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ABSTRACT 

Circadian rhythms ensure physiological processes to be coordinated with daily changes 

of the surrounding.  Circadian rhythm misalignment has been increasingly recognized 

to pose health risk for a wide range of diseases, particularly metabolic disorders.  The 

liver maintains metabolic homeostasis and express many circadian genes, such as the 

genes encoding differentiated embryo chondrocyte-1 (DEC1) and small heterodimer 

partner (SHP).  DEC1 is established to repress transcription through class B E-box 

elements, and SHP belongs to the superfamily of nuclear receptors and has multiple E-

box elements in its promoter.  Importantly, DEC1 and SHP are expressed in an inverse 

oscillating manner.  The present study was performed to test the hypothesis that the SHP 

gene is a target gene of DEC1.  In cotransfection experiments, we have demonstrated 

that DEC1 repressed the SHP promoter and attenuated the transactivation of the classic 

circadian activator complex of Clock/Bmal1.  Site-directed mutagenesis, 

electrophoretic mobility shift assay and chromatin immunoprecipitation established that 

the repression was achieved through the E-box in the proximal promoter.  

Overexpression of DEC1 led to decreased expression of SHP.  In horse serum-shocked 

cells (induction of circadian rhythms), the widely used epileptic agent valproate 

inversely altered the expression of DEC1 and SHP.  Both DEC1 and SHP are involved 

in energy balance and valproate is known to induce hepatic steatosis.  Our findings 

collectively establish that DEC1 constitutes the negative loop of the SHP oscillating 

expression and that the DEC1-SHP pathway is intimately involved in energy 

homeostasis with profound pathophysiologic significance.     
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PREFACE 

  

The following manuscript has been formatted for publication in the Journal of 

Biological Chemistry. It will be submitted for publication in the coming months. 
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ABSTRACT 

Circadian rhythms ensure physiological processes to be coordinated with daily 

changes of the surrounding.  Circadian rhythm misalignment has been increasingly 

recognized to pose health risk for a wide range of diseases, particularly metabolic 

disorders.  The liver maintains metabolic homeostasis and express many circadian 

genes, such as the genes encoding differentiated embryo chondrocyte-1 (DEC1) and 

small heterodimer partner (SHP).  DEC1 is established to repress transcription through 

class B E-box elements, and SHP belongs to the superfamily of nuclear receptors and 

has multiple E-box elements in its promoter.  Importantly, DEC1 and SHP are 

expressed in an inverse oscillating manner.  The present study was performed to test 

the hypothesis that the SHP gene is a target gene of DEC1.  In cotransfection 

experiments, we have demonstrated that DEC1 repressed the SHP promoter and 

attenuated the transactivation of the classic circadian activator complex of 

Clock/Bmal1.  Site-directed mutagenesis, electrophoretic mobility shift assay and 

chromatin immunoprecipitation established that the repression was achieved through 

the E-box in the proximal promoter.  Overexpression of DEC1 led to decreased 

expression of SHP.  In horse serum-shocked cells (induction of circadian rhythms), the 

widely used epileptic agent valproate inversely altered the expression of DEC1 and 

SHP.  Both DEC1 and SHP are involved in energy balance and valproate is known to 

induce hepatic steatosis.  Our findings collectively establish that DEC1 constitutes the 

negative loop of the SHP oscillating expression and that the DEC1-SHP pathway is 

intimately involved in energy homeostasis with profound pathophysiologic significance.     
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INTRODUCTION 

Circadian rhythms are physiological changes that follow a 24-h cycle [1].  These 

changes ensure physiological processes to be coordinated with daily fluctuations of the 

environment [1-3].  Circadian rhythm misalignment has been increasingly recognized 

to pose health risk for a wide range of diseases including obesity, diabetes, 

cardiovascular diseases and stroke [4-7].  Mammals have central and peripheral 

circadian clocks [8].  The central clock is located in the suprachiasmatic nucleus (SCN) 

of the hypothalamus and is entrained by such environmental cues as the light-dark 

cycle [9, 10].  Through the retinohypothalamic tract, the SCN receives photic input 

signals and generates rhythms, which subsequently synchronize multiple peripheral 

clocks through neural and humoral signaling [9-12].  While each organ has its own 

clock, the liver clock is the most studied peripheral clocks, particularly related to food 

cues [13-16].  

 

Circadian rhythms are controlled by a group of core clock genes such as Clock 

(circadian locomotor output cycles kaput) and Bmal1 (brain and muscle ARNT-like 1) 

[8, 17].   Clock and Bmal1 form a heterodimer and transactivate through E-Box 

elements the Per (Period-1 and 2) and Cry genes (Cryptochrome-1 and 2).  Per and 

Cry proteins in turn interact with Clock/Bmal1 and attenuate their own transactivation 

[5, 8, 17].  In addition to Clock/Bmal1, we and other investigators have demonstrated 

that DEC transcription factors, differentiated embryo chondrocyte-1 and 2, are strong 

E-box binding proteins [18-20].  However, binding to E-box by DEC transcription factors 

leads to efficacious repression of the target genes including Per1.  DEC1 and DEC2 
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are both central and peripheral oscillators [15].  In particular, DEC1 has been 

recognized to play fundamental roles in orchestrating metabolism and resetting the liver 

clock.  Indeed, DEC1 is one of the most sensitive genes in responding to food cues.  A 

30 min feeding significantly induces the hepatic expression of DEC1 [15].     

