phosphorus metabolism than the mean of the sites (p<0.01; Figure 5B top). An 

upregulation of genes involved in the phosphate pathway (e.g. alkaline phosphatase) 

was observed in the gut microbiome of oysters from the northernmost site (1.PVD), as 

well as an upregulation of genes in the phosphonate pathway in oysters from 2.GB 

(e.g. phosphonoacetaldehyde hydrolase) (Figure S7). These two sites also showed the 

highest concentrations of phosphate in water (Table 1). Conversely, there was a 

significant downregulation of phosphate and phosphonate pathways at the 

southernmost site compared to the mean of all sites (5.NIN, p<0.01, Figure S7).  

 

Discussion 

A better understanding of the effect of environmental conditions on both the 

structure and function of oyster-associated microbes is important for the management 

of oyster populations and optimization of the ecosystem services they provide. In this 

study, we have characterized the composition and function of oyster-associated 

microbiomes at sites within a temperate, urbanized estuary. We found that oyster gut 

microbiomes during the summer were diverse in composition and differed between 

sites. Differences between the structure of microbiomes between water and oyster gut 

were consistent with selection and amplification of taxa from the water environment 
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by the oyster hosts. Although no significant differences in oyster gut community 

structure of the most active taxa was observed between sites throughout Narragansett 

Bay, significant differences in gene expression of several gene pathways (stress 

response, nutrient utilization) was observed between sites, reflecting the environment 

at each of the sites. In particular, the gut microbial community of oysters collected at 

the northern sites, which were characterized by high levels of nutrients and anoxia, 

showed upregulation of genes associated with stress response and phosphorus 

metabolism, as compared to southern sites. Microbes in the gut of southern oysters 

showed a relative upregulation of genes associated with nitrogen metabolism. These 

responses varied according to the eutrophication gradient, indicating that the responses 

of oyster gut-associated microbiomes reflect the local environment, despite the fact 

that they are located within the host (i.e. the oxygen and nutrient status of the water is 

pervasive in the oyster gut). This study also confirms the power of a 

metatranscriptomic analysis to provide insights into how estuarine acidification may 

shape host-associated microbial functions (Figure 6). 

Surprisingly, overall expression of genes involved in nitrogen metabolism in 

oyster-associated microbiomes was significantly higher at sites with the lowest levels 

of nutrients (NO2
-, NO3

-, NH4
+) in the water at the southern range of the estuarine 

gradient than at the more eutrophic northern sites. These results are consistent with 

previous findings showing that oxygen conditions control nitrogen and phosphorus 

cycling in the sediments by limiting nutrient availability (Testa et al., 2013), with high 

oxygen concentrations promoting nitrogen removal (Alzate Marin et al., 2016). This 

interaction between oxygen concentration (or redox state) and nitrogen metabolism 
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has been well-documented in marine sediments: higher DO and low NO3
- 

concentrations will stimulate denitrification, while the opposite occurs with high NO3
− 

concentrations (Rysgaard et al., 1994; Smith and Tiedje, 1979). Therefore, our 

findings indicate that the environment in the oyster gut reflects the overall 

environmental conditions at the site, consistent with expectations from sediment and 

water column observations. In the more oxygen-rich waters of the southern sites, 

oyster gut-associated microbes would use nitrogen as an electron donor for 

dissimilatory nitrate reduction to ammonium (DNRA) and ammonia-related pathways 

(Enrich-Prast et al., 2016), while in the more eutrophic, anoxic, and acidic waters of 

the Providence River where there is no available ammonia, oyster-associated 

microbiomes would instead upregulate pathways using the phosphate available from 

the sediment (Gomez et al., 1999; Lam and Kuypers, 2010). Alternatively, oyster-

associated gut metatranscriptomes in these northern sites may have been enriched in 

genomes adapted to prefer phosphate over nitrogen.  

Microbiomes in the gut of oysters collected at each of the sites also reflected 

potential stressors at each of the sites. For example, the increase in microbial oxidative 

stress observed at 1.PVD and 2.GB has been widely observed in microbial 

communities in response to anoxia, pollution, and toxins (Alves de Almeida et al., 

2007; Lesser, 2006). The upregulation of periplasmic stress response (due to stressors 

within the inner bacterial membrane) observed in samples collected at site 5.NIN is 

likely coupled with increased nitrogen metabolism and transport (Raivio and Silhavy, 

2002; Reyes et al., 2017; Spiro, 2012). In general, as eutrophic conditions worsen, 

bacteria will expend more energy on stress response and metabolic activities, a trend 
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that has also been shown in marine sediment microbiomes (Meyer-Reil and Köster, 

2000; Zhang et al., 2015). Other stressors, including pathogens, toxins, or chemical 

pollutants may have contributed to the differential expression in stress response 

pathway between sites and require further study.  

These results suggest that oysters select and amplify certain bacterial species, 

showing selection and niche colonization, as shown in other host species (Parfrey et 

al., 2019). The fact that bacterial composition in gut samples does not completely 

reflect the existing community in the water samples may indicate that oysters amplify 

rare members in the water community and/or retain bacteria previously acquired 

through time horizontally from the water or vertically from parents. Consistent with 

the hypothesis of amplification, certain bacterial taxa that are known intracellular 

anaerobes were relatively more abundant in gut than water samples. These include 

members of the Mycoplasmatales, Actinobacteria, Mollicutes, Clostridiales, and 

Desulfobacterales. Mycoplasmatales have been identified as common invertebrate 

symbionts and are avid biofilm-formers, allowing them to survive and replicate in the 

host (Fraune and Zimmer, 2008; McAuliffe et al., 2006). Proteobacteria formed the 

most abundant and active phylum in the overall community as determined by the 16S 

rRNA and metatranscriptomic analyses, consistent with published literature in oysters 

(King et al., 2019a; Pierce et al., 2016; Stevick et al., 2019). High variability among 

oysters within sites in the relative abundances of certain taxa (i.e. Mycoplasmatales or 

Caulobacterales) suggest that not just host selection by filter feeding plays a role in 

shaping community structure, but that factors like oyster health and/or host genetics 

may play a role (King et al., 2019b; Wegner et al., 2013). Further examination of 
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within-site variability and their relationship with other host parameters (e.g. health and 

physiological status, genetics) may reveal how certain taxa are promoted in each 

oyster. Studies have shown decreased microbial diversity in health-compromised 

hosts, which may limit their ability to respond to environmental change (King et al., 

2019a; Kinross et al., 2011). The interplay between the environment at each site, 

oyster-associated microbiomes, and host health will be the focus of further study. (See 

Appendix A for data on the health status of oysters collected for this study, as 

determined by histology and qPCR. Sample sizes were not enough in this study to 

establish a relationship between bacterial community composition and function and 

oyster health status.)  

Comparisons between the 16S rRNA amplicon data with metatranscriptomic 

analysis of the oyster-associated microbial community may also provide some initial 

insights into identification of which of the microbes show a symbiotic relationship 

with the oyster host, versus those that are transient food in the gut (i.e. accumulate in 

the oyster gut through association with food selectively ingested by oysters through 

filter feeding) (Newell and Jordan, 1983; Pierce and Ward, 2018). In particular, of the 

selected taxa shown to be relatively more abundant in the gut samples as compared to 

the water, a subset was detected to be transcriptionally active (suggesting that are not 

being immediately digested as food), particularly Bacillales, and Vibrionales. These 

taxa are commonly found in oysters, and known for their biofilm-forming abilities 

(King et al., 2019a; Pierce and Ward, 2018; Rampadarath et al., 2017; Riiser et al., 

2018). Conversely, despite the high relative abundance of Synechococcales and other 

Cyanobacteria detected in oyster gut samples in the southern sites through 16S rRNA 
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amplicon sequencing, the gut metatranscriptomes do not show a relative enrichment in 

levels of expression of genes involved in photosynthesis. Increased abundances of 

Cyanobacteria were also observed in the water samples at the southern sites, 

confirming that the relative abundance of these taxa in gut samples was a reflection of 

recent feeding activity. Further experiments in feeding and non-feeding conditions 

should be done to confirm the transient or resident nature of these taxa. 

 

Conclusion 

In summary, the estuarine gradient affected oyster-gut associated microbial 

communities by causing changes in community composition, microbial stress 

responses, and microbial metabolic responses. Estuarine acidification and other 

stressors increased microbial stress response pathways and changed expression of 

microbial genes involved in nutrient utilization. Changes in the function of the oyster 

gut microbiome mainly reflected local environmental conditions, within the context of 

a diverse microbial community structure. Our results suggest that the microbial 

community in the oyster host functions similarly to microbes in water and sediment 

(although we did not measure if perhaps the host amplifies these functions, compared 

to the water or sediments). Additional research is needed to probe how microbial 

functions respond to specific environmental stressors, particularly within coastal 

marine species. Combined, these results have implications for environmentally-driven 

changes in oyster microbial acclimation and potential ecosystem services. The 

environmental conditions and presence of a functionally diverse community, along 
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with site- and host- driven microbial community structures, determine the function and 

contributions of the oyster microbiome.  

Oyster gut microbial communities in these studies showed high levels of 

structural and functional diversity. Microbial functional plasticity coincides with 

functional redundancy in the microbiome: many different taxa encoding the same 

diverse functions or many taxa each encoding a distinct function (Louca et al., 2018). 

Functional plasticity as a result of functional redundancy has also been observed in 

microbial communities in humans (Gomez et al., 2019), soils (Espenberg et al., 2018; 

Glassman et al., 2018), marine sediments (Bulseco-McKim et al., 2017), and other 

host-associated microbiomes (Apprill, 2017; Rivest et al., 2018). Based on our results, 

we expect that oysters transplanted to other locations would show similar function as 

resident oysters, due to a diverse microbiome and functional redundancy (Antczak et 

al., 2019; Graham et al., 2016). This functional plasticity allows for microbial 

acclimation to changing estuarine conditions, perhaps also benefiting the host (Apprill, 

2020; Carrier and Reitzel, 2018).  

This study also has implications for quantification of ecosystem services 

provided by oyster restoration and aquaculture. In Narragansett Bay, oyster fisheries 

were a dominant industry in the late 1880s, but a combination of pollution, 

overfishing, and dredging lead to the collapse of oyster populations in the 1940s 

(Schumann, 2015). In recent years, numerous efforts have been made to renew oyster 

reefs and restore their ecosystem services in Narragansett Bay. A common goal of 

oyster restoration projects is improvement of water quality by stimulation of 

environmental denitrification (Grabowski et al., 2012; Kellogg et al., 2014). Our 
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findings support that removal of bioavailable nitrogen by denitrification, an important 

ecosystem service provided by oysters, declines in low oxygen, nutrient rich 

environments (Howarth et al., 2011; Lam and Kuypers, 2010; Zehr et al., 2006). 

Enhanced denitrification would occur at high dissolved oxygen and nutrient rich 

environments, such as the conditions observed at 4.NAR during the summer. This 

implies that if the environmental microbial community does not have the genes 

necessary for the nitrogen pathway and/or the environmental conditions do not favor 

the process, then the addition of oysters to the site will not promote the ecosystem 

service. The prevailing environmental conditions and function of the resident 

environmental microbial community should be considered when selecting sites for 

oyster farming and restoration. In this study, 4.NAR and 5.NIN would provide the 

greatest return on investment for a restoration project, if only the benefits of 

denitrification are considered.  

The results of study address knowledge gaps in oyster biology and ecology that 

may be explained by the effect of environmental factors on microbial communities 

associated with the host. As estuarine acidification increases, it is important to 

determine how microbial communities in oysters will change with environmental 

parameters, and determine relationships between microbial community structure and 

environmental conditions. The results presented here form a baseline for future studies 

that explore how human-driven estuarine acidification changes overall oyster health 

and its impacts on oyster farming.  
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Figures and Tables  

 

 

 
 

Figure II-1. Map of study area with 5 sampling locations. 

A schematic of the samples collected from each site is show in the bottom right. 
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Figure II-2. PCA of environmental factors, averaged per site. 

Each site is represented by a colored symbol and each environmental factor is 

represented with an arrow. Orange arrows indicate average environmental values 

measured in situ during the sampling week (n=2); light blue arrows are nutrient 

concentrations measured from water samples (n=3). 
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Figure II-3. Effect of site and sample type on present and active bacterial community structures.  

(A) Number of bacterial Orders shared between the water 16S rRNA amplicons, oyster gut 16S rRNA amplicons, and oyster gut 

metatranscriptomes (vertical bars). The total number of Orders found in each group is shown in the horizonal bar graph on the left. (B) 

Relative percent abundances of top 30 bacterial Orders associated with seawater samples (n=2) or oyster gut tissue (n=10 or 5), per 

site. The most abundant bacteria (16S rRNA amplicons, middle, n=10) and the most transcriptionally active bacteria 

(metatranscriptomes, right, n=5) in the oyster gut are shown. 
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Figure II-4. Differential expression of significant and stress response pathways. 

(A) Differential expression of all significant (padj<0.05) Level 1 pathways at the Northern sites (1-3, n=15), compared to Southern 

sites (4-5, n=10). A red bar (fold change>0) indicates upregulation in the North and a blue bar (fold change<0) indicates 

downregulation in the North. (B) Differential expression of Level 2 Stress Response pathways at each site, relative to the mean of all 

other sites (n=5, Significance: *padj<0.05, **padj<0.01). 
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Figure II-5. Nitrogen and phosphorus metabolism at each site.  

(n=5, Significance: *padj<0.05, **padj<0.01). (A) Differential expression of Nitrogen pathways at all sites, relative to the mean of the 

others. (top) Total differential expression of overall nitrogen metabolism, indicated with the blue-green colors. (bottom) Relative log 

fold change in nitrogen metabolism pathways, indicated with yellow-red colors. (B) Differential expression of Phosphorus pathways at 

all sites, relative to the mean. (top) Total differential expression of overall phosphorus metabolism, indicated with the blue-green 

colors. (bottom) Relative log fold change in phosphorus metabolism pathways, indicated with purple colors. 
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Figure II-6. Summary of changes in nutrient cycling according to relevant 

environmental factors. 
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Table II-1. Summary of all measurements collected per site. 

Environmental values are daily averages ± standard deviation measured at each site 

during week of collection. Nutrient values are averages of three-point samples 

collected from each site at time of oyster collection. Spearman’s correlation 

coefficient (-1 to 1) was calculated for the association between each parameter and 

Latitude. The most significant SCC values (|≥0.8|) are shaded green. A value closer to 

1 indicates that the parameter decreases from North-South (1.PVD to 5.NIN) and a 

value closer to -1 indicates that the parameter increases from North-South. A 

correlation coefficient of 0 means there is no linear association and that the value does 

not consistently change along the estuarine gradient. Significantly different 

measurements to all other sites as determined by a pairwise Student’s T-test or Wilcox 

rank-sum test are indicated in bold (Tables S2-S4). 

 

 
1.PVD 2.GB 3.BIS 4.NAR 5.NIN 

SCC 

Location (GPS 

coordinates) 

41.816,  

-71.391 

41.654,  

-71.445 

41.545,  

-71.431 

41.505,  

-71.453 

41.358, 

 -71.689 
1 

Environmental       

Temperature (°C) 23.0±0.8 24.3±1.3 22.7±1.5 25.4±0.3 23.3±1.6 -0.3 

Salinity (psu) 24.8±2.1 28.5±0.2 30.5±0.1 18.0±0.4 28.9±0.9 -0.2* 

pH 7.4±0.0 7.4±0.2 7.9±0.0 7.6±0.2 8.2±0.0 -0.9 

Chlorophyll- a (μg/L) 8.1±4.0 18.8±7.5 4.9±2.8 4.6±1.3 3.8±0.4 0.9 

Dissolved Oxygen (mg/L) 4.9±1.5 5.7±3.1 8.2±1.0 7.0±1.9 9.5±3.5 -0.9 

Nutrients       

Ammonium (μM) 7.6±0.1 5.6±0.9 45.8±0.8 1.6±1.1 13.9±0.1 -0.1 

Nitrite (μM) 0.7±0.0 0.0±0.0 0.1±0.2 0.0±0.0 0.0±0.0 0.7 

Nitrate (μM) 9.7±0.1 1.9±0.2 2.1±0.3 2.3±0.1 0.9±0.1 0.6 

Phosphate (μM) 3.7±0.1 1.6±0.1 0.7±0.1 0.1±0.0 0.2±0.0 0.9 

Oyster Characteristics 

(n=30) 
      

Average mass (g) 124.6±35.9 93.8±32.7 165.8±83.0 52.9±16.5 44.2±8.4 0.7 

Average length (mm) 98±21 84±11 104±21 76±9 71±7 0.7 

Average width (mm) 68.2±8.6 63.0±6.4 67.2±9.5 47.8±7.5 51.7±6.7 0.8 

*Spearman’s correlation coefficient for Salinity without 4.NAR is -0.8.  
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Supplementary Material 

 

Supplementary Figure 1. (A) Simpson’s Index of Diversity calculated using ASV-

level 16S rRNA amplicons for gut samples (left, n=10) and water samples (right, n=2). 

Global p-values were calculated using the Kruskal-Wallis rank-sum test, and pairwise 

p-values were calculated with the Wilcox rank-sum test (*p<0.05). (B) NMDS plot 

visualization of Bray-Curtis beta-diversity (k = 2) at the ASV level for gut samples by 

Site (left) and all samples by Type (right). The ellipse lines show the 95% confidence 

interval (standard deviation). p-values indicate significance of grouping with adonis2 

Permutational Multivariate Analysis of Variance Using Distance Matrices test.  
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Supplementary Figure 2. Number of bacterial Orders shared between the oyster gut 

and seawater 16S rRNA amplicons at each site (vertical bars). The total number of 

Orders found in each group is shown in the horizontal bar graph on the right. 

Intersections in gray denote comparisons that include the water samples.  

 

 

Supplementary Figure 3. NMDS plot visualization of Bray-Curtis beta-diversity (k = 

2) at the Species level for gut metatranscriptomic samples by Site. The ellipse lines 

show the 95% confidence interval (standard deviation). p-values indicate significance 

of grouping with adonis2 Permutational Multivariate Analysis of Variance Using 

Distance Matrices test. 
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Supplementary Figure 4. Differential expression (log fold change) of Level 4 gene 

annotation of Oxidative stress response groups at each site, relative to the mean of the 

others. All significantly regulated genes are outlined in red. 
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Supplementary Figure 5. Differential expression (log fold change) of Level 4 gene 

annotation of Osmotic and Periplasmic stress response groups at each site, relative to 

the mean of the others. All significantly regulated genes are outlined in red. 
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Supplementary Figure 6. Differential expression (log fold change) of level 4 gene 

annotation of nitrogen metabolism pathways at each site, relative to the mean of the 

others. All significantly regulated genes are outlined in red. 
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Supplementary Figure 7. Differential expression (log fold change) of level 4 gene 

annotation of phosphorus metabolism pathways at each site, relative to the mean of the 

others. All significantly regulated genes are outlined in red. 
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Supplementary Table 1. Sequencing summary statistics, including the number of 

reads that passed quality control (QC) in each 16S rRNA amplicon and 

metatranscriptomic sample. No metatranscriptomes were sequenced for water 

samples. 

 

Sample 

Name 

Sample 

Type 

Number of QC’d 16S 

Amplicon Reads 

Number of QC’d 

Metatranscriptomic Reads 

1.PVD.1 gut 44017 
 

1.PVD.2 gut 23147 
 

1.PVD.3 gut 12526 15,492,554 

1.PVD.4 gut 48164 21,147,198 

1.PVD.5 gut 12269 12,693,972 

1.PVD.6 gut 18405 19,559,038 

1.PVD.7 gut 15334 
 

1.PVD.8 gut 39536 17,838,913 

1.PVD.9 gut 8302 
 

1.PVD.10 gut 44423 
 

2.GB.1 gut 35784 20,572,807 

2.GB.2 gut 41874 20,247,959 

2.GB.3 gut 57064 
 

2.GB.4 gut 66328 
 

2.GB.5 gut 14269 15,391,203 

2.GB.6 gut 30679 7,342,452 

2.GB.7 gut 39547 21,364,544 

2.GB.8 gut 42135 
 

2.GB.9 gut 36380 
 

2.GB.10 gut 11366 
 

3.BIS.1 gut 27638 
 

3.BIS.2 gut 31156 
 

3.BIS.3 gut 24509 17,534,930 

3.BIS.4 gut 34760 16,169,419 

3.BIS.5 gut 34530 
 

3.BIS.6 gut 58360 
 

3.BIS.7 gut 28715 20,216,183 

3.BIS.8 gut 48028 
 

3.BIS.9 gut 9891 18,440,372 

3.BIS.10 gut 30931 18,960,268 

4.NAR.1 gut 41807 10,663,545 

4.NAR.2 gut 35900 14,799,611 

4.NAR.3 gut 50945 
 

4.NAR.4 gut 65248 
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4.NAR.5 gut 44783 
 

4.NAR.6 gut 28186 14,708,519 

4.NAR.7 gut 32686 13,545,684 

4.NAR.8 gut 54944 
 

4.NAR.9 gut 22411 13,950,925 

4.NAR.10 gut 57266 
 

5.NIN.1 gut 52428 
 

5.NIN.2 gut 24707 15,180,735 

5.NIN.3 gut 78086 
 

5.NIN.4 gut 37135 15,447,506 

5.NIN.5 gut 57846 
 

5.NIN.6 gut 42666 
 

5.NIN.7 gut 26419 17,064,359 

5.NIN.8 gut 4467 
 

5.NIN.9 gut 30093 13,277,188 

5.NIN.10 gut 50503 17,421,647 

1.PVD.W1 water 26702 
 

1.PVD.W2 water 35604 
 

2.GB.W1 water 33545 
 

2.GB.W2 water 26888 
 

3.BIS.W1 water 48289 
 

3.BIS.W2 water 31249 
 

4.NAR.W1 water 65630 
 

4.NAR.W2 water 33277 
 

5.NIN.W1 water 57394 
 

5.NIN.W2 water 50633 
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Supplementary Table 2. Results of One-Way ANOVA for environmental conditions measured by the YSI Sonde probe per site. 

Pairwise p-values were calculated with a Student’s T-test, adjusted p-value with Benjamini-Hochberg method. 

 
Environmental  

Condition All Sites 

1.PVD: 

2.GB 

1.PVD: 

3.BIS 

1.PVD: 

4.NAR 

1.PVD: 

5.NIN 

2.GB: 

3.BIS 

2.GB: 

4.NAR 

2.GB: 

5.NIN 

3.BIS: 

4.NAR 

3.BIS: 

5.NIN 

4.NAR: 

5.NIN 

Temperature 

(°C) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value 0.27 0.366 0.827 0.104 0.851 0.37 0.429 0.555 0.225 0.741 0.301 

P adj 0.27 0.71 0.85 0.71 0.85 0.71 0.71 0.79 0.71 0.85 0.71 

                        

Salinity (psu) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value 3.97E-04 0.244 0.162 0.127 0.186 0.0181 0.00258 0.638 0.00657 0.233 0.0177 

P adj 4.00E-04 0.27 0.27 0.25 0.27 0.045 0.026 0.64 0.033 0.27 0.045 

  ***         * **   **   * 

pH 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value 0.0108 0.994 0.00488 0.486 0.00227 0.21 0.552 0.129 0.295 0.0177 0.154 

P adj 0.011 0.99 0.024 0.61 0.023 0.35 0.61 0.31 0.42 0.059 0.31 

  *   **   **             

Chlorophyll- a 

(μg/L) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value 0.0583 0.254 0.453 0.42 0.363 0.2 0.218 0.214 0.923 0.673 0.523 

P adj 0.058 0.64 0.65 0.65 0.65 0.64 0.64 0.64 0.92 0.75 0.65 

                        

Dissolved 

Oxygen (mg/L) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value 0.4 0.793 0.133 0.363 0.282 0.436 0.671 0.362 0.522 0.695 0.482 

P adj 0.4 0.79 0.75 0.75 0.75 0.75 0.77 0.75 0.75 0.77 0.75 
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Supplementary Table 3. Results of One-Way ANOVA for nutrient concentrations measured from seawater samples with the Lachat 

nutrient analyzer. Pairwise p-values were calculated with a Student’s T-test, adjusted p-value with Benjamini-Hochberg method. Note 

that the Nitrite concentrations measured at 2.GB, 4.NAR, and 5.NIN were 0±0. 

