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ABSTRACT 

Ground-water/surface-water interactions and MTBE contaminant plume discharge 

were investigated in a low-order river that experiences episodic river stage 

fluctuations. Results show that the hydraulic gradient fluctuates hourly to monthly 

due to river stage changes, water table recharge events, and reservoir gate adjustments. 

Hyporheic exchange driven by channel morphology creates small-scale gaining, 

losing, and parallel flow systems along the mostly gaining reach. During precipitation 

events, infiltrating rainfall rapidly saturates the extended capillary fringe and the 

shallow floodplain water table rises forming a ground-water ridge or mound and 

causing a steepened hydraulic gradient towards the river. The system response is 

magnified by watershed characteristics which control the river stage hydrograph 

including stormflow lag and flashiness. 

Results of this study suggest that a ground-water plume discharging to surface 

water may have several discharge locations related to transient water-table 

configurations. Under conditions of a low hydraulic gradient, the MTBE plume is 

deflected away from the river by hyporheic flow toward a downstream discharge 

location. When the gradient toward the river steepens in response to precipitation and 

gate closure, the small-scale hyporheic exchange systems are overcome and the plume 

discharges along the entire reach. Under these conditions, a high influx of 

contaminated ground water is discharged from the floodplain to the river, temporarily 

elevating river contaminant concentrations. During site investigation and monitoring, 

these transient spatial and temporal relationships could easily be missed by traditional 

site monitoring strategies. 
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PREFACE 

This thesis is written in manuscript format, with the main body comprising the 

publishable text and supplemental information provided in appendices. The format is 

consistent with articles published in the journal Ground Water, the journal in which I 

intend to publish. 
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1. INTRODUCTION 

1.1. Background 

Rising population and urban development have placed increasing pressure on the 

availability and quality of ground-water and surface-water resources (Einarson and 

Mackay 2001; Job and Simons 1996; Moran et al. 2005; Winter et al. 1998). With 

escalating concern and knowledge that ground-water and surface-water systems are 

intrinsically linked, current research is focusing on improving the conceptual model of 

ground-water/surface-water (GW/SW) interactions. Model accuracy is of even greater 

importance where contaminated ground water discharges to surface water. The EPA 

estimates that 75% of Superfund and RCRA sites are located within a half mile of a 

surface-water body and nearly half have impacted surface-water quality (Tomassoni 

2000). How these ground-water plumes interact with surface water, both spatially and 

temporally, is therefore of paramount interest. 

Study of GW/SW interaction crosses the boundaries of hydrology, biology, 

geomorphology, and aquatic chemistry. Research has sought to increase 

understanding in the contexts of water resources management (riverbank filtration and 

stream depletion), stream and riparian health (nutrient cycling and benthic biota), 

flood modeling (bank storage and floodplain hydrology), and ground-water 

contamination (point and non-point source). Research on these topics has focused 

primarily on the hydraulic relationships between the coupled systems. For example, 

early researchers developed the conceptual framework for the hydraulics of flow, 

transport, and exchange across the GW/SW interface. Subsequent researchers have 

modified and expanded these concepts with studies that have helped explain the 
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controls on the hydraulic gradient. Current understanding states that GW/SW 

interaction is controlled by the distribution and magnitude of hydraulic conductivity, 

the relation of stream stage to the adjacent ground-water gradient, and the geometry 

and position of the channel within the floodplain (Woessner 2000). In GW/SW 

systems (i.e. , rivers and adjacent aquifers) the following hydraulic relationships are 

possible: 1) ground water can enter the channel (gaining), 2) ground water can exit the 

channel (losing), 3) ground water can travel parallel to the channel (parallel-flow), or 

4) ground water can simultaneously enter and exit the channel (flow-through). 

Early work through the 1980s on GW/SW interaction was conducted broadly on 

the topic, including quantifying stream depletion due to irrigation well pumping 

(Sophocleus et al. 1988) and early modeling of flood-induced bank storage (Gill 

1985). As understanding increased and the practical importance of this coupled 

system was realized, studies on floodplain hydraulics grew more specialized and 

began to include stormflow and riparian processes. 

Most conceptual models of stormflow events for gaining rivers show that as river 

stage rises, the hydraulic gradient adjacent to the channel reverses from gaining to 

losing and river water is driven into the aquifer. This process, termed bank storage, 

has been shown to help to attenuate stormflow (Burt et al. 2002; Stewart et al. 1999). 

Following the passage of peak flow, the gradient reverses back to gaining and the 

stored water gradually returns to the river channel as return-flow. Others have shown 

that the shape of the flood hydro graph, geometry of the channel and floodplain, and 

aquifer properties can affect bank storage and return flow (Chen and Chen 2003 ; 

Girard et al. 2003 ; Hantush 2005; Serrano and Workman 1998; Vidon and Hill 2004). 
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A suite of other factors have also been identified that affect the degree and timing 

of the hydrologic response in the floodplain. For example, floodplain recharge by 

precipitation and surface runoff was studied by Barlow et al. (2000) and shown to 

increase return flow discharge by steepening the hydraulic gradient towards the river. 

Zhang and Schilling (2006) showed that vegetation can affect shallow floodplain 

water tables and stream flow by controlling soil moisture. The degree of forestation 

has also been shown to be a significant factor controlling large-scale watershed 

recharge and stream flow (Nichols and Verry 2001). High floodplain water tables can 

also affect the response to recharge and overbank inundation by increasing antecedent 

soil moisture (Burt et al 2002; Girard et al. 2003). In addition, stormflow and bank 

storage is also a concern at riverbank filtration sites due to the threat of surface water 

contamination and gradient alteration (Schubert 2002; Sheets et al. 2002; Wett et al. 

2002). 

Besides the overall GW /SW hydraulic relationship within a river reach, small­

scale variations that govern the hydraulics beneath river channels are driven by 

hyporheic exchange processes.. The hyporheic zone is broadly defined as the area 

beneath and adjacent to a river channel that contains some proportion of surface water 

and ground water (White 1993; Woessner 2000). Research has shown that the 

hyporheic zone plays a key role in ecosystems due to the many physical, geochemical, 

and biological processes occurring therein which often control stream and riparian 

health (Castro and Hornberger 1991; Hayashi and Rosenberry 2002; Hunt et al. 2006; 

Kasahara and Wondzell 2003; Triska et al. 1989; Wroblicky et al.1998). These 

processes are sensitive to hyporheic exchange variability which can create spatially 
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Zero Exchange 
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Ground-Water Flow 
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Figure 1. Cross-section of ground-water and near-channel flow demonstrates development of 
gaining, losing, and zero exchange along a single river reach. Hydraulic head in riverbed 

piezometers indicates the gaining/losing relationship between the river, hyporheic zone, and 
riparian zone ground water (Modified after Woessner 2000). 

limited gaining, losing, and parallel-flow river conditions within a single reach (Figure 

1) (Stonestrom and Constantz 2004; Woessner 2000). 

The influence of channel morphological features on the development, location, and 

characteristics of the hyporheic zone has received considerable attention. Studies have 

demonstrated that channel bedforms, pool-and-riffle sequences, meander bends, 

changes in slope, and debris dams play a considerable role in determining the presence 

and type ofhyporheic exchange (Boano et al. 2006; Cardenas et al. 2004; Harvey and 

Bencala 1993; Lautz and Siegel 2006). Conant Jr. (2004) showed that streambed 

heterogeneity can also result in spatially-limited discharge zones responsible for the 

majority of reach ground-water discharge along a reach. The dominant hyporheic 

control acting on a stream is related to stream gradient, sinuosity, and other 

geomorphic factors, which also control the path lengths and residence time of 

hyporheic exchange. Kasahara and Wondzell (2003) showed that compared to fifth-

order rivers, exchange in second-order rivers tends to have shorter residence time due 

to the abundance of pool-and-riffle sequences and debris dams. Others have shown 
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that hyporheic exchange in low-order rivers is highly transient and can either appear, 

contract, expand, or relocate with small modifications to the dynamic system (Hunt et 

al. 2006; Winter et al. 1998; Wroblicky et al. 1998). While higher order rivers do 

exhibit hyporheic variability, flow path lengths and residence times are considerably 

longer (Lambs 2004). 

Surface-water discharge is commonly the ultimate fate of ground water 

contaminated by point or non-point sources. The transport and behavior of these 

contaminants across the GW/SW interface includes multiple dynamic processes that 

control the concentration, distribution, and location of discharge. Research has shown 

that riparian and hyporheic zone processes play an important role in controlling the 

quality of this water prior to discharge. Non-point source contamination, such as 

nitrate introduced through regional fertilizer usage, can be largely removed from 

ground water with a healthy riparian buffer zone (Hayashi and Rosenberry 2002). 

However, alteration of the vegetation can impact the water table and can be 

detrimental to nutrient uptake and cycling (Schilling et al. 2004; Schilling et al. 2006). 

A pan-European study by BW1 et al. (2002) identified geomorphic and climate factors 

as important processes in controlling riparian zone water tables, hydraulic gradients, 

and the position of the GW/SW interface. 

Typical point-sources of contamination include landfills, leaking underground 

storage tanks (LUST), military bases, and industrial facilities with contaminants 

varying from metals to volatile and semi-volatile organic contaminants (VOCs and 

SVOCs). Major point sources of ground-water contamination are commonly located 

adjacent to surface water, presumably due to current or former usage for transportation 
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and power (Tomassoni 2000). It is therefore surprising that there has been relatively 

little research investigating the behavior of ground-water contaminant plumes 

discharging to surface water. 

In a GW/SW exchange system, the hydraulic gradient has the strongest influence 

on the ultimate discharge location relative to the source zone. For example, Hinzman 

et al. (2000) showed that increased river stage and bank storage can affect plume 

discharge and also natural attenuation due to dispersion, dilution, and smearing. They 

also suggest natural discharge as a remediation alternative due to potentially high 

contaminant mass discharged from the ground-water system to the surface-water 

system. Others have shown that fluctuating river stage has the potential to affect 

contaminant discharge rates and the position of the GW/SW interface (Kim and 

Hemond 1998; Westbrook et al. 2005). 

In what the authors described as the first assessment of a perchloroethylene (PCE) 

plume discharging to surface water, Conant Jr. et al. (2004) explained observations by 

pointing to heterogeneous hydraulic conductivity, organic carbon sorption, 

biodegradation, and variations.in source zone contributions. Their study provided a 

snapshot of contaminant distributions and hydraulic relationships rather than a 

transient analysis. Fryar et al. (2000) included transient discharge in a study of a VOC 

contaminant plume entering a river. They identified temporary reversals in hydraulic 

gradient and riverbed discharge associated with local storms, flooding, and dry periods 

that altered contaminant discharge and shifted the discharge location of the plume. 

They also identified increased return-flow ground-water discharge following flooding, 

possibly associated with increasing voe concentrations in the river. 
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These studies demonstrate the complex transient relationships affecting discharge 

of contaminated ground water to surface water. Currently, no clear conceptual model 

exists for describing mechanisms and spatial and temporal variability of ground-water 

plumes discharging to rivers. This study will therefore address this need by examining 

the conceptual model of transient GW/SW hydraulic relationships and their resulting 

affects on discharging plumes. 

1.2. Objective 

This thesis examines the interaction of a gasoline contaminated ground-water 

plume with the Pascoag River, a low-order river that experiences episodic river stage 

fluctuations due to controlled reservoir discharge and stormflow. My hypothesis was 

that ground-water and surface-water hydraulic relationships change in response to 

river stage fluctuations resulting in spatial and temporal alterations to the fate and 

transport of the discharging contaminant plume. Specifically, spatial and temporal 

changes in the hydraulic gradient and plume discharge in relation to river stage were 

investigated. These changes alter the dynamic equilibrium that occurs between the 

ground-water and surface-water systems and the established location and ground­

water flux into the river channel. Changes in degradation rates, sorption, and the 

solubility of gasoline compounds were not specifically addressed in this study. In an 

effort to capture plume transience, data collection incorporated high resolution water 

table and river stage measurements, along with ground-water sampling for voes from 

a series of monitoring well and surface-water locations. The outcome of this research 

has practical application to this LUST site and to improving the conceptual model of 

ground-water plumes discharging to surface water in general. 
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Figure 2. Site location in Pascoag, Rhode Island. Gasoline contaminants originated from a LUST 
located south of the town's supply well. After the well was shut down, the contaminant plume 
shifted toward the Pascoag River, which flows north along the site. The earthen dam owes its 
origin to a textile factory that once existed at the site. A now-buried channel originated from a 

sluice and flowed parallel to Pascoag River connecting to the channel to the north. 

2. STUDY SITE 

2.1. General Background 

The study site is in Pascoag, Rhode Island, a small village in the town of 

Burrillville (Figure 2) (42.0° N, 71.7° W). The village has a population of 

approximately 7,100 with residential housing as the predominant land use adjacent to 

the study site (Missouri Census Data Center 2006). The site is currently under 

supervision of the Rhode Island Department of Environmental Management (RID EM) 

after a UST leaked more than 11 ,000 liters of gasoline into the shallow ground water 

in 2001 (RIDEM unpublished data). The study site for this thesis is located along 

Pascoag River (Figure 2) where the contaminant plume discharges to the river. Surface 
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Pascoag 
River 
,/ 

Horizontal distance = 180 m 
Vertical Relief= 20 m 
Approx. 5x Vertical Exag. 

Silt and well sorted vf. sand •••CTm 
;:;:;:;:;:;:;:;: Bedrock 

LUST 
Source 

Figure 3. Conceptual cross-section of site looking north-northeast. Shows the general surface and 
bedrock topography based on refusal depths and geophysics. Contaminants flow through 

bedrock fractures toward the floodplain and are believed to discharge at the base of the stratified 
sand, silt, and gravel aquifer. The water table in the floodplain is shallow and frequent ponding 

occurs on the surface. 

elevation ranges from 111 m above sea level in the study area to 122 m at the source 

zone (Figure 3). 

In September of 2001, the gasoline additive methyl tert-butyl ether (MTBE) was 

detected in drinking water from Pascoag's municipal supply well. An onsite 

investigation led by the RIDEM found the source of the contamination to be a gas 

station 460 m upgradient from the supply well. The well was permanently shut down 

in January of 2002 after an alternate drinking water source was established. 

2.2. Geology 

2.2.1. Bedrock Geology 

The topography of the bedrock surface varies significantly across the aquifer and 

controls local surface topography. Bedrock depth ranges from less than 3 mat the 

source zone to 8 m below ground surface at the study site, deepening toward the river. 
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The bedrock is augen granite gneiss with predominant fractures striking nearly north­

south with an average dip of 65° E and a second set striking N 75°W with a dip of 75° 

s (Allen and Boving 2006). A complete description of bedrock lithology and fractures 

is provided in Appendix I. 

2.2.2. Surficial Materials 

The thickness of the stratified sand and gravel aquifer at the site varies from 3 mat 

the source zone to 8 min the study area, increasing towards the river (Figure 3). The 

aquifer is believed to be glacial deltaic in origin and contains heterogeneous sediments 

ranging from silt to sand and gravel (Allen unpublished report 2005). Based on 

sediment borings from adjacent to the study area, the base of the 8 m unconsolidated 

aquifer is dense till overlain by silt and well-sorted very fine sand (Figure 3). This is 

followed by poorly sorted sand and capped by sand and gravel. The soil is mapped as 

Canton and Charlton extremely stony fine sandy loam and has moderately rapid 

permeability and moderate water capacity (Rector 1981 ). The soil horizons may be 

significantly disturbed and some areas may be covered with fill material related to a 

former textile factory. H.istorical photographs (Appendix I) show the factory and 

suggest that building foundation debris and a buried channel remain in the study area. 

Due to the heterogeneous nature of the aquifer, there is large range in hydraulic 

conductivity (K) of the aquifer material. Bouwer-Rice falling head slug tests for the 

aquifer indicate a K range of 10-2 to 10-5 cm/sec (RIDEM unpublished data) with a 

somewhat narrower range of 10-3 to 104 cm/sec on the study site along the river as 

determined in this thesis (Appendix III). This range is consistent with fine to coarse 

sands, with the degree of sorting having a significant impact on the K value. 
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Figure 4. Watershed for Pascoag River. Watershed area is 22.6 km2 when the gate is open and 
decreases to 0.56 km2 when the gate is shut. 

