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ABSTRACT 

I investigated the importance of predation on fish eggs and larvae by the lo bate 

ctenophore, Mnemiopsis leidyi, in Narragansett Bay, RI, USA, by measuring the 

abundance and distribution of M. leidyi and its ichthyoplankton prey at five stations in 

the East and West Passages of the bay from May to August, 2002. During early-June, 

the M. leidyi population reached an abundance of 682 m-3 in the mid-bay, while fish egg 

densities were 3.2 m-3 and fish larvae were absent. In late June, a maximum larval fish 

density of 34 1 oom-3 was observed, and ctenophore abundance was <33 m-3 at all 

stations. These data confirm that predator and prey co-occur in the bay, but there is not 

a substantial amount of temporal overlap. Coincident with the ctenophore abundance 

measurements, I conducted in situ gut content analyses of 1,031 M leidyi during the 

period of highest ichthyoplankton abundance. This revealed that 6.9% of the 

ctenophore guts examined contained at least one fish egg and one fish larva was 

observed from May-August. During June, 14.6% contained at least one fish egg. These 

data provide evidence that fish eggs are consumed ~y ctenophores in the bay. There 

was no evidence for frequent predation on fish larvae. Individual feeding rates ranged 

from 0.04 to 0.6 fish eggs ingested per ctenophore h- 1• Predation rates on fish eggs 

were calculated from the numbers of ichthyoplankton prey found in M leidyi, 

temperature-specific digestion times determined in the laboratory, and the field 

densities of predator and prey. Accordingly, estimates of predation on fish eggs in 

Narragansett Bay ranged from <1 % to 330% of the standing stock of the fish eggs 

ingested h- 1 during periods of low and high ctenophore abundance, respectively. 

Predation on fish eggs was not detected in samples taken after June 26. An electivity 



analysis was performed to compare the proportions of fish eggs versus other prey in the 

diet of M leidyi and that found in the environment. Electivity of M leidyi was 

examined at the Fox Island station and was found to be positive 23% of the time with 

respect to fish eggs and negative 8% of the time. All positive and negative values were 

significantly different from 0 (p<0.0005). The date of peak abundance of ctenophores 

in the bay coincided with positive electivity for fish eggs. Also, the predators were 

found to have no selection 69% of the time with respect to fish eggs. Electivity was 

also examined at Dutch Island and was positive 42% of the time with respect to fish 

eggs and negative 16% of the time. No selection occurred 42% of the time. All 

positive and negative values were significantly different from 0 (p<0.01). These results 

support that M leidyi preys upon fish eggs in Narragansett Bay. 

M. leidyi, zooplankton, fish eggs, and fish larvae abundances were sampled 

through the summer of2002 in Narragansett Bay. These data were combined with 

literature values of microzooplankton abundance and physiological processes and a 

bioenergetics model was developed to simulate seasonal ctenophore biomass from June 

to July at Dutch and Fox Island. The goal of the model was to examine which prey 

groups were most important in supporting the observed M leidyi biomass during the 

initiation or rapid population growth. The magnitude, rate of biomass increase, and 

timing output by the model was compared with field estimates of M leidyi biomass. 

The model simulations clearly show that the carbon present in copepod biomass alone 

could account for the magnitude and high rate of increase of the ctenophores in early to 

mid-June. Later in the season after the copepods have been depleted, it appears that 

other sources of carbon become increasingly important to M leidyi. 
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PREFACE 

The primary goal of this research is to determine the degree to which the 

ctenophore, M. leidyi, can reduce ichthyoplankton in Narragansett Bay, Rhode Island. 

The research presented in this thesis was supported by NOAA-CMER and NSF. The 

thesis is presented in manuscript format, with 2 manuscripts and 9 appendices. 

The first manuscript will be submitted to Marine Biology with the authors Allen, 

A.R., B.K. Sullivan, G. Klein-MacPhee, and S.W. Nixon. This paper is the result of 

combining laboratory and field data to determine the predatory impact of Mnemiopsis 

leidyi on ichthyoplankton in Narragansett Bay, RI. Important evidence includes 

digestion rates of fish eggs and larvae and ranges of ingestion and % clearance rates for 

M leidyi on both fish eggs and larvae. Another important component was determining 

to what extent predator and prey overlap both spatially and temporally in Narragansett 

Bay. 