 

Measurement All Sites 

1.PVD: 

2.GB 

1.PVD: 

3.BIS 

1.PVD: 

4.NAR 

1.PVD: 

5.NIN 

2.GB: 

3.BIS 

2.GB: 

4.NAR 

2.GB: 

5.NIN 

3.BIS: 

4.NAR 

3.BIS: 

5.NIN 

4.NAR: 

5.NIN 

Ammonium 

(μM) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value < 2E-16 0.023 2.8E-10 0.011 1.2E-07 3.6E-10 0.0078 0.00031 6.8E-06 1.1E-09 0.0026 

P adj < 2E-16 0.023 1.8E-09 0.012 2.9E-07 1.8E-09 0.0097 0.00052 1.4E-05 3.8E-09 0.0038 

  **** * **** * **** **** ** *** **** **** ** 

Nitrite (μM) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value 1.0E-04 1.4E-04 2.6E-03 1.4E-04 1.4E-04 0.36   0.36 0.36  

P adj 1.0E-04 3.2E-04 4.5E-03 3.2E-04 3.2E-04 0.36   0.36 0.36  

 *** *** ** *** ***          

Nitrate 

(μM) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value < 2E-16 6.3E-08 4.5E-10 4.3E-06 1.8E-05 0.20 0.039 0.0032 0.34 0.00020 3.5E-05 

P adj < 2E-16 3.1E-07 4.5E-09 1.4E-05 4.6E-05 0.22 0.049 0.0045 0.34 0.00033 7.0E-05 

  **** **** **** **** ****   * **   *** **** 

Phosphate 

(μM) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value < 2E-16 1.5E-06 1.3E-05 9.2E-05 2.5E-05 1.1E-04 8.1E-05 3.8E-05 4.5E-07 5.5E-07 0.079 

P adj < 2E-16 5.1E-06 3.3E-05 1.1E-04 4.9E-05 1.2E-04 1.1E-04 6.3E-05 2.7E-06 2.7E-06 0.079 

  **** **** **** **** **** *** **** **** **** ****   
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Supplementary Table 4. Results of One-Way ANOVA for oyster measurements. Pairwise p-values were calculated with a Student’s 

T-test, adjusted p-value with Benjamini-Hochberg method. 

 

Measurement All Sites 

1.PVD: 

2.GB 

1.PVD: 

3.BIS 

1.PVD: 

4.NAR 

1.PVD: 

5.NIN 

2.GB: 

3.BIS 

2.GB: 

4.NAR 

2.GB: 

5.NIN 

3.BIS: 

4.NAR 

3.BIS: 

5.NIN 

4.NAR: 

5.NIN 

Mass (g) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value < 2E-16 0.0010 0.017 1.9E-12 2.3E-13 8.1E-05 2.5E-07 2.9E-09 3.1E-08 7.3E-09 0.013 

P adj < 2E-16 0.0012 0.017 9.4E-12 2.3E-12 1.2E-04 4.2E-07 9.6E-09 6.1E-08 1.8E-08 0.015 

  **** *** * **** **** **** **** **** **** **** * 

Length 

(mm) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value < 2E-16 0.0016 0.30 4.3E-06 1.1E-07 3.4E-05 0.0033 2.9E-06 7.5E-08 2.6E-09 0.032 

P adj < 2E-16 0.0023 0.30 8.6E-06 3.8E-07 5.6E-05 0.0041 7.2E-06 3.7E-07 2.6E-08 0.036 

  **** **  **** **** **** ** **** **** **** * 

With 

(mm) 

DF 4 1 1 1 1 1 1 1 1 1 1 

P value < 2E-16 0.010 0.66 6.8E-14 2.7E-11 0.053 1.2E-11 9.6E-09 4.9E-12 1.7E-09 0.036 

P adj < 2E-16 0.015 0.66 6.8E-13 6.8E-11 0.058 3.9E-11 1.6E-08 2.4E-11 3.4E-09 0.045 

  **** *   **** ****   **** **** **** **** * 
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Supplementary Table 5. Kruskal-Wallis Rank Sum Test for the Simpson’s Index of 

Diversity values calculated using ASV-level 16S rRNA amplicons by Sample Type 

and Site. Pairwise p-values were calculated with the Wilcox rank-sum test. 

 

All Sites – Gut  

 DF Chi-Squared P value  

All Sites 4 29.528 6.11E-06 *** 

1.PVD: 2.GB 1  0.079  

1.PVD: 3.BIS 1  0.912  

1.PVD: 4.NAR 1  0.0042 ** 

1.PVD: 5.NIN 1  0.0018 ** 

2.GB: 3.BIS 1  0.062  

2.GB: 4.NAR 1  0.00011 ** 

2.GB: 5.NIN 1  0.00022 *** 

3.BIS: 4.NAR 1  0.00069 *** 

3.BIS: 5.NIN 1  0.00648 ** 

4.NAR: 5.NIN 1  0.76  

All Sites – Water  

 DF Chi-Squared P value  

All Sites 4 8.4 0.0780  
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Supplementary Table 6. Welch Two Sample T-Test for select Orders detected in 16S 

rRNA amplicons by Sample Type (gut vs. seawater), adjusted p-value with Benjamini-

Hochberg method. 

 

 

Gut vs. Water Samples 

Taxa P value P adj  

Actinobacteria;Actinobacteria;Corynebacteriales 8.25E-08 5.80E-07 **** 

Bacteroidetes;Bacteroidia;Cytophagales 8.31E-03 1.20E-02 ** 

Bacteroidetes;Bacteroidia;Flavobacteriales 3.92E-03 6.10E-03 ** 

Cyanobacteria;Oxyphotobacteria;Chloroplast 1.68E-08 1.60E-07 **** 

Cyanobacteria;Oxyphotobacteria;Synechococcales 4.50E-05 1.40E-04 **** 

Cyanobacteria;Oxyphotobacteria 2.87E-01 3.10E-01  

Firmicutes;Bacilli;Bacillales 2.95E-02 3.60E-02 * 

Firmicutes;Bacilli;Lactobacillales 4.52E-04 9.70E-04 *** 

Firmicutes;Clostridia;Clostridiales 1.04E-06 4.90E-06 **** 

Fusobacteria;Fusobacteriia;Fusobacteriales 6.42E-04 1.30E-03 *** 

Proteobacteria;Alphaproteobacteria;Caulobacterales 2.82E-04 6.90E-04 *** 

Proteobacteria;Alphaproteobacteria;Rhodobacterales 8.91E-04 1.70E-03 *** 

Proteobacteria;Alphaproteobacteria;SAR11.clade 1.16E-05 4.60E-05 **** 

Proteobacteria;Alphaproteobacteria 5.38E-01 5.60E-01  

Proteobacteria;Deltaproteobacteria;Desulfobacterales 6.35E-09 8.90E-08 **** 

Proteobacteria;Gammaproteobacteria;Aeromonadales 9.03E-02 1.00E-01  

Proteobacteria;Gammaproteobacteria;Betaproteobacteriales 4.53E-02 5.30E-02 * 

Proteobacteria;Gammaproteobacteria;Cellvibrionales 5.56E-03 8.20E-03 ** 

Proteobacteria;Gammaproteobacteria;Enterobacteriales 2.72E-02 3.50E-02 * 

Proteobacteria;Gammaproteobacteria;Legionellales 1.34E-03 0.0024 ** 

Proteobacteria;Gammaproteobacteria;Oceanospirillales 1.91E-05 0.000067 **** 

Proteobacteria;Gammaproteobacteria;Pseudomonadales 8.30E-01 0.83  

Proteobacteria;Gammaproteobacteria;Vibrionales 1.85E-04 0.00052 *** 

Proteobacteria;Gammaproteobacteria 2.45E-02 0.033 * 

Tenericutes;Mollicutes;Mycoplasmatales 1.92E-03 0.0032 ** 

Tenericutes;Mollicutes 2.98E-04 6.90E-04 *** 

Verrucomicrobia;Verrucomicrobiae;Verrucomicrobiales 1.00E-06 4.9E-06 **** 

Unknown 5.01E-13 1.4E-11 **** 
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Supplementary Table 7. Welch Two Sample T-Test for select Orders detected in 16S rRNA amplicons from gut samples by 

Sampling Site, adjusted p-value with Benjamini-Hochberg method. 

 

Taxa 

 
1.PVD: 

2.GB 

1.PVD: 

3.BIS 

1.PVD: 

4.NAR 

1.PVD: 

5.NIN 

2.GB: 

3.BIS 

2.GB: 

4.NAR 

2.GB: 

5.NIN 

3.BIS: 

4.NAR 

3.BIS: 

5.NIN 

4.NAR: 

5.NIN 

Actinobacteria; 

Actinobacteria; 

Corynebacteriales 

p 0.0083 0.0092 0.0077 0.00093 0.32 5.3E-05 8.9E-05 5.7E-05 9.3E-05 0.062 

p.adj 0.052 0.056 0.051 0.015 0.51 0.003 0.003 0.003 0.003 0.19     
* 

 
** ** ** ** 

 

Bacteroidetes; 

Bacteroidia; 

Cytophagales 

p 0.046 0.014 0.078 0.0065 0.057 0.99 0.0073 0.060 0.010 0.0073 

p.adj 0.15 0.071 0.21 0.049 0.18 1 0.051 0.18 0.059 0.051     
* 

      

Bacteroidetes; 

Bacteroidia; 

Flavobacteriales 

p 0.15 0.75 0.0040 0.52 0.37 0.19 0.23 0.18 0.81 0.10 

p.adj 0.33 0.86 0.04 0.68 0.54 0.38 0.4 0.37 0.89 0.25    
* 

       

Cyanobacteria; 

Oxyphotobacteria 

p 0.017 0.017 0.016 0.017 0.72 0.37 0.98 0.20 0.67 0.089 

p.adj 0.077 0.077 0.077 0.077 0.84 0.55 0.99 0.38 0.78 0.23            

Cyanobacteria; 

Oxyphotobacteria; 

Chloroplast 

p 0.017 0.078 0.79 0.17 0.14 0.021 0.0060 0.11 0.0084 0.082 

p.adj 0.077 0.21 0.88 0.35 0.3 0.089 0.047 0.25 0.052 0.22        
* 

   

Cyanobacteria; 

Oxyphotobacteria; 

Synechococcales 

p 0.002 0.022 3.6E-06 0.00024 0.0038 2.0E-06 6.3E-05 2.5E-06 9.6E-05 0.0030 

p.adj 0.027 0.094 0.00034 0.0055 0.04 0.00034 0.003 0.00034 0.003 0.033  
* 

 
*** ** * *** ** *** * * 

Firmicutes; 

Bacilli; 

Bacillales 

p 0.10 0.40 0.037 0.045 0.23 0.26 0.39 0.19 0.20 0.54 

p.adj 0.25 0.56 0.13 0.15 0.4 0.43 0.56 0.38 0.38 0.7            

Firmicutes; 

Bacilli; 

Lactobacillales 

p 0.12 0.64 0.21 0.051 0.27 0.24 0.10 0.47 0.12 0.00089 

p.adj 0.27 0.76 0.39 0.16 0.45 0.41 0.25 0.63 0.27 0.015           
* 



 

 

1
0
0

 

Taxa 

 
1.PVD: 

2.GB 

1.PVD: 

3.BIS 

1.PVD: 

4.NAR 

1.PVD: 

5.NIN 

2.GB: 

3.BIS 

2.GB: 

4.NAR 

2.GB: 

5.NIN 

3.BIS: 

4.NAR 

3.BIS: 

5.NIN 

4.NAR: 

5.NIN 

Firmicutes; 

Clostridia; 

Clostridiales 

p 0.014 0.031 0.034 0.032 0.33 0.085 0.12 0.78 0.88 0.85 

p.adj 0.071 0.12 0.13 0.12 0.51 0.22 0.27 0.88 0.92 0.92            

Fusobacteria; 

Fusobacteriia; 

Fusobacteriales 

p 0.33 0.79 0.022 0.0044 0.29 0.14 0.016 0.033 0.0041 0.0027 

p.adj 0.51 0.88 0.093 0.041 0.47 0.31 0.077 0.13 0.04 0.033     
* 

    
* * 

Proteobacteria; 

Alphaproteobacteria 

p 0.34 0.32 0.36 0.39 0.51 0.66 0.41 0.12 0.18 0.54 

p.adj 0.51 0.51 0.53 0.56 0.67 0.77 0.57 0.27 0.36 0.7            

Proteobacteria; 

Alphaproteobacteria; 

Caulobacterales 

p 0.13 0.24 0.059 0.78 0.76 0.044 0.18 0.085 0.32 0.11 

p.adj 0.3 0.42 0.18 0.88 0.87 0.15 0.37 0.22 0.51 0.26       
* 

    

Proteobacteria; 

Alphaproteobacteria; 

Rhodobacterales 

p 0.60 0.34 0.61 0.067 0.75 0.42 0.20 0.20 0.29 0.044 

p.adj 0.73 0.51 0.73 0.2 0.86 0.59 0.38 0.38 0.46 0.15           
* 

Proteobacteria; 

Alphaproteobacteria; 

SAR11.clade 

p 0.95 0.99 0.50 0.87 0.93 0.47 0.82 0.50 0.88 0.58 

p.adj 0.96 0.99 0.66 0.92 0.95 0.63 0.9 0.67 0.92 0.71            

Proteobacteria; 

Deltaproteobacteria; 

Desulfobacterales 

p 0.21 0.046 0.88 0.46 0.25 0.22 0.038 0.048 0.014 0.29 

p.adj 0.39 0.15 0.92 0.62 0.42 0.4 0.14 0.16 0.071 0.46   
* 

     
* * 

 

Proteobacteria; 

Gammaproteobacteria 

p 0.14 0.35 0.74 0.0048 0.20 0.16 0.39 0.56 0.063 0.018 

p.adj 0.3 0.52 0.85 0.042 0.38 0.34 0.56 0.7 0.19 0.079     
** 

     
* 

Proteobacteria; 

Gammaproteobacteria 

Aeromonadales 

p 0.025 0.0096 0.29 0.0069 0.43 0.28 0.24 0.13 0.34 0.094 

p.adj 0.1 0.057 0.46 0.051 0.6 0.46 0.41 0.29 0.51 0.24  
* ** 

 
** 

      

 



 

 

1
0
1

 

Taxa 
 

1.PVD: 

2.GB 

1.PVD: 

3.BIS 

1.PVD: 

4.NAR 

1.PVD: 

5.NIN 

2.GB: 

3.BIS 

2.GB: 

4.NAR 

2.GB: 

5.NIN 

3.BIS: 

4.NAR 

3.BIS: 

5.NIN 

4.NAR: 

5.NIN 

Proteobacteria; 

Gammaproteobacteria 

Betaproteobacteriales 

p 0.097 0.88 0.032 0.040 0.15 0.21 0.32 0.055 0.068 0.66 

p.adj 0.25 0.92 0.12 0.14 0.32 0.39 0.51 0.18 0.2 0.78    
* * 

      

Proteobacteria; 

Gammaproteobacteria 

Cellvibrionales 

p 0.21 0.87 0.25 0.35 0.22 0.082 0.58 0.18 0.39 0.10 

p.adj 0.38 0.92 0.42 0.52 0.4 0.22 0.71 0.36 0.56 0.25            

Proteobacteria; 

Gammaproteobacteria 

Enterobacteriales 

p 0.0003 0.00014 0.00013 0.80 0.61 0.55 0.012 0.95 0.0081 0.0076 

p.adj 0.0068 0.0036 0.0036 0.89 0.74 0.7 0.066 0.95 0.052 0.051  
** ** ** 

       

Proteobacteria; 

Gammaproteobacteria 

Legionellales 

p 0.62 0.33 0.24 0.0019 0.24 0.20 0.0021 0.85 0.0016 0.0016 

p.adj 0.74 0.51 0.42 0.027 0.42 0.38 0.027 0.92 0.024 0.024     
* 

  
* 

 
* * 

Proteobacteria; 

Gammaproteobacteria 

Oceanospirillales 

p 0.20 0.61 0.57 0.042 0.39 0.41 0.0029 0.96 0.013 0.011 

p.adj 0.38 0.73 0.71 0.15 0.56 0.58 0.033 0.97 0.068 0.062        
* 

   

Proteobacteria; 

Gammaproteobacteria 

Pseudomonadales 

p 0.90 0.48 0.11 0.072 0.64 0.26 0.21 0.076 0.058 0.55 

p.adj 0.93 0.64 0.25 0.21 0.76 0.43 0.39 0.21 0.18 0.7            

Proteobacteria; 

Gammaproteobacteria 

Vibrionales 

p 0.51 0.82 0.95 0.0060 0.65 0.45 0.0046 0.84 0.0054 0.005 

p.adj 0.67 0.9 0.97 0.047 0.77 0.62 0.042 0.91 0.046 0.047     
* 

  
* 

 
* * 

Tenericutes; 

Mollicutes 

p 0.031 0.094 0.45 0.16 0.86 0.021 0.90 0.074 0.80 0.13 

p.adj 0.12 0.24 0.62 0.34 0.92 0.089 0.93 0.21 0.88 0.29            

Tenericutes; 

Mollicutes; 

Mycoplasmatales 

p 0.14 0.60 0.23 0.16 0.06 0.37 0.55 0.10 0.072 0.56 

p.adj 0.3 0.73 0.41 0.34 0.19 0.54 0.7 0.25 0.21 0.7            



 

 

1
0
2

 

 

Taxa 

 
1.PVD: 

2.GB 

1.PVD: 

3.BIS 

1.PVD: 

4.NAR 

1.PVD: 

5.NIN 

2.GB: 

3.BIS 

2.GB: 

4.NAR 

2.GB: 

5.NIN 

3.BIS: 

4.NAR 

3.BIS: 

5.NIN 

4.NAR: 

5.NIN 

Verrucomicrobia; 

Verrucomicrobiae; 

Verrucomicrobiales 

p 0.081 0.54 0.79 0.013 0.010 0.00070 0.0004 0.25 0.033 0.0040 

p.adj 0.22 0.7 0.88 0.07 0.059 0.013 0.0081 0.42 0.13 0.04       
* ** 

  
* 

Unknown p 0.63 0.92 0.56 0.79 0.56 0.90 0.47 0.44 0.86 0.33 

p.adj 0.75 0.94 0.7 0.88 0.7 0.93 0.63 0.6 0.92 0.51            
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Abstract 

As keystone species in the coastal environment, oysters play a crucial role in 

nitrogen cycling, improving water quality for other marine organisms and humans. It 

is understood that host-associated microbes are responsible for the oyster’s ability to 

promote nitrogen cycling within the environment. However, the composition of 

oyster-associated microbiomes and their physiological mechanisms driving nitrogen 

cycling and gas production are unknown. Adult oysters (30 oysters per container, 6 

containers) were deployed for three months in the summer of 2017 at two sites in 

Point Judith Pond, Rhode Island, with different levels of ambient nitrogen loading. 

Within each site, three of the six containers were spiked with fertilizer to simulate 

nutrient runoff. Tissues (gut, inner and outer shell biofilms) from a subsample of 

oysters (n = 36, 3 per container) were collected for analysis of microbial community 

composition and function. The microbial community structures were determined by 

DNA amplification and sequencing of the 16S rRNA V6 region, and 

metatranscriptomes were sequenced to determine the transcriptional response of the 

oysters to nutrient enrichment. Both sample type and environmental conditions had a 

significant effect on microbial community structure and function in oysters. 

Expression of nitrogen metabolism genes was significantly different in each sample 

type and site, with significant changes in response to nutrient enrichment. Changes in 

the microbial community composition of outer shell biofilms likely led to a significant 

effect of location and nutrient enrichment on the denitrification ability of oysters when 

exposed to a high nutrient load. This study informs nitrogen cycling abilities of 
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microbial communities in oysters, and how this function is affected by nutrient 

enrichment. 
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Introduction 

Oysters are keystone species in the coastal environment, and provide a range of 

ecosystem services, including habitat provision for other marine species, protection 

against erosion, and improvement of water quality by filtration (Burge et al., 2016; 

Grabowski et al., 2012). Furthermore, oysters play a crucial role in nitrogen cycling 

and removal, due to their effective filter feeding mechanisms and concentration of 

nutrients (Coen et al., 2007; Kellogg et al., 2014; Stief, 2013). Organisms in coastal 

ecosystems are threatened by many factors, including increased nutrient loading, 

increased anthropogenic inputs (toxins or heavy metals), warming temperatures, and 

decreased dissolved oxygen (Haigh et al., 2015; Wallace et al., 2014). This has led to 

altered ecosystem interactions due to increased mortality, compromised growth, 

disease outbreaks, and many other consequences (Groner et al., 2016; Hendriks et al., 

2010; Kroeker et al., 2012; Ross et al., 2011). 

Nitrogen is a particularly important nutrient in coastal ecosystems since it controls 

biomass at the bottom of the food web and may limit primary production (Howarth, 

1988). In the coastal environment, nitrogen is constantly transformed by microbes as a 

main electron donor for metabolism (Enrich-Prast et al., 2016; Kellogg et al., 2013). 

These processes can be grouped intro reducing and oxidizing reactions as nitrogen is 

converted from inorganic species to gas or ammonium (Albright et al., 2018). 

Denitrification is defined as the anaerobic microbial reduction of nitrate (NO3
-) and 

nitrite (NO2
-) to gaseous nitrous oxide (N2O), nitric oxide (NO), and finally dinitrogen 

gas (N2), effectively removing the nitrogen from the system (Knowles, 1982). This 
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process is a key ecosystem service provided by oysters, valued at $1385–$6716 USD 

per hectare of oyster reef per year in 2011 dollars (Grabowski et al., 2012). 

Oysters and other benthic organisms remove both particulate and dissolved 

nitrogen in the coastal environment by assimilation into their tissues or shells or 

biodeposit sediment burial, and recycle bioavailable nitrogen to N2 gas by coupled 

nitrification-denitrification (Kellogg et al., 2014). It is understood that host-associated 

bacteria are responsible for this ability to cycle dissolved nitrogen, particularly 

through denitrification by gut microbes (Caffrey et al., 2016a; Humphries et al., 2016; 

Smyth et al., 2015). Oyster-associated microbes are also known to produce nitrous 

oxide (N2O) as a byproduct of nitrification, incomplete denitrification, or during 

decomposition by outer shell biofilms (Heisterkamp et al., 2013; Ray et al., 2019a; 

Stief et al., 2009). It is estimated that bivalves can reduce suspended particle 

concentrations by 45%, and remove 1-25% of annual nitrogen loads (Carmichael et 

al., 2012). However, the relative contribution of oysters and other bivalves to nitrogen 

removal by benthic ecosystems is highly variable across different regions and 

dependent upon the method used (Kellogg et al., 2013). 

The effect of biotic and abiotic factors on nitrogen gas production in the marine 

environment, particularly in sediments and the water column, has been the focus of 

extensive research. Sediment N2 and N2O gas production is not controlled by NO3
- 

concentrations, but by organic matter mineralization, dissolved oxygen, and substrate 

availability (Enrich-Prast et al., 2016; Highton et al., 2016; Seitzinger, 1988). A 

survey of water column nitrification rates at various pH values in Narragansett Bay, RI 

found that nitrification rates were negatively correlated with pH (Fulweiler et al., 
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2011). In oxygen minimum zones, overall nitrogen loss occurs by combined anammox 

and heterotrophic denitrification (Lam and Kuypers, 2010; Penn et al., 2019). In 

bivalves, denitrification rates are determined by biofilm thickness (Suarez et al., 

2019), nutrient loading (Grabowski et al., 2012; Lunstrum et al., 2018), habitat density 

(Smyth et al., 2015), and many other factors (Jetten, 2008). A comparison of gas 

production from oysters with and without their outer shell biofilm found that the outer 

shell releases low levels of N2O, NO2
-, and NH4

+, while the oyster gut produces N2-N 

and N2O (Ray et al., 2019b). N2O and N2 production are known to be positively 

correlated with shellfish biomass (Heisterkamp et al., 2010; Stief et al., 2009).  