 

In addition to DEC1, there are several other well-characterized hepatic circadian genes 

such as the gene encoding small heterodimer partner gene (SHP) [5, 21, 22].  SHP 

has been established as a major regulator of diverse metabolic pathways, particularly 

in bile acid synthesis, lipid metabolism, glucose homeostasis and liver fibrogenesis 

[23].  Structurally, SHP belongs to the superfamily of nuclear receptors [23, 24].  

However, it lacks the DNA binding domain, thus is referred to as an atypical nuclear 

receptor.  SHP has been shown to interact with nuclear receptors and/or compete for 

co-factors (e.g., co-activators or co-repressor), delivering potent regulatory activities at 

the transcriptional level [23].  On the other hand, many nuclear receptors have been 

shown to support the induction of SHP in response to endobiotics such as bile acids.  

In addition to nuclear receptors, the circadian complex of Clock/Bmal1 is a potent 

transactivator of the SHP gene [23].  The transactivation is achieved through the 

element CACGTG, a special type of E-box recognized by DEC transcription factors 

[23].  In mice, the expression of DEC1 and SHP is inversely oscillating [25, 26]. 

 

The present study was performed to test the hypothesis that the SHP gene is a target 

of DEC1.  Cotransfection experiments showed that DEC1 efficaciously repressed the 

SHP promoter reporter and attenuated the transactivation of SHP by the Clock/Bmal1 

complex.  A set of molecular experiments including chromatin immunoprecipitation 

established that the repression was achieved through the E-box in the proximal 

promoter.  Overexpression of DEC1 led to decreased expression of SHP, and valproate 
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inversely altered the oscillating expression of DEC1 and SHP.  These findings 

collectively establish that DEC1 constitutes the negative loop of the SHP oscillating 

expression and that the DEC1-SHP pathway is involved in energy homeostasis with 

profound pathophysiologic significance.     

 

 

 

MATERIALS AND METHODS 

Plasmid 

Expression constructs of Bmal1 and Clock were gifts of Dr. Marina P Antoch of the 

Cleveland Clinic [27].  The Per1 promoter reporter (Per1-luc) was a gift of Dr. Joseph 

S. Takahashi of Northwestern University [28].  The SHP-2.2 Luc reporter was a gift of 

Dr. Hueng-Sik Choi of Keimyung University [29].  The 5’ deletion mutants of the SHP 

reporter were prepared by inserting a Nhe I-Hind III fragment into the pGL3 basic 

vector.  These fragments were generated by PCR with primers as described in Table 

I.  The SHP mutant reporter with a disrupted E-box (E1) was prepared with the same 

approach but the mutations were introduced in the forward primer (Table I).  The DEC1 

expression construct and its mutants (deletion or substitution) were described 

elsewhere [18, 30].  All constructs were subjected to sequencing analysis.  

 

Reporter activity and cotransfection  

Cotransfection was performed, essentially as described previously [31, 32].  Cells 

(293T) were plated in 24-well plates in DMEM media supplemented with 10% fetal 

bovine serum at a density of 1.6 x 105 cells per well.  Transfection was conducted by 

lipofection with Lipofectamine and Plus Reagents (Thermo Fisher Scientific, Waltham, 
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MA).  Generally, the transfection mixtures contained DEC1 (0-100 ng) or a 

corresponding mutant construct (100 ng), a reporter plasmid (50 ng) and the pRL-null 

Renilla plasmid (5 ng) unless otherwise specified.  Vector plasmid was used to equalize 

the amount of plasmid DNA for each transfection.  The transfected cells were cultured 

for additional 24 h, washed with PBS and resuspended in passive lysis buffer 

(Promega, Madison, WI).  The lysed cells were subjected to 2 cycles of 

freezing/thawing.  The reporter enzyme activities were assayed with a Dual-Luciferase 

Reporter Assay System (Promega).  This system contained two substrates, which were 

used to determine the activity of two luciferases sequentially.  The firefly luciferase 

activity, which represented the reporter gene activity, was initiated by mixing an aliquot 

of lysates (20 µl) with Luciferase Assay Reagent II.  Then the firefly luminescence was 

quenched and the Renilla luminescence was simultaneously activated by adding Stop 

& Glo Reagent to the sample wells.  The firefly luminescence signal was normalized 

based on the Renilla luminescence signal.   