2.2.3. Surface-Water Hydrology 

The Pascoag River is a low-order river in the Clear River Subbasin of the 

Blackstone River Basin (Barlow 2003 ). The river begins at the Pascoag Reservoir and 

flows 1.37 km through Pascoag center prior to the confluence with the Clear River 

(Table 1 ). The watershed above the study site is 22.6 km2 and is primarily forested 

(Figure 4). A water-powered factory once existed at the study site but was destroyed 

in the 1960s. In order to maximize river power, the river channel was straightened, 
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Table 1. Watershed and river specifics for Pascoag River. 

Watershed Information 

Area (km2) 22.6 

River length (km) 1.37 

Gradient (m/m) 0.015 

Study Site Information 

Reach length (m) 183 

Approx. River Width (m) 3.5 

Approx. River Depth (m) 0.1-1.5 

Width/Depth Ratio 2.3 - 3.5 

Approx. Channel Depth (m) 2-3 

Sinuosity (m/m) I. I 

Gradient (m/m) 0.002 

Floodplain Width (m) 35 - 45 

River Stage Range (m) 1.2 

Discha~e Ran~ (m3/sec) 0.03 - 7.7 

deepened, and lined with stone to create a race. A small retention pond was located 

behind a small earthen dam with a spillway that discharged water through the 

modified channel (Figure 2). At the study site, the channel is 3 to 4 m wide, between 

2 and 3 m deep, and has a gentle gradient (0.002 m/m) below the earthen dam. The 

riverbed contains large amounts of organic and manmade debris, including piles of 

bricks and portions of collapsed channel. Fine-grained sediment and larger rounded 

clasts are as not common in this channel as in typical river channels. 

Pascoag Reservoir (also known as Echo Lake) has a total area of 1.41 km2, and 

average and maximum depths of 3.2 and 5.8 m, respectively (Figure 4) (USEPA 2007; 

Plouffe pers. comm. 2006). There is a large upper and a small lower reservoir 

separated by an earthen dam with an average head difference of 4 m. Unlike most 

reservoirs, the level of Pascoag Reservoir is low during the winter and high during the 

summer to provide for aquatic recreation. Reservoir level is maintained by the 

Pascoag Reservoir Association and is controlled by a sluice gate that releases water 
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through a discharge pipe in the center of the dam. Large gate openings correspond to 

high discharge with a 25 cm gate opening estimated to yield a discharge of 1.4 m3 /sec 

(Plouffe pers. comm. 2006). The gate is usually opened in October to drain the 

reservoir and closed in March to raise it approximately 1.5 m to its summer level. 

Additional gate adjustments are made in response to individual storm events. 

Discharge from upper Pascoag Reservoir also occurs over an overflow spillway that 

becomes active when the reservoir level reaches 2.8 m (above an arbitrary datum). 

When the gate is closed, the watershed area of the Pascoag River above the study site 

is reduced from 22.6 km2 to 0.56 km2 with high residential landuse and a considerable 

amount of impervious surfaces (Figure 4). 

Discharge in the Pascoag River is therefore highly variable due to episodic gate 

adjustments and rapid response to stormflow. Sustained discharge in the river ranges 

from near zero in the summer to over 1.5 m3 /sec during the winter, with stormflow 

discharges of up to 7.0 m3/sec. River stage rise and stormflow is typically confined to 

the steeply walled channel; however, overbank flooding can occur. Stormflow 

discharge is flashy with peak Md recession occurring rapidly. Changes in discharge 

related to gate adjustments at Pascoag Reservoir also occur rapidly and can increase or 

decrease river stage by more than 0.5 m in minutes. Prior work has also shown that 

the river channel is hydraulically well-connected to the aquifer with river stage driven 

water table fluctuations propagating through the aquifer within minutes to a distance 

of at least 30 m from the channel (Allen and Boving 2006). 
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2.2.4. Hydrogeology 

The hydraulic gradient is relatively steep between the source zone and the 

floodplain due to steeper surface and bedrock topography, with gradients of 

approximately 0.06 m/m from the source zone to the floodplain and 0.01 m/m or less 

within the floodplain. There are no nested multi-level wells in the source zone to 

identify vertical gradients; however, a downward gradient is assumed. Ground-water 

flow to the floodplain occurs through bedrock fractures and through the sand and 

gravel aquifer. Limited historical data from nested multi-level wells in the floodplain 

indicate an upward vertical hydraulic gradient steepening closer to the river. The 

water table depth is generally between 1 and 2 m below ground surface throughout the 

floodplain; however, during some periods it may be less than 1 m below the surface 

(Figure 3). 

2.2.5. Ground-water/Surface-Water Interaction 

No prior studies have been conducted at the site to determine if the river reach is 

gaining or losing. Attempts to determine verticar gradients using riverbed piezometers 

were unsuccessful due to loss during high discharge in the winter or by tampering. 

Given the presence of contaminant discharge in sections of the river reach and a 

general model of gaining rivers in the northeast, it is believed that this river reach is 

predominantly gaining (Allen and Boving 2006; Job and Simons 1996; RIDEM 

unpublished data; Winter et al. 1998). 
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2.3. Contaminant Fate and Transport 

The current distribution of contaminants outside of the source zone has been 

significantly affected by induced ground-water flow from pumping of the former 

supply well (Figure 5). It is believed that this has created a secondary contaminant 

source zone within bedrock fractures and is providing a significant proportion of 

current contamination (Allen and Boving 2006). As a result, contaminated ground 

water may flow between the source zone and the floodplain by traveling northward 

through bedrock fractures until discharging into the adjacent sand and gravel aquifer at 

depth. A second possible flowpath suggests that the contaminant plume discharges 

from the bedrock and migrates towards the river closer to the source zone and then 

follows the buried channel introduced above. Regardless of the exact ground-water 

flowpath, bedrock fractures, former channels, topography, and the river combine to 

control ground-water flow and contaminant transport to the river. 

Initially, the contaminant plume, consisting ofMTBE, benzene, toluene, 

ethyl benzene, xylene (collectively termed BTEX) and other gasoline compounds, 

extended north-northeast from the source zone in both the bedrock and the overlying 

unconsolidated sand and gravel aquifer. Maximum dissolved phase MTBE 

concentrations were over 1,000 mg/Land low-level contamination of 0.04 mg/L 

extended over an area of 80,000 m2 (RIDEM unpublished data). After the supply well 

was shut down, the water table returned to a natural gradient consistent with local 

topography and surface-water hydrology, shifting the contaminant plume orientation 

to a north-northwest flowpath. As a consequence, the plume began to discharge to the 

Pascoag River which flows north along the western extent of the site. 
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Figure 5. MTBE contaminant distribution at the start of this study in early 2006. Distribution is 
based on available monitoring well data. The highest contamination resides in the area between 

MW 18 & MW 18D and MW 48 where focused discharge to the dead-end channel occurs. 
Discharge to the river channel also occurs to the river upstream near 3D. These two discharge 

locations result in low MTBE concentrations in the river periodically throughout the year. 

Onsite remediation has significantly reduced contaminant concentrations in the 

source zone; however, the plume continues to discharge to the river and impact 

surface-water quality along this reach. The early 2006 distribution of MTBE in the 

floodplain from ground-water monitoring is shown in Figure 5. Source zone MTBE 

16 



concentrations have been reduced to less than 100 µg/L, while concentrations near the 

river remain close to 10,000 µg/L (RID EM unpublished data). BTEX concentrations 

still exceed 2,000 µg/L for individual compounds in the source zone and along the 

river (RIDEM unpublished data). As described by Allen and Boving (2006), multi­

level wells and contaminant distributions in the study area indicate that contaminants 

are discharged from the sloping bedrock into the adjacent sand and gravel aquifer 

(Figure 3). 

Significant discharge of contaminated ground water to the river occurs 

downstream of the study site near MW 48 in a short stretch of channel that has been 

partially filled in and is not part of the active river channel (Figure 5). Discharge of 

contaminated ground water is evident by the presence of gasoline odor, orange 

biofilm, gasoline sheen on the surface water, and MTBE surface-water concentrations 

up to 2,000 µg/L (RID EM unpublished data). A second area of discharge is located in 

the main river channel near 3D upstream from the study site closer to the source zone 

(Figure 5). Discharge here was identified by an MTBE concentration in the riverbed 

of up to 2,000 µg/L which is diluted rapidly in the river channel resulting in a low 

river concentration (RIDEM unpublished data). 
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3. METHODS 

Research methods and wellfield design were chosen in order to fulfill several 

objectives including, I) to identify spatial and temporal changes in the vertical and 

horizontal gradients between individual wells and between the aquifer and the river, 2) 

to identify spatial and temporal changes in MTBE and BTEX concentrations, and 3) to 

identify and correlate the above observations with river stage fluctuations. 

Table 2. Well construction and well location information. 

(Unk = Unknown and NA = Not applicable) 

Top of Well Depth Depth to Distance 
Casing Surface BGS or Refusal/ Screen From 

Installation Elevation Elevation Riverbed l.D. Bedrock Length River K 
Well Date Location (m) (m) (m) (cm) (m) (m) (m) (cm/se~ 

JA 2S 2/2/2006 A_g_uifer 112.28 111.98 3.05 2.54 7.32 0.30 3.1 6.4E-03 

JA2D 2/2/2006 A_g_uifer 112.37 11 2.07 6.1 0 2.54 7.32 0.30 3. 1 7.3E-04 
JA 3S 1/ 19/2006 A_g_uifer 112.33 112.03 3.05 2.54 6.70 0.30 14.3 7.7E-03 
JA 3D 1/19/2006 A_g_uifer 11 2.33 11 2.03 6. 10 2.54 6.70 0.30 14.3 3.SE-04 
MW18 2/2002 A_g_uifer 112.49 11 2.19 4.27 2.54 7.62 3.05 27.4 4.6E-03 

MW 180 8/2004 A_g_uifer 11 2.56 I 12.26 7.02 2.54 7.62 6. 10 27.4 4.SE-04 
JA !RB 8/26/2006 Riverbed I I 1.97 NA 0.76 2.54 NA 0.30 NA Unk 
JA IR 8/26/2006 River I I 1.94 NA NA 1.90 NA 1.04 NA NA 
MW44 6/2004 A_guifer I 12.90 I 12.20 2.35 2.54 Unk 1.50 7.6 3.9E-03 
MW48 7/2004 Riverbed 111.25 NA Unk 2.54 Unk Unk NA Unk 
MW56 8/2004 A~ifer I 12.97 112.82 2.29 2.54 Unk 1.50 32 8.3 E-04 

ID 3/3 1/2006 Riverbed Unk NA 0.72 2.54 Unk 0.30 NA Unk 
2D 3/3 1/2006 Riverbed Unk NA 0.6 1 2.54 Unk 0.30 NA Unk 
3D 3/31 /2006 Riverbed Unk NA 0.68 2.54 Unk 0.30 NA Unk 
4D 3/31 /2006 Riverbed I 12.03 I I 1.28 0.84 2.54 Unk 0.30 NA Unk 
SD 3/31 /2006 Riverbed I 12.27 I I 1.8 I 1.1 4 2.54 Unk 0.30 NA 5.6E-04 
6D 3/31 /2006 Riverbed Unk NA 0.98 2.54 Unk 0.30 NA Unk 

In order to accomplish the goals presented above, a well transect was installed 

perpendicular to the river approximately 550 m downgradient from the source zone. 

The wells monitored included five preexisting monitoring wells and I2 wells installed 

specifically for this project (Table 2 and Figure 6). Three surface water locations were 

also monitored to determine inflowing river chemistry upstream of 2D, downstream at 

MW 49, and at JA IR. Except for JA IRB, JA IR, and the riverbed wells which were 

installed by the hand, all wells were installed by RIDEM using a Geoprobe®. Well 
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Figure 6. Monitoring well and riverbed well locations used in this study. Three surface water 

locations were also sampled, upstream near 2D, at JA JR, and downstream near MW 49. A and 
A' correspond to a conceptual riverbed cross section showing channel morphology and is 

discussed further in Figure 18. 

casing elevations were surveyed to obtain absolute water table elevations. Complete 

well installation and surveying methods are provided in the Appendix II. 
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Wells were sampled approximately every two weeks unless specific events such 

as precipitation or gate events warranted more frequent sampling. Periods of less 

frequent sampling also occurred due to relatively stable conditions (i.e. dry periods). 

Continuous measurements of hydraulic head and temperature were collected in several 

wells for the entire or part of study period. The following is a summary of the field 

data acquisition methods. Additional information regarding sampling, field 

instruments, slug tests, and river discharge is available in Appendix II. 

3.2.1. Sampling and Field Parameters 

Well purging and sampling was performed using a peristaltic pump utilizing EPA 

low-flow ground-water sampling principles when possible (Puls and Barcelona 1996). 

In order to maintain pump circulation, the lowest pump rate used was 150 to 250 

mL/min, depending on the well depth. Initially wells were purged until the field 

parameters, dissolved oxygen (DO), pH, electrical conductivity (EC), and temperature 

stabilized. After several months, the time required for parameter stabilization grew 

longer probably due to aquifer stratification associated with precipitation, or possibly 

downward flow along the casing. The method, therefore, was modified to include the 

monitoring of pumping time to establish a consistent ground-water contribution zone 

for each sampling events. 

Field measurements of DO, pH, EC and temperature were recorded after well 

purging and satisfactory stabilization. Field "instruments were calibrated and operated 

according to manufacturers specifications. voe samples were taken by slowly filling 

duplicate 40 mL VOA vials. The vials were preserved with four drops of 6N 

hydrochloric acid with zero headspace and stored at approximately 4°C until analysis. 
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Ground-water and surface-water samples for ion analysis were collected in 125 mL 

HDPE bottles. The unpreserved samples were stored at 4°C prior to filtering and 

analysis. 

3.2.2. Water Table Measurements 

Continuous measurements were collected with In-situ® dataloggers installed in 

five wells. For quality control purposes and in order to convert relative elevation 

changes to water table elevations, manual measurements were collected when 

dataloggers were installed in wells and when they were removed. 

3.2.3. Temperature Measurements 

Both manual and continuous measurements were also collected to monitor 

temperature variation in each well. Manual measurements were collected during each 

sampling event while continuous measurements were collected by datalogger 

temperature sensors and by Thermochron iButtons® (Dallas Semiconductor). The 

iButtons were placed in small plastic bags, attached to pump tubing or cable, and 

placed along the screened interval. 

3.3. Laboratory Methods 

3.3.1. Volatile Organics Analysis 

Volatile organic analysis (VOA) samples were stored at 4°C and allowed to 

equilibrate to room temperature prior to preparation and analysis by a purgeable 

volatiles method similar to EPA Method 624. Most samples were analyzed within the 

EPA specified holding time of 14 days; however, several samples were analyzed 
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outside of this holding time but within 18 days. It is not believed that this 

significantly affected the results. 

VOA sample introduction was performed with a 01Analytical4660 purge and 

trap and analysis completed using a Shimadzu GC-17 A gas chromatograph equipped 

with QP5000 mass spectrometer (GC/MS). A 6-point external calibration of target 

compounds (Table 3) was performed from 2 to 160 µg/L and samples were spiked 

Table 3. Target VOCs and minimum detection limits (MD Ls). 

Minimum 
Target Detection Limit 

Com_E_ound (µg/L) 

MTBE 0.7 

Benzene 0.7 

Toluene 1.2 

Ethyl benzene 1.4 

m-Xylene and p 
0.4 

Xylene 

o-XJ:'.!ene 1.0 

with 4-Bromofluorobenzene (BFB) as a surrogate compound. A full description of the 

GC/MS operating parameters and methods can be found in Appendix II. Average 

BFB surrogate recovery for all analyses performed was 95.6% with a standard 

deviation of 6.6% (n=350). Average MTBE calibration verification recovery was 

99.3% with a standard deviation of 7.2% (n=124). A method blank was prepared and 

analyzed for every batch of samples run. Due to the high number of dilutions 

required, laboratory duplicates were evaluated on diluted samples rather than by 

rerunning. 
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3.3.2. Inorganic Analysis 

Samples for anion and cations were stored at 4°C and filtered with a 0.45 µm syringe 

filter prior to analysis. Anion samples were not analyzed within the Method 300.0 

recommended holding time of 28 days or 48 hours (for nitrate and phosphate). The 

holding time for cations is 6 months and was fulfilled by a limited number of analyses. 

Both anions and cations were analyzed on a Dionex DX-120 ion chromatograph. 