The second manuscript will be submitted to Ecological Modelling with authors 

Allen, A.R. , M.J. Brush, and S.W. Nixon. This paper presents the application of a 

mechanistic population model, which provides insight into the amount of carbon 

necessary to support the observed changes in ctenophore biomass in Narragansett Bay. 

The model provides a first order approximation of the extent to which the ctenophore's 

metabolic demands can be met with mesozooplankton, microzooplankton, fish eggs, 

and fish larvae. 
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CHAPTER 1: Mnemiopsis /eidyi and ichthyoplankton: predator-prey dynamics in 

Narragansett Bay 

INTRODUCTION 

Predation on the early life history stages of marine fish is an important 

contributor to their overall mortality (Bailey and Houde 1989). Marine scientists 

noticed the importance of ichthyoplankton predation by invertebrates early in the 20th 

century (Mayer 1917; Joubin 1924; Bigelow 1926: all cited in Alvarifio, 1985). Recent 

research has continued to focus on mortality due to predation because starvation appears 

to account for only a minor fraction of ichthyoplankton mortality (Bailey and Houde 

1989). One study estimated that predation losses can range up to 95% over the duration 

of the egg stage (Hunter 1976). 

Unfortunately, in spite of this long history, progress in this field has been slow 

due to the experimental difficulties associated with in situ predation studies (Bailey and 

Houde 1989; Purcell 1985). Previous studies have examined predation by gelatinous 

zooplankton on fish eggs and larvae using a variety of methods such as laboratory 

observations, quantification of digestion rates, gut content analyses, and modeling of 

predator-prey dynamics. 

Among the known gelatinous predators of ichthyoplankton, cnidarians and 

ctenophores have substantial predatory potential because of high population densities 

and ingestion rates. Numerous studies have shown that pelagic cnidarians and some 

ctenophores prey on fish eggs and larvae (Burrell and Van Engel 1976; Purcell 1985; 

Purcell 1989; Arai and Hay 1982; Fancett and Jenkins 1988; Bailey and Houde 1989; 

Purcell 1994). Most studies that have reported predation by ctenophores on 
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ichthyoplankton targeted the total diet of the predator and the majority found that fish 

eggs comprised only a small portion of the diet. For example, Burrell and Van Engel 

(1976) observed that, out of 3,300 M leidyi guts examined, only 1 % had ingested a fish 

egg and 0.4% had ingested a fish larva. Similarly, investigations that examined the role 

of larval fish in the diet of ctenophores found that they made up a relatively small 

portion of the total. Vanderveer (1985) suggested that Pleurobrachia pileus was a 

significant predator of flounder larvae, despite finding only 9 larvae in 15,000 

ctenophores guts. Purcell (1989) found 3 fish larvae out of3,566 Pleurobrachia bachei 

guts examined in Kulleet Bay, Vancouver Island, British Columbia. These studies, 

however, examined tentaculate ctenophores, which may not be as effective at capturing 

fish larvae as their lobate couterparts. 

The lobate ctenophore, Mnemiopsis leidyi, may be an important predator in 

coastal systems given its high population densities and ingestion rates, and multiple 

feeding strategies such as lobe or auricular capture. Mnemiopsis leidyi consumes a wide 

range of prey, including: crustacean larvae and copepods (Waggett and Costello 1999), 

Annelid larvae (Burrell and Van Engel 1976), and fish eggs and larvae (Cowan and 

Houde 1993). The mechanisms used by M leidyi to capture prey include the creation of 

a low-velocity current with the auricles and use of the oral lobes (Waggett and Costello 

1999). The ctenophore's ability to use both lobes and auricles in concert for prey 

capture makes it an effective predator (Costello et al. 1999). A laboratory study by 

Cowan and Houde (1992) indicated that M leidyi preyed on Chesapeake Bay goby 

larvae, Gobiosoma bosci, from 2.7-9.4 mm SL, and that the ctenophore's slow 

16 



swimming speed resulted in lessened escape responses by larger fish larvae. However, 

there is little supporting evidence from field studies to confirm this laboratory finding. 