 

Electrophoretic mobility shift assay (EMSA) 

DEC1 stably transfected cells with a tetracycline-inducible construct [33] were cultured 

in the presence or absence of tetracycline (0.1 µg/mL) for 24.  Cells were harvested 

and nuclear extracts were prepared with a nuclear extraction kit (Active Motif, Carlsbad, 

CA).  The EMSA experiment was performed with Lightshift Chemiluminescent EMSA 

Kit (Thermo Fisher Scientific, Waltham, MA) as described previously [34].  The sense 

strand for SHP-187/162 (E1) was synthesized as labeled or non-labeled form (for 

competition).  Nuclear protein (5 μg) was mixed with binding buffer and then incubated 

with a double-stranded biotinylated probe (0.1 pmol) on ice for 20 min.  In competition 

assays, nuclear extracts were first incubated with an unlabeled probe at a 50x excess 
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for 30 min before addition of the labeled probe.  For antibody-disruption assay, the 

nuclear extracts were first incubated with anti-DEC1 antibody on ice for 20 min and 

then with the labeled probe.  As a positive control, the EMSA experiment was 

performed with a DEC2 E-box containing probe [18].  The protein-DNA complexes were 

resolved by non-denaturing polyacrylamide gel electrophoresis (6%) and transferred 

onto a Biodyne® nylon membrane.  The biotinylated probe was detected with 

Chemiluminescent Nucleic Acid Detection Module Kit (Thermo Fisher Scientific, 

Waltham, MA).  The chemiluminescent signal was captured by myECL Imager (Thermo 

Fisher Scientific, Waltham, MA). 

 

Chromatin immunoprecipitation (ChIP)  

ChIP experiment was performed with Active Motif ChIP-IT Express kit, essentially 

described previously [31, 34].  HepG2 Cells were transfected with DEC1 (Flag-

tagged) by TransfeX (ATCC, Manassas, VA) for 24 h, washed and underwent 

cross-linking for 15 min by 1.0% formaldehyde at room temperature, and the 

cross-linking was terminated with glycine (final concentration of 125 mM).  The 

soluble chromatins were prepared as described previously [31, 34].  

Alternatively, DEC1 stably transfected cells were cultured in the presence of 

tetracycline (0.1 µg/ml) for 24 h and then processed as described for HepG2 cells.  

For ChIP experiment, chromatins were pre-cleared for 2 h at 4°C with protein G 

beads pre-treated with herring sperm DNA (0.2 mg/ml) and BSA (0.5 mg/ml).  A 

fraction of the pre-cleared chromatins was stored at -80°C for later use as an 

input.  The pre-cleared chromatins were incubated with anti-Flag antibody 

(HepG2) or anti-DEC1 (stably transfected cells) for overnight at 4°C.  As a 

negative control, incubation was performed with pre-immune IgG.  The antibody-

bound chromatins and DNA input as well as IgG control chromatins were 
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analyzed by PCR for the presence of the genomic fragments containing the E-

box of interest, other E-boxes (not repressed by DEC1) with primers shown in 

Table I.  The PCR was performed with Platinum Taq DNA polymerase for a total 

of 32 cycles at 94°°°°C for 30 s, 58°°°°C for 30 s and 68°°°°C for 60 s.  A 3-min initial 

denaturation was performed.  

 

Suppressed expression of SHP by DEC1  

HepG2 cells were seeded in 8-well chamber slides (2x104 cells/ well and cultured for 

24 h.  Cells were then transfected with Flag-DEC1 (500 ng) or the vector by TransfeX 

reagent.  The transfected cells were cultured for another 24 h and subsequently 

washed with ice cold PBS and then fixed with 4% Paraformaldehyde for 10 min at pH 

7.4.  Cells were washed 3 times with PBS and permeabilization solution (0.1% Triton 

X-100) was added for 10 min.  Chamber slides were incubated with 1% BSA (2mg/mL) 

for 1 h to block nonspecific binding.  The slides were incubated overnight with anti-SHP 

antibody (H-160, Santa Cruz Biotechnology, Dallas, TX) or anti-Flag antibody (M2, 

Sigma-Aldrich, St. Louis, MO) at a dilution of 1:200.  The anti-SHP antibody was located 

by Alexa Fluor® 488 conjugated goat anti-rabbit IgG (green), whereas the anti-Flag 

antibody with Alexa Fluor® 555 conjugated goat anti-mouse IgG (red).  Both secondary 

antibodies were purchased from Life Technologies (Carlsbad, CA).  The slides were 

then mounted with ProLong Gold Antifade Mountant (Thermo Fisher).  The mounting 

media contained 4',6-diamidino-2-phenylindole (DAPI) for staining nuclei (Blue).  Cells 

were then imaged using confocal microscope.  To provide more quantitative 

information, same experiments were performed in 6-well plates and the expression of 

SHP and DEC1 was determined by Western blotting. 
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Regulated expression of DEC1 and SHP by valproate in serum-shocked circadian 

induction  

HepG2 cells were seeded in 6- or 24-well plates at a density of 6x105 or 1.5x105 

cells/well in low glucose DMEM with 10% delipided FBS.  When the confluency reached 

75%, cells were shocked with media containing 50% horse serum for 2 h.  Thereafter, 

the shocked cells were cultured in normal media or the same media containing 

valproate at 2 mM.  Cells were harvested at 6 h interval.  The expression of DEC1 and 

SHP was determined by RT-qPCR with Taqman probes.  The TaqMan assay 

identification numbers were: DEC1: Hs00186419_m1; SHP: Hs00222677_m1; 

GAPDH, 4352934E; and RNA polymerase II, Hs00172187_m1.   