A study by Gárate et al. (2019) found that a combination of warming and added 

nitrogen led to increased N2O production in eastern oysters, compared to ambient 

conditions. A follow-up field study was conducted in Point Judith Pond, Rhode Island, 

USA (a well-mixed estuary in southern Rhode Island where many eastern oyster 

leases are held) (Hamilton, 2018; Hamilton et al., in prep). Farmed oysters were out 

planted at contrasting ends of the estuarine gradient of the Pond and half were treated 

with increased nutrients for 3 months. The oysters were brought to the laboratory and 

incubated with 100µM NH4
+NO3

- (enrichment above seawater) to determine the 

impact of preexisting field conditions on gas production rates (N2 and N2O) under high 

nutrient loading (i.e. measurement of denitrification potential under high nutrient 

loading). Overall denitrification rates were higher at the southern site, where there was 

lower DO, higher temperature and chlorophyll-a. At the southern location, N2 

measurements shifted from net denitrification to nitrogen fixation under enriched 
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conditions (Hamilton, 2018). These changes are likely due to differences in the oyster 

microbiomes composition and/or function. 

Nutrient enrichment possibly affects microbial communities in coastal 

environments, which likely alters gas production rates (Stevick et al., in prep (Chapter 

2); Bulseco-McKim et al., 2017; Bulseco et al., 2019; Murphy et al., 2019). A study of 

genes involved in nitrous oxide flux and microbial community structure in salt marsh 

sediments determined that changes in gas production are due to microbial community 

structure changes, rather than just changes in microbial gene expression (Angell et al., 

2018). On the other hand, increased nutrient levels did not affect sediment microbial 

community composition, but affected abundance of nitrogen cycling genes in a 

eutrophic lagoon (Highton et al., 2016). Yet, the natural mechanisms and controls of 

nitrogen cycling and gas production by the oyster commensal bacteria are mostly 

unknown. The oyster outer shell, inner shells, and tissues such as the gut provide 

significantly different environmental niches facilitating different microbiome 

structures and likely different contributions to nitrogen metabolism (Arfken et al., 

2017; Barillé et al., 2017; King et al., 2019). A recent study by Arfken et al. (2017) 

used functional inference from 16S rRNA sequencing to estimate the denitrification 

potential of the oyster gut, shell, and sediment bacteria in relation to gas production 

measurements, and found that bacteria containing the nosZI gene (nitrous oxide 

reductase) are important for facilitating denitrification and differ between sample 

types. There is, however, no comprehensive characterization of the effects of nutrient 

enrichment on oyster gut, inner, and outer shell microbial community composition and 

function using high-throughput methods. There is a need to accurately characterize the 
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bacteria and transcribed genes that are responsible for nitrogen cycling by oysters, 

which may change in response to increased nutrient loading.  

In this study, we used samples collected from a previous field study (Hamilton, 

2018) to explore changes in oyster-associated microbial community structure and 

function in response to nutrient enrichment, within the context of nitrogen cycling. We 

used 16S rRNA amplicon and metatranscriptomic sequencing to assess: (a) the effect 

of site, nutrient enrichment within site, and tissue type (shell biofilms and gut) on 

microbial composition and function in oysters; and (b) which gene pathways 

associated to nitrogen cycling processes respond to nutrient loading in oyster-

associated microbiomes. The results of the study inform how oysters contribute to 

estuarine ecosystems and how this may change in response to increased eutrophication 

and nutrients. 

 

Methods 

Field Experiment and Sample Collection 

Farmed eastern oysters, Crassostrea virginica, were obtained from a farm located 

in Point Judith Pond, RI and deployed at Billington Cove (Northern, 41°25'17"N; 

71°30'09"W) and Bluff Hill Cove (Southern, 41°23'24"N; 71°30'36"W), Point Judith 

Pond, RI, for 3 months from June-August 2017, as described in Hamilton (2018). At 

both locations, there were 6 buckets containing 30 oysters each, 3 maintained ambient 

conditions and 3 at enriched nutrient conditions (Figure 1). Enriched treatments were 

performed with Milorganite slow release pellet fertilizer (Worm et al., 2000) to target 

20 µM inorganic nitrogen (~2% phosphorus). General environmental measurements 
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(dissolved oxygen - DO, salinity, chlorophyll-a, temperature, and pH) were taken 

every 15 minutes at each site throughout the 3-month experiment. Seawater dissolved 

inorganic nitrogen (DIN: NO2
-, NO3

-, NH4
+) measurements were collected at high and 

low tide in each bucket the week before the experiment ended (Figure 1; Hamilton 

2018).  

Following the field incubations (Aug 2017), three oysters were randomly selected 

from each bucket for microbial community analysis (36 total). Field oysters collected 

for microbial community analysis were processed as follows. After sterile DI water 

rinse of the outer shell of the oysters, a sterile cotton swab was used to sample the 

microbial biofilm. The oysters were then shucked, and another sterile swab was used 

to sample the microbial biofilm in the inner shell of the top valve of the oyster. 

Finally, sterile dissection scissors were used to cut a >30 mg section of gut tissue from 

a consistent location. All swab and tissue samples were stored in 1.5 mL RNAlater 

(Invitrogen) for later analysis. 

The reminder of the oysters were used to determine the effect of site and nutrient 

enrichment on denitrification potential under high nutrient loading. Briefly, oysters 

from each of the field bucket forts were transferred to tanks containing 100µM 

NH4
+NO3

-, incubated at 18°C and 24°C, and gas rates were determined. A summary of 

relevant environmental data and gas measurements previously reported in Hamilton 

(2018) is reported in Figure 1. 

Nucleic Acid Extractions 

DNA and RNA were co-extracted from each sample (inner and outer shell 

biofilm, and gut samples) using the Qiagen Allprep PowerViral DNA/RNA extraction 
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kit with modifications as follows. The swab samples were removed from the RNAlater 

and each washed with 1 mL of sterile, filtered 1X nuclease-free Phosphate Buffer 

Saline (PBS, pH 7.4, Invitrogen). The remaining RNAlater was centrifuged to pellet 

the excess cells, then washed with 1X PBS. The cell pellet was suspended in 600 μL 

of Qiagen Solution PV1 and added directly to a 0.1mm glass bead tube, along with the 

washed swab and 6 μL of sterile β-mercaptoethanol. The gut samples were each 

weighed and 30 mg was added to a 0.1 mm glass bead tube, in addition to 600 μL of 

Solution PV1 and 6 μL of sterile β-mercaptoethanol. All samples were then vortexed 

horizontally for 5 minutes for mechanical disruption, then 10 μL of proteinase K 

(Qiagen) was added and the samples were incubated at 55°C for 1 hour in a shaker at 

300 rpm for chemical lysis. Following lysis of the tissues and cells, the supernatant 

was transferred a new 2 mL microcentrifuge tube and the protocol continued based on 

the manufacturer’s protocol. The total nucleic acids in the samples were quantified 

using a Nanodrop 2000 instrument (ThermoFisher) and divided into equal volumes for 

RNA and DNA purification. 

RNA was purified from a 30 μL total nucleic acid aliquot using the DNase Max 1 

kit in a 50 μL reaction volume following the manufacturer’s protocol (Qiagen). DNA 

was purified using the final steps of the DNeasy PowerLyzer PowerSoil Kit (Qiagen). 

The 30 μL total nucleic acid aliquot was combined with 1200 μL of Solution C4, then 

vortexed to mix. Digestion of RNA was then performed by adding 4 μL of RNase A 

solution and incubating for 2 minutes at room temperature. The treated DNA was then 

washed and purified on the spin column, and eluted into a 50 μL volume. Purified 

RNA and DNA concentrations and quality were quantified with both a Qubit 
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Fluorometer High-Sensitivity reagents (Invitrogen) and Nanodrop 2000 instrument 

(ThermoFisher). 

Nucleic Acid Amplification and Sequencing 

Bacterial targeted 16S rRNA amplicons and metatranscriptomes were sequenced 

from the DNA and RNA samples, respectively. PCR reactions were performed in 

triplicate using 967F/1064F primers with partial Illumina tails (V6 region, custom IDT 

primers), Phusion High-Fidelity DNA Polymerase (ThermoScientific), nuclease-free 

water (FisherScientific), and template DNA according to protocols from the Keck 

Sequencing Center at the Marine Biological Laboratory (Huse et al., 2014). Due to 

high levels of oyster DNA in the gut samples, 300 ng of input DNA was used from gut 

samples and 5 ng was used per swab sample to obtain equivalent bacterial 

amplification, as determined by gel electrophoresis. A bacterial DNA mock 

community (10 ng) and blank control were also amplified and included in the analysis 

(Zymo Research). All PCR products (110 total: 36 per sample type and 2 controls) 

were analyzed with 75 bp paired-end sequencing to obtain overlapping reads on an 

Ilumina MiSeq at the University of Rhode Island Genomics and Sequencing Center.  

Triplicate RNA samples (n=36) were pooled in equimolar concentrations per 

experimental bucket and sample type to avoid pseudo-replication and align with 

environmental measurements in each bucket. Pooled RNA samples were fragmented 

at 300 nt using Covaris ultrasonification and verified using an Agilent Bioanalyzer. 

500 ng of each sample was treated with the Ribo-Zero Gold rRNA Removal 

Epidemiology Kit (Illumina) to remove eukaryotic and bacterial DNA, and then 

libraries were prepared using the Illumina TruSeq PCR-free kit. Libraries were 
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verified using both a KAPA library quantification kit and an Agilent Bioanalyzer, then 

normalized to 1 nM for sequencing. The 36 metatranscriptomic libraries were 

sequenced using a half lane of Illumina NovaSeq S4 chemistry to obtain 2x150 bp 

paired-end reads at the Yale Center for Genome Analysis. 

16S Amplicon Sequence Processing and Statistical Analysis 

The paired-end 16S rRNA amplicon sequences were demultiplexed, then quality 

filtered and merged with DADA2 (v1.6.0) executed in QIIME2 (v2018.4.0) to 

calculate analysis sequence variants (ASVs) (Bolyen et al., 2019; Callahan et al., 

2016). The resulting ASVs were analyzed with default parameters in QIIME2 and 

directly classified using the SILVA database at 99% similarity (release #132) 

(Bokulich et al., 2018). The ASV and taxonomy data was exported as a matrix for 

further analysis in R (v3.6.1) and normalized by percentage per sample (R 

Development Core Team, 2011). Percentage data per ASV was averaged for replicate 

samples from the same sample type and bucket (n=3), and this averaged amplicon data 

was used for further statistical testing.  

All statistical analyses of the 16S amplicon data were performed in the R 

statistical environment (v3.6.1) and visualized using ggplot2 v3.2.1 and cowplot 

v1.0.0 (Wickham, 2009; Wilke, 2019). ASV data was organized and cleaned using the 

dplyr and tidyr v0.8.3 packages (Wickham et al., 2019; Wickham and Henry, 2019). 

Significant changes between taxa were calculated using the Kruskal-Wallis and 

Wilcox rank sum tests with the compare_means() command from the ggpubr v0.2.2 

package (Kassambara, 2019). Non-Metric Dimensional Scaling (NMDS) plots were 

generated with ASV-level percent abundances using metaMDS(distance = "bray", k = 
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2) and significance was determined using adonis2() from the vegan v2.5.5 package 

(Dixon, 2003). A Principle Components Analysis (PCA) of the correlation between 

major phyla and environmental data was calculated using prcomp(scale.=TRUE) and 

plotted using autoplot() within the ggfortify v0.4.7 package (Tang et al., 2016). 

Distances between total community samples based on the Manhattan similarity metric 

were calculated using ASV-level percent abundances with dist(method="manhattan") 

and plotted using the pheatmap v1.0.12 package (Kolde, 2019).  

Metatranscriptome Processing and Statistical Analysis 

Quality filtering of the demultiplexed raw paired-end shotgun metatranscriptomic 

reads was performed with Trimmomatic software v0.36 and visualized with FastQC 

v0.11.5 (Andrews, 2010; Bolger et al., 2014). The quality-controlled PE reads were 

then mapped to the eastern oyster, C. virginica, genome (NCBI GCA 002022765.4-

3.0) using HISAT2 v2.0.4 with option –un-conc to remove the host transcripts and 

save the non-aligned (non-oyster) reads (Pertea et al., 2016). These non-aligned reads 

were then analyzed for microbial taxonomy and function using scripts adapted from 

the SAMSA2 pipeline and summarized with MultiQC v1.7 (Ewels et al., 2016; 

Westreich et al., 2018). PEAR v0.9.10 software was used to merge the non-aligned PE 

reads for downstream analysis with parameter --min-overlap 1 (Zhang et al., 2014). 

Species-level taxonomy was assigned to the merged reads using Kraken2 v2.0.7 and 

summarized by percent abundance per taxonomic level (Phylum, Order) using 

Bracken v2.2 (Lu et al., 2017; Wood and Salzberg, 2014). Finally, DIAMOND 

v0.9.23 was used to annotate the reads according to RefSeq functional taxonomy and 

cluster genes into SEED pathway subsystems (Buchfink et al., 2014).  
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Taxonomic and functional annotation tables were exported for statistical analysis 

in the R statistical environment (v3.6.1), using ggplot v3.2.1 visualization and other 

packages listed above. A heatmap of the distance between sample taxonomy in the 

metatranscriptomes was calculated using species-level percent abundance with the 

command dist(method="manhattan") and plotted with pheatmap. Normalized 

functional abundance and differential expression were calculated with custom scripts 

using DeSeq2 v1.24.0, with the apeglm shrinkage method: lfcShrink(type="apeglm") 

(Love et al., 2014; Zhu et al., 2019). The rlog() transformation was used on all genes 

with counts >5 to observe overall trends in the metatranscriptomes. Sample distances 

based on normal-transformed gene counts (normTransform()) was calculated using 

dist(method="manhattan"). In order to observe bulk trends between sample types, the 

log2 fold change of genes and pathways expressed by each group (gut, outer shell, 

inner shell) was compared to the mean of the other 2 groups, regardless of site or 

treatment. The effect of nutrient enrichment was calculated by using each ambient 

sample group (site, type) as a control group for the corresponding enriched samples. 

Significance in differential expression was calculated in DeSeq2 with the Benjamini-

Hochberg adjustment method.  

 

Results 

Sequencing and Annotation of 16S rRNA Amplicons and Metatranscriptomes 

The sequencing of 108 16S rRNA V6 amplicon libraries resulted in 5.4 million 

paired-end (PE) reads in total. Quality filtering using DADA2 implemented in 

QIIME2 created 37,600 ± 9,000 merged and annotated amplicon reads per sample, 
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spread across 14,050 ASVs (Figure 2A). A total of 1.7 billion quality-controlled PE 

sequencing reads were obtained from 36 metatranscriptomic samples, averaging 

47,500,000 (±22,000,000) PE reads per sample (Table S1). An average of 11±16% of 

the quality-controlled reads per sample mapped to the C. virginica genome and were 

removed prior to downstream microbial analyses. There were significantly more reads 

that mapped to the oyster genome in the gut and inner shell samples than the outer 

shell samples (Wilcox, p<0.001; Figure S1). Paired-end read merging resulted in 

41,200,000 (±22,000,000) sequences per sample that were annotated using Kraken for 

taxonomy and DIAMOND/SEED for function. Microbial taxonomy was assigned to 

35±7% of the metatranscriptomic reads, and function annotation was assigned to 

5±2% of the reads (~2±1.6million reads per sample) (Table S1). This low annotation 

rate is comparable with other environmental metatranscriptomic studies (Broberg et 

al., 2018; Crump et al., 2018; Jiang et al., 2016) and is probably due to incomplete 

reference databases. 

Microbial Community Structures Differ Between Oyster Tissues, Field Site, and 

Nutrient Enrichment 

The 14,050 ASVs generated from the 16S rRNA amplicon sequences were 

classified into 260 Orders across 53 Phyla. The bacterial communities detected in the 

gut, inner shell, and outer shell were significantly different to each other (Bray-Curtis, 

k=2, adonis2 p<0.001; Figures 2B and S2A). This was due to distinct patterns in the 

bacterial community structures between the sample types. At the phylum level, gut 

samples contained significantly more Tenericutes (17±12%), Verrucomicrobia 

(4±2%), and Unknown taxa (23±13%) than the shell biofilms (Tenericutes: 0.1±0.2%; 
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Unknown: 11±6%) (Wilcox, p<0.001; Figure 2B). Orders that were significantly more 

abundant in the gut samples include Mycoplasmatales (12±11%), Entomoplasmatales 

(5±8%), Verrucomicrobiales (4±2%), and Corynebacteriales (2±2%) (Wilcox, 

p<0.001; Figure S3). The outer and inner shell samples contained significantly more 

Proteobacteria (62±9%; 56±11%) and the inner shell samples contained increased 

Bacteroidetes (11±9%) compared to the gut samples (Wilcox, p<0.001; Figure 2B).  

The overall bacterial community structures (all sample types combined) were also 

significantly different by field site and enrichment treatment at the ASV level (Bray-

Curtis, k=2, adonis2 p<0.05; interaction p<0.001; Figure S2B). Furthermore, the 

bacterial communities for each sample type (inner and outer shell, gut) were 

significantly different by site (Bray-Curtis, k=2, 95% confidence, adonis2 p<0.001; 

Figure 2C). Nutrient enrichment had a significant effect on the bacterial community 

structures in the gut samples from the northern site and the outer shell samples from 

both sites (Bray-Curtis, k=2, adonis2 p<0.01; Figure 2C). In the outer shell, this shift 

was driven by changes in the Cyanobacteria, Bacteroidetes, and Actinobacteria phyla 

(Figure 2B). 

A PCA analysis of the bacterial phyla illustrates 46% of the variation between 

16S rRNA amplicon structures (Figure 3). The presence of the orders Tenericutes, 

Verrucomicrobia, and Firmicutes was associated with gut samples of oysters collected 

at the northern location, while the presence of Actinobacteria defined gut samples of 

oysters from the southern location. On the other end, Proteobacteria, Planctomycetes, 

and Chloroflexi correlated with the northern outer shell samples. Bacteroidetes and 

Epsilonbacteraeota were associated with the inner shell samples. In order to identify 
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bacterial orders that may be associated with the differences in ability of oysters from 

the different sites and nutrient enrichment treatments to denitrify or produce nitrous 

oxide under high nutrient loading (as determined by gas rates measured in oysters 

collected from the same original buckets after transfer from the field to tanks 

containing higher levels of nitrogen (100 µm) and incubated at two different 

temperatures, Hamilton 2018), gas rate productions under those conditions were 

included in the PCA. Results from the PCA suggest that the relatively higher 

abundance of Actinobacteria observed in shell biofilm samples from the enriched 

buckets in the southern site (Figure 2) may explain differences in gas production rates 

(Hamilton, 2018).  

When sample distances were calculated using the Manhattan similarity metric, 

samples clustered first by sample type, and then by location within each sample type 

(Figure 4A). This suggests that the physical structure of those samples (shell surfaces 

versus soft tissues), combined with host – microbial interactions and the specific 

environmental conditions microbes are exposed to within these oyster compartments, 

has a larger effect on bacterial community structure than the overall environmental 

conditions measured at each field site. 

The Relative Effect of Field Site and Nutrient Enrichment on Microbial Gene 

Expression Differs from the Effect on Microbial Community Structure 

The transcriptionally active microbes within oysters, as measured by taxonomic 

annotation of the metatranscriptomes, significantly differed by oyster sample type 

(Bray-Curtis, k=2, adonis2, p<0.01; Figure 4B), but not site or treatment. The overall 

functional activity of these microbes was also significantly different between sample 
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types, regardless of site or nutrient enrichment level (Bray-Curtis, k=2, adonis2, 

p<0.001; Figure 4C), a pattern of variability more similar to the one observed in the 

16S rRNA amplicon clustering (Figure 4A).  

A significant effect of site and enrichment, however, was detected on the gene 

expression patterns in the outer shell samples (Bray-Curtis, k=2, adonis2, p<0.001; 

Figure 4C; Figure S4). When samples were compared by treatment (regardless of site) 

within each sample type (gut, inner shell, outer shell) at the highest metabolic pathway 

annotation level (Level 1, SEED), the only significant difference was downregulation 

of genes related to metabolism of fatty acids, lipids, and isoprenoids in the gut samples 

(Benjamini-Hochberg adjusted p<0.05; Figure 5A). When samples were compared by 

site (regardless of treatment) for each sample type, photosynthesis and plasmid-related 

pathways were upregulated in the inner shell samples from oysters from the northern 

site, compared to oysters collected from the southern site (Benjamini-Hochberg 

adjusted p<0.05; Figure 5A). In the outer shell, secondary metabolism, respiration, 

regulation and cell signaling, and photosynthesis pathways were downregulated in the 

northern site compared to the southern site, while phage, prophages, and transposable 

elements were upregulated (Benjamini-Hochberg adjusted p<0.05; Figure 5A). 

Evaluation of the effect of nutrient enrichment within each of the sites showed 

significant differences in gene expression in the gut tissues from oysters collected at 

the northern site and in outer shell tissues of oysters collected from the southern site 

(Figure 5B). In the gut samples of oysters collected from the northern site, nutrient 

enrichment resulted in significant upregulation of regulation and cell signaling, and 

significant downregulation of RNA metabolism, antibiotic resistance, protein 
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processing and modification, mono/di-/oligosaccharides, and fatty acids (Benjamini-

Hochberg adjusted p<0.01; Figure 5B). A significant upregulation in stress responses, 

organic sulfur assimilation, fatty acid metabolism, and mycobacteria cell wall 

pathways was observed in the outer shell samples from the oysters exposed to nutrient 

enrichment at the southern site (Benjamini-Hochberg adjusted p<0.01; Figure 5B). 

Effect of Sample Type on Expression of Genes involved in Nitrogen Metabolism 

Further evaluation of patterns of differential expression of genes involved in 

nitrogen cycling using a heatmap showed clustering by sample type first, then by site, 

followed by nutrient enrichment treatment (Figure S5). There were different patterns 

in nitrogen metabolism between sample types when they were compared to each other 

(Figure 6A). A significant upregulation of nitrosative stress, nitrogen fixation, and 

ammonia assimilation pathways was observed in gut samples as compared to the other 

sample types (Benjamini-Hochberg adjusted p<0.01; Figure 6A). Expression of genes 

in these same pathways, as well as genes involved in denitrification, were 

downregulated in the outer shell samples (adjusted p<0.05). Conversely, genes in the 

amidase, urea, and nitrile hydratase pathways were upregulated in the outer shell and 

downregulated in the gut samples (adjusted p<0.01; Figure 6A). Genes involved in 

nitric oxide synthase were significantly upregulated in the inner shell and 

downregulated in the outer shell (adjusted p<0.01; Figure 6A). Expression of genes 

regulating ammonification and dissimilatory nitrite reduction processes were observed 

in all tissue types at relatively equivalent levels.  

In addition to evaluating changes in nitrogen metabolism pathways, the 

differential expression of certain genes was calculated. Glutamate-ammonia-ligase 
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adenylyltransferase (glnE), a key gene involved in ammonia assimilation, was 

significantly upregulated in gut samples, compared to the others, and downregulated in 

the outer shell samples (Benjamini-Hochberg adjusted p<0.05; Figure 7B). Similarly, 

nifA, a gene required to activate most nif operons involved in nitrogen fixation was 

significantly upregulated in the gut samples and downregulated in the outer shell 

samples (adjusted p<0.05). Finally, nosF, a gene required for nitrous oxide reductase, 

was significantly downregulated in the gut samples (adjusted p<0.05). The activation 

of nosF requires nosR (the gene that activates nitrous-oxide reductase gene nosZ), 

which was significantly downregulated in the outer shell samples (adjusted p<0.05).  

Field Site and Nutrient Enrichment affect Microbial Expression of Nitrogen 

Metabolism Genes 

A significant effect of site or nutrient enrichment on nitrogen metabolism gene 

expression was only detected in outer shell samples (Figure 7A). When the outer shell 

samples were compared by site (regardless of treatment), there was a significant 

downregulation of nitrosative stress, nitric oxide synthase, ammonia assimilation, and 

amidase, urea, & nitrile hydratase pathways at the northern site, compared to the 

southern (Benjamini-Hochberg adjusted p<0.05; Figure 7A). The only significantly 

expressed nitrogen metabolism pathway in response to nutrient enrichment was an 

upregulation of cyanate hydrolysis in the outer shell samples (Benjamini-Hochberg 

adjusted p<0.05; Figure 7A). 

When samples for all sample types were pooled by site (northern versus 

southern), no significant effect of nutrient enrichment on nitrogen metabolism was 

observed (Figure 7B). An effect of nutrient enrichment on differential gene expression 
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of nitrogen metabolism pathways was only observed in oysters collected from the 

southern site (Figure 7C). In these oysters, nitrosative stress was significantly 

downregulated in the outer shell samples exposed to nutrient enrichment (Benjamini-

Hochberg adjusted p<0.05; Figure 7C). Nutrient enrichment also led to a significant 

downregulation of nitrate and nitrite ammonification and dissimilatory nitrite 

reductase in samples from the inner shell biofilm (Benjamini-Hochberg adjusted 

p<0.01; Figure 7C).  