Target ions were chloride, nitrate, phosphate, sulfate, sodium, potassium, magnesium, 

and calcium. Additional analytical procedures and MDLs are in Appendix II. 
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Figure 7. Precipitation and average temperature measured during this study. 

4. RESULTS 

4.1. Precipitation and Temperature 

Between January 21 and August 9, 2006 a total of 81.3 cm of precipitation was 

measured over several extended periods (Figure 7). Refer to Appendix I for local 

historical weather and for measurement station locations. The average monthly 

temperature was similar to historical averages with a low in February (-2°C) and the 

high in July (23°C). Daily temperature ranges were dependent upon precipitation, 

with low diurnal variation occurring during storms. 

4.2. Reservoir Discharge and River Stage 

Pascoag Reservoir water level and reservoir discharge to Pascoag River varied 

significantly related to gate adjustments driven by precipitation and reservoir levels 

(Figure 8). In response to these adjustments, river stage varied by approximately 1.0 

m for the Pascoag River at the study site (Figure 9). Gate adjustments at Pascoag 
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Figure 9. River stage hydrograph and controlling factors, precipitation and gate opening. 
Hydrograph correlation with reservoir gate opening confirms that this is the primary factor 

controlling r iver stage (A & F). During per iods where the gate is closed and river stage is low (B), 
fluctuations, although infrequent a re only caused by individual precipitation events and river 
stage effects are short-term (C). The influence of the reservoir spillway (D) results in a slow 

increase or decrease in river stage. When the river stage and precipitation are high, bankfull and 
flooding a re common (E). 
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Reservoir immediately impacted river discharge and river stage, indicated by A and F 

on the figure. When river stage is low and the weather is dry, variability is also low 

(B). During these periods, individual precipitation events do not have a significant 

impact on river stage, but rather their effect is short-term (C). Fluctuating spillway 

discharge creates gradual increases and decreases in river stage (D) as the reservoir 

level rises and falls in response to precipitation. When the reservoir gate is open, river 

stage response to precipitation events is overwhelmed by the discharge from the 

reservoir (E). Two large precipitation events in June resulted in high reservoir 

discharge to Pascoag River and river stage increased rapidly to flood stage. During 

this event, overbank flooding occurred at the site and submerged the monitoring 

equipment forcing river stage estimation from the top of the well casing. 

4.3. Water-Table Elevations 

Water table elevations in the study area range from approximately 110.9 m to 

112.6 m with higher minimum and maximum heads at the upgradient wells closer to 

the source zone (Table 4 and Figure 10). The water table quickly responded to 

Table 4. Water table monitoring information and elevations. 

Well 
Monitoring Hydraulic Head (m) 

Type Begin Date Minimum Maximum Average Variability 

River Stage Continuous 1/21/2006 11 0.9 1 111.94 111.28 1.03 

JA IRB Manual 2/2/2006 11 0.93 111.97 11 1.30 1.04 

JA2S Continuous 2/2/2006 11 0.92 11 2.03 111.23 I.I I 

JA2D Continuous 2/2/2006 11 0.95 11 2.08 11 1.25 1.1 3 

JA3S Manual 1/2 1/2006 110.93 11 2.0 1 111.3 1 1.08 

JA3D Continuous 1/2 1/2006 11 0.95 11 2.08 11 1.32 1.1 3 

MW 18 Manual 1/21/2006 11 0.95 11 2.03 11 1.36 1.08 

MW 18D Continuous 1/2 1/2006 11 1.21 11 2.35 111.58 1.14 

MW 44 Manual 1/24/2006 111.1 0 11 2.29 111.50 1.19 

MW56 Manual 2/2/2006 111.26 11 2.55 11 1.71 1.29 

4D Manual 4/2 1/2006 110.87 11 2.03 111.27 1.1 6 

SD Manual 512012006 11 0.67 11 1.70 11 1.08 1.03 
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Figure 10. Water table elevations obtained by dataloggers. Wells JA 2S and JA 2D and located 3 
m from river channel, while JA 3D and MW 18D are 14 m and 27 m, respectively. Complete well 

construction information is available in Table 2. 

fluctuations in river stage. This indicates that the river is hydraulically well connected 

to the aquifer and the dominant process controlling the position of the floodplain water 

table is river stage. During precipitation events and following gate closures, river 

stage elevation was significantly lower than most water table elevations. 

4.4. Hydraulic Gradient 

Overall ground-water flow and hydraulic gradient in the floodplain are directed 

toward the river both horizontally and vertically but vary considerably spatially and 

temporally (Table 5). Results indicate that immediately adjacent to the river channel 

between JA 2S and the river, flow direction is much more variable and reverses 
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Table 5. Horizontal and vertical hydraulic gradient realtionships between several wells in the 
floodplain and between the floodplain and the river. 

Horizontal Gradient (m/m) 

Well Minimum Maximum Average Variability 

MW 56-MW44 0.006 0.01 1 0.008 0.006 

MW44-MW 18 0.002 0.006 0.004 0.004 

MW 56-MW 18 0.009 0.018 0.0 13 0.009 

JA 3S - JA 2S 0.000 0.002 0.001 0.002 

JA 30-JA 20 -0 001 0.001 0.000 0.002 

Vertical Gradient ( m/m) 

Minimum Maximum Average Variability 

JA 30-JA 2S 0.000 0.005 0 .003 0.005 

JA 20-JA 2S 0 .000 0.017 0 .009 0.017 

JA 20-JA 3S -0.001 0.003 0.00 1 0.004 

JA 30-JA 3S -0 002 0.013 0.006 0.0 15 

JA20- River -0.003 0.017 0.005 0.021 

JA 2S - River -0.0 11 0.0 18 0.00 1 0.030 

JA I RB - River -0.008 0.022 0.004 0.030 
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Figure 11. Hydraulic gradient between JA 2S and the river indicating frequent gradient 
fluctuations and reversals. The river at this location is typically slightly losing except for during 
precipitation and gate adjustments. Figures are available in Appendix III for the gradient from 

JA 2D to 2S and JA 3D to 2D. Letters indicate distinct periods characterized by individual 
aquifer responses to be discussed later and are not related to those in Figure 9. 
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frequently (Figure 11 ). Losing river conditions tend to prevail during low-stage and 

dry periods while gaining conditions tend to occur when river stage is high and during 

precipitation events. Significant gradient reversal and steepening does not appear to 

occur between JA 3S & JA 2S or JA 3D & JA 2D (Appendix III) and instead the 

hydraulic gradient is flat resulting in flow nearly parallel to the river channel. 

The vertical hydraulic gradient between JA 2D & JA 2S and between JA 3D & JA 3S 

was always upwards except after overbank flooding in June and the resultant 

flattening of the water table throughout the study area (Figure 12). There was 
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Figure 12. Generalized vertical gradient in the floodplain during losing period (3/28/06) and 
during gaining period (5/11/06). 
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significant gradient variability with steeper vertical gradients being associated with 

precipitation and gate closures. The gradient between JA 2D & JA 2S was steeper 

than between JA 3D & JA 3S which suggests a greater amount of upward flow 

beneath the river (Appendix III). Both wells had the lowest sustained vertical 

gradients during the dry period in April when river stage was low. 

Between wells MW 18, MW 44, and MW 56 in the upgradient floodplain, ground 

water consistently traveled toward the river, with MW 56 to MW 18 having the 

0.02 ~-~----~----------~ 

I 0.015 
§. 
c: 
Q) 

:0 
~ 0.01 

(.'.) 

.~ 
:; 

~ 0.005 -
>­
I 

0 

0 

<O 
Q 
co 
£::' 
~ 

.A. MW56 - MW44 

+ MW44 - MW18 
Q MW56 - MW18 

<O 
Q 
co 
~ 

;:;; 

0------_ 
e 

<O <O 
Q Q 
~ 

~ ~ ;;; 

<O <O <O <O <O <O 
Q Q Q Q Q Q 
N M M v I.() ~ £::' ~ <O £::' ~ co 
v ;;; <O ;:::: 

Figure 13. Hydraulic gradient in upgradient floodplain wells between MW 56, MW 44, and MW 
18. Graph indicates increased hydraulic gradient when river stage is high and during periods of 

increased precipitation. 

steepest average gradient and MW 44 to MW 18 the shallowest average gradient 

(Figure 13). There was significant temporal variability in the hydraulic 

relationships between the wells with steepening and shallowing of the gradients 

related to precipitation and river stage fluctuations. The relative gradients between 

these wells, however, remained similar indicating that flow direction did not change 

significantly, but rather only the magnitude of flow. Figure 14 illustrates the overall 

hydraulic gradient and general losing and gaining flow regimes in the floodplain 
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MW56 ~ 

MW 44 

4/21/06 

Figure 14. Floodplain ground-water flow regimes indicating flow in the floodplain towards the 
river. When the gradient is shallow, the river is slightly losing and ground-water flow can not 

overcome hyporheic exchange flow. During precipitation events and when the gradient steepens, 
the hyporheic flow is overcome and ground-water discharge occurs. A complete set of flow 

regimes for 13 sampling dates is available in Appendix Ill. 

during a low-gradient losing period (April 21 , 2006) and a high-gradient gaining 

period (June 13, 2006). 

4.5. Organic Chemistry 

4.5.1. MTBE and BTEX 

Significant spatial and temporal variability in MTBE and BTEX concentrations 

were found during the study period (Table 6). T~mporal variability in individual wells 

ranged up to an order of magnitude. Several wells responded similarly, typically 

related to depth and location. Most of the shallow wells were affected by the 

overbank flooding in June 2006 resulting in lower concentrations than other times, 

probably due to dilution. A complete set of results for all wells and individual 

compounds is provided in Appendix III. 

Concentrations in JA 2D and JA 3D behaved similarly, with significant MTBE 

fluctuations of 2300 µg/L and 4 700 µg/L, respectively (Figure 15). BTEX 

concentrations also fluctuated but were considerably lower in magnitude. In 
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Table 6. Summary of VOC analyses for MTBE and BTEX. 

MTBE BTEX 

AVG STD DEV STD DEV MIN MAX AVG STD DEV STD DEV MfN MAX 

Location n (µg/L) (µg/L) Relative % (µg/L) (µg/L) (µg/L) (µg/L) Relative % (µg/L) (µg/L) 

JA IR 16 0.5 0.8 160 ND 2.5 ND ND NA ND ND 

8 ND ND NA ND ND ND ND NA ND ND 
River Upstream 

River 12 12.0 9.6 80 0.9 26.5 5.7 5.2 91 ND 16.9 
Downstream 

JA IRB 14 52.6 57.3 109 9.6 179 0.5 0.8 160 ND 21.8 

JA 2S 16 291 89.4 31 61.0 414 6.9 7.8 113 0.9 23.9 

JA2D 15 1710 1070 63 382 3420 23.7 24.2 102 ND 73.7 

JA 3S 17 110 50.9 46 46.2 218 1.7 1.7 100 ND 6.5 

JA3D 17 4240 1340 32 2300 7020 77.5 76.7 99 ND 267 

MW 18 15 8050 2390 30 3750 11920 706 215 30 425 1160 

MW 18D 15 7410 1730 23 5290 11200 1790 331 18 1240 2530 

MW44 14 1770 393 22 890 2310 68.5 37.8 55 12.3 1064 

MW56 12 3.6 4.0 111 ND 11 .9 12 14.6 122 ND 46.3 

2D 6 23 .8 7.3 31 18.6 28.4 0.5 0.8 160 ND 1.6 

3D 2 1700 650 38 1243 2170 23.5 25 106 6.3 NA 

4D II 114 55.3 49 50.8 228 23.6 5.4 23 14.5 30.8 

SD 8 48.1 42.3 88 4.0 110 0.3 0.8 267 ND 2.1 

comparison, absolute MTBE and BTEX concentrations at JA 2S and JA 3S were 

significantly lower and fluctuated more frequently. Both wells had sustained higher 

concentrations during March and April as well as in late May. Concentration 

fluctuations in these wells may be related to antecedent moisture conditions reducing 

dilution or perhaps related to lower dissolved oxygen affecting biodegradation 

(Appendix III for DO). 

Monitoring data at MW 18 and MW 18D has shown consistently high but overall 

declining concentrations of MTBE and BTEX since their installation. This pattern 

continued during this study with maximum MTBE concentrations occurring in 

January 2006 and declining through August 2006. These wells have also had 

historically high and declining BTEX concentrations which continued through this 

study with MWl 8D decreasing by 800 µg/L. Conversely, MW 44 has historically 
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Figure 15. MTBE and BTEX concentration data for floodplain wells. 

shown stable MTBE concentrations of approximately 2,000 µg/L since its installation 

in 2004. Except for a lower MTBE concentration during the overbank flooding in 

June, the concentration was close to this average. At MW 56, the average BTEX 
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concentration was typically greater than the MTBE concentration; however, both were 

typically very low. 

There were seven locations in the river and in the riverbed that were monitored 

during this study. There were no detections of MTBE and BTEX in upstream samples 

taken near the onsite dam. Downstream of the study area MTBE and BTEX 

contaminants were consistently detected (Figure 16). The highest downstream MTBE 

concentration was detected in early March and then decreased steadily through May 

before slightly increasing again. At JA IR, MTBE was the only contaminant detected 

in the river over three periods in March, mid-May, and late June to mid-July. 

Riverbed wells exhibited different contaminant concentrations and trends (Figure 

17). Riverbed well 2D, located the farthest upstream, yielded a consistently low 

average MTBE concentration and BTEX was not detected except for low-level 
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Figure 17. MTBE and BTEX concentrations in riverbed wells. 

detection in early June. Riverbed well 3D located 18 m downstream from 2D showed 

over 2,000 µg/L MTBE present on March 31. Although only sampled twice during 

this study, long-term monitoring has occurred at this location since 2004 and 

historically has shown elevated MTBE concentrations of up to S400 µg/L. As 

consequence, relative to other points along the reach, this location appears to be a 

significant plume discharge location and needs to be further discussed. Riverbed well 

4D, located lS m downstream from 3D, had a maximum MTBE concentration of228 

µg/L on March 31 and decreased steadily until the end of the study. 

The final two riverbed wells, JA lRB and SD, are located in the river at the study 

well transect. JA lRB MTBE concentration averaged 2S µg/L except for three 

sampling events in late May and June when MTBE increased to a maximum of 179 

µg/L. Riverbed well SD, located only 1.0 m from JA lRB also had an MTBE increase 
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during late May and June; however, the average and maximum concentration was 

lower than JA 1 RB throughout monitoring. 

4.6. Field Parameters and Ions 

In addition to the following brief summary, a complete list of results and 

discussion of field parameters, ions, and water temperatures is provided in Appendix 

III. Changes in EC and DO appear to be influenced by precipitation which dilutes 

shallow ground water and provides an oxygen source to the relatively oxygen depleted 

ground-water plume. In the deeper wells, this trend is replaced by increasing EC 

concurrent with the steepening hydraulic gradient and increasing MTBE 

concentrations. No trends in pH were identified throughout the monitoring period. 

EC correlated well to measured anion and cation concentrations, except where DO 

influenced the oxidation state of sulfate and nitrate. Table 7 summarizes the average 

ion concentration for several well groupings and shows some overall trends. 

Table 7. Average cation and anion concentrations. 

CATIONS (mg/L) ANIONS (mg/L) 
Na+ ~+ Mg2+ c;p er N03- PO/- sot 

River 20.1 1.4 0.8 3.5 15.7 0.6 0.1 6.3 

Riverbed 17.5 2.2 1.7 9.4 29 0.5 0 8.4 

Shallow Wells 48 5.9 6.2 42.9 93 0 0 2.5 

MW56 5.3 5.4 0.2 201 3.9 2.5 0 474 

Deep Wells 62 5.9 7.7 40 122 1.5 0 12.3 

In general, floodplain wells did not show any significant trends in water 

temperature other than deeper wells having lower temperature ranges. General 

temperature statistics are presented in Table 8 and graphs of well temperatures are 

located in Appendix III. Riverbed water temperature was useful in showing slight 

shifts in ground-water discharge and changes in hyporheic exchange. For example, 
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the gate closure in July was accompanied by a decrease in riverbed water temperature 

in all wells. This indicates a cooler ground-water rather than surface-water source and 

suggests that more significant ground-water discharge is occurring than at other times. 

Table 8. Temperature monitoring information and summary. 