 

Other analyses  

The anti-DEC1 antibody against a peptide derived from the C-terminus was described 

elsewhere [33].  Protein concentration was determined with BCA assay (Pierce) with 

bovine serum albumin as the standard.  Data are presented as mean ± SD of at least 

four separate experiments, except where results of blots are shown in which case a 

representative experiment is depicted in the figures.  Statistical significance between 2 

means was made according to 1-way ANOVA followed by a DUNCAN’s multiple 

comparison test (P < 0.05). 

 

 

RESULTS 

Repression of the SHP promoter by DEC1  

DEC1 and SHP are established to play critical roles in a wide range of biological 

activities including metabolic homeostasis [23, 35, 36].  Both DEC1 and SHP are 
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circadian genes and their expression is inversely rhythmed [25, 26].  We have shown 

that DEC1 is a sequence-specific transcription factor that acts on Sp1 site as well as a 

specific type of E-box: CACAGT [30, 37].  The SHP promoter and its immediate 

upstream sequence contain multiple E-boxes including a CACATG.  We therefore 

hypothesized that DEC1 transcriptionally regulates the expression of SHP.  To test this 

hypothesis, we first examined whether DEC1 represses the SHP promoter.  

Specifically, cotransfection experiments were performed with an SHP promoter 

luciferase reporter in in 293T cells.  For comparison, a Per1 reporter was included.  We 

and other investigators have demonstrated that Per 1 is a circadian gene and 

negatively regulated by DEC1 [18, 30].  

 

As shown in Fig. 1, DEC1 repressed both SHP and Per1 reporters and the repression 

occurred in a dose-dependent manner.  The repression was robust by as much as 90%.  

Nevertheless, the SHP reporter was repressed to a greater extent than the Per1 

reporter by 10-15% depending on the amount of DEC1 construct used for the 

transfection (Fig. 1A).  We next tested whether DEC1 attenuates Clock/Bmal1-

transactivation of the SHP and Per1 promoters, as the Clock/Bmal1 heterodimer has 

been shown to regulate both DEC1 and SHP in a circadian manner [23, 30].  Once 

again, cotransfection was performed.  As shown in Fig. 1B, Clock/Bmal1 strongly 

transactivated both the SHP and Per1 reporters with the Per1 reporter being 

transactivated to a greater extent (7 versus 12 fold) (Fig. 1B).  However, the 

transactivation of the SHP reporter was attenuated to a much greater extent than that 

of the Per1 reporter by DEC1.  For example, DEC1 at 10 ng attenuated the 

Clock/Bmal1 transactivation of the SHP reporter by 97%.  In contrast, the Clock/Bmal1 

transactivation of the Per1 reporter was attenuated by 55% only with the same amount 
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of DEC1.  We next tested whether the repression of the SHP promoter requires DNA 

binding.  As shown in Fig. 1C, no repression was detected with all constructs except 

DEC1 (wild-type) and DEC1P56A.  We have previously shown that substitution of the 

residue proline-56 with an alanine remained the ability for DEC1 to bind to E-box and 

deliver repressive activity [18, 30].  In contrast, substitution of the residue arginine-58 

with a proline no longer bound to E-box element.  These results conclude that DEC1 is 

a transcriptional repressor of SHP.      

 

Repression of the SHP promoter by DEC1 through the E-box in the proximal 

promoter  

The proximal promoter of SHP is an E-box rich region and has as many as 7 E-box 

elements [29].  However, these elements differ slightly with 2 of them being CACCTG, 

and 1 of the following: CACTTG, CATCTG, CAGCTG, CAGGTG and CACGTG.  To 

specify whether one or more of these elements support DEC1 repression, deletion and 

site-directed mutants of the SHP reporter were prepared and tested for the 

responsiveness to DEC1.  Once again, DEC1 stably transfected cells were cultured in 

the presence or absence of tetracycline and then transfected with a reporter.  As shown 

in Fig. 2A, all deletion SHP reporters were repressed except SHP-116Luc, suggesting 

that the E-box (E1: CACGTG) in the SHP-191Luc reporter supported the repression. 

To specify the role of this E-box in DEC1 repression, reporter SHP-191Luc was 

subjected to site-directed mutagenesis to selectively disrupt the E-box (CACGTG to 

AACGGG). As shown in Fig. 2A, disruption of this E-box completely attenuated DEC1-

mediated repression of the SHP promoter.   
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We next tested whether this E-box interacted directly with DEC1.  The DEC1-stable 

line was cultured in the presence or absence of tetracycline, and nuclear extracts were 

prepared. Double-stranded oligonucleotides harboring this E-box were synthesized 

and biotinylated.  The labeled probe was incubated with the nuclear extracts and 

analyzed by EMSA.  As shown in Fig. 2B, incubation with the extracts from the cells 

cultured in the presence of tetracycline yielded a shifted band.  This band was not 

detected when incubation was performed with the extracts from the cell cultured without 

tetracycline (lane 11). The shifted band was competed completely by 50× un-

biotinylated oligonucleotide (lane 5).  A mutant of this oligonucleotide or 

oligonucleotides corresponding to other E-box elements showed no competitive activity 

(Fig. 2B, lanes 6-10).  In addition, the shifted band disappeared by anti-DEC1 antibody 

(disrupted binding).  As expected, a shifted band was detected with biotinylated 

oligonucleotide harboring an E-box derived from the DEC2 promoter [18].  In contrast 

to the disrupted binding with the SHP E-box (E1), the anti-DEC1 antibody caused the 

formation of a supershifted band (Right of Fig. 2B). 