  

Discussion 

Since oysters are hotspots for nitrogen metabolism, particularly denitrification, in 

the coastal environment, it is important to study how their microbiomes perform these 

processes and the effects of nutrient enrichment (Caffrey et al., 2016b; Kellogg et al., 

2013). In this study, we determined the effect of nutrient enrichment on bacterial 

community structure and function in the gut, inner shell, and outer shell of oysters 

deployed at two contrasting sites within an estuary. We also characterized the effect of 

sample type, site, and nutrient enrichment on gene expression of selected gene 

pathways, such as those involved in nitrogen cycling. This study showed that oyster 

sample type (gut, inner shell or outer shell) had a larger impact on bacterial 

community composition and function than site or nutrient enrichment. Despite the fact 

that effects of nutrient enrichment were relatively subtle and obscured by the relatively 

larger effects of site and sample type on microbial composition and function, we were 

able to determine that nutrient enrichment significantly influenced microbial 

composition and function in outer shell samples. Finally, by relating the effect of 
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nutrient enrichment on bacterial community structure with nitrogen and nitrous oxide 

gas production rates measured in oysters collected from the same site and treatment 

when transferred to high nutrient loading conditions, we were able to determine that 

the presence of Actinobacteria may explain the effect of site and nutrient enrichment 

on gas production rates. These studies inform future studies characterizing the role of 

microbiomes on oyster responses to eutrophication. 

Overall, when data from all tissue types was pooled, there was no strong effect of 

nutrient enrichment on microbial composition and function, despite the significant 

changes observed in nitrogen gas production rates observed in our companion study 

(Hamilton 2018). Potential reasons for not being able to observe a larger effect of 

nutrient enrichment on community structure and function include the experimental 

variability and challenges associated with our field study, lack of power due to a 

limited sample size, and the fact that we could not use the same oysters to determine 

gas production rates and microbial community structure and function. The fertilizer-

induced nutrient enrichment experienced by the treated oysters was weak and highly 

variable per tank, with no significant effect of enrichment on NH4
+, NO3

-, or NO2
- 

concentrations per treatment group (Hamilton, 2018). Despite the low impact of 

nutrient enrichment on nitrogen concentrations in the treatment group, we detected 

significant changes in microbial composition in the outer shell samples at the southern 

site, where there were lower ambient nutrient levels (and therefore more of a 

difference between the ambient control and the enriched treatment). The effect of 

nutrient enrichment on community structure in these samples was driven by a decrease 

in Bacteroidetes, which were replaced by a relative increase in Actinobacteria, 
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specifically the Corynebacteriales and Microtrichales orders. In environmental 

systems, Actinobacteria are known as gram-positive soil bacteria, pathogens, and gut 

commensals (Ventura et al., 2007). In previous studies of oyster microbiomes, 

Actinobacteria were frequently detected in all tissue types and increased with 

transplant disturbance (Wegner et al., 2013) or in oil-degrading communities (Thomas 

et al., 2014). This disturbance-induced increase in Actinobacteria is consistent with 

our findings of an increase in Actinobacteria in the outer shell samples with nutrient 

enrichment.  

Nutrient enrichment did not have a significant impact on the total oyster nitrogen 

metabolism per site, likely due to the inconsistent effect of the treatment on nutrient 

levels per bucket (Figure 1). These results are also in agreement with previous studies 

of nutrient enrichment in the marine environment that observed minimal functional 

changes, but significant structural changes with nutrient enrichment (Bowen et al., 

2011; Newsham et al., 2019; Shaver et al., 2017). By focusing on specific sample 

types (inner and outer shell biofilms), however, we were able to detect significant 

effects of nutrient enrichment on expression of certain genes in pathways involved 

nitrogen metabolism (downregulation of ammonification, nitrosative stress, and 

dissimilatory nitrite reductase pathways). These changes may be due to a direct impact 

of NO3
- and NO2

- concentrations and other environmental conditions on gene 

expression and/or a result of the shift in microbial composition and possible 

subsequent decrease in nitrogen-metabolizing microbes. Better annotation of microbial 

genomes will help determine the mechanisms driving changes in nutrient cycling due 

to nutrient enrichment.  
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This study also detected a large effect of site on oyster bacterial community 

structure, and, to a lesser extent, on bacterial community function. Besides differences 

in dissolved inorganic nitrogen, each site was characterized by differences in several 

environmental parameters, including temperature, dissolved oxygen, pH, and, to a 

lesser extent, salinity (Hamilton, 2018). These differences in the relative effect of site 

on microbial community structure versus the impact bacterial gene expression are 

consistent with previous results showing a pervasive effect of environmental 

parameters on microbial function in oysters (Chapter 2 of this dissertation), but could 

also be determined by differences in seawater bacterial communities (i.e. which 

microbes are available to the oysters) between sites (Chen et al., 2019; Crump et al., 

2018).  

The significant differences observed in taxonomic annotation of the present (16S 

rRNA amplicons) versus the transcriptionally active microbes (metatranscriptomes) 

could be attributed to various phenomena. The metatranscriptome captures the live, 

active microbial community, whereas the 16S rRNA amplicons capture all active, 

symbiotic, transient, dead, and live microbes in the sample (Yarza et al., 2014). The 

active taxa may be true symbionts, versus all symbiotic and transient taxa observed in 

the 16S rRNA amplicon method. Additionally, the annotation method and database 

used may have led to biases in taxonomy between the two methods (Wood and 

Salzberg, 2014). In this study, the only differences in the active microbial community 

structure was between sample types, which was likely driven by localized 

environmental conditions.  
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Finally, we have further characterized which of the gene pathways involved in 

nitrogen cycling are most significantly associated with the three oyster sample types 

collected. Each tissue type within an oyster has a specific function, microbial 

community structure, and set of environmental constraints, therefore promoting 

different microbial nitrogen processes (Arfken et al., 2017; Kellogg et al., 2014; Ray 

et al., 2019b). The gut microbiome of bivalves has lower oxygen and light conditions 

than the outer shell and is constrained by selection and amplification of certain taxa 

through filter feeding and host-microbe interactions (Kellogg et al., 2013; Stief et al., 

2009). In these gut samples, we observed upregulation in nitrogen fixation, nitrosative 

stress, and ammonia assimilation pathways as compared to shell biofilm samples; 

these are processes commonly performed by anerobic microbes (Jetten, 2008; Moulton 

et al., 2016). In the outer shell biofilm, which is characterized by exposure to ambient 

oxygen and light conditions, facilitating a variety of more arbitrary epiphytes, a 

significant upregulation of genes involved in amidase, urea, and nitrile hydratase was 

observed. These pathways are commonly observed in Rhodobacterales, an order that 

was significantly more abundant in the outer shell samples (Komeda et al., 1996; 

Tauber et al., 2000). This characterization may help provide targets for gene markers 

associated with nitrogen cycling in oysters. See Appendix B for a summary of how 

overall microbial function changes in each tissue type.  

In summary, the microbial community changes observed in this study highlight 

some of the dynamic interactions in nitrogen metabolism in the oyster microbiome. 

The effect of environmental conditions on microbial community structure and function 

in oysters depend on which sample type within oysters is evaluated. This study 
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suggests that bacterial communities associated with oyster outer shells may have a 

relatively larger role on variability of oyster responses in response to nutrient 

enrichment than the microbial communities associated with the gut or the inner 

surface of the shell. Additional research is needed to examine the role of specific 

environmental conditions, particularly changes in dissolved oxygen, on nitrogen 

cycling in oysters to better constrain these processes.  

 

Conclusion 

Due to the importance of oysters and increasing eutrophication in coastal 

environments, it is necessary to study how oyster-associated microbial communities 

contribute to nitrogen metabolism in response to nutrient enrichment. These results 

demonstrate that the microbial transcriptional activity of oysters is tissue-specific and 

differentially affected by site and nutrient enrichment (i.e. nutrient enrichment had the 

greatest influence on the outer shell microbiome structure, as compared to the effect 

on gut and inner shell samples). The results of this study contribute to the 

understanding of host-associated nitrogen cycling in coastal environments and how it 

may change with increased nutrient loading due to anthropogenic pressures.  
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Figures 

 

Figure III-1. Map of study area with experimental sites, setup, and environmental conditions.  

The heatmap shows percentile value of averaged environmental measurements per experimental bucket (Hamilton, 2018). A dark teal 

tile indicates the bucket where the highest value was observed and white indicates the bucket where the lowest values was observed. 

Nutrient concentrations were measured from water collected in each bucket. Gas production rates at 18°C and 24°C were measured 

with a separate set of oysters (Hamilton, 2018). All other values are average measurements collected in situ during the field study. 
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Figure III-2. Oyster gut, inner shell, and outer shell microbiome structures. 

(A) Bar graph of the total abundance of quality filtered sequencing reads per oyster sample. (B) Averaged percent relative abundances 

of the 10 most abundant phyla per bucket based on 16S rRNA amplicon sequencing data (n=3). (C) NMDS plot visualization of Bray-

Curtis beta-diversity (k = 2) for each sample type by site and treatment. The ellipse lines show the 95% confidence interval (standard 

deviation). p-values indicate significance of grouping with adonis2 Permutational Multivariate Analysis of Variance Using Distance 

Matrices test.  
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Figure III-3. PCA analysis of most abundant bacterial Phyla and their 

correlation with gas production rates.  

Each symbol represents the averaged 16S rRNA amplicon samples per field bucket, 

per sample type and location/treatment (n=3). Black arrows show bacterial Phylas. 

Red arrows show gas production rates measured from a different set of oysters 

(Hamilton, 2018). 
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Figure III-4. Manhattan similarity between sample taxonomy (DNA and RNA) or 

function (RNA). 

(A) Calculated using mean percent abundance data from 16S rRNA amplicons at the 

ASV level (n=3). (B) Calculated using bacteria percent abundance data from Kraken-

annotated metatranscriptomes at the Species level. (C) Calculated using normal-

transformed gene counts from RefSeq-SEED annotated metatranscriptomes. 
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Figure III-5. Effect of site and nutrient enrichment on major pathway gene expression. 

(A) Log fold change in expression of all Level-1 pathways by Site (Northern compared to Southern) and Treatment (Enriched 

compared to Ambient) samples. Note different scale for Outer Shell samples. (B) Log fold change in expression of significant Level-2 

pathways in enriched samples compared to ambient samples, per sample type. Significance (padj<0.05) is indicated with a star. 
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Figure III-6. Effect of sample type on Nitrogen metabolism. 

Log fold change in expression of Nitrogen metabolism pathways in each sample type compared to the others. (A) Overall nitrogen 

metabolism pathways. Significance (padj<0.05) is indicated with a star. (B) Key nitrogen metabolism genes. Significance (padj<0.05) 

is indicated with a star point.   
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Figure III-7. Effect of site and nutrient enrichment on nitrogen metabolism. 

(A) Log fold change in expression of Nitrogen metabolism pathways by Site 

(Northern compared to Southern) and Treatment (Enriched compared to Ambient) 

samples. (B) Log fold change in expression of Nitrogen metabolism pathways per site 

in enriched samples compared to ambient samples per site. (C) Log fold change in 

expression of Nitrogen metabolism pathways per sample type and site in enriched 

samples, compared to ambient samples. Significance (padj<0.05) is indicated with a 

star. Note there was no differential expression in the Southern gut, Northern inner or 

outer shell samples. 
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Supplementary Material 

 
 

Supplementary Figure 1. Number of metatranscriptomic sequencing reads per sample. The total bar is the total number of raw 

reads. Grey reads were removed during quality control and light teal reads were removed by mapping the quality-controlled reads to 

the oyster genome. All remaining reads continued to downstream analysis. 
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Supplementary Figure 2. NMDS plot visualization of Bray-Curtis beta-diversity (k = 2) at the ASV level for all samples by 

Type. The ellipse lines show the 95% confidence interval (standard deviation). p-value indicates significance of grouping with 

adonis2 Permutational Multivariate Analysis of Variance Using Distance Matrices test.  
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Supplementary Figure 3. Relative percent abundances of top 30 bacterial Orders in the 16S rRNA amplicon taxonomy (n=3). 
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Supplementary Figure 4. PCA visualization of Manhattan similarity between 

sample function (RNA). Distances were calculated using normal-transformed gene 

counts from RefSeq-SEED annotated metatranscriptomes.
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Supplementary Figure 5. Expression of all Nitrogen metabolism genes. Heatmap 

of regularized log counts per nitrogen metabolism gene with >5 counts in each 

metatranscriptome sample. The type, site, and treatment of each sample is indicated by 

colors along the top of the heatmap. 
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Supplementary Table 1. Sequencing and analysis summary for metatranscriptomic samples. 

Sample 

Number 

Sample 

Type Group 

Raw PE 

reads 

Percent 

passed 

QC 

Percent 

mapped to 

C. virginica 

Merged 

reads (%) 

Merged 

reads 

% reads 

assigned 

taxonomy 

% reads 

assigned 

function  

1 Gut SouthernAmbient 27183077 87% 53.9% 97% 11043997 19% 2% 

2 Gut SouthernAmbient 56039834 90% 5.0% 94% 45481455 41% 7% 

3 Gut SouthernAmbient 42638223 88% 51.8% 97% 18310256 22% 14% 

4 Gut SouthernEnriched 52942236 88% 8.3% 93% 39937345 38% 1% 

5 Gut SouthernEnriched 47409510 84% 46.4% 97% 21266972 25% 2% 

6 Gut SouthernEnriched 37549116 89% 4.4% 93% 29872717 40% 7% 

7 Gut NorthernAmbient 74062478 90% 3.9% 92% 60029315 42% 8% 

8 Gut NorthernAmbient 62414516 90% 3.5% 94% 50889542 44% 7% 

9 Gut NorthernAmbient 87248207 89% 1.9% 96% 72876803 42% 7% 

10 Gut NorthernEnriched 84690299 89% 6.2% 93% 66750811 40% 6% 

11 Gut NorthernEnriched 72641864 84% 35.1% 97% 39317596 25% 3% 

12 Gut NorthernEnriched 57693385 85% 55.6% 98% 21925259 19% 2% 

13 Outer Swab SouthernAmbient 48544823 82% 0.8% 97% 38244607 27% 4% 

14 Outer Swab SouthernAmbient 133067463 90% 1.4% 95% 112425664 40% 7% 

15 Outer Swab SouthernAmbient 31939839 84% 0.9% 97% 25876284 35% 4% 

16 Outer Swab SouthernEnriched 33019133 84% 0.7% 96% 26593415 27% 3% 

17 Outer Swab SouthernEnriched 26648462 83% 1.1% 97% 21178985 35% 5% 

18 Outer Swab SouthernEnriched 89106653 87% 1.2% 95% 73160415 39% 6% 

19 Outer Swab NorthernAmbient 64694546 84% 1.1% 96% 51776833 41% 6% 

20 Outer Swab NorthernAmbient 64766636 86% 1.2% 94% 52291808 44% 7% 

21 Outer Swab NorthernAmbient 83933706 87% 1.1% 96% 69638736 41% 6% 

22 Outer Swab NorthernEnriched 56101462 83% 1.1% 96% 44630786 40% 6% 

23 Outer Swab NorthernEnriched 26662306 75% 0.7% 99% 19728614 36% 4% 

24 Outer Swab NorthernEnriched 36697646 85% 1.1% 95% 29516901 39% 6% 
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Sample 

Number 

Sample 

Type Group 

Raw PE 

reads 

Percent 

passed 

QC 

Percent 

mapped to 

C. virginica 

Merged 

reads (%) 

Merged 

reads 

% reads 

assigned 

taxonomy 

% reads 

assigned 

function  

25 Inner Swab SouthernAmbient 32064379 81% 8.5% 96% 22945426 25% 4% 

26 Inner Swab SouthernAmbient 29675258 82% 1.7% 97% 23223666 29% 5% 

27 Inner Swab SouthernAmbient 27903283 86% 8.2% 96% 21184417 36% 5% 

28 Inner Swab SouthernEnriched 79189328 86% 5.2% 95% 61783195 38% 5% 

29 Inner Swab SouthernEnriched 109443114 87% 4.1% 94% 86631332 40% 6% 

30 Inner Swab SouthernEnriched 27103551 87% 21.7% 97% 18290238 32% 4% 

31 Inner Swab NorthernAmbient 47060589 87% 5.1% 94% 36839007 36% 6% 

32 Inner Swab NorthernAmbient 38340598 86% 4.9% 90% 28485780 39% 7% 

33 Inner Swab NorthernAmbient 34495516 87% 11.0% 96% 25602686 29% 4% 

34 Inner Swab NorthernEnriched 54852298 83% 7.6% 96% 40433990 32% 5% 

35 Inner Swab NorthernEnriched 51361820 82% 10.2% 94% 36286377 39% 6% 

36 Inner Swab NorthernEnriched 55325257 84% 7.4% 96% 41807398 34% 5% 
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Supplementary Table 2. Statistical testing of Bray-Curtis beta-diversity using 

adonis2 for groupings of 16S amplicon taxonomy at the ASV level.  

 
Sample 

Type 

Grouping Df  Sum

OfSqs 

R2 F-

value 

P-

value 

  

All ASVs~SampleType 2 7.96 0.25 17.68 0.001 *** 

All ASVs~Site 1 3.30 0.10 12.34 0.001 *** 

All ASVs~Treatment 1 0.53 0.02 1.80 0.042 * 

All ASVs~Site+Treatment 2 3.82 0.12 7.23 0.001 *** 

Gut GutASVs~Site 1 1.36 0.18 7.29 0.001 *** 

Gut GutASVs~Treatment 1 0.33 0.04 1.52 0.079 
 

Gut GutASVs~Site+Treatment 1 1.36 0.18 7.29 0.001 *** 

Gut GutASVs~NorthernTreatment 1 0.37 0.11 2.06 0.002 ** 

Gut GutASVs~SouthernTreatment 1 0.24 0.08 1.33 0.131   

Inner Shell InnerShellASVs~Site 1 1.23 0.14 5.70 0.001 *** 

Inner Shell InnerShellASVs~Treatment 1 0.32 0.04 1.33 0.132 
 

Inner Shell InnerShellASVs~ 

Site+Treatment 

2 1.56 0.18 3.65 0.001 *** 

Inner Shell InnerShellASVs~ 

NorthernTreatment 

1 0.22 0.06 1.08 0.359 
 

Inner Shell InnerShellASVs~ 

SouthernTreatment 

1 0.31 0.08 1.37 0.079   

Outer Shell OuterShellASVs~Site 1 2.62 0.36 18.82 0.001 *** 

Outer Shell OuterShellASVs~Treatment 1 0.68 0.09 3.49 0.005 ** 

Outer Shell OuterShellASVs~ 

Site+Treatment 

2 3.30 0.45 13.46 0.001 *** 

Outer Shell OuterShellASVs~ 

NorthernTreatment 

1 0.21 0.14 2.65 0.003 ** 

Outer Shell OuterShellASVs~ 

SouthernTreatment 

1 0.96 0.30 6.79 0.001 *** 
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Supplementary Table 3. Statistical testing of Bray-Curtis beta-diversity using 

adonis2 for groupings of metatranscriptomic taxonomy at the species level.  

 
Sample 

Type Grouping Df  

Sum 

of Sqs R2 

F-

value 

P-

value   

All Species~SampleType 2 0.59 0.22 4.79 0.003 ** 

All Species~Site 1 0.11 0.04 1.54 0.20  

All Species~Treatment 1 0.011 0.00

4 

0.15 0.91  

All Species~Site+Treatment 2 0.12 0.05 0.83 0.51  

Gut GutSpecies~Site 1 0.07 0.05 0.51 0.47  

Gut GutSpecies~Treatment 1 0.04 0.03 0.30 0.63  

Gut GutSpecies~Site+Treatment 2 0.12 0.08 0.38 0.66  

Gut GutSpecies~NorthernTreatment 1 0.34 0.51 4.19 0.10  

Gut GutSpecies~SouthernTreatment 1 0.11 0.14 0.67 0.30  

Inner Shell InnerShellSpecies~Site 1 0.015 0.07 0.72 0.47  

Inner Shell InnerShellSpecies~Treatment 1 0.018 0.08 0.83 0.41  

Inner Shell InnerShellSpecies~ 

Site+Treatment 

2 0.033 0.14 0.75 0.51  

Inner Shell InnerShellSpecies~ 

NorthernTreatment 

1 0.002 0.03 0.12 1.00  

Inner Shell InnerShellSpecies~ 

SouthernTreatment 

1 0.037 0.25 1.35 0.30  

Outer 

Shell 

OuterShellSpecies~Site 1 0.077 0.28 3.84 0.066  

Outer 

Shell 

OuterShellSpecies~Treatment 1 0.011 0.04

1 

0.43 0.57  

Outer 

Shell 

OuterShellSpecies~ 

Site+Treatment 

2 0.088 0.32 2.10 0.14  

Outer 

Shell 

OuterShellSpecies~ 

NorthernTreatment 

1 0.016 0.49 3.92 0.10  

Outer 

Shell 

OuterShellSpecies~ 

SouthernTreatment 

1 0.008 0.05 0.20 0.80  
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Supplementary Table 4. Statistical testing of Bray-Curtis beta-diversity using 

adonis2 for groupings of metatranscriptomic function at the gene level. 

Sample 

Type Grouping Df  

Sum 

of 

Sqs R2 

F-

value 

P-

value   

All GeneExpression~SampleType 2 0.66 0.28 6.56 0.001 *** 

All GeneExpression~Site 1 0.06 0.02 0.85 0.51  

All GeneExpression~Treatment 1 0.06 0.03 0.95 0.41  

All GeneExpression~Site+Treatment 2 0.12 0.05 0.90 0.53  

Gut GutGeneExpression~Site 1 0.09 0.11 1.18 0.22   

Gut GutGeneExpression~Treatment 1 0.11 0.14 1.59 0.09  

Gut GutGeneExpression~Site+Treatment 2 0.20 0.24 1.44 0.12  

Gut GutGeneExpression~NorthernTreatment 1 0.18 0.43 3.00 0.10  

Gut GutGeneExpression~SouthernTreatment 1 0.06 0.19 0.91 0.70   

Inner 

Shell InnerShellGeneExpression~Site 1 0.04 0.09 0.93 0.39  

Inner 

Shell InnerShellGeneExpression~Treatment 1 0.05 0.10 1.06 0.25  

Inner 

Shell 

InnerShellGeneExpression~ 

Site+Treatment 2 0.10 0.18 0.99 0.39  

Inner 

Shell 

InnerShellGeneExpression~ 

NorthernTreatment 1 0.04 0.18 0.86 0.60  

Inner 

Shell 

InnerShellGeneExpression~ 

SouthernTreatment 1 0.08 0.33 2.01 0.20  

Outer 

Shell OuterShellGeneExpression~Site 1 0.08 0.24 3.17 0.002 ** 

Outer 

Shell OuterShellGeneExpression~Treatment 1 0.03 0.10 1.09 0.27  

Outer 

Shell 

OuterShellGeneExpression~ 

Site+Treatment 2 0.11 0.34 2.31 0.002 ** 

Outer 

Shell 

OuterShellGeneExpression~ 

NorthernTreatment 1 0.02 0.18 0.87 0.80  

Outer 

Shell 

OuterShellGeneExpression~ 

SouthernTreatment 1 0.04 0.35 2.14 0.10   
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Supplementary Table 5. Wilcox Rank Sum Test for select Phyla detected in 16S rRNA amplicons by Sample Type, adjusted p-value 

with Benjamini-Hochberg method. The global statistics were calculated using the Kruskal-Wallis Rank Sum Test. 