Monitoring Temperature (0 C) 

Well Type Begin Date Minimum Maximum Average Variability 

River Transducer 1/21 /2006 1.2 27.9 13.4 26.7 

JA !RB iButton 4/21 /2006 9.6 19.3 14.6 9.7 

JA2S iButton 4/21 /2006 6.4 14.3 9.8 7.9 

JA 2D iButton 4/21 /2006 8.1 10.5 8.9 2.4 

JA 3S iButton 4/21 /2006 7.3 14.6 10.8 7.3 

JA 30 Transducer 1/21 /2006 9.3 11.7 10.2 2.4 

MW 18 iButton 4/21 /2006 8.1 13.5 10.6 5.4 

MW 180 Transducer 1/21 /2006 9.1 12.1 10.4 3.0 

20 iButton 6/ 1/2006 8.1 13.5 10.6 5.4 

40 iButton 4/21/2006 9.8 18.3 13.5 8.5 

50 iButton 611312006 13.8 17.5 16.0 3.7 
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5. DISCUSSION 

The objective of this study was to assess the effect of fluctuating river stage on an 

MTBE plume discharging to Pascoag River by investigating variability in the 

hydraulic gradient. Results of this study indicate that the hydraulic gradient in the 

floodplain varied hourly to monthly creating nearly continuous fluctuation of the river 

between gaining, losing, and parallel-flow. These fluctuations also appear to affect the 

position of the MTBE plume within the floodplain and may impact contaminant 

discharge to the river. 

The observed hydraulic behavior of the river and the hydraulic response of the 

floodplain to river stage and precipitation contradict the original conceptual model. 

First, short subsections of the river reach appeared to be losing while others have 

significant discharge of contaminated ground water and are gaining. And second, 

river stage increases and precipitation promoted a steepening of the hydraulic gradient 

towards the river. The factors responsible for these responses will be discussed as 

well as the implications to the contaminant plume and to the understanding of GW/SW 

interactions in general. 

5.1. Hyporheic Exchange 

Variations in hyporheic exchange created small-scale transient gaining, losing, and 

parallel flow systems along the reach by altering the hydraulic gradient immediately 

adjacent to the channel. Although a detailed analysis of the riverbed and riverbed 

exchange was not included with this study, limited hydraulic head, chemistry, and 

temperature data from the riverbed wells can be used to make inferences about small-
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scale exchange systems. The predominance of pool and riffle sequences, debris dams, 

and breaks in slope suggests short hyporheic flow paths of several meters (Figure 18). 

Upstream of 2D and 3D the river is shallow ( <0.5 m) and gaining conditions exist as 

shown by low riverbed MTBE concentrations and seeps in the riverbed when river 

stage is low. A break in slope and a debris riffle at 3D result in downward flow at the 

head of the riffle and upward flow at the toe (Conant Jr. 2000; Conant Jr. 2004; 

Harvey and Bencala 1993; Kasahara and Wondzell 2003 ; Woessner 2000) which also 

marks the head of a deep pool (> 1.0 m). Upward flow at 3D results in significant 

discharge of contaminated ground water as indicated by consistently high MTBE 

concentrations. Downstream at JA lRB and 5D, the channel shallows and a debris 

dam create losing and parallel-flow conditions as river water enters into the hyporheic 

zone (Conant Jr. 2000; Lautz and Siegel 2006). This is enhanced by the channel bend 

at 4D and river meandering downstream of 5D which causes water to enter the 

riverbank and flow parallel to the channel (Cardenas et al. 2004; Kasahara and 

Wondzell 2003 ; Woessner 2000) or pass through a lowland riparian area adjacent to 

the ground-water discharge lo~ation at MW 48. The structure and characteristics of 

the stone lining in the channel may also affect hyporheic exchange but the effects, if 

any, are unknown. 

Areas of ground-water discharge and recharge and areas of no exchange to the 

river channel are controlled by hyporheic exchange can also be inferred from riverbed 

well temperature and chemistry data (Appendix III). Most riverbed temperatures are 

similar to surface-water temperatures making interpretation of water source difficult. 

Nevertheless, in all riverbed wells gradient steepening in the floodplain appears to 
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Figure 18. Channel morphology along river reach. Cross section from A and A' as shown in 
Figure 6. The river is gaining upstream of 2D and 3D before a debris riffle creates losing 

conditions. Gaining conditions coincided with high MTBE concentrations in 3D. Parallel-flow 
and losing conditions persisted through the deep pool by 40 prior to channel shallowing and a 

debris dam creating losing conditions at JA IRB and SD. 

correspond to decreases in riverbed and river water temperature, regardless of air 

temperature. This indicates ground-water flow toward the river along the entire reach 

and an influx of cooler ground water through the riverbed. Ground-water discharge 

through the riverbed is also generally corroborated by chemistry data including and 

increase in EC and MTBE, and a decrease in DO. For example, gaining conditions at 

JA lRB in May coincided with higher MTBE concentrations and EC. In riverbed well 

3D, high MTBE concentrations, water chemistry in the riverbed, and channel 

morphology support the inference that under stable conditions (i.e. , no river stage 

fluctuations) significant contaminated ground-water discharge occurs at only this 
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location along the reach. These observations indicate that along the entire reach, 

contaminated ground water is proximal to the channel but is able to discharge only 

when the gradient is sufficient to overcome small-scale hyporheic exchange. 

5.2. Floodplain Processes 

Variability of the floodplain hydraulic gradient is directly related to a dynamic 

interaction of several processes affecting the shallow water table: 1) water table 

recharge, 2) evapotranspiration, 3) ground-water flow, and 4) river stage fluctuations 

driving oscillation of the water table. The magnitude and impact of each of these 

processes is dependent on the reservoir gate which also controls the characteristics of 

the river stage hydro graph and the hydraulic response of the aquifer (Table 9). 

Additionally, successive hydraulic gradient steepening periods have a compounding 

effect that ultimately have a more significant impact on water quality than individual 

events. 

Table 9. Factors and relative importance in controlling hydraulic gradient response in the 
floodplain. 

Spring Summer Summer 
River Stag_e Low River Stag_e High River Stag_e Low 

DRY (A) WET (B) DRY (C) WET(D) DRY (F) 
- A~il- - Mid Ma_y_- - Late M~- - June - -Ju~-

Recha~e S!_g_nificant S!_g_nificant Limited Si_g_nificant Si_g_nificant 
ET Limited Limited Si_g_nificant Limited Si_g_nificant 
GW Flow Moderate Limited Si_g_nificant Moderate Si_g_nificant 

Other possible factors controlling water table responses at individual wells are depth, 

local surface material, location of the well screen (Saines 1981), and proximity to 

surface-water runoff. 

The following is a discussion analyzing floodplain processes during several 

periods of this study referring back to the hydraulic gradient variability between JA 2S 
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and the River (Figure 11) which had the largest hydraulic gradient variability and 

steepening in the floodplain. The hydraulic gradient curve can be separated into six 

periods (A though F) based on river stage elevation. This includes the low-stage 

periods in early spring (A & B) and late summer (F), the high-stage period in late 

spring to early summer (C & D), and the transitional periods in mid-February, mid­

May, and early July corresponding to sudden river stage changes due to gate 

adjustments (E). 

5.2.1. Low River Stage 

Spring Dry Period (A) 

Precipitation in this period was relatively infrequent, river stage was low, and there 

was a low hydraulic gradient away from the river channel at JA 2S. Episodic short­

duration precipitation events created a significant transient effect on the otherwise 

stable hydraulic gradient. During a two-part precipitation event on April 23 and 24, 

2006, river stage and the floodplain water table rose nearly concurrent with 

precipitation (Figure 19). In the two hours between individual precipitation events, 

river stage receded and then increased with the subsequent rainfall. Flashiness was 

magnified with the gate closed, preventing sustained discharge and decreasing 

stormflow lag time. All wells in the study area responded similarly to river stage 

during the first event, but the water table response to the second event was exacerbated 

by saturated soil conditions and the water table rose more than river stage. As a result, 

the river which was initially slightly losing, reversed and became strongly gaining as 

the head in JA 2S was well above river stage. The greatest floodplain well response 

came from the wells closest to the river and diminished with increasing distance from 
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Figure 19. 24-hour river stage and water table response to precipitation event on 4/23 - 4/24. 
Shows the initial similar response at all locations followed by river stage decline then subsequent 

increase. This results in steep hydraulic gradient from JA 2S to river and throughout the 
floodplain. 

the channel. Ritter et al. (2002) described this response and Sklash and Farvolden 

(1979) made a similar observation which they attributed ground-water ridging, a 

process where rapid water table recharge forms a ridge or mound adjacent to the river 

channel. The exact shape of the water table irregularity is related to site specific 

properties of the landscape and the aquifer material. According to this theory, the 

ridge forms due to almost instantaneous saturation of the capillary fringe and rapid rise 

in the water table. In Pascoag, the capillary fringe may extend to between 50 and 100 

cm above the water table, depending on specific soil properties (Fetter 1994). Ridge 

formation temporarily steepens the hydraulic gradient and results in increased 

discharge and contribution to stormflow. According to Figure 19, gradient steepening 

both towards the river and the topographical high near the source zone may occur; 

however, a flat hydraulic gradient between JA 3D and JA 2D does not indicate 
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occurrence of flow towards the slope. Following precipitation events, the ground­

water ridge dissipates due to lateral drainage and the slightly losing gradient is 

reestablished until the next precipitation event. 

This hydraulic gradient response is also related to antecedent soil moisture 

conditions (field capacity), which is similar to but independent of capillary fringe 

processes. The field capacity of a fine sandy loam is approximately 0.25 and 

decreases during dry periods (Fetter 2001). During large or successive precipitation 

events, infiltration elevates soil moisture and soil may reach saturation resulting in a 

rapid rise of the water table. 

Spring Wet Period (B) 

During the middle of May there were several days of sustained precipitation that 

kept soil moisture high, the water table high, and ET low. The gate was still closed 

resulting in low river stage extending through these precipitation events. Direct water­

table recharge at the surface led to a large head difference and a sustained steepened 

hydraulic gradient of approximately 0.06 m/m towards the river. As the reservoir 

level reached the overflow spillway and river stage slowly increased, the head 

difference was reduced and the gradient flattened. 

Summer Dry Period (F) 

During the summer dry period, the floodplain water table was equilibrating to the 

lower river stage. The ET rate was high and resulted in low amplitude diurnal 

fluctuations in the water table and hydraulic gradient. This indicates that the water 

table and capillary fringe are still within influence of surface processes. Soil 

saturation may remain relatively high due to extension of the capillary fringe which 
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facilitates ground-water recharge during precipitation (Fetter 2001). This allows the 

water table in July and August to have a similar response to precipitation events as the 

earlier dry period in the spring. 

5.2.2. High River Stage 

Spring Dry Period (C) 

In late May 2006, a short dry spell and high ET promoted a steady water-table 

decline enhanced by a shallow water-table depth and decreasing reservoir spillway 

contributions. River stage discharge was sustained with the reservoir gate open and 

river stage remained high. As the water table flattened, the losing gradient between 

the river and JA 2S was reestablished. 

Spring Wet Period (D) 

This period was hydraulically unstable as two major precipitation events occurred 

raising the river to flood stage and causing floodplain inundation. The hydraulic 

gradient responded by repeatedly alternating between gaining and losing, presumably 

in response to the direct water table recharge at the surface (Fetter 2001). Flattening 

of the floodplain water table and the vertical and horizontal gradients may have been 

initiated by overbank flooding on June 8, 2006 (Girard et al. 2003). Following 

precipitation events, the water table was close to the surface which amplified the 

influence of ET and caused the water table to decline rapidly. 

5.2.3. Effect of Gate (E) 

The transition between low river stage and sustained high river stage occurred 

rapidly and was generally only related to opening or closing of the reservoir gate. In 
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this system, natural seasonal variability in stream flow is muted by the dominance of 

the reservoir effect. The transitional period immediately after a gate adjustment is 

perhaps the most dynamic period as the floodplain aquifer and water table must 

equilibrate to a new hydraulic relationship with the river. This is best exemplified 

after the gate closure in July, where immediately following gate closure a relatively 

steep gradient (0.03 m/m) was established between the aquifer and the river and 

slowly diminished as the water table declined. If not for the precipitation events, the 

system presumably would have stabilized and the river would have reverted back to a 

slightly losing gradient. This process results in a flushing effect in the aquifer as it 

releases a large volume of ground water from storage. 

Gate opening and rapid river stage increase in the absence of precipitation on May 

18 and June 1, 2006, may result in limited traditional bank storage. In this case, 

because river stage rise is not accompanied by precipitation, ground-water ridging 

does not occur and the hydraulic gradient steepens away from the channel, enhancing 

losing river conditions. 

5.3. Comparison to other GW/SW interaction studies 

Literature review indicates the results of this study are similar to some but 

generally different from others. Although the process has been described in textbooks 

(Ritter et al. 2002), few studies identified a similar process of ground-water recharge 

leading to strengthening of gaining conditions (Wroblicky et al. 1998). Many studies 

indicate a response similar to the classic model of bank storage, others report highly 

transient and variable ground-water flow, hyporheic exchange, and OW/SW interface 
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Table IO. Literature comparison of watershed area to stormflow response. Some studies did not 
report basin area or only indicated stream order. These rivers had to be checked for watershed 

areas. See Appendix III for specific references used. 

Watershed Size Number of Average Area Typical 
Studied Studies (km2) Stormflow Response Type 

Small (<100 km7 ) 10 47.5 Transient Hyporheic 
Medium (100-1 ,000 km7 ) 2 324 Mixed 
Large (> 1,000 km2) 12 86,500 Bank Storage 
Mixed (> 1,000 to <100 3 1st_ 5th Order Mixed 
km2) 

position. Taking a closer look reveals that high-order river systems typically respond 

with bank storage while low-order river systems typically respond with alteration of 

small-scale transient hyporheic processes (Table 10). This is similar to the process 

described by Kasahara and Wondzell (2003) regarding the importance of channel 

morphology controls on second- versus fifth-order rivers. This response may be 

related to stormflow lag time which is dependent on several watershed factors, 

including basin size, discharge per unit area, and other basin characteristics (Ritter et 

al. 2002). Large river systems tend to have longer lag times with disconnected 

precipitation and stormflow. Pascoag River has only a slight lag between precipitation 

and stormflow which is consistent with a low-order river with a small watershed that 

responds quickly to recharge. River stage is also sensitive to changes in predominate 

landuse, with vegetated uplands providing sustained discharge to the river with the 

gate open and increased proportion of impervious surfaces generating flashy storm 

runoff with the gate closed. 

Basin lag is important to consider in ground water/surface water interaction studies 

due to bank storage and gradient reversal processes. Typically in these studies, river 

stage increases leading to a temporary gradient reversal and bank storage are expected 

and even assumed. This model seems valid in high order systems but in low order 
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systems, such as Pascoag River, the timing of the river stage increase relative to water­

table response precludes the reversal. Instead, precipitation quickly recharges the 

shallow floodplain water table creating a ground-water ridge or mound. River stage 

also increases, but due to the over-response from the water table, bank storage can not 

occur and instead steepening of the hydraulic toward the river is promoted. Thus, 

river order appears more important than typically realized when considering the 

expected response of a coupled ground-water/surface-water system to recharge and to 

river stage and water table fluctuations. 

5.4. Contaminant Fate and Transport 

This study marked the first extensive ground water/surface water interaction 

investigation at the Pascoag site. The data suggests that steepening of the hydraulic 

gradient shifts a portion of contaminated ground-water discharge to an upgradient 

location. Prolonged and successive gradient steepening towards the river likely affects 

the plume discharge more significantly than individual or short-term steepening. The 

results indicate that a more complex and transient-ground-water interaction with 

surface water exists than originally perceived. This altered conceptual model of the 

plume behavior has important implications for this site and other sites where similar 

complex interactions may occur. 

5.4.1. Plume Dynamics 

Combining the floodplain hydraulic gradient with contaminant distributions allows 

for development of a conceptual model of transient contaminant fate and transport. 

Steepening of the gradient between MW 56 and MW 18 results in increased ground-
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water discharge in the floodplain but the overall flow regime does not change 

significantly. There appears to be no significant impact on MTBE concentrations due 

to the fluctuating gradient at MW 18 and decreasing concentrations may indicate a 

diminishing source zone. Relatively high concentrations at MW 44 indicate that the 

plume discharges to the floodplain at this location but is only consistently able to 

discharge to the river near 3D. When the gradient is low, the center of the plume is 
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Figure 20. Conceptual model of ground-water flow in floodplain during a low-gradient period 

(left) and in a steep gradient period (right). When the gradient is low, upstream discharge occurs 
only near 30 due to plume deflection toward MW 48 by small-scale hyporheic exchange. 