A study of M. leidyi in the Chesapeake Bay (Purcell et al. 1994) provides in situ 

clearance rates offish eggs of 128 ± 58 l d- 1 predatof1 and predation estimates of 0-38% 

of the prey consumed d- 1• Large ctenophores were collected for gut content analysis 

and data for 75 individuals were reported. Of those, 51 contained no fish eggs, 24 

contained one or more fish eggs, and none contained fish larvae. However, this study 

focused on one fish species, Anchoa mitchilli, and was limited by a small sample size 

and use of only large ctenophores for gut content analyses. 

Because of container effects, studies which determine the predatory potential of 

ctenophores from laboratory feeding experiments should be considered with caution. 

Three laboratory feeding experiments and one mesocosm study have been conducted 

that used both 40-1 and 20 to 25-1 vessels (Kremer 1975), 5-1 vessels (Tsikhon-Lukanina 

et al. 1994), 15 liter containers (Monteleone and Duguay 1988) and 3.0 m3 enclosures 

(Cowan and Houde 1993), respectively. An experiment to determine the effect of 

container volume on the feeding rates of M leidyi demonstrated that small containers 

( <50 l) significantly reduce ctenophore feeding behavior (Monteleone and Duguay 

1988). Unfortunately, the one large enclosure study only provided one experiment in 

which alternate prey were available and predation on only one species, Anchoa 

mitchilli, was investigated (Cowan and Houde 1993). Thus, more field estimates of 

predation rates are needed to compare with existing estimates of predation from 

laboratory studies. 
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Mnemiopsis sp. was first reported in large "rafts" in northern coastal waters in 

1881(Fewkes1881). However, surprisingly little was known about the ecology of 

ctenophores because they are difficult to sample using conventional methods such as 

plankton nets, and they do not preserve well. Large-scale quantitative studies involving 

M feidyi in New England waters did not begin until the 1970s (Kremer 1975). Since 

the 1970s, M leidyi has been reported in large concentrations in Narragansett Bay, 

Rhode Island (Kremer and Nixon 1976, Deason and Smayda 1982, Sullivan et al. 

2001), where the ctenophore population is typically larger than in warmer southern 

waters (Kremer 1994). The timing and maintenance of such immense growth events 

("blooms") has substantial trophic effects on zooplankton and, potentially, 

ichthyoplankton populations, as well as indirect impacts on phytoplankton. For 

example, Deason and Smayda (1982) observed diminished copepod abundance in 

Narragansett Bay following an increase in ctenophore abundance. The relaxation of 

grazing pressure by copepods then allowed a summer phytoplankton bloom in the bay. 

In Narragansett Bay, a temporal shift in peak abundance of M. leidyi has been 

documented concurrent with increasing water temperatures (Sullivan et al 2001). 

Potential ecological consequences of this shift include a spatial-temporal overlap of M 

leidyi and fish eggs and larvae during warm years, decreased survival of larval fish due 

to competition with M. leidyi for their zooplankton food source, and a decrease in 

overall ichthyoplankton abundance due to the top-down control exerted by the 

ctenophores. I speculate that the latter is potentially supported by a documented 2-4 

fold decrease in ichthyoplankton abundance since the 1970's (Keller et al. 1999) which 
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coincides with a significant increase in M. leidyi abundance from the same time period 

(Sullivan et al 2001) (Fig. 1-1). 
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Figure 1-1. A 30 year comparison of M leidyi and ichthyoplankton abundance in 
Narragansett Bay, RI. Open circles represent M. leidyi and closed circles are 
ichthyoplankton. M leidyi data from Sullivan et al., 2001 and ichthyoplankton from 
Keller et al., 1999. Unpublished 2001-2002 M. leidyi and ichthyoplankton data are 
courtesy of B. Sullivan and G. Klein-MacPhee, respectively. Ichthyoplankton sampling 
frequency and site location was similar in all studies, but the sampling frequency of M 
leidyi and sites sampled varied among studies. Mesh sizes used to determine M. leidyi 
abundances were as follows: 6 mm, 1971-72, 1974 (Kremer 1975); 153 µm, 1973 and 
1974-76 (Hulsizer 1976) and (Deason and Smayda 1982); 1.8mm (summer and fall) and 
153 µm (winter), 1975 (Deason 1982); 1mm,1983, 1985-86 (MERL, unpublished); 
505 µm, 1990 (Keller et al. 1999); 500 and 1 OOOµm (Sullivan et al. 2001 ). Mesh sizes 
used to determine ichthyoplankton abundances were as follows: 505µm, 1972, 1990, 
and 2001 (Bourne and Govoni 1988), (Keller et al. 1999), and (Klein-MacPhee, 
unpublished), 333µm (this study). 
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METHODS 