  
Global Kruskal-Wallis Gut vs. Inner Swab Gut vs. Outer Swab Inner vs. Outer Swab 

Phylum Pvalue P adj 
 

Pvalue P adj 
 

Pvalue P adj 
 

Pvalue P adj 
 

Actinobacteria 9.6E-7 1.3E-6 **** 4.9E-8 1.5E-7 **** 0.16 0.19   0.0002 0.0004 *** 

Bacteroidetes 7E-12 2E-11 **** 5E-12 3E-11 **** 2E-11 1E-10 **** 0.15 0.18   

Chloroflexi 1.7E-7 3.5E-7 **** 0.13 0.17   6.3E-8 1.7E-7 **** 9.2E-6 1.9E-5 **** 

Cyanobacteria 0.0056 0.0056 ** 0.24 0.26   0.0035 0.0052 ** 0.015 0.02 * 

Epsilonbacteraeota 7.1E-6 8.5E-6 **** 0.088 0.11   0.0007 0.0011 *** 1.3E-6 3.1E-6 **** 

Firmicutes 4E-12 2E-11 **** 0.39 0.4   4E-14 7E-13 **** 2E-10 7E-10 **** 

Planctomycetes 6E-10 1.4E-9 **** 0.011 0.015 * 3E-11 2E-10 **** 1.3E-6 3.1E-6 **** 

Proteobacteria 5E-15 3E-14 **** 9E-14 1E-12 **** 2E-16 9E-16 **** 0.0058 0.0084 ** 

Tenericutes 2E-16 2E-16 **** 3E-13 2E-12 **** 3E-13 2E-12 **** 0.0002 0.0004 *** 

Unknown 3.2E-7 4.8E-7 **** 0.0001 2.0E-4 *** 1.1E-8 3.7E-8 **** 0.18 0.2   

Verrucomicrobia 2.1E-7 3.5E-7 **** 4.8E-5 9.5E-5 **** 5.7E-9 2.0E-8 **** 0.33 0.35   

Other 5.4E-5 5.9E-5 **** 0.0012 0.0018 ** 8.7E-6 1.9E-5 **** 0.39 0.4   
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Supplementary Table 6. Wilcox Rank Sum Test for select Phyla detected in 16S 

rRNA amplicons by Field Site and Nutrient Enrichment, adjusted p-value with 

Benjamini-Hochberg method. 

 

  
Northern vs. Southern Control vs. Enriched 

Order P value P adj  P value P adj  

Actinobacteria 0.41909 0.56   0.218 0.5   

Bacteroidetes 0.46654 0.56   0.052 0.33   

Chloroflexi 3.60E-06 2.10E-05 **** 0.587 0.78   

Cyanobacteria 6.00E-10 7.20E-09 **** 0.794 0.87   

Epsilonbacteraeota 0.00092 0.0037 *** 0.055 0.33   

Firmicutes 0.17351 0.35   0.289 0.5   

Planctomycetes 0.37792 0.56   0.724 0.87   

Proteobacteria 0.0381 0.091  0.265 0.5   

Tenericutes 0.63766 0.64   0.415 0.62   

Unknown 0.59934 0.64   0.162 0.49   

Verrucomicrobia 0.01588 0.048 * 0.953 0.95   

Other 0.46654 0.56   0.088 0.35   
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Supplementary Table 7. Wilcox Rank Sum Test for select Orders detected in 16S rRNA amplicons by Sample Type, adjusted p-

value with Benjamini-Hochberg method. The global statistics were calculated using the Kruskal-Wallis Rank Sum Test. 

  
Global Kruskal-Wallis Gut vs. Inner Swab Gut vs. Outer Swab Inner vs. Outer Swab 

Order Pvalue P adj 
 

Pvalue P adj 
 

Pvalue P adj 
 

Pvalue P adj 
 

Alteromonadales 5.7E-6 1.9E-5 **** 7.4E-7 5.1E-6 **** 1.5E-6 9.5E-6 **** 0.13 0.17 
 

Ardenticatenales 0.040 0.045 * 0.068 0.099 
 

0.033 0.052 
 

0.18 0.23 
 

Bacteroidales 8.3E-5 0.0002 **** 0.0005 0.0013 *** 0.44 0.49 
 

3.0E-6 1.5E-5 **** 

Campylobacterales 0.009 0.011 ** 0.29 0.34 
 

0.045 0.068 
 

0.0023 0.0053 ** 

Caulobacterales 0.0053 0.0073 ** 0.20 0.25 
 

0.22 0.26 
 

0.0001 0.0004 *** 

Cellvibrionales 0.0092 0.011 ** 0.0083 0.014 ** 0.0068 0.012 ** 0.71 0.74 
 

Chitinophagales 1.3E-6 1.2E-5 **** 7.4E-7 5.1E-6 **** 7.4E-7 5.1E-6 **** 0.0029 0.0061 ** 

Chloroplast 0.40 0.42 
 

0.93 0.95 
 

0.22 0.26 
 

0.32 0.37 
 

Clostridiales 1.6E-5 4.4E-5 **** 0.9774 0.98 
 

3.0E-6 1.5E-5 **** 3.0E-6 1.5E-5 **** 

Corynebacteriales 0.0002 0.0003 *** 0.0029 0.0061 ** 3.3E-5 0.0001 **** 0.059 0.088 
 

Cytophagales 0.0011 0.0017 ** 0.0002 0.0006 *** 0.0045 0.0085 ** 0.51 0.56 
 

Desulfobacterales 6.3E-6 1.9E-5 **** 0.27 0.31 
 

7.4E-7 5.1E-6 **** 7.4E-7 5.1E-6 **** 

Ectothiorhodospirales 4.9E-7 7.8E-6 **** 5.0E-5 0.0002 **** 7.4E-7 5.1E-6 **** 3.0E-6 1.5E-5 **** 

Entomoplasmatales 5.2E-6 1.9E-5 **** 3.2E-5 0.0001 **** 3.2E-5 0.0001 **** 0.69 0.72 
 

Flavobacteriales 0.0005 0.0009 *** 0.0001 0.0003 *** 0.11 0.16 
 

0.0068 0.012 ** 
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Global Kruskal-Wallis Gut vs. Inner Swab Gut vs. Outer Swab Inner vs. Outer Swab 

Order Pvalue P adj 
 

Pvalue P adj 
 

Pvalue P adj 
 

Pvalue P adj 
 

Gammaproteobacteria 

Incertae Sedis 

0.0045 0.0064 ** 0.0045 0.0085 ** 0.0036 0.0073 ** 0.48 0.52 
 

Kordiimonadales 1.6E-6 1.2E-5 **** 0.0018 0.0043 ** 7.4E-7 5.1E-6 **** 5.2E-6 2.3E-5 **** 

Microtrichales 0.0001 0.0002 *** 0.63 0.67 
 

0.0001 0.0003 *** 3.3E-5 0.0001 **** 

Mycoplasmatales 2.5E-6 1.5E-5 **** 7.4E-7 5.1E-6 ***

* 

3.4E-5 0.0001 **** 0.023 0.039 * 

Nitrosococcales 0.0002 0.0004 *** 0.033 0.052 
 

5.2E-6 2.3E-5 **** 0.033 0.052 
 

Oceanospirillales 0.013 0.016 * 0.22 0.26 
 

0.0045 0.0085 ** 0.060 0.088 
 

Pirellulales 0.0011 0.0017 ** 0.18 0.23 
 

0.0036 0.0073 ** 0.0007 0.0016 *** 

Rhizobiales 0.56 0.56 
 

0.41 0.46 
 

0.59 0.63 
 

0.41 0.46 
 

Rhodobacterales 5.0E-6 1.9E-5 **** 0.0011 0.0027 ** 7.4E-7 5.1E-6 **** 0.0005 0.0013 *** 

Thiohalorhabdales 5.2E-7 7.8E-6 **** 7.4E-7 5.1E-6 ***

* 

7.4E-7 5.1E-6 **** 0.0001 0.0004 *** 

Thiotrichales 5.5E-6 1.9E-5 **** 7.4E-7 5.1E-6 ***

* 

7.4E-7 5.1E-6 **** 0.18 0.23 
 

Unknown 0.021 0.025 * 0.0068 0.012 ** 0.13 0.17 
 

0.18 0.23 
 

Verrucomicrobiales 0.0004 0.0008 *** 0.0029 0.0061 ** 0.0001 0.0003 *** 0.18 0.23 
 

Vibrionales 0.067 0.072 
 

0.98 0.98 
 

0.078 0.11 
 

0.028 0.047 * 

Xanthomonadales 4.4E-5 0.0001 **** 0.0029 0.0061 ** 0.010 0.017 * 9.7E-5 0.0003 **** 
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Supplementary Table 8. Wilcox Rank Sum Test for select Orders detected in 16S 

rRNA amplicons for all sample types combined by Field Site and Nutrient 

Enrichment, adjusted p-value with Benjamini-Hochberg method. 

  
Northern vs. Southern Control vs. Enriched 

Order P value P adj 
 

P value P adj 
 

Alteromonadales 0.8636 1 
 

0.1916 0.84 
 

Ardenticatenales 9.90E-09 3.00E-07 **** 0.9875 0.99 
 

Bacteroidales 0.4064 0.75 
 

0.696 0.99 
 

Campylobacterales 0.0129 0.077 
 

0.2142 0.84 
 

Caulobacterales 0.0591 0.27 
 

0.5841 0.99 
 

Cellvibrionales 0.0013 0.0096 ** 0.355 0.97 
 

Chitinophagales 0.181 0.54 
 

0.8882 0.99 
 

Chloroplast 6.00E-06 9.10E-05 **** 0.6503 0.99 
 

Clostridiales 0.8636 1 
 

0.9378 0.99 
 

Corynebacteriales 0.9626 1 
 

0.2788 0.84 
 

Cytophagales 0.8636 1 
 

0.0071 0.11 
 

Desulfobacterales 0.4245 0.75 
 

0.9875 0.99 
 

Ectothiorhodospirales 0.9378 1 
 

0.7905 0.99 
 

Entomoplasmatales 0.5402 0.85 
 

0.2592 0.84 
 

Flavobacteriales 0.5212 0.85 
 

0.7666 0.99 
 

Gammaproteobacteria 

Incertae Sedis 

0.2027 0.55 
 

0.7428 0.99 
 

Kordiimonadales 0.2262 0.55 
 

0.5841 0.99 
 

Microtrichales 0.0637 0.27 
 

0.7193 0.99 
 

Mycoplasmatales 0.6457 0.97 
 

0.7875 0.99 
 

Nitrosococcales 2.40E-05 0.00024 **** 0.5418 0.99 
 

Oceanospirillales 1 1 
 

0.1108 0.83 
 

Pirellulales 0.2387 0.55 
 

0.5841 0.99 
 

Rhizobiales 0.8636 1 
 

0.2788 0.84 
 

Rhodobacterales 0.1108 0.37 
 

0.9875 0.99 
 

Thiohalorhabdales 1 1 
 

0.8391 0.99 
 

Thiotrichales 0.2788 0.6 
 

0.0736 0.74 
 

Unknown 0.4245 0.75 
 

0.1708 0.84 
 

Verrucomicrobiales 0.0736 0.28 
 

0.9875 0.99 
 

Vibrionales 0.9626 1 
 

0.0021 0.063 
 

Xanthomonadales 0.788 1 
 

0.6693 0.99 
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Supplementary Table 9. Wilcox Rank Sum Test for select Orders detected in 16S 

rRNA amplicons for Gut samples by Field Site and Nutrient Enrichment, adjusted p-

value with Benjamini-Hochberg method. 

 
 Gut samples 
 

Northern vs. Southern Control vs. Enriched 

Order P value P adj 
 

P value P adj 
 

Alteromonadales 0.8182 0.85  0.18 0.77   

Ardenticatenales 0.0022 0.016 * 1 1   

Bacteroidales 0.5887 0.77  0.699 1   

Campylobacterales 0.0649 0.19  0.31 0.77   

Caulobacterales 0.2403 0.45  1 1   

Cellvibrionales 0.132 0.28  0.485 0.86   

Chitinophagales 0.0411 0.15  0.24 0.77   

Chloroplast 0.026 0.13  0.937 1   

Clostridiales 0.4848 0.69  0.937 1   

Corynebacteriales 0.8182 0.85  0.041 0.41   

Cytophagales 0.0411 0.15  0.485 0.86   

Desulfobacterales 0.6991 0.84  0.818 1   

Ectothiorhodospirales 0.3095 0.46  0.394 0.79   

Entomoplasmatales 0.0649 0.19  0.041 0.41   

Flavobacteriales 0.3095 0.46  0.093 0.56   

Gammaproteobacteria 

Incertae Sedis 0.5887 0.77  0.31 0.77   

Kordiimonadales 0.0022 0.016 * 1 1   

Microtrichales 0.0022 0.016 * 0.394 0.79   

Mycoplasmatales 0.132 0.28  0.699 1   

Nitrosococcales 0.0022 0.016 * 0.589 0.98   

Oceanospirillales 0.8182 0.85  0.31 0.77   

Pirellulales 0.026 0.13  0.937 1   

Rhizobiales 0.8182 0.85  0.132 0.66   

Rhodobacterales 0.1797 0.36  0.24 0.77   

Thiohalorhabdales 0.3095 0.46  0.818 1   

Thiotrichales 0.132 0.28  0.818 1   

Unknown 0.6991 0.84  0.041 0.41   

Verrucomicrobiales 0.132 0.28  0.699 1   

Vibrionales 0.3095 0.46  0.394 0.79   

Xanthomonadales 0.9372 0.94  0.093 0.56   
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Supplementary Table 10. Wilcox Rank Sum Test for select Orders detected in 16S 

rRNA amplicons for Inner Shell samples by Field Site and Nutrient Enrichment, 

adjusted p-value with Benjamini-Hochberg method. 

 
 Inner shell samples 
 

Northern vs. Southern Control vs. Enriched 

Order P value P adj 
 

P value P adj 
 

Alteromonadales 0.4848 0.66   0.1797 0.67   

Ardenticatenales 0.0022 0.032 * 0.6991 0.84   

Bacteroidales 1 1   0.1797 0.67   

Campylobacterales 0.132 0.33   0.9372 0.94   

Caulobacterales 0.3939 0.59   0.9372 0.94   

Cellvibrionales 0.0931 0.33   0.3095 0.71   

Chitinophagales 0.3095 0.55   0.3095 0.71   

Chloroplast 0.0411 0.33   0.4848 0.81   

Clostridiales 1 1   0.2403 0.71   

Corynebacteriales 0.6991 0.81   0.0931 0.56   

Cytophagales 0.9372 1   0.0087 0.26   

Desulfobacterales 0.5887 0.71   0.3939 0.74   

Ectothiorhodospirales 0.4848 0.66   0.2403 0.71   

Entomoplasmatales 0.1999 0.43   0.8643 0.93   

Flavobacteriales 0.1797 0.41   0.5887 0.84   

Gammaproteobacteria 

Incertae Sedis 0.132 0.33   0.4848 0.81   

Kordiimonadales 0.132 0.33   0.3095 0.71   

Microtrichales 0.132 0.33   0.3939 0.74   

Mycoplasmatales 0.3939 0.59   0.5887 0.84   

Nitrosococcales 0.0022 0.032 * 0.6991 0.84   

Oceanospirillales 0.132 0.33   0.3939 0.74   

Pirellulales 0.0649 0.33   0.8182 0.91   

Rhizobiales 0.3939 0.59   0.026 0.31   

Rhodobacterales 0.0931 0.33   0.5887 0.84   

Thiohalorhabdales 0.2403 0.45   0.6991 0.84   

Thiotrichales 0.5887 0.71   0.0411 0.31   

Unknown 0.9372 1   0.8182 0.91   

Verrucomicrobiales 0.0649 0.33   0.6991 0.84   

Vibrionales 0.2403 0.45   0.0411 0.31   

Xanthomonadales 0.5887 0.71   0.1797 0.67   
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Supplementary Table 11. Wilcox Rank Sum Test for select Orders detected in 16S 

rRNA amplicons Outer Shell samples by Field Site and Nutrient Enrichment, adjusted 

p-value with Benjamini-Hochberg method. 

 
 Outer shell samples 
 

Northern vs. Southern Control vs. Enriched 

Order P value P adj 
 

P value P adj 
 

Alteromonadales 0.9372 1   0.0022 0.065   

Ardenticatenales 0.0022 0.013 * 0.9372 0.94   

Bacteroidales 0.0931 0.25   0.3939 0.51   

Campylobacterales 0.3095 0.55   0.0649 0.22   

Caulobacterales 0.0152 0.057   0.132 0.34   

Cellvibrionales 0.0043 0.022 * 0.9372 0.94   

Chitinophagales 0.0931 0.25   0.9372 0.94   

Chloroplast 0.0022 0.013 * 0.6991 0.84   

Clostridiales 1 1   0.1797 0.34   

Corynebacteriales 1 1   0.026 0.19   

Cytophagales 0.3939 0.59   0.0411 0.22   

Desulfobacterales 0.132 0.26   0.0649 0.22   

Ectothiorhodospirales 0.9372 1   0.2403 0.4   

Entomoplasmatales 0.124 0.26   0.1463 0.34   

Flavobacteriales 0.9372 1   0.1797 0.34   

Gammaproteobacteria 

Incertae Sedis 0.132 0.26   0.3095 0.44   

Kordiimonadales 0.4848 0.69   0.9372 0.94   

Microtrichales 0.6991 0.91   0.2403 0.4   

Mycoplasmatales 0.0062 0.026 * 0.3611 0.49   

Nitrosococcales 0.0022 0.013 * 0.3095 0.44   

Oceanospirillales 0.3939 0.59   0.132 0.34   

Pirellulales 0.5887 0.8   0.1797 0.34   

Rhizobiales 1 1   0.1797 0.34   

Rhodobacterales 0.132 0.26   0.026 0.19   

Thiohalorhabdales 0.0649 0.22   0.3095 0.44   

Thiotrichales 0.3939 0.59   0.0043 0.065   

Unknown 0.0022 0.013 * 0.9372 0.94   

Verrucomicrobiales 0.0022 0.013 * 0.4848 0.61   

Vibrionales 0.2403 0.45   0.0649 0.22   

Xanthomonadales 0.8099 1   0.045 0.22   
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Abstract 

Larval oysters in hatcheries are susceptible to diseases caused by bacterial 

pathogens, including Vibrio spp. Previous studies have shown that daily addition of 

the probiotic Bacillus pumilus RI06-95 to water in rearing tanks increases larval 

survival when challenged with the pathogen Vibrio coralliilyticus. We propose that the 

presence of probiotics causes shifts in bacterial community structure in rearing tanks, 

leading to a net decrease in the relative abundance of potential pathogens. During 

three trials spanning the 2012-2015 hatchery seasons, larvae, tank biofilm, and rearing 

water samples were collected from control and probiotic-treated tanks in an oyster 

hatchery over a 12-day period after spawning. Samples were analyzed by 16S rRNA 

sequencing of the V4 or V6 regions followed by taxonomic classification, in order to 

determine bacterial community structures. There were significant differences in 

bacterial composition over time and between sample types, but no major effect of 

probiotics on the structure and diversity of bacterial communities (phylum level, Bray-

Curtis k=2, 95% confidence). Probiotic treatment, however, led to a higher relative 

percent abundance of Oceanospirillales and Bacillus spp. in water and oyster larvae. 

In the water, an increase in Vibrio spp. diversity in the absence of a net increase in 

relative read abundance suggests a likely decrease in the abundance of specific 

pathogenic Vibrio spp., and therefore lower chances of a disease outbreak. Co-

occurrence network analysis also suggests that probiotic treatment had a systemic 

effect on targeted members of the bacterial community, leading to a net decrease in 

potentially pathogenic species. 
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Introduction 

Diseases caused by bacterial pathogens result in losses in aquaculture and wild 

populations of commercially important shellfish and finfish (Groner et al., 2016; 

Lafferty et al., 2015; Pérez-Sánchez et al., 2018). World aquaculture production is 

valued at $243.5 billion USD, and disease is a primary limiting factor on its growth 

and economic worth (FAO, 2018; Stentiford et al., 2012). Larval oysters are especially 

susceptible to disease, often by etiological agents from the genus Vibrio (Beaz-

Hidalgo et al., 2010a; Dubert et al., 2017; King et al., 2018; Le Roux et al., 2016; 

Richards et al., 2015). Pathogenic Vibrio spp. are naturally occurring microbes in 

coastal waters, which makes them difficult to avoid. In an effort to maintain a healthy 

environment, hatcheries work towards optimum water quality by controlling larval 

culture density and the use of water treatment systems (Mckindsey et al., 2007; Pérez-

Sánchez et al., 2018). 

An alternative method for the management of disease in aquaculture involves the 

use of probiotics, microorganisms that provide health benefits to the host, including 

protection against bacterial pathogens. Probiotics exert their beneficial effects through 

a variety of mechanisms, including direct pathogen inhibition, competition for 

nutrients, secretion of antibacterial substances, and improvement of water quality 

(Kesarcodi-Watson et al., 2008, 2012; Prado et al., 2010). Previous studies have 

shown that treatment of larval oysters in the laboratory or the hatchery with the 

probiotic bacterium Bacillus pumilus RI06-95 significantly increases their survival 

when challenged with the pathogen Vibrio coralliilyticus (Karim et al., 2013; Sohn et 

al., 2016a). Additionally, administration of this probiotic in a hatchery setting results 
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in reductions in total Vibrio abundance in tank water and surfaces, compared to the 

control tanks (Sohn et al., 2016a). 

However, there is a lack of knowledge regarding the effects of probiotics on the 

systems in which they are used. There are concerns about using probiotic bacteria to 

combat disease in open aquaculture systems, as they will eventually disperse into the 

environment and may thus affect bacterial diversity in these systems (Newaj-Fyzul et 

al., 2014). Improper selection of probiotics may result in bacterial dysbiosis, which 

could ultimately impact host health (Verschuere et al., 2000). As filter feeders that 

process large volumes of seawater daily, bivalves are especially susceptible to changes 

in bacterial community composition in the water (Burge et al., 2016). Moreover, 

bacteria both contribute to and serve as indicators of oyster health and function of the 

microbial community (Le Roux et al., 2016) and likely mediate the effect(s) of 

probiotics on the host. Therefore, it is important to assess the effects of probiotics not 

only on the health and protection of the host, but also on the bacterial communities in 

the systems in which oysters are grown. 

Previous studies of microbiomes in adult oysters have shown differences in 

microbiota according to tissue type, geographic location, season, and environmental 

conditions (Chauhan et al., 2014; King et al., 2012; Lokmer et al., 2016b; Lokmer and 

Wegner, 2015; Pierce et al., 2016; Pierce and Ward, 2018). Additionally, the oyster 

microbiomes are distinct from those of the surrounding water and are often dominated 

by Proteobacteria, Cyanobacteria, and Firmicutes (Lokmer et al., 2016a). Three 

independent microbiome studies of larval cultures of the Pacific oyster, Crassostrea 

gigas found that, even though the microbiome in the rearing water changes throughout 
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the year, there is little effect from direct manipulation of rearing conditions 

themselves, including salinity and temperature (Asmani et al., 2016; Powell et al., 

2013; Trabal Fernández et al., 2014). Microbiome studies of juvenile Kumamoto 

oysters treated with Streptomyces N7 and RL8 showed an increase in species diversity 

and changes in the relative abundances of taxa, compared to control oysters (García 

Bernal et al., 2017). However, the effect of probiotics on bacterial communities in an 

oyster hatchery has not yet been determined. 

In this study, we analyzed the structure and diversity of bacterial communities in 

larval oysters, their rearing water, and in tank biofilms over a 12-day period following 

treatment with the probiotic Bacillus pumilus RI06-95. We hypothesized that probiotic 

treatment has a cascading effect on the bacterial community structure that alters the 

microbiomes of the rearing water, tank biofilms, and larvae, leading to a net decrease 

in potentially pathogenic species. 

 

Materials and Methods 

Bacterial Strain and Culture Conditions 

The probiotic strain Bacillus pumilus RI06-95, previously isolated from a marine 

sponge from the Pettaquamscutt River in Rhode Island (Karim et al., 2013), was 

cultured in yeast peptone with 3% salt (mYP30) media (5 g L-1 of peptone, 1 g L-1 of 

yeast extract, 30 g L-1 of ocean salt (Red Sea Salt, Ohio, USA)) at 28 °C with shaking 

at 170 rpm. The bacterial cell concentration was estimated by OD550 measurements 

using a spectrophotometer (Synergy HT, BioTek, USA) and confirmed using serial 
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dilution and spot plating on mYP30 agar plates to determine colony forming units 

(CFU). 