Gradient steepening allows ground-water to discharge along the reach as the hyporheic zone 
shrinks or disappears. 
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deflected by hyporheic processes parallel to or away from the river channel towards 

the downgradient focused ground-water discharge location near MW 48 (Figure 20). 

When the gradient steepens between JA 2S and the river, the hyporheic processes are 

overcome and significant discharge occurs along the entire reach (Figure 20). Further 

ground-water and surface-water flow alteration occurs due to a channel cutoff that 

develops over the lowland riparian area and into the discharge are near MW 48. The 

increase in MTBE concentration in JA 2D without a steepening gradient between JA 

3S and JA 2S indicates that the plume must migrate from upgradient near MW 44. 

Ground water transport along this flow path may be enhanced by a former channel that 

has subsequently been filled. Historical photographs show this channel was 4 to 5 m 

wide and was probably 1 to 2 m deep (Appendix I). This buried channel coupled 

withother buried structures has created complicated subsurface geology and has 

precluded a detailed investigation by RIDEM in the area around MW 18, 44, and 56. 

5.4.2. Ground-water Monitoring and Natural Attenuation 

Ground water at the Pascoag site and most other sites is monitored quarterly to 

semi-annually as specified by individual site operation and management plans 

(Hazardous Waste Clean-Up Information 2007). This plan is usually adequate for 

sites not in proximity to surface water. The results of this study indicate that a 

GW/SW interaction survey with high resolution spatial and temporal water-quality 

sampling and hydraulic gradient data may be required to accurately delineate and 

monitor a plume discharging to surface water. While this may be a costly upfront 

proposition, it may help avoid higher long-term operation and management costs. 
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Although Pascoag has undergone extensive pump-and-treat remediation, 

biological degradation and discharge to the river has aided in natural attenuation of the 

plume. Hinzman et al. (2000) showed that compared to active remediation, natural 

discharge of contaminants to surface water can remove an equal mass of contaminants 

from the system. In Pascoag, the contaminant mass discharged to the river varied 

considerably and was not solely related to dilution but probably a combination of 

dilution and variable ground-water discharge. Downstream from the study area, 

MTBE mass discharged by the river varied between 3 g/day and 1100 g/day and 

BTEX 0 g/day and 220 g/day. Periods of high ground water and contaminant mass 

discharge coincided with aquifer flushing during the steep gradient periods induced by 

precipitation and gate closure. This can potentially affect stream health and benthic 

habitats with pulses of high-level contaminants (Barlow et al. 2000; Schilling et al. 

2006) rather than low-level continuous exposure and could easily be missed by 

quarterly monitoring. It may also complicate estimation of long-term contaminant 

discharge and total maximum daily loads. 

Water table fluctuations an~ the continuous shifting of the ground-water plume 

may affect biodegradation and smear contaminants above the water table and into 

different areas of the floodplain. Degradation may also be influenced by the 

alternating of gaining and losing river conditions and the resulting effect on dissolved 

oxygen delivery to the riverbed and riparian zone. This impact was not assessed in 

this study, nor was a more detailed analysis of contaminant fate. 
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5.5. Limitations and Sources of Error 

There are several limitations ofthis study and to the associated data. For instance, 

monitoring of the water levels and subsequent water-table elevations contain some 

inherent error (Table 11). The scale of these errors may render some perceived 

hydraulic gradient fluctuations insignificant. Nonetheless, the consistency of the 

Tablet t. Transducer measurement QA/QC. Error was usually associated with disturbing 
transducer during sampling or insufficient water table reequilibration after pumping prior to 

transducer starting. 

Monitoring 
Mean Error 

Well Per Period 
Periods 

(m) 

JA JR 10 0.005 

JA 2S 7 0.008 

JA2D 11 0.004 

JA 30 11 0.002 

MW18D 10 0.017 

results and the independent corroboration between parameters indicates that trends are 

accurate. 

While some of the characteristics of the Pascoag River and this site make it 

relatively unique, there is still valuable informatiqn to be processed. The data 

obtained during this research is applicable to rivers with small watersheds, rivers that 

are flashy, and most importantly to all locations where plumes discharge to surface 

water. Because of the intrinsic nature of this topic, the scale ofresponses and 

transience may vary from site to site; however, the processes influencing the system 

should remain similar. Furthermore, it is important to understand what site specific 

information and characterization studies should be completed before developing site 

remediation and monitoring plans. 
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This study is also limited by the scale of this thesis, to the original conceptual 

model, and to the thesis question at hand. Because of this, there was certain field data 

not collected or included in this work. For example, this thesis is not able to identify 

the exact location of discharge when the plume discharge location apparently shifts 

upstream. It should also be noted that ground-water and contaminants may still be 

entering the floodplain downgradient of the well transect related to the northward 

ground-water contaminant flowpath described above. More monitoring well locations 

would allow for a complete transient plume delineation. Similarly, more riverbed 

wells would allow for identification of additional contaminant discharge locations and 

would complete the model of hyporheic exchange along this river reach. Soil 

properties including soil moisture, grain size, and soil thickness would have aided in 

explaining vadose zone and capillary fringe processes. And finally, no analysis of 

changes to contaminant degradation was included as part of this study. 
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6. SUMMARY AND CONCLUSIONS 

This study demonstrates the complex and transient relationships that occur where 

ground water and surface water interact. The research objective of this study was to 

assess the effects of fluctuating river stage on an MTBE contaminant plume 

discharging to the Pascoag River. Results show that the hydraulic gradient fluctuates 

hourly to monthly, due to river stage and floodplain water table response to 

precipitation and reservoir gate adjustments. The river along this reach is 

predominantly gaining; however, hyporheic exchange processes vary spatially and 

temporally, forming small-scale gaining, losing, and parallel flow systems. 

Precipitation events rapidly recharge the shallow floodplain water table, causing 

ground-water ridging and steepening of the hydraulic gradient towards the river. Even 

though this response also occurs when river stage is high, ultimately, river stage 

fluctuations have the largest influence controlling the response of the aquifer. The 

magnitude of these fluctuations is directly related to the size of the watershed which 

drives river flashiness, prevents sustained stormflow, and enhances the gradient 

toward the river. 

The gasoline contaminant plume is significantly affected by shifting and 

steepening of the hydraulic gradient. Under stable hydraulic conditions, the plume 

enters the floodplain adjacent to MW 44, but only a small portion is able to discharge 

to the river. Instead, hyporheic flow deflects the plume downgradient parallel to the 

river where it can discharge. When the hydraulic gradient steepens towards the river 

following a precipitation event, the hyporheic exchange systems shrink or disappear 

and the plume enters the river channel farther upgradient. Gradient steepening 
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following precipitation and gate closures results in a flushing effect of the floodplain 

generating a high influx of contaminated ground water to the river. These episodic 

releases may impact the stream and benthic habitats more dramatically than long-term 

low exposure. 

Interpretation of these results indicates that the current understanding of G W /SW 

interactions is able to explain many of the significant processes occurring in 

floodplains but work still remains. Several questions, comments, and conclusions 

arise from this work: 

• Floodplain processes, including water-table recharge, ET, and ground-water flow, 

play key roles in controlling the water table position relative to river stage. Where 

the water table is high, soil properties and antecedent moisture conditions may 

allow the capillary fringe to extend close the surface, enhancing water table 

recharge and ground-water mounding during precipitation events. 

• Reporting river order is often considered an ancillary requirement of ground­

water/surface-water interaction studies. The results of this study indicate that river 

order may contribute significantly to controlling hydrograph characteristics 

including lag time and stormflow duration. When river stage rise is concurrent 

with precipitation, infiltration and subsequent water table rise may prevent bank 

storage. Furthermore, if the watershed is small, stormflow may recede soon after 

precipitation ends and the gradient towards the river may steepen. Floodplain 

characteristics including slope, vegetation, water table depth, soil properties, and 

antecedent moisture are all factors that control this response. 
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• The presence of a dam can affect floodplain hydrology by producing episodic 

shifts in the hydraulic gradient, flushing of the aquifer, and occasional induced 

bank storage. Watershed reduction with dam closures can drastically affect river 

hydrographs and affect floodplain processes. 

• Typical ground-water monitoring frequency may be inadequate to delineate 

transient plume characteristics where discharge to surface water occurs. An initial 

assessment should be made to determine spatial and temporal plume interaction 

and stability. Focusing on "snapshot" contaminant and hydraulic gradient 

distributions may create an incomplete and misleading conceptual model. 

Hydraulic gradient alteration and plume movement may be more likely to occur 

where river stage and/or water table fluctuations are more significant. 

• The already complex conceptual model of GW/SW interactions becomes even 

more complicated when contaminant discharge occurs to surface water. Shifting 

water table configurations and hydraulic gradient magnitudes affect ground-water 

flow and can change discharge locations. A ground-water plume discharging to 

surface water may have several discharge locations related to transient water-table 

configurations. Even along a gaining river, channel and riverbed geomorphology 

may create small-scale hyporheic variability resulting in losing, gaining, and 

parallel-flow conditions adjacent to the channel which can deflect the plume and 

impact discharge locations. An effort should be made by governing agencies to 

facilitate large-scale research at contaminated sites where discharge to surface 

water occurs in order to assess these GW/SW interactions. 
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APPENDIX I: STUDY SITE 

1. Study site 

1.1. Climate 

Long-term temperature monitoring data is available from T.F. Green Airport 

located in Warwick, RI, 35 km southeast of Pascoag. Mean annual temperature from 

1961-90 was 10.2°C with a mean monthly temperature range of -2.3°C to 22.6°C with 

the low in January and the high in July (Barlow 2003). Precipitation data are available 

for the period from 1957-99 for Woonsocket, RI, 17 km east of Pascoag. Average 

annual precipitation was 122 cmly: with an average monthly precipitation of 8. 9 to 

11.7 cm/mo with the low in June and the high in November. The more recent period 

from 1995-99 indicates a slight increase in precipitation with the range increasing to 

7.9 to 15.2 cm/mo and the low and high months shifting to August and January, 

respectively (Barlow 2003). 

1.2. Bedrock 

The bedrock augen granite g~eiss is typically medium-to-coarse-grained with large 

feldspar porphyroclasts, and is generally variable in compositions (mostly quartz, 

feldspar, biotite, hornblende, and other accessory minerals). The second, less common 

rock unit is generally fine-to-medium-grained granite gneiss that lacks porphyroclasts, 

and is more quartz-rich than the augen granite gneiss (Hermes et al. 1995; Quinn 

1967). This unite forms a narrow gradational lens that extends from the source zone 

into the middle of the site. Both rock units are typically massive but display lineation 

and foliation that is locally very strong. Both units are highly fractured with fracture 

locations dependent on the zones of lineation and foliation. 
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A fracture study by Allen and Boving (2006) found the dominant trend of mineral 

lineation is approximately N 2° E and plunges 10° north. Dominant fractures strike 

nearly north-south with an average dip of 65° E (Figure 21 ). Another less dominant 

fracture orientation trends N 75°W and dips 75° south. The frequency of these 

fractures may be localized into fracture zones, with the rock units being more massive 

between these zones. Other fracture orientations occur, but their frequency and 

importance appear to be less significant. Also, orthogonal fractures that trend along 

the same dominant strike direction but dip much more shallowly were detected. 

c 

c 
llO 

Figure 21. Rose diagram of bedrock fracture trends collected from outcrops in and around 
Pascoag (Allen and Boving 2006). 

1.3. Historical Photographs 

Photographs of the textile factory that was located at the study site from the 1800s 

through around 1960 (Figure 22 and Figure 23). 

64 



Figure 22. Former textile factory at the site. Photograph taken looking south from a train bridge 
that spanned the river. The Pascoag River currently flows through the channel in the center of 
the photograph. Notice the channel on the left in front of the building. This channel has since 
been filled. The wells for this thesis were located in the foreground just past the bridge over 

channel before the bend. (Burrillville Preservation and Historical Society 2005). 
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Figure 23. 1939 Aerial photograph of the textile factory (Rhode Island Geographic Information 
Systems 2006). A points to the current channel of the Pascoag River. B shows the location of the 

channel that has since been filled in. (North is up). 
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APPENDIX II: METHODS 

1. Field Methods 

1.1. Well Installation and Surveying 

The four wells already present in this area prior to this study, MW 18, MW l 8D, 

MW 44, and MW 56 all have longer screens than the wells installed for this study. All 

of the floodplain monitoring wells were installed with a GeoProbe® by RIDEM using 

the following method. First, depth to refusal was determined by pushing sections of 

3.81 cm steel rod into the ground until refusal was reached. It is unclear ifrefusal is 

bedrock, dense till, or boulders; dense till is suspected. These rods were removed and 

a hollow 7.62 cm rod fitted with a disposable point was pushed to the desired depth in 

a new hole. A 2.54 cm PVC monitoring well was inserted into the rod and coarse sand 

annular fill was poured into the bottom of the well around the screen. The disposable 

point was then detached and the rod carefully removed while adding sand pack around 

the well. At approximately 1.5 m, bentonite was added to seal the well followed by 

sand on top. Short sections of larger diameter PVC pipe were fitted around the 

monitoring well to allow for datalogger cables and PVC pump tubing to remain in the 

well. This also allowed the wells to be locked for security. Wells were developed by 

surging with a check valve to remove sediment. 

The wells in the river, JA IR and JA lRB, had to be installed securely to prevent 

destruction during high river stage. The well consisted of a 1.5 m long by 10 cm steel 

casing fitted with two interior wells and was sealed at the bottom. The riverbed well 

was inserted through a sealed fitting and a 0.3 m screen extended into the riverbed. 

The purpose of the river well was to house the pressure transducer monitoring river 
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stage and was only screened through the river. The steel casing was perforated with 

approximately fifty 1 cm holes to allow interaction with the river. The well unit was 

installed in the river by digging a hole in the riverbed and was attached to the river 

channel wall with steel rods. Due to the extremely high river stage, well extensions 

were installed to bring the height of the wells above the river surface. Other riverbed 

wells were installed by pushing the PVC well into the riverbed and hitting with a 

rubber mallet until refusal. 

The four wells already present in the study area were previously surveyed for top 

of casing elevation by RID EM. The additional wells installed for this study were 

surveyed using the known elevation from MW 44. All wells, including the already 

existing wells, were surveyed with a Topcon AT-G6 Auto Level using a leveling rod. 

Instrument error is ± 2 mm at 1 km, and total error is probably less than 1 cm 

(Laserbeams.com 2006). 

1.2. Slug Testing 

Bouwer-Rice falling head slug tests were performed on all wells to determine 

hydraulic conductivity. The test was performed by placing a pressure transducer at the 

bottom of the well and then inserting a solid slug. Manual depth to water 

measurements were also taken before and after the test. The test measured the 

response of the slug insertion and the slug removal after waiting for the water table to 

respond. Generally, the slug removal data provided a better response curve. Data was 

transferred to AQTESOL V software to calculate hydraulic conductivity using the slug 

testing wizard and the appropriate input parameters. 
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1.3. Equipment and Specifications 

Table 12 lists the equipment brand and specifications for field instruments and 

data collections devices. 

Table 12. List of equipment and specifications used for field work and data collection. 