Field Sampling 

Narragansett Bay is a temperate, relatively well-mixed estuary on the northeast 

coast of the United States (Hicks, 1959). The lower region of the bay is divided into 

two passages, East and West, by Prudence and Conanicut Islands. Ctenophores, 

ichthyoplankton, and mesozooplankton were sampled at 5 stations in the bay during 

May-August 2002. The stations: Warren River, Greenwich Bay, Prudence Island 

(East), Dutch Island, and Fox Island, were located in both the East and West passages of 

the Bay. The northernmost station was located at the mouth of the Warren River and 

the southernmost at Dutch Island (Fig. 1-2). The depths of the stations ranged from 13 

meters at Dutch Island to 5 meters at Greenwich Bay. Two stations, Dutch Island and 

Fox Island, were sampled weekly throughout the entire sampling season. The 

remaining three stations were sampled weekly in June and then approximately bi­

weekly during July and August. Sampling stations were positioned where fish eggs 

were most abundant during a 2001 ichthyoplankton survey in the bay (MacPhee, pers. 

comm.). 

Ctenophore densities and sizes 

I measured ctenophore abundance using a 1-mm mesh plankton net with a 0.5-m 

diameter opening equipped with a flowmeter. The net was slowly towed vertically from 

the bottom to the surface (2 tows per station) and the collected animals were placed in a 

cooler. The organisms were returned to the laboratory where they were counted and 

measured to the nearest centimeter with a ruler. 
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Figure 1-2. Station location in Narragansett Bay, RI where ctenophore, ichthyoplankton, 

and mesozooplankton abundances were sampled. 
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Fish egg and larvae densities 

Ichthyoplankton density was determined from three replicate oblique tows, each 

at 3.7 km h-1 (Herman 1958) and lasting 2 minutes (Keller et al. 1999). The samples 

were collected using a 333-µm mesh net with a 0.5-m diameter opening equipped with a 

flowmeter. The average amount of water filtered per tow was 50 m3. This mesh size is 

a mid-sized mesh and was chosen based on a range of sizes, 280 to 505µm, used in 

previous ichthyoplankton surveys (Keller et al 1999) as well as its suitableness for 

capturing both fish eggs and larvae in Narragansett Bay (Klein-MacPhee, pers. comm.). 

One sample was counted live and the ichthyoplankton removed and used in laboratory 

digestion rate experiments, while the remaining two were preserved in 37% buffered 

formalin. 

Zooplankton densities 

Other constituents of the zooplankton (such as copepods, crab zoea, and veliger 

larvae) were sampled by vertical tows taken with a 64- µn mesh net with a 0.25-m 

diameter opening also equipped with a flowmeter. The chosen mesh size is appropriate 

for both larval and adult stages of members of the zooplankton in Narragansett Bay 

(Durbin and Durbin 1978). These samples were preserved in 37% buffered formalin 

and the contents enumerated. Data from these tows was used for calculation of 

selectivity of prey and was provided by Sullivan and Van Keuren (unpublished). 

Gut Content Analyses 

I also collected ctenophores at each station using a long-handled bucket and a 

plankton net. I immediately examined their gut contents under a dissecting microscope. 
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Shipboard microscopy is the most direct method to determine the actual diet of the 

predators. This method avoids the artifacts of over-handling, especially the ejection of 

gut contents, which have plagued laboratory studies. Fish eggs and larvae were 

identified to species level and enumerated in the ctenophore gut contents. As many 

ctenophores as possible were examined at each station with the target number being a 

minimum of30 organisms from each of two size classes (<1 cm, >1 cm). This target 

number was selected based on desired confidence intervals for statistical significance. 

This was not always possible due to time constraints or lack of organisms. 