Experimental Design and Sample Collection 

Samples for microbiome analysis were collected during 3 hatchery trials 

performed at the Blount Shellfish Hatchery at Roger William University (Bristol, RI, 

USA) (Table 1). Eastern oysters (Crassostrea virginica) were spawned following 

standard procedures (Helm and Bourne, 2004). Spawning day is referred to as Day 0 

throughout the manuscript. Larvae (1-day old) were distributed and maintained in 

static conditions in triplicate 120 L conical tanks for each treatment containing filtered 

and UV sterilized seawater at 21 - 23 °C and a salinity of 28 psu. Tanks were 

randomly assigned to treatments including no probiotics (control) and probiotic 

treatment with probiotic B. pumilus RI06-95. The probiotic was administered daily at 

104 CFU/mL, regardless of the length of the trial, to treatment tanks after being mixed 

with the microalgal feed. The microalgae strains used for feeding included 

Chaetoceros muelleri (CCMP1316), Isochrysis galbana (CCMP1323), Tisochrysis 

lutea (CCMP1324), Pavlova lutheri (CCMP1325), Tetraselmis sp. (CCMP892), and 

Thalassiosira weisflogii (CCMP1336). Experimental tanks were drained every other 

day to perform larval counts and grading. Tanks were washed thoroughly with a 

diluted bleach solution, rinsed, and replenished with filtered and UV-treated water 

prior to restocking the larvae. Sampling timepoints and trial lengths varied according 

to the hatchery-scheduled drain down days, so that extensive larval counts would 

coincide with sampling days. 



 

169 

Rearing water (volumes in Table 1) was collected from each of the triplicate tanks 

during drain-down and filtered through a 0.22 μm Sterivex filter (Millipore, Milford, 

MA, USA). The Sterivex filters were immediately frozen and stored at -80 °C until 

DNA extraction. Biofilm swab samples were collected from the surface inside of each 

tank after drain-down of the water by swabbing a line of approximately 144 cm in 

length with sterile cotton swabs. The cotton tips of the swabs were stored in RNAlater 

(Ambion, Inc., Foster City, CA, USA). Oyster larvae were collected on a 55 μm sieve 

after drain-down of tank water and resuspended in 5 L of seawater. 10 mL of oyster 

larvae (from each tank, about 150 – 1500 larvae) were then placed into a sterile tube. 

In the laboratory, oyster larvae were collected on a 40 μm nylon membrane and rinsed 

with filtered sterile seawater (FSSW) to reduce loosely attached environmental 

bacteria. Swab and larvae samples were flash frozen in liquid nitrogen and stored at -

80 °C until DNA extraction. Extracts from swab, larvae, and water samples were 

cultured on selective media to perform culturable Vibrio counts following methods in 

Sohn et al., 2016b. All sample types were collected during Trials 1 and 2, but only 

water samples were collected during Trial 3 (Table 1). In Trial 3, water (1 – 2 L) was 

also collected from the inflow (water piped directly from the environment) and 

outflow (water collected after filtration and UV-treatment prior to reaching the 

hatchery tanks) and processed as described above for tank water.  

DNA Extraction, Amplification, and Sequencing 

Total DNA from water samples was extracted from the filters using the 

PowerWater Sterivex DNA Isolation Kit (MoBio Laboratories, USA) according to 

manufacturer recommendations (Trials 1 and 2) or Gentra Puregene Reagents (Qiagen, 
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Hilden, Germany) with an added proteinase K-lytic enzyme digestion step 

(Sinigalliano et al., 2007; Trial 3). In addition, total bacterial DNA from the tank 

biofilm swabs and oyster larvae were extracted using the PowerSoil DNA Isolation 

Kit (MoBio) with slight modifications detailed below. In brief, frozen pooled oyster 

larvae were ground in a mortar with a sterile pestle and then placed into bead tubes for 

extraction (Qiagen). The RNAlater samples containing the cotton tops of the swabs 

were placed directly into bead tubes. Bead tubes were incubated at 65 °C for 10 min 

and then shaken horizontally at maximum speed for 10 min using the MoBio vortex 

adaptor. Following extraction, DNA concentration was quantified with both a 

Nanodrop 2000 instrument and a Qubit Fluorometer (ThermoFisher Scientific, 

Wilmington, DE, USA). The performance and quality of DNA extractions was 

comparable between Trials and sample types.  

16S rRNA gene amplicon analysis was performed using 515F/806R primers to 

amplify the V4 region (Trials 1 and 2) or 967F/1064R primers to amplify the V6 

region (Trial 3). The V4 region was used in Trials 1 and 2 for better taxonomic 

resolution of all sample types and the V6 region was used in Trial 3 for independent 

confirmation with greater sequencing depth. A two-step PCR reaction following 

Illumina’s 16S Metagenomic Sequencing Library Preparation Protocol was performed 

on the samples from Trials 1 and 2 (Illumina Inc., San Diego, CA, USA). The PCR 

products were then analyzed with 250 bp paired-end sequencing to obtain fully 

overlapping reads on an Illumina MiSeq at the Genomics and Sequencing Center at 

the University of Rhode Island. The samples from Trial 3 were prepared with a 2-step 

fusion primer PCR amplification according to the protocols from the Keck Sequencing 
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Center at the Marine Biological Laboratory (MBL). Paired-end sequencing was 

performed at the MBL on an Illumina HiSeq 2500 to generate 100 bp double strand 

reads with full overlap of the V6 region. 

Processing of Sequencing Data 

Sequences from Trials 1 and 2 were demultiplexed using FastQC v0.11.4 

(Andrews, 2010), then merged and trimmed using Trimmomatic v0.32 (Bolger et al., 

2014). All sequences shorter than 200 bp were removed from the dataset. Sequences 

from Trial 3 were demultiplexed and quality filtered following standard protocols at 

the MBL Bay Paul Center that remove reads where forward and reverse sequences do 

not match perfectly (Eren et al., 2013b). All sequences were uploaded to VAMPS 

(Visualization and Analysis of Microbial Population Structure) and classified directly 

using the GAST pipeline with the SILVA database, in order to compare between the 

three trials (Huse et al., 2014). The taxonomy data from each trial were separately 

normalized to the total reads of each sample to provide relative abundance of each 

taxa in percentage, and then exported as a matrix or BIOM file for analysis in R 

(Version 3.3.1). Vibrio spp. sequences in water samples from Trial 3 were processed 

through the oligotyping pipeline described in Eren et al. (2013a) as implemented in 

VAMPS, and annotated using SILVA.  

Statistical and Network Analysis 

All descriptive and statistical analyses were performed in the R statistical 

computing environment with the vegan and phyloseq packages (Dixon, 2003; 

McMurdie and Holmes, 2013). Simpson’s diversity values were calculated for each 

sample at the order level using the vegan package Version 2.4-1 and analyzed and 
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analyzed using the non-parametric Kruskal-Wallis rank sum test in R. Non-metric 

dimensional analysis (NMDS) was used to determine the influence of time, probiotic 

treatment, or sample type on the bacterial community composition, based on methods 

by Torondel et al. (2016) and implemented using vegan. The Bray-Curtis dissimilarity 

metric was calculated with k=2 for max 50 iterations and 95% confidence intervals 

(standard deviation) were plotted. Statistical testing of the beta-diversity was done 

using the adonis2 test implemented in vegan (method="bray", k=2) (Mcardle and 

Anderson, 2010; Warton et al., 2012). Additionally, relative percent abundances of 

specific taxa were extracted and plotted according to treatment and time, and analyzed 

using the Kruskal-Wallis test in R. 

A co-occurrence network was generated with normalized taxa counts at the Order 

level from water samples in Trial 3 (n=18) to determine hypothetical relationships 

resulting from each treatment. The make_network() command from the phyloseq 

package was used with the Bray-Curtis dissimilarity metric, max distance=0.5. The 

mean resulting relationship table including 123 taxa (nodes) and 670 relationships 

(edges) was exported to Cytoscape Version 3.6.0 for visualization and analysis 

(Shannon et al., 2003). Nodes were assigned continuous size attributes based on the 

number of total reads in all samples per taxa (2 to 2,720,021), and discrete shape and 

continuous color according to whether the taxa were more abundant in the control or 

probiotic-treated samples (0 to 3.6 times).  
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Results 

Bacterial Structure and Diversity Over Time 

In order to determine the effect of probiotics on the microbial community 

dynamics in an oyster hatchery, we needed to first characterize bacterial structure and 

diversity in different environmental niches within the hatchery (water, tank surfaces, 

and larvae) over time. A total of 18,103,647 quality-controlled 16S rRNA gene 

amplicon sequences were analyzed from 42 rearing water samples, 24 tank biofilm 

swabs, and 21 pooled larvae samples from three hatchery trials. There was an average 

of 208,087 reads for each of the 87 samples, ranging between 961-1,117,380 

depending on the sequencing method and sample type (Figure 1, top). Direct 

taxonomical classification resulted in the detection of a total of 168 Orders across 29 

Phyla in all samples. Overall, bacterial communities for each trial and sample type 

shared many of the most dominant phyla, although differences in relative abundance 

were seen between trials, time points, and sample types (Figure 1, bottom left). The 

most dominant phyla in the water community, averaged from all samples, were 

Proteobacteria (53 ± 6%), Bacteroidetes (26 ± 10%), Cyanobacteria (12 ± 10%), 

Actinobacteria (5 ± 5%), and Planctomycetes (2 ± 1%) (Figure 1, bottom right). The 

larval samples were dominated by Proteobacteria (87 ± 12%) and the swab samples 

by Proteobacteria (68 ±17%), Cyanobacteria (19 ± 16%), and Bacteroidetes (8 ± 4%) 

(Figure 1, bottom left). Percent abundance of Cyanobacteria was significantly higher 

in swab than in water samples (p<0.001, Table S1). Larval and swab samples showed 

a significantly higher proportion of Proteobacteria, and lower percent abundance of 

Bacteroidetes, as compared to water samples (p<0.001, Table S1). No significant 
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effect of probiotic treatment was observed on the relative abundance of dominant 

phyla (p>0.38). 

Overall, the bacterial communities in rearing water were significantly more 

diverse than the communities in oyster larvae and tank biofilm swab samples 

(Simpson’s Diversity Index, p<0.001, Figure 2, Table S2), reflecting an enrichment in 

specific community members in larvae and tank surfaces from the more diverse 

rearing water community (Figure 1). Simpson’s Diversity Index indicated significantly 

higher diversity in rearing water samples from Trial 3 (0.66±0.04), than from Trials 1 

(0.59±0.3) and 2 (0.53±0.5) (p<0.001, Figure 2, Table S2), most probably due to the 

greater sequencing depth and different target 16S variable region in Trial 3 (Figure 

S1), but potentially also due to seasonal and yearly differences in bacterial 

composition of the rearing water source (Table 1). There was also high variability 

among replicate samples from each timepoint and treatment, especially in oyster 

larvae samples (Figure 2, Figure S2). Significant increases in bacterial diversity over 

time were detected in the oyster larvae and biofilm swabs in Trial 1 (p<0.01, Table 

S3), and in the rearing water in Trials 2 and 3 (p<0.01, Figure 2, Tables S4, S5). No 

significant differences in Simpson’s Diversity Index were detected between control 

and treated samples at any timepoints for any of the sample types (p=0.52).  

The bacterial community structures of the water and oyster larvae samples were 

significantly different (Bray-Curtis, k=2, 95% confidence, adonis2 p=0.001) in both 

Trial 1 and Trial 2 (Figure 3A, Table S6). The community structure of microbiomes in 

tank biofilms (swab samples) was not significantly different from the structure of 

either the water or oyster larvae samples, suggesting an intermediate microbiome 
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stage. Bacterial communities in the rearing water were significantly different between 

sampling timepoints (Bray-Curtis, k=2, 95% confidence, adonis2 p<0.02) in all three 

trials (Figure 3B, Table S6). Moreover, the bacterial community in samples of inflow 

and outflow seawater, which were collected on days 5, 8, and 12 during Trial 3, was 

distinct from that of the water in rearing tanks (Figure S3, adonis2 p=0.001, Table S6). 

These results suggest that hatchery tanks containing oyster larvae have dynamically 

developing microbiomes, despite the fact that they are all receiving the same inflow 

seawater. There was no significant effect of treatment on the beta-diversity in water 

samples from all time points (Figure 3C, Table S6). 

Effects of the Probiotic on the Selected Members of the Bacterial Community 

Although control and probiotic-treated tanks showed no significant differences in 

diversity and structure of bacterial communities overall (Figure 3C), significant 

differences in the relative read abundance of several specific taxa were detected. In all 

trials, Bacillales reads in the probiotic-treated water samples increased through time, 

and were significantly more abundant in samples from treated tanks than in the control 

tanks by the final sampling day in all trials (p<0.05, Figure 4A, Table S7). These 

consistent results suggest that the relative increase in reads corresponded to the added 

probiotic. The relative percent of Oceanospirillales reads was also significantly higher 

by 20-34% at all but one time point in probiotic-treated rearing water as compared to 

control water in all trials (p<0.05, Figure 4B, Table S8). The relative percent 

abundance of Oceanospirillales reads in the water significantly decreased over time by 

41-62% (depending on the trial) (p<0.05, Figure 4B, Table S8). No significant 

changes in relative percent read abundance of these two selected members of the 
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bacterial community were detected in larval oysters or swabs, but percent abundance 

was low in these sample types (Trials 1 and 2; not shown).  

Vibrio is a taxon that comprises a significant number of larval oyster pathogens 

(Elston et al., 1981, 2008; Le Roux et al., 2016; Richards et al., 2015), therefore we 

evaluated the effect of probiotic treatment on changes in Vibrio spp. diversity, relative 

abundance, and culturable colonies on selective media, over time during each of the 

hatchery trials (Figures 5, S4, S5). Probiotic treatment led to a significant increase in 

Vibrio diversity (as measured using the Simpson’s Index of diversity) in water 

samples collected on day 12 in Trial 1 (p< 0.05; Figure 5A, Table S9). No significant 

differences in relative percent abundance of Vibrio spp. between control and probiotic-

treated tanks were detected for any of the sample types (Figure 5B, Table S10). 

Colony counts of culturable Vibrios, however, were significantly lower in probiotic-

treated tanks, relative to control tanks (p<0.05, Figure 5C, Table S11). When 

considering the effect of sample type, Vibrio relative abundance and culturable Vibrios 

were significantly lower in water samples than in swabs or oysters (all time points) 

and in swabs than in oysters (Day 12 only; p<0.05, Figures 5B and 5C, Tables S10 

and S11). When considering data from all timepoints together, the diversity of Vibrio 

spp. as detected using 16S rRNA gene sequencing was significantly higher in swab 

and oyster samples than in water samples (p<0.05, Figure 5A, Table S9). An 

evaluation of the effect of time on Vibrio relative abundance and diversity showed a 

significant increase in the diversity of Vibrio spp. in swab and water samples (Trial 1, 

p<0.005, Figure 5A, Table S9), and a significant decrease in relative abundance in all 

sample types (Trial 1, p<0.005, Figure 5B, Table S10). This decrease is abundance is 
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further seen in colony counts of culturable Vibrios in the water samples (Trial 1, 

p<0.05, Figure 5C, Table S11). 

Since the V6 region of the 16S rRNA gene was deeply sequenced in Trial 3, we 

were able to perform an oligotyping analysis - a method that detects genetic variants 

within a taxon - of the 1,727 Vibrio reads in the 18 water samples. Changes in the 

overall composition of the Vibrio community over time and by treatment were 

observed by oligotyping (Figure 6). On Day 5, while the Vibrio community in control 

tanks was dominated by an oligotype most closely related to V. alginolyticus WW1 

(64 ± 6%), probiotic tanks showed a mix of V. alginolyticus WW1 (31 ± 3%) and 

Halovibrio sp. 5F5 (31 ± 3%). By Day 12, the Vibrio composition in water in control 

tanks was dominated by V. celticus 5OM18 (75 ± 3%), while a mix of V. orientalis 

LK2HaP4 (51 ± 10%) and V. celticus 5OM18 (35 ± 8%) was detected in probiotic 

tanks.  

Bacterial Relationships with Co-Occurrence Analysis 

A co-occurrence analysis of members of the bacterial community (Figure 7) in the 

18 water samples from Trial 3 was performed to illustrate: a) how abundance of each 

Order changed relative to others (edge connections); b) which Orders were relatively 

most abundant in the system (node size); and c) how probiotic treatment affected their 

relative abundances (node color and shape). The most abundant taxa 

(Rhodobacterales, Micrococcales, Sphingobacteriales, Flavobacteriales, 

Deferribacterales, and Oceanospirillales) changed in similar fashion, but had different 

occurrence ratios between control and treatment samples. Orders that were more 

abundant in the treatment samples than in control samples included Oceanospirillales, 
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Caulobacterales, Lentispherales, Acidithiobacillales, Chrococcales, and Bacillales. 

These nodes were scattered throughout the network and did not share direct edges, but 

were within 3-5 edges of each other. 

Bacillales, the Order to which the probiotic used in these experiments belongs, 

was shown to be most directly associated in the network with four other Orders that 

changed in relative abundance between control and treatment samples: Chromatiales, 

Xanthomonadales, Cytophagia Order II, and Vibrionales. This direct connection 

between Bacillales and Vibrionales in the network indicated that the probiotic may 

have directly affected members of Vibrionales. Oceanospirillales was placed in the 

network 5 edges away from Bacillales, sharing an edge with the treatment-abundant 

Flavobacteriales, a common environmental bacteria taxon (Bernardet et al., 2015). 

This network suggests that the probiotic did not directly alter the overall bacterial 

community in the rearing water in an oyster hatchery, but targeted specific members 

of the community.  

 

Discussion 

A better understanding of bacterial community dynamics in aquaculture systems 

is critical for optimizing disease management strategies such as probiotic treatment. 

This study characterized: a) changes in microbial communities in an oyster hatchery 

through the rearing process; and b) the effect of probiotic treatment on those 

communities. To our knowledge, this is the first study to characterize the effects of 

probiotics on microbiomes in a bivalve hatchery. Despite the high spatial (by sample 

type and replicate tank) and temporal variability in bacterial composition at the 
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hatchery detected in this research, results support the hypothesis that probiotic 

treatment leads to shifts in the microbial community in the hatchery from a state 

promoting the growth of potential pathogens to one that inhibits it. 

Our results showed high variability in bacterial composition between replicate 

samples within trials and between trials, especially among the bacterial communities 

of oyster larvae. Variability between the 3 trials, conducted in July, January, and June 

in different years, is consistent with natural seasonal variation in microbial 

communities in Narragansett Bay (Staroscik and Smith, 2004). High variability in 

microbial communities in oysters from a single location is consistent with past studies, 

and is most probably driven by genetic and environmental effects on host-microbe 

interactions (King et al., 2012; Wegner et al., 2013). Moreover, variability between 

replicates (tanks within the hatchery) and between trials, may have been due to 

inevitable variance in husbandry and handling techniques at the hatchery (Elston et al., 

1981, 2008).  

Despite the high variability observed in these trials, our study observed clear 

differences in diversity and bacterial community structure between the rearing water, 

the biofilms on tank surfaces (swabs), and the oyster larvae. In particular, oyster larvae 

microbiomes were a subset of taxa present in the water and in biofilms, including 

Firmicutes and Proteobacteria, while tank biofilms showed a diversity and 

composition state that was intermediate between water and larvae. Lower diversity 

indices in the larvae and tank biofilms (swabs) than the water indicates niche selection 

of larval and biofilm colonizers, particularly Cyanobacteria in tank biofilms and 

Proteobacteria in oyster larvae. The dominance of Proteobacteria in the system, the 
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most abundant phylum in all samples (up to 87% in larvae), is consistent with 

previous studies where it was shown to make up the largest and most diverse phylum 

in oyster-associated microbiota (Dittmann et al., 2018; Hernández-Zárate and Olmos-

Soto, 2006; Trabal Fernández et al., 2014). Bacteria are an essential component of 

aquaculture nutrition, as a source of both nutrients and growth factors for the 

microalgae, and as food for the larvae (Kamiyama, 2004; Natrah et al., 2014; Nevejan 

et al., 2016). Factors such as size, nutrient availability, metabolites, and accompanying 

bacteria lead to differential ingestion of algae and associated microbes in eastern 

oysters (Baldwin, 1995; Nevejan et al., 2016; Newell and Jordan, 1983; Pales 

Espinosa et al., 2009). Interestingly, strong temporal changes were seen in the 

structure of microbial communities of oyster larvae, tank surface biofilms, and/or 

rearing water in each of the trials. Considering the short duration of the trials (less than 

15 days), this indicates that temporal changes in microbial communities in the tanks 

may be driven by developmental and health changes in the oyster larvae, since it is 

unlikely that these major changes are due to transient changes in the microbial 

composition of incoming water (as observed in Trial 3). More research is needed to 

evaluate the role of oyster-microbial interactions on the dynamics of microbial 

communities in rearing tanks in hatcheries. 

There was no effect on bacterial community diversity or structure in any of the 

sample types, suggesting that the primary probiotic effect of B. pumilus RI06-95 is 

exerted directly on larval health (e.g. by modulation of the immune system) and/or that 

it is mediated by subtle, targeted changes in the oyster microbiomes that are obscured 

by larger temporal effects and/or by homogenization of large pools of larvae from 
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each tank. The presence of the probiotic was confirmed with higher relative abundance 

of Bacillales in the probiotic-treated water and increased relative abundance 

throughout the duration of each trial, suggesting that the probiotic accumulates in the 

larvae through time (tanks were scrubbed and water changed every other day). 

Previous studies of the impact of probiotics on microbiota in humans and fish also 

showed subtle changes of certain taxa, but no consistent effect on the diversity of the 

host’s bacterial community (Boutin et al., 2013; Laursen et al., 2017; Merrifield and 

Carnevali, 2014; Schmidt et al., 2017; Standen et al., 2015). However, other studies 

report dramatic changes in fish intestinal microbiomes as a result of prebiotic 

treatment (Geraylou et al., 2013; Gonçalves and Gallardo-Escárate, 2017).  

In addition to Bacillales, significant amplification of taxa was observed in 

probiotic-treated water samples compared to the control samples, most notably in the 

Oceanospirillales order. Oceanospirillales are heterotrophs commonly associated with 

mollusks and are found in the gills of many bivalves (Beinart et al., 2014; Costa et al., 

2012; Jensen et al., 2010; Zurel et al., 2011). Additionally, they are recognized for 

their ability to degrade organic compounds in the environment and their abundance in 

oil plume microbial communities (Dubinsky et al., 2013; Hazen et al., 2010). These 

observations indicate that Oceanospirillales may confer a beneficial effect to the 

oyster host and contribute to the mechanism of oyster larval protection by the B. 

pumilus RI06-95 probiotic. Additionally, this suggests that the presence of B. pumilus 

RI06-95 has targeted effects on specific members of the microbial community in 

larval tanks in the hatchery.  



 

182 

Previous research showed that probiotic treatment with B. pumilus RI06-95 

decreases levels of Vibrio spp. in the hatchery (Sohn et al., 2016a). This may be due to 

the production of antimicrobial secondary metabolites produced by B. pumilus RI06-

95, as well as other Bacillus spp., that inhibit the growth of vibrios (Karim et al., 2013; 

Sohn et al., 2016a; Vaseeharan and Ramasamy, 2003). In the current study, a similar 

trend (as determined by a reduction in relative abundance, with overall trends 

confirmed using Vibrio spp. colony counts on selective media) was observed in treated 

tanks, but high variability and small sample sizes may have hindered detecting 

statistically significant differences. Moreover, failure to detect a significant decrease 

in Vibrio reads in Trial 2 (performed in January) was most probably due to the low 

abundance of Vibrio spp. in this trial, which is consistent with low levels of these 

species in coastal waters of the North Atlantic during winter (Staroscik and Smith, 

2004). Interestingly, our research indicates that probiotic treatment leads to increased 

Vibrio diversity in rearing water through time. This increase in diversity in the absence 

of a net increase in relative abundance signifies a likely decrease in the relative 

abundance of specific pathogenic Vibrio spp., and therefore lower chances of a disease 

outbreak. Moreover, rRNA oligotyping of the Vibrio species in the water samples 

revealed a transition in the Vibrio community in probiotic-treated tanks from a 

predominance of potentially pathogenic species (Vibrio alginolyticus, a virulent 

pathogen originally isolated from amphioxius (Zou et al., 2016) and Vibrio celticus, a 

virulent anaerobic clam pathogen (Beaz-Hidalgo et al., 2010b)) to a predominance of a 

likely non-pathogenic species (Vibrio orientalis, a species that has been associated 

with adaptive functions (Mukhta et al., 2016; Tangl, 1983). This trend further 
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confirms that addition of B. pumilus RI06-95 causes targeted changes in certain taxa, 

especially Vibrios, which is highly relevant for decreasing infective doses and, 

consequently, disease dynamics (Chauhan and Singh, 2018). 