 

To determine whether DEC1 occupies the SHP promoter region that harbors this E-

box (i.e., E1), ChIP experiment was performed.  To gain specificity, primers were 

designed to amplify three fragments: the binding E-box (BE) fragment (E1 E-box); the 

other E-box (OE) fragment (other E-boxes but not binding) and the non E-box (NE) 

fragment (no E-box).  As shown in Fig. 2C, chipped DNA showed the abundant 

presence of the BE-box fragment (labeled as lane 1) but not the other fragments.  As 

expected, input DNA produced amplification of all three fragments (Right of Fig. 2C).  

It should be noted that pre-immune IgG was used as a control but did not enrich any 

fragments.  The ChIP experiment was performed with HepG2 cells transfected with 
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DEC1 (Flag-tagged) and DEC1 stably transfected cells.  Same observation was made 

with both cells. 
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Effect of DEC1 on the expression of SHP 

The reporter assay, EMSA and ChIP experiments established that DEC1 is a 

transcriptional repressor of SHP.  Next we tested whether DEC1 suppressed the 

expression of endogenous SHP.  To test this possibility, HepG2 cells were 

transfected with DEC1 (Flag-tagged) or the corresponding vector, and the 

expression of SHP was determined.  Both Western blotting and immunocyto-

chemistry were used to determine the changes of SHP expression.  As expected, 

transfection of DEC1 increased immunodetection of DEC1.  Importantly, 

transfection of DEC1 decreased the expression of SHP (Right of Fig. 3A).  The 

suppressed expression of SHP by DEC1 was confirmed by 

immunocytochemistry (Fig. 3A).  Overall, transfection of DEC1 led to abundant 

Texas-Red staining (DEC1) accompanied by decreased FITC staining (SHP).  

Based on the overlay with DAPI staining (blue), both DEC1 and SHP are primarily 

present in the nuclei.  It should be noted that the transfection was performed with 

TransfeX reagent, which delivered high transfection efficiency.   

 

To complement the transfection study, we next tested whether SHP and DEC1 

are inversely regulated for their oscillating expression by valproate, a widely 

used antiepileptic that was established to down-regulate SHP [38].  Importantly, 

valproate is a steatotic agent and both DEC1 and SHP are metabolic regulators.  

To mimic circadian rhythm, HepG2 cells were shocked by horse-serum and then 

treated with valproate.  Cells were collected starting at 6 h after serum-shock and 

then at a 6 h interval.  Total RNA was isolated and analyzed for the expression of 

SHP and DEC1.  Both genes were expressed in a circadian manner and the 

patterns of the expression were inversed between these two genes (Fig. 3B).    
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DISCUSSION 

Normal circadian rhythms ensure physiological processes to be coordinated with daily 

changes of the environment [1-3].  Circadian rhythm misalignment has been 

increasingly recognized to pose health risk for a wide range of diseases [4-7].  The 

DEC1 and SHP genes are members of the liver clock and have been shown to play 

critical roles in metabolic homeostasis [5, 23, 35, 36].  In this study, we have shown 

that the SHP gene is a target of DEC1.  DEC1 efficaciously repressed the SHP 

promoter reporter and attenuated the transactivation of SHP by the Clock/Bmal1 

complex.  Site-directed mutagenesis, EMSA and ChIP identified the E-box element in 

the SHP proximal promoter that supported the repression.  Overexpression of DEC1 

led to decreased expression of SHP.  In horse serum-shocked cells (induction of 

circadian rhythms), the steatotic drug valproate inversely altered the oscillating 

expression of DEC1 and SHP.    

 

These findings establish that DEC1 constitutes the negative loop of the SHP oscillating 

expression.  It has been reported that the SHP gene is a target of the heterodimer 

Clock/Bmal1, a circadian activator complex.  The Clock/Bmal1 and Per/Cry pairs are 
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well-established pairs that generate clock outputs by the transcriptional/translational 

feedback loop [5].  The Clock/Bmal1 dimer transactivates the Per and Cry genes 

through E-box elements, and the Per/Cry interacts with Clock/Bmal1 and attenuates 

the Clock/Bmal1 transactivation of Per/Cry.  In this study, we have shown that DEC1 

repressed the SHP promoter through the same E-box transactivated by the 

Clock/Bmal1 dimer, suggesting that DEC1 and Clock/Bmal1 form the transcriptional 

feedback loop for the oscillating expression of SHP (Figs. 1A and B).  Consistent with 

the notion, the expression of DEC1 and SHP is inversely oscillating [25, 26]. 