Instrument Model Calibration Type Accuracy Other 

Dissolved YSI 550A 
Internal calibration 

NA 
Oxygen with moist sponge 

2 point external 

Thermo Orion 210 
calibration with pH 

pH 
A+ 

4 and 7 buffer NA 
solutions (Wi lkem 
Scienti fie) 

1 point external 
calibration with 

Temperature verified 
Temperature 

Electrical 
YSI EC 300 

1413 µS KCI 
with NIST thermometer 

compensated, used 

Conductivity solution made from 
to 1°C 

for manual well 
Certified ACS grade temperature 
salts 

Dallas Manufacturer specifies 

Temperature 
Semiconductor to± 1°C, Precison for 

Range: -5 to 26°C, 
Thermochron Factory calibrated all verified to 0.7°C at 

Sensors 
iButton® high range, and 0.2°C at 

Resolution: 0.1 25°C 

DS192 1Z low range 

In-Situ 
Resolution: 1 mm, 

Pressure 
MiniTROLL 

At 21 m range (30 Operated in surface 
Transducer/ 

Standard and 
Factory calibrated psi)/0. 1 % full scale, mode, vented and 

Datalogger 
Professional 

0.05% at 15°C temperature 
compensated 

In-Situ 
Manufacturer specifies 

Temperature/ 
MiniTROLL Factory calibrated 

to ± 0.25°C, verified to 
Range: -5 to 50°C, 

Data logger 1°C with NIST 
Professional 

thermometer 

Interface Probe Oil recovery 
Factory calibrated In water to 3 mm 

Systems (ORS) 
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1.4. River Discharge 

River discharge was measured during the study by the float method due to the 

simple dimensions of the river channel and regular flow (Hudson 1993). Also, only 

an approximate measurement of discharge was required. The method consisted of first 

measuring a straight 10 m section of the river at the study site. Average channel width 

and depth were measured at 0 m, 5 m, and 10 m by taking six depth measurements 

across a river channel transect. Average velocity was determined by measuring ten 

replicates of travel time of a 10 cm x 9 cm x 5 cm block of wood over the 10 m 

section. From this, discharge was calculated by (Oklahoma Water Resources Board 

2004): 

Qriv = A X Vavg 

Where: Q,;v =River Discharge (m3/sec), 

A= Cross Sectional Area (m2), 

Vavg = 0.85 x Measured Surface Velocity (m/sec) 

This procedure was repeated at various river stages in order to construct a river 

discharge ratings curve. 

2. Laboratory Methods 

2.1. Volatile Organics Analysis 
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Table 13. GC/MS and purge and trap operating parameters. 

.- E_g_ui.£.ment Method Parameters 

Injector Temp: 250°C 

SplitRatio: 20:1 

Shimadzu GC 17 A Total flow: 28.5 mL/min 

Oven Program: Initial Temp 40°C (hold 2 min) 

Split/Splitless injector to I 30°C @ 6°C/min 

GC 
to 210°C @ 35°C/min (hold I 

-> Straight liner w/wool min) 
Pressure Program: Initial Pressure 70 kPa (hold 2 
(constant velocity) min) 

Rtx-VMS 30m x 0.25 mm to 109.8 kPa @ 2.7 kPa/min 

x 0.25 µm to 144.4 kPa @ 14.6 kPa/min 

Purgeable 
volatiles method Interface Temp: 280°C 

modified after Detector Voltage: 1.00 kV 
EPA Method 624 Scan Parameters 

Solvent Cut: 2.5 min 

Acquisition Time: 2.6 - 20.29 min 

Mass Range: 45 - 260 M/Z 

MS Shimadzu QP5000 
Interval: 0.22 sec 

Threshold: 1000 

Integration Parameters 
Width: 2.00 sec 

Slope: 500 *I 000/min 

Drift: 0 *1000/min 

T.DBL: 1000 min 

Sparge Mount Temp: ambient 
Purge Time: II min 

0 1 Analytical 4660 Purge Trap Temp: ambient 

Purge Modified after 
Water Management: I 00°C 

and 
Tenax #10 Trap 

EPA Method 
Desorb Preheat: 180°c 

Trap 50308 Desorb Time: 1.5 min 
5 mL Sparge Vessel Trap Desorb Temp: 190°C 

Bake Time: 6min 

Trap Bake Temp: 210°c 

All GC/MS and purge and trap operating parameters are listed in Table 13. The 

overall method was similar to EPA Method 624 which is a purgeable volatiles method 

capable of low µg/L MTBE detection. The GC/MS was internally tuned daily with 

PFTBA tuning standard prior to running samples to verify mass resolution. The tune 

was then checked by injecting a BFB external tuning standard to check relative peak 
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intensities. Instrument calibration was performed with six external standards at the 

following concentrations 2, 10, 20, 40, 80, and 160 µg/L. Each standard and all 

samples were prepared and introduced in the same manner through the purge and trap 

device. Deionized water or the sample was carefully transferred from the VOA vial 

into a clean 5 mL purge and trap luer-lock syringe and adjusted to 5 mL. For each 

standard, an appropriate amount of 10 mg/L volatiles working standard and BFB 

surrogate standard (for samples only surrogate was added) was added to the syringe 

through the luer-lock opening (Table 14). The standard or sample was then 

transferred though the injection port on the purge and trap into the 5 mL sparge vessel. 

After helium purging and purge and trap method completion, the extracted volatiles 

were transferred from the trap to the GC column for the start of the analytical method. 

The sparge vessel and the purge and trap syringe were rinsed thoroughly between 

samples. 

Table 14. Stock standard vendor and concentrations. 

Standard/Re~ent Manufacturer Stock Concentration Worki~ Concentration 

Volatiles SPEX CertiPrep P-GAS 2,000 mg/L 10 mg/L 

BFB Ultra Scientific STS-11 ON- I 2,000 mg/L 10 mg/L 

Methanol Fisher Scientific Purge & Trap NA NA 
Grade Methanol 

Standards were prepared from purchased certified standards in Purge and Trap 

Grade Methanol. Working standards were stored in the freezer and replaced when 

quality control indicated standard degradation. Calibration was performed by linear 

regression and was accepted if R2 was >0.995. Calibration verifications were 

analyzed after calibration, after every ten samples, and at the end of a run. Acceptance 

criteria range was ± 15% in general, but a daily precision of± 5% was preferred in 
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order to minimize relative error associated with response variability. Method blanks 

spiked with surrogate standard were analyzed at the start of each run. Many dilutions 

were required and were prepared in 10 mL volumetric flasks. 

A minimum detection limit (MDL) study was completed to determine the 

analytical capabilities of the instrument. The study was completed by analyzing 7 

replicates of deionzed water spiked with 5 ug/L of the volatiles standard. The MDL 

was calculated by multiplying the standard deviation of the replicates by the 

corresponding student's t-statistic. The MDL is the concentration at which there is 

95% confidence that the concentration is not zero. If quantified, values below this 

must be reported as "not detected". Values between the MDL and the lowest standard 

(the reporting limit) must be reported as tentative values but can be considered reliable 

if a blank passes. 

2.2. Ion Analysis 

Cations and anions were analyzed by ion chromatography on a DX 120 (Dionex 

Corporation). All calibration standards were prepared from 250 mL intermediate 

standards which were prepared from 1000 mg/L stock standards. Stock standards 

were made from certified granular salts containing the analyte of interest. All samples 

were filtered with a 0.45 µm filter prior to analysis. Anion eluent was made by 

dissolving 0.19 g of sodium carbonate and 0.142 g of sodium bicarbonate to 1 L. 

Cation eluent was made by diluting 28 mL of 1 N sulfuric acid to 1 L. 

Calibration standard levels for anions and cations are listed in Table 15. Anion 

calibration was four-point while cation calibration was three-point. Both calibrations 

were accepted if the R2 was >0.992 or better and an initial calibration control standard 

73 



Table 15. Anion and cation calibration levels. 

Calibration Anions (m_uL) Cations (m~L) 

Level Chloride Nitrate Pho~hate Sulfate Sodium Potassium M~esium Calcium 

LL! 1 0.5 0.25 1 1 0.25 0.25 1 
0 
;;.. LL2 4 2 1 4 10 2.5 2.5 10 <I) 

...J 
LL3 10 5 2.5 10 20 5 5 20 

~ 
0 LL4 20 10 5 20 NA NA NA NA ...J 

0 HLl 20 NA NA NA 20 5 5 20 
;;.. HL2 50 NA NA NA 50 10 10 50 <I) 

...J 
80 120 120 {n HL3 NA NA NA 15 15 

:I: HL4 120 NA NA NA NA NA NA NA 

passed (±15%). Addition calibration verification standards were analyzed after ten 

samples and as the last sample of every run. Periodic method blanks and duplicates 

were analyzed to determine reproducibility and system performance. 

Table 16. Anion and cation calculated MDLs. 

Minimum 
Detection Limit 

Tai:g_et Ion (m_g[L) 

Chloride 0.09 

Nitrate (as nitrate) 0.11 

Phosphate (as phosphate) 0.17 

Sulfate (as sulfate) 0.22 

Sodium 0.41 

Potassium 0.29 

Magnesium 0.07 

Calcium 0.19 

Blanks determined any background system contamination and the method reporting 

limit. An MDL study was also completed for both anions and cations (Table 16). 

The calculated MDLs for chloride, nitrate, and magnesium may be lower than 

instrument analytical capabilities and can only be used as rough guidelines. 

3. Precipitation and Temperature 

A combination of weather stations was required to accurately determine the 

average daily precipitation and temperature. This was because of inconsistencies in 
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individual datasets and because the Pascoag Weather Underground station (0.5 km 

from study site) came online April 5, 2006 (Weather Underground 2006). Once 

online, there were times when the station was offline for short periods and no data was 

collected. When service returned, any precipitation that had accumulated was 

registered as a single event. This also skewed the average daily temperature. 

Accompanying datasets were obtained from the National Oceanic & Atmospheric 

Administration (NOAA) website (NCDC 2006) for Woonsocket, RI, North Foster, RI, 

and Worcester Regional Airport, MA, at respective distances of 17 km, 13 km, and 42 

km from the central study site in Pascoag. Values obtained from these stations were 

averaged to obtain an approximate value for Pascoag. River hydrographs were 

checked for single events and where inconsistencies occurred, the Pascoag Weather 

Underground data was typically used. 
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APPENDIX III: RESULTS AND DISCUSSION 

1. Slug Tests 

0 

0.1 '--'--'--'--'--'--'--'--'--'--'--'----''----''--'----''----''--~'--'--'--
0 4. 8. 12. 16. 

Time (sec) 
Data Set: E:ITHESIS\Pascoag_Files\Study_Srte\Slug Tests\JA 2S Out\JA 2S Out.aqt 
Date: 04/19/07 
Time: 11 :29:35 

AQUIFER DATA 

Saturated Thickness: 6.634 m 
Anisotropy Ratio (Kz/Kr): 1. 

SLUG TEST WELL DATA 

Initial Displacement: 2.528 m 
Casing Radius: 0.0127 m 
Wellbore Radius : 0.0381 m 
Well Skin Radius : 0.0381 m 
Screen Length: 0.3048 m 
Total Well Penetration Depth: 2.36 m 

No. of observations: 25 

0 bservation Data 

20. 

Obs. Wells 

o JA2S Out 

Aquifer fvbdel 

Unconfined 

Solution 

Bouwer-Rice 

Parameters 

K = 0.00635 cm/sec 
yO = 1.547 m 

Time (~ Displacement (m) Time (~-Displacement (m) Time(~ Displacement (m) 
0.5 1.734 
1. 2.528 

1.5 1.299 
2. 1.164 
2.5 1.065 
3. 0.978 
3.5 0.903 
4. 0.834 
4.5 0.773 

SOLUTION 

Aquifer rv'odel : Unconfined 
Solution t..'ethod: Bouwer-Rice 

VISUAL ESTIMATION RESULTS 

Estimated Parameters 

Estimate 

5. 0.715 
5.5 0.662 
6. 0.612 

6.5 0.567 
7. 0.525 

7.5 0.486 
8. 0.45 

8.5 0.417 
9. 0.387 

Parameter 
-K- ·0.00535· cm/sec 

yO 1.547 m 

9.5 0.358 
10. 0.332 
10.5 0.307 
11 . 0.285 

11 .5 0.264 
12. 0.245 
12.5 0.227 
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10. 

g D 

c 
Q) 

E 1. Q) 
(.) 

"' a. 
"' i:5 

D 

0.1 
0. 6. 12. 18. 24. 

Time (sec) 

Data Set: E:\THESIS\Pascoag__Files\Study_Site\Slug Tests\JA 2D Out\JA 2D Out.aqt 
Date: 04/19/07 
Time: 11 :26:05 

AQUIFER DATA 

Saturated Thickness: 6.57 m 
Anisotropy Ratio (Kz/Kr): 1. 

SLUG TEST WELL DATA 

Initial Displacement: 1.52 m 
Casing Radius: 0.0127 m 
Wellbore Radius: 0.0361 m 
Well Skin Radius: 0.0361 m 
Screen Length: 0.3046 m 
Total Well Penetration Depth: 5.35 m 

No. of observations: 25 

Observation Data 

30. 

Time(~ Displacement (m) Time (~-Displacement (m) Time (~ Displacement (m) 
1. 0.266 
2. 1.52 
3. 1.367 
4. 1.326 
5. 1.301 
6. 1.276 
7. 1.257 
6. 1.237 
9. 1.217 

SOLUTION 

Aquifer M:>del: Unconfined 
Solution IVethod: Bouwer-Rice 

VISUAL ESTIMATION RESULTS 

Estimated Parameters 

Estimate 

10. 1.196 
11. 1.176 
12. 1.16 
13. 1.142 
14. 1.125 
15. 1.107 
16. 1.091 
17. 1.074 
16. 1.057 

Parameter 
-K- 0.0007316 cm/sec 

yO 1.402 m 

19. 1.041 
20. 1.025 
21 . 1.01 
22. 0.994 
23. 0.979 
24. 0.964 
25. 0.95 
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K = 0.0007316 cm/sec 
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:§: 
c 
Q) 

10. 

~ 1. 
(..) 

"' 0. 
.!Q 
0 

D 

D 

0.1 '--'---'--'---'---'--'----'-----'----'----'--'--'--'--'--'--'--'--'-_,._,....___._..._..._..___, 
0. 4. 8. 12. 16. 

Time (sec) 

Data Set: E :ITHESIS\Pascoag_Files\Study_S~e\Slug Tests\JA 3S Out\JA 3S Out.aqt 
Date: 04/19/07 
Time: 11 :36:00 

AQUIFER DATA 

Saturated Thickness: 5. 95 m 
Anisotropy Ratio (Kz/Kr): 1. 

SLUG TEST WELL DATA 

Initial Displacement: 1. 796 m 
Casing Radius: 0.0127 m 
Wellbore Radius: 0.0381 m 
Well Skin Radius: 0.0381 m 
Screen Length: 0.3048 m 
Total Well Penetration Depth: 2.303 m 

No. of observations: 25 

0 bservation Data 

20. 

Time (~ Displacement (m) Time (~-Displacement (m) Time (s~ Displacement (m) 
1.5 0.317 
2. 1.796 
2.5 1.263 
3. 1.096 
3.5 0.971 
4. 0.878 

4.5 0.802 
5. 0.732 
5.5 0.669 

SOLUTION 

Aqu~er Model: Unconfined 
Solution rv'lethod: Bouwer-Rice 

VISUAL ESTIMATION RESULTS 

Estimated Parameters 

Estimate 

6. 0.611 
6.5 0.557 
7. 0.509 

7.5 0.464 
8. 0.424 
8.5 0.387 
9. 0.353 

9.5 0.323 
10. 0.295 

Parameter 
-K- 0.007691 cm/sec 

yO 1.897 m 

10.5 0.27 
11. 0.246 
11.5 0.225 
12. 0.206 
12.5 0.189 
13. 0.173 
13.5 0.159 
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10. 

§: 0 

c 
Q) 

E 1 Q) 
<.> 

"' 0. 

"' Ci 

0.1 ..._.._____,~~~~~~~~~~~~~~~~~~~~~~ 

0. 12. 24. 36. 48. 60. 

Time (sec) 

Data Set: E:ITHESIS\Pascoag_Files\Study_Site\Slug Tests\JA 3D Out\JA 3D Out.aqt 
Date: 04/19/07 
Time: 11 :40:37 

AQUIFER DATA 

Saturated Thickness: 5.96 m 
Anisotropy Ratio (Kz/Kr): 1. 

SLUG TEST WELL DATA 

Initial Displacement: 1.521 m 
Casing Radius: 0.0127 m 
Wellbore Radius: 0.0381 m 
Well Skin Radius: 0.0381 m 
Screen Length: 0.3048 m 
Total Well Penetration Depth: 5.36 m 

No. of observations: 24 

Time ~ Displacement (m) 
8. 1.521 
10. 1.361 
12. 1.325 
14. 1.3 
16. 1.276 
18. 1.255 
20. 1.235 
22. 1.216 

SOLUTION 

Aquifer fv'odel: Unconfined 
Solution Method: Bouwer-Rice 

VISUAL ESTll'W\TION RESULTS 

Estimated Parameters 

Estimate 

Observation Data 
Time (~-Displacement (m) 

24. 1.197 
26. 1.179 
28. 1.163 
30. 1.145 
34. 1.113 
36. 1.097 
38. 1.081 
40. 1.065 

Parameter 
- K- 0.0003484 cm/sec 

yO 1.406 m 

Time (~ Displacement (ml 
42. 1.05 
44. 1.036 
46. 1.021 
48. 1.006 
50. 0.991 
52. 0.978 
54. 0.964 
56. 0.95 
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0.01 
0. 