This interpretation is consistent with results from the co-occurrence network 

analysis, a tool used to identify associations, patterns, roles, and inform hypotheses 

from 16S abundance data (Barberán et al., 2012). This analysis suggests a negative 

association between Bacillales with Vibrionales in the trials performed in summer 

months (Trials 1 and 3), when Vibrionales are more abundant in the environment and 

oysters. Previous research and sequencing of the genome of B. pumilus RI06-95 show 

that potential mechanisms of probiotic action can include direct competition with other 

species and biofilm formation (Hamblin et al., 2015; Karim et al., 2013). Competition 

between B. pumilus RI06-95 and other bacteria (including Vibrionales) could open 

niches in the oyster microbiome for potentially beneficial microbes.  

In summary, the bacterial community dynamics observed in this study indicate a 

variety of interactions between larval oysters and specific members of the 

microbiome, such as Vibrio spp. and the Bacillus probiotic. First, Vibrio spp., as well 

as other Proteobacteria, appear to be particularly capable of colonizing and surviving 

within oyster larvae (Romalde et al., 2014). As seen in other probiotic species, these 

opportunistic Vibrios may be outcompeted by pre-colonization of other bacteria in the 

system, leading to a decrease in Vibrio abundance and/or an increase in diversity over 

time (Beaz-Hidalgo et al., 2010a; Zhao et al., 2016, 2018). We hypothesize that 

inhibition of Vibrio spp. by probiotic B. pumilus RI06-95 may allow for potentially 

beneficial Oceanospirillales to become more abundant in the system. Additional 
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research is needed to examine the specific interactions between Oceanospirillales 

symbionts, the Bacillus probiotic, Vibrio pathogens, and the oyster host. Elucidating 

such interactions will require more targeted 16S rRNA and functional metagenomic 

analyses to track specific species over time, as well as functional studies using in vitro 

and in vivo competition experiments.  

 

Conclusion 

This study investigated the effects of time and probiotic treatment on bacterial 

communities in an oyster hatchery. Understanding how probiotic treatment affect 

microbiota in aquaculture systems may help in optimizing their benefits and 

preventing undesirable side-effects (Kesarcodi-Watson et al., 2008). Our results show 

that there is a strong effect of time on the microbiomes within oyster larvae, on tank 

walls and in the rearing water, and that probiotic treatment leads to subtle changes in 

certain bacterial taxa, including an increase in the relative abundance of 

Oceanospirillales in the rearing water and changes in the Vibrio community. These 

results inform how probiotics may influence bacterial communities in an oyster 

hatchery over temporal and spatial scales, leading to an overall improvement in larval 

health. 
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Figures and Tables 

 

Figure IV-1. Sequencing read abundances and percent abundance by Phyla. 

Percent abundances of the 12 most abundant phyla in oyster larvae, biofilm swab, and rearing water samples from all 3 Trials based on 

16S rRNA amplicon sequencing data (bottom). The total abundance of quality filtered sequencing reads is shown in the bar graph 

(top). The 12 dominant phyla include Actinobacteria, Bacteroidetes, Cyanobacteria, Deferribacteres, Firmicutes, Fusobacteria, 

Lentisphaerae, Planctomycetes, Proteobacteria, Spirochaetae, Verrucomicrobia, and Unknown. Note: there are no treated oyster larvae 

samples from Trial 2, Day 6.  
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Figure IV-2. Simpson’s index of diversity of bacterial communities by sample (larvae, swab, water) and trial (n=3 tanks). 

No significant differences in diversity were found between control (light blue) and treatment (dark red) within each sample type and 

trial. Bacterial community diversity significantly increased over time in larvae, swab, and water samples from Trial 1, and water 

samples from Trial 3. Diversity in water was significantly higher in Trial 3 than Trials 1 and 2. Note: there are no treated oyster larvae 

samples from Trial 2, Day 6. 
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Figure IV-3. NMDS plot visualization of Bray-Curtis beta-diversity (k=2) at the Order level by (A) sample type, (B) sampling 

day, and (C) treatment. 

The ellipse lines show the 95% confidence interval. p-values indicate significance of grouping with adonis2 Permutational 

Multivariate Analysis of Variance Using Distance Matrices test. (A) The different types of samples are indicated by colors 

(Oyster=dashed red, Swab=dashdot green, Water=dotted blue) and the days are indicated by symbols (Timepoint 1=circle, Timepoint 

2=triangle). The water and swab communities were significantly distinct from each other in both trials. (B) The sampling timepoints 

are indicated by colors (1=longdash yellow, 5=shortdash red, 8=dashdot purple, 9=solid green, 12=dotted blue) and the treatment 

group is indicated by symbols (control=circle, probiotic treatment=triangle). The water community was significantly different between 

timepoints. (C) The treatment group is indicated by colors (control=light blue dashed, probiotic treatment=dark red dotted) and 

sampling timepoints are indicated by symbols. No significant differences in community structure in water from control and probiotic-

treated tanks was detected when samples from all time points were analyzed together.  
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Figure IV-4. Probiotic treatment effect on relative percent read abundance of (A) Bacillales and (B) Oceanospirillales in water. 

Number of reads in treated (dark red) and control (light blue) samples (n=3 tanks per treatment) are represented for each sampling day 

and trial. (A) Bacillales was relatively significantly higher in the treated than the control water after 5 days of treatment, and (B) 

Oceanospirillales were consistently more abundant in probiotic-treated tank rearing water, and decreased with time.  

Significance: *p<0.05, **p<0.01, ***p<0.001 
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Figure IV-5. Probiotic treatment effect on Vibrionales abundance and diversity. 

Effect of treatment, time, and sample type on Simpson’s Index of Diversity for Vibrionales (A, boxplots), total Vibrionales relative 

percent read abundance (B, bar graph), and culturable Vibrio plate counts (C, bar graph). Representative data from Trial 1 (n=3 tanks 

per treatment). Note different scales for (B) and (C). Significance: *p<0.05, **p<0.01, ***p<0.001 
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Figure IV-6. Vibrio spp. oligotypes in Control (CON) and Treatment (T) water samples on Days 5, 8, and 12 from Trial 3. 

Vibrio spp. oligotypes in Control (CON) and Treatment (T) water samples on Days 5, 8, and 12 from Trial 3. These 8 oligotypes were 

generated from changes in positions 23 and 37 in a total of 1727 sequences, represented with the 2 letter abbreviations in the legend. 

The taxonomy of the 4 most abundant oligotypes is shown. Vibrio oligotypes showed differences in succession of species over time 

between control and treatment rearing water. 
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Figure IV-7. Co-occurrence network analysis based on Bray-Curtis dissimilarity metric (max distance =0.5, Order level) for 

water samples from Trial 3 (n=3 tanks per treatment and day, total of 18). 

Taxa that change in the same way share an edge; nodes that have edges occur in the same proportions and in the same samples. Darker 

blue circle nodes indicate taxa that occur in the Control significantly more than Treated water samples. White nodes have equal 

occurrence in treated and control water samples. Darker red diamond nodes indicated taxa that occurs in the Treated significantly 

more than Control water samples.  
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Table IV-1. Summary of probiotic trial information and sequencing data.  

 

 

Trial 1 Trial 2 Trial 3 

Sample Types Water, Swabs, Oysters Water, Swabs, Oysters Water 

Sampling Days 

(0=spawn) 

Water: 1,12 

Oysters, Swabs: 5,12 

Water: 1,9 

Oysters, Swabs: 6,9 
Water: 5,8,12 

Volume water Filtered 410-750 mL 7-10 mL 1300-1700 mL 

Trial Dates July 11-23, 2012 Jan 9-18, 2013 June 3-15, 2016 

Bacterial reads from 12 water 

samples 
1.3 million 1.8 million 5.7 million 

Methods 
MoBio extraction 

MiSeq, 2x250 PE 

MoBio extraction 

MiSeq, 2x250 PE 

Puregene extraction 

HiSeq, 2x100 PE 

16S region V4 V4 V6 
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Supplementary Material 

 
Supplementary Figure 1. Rarefaction curve from all water samples from all three 

Trials based on taxonomic classification at the order level. 

 

 

 

 
Supplementary Figure 2. The relative abundances of the 20 most abundant orders in 

oyster, swab, and water samples from Trial 1. 
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Supplementary Figure 3. NMDS plot visualization of Bray-Curtis beta-diversity 

(k=2) at the Order level by Treatment or Water Source of water samples from Trial 3. 

The ellipse lines show the 95% confidence interval. The water group is indicated by 

colors (control=light blue dashed, probiotic treatment=dark red dotted, inflow=grey 

solid, outflow=black solid) and sampling timepoints are indicated by symbols. The 

inflow water (water piped directly from the environment into the hatchery) and 

outflow water (inflow water UV-treated and sterilized) are significantly distinct 

groups, separate from the experimental samples. p-value indicates significance of 

groupings with adonis2 Permutational Multivariate Analysis of Variance Using 

Distance Matrices test. 
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Supplementary Figure 4. Percent abundances of Vibrio species in all sample types in 

Trial 1. The total abundance of sequencing reads is shown in the bar graph. The 

structure of total Vibrios is different based on the sample type and time point. 

 

 

 

 
Supplementary Figure 5. Percent abundances of Vibrio species in rearing water 

samples from all 3 Trials. The total abundance of sequencing reads is shown in the bar 

graph. The structure of total Vibrio counts in the rearing water is different between 

Trials and changes over time. 
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Supplementary Table 1. Kruskal-Wallis Rank Sum Test for percent abundances of 

Proteobacteria, Cyanobacteria, and Bacteroidetes by Sample Type from all trials. 

<All Trials – Proteobacteria > 

 DF Chi-Squared P value  

Sample Type 2 52.745 3.521e-12 *** 

Treatment 1 0.75065 0.3863  

< All Trials – Cyanobacteria > 

 DF Chi-Squared P value  

Sample Type 2 33.113 6.451e-08 *** 

Treatment 1 0.093506 0.7598  

< All Trials – Bacteroidetes > 

 DF Chi-Squared P value  

Sample Type 2 63.422 1.691e-14 *** 

Treatment 1 0.23442 0.6283  

 

 

 

 

Supplementary Table 2. Kruskal-Wallis Rank Sum Test for the Simpson’s Index of 

Diversity values by Trial, Sample Type, Day, and/or Treatment. 

< All Trials – Simpson’s Index of Diversity > 

 DF Chi-Squared P value  

Trial 2 38.553 4.25e-09 *** 

Trial – water 

only 

2 24.809 4.099e-06 *** 

Type 2 51.932 5.285e-12 *** 

Day 2 9.1136 0.0105 * 

Treatment 1 0.32388 0.5693  
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Supplementary Table 3. Kruskal-Wallis Rank Sum Test for the Simpson’s Index of 

Diversity values by Day and Treatment in Trial 1. 

< Trial 1 - Water > 

 DF Chi-Squared P value  

Day 1 0.41026 0.5218  

Treatment 1 0.92308 0.3367  

< Trial 1 – Biofilm Swab > 

 DF Chi-Squared P value  

Day 1 8.3077 0.003948 ** 

Treatment 1 0.10256 0.7488  

< Trial 1 – Oyster Larvae > 

 DF Chi-Squared P value  

Day 1 6.5641 0.01041 * 

Treatment 1 0.41026 0.5218  

     

Supplementary Table 4. Kruskal-Wallis Rank Sum Test for the Simpson’s Index of 

Diversity values by Day and Treatment in Trial 2. 

< Trial 2 - Water > 

 DF Chi-Squared P value  

Day 1 7.4103 0.006485 ** 

Treatment 1 0.10256 0.7488  

< Trial 2 – Biofilm Swab > 

 DF Chi-Squared P value  

Day 1 3.6923 0.05466  

Treatment 1 0.10256 0.7488  

< Trial 2 – Oyster Larvae > 

 DF Chi-Squared P value  

Day 1 0 1  

Treatment 1 0.6 0.4386  

     

Supplementary Table 5. Kruskal-Wallis Rank Sum Test for the Simpson’s Index of 

Diversity values by Day and Treatment in Trial 3. 

< Trial 3 - Water > 

 DF Chi-Squared P value  

Day 2 11.942 0.002552 ** 

Treatment 1 0.32943 0.566  
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Supplementary Table 6. Permutational Multivariate Analysis of Variance Using 

Distance Matrices (adonis2) for Bray-Curtis beta-diversity (k=2) in each Trial by 

Sample Type, Day, and Treatment. 

< Trial 1 – Bray-Curtis beta-diversity > 

 DF Sum of 

Squares 

R2 F Pr(>F)  

Type 2 2.0175 0.3053 7.2513 0.001 *** 

Residual 33 4.5907 0.6947    

Day (Water only) 1 0.71911 0.7375 28.095 0.006 ** 

Residual 10 0.25596 0.2625    

Treatment  

(Water only) 1 0.02426 0.02488 0.2551 0.719  

Residual 10 0.9508 0.97512    

< Trial 2 – Bray-Curtis beta-diversity > 

 DF Sum of 

Squares 

R2 F Pr(>F)  

Type 2 2.7762 0.57915 20.642 0.001 *** 

Residual 30 2.0173 0.42085    

Day (Water only) 1 0.18331 0.24214 3.195 0.013 * 

Residual 10 0.57375 0.75786    

Treatment 

(Water only) 1 0.07318 0.09666 1.07 0.316  

Residual 10 0.68389 0.90334    

< Trial 3 – Bray-Curtis beta-diversity > 

 DF Sum of 

Squares 

R2 F Pr(>F)  

Day 1 0.14732 0.32893 7.8424 0.002 ** 

Residual 16 0.30056 0.67107    

Treatment  1 0.02889 0.06451 1.1033 0.337  

Residual 16 0.41898 0.93549    

Water Source Group 

(Figure S3)  
3 0.37087 0.57173 8.9 0.001 *** 

Residual 20 0.27781 0.42827    
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Supplementary Table 7. Kruskal-Wallis Rank Sum Test for relative percent 

abundance of Bacillales reads in water samples per Trial by Day and Treatment 

Group. 

< Trial 1 - Bacillales > 

 DF Chi-Squared P value  

Day 1 0.64103 0.4233  

Treatment: Day 1 1 1.1905 0.2752  

Treatment: Day 12 1 3.8571 0.04953 * 

< Trial 2 - Bacillales > 

 DF Chi-Squared P value  

Day 1 0.23077 0.631  

Treatment: Day 1 1 0.42857 0.5127  

Treatment: Day 9 1 3.8571 0.04953 * 

< Trial 3 - Bacillales > 

 DF Chi-Squared P value  

Day 2 0.94737 0.6227  

Treatment: All 1 12.789 0.0003486 *** 

Treatment: Day 5 1 3.8571 0.04953 * 

Treatment: Day 8 1 3.8571 0.04953 * 

Treatment: Day 12 1 3.8571 0.04953 * 

< Trial 3 - Bacillales Days 5 and 8 > 

 DF Chi-Squared P value  

Day 1 3.8571 0.04953 * 

< Trial 3 - Bacillales Days 5 and 12 > 

 DF Chi-Squared P value  

Day 1 3.8571 0.04953 * 

< Trial 3 - Bacillales Days 8 and 12 > 

 DF Chi-Squared P value  

Day 1 3.8571 0.04953 * 
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Supplementary Table 8. Kruskal-Wallis Rank Sum Test for relative percent 

abundance of Oceanospirillales reads in water samples per Trial by Day and 

Treatment Group. 

< Trial 1 - Oceanospirillales > 

 DF Chi-Squared P value  

Day 1 8.3077 0.003948 ** 

Treatment: Day 1 1 3.8571 0.04953 * 

Treatment: Day 12 1 3.8571 0.04953 * 

< Trial 2 - Oceanospirillales > 

 DF Chi-Squared P value  

Day 1 5.7692 0.01631 * 

Treatment: Day 1 1 3.8571 0.04953 * 

Treatment: Day 9 1 1.1905 0.2752  

< Trial 3 - Oceanospirillales > 

 DF Chi-Squared P value  

Day 2 8.2222 0.01639 * 

Treatment: Day 5 1 3.8571 0.04953 * 

Treatment: Day 8 1 3.8571 0.04953 * 

Treatment: Day 12 1 3.8571 0.04953 * 

< Trial 3 - Oceanospirillales Days 5 and 8 > 

 DF Chi-Squared P value  

Day 1 4.3333 0.03737 * 

< Trial 3 - Oceanospirillales Days 5 and 12 > 

 DF Chi-Squared P value  

Day 1 1.2564 0.2623  

< Trial 3 - Oceanospirillales Days 8 and 12 > 

 DF Chi-Squared P value  

Day 1 6.5641 0.01041 * 
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Supplementary Table 9. Kruskal-Wallis Rank Sum Test for Simpson’s Index of 

Diversity of Vibrionales relative percent reads in Trial 1 per Sample Type by Day and 

Treatment Group. 

< Trial 1 All Samples – Vibrio diversity > 

 DF Chi-Squared P value  

Type 2 8.4324 0.01475 * 

Day 2 10.89 0.004318 ** 

Treatment 1 0.25626 0.6127  

< Trial 1 Oyster Larvae – Vibrio diversity > 

 DF Chi-Squared P value  

Day 1 0 1  

Treatment 1 0.41026 0.5218  

< Trial 1 Biofilm swab – Vibrio diversity > 

 DF Chi-Squared P value  

Day 1 8.3077 0.003948 ** 

Treatment 1 0.025641 0.8728  

< Trial 1 Water – Vibrio diversity > 

 DF Chi-Squared P value  

Day 1 8.3077 0.003948 ** 

Treatment 1 0.64193 0.4233  

Treatment – 

Day 12 

1 3.8571 0.04953 * 
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Supplementary Table 10. Kruskal-Wallis Rank Sum Test for relative percent 

abundance of Vibrionales reads in Trial 1 per Sample Type by Day and Treatment 

Group. 

< Trial 1 All Samples – Vibrio percent abundance > 

 DF Chi-Squared P value  

Type 2 16.722 0.0002338 *** 

Day 2 22.651 1.206e-05 *** 

Treatment 1 0.0009009 0.9244  

< Trial 1 Oyster Larvae – Vibrio percent abundance > 

 DF Chi-Squared P value  

Day 1 8.3077 0.003948 ** 

Treatment 1 0.10256 0.7488  

< Trial 1 Biofilm swab – Vibrio percent abundance > 

 DF Chi-Squared P value  

Day 1 8.3077 0.003948 ** 

Treatment 1 0 1  

< Trial 1 Water – Vibrio percent abundance > 

 DF Chi-Squared P value  

Day 1 8.3077 0.003948 ** 

Treatment 1 0.025641 0.8728  
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Supplementary Table 11. Kruskal-Wallis Rank Sum Test for culturable Vibrio 

colony counts in Trial 1 per Sample Type by Day and Treatment Group. 

< Trial 1 All Samples – Vibrio colony counts > 

 DF Chi-Squared P value  

Type 2 2.4254 0.2974  

Day 2 2.4406 0.2951  

Treatment 1 10.234 0.001379 ** 

< Trial 1 Oyster Larvae – Vibrio colony counts > 

 DF Chi-Squared P value  

Day 1 3.7053 0.05424  

Treatment 1 1.8591 0.1727  

< Trial 1 Biofilm swab – Vibrio colony counts > 

 DF Chi-Squared P value  

Day 1 2.0769 0.1495  

Treatment 1 3.1026 0.07817  

< Trial 1 Water – Vibrio colony counts > 

 DF Chi-Squared P value  

Day 1 2.0989 0.1474  

   Control by Day 1 3.9706 0.0463 * 

   Treated by Day 1 4.0909 0.04311 * 

Treatment 1 8.3958 0.003761 ** 
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CHAPTER V: Summary of Results 

Contributions of this Dissertation 

This dissertation explored the microbial community dynamics in the eastern oyster 

(Crassostrea virginica) in response to environmental perturbations: an estuarine 

gradient, nutrient enrichment, and probiotic treatment. Larval, adult wild, and adult 

farmed oysters were evaluated, providing important contributions to aquaculture, 

fisheries, and conservation efforts. The overarching questions answered in this 

dissertation are as follows: 

1. What is the microbial community of larval and adult oysters in Narragansett 

Bay, RI? 

2. How does this community composition change over time and spatial scales? 

3. What functions are performed by the oyster microbiome, as determined by 

metatranscriptomic activity? 

4. How do these communities and functions change with environmental 

perturbation? 

In the introductory chapter, we proposed a model for how the environment may 

influence the tightly coupled host-associated microbial community structure and 

function (Figure I-2). Previous studies of host-associated microbiomes, especially in 

oysters, have detected changes in composition or function, without connecting these 

observations to determine ecological relevance (King et al., 2019; Pierce and Ward, 

2018). Given these knowledge gaps, it was expected that the microbial function will 

directly reflect the environment and microbial composition (Chapter 1 of this 

dissertation). However, the results of this dissertation indicate that the environment 
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influences the oyster-associated microbial composition differently than how it affects 

the microbial function, perhaps due to host mediation.  

We determined that oyster microbiomes are highly dynamic, and primarily 

change according to life stage, sample type, and ambient environmental conditions. 

When these large-scale effects are removed, then we detect subtle changes in 

microbial community composition and function due to probiotic treatment or nutrient 

enrichment. Metatranscriptomic analysis of the oyster-associated microbiomes showed 

that transcriptional activity reflects local environmental conditions more than the 

microbial composition. This suggests the presence of a functionally redundant and 

diverse microbiome that allows for plasticity according to the environmental 

conditions. Additionally, this pattern implies that the microbial composition is driven 

by factors different from those that shape the functional response. In other words, the 

microbial community structure and function are responding to different influences 

(Louca et al., 2018). Furthermore, high levels of variability within oyster microbiomes 

at a site or in a rearing tank were observed, confirming there are other important 

factors in determining the composition or function of these microbiomes (i.e. host 

genetics, host physiology, host health status, microbial intra-community dynamics).  

 The observations presented in this dissertation are the first use of 

metatranscriptomics to describe how oyster microbiomes respond to an estuarine 

gradient and nutrient enrichment. In addition, we presented the first known 

characterization of the bacterial community dynamics in a bivalve hatchery in 

response to probiotics. These comparisons of microbial community structure and 
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function inform how the oyster microbiome responds to environmental conditions and 

eventually, may show resilience to climate change scenarios. 

 

Changes in Microbial Community Structure 

Environmental Conditions and Perturbation 

 Previously published studies of microbial communities in oysters are limited to 

descriptive studies at ambient conditions, without considering the influence of 

environmental conditions. All sites surveyed in this study are dispersed throughout 

Narragansett Bay, Rhode Island, a temperature estuary with a prevalent eutrophic 

gradient and shellfish culture (Figure 1) (Oviatt, 2008; Wallace et al., 2014). The 

variation in environmental conditions ranged dramatically throughout the bay at the 

time of sampling: pH 6.9-8.2, salinity 18-32 psu, dissolved oxygen 5.5-9.5 mg/L, and 

chlorophyll-a 3.8-24 μg/L (Figure 2 and Table 1). This variety in environmental 

conditions provides an opportunity to synthesize how environmental conditions and 

perturbations affect the microbial community composition of oysters. When 16S 

rRNA amplicon data from select oyster gut samples in Chapter 2 and the ambient gut 

samples in Chapter 3 are analyzed together, we can determine general trends in oyster 

microbial composition throughout Narragansett Bay. Proteobacteria, Cyanobacteria, 

Bacteroidetes, and Tenericutes were the most abundant phyla in oyster gut 

microbiomes (Figure 3). Overall, the oyster gut microbiome was highly variable, 

especially within each site, suggesting additional selection by the host (Figure 4). A 

principal component analysis (PCA) of these samples showed correlations between 
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sites, their gut microbial phyla, and environmental conditions (Figure 5). The samples 

separated by site, with the least variation shown at 4.NAR and 7.NIN.  

 If we consider which bacterial phyla are affected by different perturbations, we 

can identify the possible key taxa responsible to microbial acclimation and change. In 

the oyster gut samples from Narragansett Bay, phyla Chlamydiae and Dependentiae 

correlated with salinity, Lentisphaerae correlated with chlorophyll-a, Verrucomicrobia 

and Actinobacteria correlated with ammonium, and Fusobacteria correlated with 

dissolved oxygen (Figure 5). Oceanospirillales, Vibrionales, Caulobacterales, and 

Lentisphaerales were associated with probiotic treatment (Figure IV-7) and 

Actinobacteria and Bacteroidetes were affected by nutrient enrichment (Figure III-2). 