    

It remains to be determined whether the Per/Cry proteins negatively regulate the 

expression of SHP.  Nonetheless, it is likely that DEC1 exerts a dominant repression, 

particularly on the oscillating expression of SHP.  In this study, we have shown that 

DEC1 repressed both the SHP promoter and the Per1 promoter with the SHP promoter 

being repressed to a greater extent (Fig. 1A).  Importantly, DEC1 at 10 ng attenuated 

the Clock/Bmal1 transactivation of the SHP promoter by as much as 97% but only 55% 

on the transactivation of the Per1 promoter (Fig. 1B).  In both cases, DEC1 exerted 

repressive activity by binding to E-box CACGTG.  The SHP E-box is flanked by GTGC 

(5’) and GGGT (3’), respectively, whereas the Per1 by TAGC and ACAG, respectively.  

It remains to be determined whether the differences in flanking sequences contribute 

to the differences in response to DEC1 repression.  An early study demonstrated that 

the flanking sequences were important for interacting affinity with stra13, the mouse 

counterpart of DEC1 [26].  In this study, we have also shown that the antibody against 

DEC1 disrupted the shifted band with the SHP E-box (Fig. 2B).  In contrast, we have 

shown that the same antibody caused a supershift of the DEC2 E-box and the Per1 E-

box [19, 30]. 
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The DEC1-SHP pathway likely plays critical roles in the synthesis of bile acids, 

particularly the circadian production of these endobiotics.  While there are several 

pathways that have been shown to regulate the synthesis of bile acids, the pathway 

mediated by SHP and FXR (farnesoid X receptor) has been extensively studied for the 

bile acid–activated regulatory cascade [5, 23].  This cascade is commonly referred as 

the bile acid negative feedback inhibition on the expression of the cytochrome P450 

enzyme cholesterol 7α-hydroxylase (CYP7A1).  CYP7A1 is the first and rate-limited 

enzyme in bile acid synthesis.  Increased production of bile acids activates FXR, 

leading to the induction of SHP.  Induction of SHP inactivates LRH-1 (liver receptor 

homolog-1) and HNF4α (hepatocyte nuclear factor 4α).  In this study, we have shown 

that DEC1 downregulated SHP, thus counteracting the feedback inhibition.  

Interestingly, the transcription factor DEC2 (functionally related to DEC1) reportedly 

repressed the expression of rat CYP7A1 through an E-box: CACATG [39].  This E-box 

is conserved in human and mouse based on a BLAST search.  It remains whether 

DEC1 binds to this E-box and causes repression.  Nevertheless, we have reported that 

DEC1 negatively regulated the expression of DEC2.  It is likely that DEC1 de-represses 

CYP7A1 by downregulating SHP and DEC2. 

 

The DEC1-SHP pathway likely serves as an important mechanism for lipid metabolism.  

Although there are exceptions, SHP is generally considered to be lipogenic whereas 

DEC1 is anti-lipogenic.  SHP reportedly augmented the transactivation by PPARγ 

(peroxisome proliferator-activated receptor-γ), leading to marked lipid accumulation in 

the liver [7].  Likewise, transgenic expression of SHP induced liver steatosis [41].  

Consistent with these observations, SHP null mice were protected against diet-induced 
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obesity.  DEC1, on the other hand, has been shown to repress lipogenic genes such 

as fatty acid synthase and inhibit adipogenesis [42, 43].  Overexpression of DEC1 by 

viral transduction alleviated fatty liver phenotypes accompanied by suppressed 

expression of the lipogenic gene Srebp-1c (sterol regulatory element-binding protein -

1c) [35].  Interestingly, SHP null mice supported higher induction of Srebp-1c in 

response to cholic acid treatment, suggesting that SHP is a repressor of Srebp-1c [44].  

It is not clear whether the observed repression has a broad implication.   

 

The DEC1-SHP pathway may have profound significance in carbohydrate 

homeostasis.  Patients with type 2 diabetes had higher frequency of loss-of-function 

SHP mutants than those without type 2 diabetes (61.5 versus 28.1%) [45].  In addition, 

SHP mutation carriers had significantly higher fasting plasma insulin levels than non-

carriers [45].  In mice, knockout of SHP developed hepatic insulin resistance [46], and 

the antidiabetic metformin ameliorated cytokine-induced hepatic insulin resistance by 

inducing SHP [47].  These observations suggest that SHP positively regulates glucose 

homeostasis.  In contrast, high glucose and high insulin significantly induced DEC1 [48, 

49].  The induction of DEC1 was inhibited by LY294002, a strong inhibitor of 

phosphoinositide 3-kinases.  Importantly, DEC1 protein and the activity of AMPK (5’ 

AMP-activated protein kinase) showed an inverse circadian rhythm, and knockdown of 

DEC1 expression increased AMPK activity [50].  AMPK is known to regulate glucose 

homeostasis and prevent insulin resistance [51].   