D 
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D 
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D D 

D 

D 
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D 
D 

4. 

D 
DD 

8. 

Time (sec) 

12. 16. 

Data Set: E:ITHESIS\Pascoag_Files\Study_Stte\Slug Tests\MW 56\MN 56 Out.aqt 
Date: 04/19/07 
Time: 11 :42:34 

AQUIFER DATA 

Saturated Thickness: 1. 15 m 
Anisotropy Ratio (Kz/Kr): 1. 

SLUG TEST WELL DATA 

Initial Displacement: 0.639 m 
Casing Radius: 0.0127 m 
We!lbore Radius: 0.0381 m 
Well Skin Radius: 0.0381 m 
Screen Length: 0.9 m 
Total Well Penetration Depth: 0.94 m 

No. of observations: 25 

Observation Data 

20. 

Time (~ Displacement (m) Time (~-Displacement (m) Time (~ Displacement (ml 
0.5 0.064 
1. 0.415 
1.5 0.639 
2. 0.562 
2.5 0.505 
3. 0.46 
3.5 0.415 
4. 0.374 
4.5 0.334 

SOLUTION 

Aquifer Mode!: Unconfined 
Solution IVethod: Bouwer-Rice 

VISUAL ESTIMATION RES UL TS 

Estimated Parameters 

Estimate 

5. 0.297 
5.5 0.265 
6. 0.24 

6.5 0.22 
7. 0.205 
7.5 0.193 
8. 0.185 

8.5 0.179 
9. 0.173 

Parameter 
- K- 0.0008262 cm/sec 

yO 0.2574 m 

9.5 0.169 
10. 0.165 
10.5 0.162 
11. 0.159 

11 .5 0.157 
12. 0.155 
12.5 0.153 
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D E 1. Q) 
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"' 15. 
r/J 

i:5 

0.1 D 

0. 4 . 8. 12. 

Time (sec) 

Data Set: E :ITHESIS\Pascoag_Files\Study_S~e\Slug Tests\5D\5D out.aqt 
Date: 04119107 
Time: 11 :44:33 

AQUIFER DATA 

Saturated Thickness: 1.8 m 
Anisotropy Ratio (Kz/Kr): 1. 

SLUG TEST WELL DATA 

ln~ial Displacement: 2.017 m 
Casing Radius: 0.0127 m 
Wellbore Radius: 0.0127 m 
Well Skin Radius: 0.0127 m 
Screen Length: 0.3048 m 
Total Well Penetration Depth: 1.6 m 

No. of observations: 25 

Observation Data 

16. 20. 

Time(~ Displacement (m) 
0.5 0.105 

Time ~-Displacement (m) Time(~ Displacement (m) 

1. 2.017 
1.5 1.08 
2. 1.049 
2.5 1.014 
3. 1.007 
3.5 1.001 
4. 0.997 
4.5 0.993 

SOLUTION 

Aqu~er Mldel: Unconfined 
Solution tv'ethod: Bouwer-Rice 

VISUAL ESTlllMTION RESULTS 

Estimated Parameters 

Estimate 

5. 0.989 
5.5 0.986 
6. 0.983 

6.5 0.981 
7. 0.978 
7.5 0.976 
8. 0.973 
8.5 0.971 
9. 0.969 

Parameter 
-K- 0.0005556 cm/sec 

yO 1.031 m 

9.5 0.967 
10. 0.965 
10.5 0.963 
11 . 0.96 

11 .5 0.959 
12. 0.956 
12.5 0.954 
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2. Hydraulic Gradient 

Figure 24. Supplemental floodplain ground-water flow regimes. 
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3. Hydraulic Gradient 
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Figure 25. Hydraulic gradient from JA 3D to JA 2D. 
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Figure 26. Hydraulic gradient between JA 3D and the river. 

4. Field Parameters 

Field parameters (electrical conductivity, dissolved oxygen, and pH) can be a 

useful tool in determining shifting trends and changes in ground-water source or 

chemistry (Figure 27). Electrical conductivity (EC) is a measure of the amount of 

dissolved ions in solution. In general during this study, ion concentrations correlated 

well to EC. Please refer to the proceeding section for a complete description of ion 

concentrations. 
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Dissolved oxygen (DO) is presented as the percent saturation because relative 

saturation concentration changes significantly with temperature. DO fluctuated 

primarily in response to precipitation but also in response to changes in the oxic state 

of the inflowing ground water. Most of the wells indicate that the ground water is 

typically anoxic with DO levels ofless that 10%. In the shallow wells (and wells with 

shallow screens), there was an increase as oxygen saturated precipitation infiltrated 

and mixed with shallow oxygen-depleted ground water. Periods with no rainfall 

coupled with biodegradation of contaminants and other natural DO removal resulted in 

depleted DO levels in the shallow ground water. DO fluctuations may indicate a shift 

in ground-water flow direction and source, and near the river indicate hyporheic 

exchange. Ground water in most wells was depleted in oxygen due to contaminant 

biodegradation. Well JA 2D had relatively high DO and suggests an oxic river water 

or ground-water source different from the other wells. MW 56 had high DO and EC 

levels which suggests that storm runoff may be a significant source for this shallow 

well. 

DO levels in the riverbed w~lls provides insight into well depth relative to the 

hyporheic zone and indicates the depth of GW/SW exchange. Higher DO levels 

suggest that river water is present beneath the channel at the well screen, whereas a 

lower DO level indicates that ground water is discharging. In the river, lower DO 

levels show that ground water contributions have increased relative to surface water. 

The pH results were limited in their use as an indicator of GW/SW interaction. 

Results from June 13 may be too low due to a loose wire on the pH meter. Overall, 
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pH was relatively consistent at most locations and may have been most sensitive to 

rainfall resulting in a decrease in pH. 

5. Ions 

Ion concentrations were related to dilution, concentration, DO abundance, and 

ground-water source (Figure 28) ... The.conservative ions (sodium, potassium, 

magnesium, calcium, and chloride) behaved similarly at all wells except for slight 

differences between shallow and deep wells. In the shallow wells (and wells with 

shallow screens), there was a marked increase in concentrations during the dry period 

in March and April, presumably due to concentration of the shallow ground water. 

This continues until the onset of heavy precipitation which diluted the ground water 

and most ion concentrations decreased. There was then an increase in both the 

shallow and deep wells as the gradient steepened in mid-May. This may indicate a 

slight shift in the ground-water source and correlates with the increase in MTBE and 

BTEX concentrations. Typically high dissolved ion concentrations in MW 18 and 

180, along with high MTBE and BTEX concentrations, suggests that the ground 

water in the contaminant plume is characterized by high dissolved ions. Therefore, 

increasing ion concentrations in a given well may indicate a shift of the hydraulic 

gradient and movement of the plume toward that well. 

Nitrate and sulfate concentrations were mostly dependent on DO which controlled 

oxidation-reduction state (Hem 1985). Because the contaminant plume is typically 

anoxic, conditions are suitable for nitrate and sulfate reduction. This resulted in low 

concentrations during anoxic conditions in March and April and higher concentrations 

when dissolved oxygen was plentiful and reduction was prevented. This is especially 
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important for sulfate which is present at relatively high concentrations upgradient near 

MW 56 but is reduced rapidly in the floodplain before reaching the river. Phosphate 

levels were generally low throughout the study due to removal through plant uptake 

(Hem 1985). 

Riverbed and the river water samples also show trends in ion concentrations 

correlating well with hydraulic gradient 'steepening and increases in MTBE. In the 

river upstream of the study area, all ions decreased throughout the study period 

perhaps in response to dilution or decreasing contribution following winter road salt 

application. Regardless, the ion concentrations in the river at JA 1 R responded 

independently of the upstream location. The river at the site responded with higher 

ion concentrations immediately following the gate closure in February, probably due 

to an increased proportion of ground-water from return-flow. During all other periods, 

no significant trends were observed. 

6. Water Temperature 

Water temperature data can be separated into several groups based upon general 

trends and relationships. Because of instrument difficulty, accidental removal, and a 

late monitoring start date in some wells there was some variability in the period of 

data collection (Table 8). The shallow wells JA 2S and JA 3S had larger temperature 

ranges, more extreme minimum and maximum temperatures, and a faster response 

than their corresponding deep wells (Figure 29). JA 2D and JA 3D both experienced 

their respective seasonal low temperatures in May and were otherwise smooth 

temperature curves. The iButton in JA 2D failed in June and was replaced with a less 

precise substitute resulting in less resolution throughout July. 
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MW 18 and MW 18D temperature curves (Figure 29) were punctuated by many 

increases and decreases in temperature that appear to correspond to precipitation 

events or changes in river stage related to both precipitation events and reservoir gate 

adjustments. Like the shallow wells above, MW 18 had a steeper slope, and a larger 

temperature range, while MW 18D also had its seasonal low in May. 

The four riverbed wells were monitored for various time periods but all show the 

same short-term and long-term trends (Figure 30). Specifically, temperatures 

remained low until the middle of May and then increased until stabilization June 1 

through mid-June. Temperatures increased again and then rapidly decreased in early 

July when river stage declined before gradually increasing again in August. River 

temperature covaried with air temperature and appears to experience smaller diurnal 

variability when flow is greater, presumably in response to greater heat capacity 

(Constantz 1994). There were several periods when river temperature and air 

temperature trends diverged and may indicate a different water source and GW/SW 

exchange. 

7. Table 8 references 

Barlow et al. 2000; Becker et al. 2004; Burt et al. 2002; Burt et al. 2002; Castro 

and Hornberger 1991; Fryar et al. 2000; Girard et al. 2003; Hinzman et al. 2000; Hunt 

et al. 2006; Hussein and Schwartz 2003; Kasahara and Wondzell 2003; Kim and 

Hemond 1998; Lambs 2004; Lautz and Siegel 2006; Schilling et al. 2006; Schilling et 

al. 2006; Schubert 2002; Serrano and Workman 1998; Sheets et al. 2002; Triska et al. 

1989; Vidon and Hill 2004; and Wroblicky et al. 1998. 
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APPENDIX IV: SUPPLEMENTARY GRAPHS 

Figure 27. Graphs of electrical conductivity (EC), dissolved oxygen (DO), a nd pH. 
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Figure 29. Graphs of floodplain well temperatures. 
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APPENDIX v: SUPPLEMENTARY TABLES 

Table 17. VOC individual results (Concentrations in µg/L, ND= Not detected). 

Well Sample Date Dilution MTBE Benzene Toluene Ethylbenzene m-,p-xylene o-xylene 
1/21/2006 str ND ND ND ND ND ND 
2/20/2006 str ND ND ND ND ND ND 
3/3/2006 str 1.0 ND ND ND ND ND 

3/10/2006 str 1.7 ND ND ND ND ND 
3/28/2006 str 1.4 ND ND ND ND ND 
4/21/2006 str ND ND ND ND ND ND 
4/28/2006 str ND ND ND ND ND ND 

River at JA lR 5/11/2006 str 0.8 ND ND ND ND ND 
5/18/2006 str ND ND ND ND ND ND 
5/20/2006 str ND ND ND ND ND ND 
5/26/2006 str ND ND ND ND ND ND 
6/13/2006 str ND ND ND ND ND ND 
612212006 str ND ND ND ND ND ND 
612312006 str 0.7 ND ND ND ND ND 
7/14/2006 str 2.5 ND ND ND ND ND 
8/9/2006 str ND ND ND ND ND ND 
3/3/2006 str ND ND ND ND ND ND 

3/28/2006 str ND ND ND ND ND ND 
4/21/2006 str ND ND ND ND ND ND 

River Upstream 5/20/2006 str ND ND ND ND ND ND 
6/13/2006 str ND ND ND ND ND ND 
6/23/2006 str ND ND ND ND ND ND 
7/14/2006 str ND ND ND ND ND ND 
8/9/2006 str ND ND ND ND ND ND 
3/3/2006 str 32.2 1.9 1.2 2.0 1.9 1.7 

3/10/2006 str 14.2 2.7 ND ND 3.4 ND 
3/28/2006 str 26.5 2.7 1.5 2.5 2.1 2.0 
4/21/2006 str 7.5 1.4 1.9 1.7 1.5 ND 
4/28/2006 str 11.7 2.1 2.2 2.1 1.8 1.9 

River 5/20/2006 str 7.9 1.6 ND ND ND ND 
Downstream 512612006 str 0.9 ND ND ND ND ND 

6113/2006 str 2.1 ND ·ND ND ND ND 
6/22/2006 str 14.9 2.2 ND ND ND ND 
6/23/2006 str 11.8 2.2 ND 2.1 ND ND 
7/14/2006 str 12.8 3.4 3.2 4.0 3.9 2.4 
8/9/2006 str 1.0 0.8 ND ND ND ND 

2/20/2006 str 21.7 1.3 ND ND ND ND 
3/3/2006 str 13.9 0.3 ND ND ND ND 

3/10/2006 str 18.6 ND ND ND ND ND 
3/28/2006 str 30.6 ND ND ND ND ND 
4/21/2006 str 28.4 ND ND ND ND ND 
4/28/2006 str 27.6 ND ND ND ND ND 

JA 1RB 
5/11/2006 str 16.0 ND ND ND ND ND 
5/20/2006 str 150 2.2 ND · ND ND ND 
5/26/2006 str 179 1.6 ND ND ND ND 
61112006 str 134 1.3 ND ND ND ND 

6/13/2006 str 22.7 ND ND ND ND ND 
6/23/2006 str 19.8 ND ND ND ND ND 
7/14/2006 str 9.6 ND ND ND ND ND 
81912006 str 65.0 ND ND ND ND ND 
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Well Sample Date Dilution MTBE Benzene Toluene Ethyl benzene m-,p-xylene o-xylene 

1/24/2006 str, 1:50 1970 25 .1 15.2 60.9 13.3 20.3 
3/3/2006 str, 1:25 2030 34.0 2 .9 55.2 2.5 3.9 

311012006 str, 1 :20 1808 35.0 5.1 55.9 4.2 6.2 
3/28/2006 1:25,1:5 2310 26.5 ND 52.3 ND ND 
4/21/2006 1:20,1:5 2263 33.4 ND 43 .8 ND ND 
4/28/2006 1:20,1:5 2155 31.7 ND 38.5 ND ND 

MW44 
511112006 1:20,1:5 1949 30.5 9.6 32.1 ND ND 
5/20/2006 1:20, 1820 NA NA NA NA NA 
5/26/2006 1:20,1:5 1668 25.0 14.6 40.5 19.4 ND 
61112006 1:20,1 :5 1646 21.2 12.9 33.0 ND ND 

611312006 1:20,1:2 889 8.9 ND 5.1 4.5 ND 
6/23/2006 1:20,1:4 1409 15.8 10.8 14.1 10.1 ND 
7/14/2006 1:20, 1 :4 1454 18.9 13 .2 23 .8 17.4 ND 
8/9/2006 1:20,1:4 1387 12.3 ND ND ND ND 
3/3/2006 str 1.6 ND ND 1.4 ND ND 

311012006 str 4.2 1.7 2.1 2.7 2.6 ND 
3/28/2006 str 2.0 ND 0.0 2.3 0.5 ND 
4/21/2006 str 9.0 2.6 ND 11.8 3.3 2.2 
4/28/2006 str 11.9 3.9 2 .9 28.5 8.4 2.7 

MW56 
5/11/2006 str 4.4 2.7 2.1 20.0 7.1 2.2 
512012006 str ND ND ND 2.5 ND ND 
61112006 str ND 1.6 ND 4.0 ND ND 

6/13/2006 str ND ND ND ND ND ND 
6/23/2006 str ND ND ND ND ND ND 
7/14/2006 str 2.5 2.5 ND 4.0 3.6 ND 
8/9/2006 str 7.3 2.9 ND 6.8 ND 3.1 

Pascoag 
3/3/2006 str ND ND ND ND ND ND 

Reservoir 
IS 3/31/2006 str 37.3 ND ND ND ND ND 

lD 3/31/2006 str 52.8 ND ND ND ND ND 

2S 3/31/2006 str, 1 :2 219 3 ND ND ND ND 

3/31/2006 str 25.8 ND ND ND ND ND 
61112006 str 18.6 ND ND ND ND ND 

2D 
611312006 str 23.0 1.4 ND ND ND ND 
6/23/2006 str 24.6 1.6 ND ND ND ND 
7/14/2006 str 28.4 ND ND ND ND ND 
8/9/2006 str 22.5 ND ND ND ND ND 

3S 3/31/2006 str, l : 100 1518 0.5 ND ND ND ND 

3D 
3/31/2006 str, 1:100 2166 6.3 ND ND ND ND 
8/9/2006 1:20,1 :4 1243 27.6 ND ND 13.7 ND 

4S 3/31/2006 str 54.7 0.75 ND ND ND ND 

3/31/2006 str 228 15 .9 ND ND 3.0 ND 
4/21/2006 str 188 21.7 2.2 ND 6.0 ND 
4/28/2006 str 153 18.7 4.4 ND 5.7 1.8 
5/11/2006 str 122 15 .6 4.1 ND 5.5 ND 
5/20/2006 str 106 16.1 2.7 ND 6.2 ND 

4D 5/26/2006 str 102 13.5 2.7 ND 5.6 ND 
6/1/2006 str 97.0 13.3 2.5 ND 6.0 ND 

6/13/2006 str 79.0 12.9 ND ND 5.1 ND 
6/23/2006 str 66.7 10.6 ND ND 3.9 ND 
7/14/2006 str 63.1 14.4 3.3 ND 5.5 ND 
8/9/2006 str 50.8 14.6 3.5 6.2 6.5 ND 

5S 3/31/2006 str 6.84 0.5 ND ND ND ND 

3/31/2006 str 50.4 ND ND ND ND ND 
5/20/2006 str 102 2.1 ND ND ND ND 
5/26/2006 str 33.8 ND ND ND ND ND 

5D 
6/1/2006 str 68.4 ND ND ND ND ND 

611312006 str 9.5 ND ND ND ND ND 
6/23/2006 str 6.5 ND ND ND ND ND 
7/14/2006 str 4.0 ND ND ND ND ND 
8/9/2006 str 110 ND ND ND ND ND 

110 



Well Sample Date Dilution MTBE Benzene Toluene Ethyl benzene m-,p-xylene o-xylene 

6S 3/31/2006 str 2.9 ND ND ND ND ND 

6D 3/31/2006 str 2.2 ND ND ND ND ND 
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Table 18. Ion individual concentrations (ND= Not detected). 