The phyla Planctomycetes, Verrucomicrobia, Chlamydiae and Lentisphaerae make up 

the “PVC superphylum,” a monophyletic group of phylum that often live in close 

association with eukaryotic hosts (Cho et al., 2004; Wagner and Horn, 2006). 

Interestingly, these are phyla that we saw changing in response to environmental 

perturbation, which indicates that these changes in microbial community structure may 

be host-dependent and limited to certain taxa. 

Developmental Stage and Tissue Type 

 In addition to the range of environmental conditions studied, this study also 

considered changes in oyster microbiomes at different developmental stages and 

tissues. When all 16S rRNA amplicon data from this dissertation was compared at the 

Phyla level, there was high variability within microbiomes from the same sample type 

(Figure 6). Adult wild oysters at different sites in Narragansett Bay have significantly 

different microbial community structures that are selected from the water microbiome 
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at each site (Figure 6). Regardless of probiotic treatment, nutrient enrichment, or site, 

the oyster microbiome showed a transition from Proteobacteria and Bacteroidetes 

dominated seawater and larval bacterial communities to an adult microbiome abundant 

in Cyanobacteria, Tenericutes, and Unknown taxa (Figure 7). These same averaged 

samples were compared using a PCA analysis to determine which taxa are driving the 

changes between the sample types (Figure 8). All of the seawater samples (regardless 

of site or hatchery trial) clustered with the larval hatchery samples, and correlated with 

Proteobacteria, Bacteroidetes, Deferribacteres, and Chlamydiae (Figure 8A). At the 

Phylum level, larval oysters in a hatchery are similar to water throughout Narragansett 

Bay, despite seasonal and site differences. All adult oyster gut samples clustered 

together, and correlated with Cyanobacteria, Firmicutes, and Tenericutes. The adult 

oyster inner and outer shell samples were the most diverse and variable sample types 

(Figures 7 and 8). 

  The experiments described in this dissertation confirm that the oyster microbiome 

composition varies by developmental stage and sample type (larvae, adult gut, inner 

shell, outer shell). As the oyster grows, it will have different filtering mechanisms and 

nutritional requirements, promoting and maintaining a changing microbiome (Hoellein 

et al., 2015; Pierce and Ward, 2018). For example, the adult gut microbiome is 

dependent upon filtration and selection by the oyster host. Surprisingly, we observed 

that sample type and developmental stage have a greater effect on the oyster 

microbiome composition than seasonality, site and environmental conditions, and 

sequencing method. This finding is especially important to the study of host-

microbiome interactions, since many studies will focus on just one tissue in an 
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organism. Our results indicate that one tissue may not be representative of all the 

changes occurring in a host’s microbiome, and multiple tissues should be considered 

in experiments.  

 

Changes in Microbial Community Function 

 Increased nutrient loading in coastal environments threatens oysters and is likely 

to alter microbially-driven ecosystem functions, particularly nitrogen and phosphorus 

cycling (Carmichael et al., 2012; Oviatt, 2008). Oyster-associated microbiomes play 

an important role in nitrogen cycling by performing coupled nitrification-

denitrification processes, but knowledge of the responsible microbes, their 

abundances, and their roles is lacking. Despite differences in the microbial 

composition, the transcriptionally active taxa are similar throughout the bay, but 

performing different functions depending on the environmental conditions. The 

oysters from sites with high nutrients and anoxia show significant upregulation of 

genes associated with stress response and phosphorus metabolism. Conversely, the 

oysters from sites with low nutrients and higher DO show upregulation of genes 

associated with nitrogen metabolism and downregulation of stress response genes.  

 The model we developed in Chapter 2 describes how environmental conditions 

determine nitrogen and phosphorus metabolism in oyster gut microbiomes (Figure II-

6). At sites with lower dissolved oxygen and pH, and higher nutrient availability, there 

will be downregulation of nitrogen metabolism genes. This model also holds true for 

nitrogen metabolism in the gut metatranscriptomes analyzed in Chapter 3. When the 

field sites are compared, there is significant downregulation of nitrogen pathways in 
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the Northern site, where there are high nutrient levels and lower dissolved oxygen 

(Figure III-7A). This will result in decreased denitrification provided by the oysters, 

and a reduction in the value of their ecosystem services. 

 

Technical Issues and Limitations 

 The results presented in this dissertation are limited by a variety of technical 

issues and biases that are discussed in each chapter. In particular, the methods and 

programs used to analyze high throughput sequencing data are constantly improving, 

and each comes with a set of limitations (Jovel et al., 2016; Tremblay et al., 2015). 

One of the primary limitations is the small scope of databases for taxonomy and 

functional annotation of environmental samples (Kim et al., 2013). In the 16S rRNA 

amplicon data, there were many Unknown bacterial reads that lack the support of 

database annotation (Antczak et al., 2019). The metatranscriptomic results presented 

are based on annotation of only 5-40% of the total metatranscriptomic reads – the rest 

were uncharacterized and discarded. Similarities in the metatranscriptome annotation 

may have been a partial result of this database bias. However, the changes we 

observed in functional and taxonomic diversity within sample sets were obtained using 

the same methods and databases, removing any bias between samples in a dataset. In 

order to improve the accuracy of taxonomic and functional studies, improved database 

and protein characterization are needed. 

 A large percentage (5-40%) of the metatranscriptomic reads matched to the 

eastern oyster genome and were thus removed from the microbial study, leaving fewer 

reads for downstream analysis. Metagenomes sequenced from the same oyster gut 
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samples were made of 70-90% oyster gene sequences, making them unusable for 

microbial analysis at the current sequencing depth (unpublished data). Improved 

methods to obtain host-depleted metagenomes and metatranscriptomes are needed, so 

that we can better study host-associated microbiomes at reasonable costs (Pereira-

Marques et al., 2019).  

 

Relevance and Future Directions 

 In total, this dissertation significantly contributes to the knowledge of marine 

host-associated microbiomes and their roles in coastal ecosystems. Oyster-associated 

microbiomes may not have different functions from the water microbial community, 

but likely amplify certain taxa and functions due to substrate and metabolite provision 

(Apprill, 2020). The functions of oyster microbiomes are dependent upon their 

environment; this may limit the ecosystem services provided, but contributes to the 

plasticity of the system. Oysters, and especially their diverse microbiomes, are 

resilient and will likely acclimate to changing environmental conditions. 

 The results of this dissertation prompt a multitude of questions that should be 

addressed in future studies to further understand oyster-associated microbial 

community dynamics. Many hypotheses were generated from Chapter 4, where 16S 

rRNA sequencing was used to determine the effect of probiotics on oyster hatchery 

microbiomes. We observed changes in the interactions between the Bacillus pumilus 

RI06-95 probiotic, Vibrio spp. pathogens, and Oceanospirillales symbionts. Targeted 

in vitro metagenomic and metatranscriptomic studies of this system would help to 

further elucidate these relationships and describe the probiotic effect on larval oysters. 
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Studies of Vibrio infections have shown that a population of multiple Vibrio 

species/strains are responsible for oyster infections (Lemire et al., 2015). Functional 

analysis of this system, especially sampled through a disease outbreak, would help to 

characterize the etiology of these infections.  

 We are just beginning to understand how host-associated microbiomes respond to 

environmental conditions and how these functions may impact coastal ecosystem 

services. The results of Chapters 2 and 3 provide a basis for how oyster-associated 

microbiomes exhibit plastic responses to environmental conditions. Future host-

depleted metagenomic studies or targeted qPCR of relevant genes would determine if 

functional redundancy is driving this plasticity. Furthermore, mesocosm experiments 

where pH, dissolved oxygen, and nutrient concentrations are manipulated will confirm 

the model proposed in Chapter 2. Throughout this dissertation, we discuss whether the 

observed taxa in the oyster microbiome are transient food filtered by the oyster or 

symbionts that are thriving in the oyster. This distinction would determine the role and 

importance of each taxa in the oyster microbiome. Increased observations of 

Cyanobacteria in 16S rRNA amplicon data are common in oyster microbiome studies, 

but are often discounted as “transient food” or artifacts deriving from microalgal feed. 

Depuration of oysters or controlled experiments with a known microalgal feed 

microbiome would allow us to determine which microbes are transient, versus those 

that are symbionts (Lee et al., 2008).  

 The scope of this dissertation was limited to one oyster species in a single estuary 

at discrete timepoints. Future studies should confirm our observations in additional 

oyster species, bivalves, and other coastal keystone organisms. There is inherent 
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variability in environmental studies that we are not yet able to explain, especially in 

studies of microbial communities. We believe that this variability is systematic, and 

will be elucidated in the future by new discoveries and more accurate methods. 

Increased sample sizes over broader spatial scales and timepoints would help constrain 

the dynamics of oyster-associated microbiomes, and enable understanding of their 

contributions to coastal ecosystems. 
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Figures and Tables 

 

Figure V-1. Map of dissertation study area with experimental sites. 

 



 

 

2
2
6

 

 

Figure V-2. Heatmap showing percentile value of environmental parameters at each site.  

A yellow tile indicates the site where the highest value was observed and black indicates the site where the lowest values was 

observed. Nutrient concentrations were measured from filtered water collected at each site. All other values were input as average 

measurements collected in situ during sampling. 
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Figure V-3. Percent abundance of the top 20 most abundant phyla per oyster gut sample at each site using 16S rRNA amplicon 

data. 

The total number of quality-controlled sequencing reads is shown in the top bar plot. 
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Figure V-4. Percent abundance of the top 40 most abundant orders per oyster gut sample at each site using 16S rRNA 

amplicon data. 
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Figure V-5. PCA plot showing correlations between environmental parameters, qPCR Dermo levels, bacterial diversity and 

16S rRNA amplicon data by Phylum across sites.  

Each oyster (n=43) is represented by a symbol. Environmental parameters are shown with red arrows, qPCR Dermo concentration 

data is shown with a purple arrow, 16S phylas are shown with black arrows, and bacterial diversity (Simpson’s Index) is shown with a 

blue arrow. 
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Figure V-6. Relative percent abundance of the 30 most abundant phyla per oyster, larvae, biofilm, and seawater sample at 

each site (or Trial) using 16S rRNA amplicon data. 

The site and/or hatchery trial number is indicated with a color and number, as denoted in the legend.  
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Figure V-7. Averaged relative percent abundance of the 30 most abundant phyla per sampling timepoint, treatment, site/trial, 

and sample type using 16S rRNA amplicon data. 

The number of samples averaged per bar is indicated at the bottom of the bar plot (n=X). The site and/or hatchery trial number is 

indicated with a color and number, as denoted in the legend.  



 

 

2
3
2

 

 

Figure V-8. PCA plot showing correlations for 16S rRNA amplicon data by Phylum across averaged sites, sample types, and 

treatment.  

(A) PCA axes 1 and 2. (B) PCA axes 3 and 4. Each averaged sample group (n=1-9, see Figure V-7) is represented by a colored 

symbol. Points outlined in black were nutrient enriched or probiotic treated samples. 16S phylas are shown with black arrows.  
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Table V-1. Summary of all sites surveyed in this dissertation.  

Environmental conditions and nutrient concentrations measured are shown. The ambient measurements are shown for 5.PJN & 6.PJS. 

 

Site 0.RWU 1.PVD 2.GB 3.BIS 4.NAR 5.PJN 6.PJS 7.NIN 
Full Name Roger 

Williams 

University 

Providence 

River: Bold 

Point Park 

Greenwich 

Bay 

Bissel 

Cove 

Narrow 

River 

Point Judith 

N: Billington 

Cove 

Point Judith 

S: Bluff Hill 

Cove 

Ninigret 

Pond 

Location  

(GPS coordinates) 

41.65,  

-71.26 

41.82, 

-71.39 

41.65, 

-71.45 

41.55, 

-71.43 

41.51, 

-71.45 

41.42, 

-71.50 

41.39, 

-71.51 

41.36, 

-71.69 

Dissertation Ch. 2 3 3 3 3 4 4 3 

Type of Oysters 
Hatchery 

larval 

Wild adult Wild adult Wild adult Wild adult Farmed 

adult 

Farmed 

adult 

Farmed 

adult 

Sampling date(s) 

July 2012 

Jan 2013 

June 2016 

Aug 2017 Aug 2017 Aug 2017 Aug 2017 
Jun-Aug 

2017 

Jun-Aug 

2017 
Aug 2017 

Salinity (psu) 28 24.8±2.1 28.5±0.2 30.5±0.1 18.0±0.4 32.4±0.9 31.7±1.1 28.9±0.9 

Temperature (°C) 21-23 23.0±0.8 24.3±1.3 22.7±1.5 25.4±0.3 24.6±1.0 22.3±1.4 23.3±1.6 

Dissolved oxygen 

(mg/L) 
 4.9±1.5 5.7±3.1 8.2±1.0 7.0±1.9 5.5±1.9 7.1±1.7 9.5±3.5 

pH  7.4±0.0 7.4±0.2 7.9±0.0 7.6±0.2 6.9±0.0  8.2±0.0 

Chlorophyll-a 

(μg/L) 
 8.1±4.0 18.8±7.5 4.9±2.8 4.6±1.3 24.0±20 7.6±42 3.8±0.4 

Ammonium (μM)  7.6±0.1 5.6±0.9 45.8±0.8 1.6±1.1 37.6±6.0 22.5±5.9 13.9±0.1 

Nitrite (μM)  0.7±0.0 0.0±0.0 0.1±0.2 0.0±0.0 0.09±0.03 0.09±0.02 0.0±0.0 

Nitrate (μM)  9.7±0.1 1.9±0.2 2.1±0.3 2.3±0.1 0.7±0.2 0.3±0.3 0.9±0.1 

Phosphate (μM)  3.7±0.1 1.6±0.1 0.7±0.1 0.1±0.0   0.2±0.0 
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Appendix A: Health Status of Oysters in Narragansett Bay 

In addition to the microbial communities, we also assessed the disease levels and 

overall oyster health using histology and qPCR at each site. We hypothesized that the 

environmental gradient in Narragansett Bay will cause differential responses in oyster 

health and disease levels. 

 

Methods 

Sample Collection and Processing 

A total of 150 oysters were collected from 5 sites (30 per site) and processed on 

the day of collection (Figure 1). Ten oysters per site were randomly selected for 

histological analysis of tissue health, inspection for pathogen presence and prevalence, 

and assessment of their reproductive status. Cross-sectional tissue samples were 

collected from these 10 oysters and preserved in 10% formalin for 24 hours, after 

which they were transferred to 70% ethanol until processing. Gill, mantle, and rectum 

tissues from all 30 oysters per site were preserved in 100% ethanol for pathogen 

detection through qPCR, and stored at -80 °C until DNA extractions. 

Histological Analysis 

Ten tissue samples for each site (50 total) were embedded in paraffin on 

microscope slides and subsequently stained with hematoxylin and eosin (H&E) 

according to standard procedures by Mass Histology Service, Worcester, MA (Luna, 

1992). The resulting 50 slides were analyzed on qualitative scales for tissue atrophy 

and necrosis levels, pathogen detection, sex, and maturity using the standard NOAA 

rankings (Kim et al., 2006).  
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Tissue DNA Extraction and Disease qPCR 

Total DNA was extracted from 30 mg of preserved gill, mantle, and rectum 

tissues (n=30 per site; 150 total) using the Qiagen DNeasy Blood and Tissue kit with 

the following modifications. After the addition of Buffer ATL and proteinase K, the 

tissues were lysed overnight at 56 °C, then vortexed for 15 seconds. An RNA 

digestion was performed according to protocol recommendations, and two final 

elutions were done using 100 μL of Buffer AE each. Following extraction, DNA 

concentrations were quantified with a Nanodrop 2000 instrument and quality was 

confirmed using gel electrophoresis. Each sample was then normalized to 10 ng/μL for 

downstream analysis.  

A standardized qPCR analysis of infection levels of Perkinsus marinus, the 

causative agent of Dermo disease, was performed in duplicate with 100 ng of purified 

oyster DNA according to the method described in De Faveri et al. (2009). Levels of 

amplification were compared to a standard curve of DNA extracted from known 

amounts (101-107) of P. marinus cells from laboratory cultures (the limit of detection 

is 10 P. marinus cells). Concentrations were then converted to disease intensity per 

oyster following the Mackin Index (0 for no infection – 5 for heavy infections), and 

also disease weighted prevalence per site based on both intensity and prevalence. 

Histology and P. marinus infection results were analyzed using R and RStudio to 

determine within- and between-site variability in oyster tissue health, and correlations 

with environmental parameters. 
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Results and Discussion 

A summary of histological and disease measurements collected and their 

correlation with the trophic gradient is in Table 1. Histological analysis showed 

evidence of widespread digestive tissue atrophy, necrosis, and perivascular 

inflammation at all sites (Figure 2). In general, the gonadal status, and therefore 

maturity, of the oysters decreased down the Bay (Figure 2). Standardized qPCR 

analysis of P. marinus revealed that more than 83% of the oysters from populations in 

1.PVD, 3.BIS, and 4.NAR scored positive for P. marinus infection (Figure 3). 3.BIS 

oysters showed the highest prevalence of Dermo (97%), including 3 highly infected 

oysters by P. marinus. The 2.GB population had no infected oysters, and the 5.NIN 

oysters had only 23% disease prevalence. Examined histology slides showed increased 

atrophy of digestive diverticula and various degraded connective tissue at the more 

Northern sites (Figure 2). Analysis also showed residual phagolysosomes, indicative 

of ongoing intracellular pathogen destruction. 

A PCA analysis of P. marinus infection levels as determined by qPCR and 

histological indices, combined with the environmental parameters measured at each 

site, revealed correlations between the environment parameters and health status 

(Figure 4). Factors positively correlated with P. marinus infection included salinity 

and ammonium, while temperature was negatively correlated with P. marinus 

infection. The phenotype and histology samples from 1.PVD and 2.GB were 

associated with the highest levels of nitrate, nitrite, and phosphate, confirming these 

northernmost sites as the most eutrophic. The southernmost site (5.NIN) had the 

highest dissolved oxygen and pH values.  



 

237 

Our results showed that the environment influenced oyster health along the 

eutrophication gradient. 4.NAR and 5.NIN had the Southern “healthier” 

environmental ecotype: higher pH and increased DO. 1.PVD, 2.GB, 3.BIS had the 

Northern “unhealthy” environmental ecotype: high nutrient levels, tissue atrophy and 

necrosis, and high disease levels. Our hypothesis that Dermo would be more prevalent 

at more eutrophic sites (1.PVD and 2.GB) was proven incorrect. Instead, there are 

likely other environmental factors, as well as a genetic component of the oyster host, 

that have more of an impact on P. marinus infections and their associated microbial 

communities (Pierce et al., 2016; Trabal Fernández et al., 2014). The influence of the 

environment on organism health is consistent with previous studies (Widdows et al., 

1981), where a negative influence of eutrophication on tissue health, inflammation 

was observed. 
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Figures and Tables 

 

Figure 1. Map of study area with 5 sampling locations. A schematic of the tissue 

samples collected from each oyster is shown in the bottom right. 
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Figure 2. Summary of all histological parameters observed in the oysters from each site (n=10). Qualitative classification using a 

0-3 severity scale indicated differences in oyster health status between sites. Gonadal Status was determined using rankings from 1-8, 

observing stages of maturity. Sex was also recorded for each oyster with N/A being sexually nondifferentiable. 
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Figure 3. Percent prevalence of different stages of severity of Perkinsus marinus infection (causative agent of Dermo disease) at 

the 5 sites based on qPCR data (n=30). High levels of infection correspond to >1E5 P. marinus cells, medium levels of infection range 

from 1E5 to 1E4 cells, low 1E4 to 1E1 cells, and no detection <10 cells. 
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Figure 4. PCA of environmental and oyster health factors, averaged per site. Each 

site is represented by a colored symbol and each environmental condition is 

represented with an arrow. Green arrows indicate average environmental values 

measured in situ during the sampling week (n=2); light blue arrows are nutrient 

concentrations measured from water samples (n=3); dark blue arrows are oyster 

measurements collected after sampling (n=30); the orange arrow is qPCR-measured 

Dermo levels (n=30); purple arrows are histological indices observed from oyster 

tissues (n=10).  
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Table 1. Summary of all health-related parameters collected per site. Histological indices are rated on a scale from 0-3, with the 

exception of gonadal status, which is rated from 0-8. Spearman’s correlation coefficient (-1 to 1) was calculated for the association 

between each parameter and Latitude. A value closer to 1 indicates that the parameter decreases from North-South (1.PVD to 5.NIN) 

and a value closer to -1 indicates that the parameter increases from North-South. A correlation coefficient of 0 means there is no linear 

association and that the value does not consistently change along the estuarine gradient.  

 

 

 
1.PVD 2.GB 3.BIS 4.NAR 5.NIN 

Spearman’s 

Coefficient 

Location (GPS coordinates) 
41.816,  

-71.391 

41.654,  

-71.445 

41.545,  

-71.431 

41.505,  

-71.453 

41.358, 

 -71.689 
1 

Dermo infections (n=30)       

qPCR-detected P. marinus 

cells/oyster 

1976.0 

±5736.8 

0.0 

±0.0 

66619.7 

±230326.9 

9416.0 

±26784.8 

2924.4 

±10895.7 
-0.5 

Histological Analysis (n=10)       

Digestive Diverticula Atrophy 0.7±0.8 2.1±0.9 1.1±1.1 1.7±1.1 0.2±0.4 0.4 

Gonadal Status 5.3±2.1 3.7±2.2 3.0±2.1 2.3±1.9 5.0±3.2 0.3 

Necrosis 0.3±0.5 0.4±0.5 0.4±0.7 0.1±0.3 0.3±0.5 0.3 

Perivascular Inflammation 0.9±0.7 1.1±0.9 1.2±1.0 0.6±0.7 0.7±0.5 0.5 

Percent Females 60% 40% 50% 60% 70% -0.6 
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Appendix B: Metatranscriptomic Analysis of Oyster Tissues 

The analysis presented in Chapter 4 focused on the effect of nutrient enrichment 

on oyster microbiomes and nitrogen metabolism. Here, we also explored the effect of 

sample type on overall microbial function in oyster microbiomes to better understand 

how each microenvironment shapes the microbial response.  

 

Methods 

Samples were collected, processed, and sequenced as described in Chapter 4. All 

gut, inner shell, and outer shell metatranscriptomic samples were combined per type 

for this analysis, regardless of field site or nutrient enrichment. Differential expression 

and relative normalized read counts per sample were calculated using DeSeq2 (Love 

et al., 2014; Zhu et al., 2019). The expression of each group (n=12) was compared to 

the average of the other groups to calculate relative log fold changes in expression per 

sample type. 

 

Results 

The most significant differentially expressed pathways were observed in the gut 

samples (Figure 1). Relative to the other samples, the gut samples significantly 

upregulated genes involved in respiration, membrane transport, DNA metabolism, 

dormancy and sporulation, phages and transposable elements, and photosynthesis 

(Benjamini-Hochberg adjusted p<0.05; Figure 5B). Genes involved in carbohydrates 

and virulence pathways were significantly downregulated in the gut samples (adjusted 

p<0.05). The inner shell samples significantly upregulated fatty acid, lipids, and 
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isoprenoid pathways, and phages and transposable element pathways (adjusted 

p<0.05; Figure 5B). In the outer shell, motility and chemotaxis was downregulated, 

while sulfur metabolism, DNA metabolism virulence and iron acquisition were 

upregulated (adjusted p<0.05; Figure 5B). These differences in expression patterns per 

sample type indicate that the oyster microenvironment may limit which functions are 

suitable, which may further select for colonization by certain microbes. 
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Figures 

 

 

 
 

Figure 1. Differential Expression of All Pathways in each Sample, per Type. (A) 

Heatmap of regularized log counts per pathways in each metatranscriptome sample. 

The type, site, and treatment of each sample is indicated by colors along the top of the 

heatmap. (B) Log fold change of each pathway per sample type, relative to the mean 

of the others. Red indicates upregulation and blue indicates downregulation. The size 

of the point is relative to the magnitude of the fold change and points outlined in black 

are significantly differentially expressed. 
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