 

In summary, SHP belongs to the superfamily of nuclear receptors and has been 

established to exert a wide range of biological activities, particularly related to metabolic 

homeostasis.  Many nuclear receptors and other transcription factors reportedly 
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support the induction of SHP.  On the other hand, the SHP gene is transactivated by 

the circadian complex of Clock/Bmal1.  However, the negative loop of SHP oscillating 

expression remains unknown.  In this study, we report that DEC1 repressed the SHP 

promoter and the repression was achieved through the E-box element in the proximal 

promoter region.  We have also demonstrated that transfection of DEC1 led to 

decreased expression of SHP.  In horse serum-shocked cells, the epileptic agent 

valproate (a steatotic drug) inversely altered the expression of DEC1 and SHP.  Our 

findings collectively establish that DEC1 constitutes the negative loop of the SHP 

oscillating expression.    Emerging evidence suggests that alterations on circadian 

systems are important risk factors for disease initiation and progression, and the 

expression of DEC1 and SHP is rapidly altered by many endobiotics and xenobiotics.  

Therefore, de-regulated expression of DEC1 and SHP genes likely alters normal 

circadian rhythms and contributes significantly to the pathogenesis of many diseases, 

particularly metabolic disorders.   
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Table I. Sequences of oligonucleotides 

 
Oligonucleotide    Sequence 
 
Native promoter reporters [numbered according to Kim et al., J. Biol. Chem. (2004), 
279:28122-31] 
SHP-572 NheI    5’-TCCTAGACTGGACAGTGGG-3’   
SHP-240 NheI    5’-GTGAGCGGCAGGTGGCCCT-3’ 
SHP-190 NheI    5’-GTGATATCAGTGCCACGT-3’ 
SHP-117 NheI    5’-TGTCTGTGTGTTTTTTTCA-3’ 
SHP-190m NheI   5’-
GTGATATCAGTGCAACGGGGGGTTCCCAATGCC-3’ 
SHP+30 HindIII   5’-GGTTAGGGATCTGCTCTC-3’ 
 
EMSA 
SHP-187/162 (E1)        5’-ATATCAGTGCCACGTGGGGTTCCCAA-3’ 
SHP-242/217 (E2)        5’-GAGTGAGCGGCAGGTGGCCCTGTGCC-3’ 
SHP-280/255 (E4/5)       5’- CTTGTTTATCCACTTGAGTCATCTGA-3’ 
SHP-332/307 (E6)        5’- GCTGATTGTGCACCTGGGGCCTTGGT-3’ 
SHP-347/322 (E7)        5’- CCAATGGGGACACCTGCTGATTGTGC-3’ 
SHP-187/162m (E1)       5’- ATATCAGTGCAACGGGGGGTTCCCAA-3’ 
DEC2 E-box    5’-TACGTTCCGCACGTGAGCTGGGTG-3’ 
 
ChIP                                                        
E1 element sense   5’-GGCCCTGTGCCCTGCACCGGC-3’ 
E1 element antisense            5’-CTCATGGTTAGGGATCTGCTC-3’ 
Other E-box element sense  5’-CCTAGTCTTTTGTGCACACAA-3’ 
Other E-box element antisense 5’-TCACCTCAGTCAATGAAGTGG-3’ 
Non-element sense   5’-CAGAAATTCTTGTCACTGTTT-3’ 
Non-element antisense             5’-CACACCTCTTTCATTTGATTA-3’                                            
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Fig. 1. Regulation of SHP-luc and mPer1-luc by Clock/Bmal1, DEC1 or in 

combination (A) Repression of SHP-Luc and Per1-Luc by DEC1 Cells (293T) were 

cultured in 24-well plates at ~80% confluence and transfected with a reporter construct 

(50 ng), the pRL-null Renilla (5 ng) and DEC1 (0-100 ng).  Vector plasmid was used to 

equalize the amount of plasmid DNA for each transfection.  The transfected cells were 

cultured for 24 h, collected with PBS and resuspended in passive lysis buffer.  The 

reporter enzyme activities were assayed with a Dual-Luciferase Reporter Assay 

System.  The firefly luminescence signal was normalized based on the Renilla 

luminescence signal.  The signal in the absence of DEC1 was recoded as 100%.  

Statistical significance (p<0.05) is denoted by a different letter of a, b and c or x, y and 

z.  (B) Attenuated Clock/Bmal1 activation by DEC1 Cells were transfected with a 

reporter construct (50 ng), the pRL-null Renilla (5 ng), Clock/Bmal1 (100 ng each 

labeled as C or B) and DEC1 (0-100 ng labeled as D) and the pRL-null Renilla (5 ng).  

Vector plasmid (V) was used to equalize the amount of plasmid DNA for each 

transfection.  The reporter enzyme activities were assayed with a Dual-Luciferase 

Reporter Assay System and normalized based on the Renilla luminescence signal.  