CATION S (mg/L) ANIONS (mg/L) 

Well Date Na+ K+ Ml + Ca~+ er N0
3
- PO/ S042-

1/21 /2006 12.3 1.1 0.6 2.5 20.0 0.7 N D 5.9 
2/5/2006 12.4 1.0 0.6 2.3 20.4 0.7 N D 5.8 

2/20/2006 12.0 1.0 0.6 2.3 19.4 0.6 ND 6.1 
31312006 62 2.2 1.0 4.4 98 0.7 N D 7.2 

3/10/2006 17.5 1.4 0.8 3.5 29.1 0.7 ND 6.6 
3/28/2006 26.0 2.0 1.3 5.5 42.8 0.8 0.4 7.8 
313112006 27.9 2.2 1.4 5.8 47.2 0.7 0.2 7.7 
4/21 /2006 19.9 1.6 1.0 4.1 32.9 0.4 N D 7.0 

River at JA 1 R 4/28/2006 18.7 1.5 1.0 4.0 31.1 0.5 N D 6.8 
5111/2006 25 .6 1.7 1.1 4.5 32.9 0.6 ND 6.9 
5/20/2006 13.3 1.1 0.7 2.7 22.0 0.4 0.3 6.4 . 

5/26/2006 12.8 1.0 0.6 2.6 21.0 0.3 ND 6.2 
6/1/2006 12.5 1.1 0.6 2.6 20.4 ND 0.6 6.1 

6/13/2006 11.0 1.0 0.6 2.2 16.9 0.3 N D 5.4 
612312006 12.8 1.1 0.7 2.7 21.0 0.4 N D 5.4 
7114/2006 12.9 1.1 0.6 2.4 35 .5 0.9 0.9 5.8 

8/9/2006 17.4 1.7 0.8 4. 1 27.2 0.7 0.3 4.6 

31312006 45.4 2.1 0.9 4.5 72 0.8 N D 6.7 
3/28/2006 26.4 2.0 1.3 5.3 44.3 0.7 ND 7.3 

River Upstream 4/21 /2006 19.8 1.6 1.0 3.8 32.4 ND ND 6.7 
5/20/2006 13.6 1.2 0.6 2.4 20.9 0.3 ND 6.0 
6/13/2006 10.9 1.0 0.5 2.1 15.7 0.3 ND 5.1 

2/20/2006 13.0 1.5 1.0 6.0 20.8 0.3 N D 9.4 
31312006 12.1 1.3 1.0 5.2 19.6 0.4 ND 7.7 

3/1 0/2006 12.6 1.3 1.0 5.6 19.9 ND ND 7.4 
3/28/2006 13.9 1.5 1.2 6.6 22.1 0.3 ND 8.3 
4/21 /2006 22.2 2.1 1.5 8.7 26.3 ND 1.2 6.7 
4/28/2006 16.2 1.9 1.6 9.3 26.4 ND ND 6.9 

JA lRB 
5/ 11 /2006 18. l 2.2 1.9 10.5 30.8 0.7 ND 8.4 
512012006 21.4 2.9 2.4 13.0 37.5 0.3 N D 7.8 
5/26/2006 19.3 2.6 2.2 11.8 34.7 ND ND 5.4 

6/1/2006 18.0 2.6 2.0 10.5 32.0 N D N D 4.0 
6113/2006 14.8 . 1.8 1.4 7.4 23 .3 0.3 ND 8.3 
6/23/2006 18.8 2.4 1.9 10.3 32.3 1.2 ND 12.4 
7/ 14/2006 22.2 3.3 2.3 12.5 39.5 2.9 ND 13.6 

8/9/2006 22.4 3.8 2.6 14.2 40.1 ND ND 11.8 

2/5/2006 19.3 3.4 3.3 27.6 36.9 N D ND 1.7 
2/20/2006 18.7 3.2 3.1 25.3 35.3 N D ND 2.4 
31312006 19.1 3.4 3.1 25.5 31.1 ND ND 2.3 

3110/2006 19.3 3.2 3.3 26.1 34.5 ND ND 2.1 
3/28/2006 21.7 3.4 4.0 31.0 42.9 ND ND 1.6 
4/21 /2006 22.4 3.6 4.1 31.9 40.8 ND ND 1.8 
4/28/2006 16.2 3.0 2.6 20.3 26.9 ND ND 3.2 

JA 2S 5/11 /2006 19.5 3.1 3.2 25.6 34.7 ND N D 2.6 
5/20/2006 23.4 3.5 4.0 31.9 48.2 1.5 N D 1.0 
5/26/2006 26.7 4.3 4.9 37.5 53 ND ND 0.6 

6/1/2006 27.1 4.4 4.3 32 .9 45.7 N D ND 1.1 
611312006 22.0 2.8 1.9 14.5 19.8 ND ND 4.0 
6/23/2006 25.8 4.3 4.7 36.6 50 ND ND 0.9 
7/14/2006 26.1 4.5 4.5 35 .5 50 ND ND 1.0 

8/9/2006 29.7 5.0 5.5 43.4 64 ND N D 0.5 
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CATIONS (mg!L) ANIONS (mg!L) 

Well Date Na+ K+ Mg--r+ cc?+ er N03- PO/- S04
2-

21512006 34.1 7.0 6.0 29.0 67 6.3 ND 8.8 
2/20/2006 41.6 6.1 6.7 36.0 90 2.2 0.7 6.8 

31312006 27.5 5.0 4.4 21.9 50.0 4.8 ND 12.0 
311012006 29.7 5.1 4.3 20.5 47.7 6.3 ND 13.3 
3/28/2006 27.6 5.0 4.8 23.5 55 5.5 ND 12.2 
4/28/2006 29.4 5.0 4.8 22.4 53 7.0 ND 11.1 

JA2D 
5/11/2006 31.5 5.3 5.8 27.9 65 4.5 ND 10.5 
512012006 41.7 6.1 8.3 43.0 84 2.7 ND 26.4 
5/26/2006 33.4 5.4 6.2 30.2 67 4.5 ND 11.7 

6/1/2006 38.6 5.7 6.9 35.2 76 2.8 ND 6.5 
6/13/2006 42.0 5.9 7.6 39.6 87 2.3 0.3 5.2 
612312006 25.3 4.8 4.3 19.8 49.8 5.3 ND 11.6 
7114/2006 26.6 4.6 4.4 20.6 48.2 3.0 ND 10.9 

8/9/2006 30.6 5.4 6.0 27.5 66 4.2 ND 13.3 
1/21/2006 32.9 6.8 6.7 58 61 ND ND 0.6 
1/24/2006 31.4 6.5 6.5 55 60 ND ND 0.6 
21512006 28.3 5.9 5.6 46.0 58 ND ND 0.8 

212012006 34.0 6.6 6.9 58 67 ND ND ND 
31312006 34.9 6.7 7.2 60 67 ND ND ND 

311012006 34.6 6.7 7.3 60 68 ND ND ND 
3/28/2006 35.5 6.7 7.5 62 70 ND ND ND 
4/21/2006 34.1 6.6 7.2 59 66 ND ND ND 

JA 3S 4/28/2006 33.2 6.3 6.3 52 60 ND ND 0.7 
5/11/2006 28.6 5.7 5.7 46.4 51 ND ND 0.6 
512012006 30.9 5.5 4.9 37.5 39.8 ND ND 0.7 
512612006 33.5 6.8 7.0 58 61 ND ND ND 

6/1/2006 33.2 6.8 7.0 57 60 ND ND ND 
611312006 19.4 4.8 3.6 24.5 28.1 ND ND 1.5 
6/23/2006 32.6 7.0 6.8 55 53 ND ND 1.0 
7114/2006 32.8 7.2 6.5 53 54 ND ND 1.3 

8/9/2006 33.2 7.6 7.0 60 63 ND ND 9.8 
1/21/2006 56 8.7 7.7 44.6 112 0.5 ND 11.1 
1124/2006 53 6.2 7.9 38.1 114 ND ND 14.0 
21512006 48.8 5.6 7.6 34.6 112 ND ND 14.8 

212012006 50 5.9 8.2 38.6 111 0.4 ND 12.7 
31312006 49.i 6.0 8.1 39.1 106 0.5 ND 10.8 

3/10/2006 44.3 4.9 6.7 30.7 97 1.4 ND 14.8 
3/28/2006 44.8 4.8 6.9 30.2 101 1.4 ND 14.9 
4/21/2006 50 5.2 8.5 39.2 118 0.5 ND 18.9 

JA 3D 4/28/2006 52 5.5 9.4 46.5 105 ND ND 22.8 
5111/2006 57 5.5 10.0 47.0 119 ND ND 22.2 
512012006 63 6.1 11.9 61 129 ND ND 37.8 
512612006 69 6.1 11.8 58 

61112006 67 6.5 12.8 70 126 ND ND 52 
6113/2006 65 6.1 9.2 46.4 129 ND ND 14.9 
612312006 59 5.8 8.3 45.0 122 ND ND 21.5 
7114/2006 64 6.0 8.6 45.l 136 ND ND 13.5 

8/9/2006 66 6.6 10.5 64 144 ND ND 40.2 
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CATIONS (mg/L) ANIONS (mg/L) 

Well Date Na+ K+ Mg7+ ca2+ er N03- P04
3- so/ 

1124/2006 52 5.0 4.7 25.l 86 ND ND 6.3 
2/20/2006 72 5.9 6.5 36.7 146 ND ND 5.6 

3/3/2006 67 5.7 6.4 38.6 136 ND ND 9.6 
3/10/2006 83 6.3 7.7 39.8 ND ND 4.8 
3/28/2006 68 5.7 7.0 44.7 134 ND ND 
4/21/2006 80 6.1 7.4 39.8 142 ND ND 6.8 
4/28/2006 57 5.3 5.7 36.0 106 ND ND 14.2 

MW 18 5/1112006 42.9 4.1 4.1 25.8 75 ND ND 6.7 
5/20/2006 45.7 4.1 4.0 22.4 81 0.3 ND 3.9 
5/26/2006 83 6.3 7.2 37.7 150 ND ND 3.5 

6/112006 69 5.7 6.0 33.0 126 ND ND 4.7 
6/13/2006 54 4.7 4.6 27.8 100 ND ND 5.1 
6/23/2006 76 6.2 6.4 36.0 139 ND ND 4.4 
7/14/2006 83 6.6 6.8 36.1 151 ND ND 2.8 

8/9/2006 76 6.3 5.8 31.9 130 ND ND 6.4 

1/24/2006 94 6.7 7.9 43.1 170 ND ND 4.3 
2/20/2006 98 6.6 8.5 45.7 180 ND ND 3.9 

3/3/2006 99 6.5 8.6 46.3 184 ND ND 3.8 
311012006 98 6.5 8.6 46.8 187 ND ND 3.8 
3/28/2006 97 6.4 8.4 46.2 188 ND ND 3.9 
4/2112006 95 6.3 8.1 45.6 181 ND ND 3.7 
4/28/2006 96 6.3 8.2 46.2 185 ND ND 3.6 

MW 18D 5111/2006 92 6.2 7.7 43.8 177 ND ND 3.5 
5/20/2006 90 6.0 7.1 42.1 170 ND ND 3.8 
5/26/2006 91 6.1 7.4 42.9 174 ND ND 3.9 

6/1/2006 95 6.3 7.9 45.4 183 ND ND 4.0 
6/13/2006 98 6.3 8.1 46.8 188 ND ND 3.5 
6/23/2006 92 6.1 7.1 42.6 175 ND ND 3.6 
7/14/2006 91 6.1 6.9 41.6 173 ND ND 3.6 

8/9/2006 91 6.3 6.7 39.8 170 ND ND 3.6 

1/24/2006 61 6.8 7.3 46.3 ND ND 3.0 
3/3/2006 69 7.2 8.4 52 138 ND ND ND 

3/10/2006 72 7.4 8.2 .50 149 ND ND 2.3 
3/28/2006 82 8.1 9.1 54 175 ND ND 2.1 
4/21/2006 145 ND ND 3.0 
4/28/2006 86 8.5 9.2 56 186 ND ND 1.7 

MW44 
5111/2006 86 8.6 9.2 58 187 ND ND 1.4 
5/20/2006 83 8.4 9.1 58 181 ND ND 1.2 
5/26/2006 84 8.6 9.3 61 187 ND ND 1.2 

6/1/2006 83 8.6 9.1 59 185 ND ND 1.3 
6/13/2006 65 7.7 7.9 56 144 ND ND 1.1 
6/23/2006 77 8.5 8.9 58 165 ND ND 1.2 
7/14/2006 82 9.0 8.9 57 169 ND ND 1.2 

8/9/2006 82 9.0 8.7 55 170 ND ND 1.2 
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CATIONS (mg/L) ANIONS (mg/L) 

Well Date Na+ K+ Mg2+ ca2+ er N03- PO/ sot 
1/24/2006 4.5 6.4 0.6 440 6.2 4.8 ND 1025 
3/3/2006 4.7 6.2 ND 336 3.1 1.3 ND 807 

311012006 4.8 5.9 0.5 264 3.4 0.3 ND 624 
3/28/2006 4.4 5.5 0.4 194 3.8 0.5 ND 478 
4/21 /2006 4.8 5.6 0.4 148 4.6 0.6 ND 351 
4/28/2006 5.0 5.3 0.3 110 5.8 0.7 ND 284 

MW56 5/1 1/2006 5.3 5.0 ND 113 5.4 2.9 ND 275 
5/20/2006 10.7 7.5 0.7 320 1.7 4.3 0.1 785 

611/2006 3.8 4.2 ND 200 3.2 3.4 ND 532 
6/13/2006 4.5 4.3 ND 160 2.2 6.2 ND 358 
6/23/2006 4. 1 3.6 ND 110 4.5 6.8 ND 200 
7/14/2006 6.1 5.3 ND 115 3.3 1.0 ND 256 

8/9/2006 6.9 5.8 ND 98 3.7 ND ND 189 

Pascoag Reservoir 
1124/2006 11.0 0.9 0.5 1.9 17.0 0.6 ND 5.6 
3/3/2006 11.5 1.0 0.5 2.1 18.0 0.4 ND 5.8 
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