The signal was expressed relatively to that in the absence of DEC1.  Statistical 

significance (p<0.05) is denoted by a different letter of a, b and c or x, y and z.  (C) 

Essentiality of DNA binding domain for DEC1 to repress SHP-Luc Cells (293T) were 

cultured in 24-well plates and transfected with DEC1 or a DEC1 mutant (100 ng), SHP-

Luc (50 ng) and the pRL-null Renilla (5 ng).  Vector plasmid was used to equalize the 

amount of plasmid DNA for each transfection.  After a 24 h-incubation, cells were 

collected and analyzed for luciferase activities.  Similarly, firefly luminescence signal 

was normalized based on the Renilla luminescence signal. 
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Fig. 2. Identification and characterization of the E-box element in DEC1 binding 

(A) Identification of the E-box element in DEC1 binding DEC1 stably transfected cells 

were cultured in the presence or absence of tetracycline to modulate the expression of 

DEC1 (tetracycline inducible) for 24 h.  The cells were then transfected with a reporter 

construct (50 ng), the pRL-null Renilla (5 ng) and DEC1 (0-100 ng).  The reporter 

constructs contained the 5’ sequence of the SHP promoter at different length or a 

sequence with a disrupted E-box element.  The transfected cells were cultured, 

collected and analyzed for luciferase activity as described above.  Once again, the 

firefly luminescence signal was normalized based on the Renilla luminescence signal.  

The signal in the absence of DEC1 was recoded as 100% for each reporter.  (B) EMSA 

analysis DEC1-stably transfected cells were cultured in the presence of absence of 

tetracycline (0.1 μg/ml) for 24 h, and the nuclear extracts were isolated.  For EMSA, 

nuclear extracts (5 μg) were incubated with a biotinylated 187/162 (E1) probe for 20 

min.  In the competition assay, nuclear extracts were pre-incubated with the unlabeled 

element (50x) or oligonucleotides containing another E-box (not the same as the probe) 

for 30 min, and then incubated with the biotinylated probe.  In the disruption assay, 

nuclear extracts were incubated first with an antibody against DEC1 on ice for 20 min 

and then with the biotinylated probe.  Nuclear extracts (labeled as “n”) from cells 

cultured without tetracycline were used as a control (right lane of the left panel).  For 

comparison, a probe derived from DEC2, known to interact with DEC1, was included.  

The protein-DNA complexes were electrophoretically resolved, transferred to a 

Biodyne® nylon membrane and located with streptavidin-conjugated horseradish 

peroxidase and chemiluminescent substrate.  (C) ChIP analysis HepG2 cells were 

transfected with DEC1 (Flag-tagged) for 24 h, washed and underwent cross-linking for 

15 min by 1% formaldehyde, and the cross-linking was terminated with 125 mM glycine.  

Alternatively DEC1 stably transfected cells were cultured in the presence of tetracycline 
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(0.1 µg/ml) for 24 h and then processed as described for HepG2 cells.  The soluble 

chromatins were prepared, pre-cleared with protein G beads and incubated with an 

Flag antibody (HepG2) or anti-DEC1 (stably transfected cells).  As a control, the 

antibody was replaced with pre-immune IgG.  The antibody-bound chromatins, DNA 

input (1/20 of the antibody-bound chromatins) as well as IgG-control were analyzed by 

PCR for the presence of the genomic fragment containing the E-box of interest, other 

E-boxes or no E-box.  Both cells produced similar images and the image from HepG2 

cells is shown).   

 

Fig. 3. Inverse expression between DEC1 and SHP (A) Suppressed expression of 

SHP by DEC1 HepG2 cells were seeded in 8-well chamber slides (2x104 cells/ 

well) and cultured for 24 h.  Cells were then transfected with Flag-DEC1 (500 ng) 

or the vector by TransfeX reagent.  The transfected cells were cultured for 

another 24 h and subsequently fixed with 4% paraformaldehyde for 10 min at pH 

7.4.  Cells were permeabilized with 0.1% Triton X-100 for 10 min.  Chamber slides 

were incubated with 1% BSA (2mg/mL) for 1 h then incubated overnight with anti-

SHP antibody or anti-Flag antibody.  The anti-SHP antibody was located by Alexa 

Fluor® 488 conjugated goat anti-rabbit IgG (green), whereas the anti-Flag 

antibody with Alexa Fluor® 555 conjugated goat anti-mouse IgG (red).  The slides 

were then mounted with ProLong Gold Antifade Mountant with DAPI (Blue).  Cells 

were then imaged with confocal microscope.  To provide more quantitative 

information, same experiments were performed in 6-well plates and cell lysates 

were prepared.  Lysates (10 µg) were analyzed by Western blotting for the 

expression of SHP and DEC1 (Right panel).  (B) Regulated expression of DEC1 

and SHP by valproate in serum-shocked circadian induction HepG2 cells were 

seeded in 6- or 24-well plates at a density of 6x105 or 1.5x105 cells/well and 
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cultured to reach 75% confluency.  Cells were then shocked with media 

containing 50% horse serum for 2 h.  Thereafter, the shocked cells were cultured 

in normal media or the same media containing valproate at 2 mM.  Cells were 

harvested at a 6 h interval.  The expression of DEC1 and SHP was determined by 

RT-qPCR with Taqman probes.   
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Fig. 1 
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Fig. 2 
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1 = BE-box (-237/+33, binding E-box) 
2 = OE-box (-377/-186, other E-boxes) 
3 = NE-box (-2061/-1820, no E-box) 
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Fig. 3 
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