Digestion Times 

It is important to accurately determine the length of time a fish egg or larva can 

be identified in the predator's gut (D), so that those values can be used in combination 

with frequency of prey per predator (G) to calculate predation rates from the equation I 

= GID, when I = ingestion predator per hour. Laboratory studies were performed to 

determine the digestion times of M leidyi of multiple size classes. Freshly collected 

ctenophores were placed in 8-1 containers with 20-µip mesh filtered seawater in an 

environmental chamber and held overnight to clear their guts. The temperature was set 

within 1-2°C of the temperature of ambient seawater in the bay at the time ctenophores 

were collected. Prior to measurements, the ctenophores were maintained in the 

environmental chamber at the same temperature and light/dark cycle as they would 

encounter naturally. Two temperature treatments, a low range of 7.5-13°C and a high 

range of21.5-24°C, were chosen based on the observed temperature range in 

Narragansett Bay during 2002. Approximately the same temperature ranges were used 

m previous M. leidyi predation experiments on zooplankton of Narragansett Bay 
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(Kremer 1979). Eight-liter containers were used in the digestion experiments, because 

container effects were not important as these studies were concerned with ctenophore 

digestion time and not feeding behavior. The prey consisted of net-collected 

zooplankton and net-collected and cultured ichthyoplankton. Fish egg sizes used in the 

determination of ctenophore digestion rates ranged from 0. 74-1.15 mm in diameter and 

fish larvae used were 2.78-3.0 mm in total length (Table 1-1). Five species offish eggs, 

cunner (Tautogolabrus adspersus), tautog (Tautoga onitis), searobin (Prionotus sp.), 

summer flounder (Paralichthys dentatus), and winter flounder (Pleuronectes 

americanus) were used in the digestion rate experiments as well as summer flounder 

and winter flounder larvae from aquaculture. 

I dyed fish eggs and larvae by adding full-strength Neutral Red (1 g/ 1.5 L 

water) to an aqueous solution that contained the prey. This procedure did not alter the 

behavior of either component during the feeding period, nor did it effect the digestion 

time (Appendix H). Coloring the otherwise translucent fish eggs was an experimental 

innovation which served three purposes: first, it allowed the eggs to be easily observed 

in the transparent ctenophore gut; second, it decreased the amount of handling of the 

ctenophore during the experiment; and third, it allowed for more frequent observations 

of gut contents. Live prey items were added to the experimental container and the 

ctenophore was allowed to feed until 1-2 prey were detected in the gut. The ctenophore 

was then removed from the prey container, placed into another 8-liter container with 

filtered seawater and no prey items. I examined the ctenophore at 2-3 minute intervals 

to determine a functional digestion time (the time when an ingested prey item could no 

longer be positively identified) and an actual digestion time (the time when the prey was 
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completely digested). An interval of 2-3 minutes allowed for observation of several 

ctenophores at the same time. 
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Table 1-1. : Ichthyoplankton prey used in digestion rate experiments. One asterisk denotes egg 

diameter and two asterisks indicate total larval length. 

Taxon Common Name Prey type Prey size, Demersal or 
mm pelagic 

egg 

Triglidae Searobin egg *0.94-1.15 pelagic 

Priontus spp. 

Labridae 
N 
-....) 

Tautoga onitis Tautog *0.97-1.00 pelagic egg 

Tautogolabrus Cunner egg *0.84-0.92 pelagic 

adspersus 

Pleuronectidae 

Pleuronectes Winter flounder larva **3.0 

americanus egg *0.74-0.85 demersal 

Bothidae 

Paralichthys dentatus Summer flounder larva **2.78 

egg *1.02 pelagic 



Digestion times of fish eggs reported in the literature range from 10-45 minutes with 

fish larvae being digested in as few as 15 minutes, so the 2-3 minute observation 

intervals resulted in more tightly constrained digestion rates than in previous studies 

(Monteleone and Duguay 1988). 

Ingestion Rates and Predatory Impact 

For each sampling time, ingestion rates of the ctenophores were calculated from 

the average number of eggs or larvae per ctenophore from 30 or more organisms in each 

size class in field collections and digestion time measured in the laboratory. The 

ingestion model used was: I = GID, where I = number of eggs ingested per ctenophore 

per hour, G =number of fish eggs or larvae per ctenophore (from field collections), D = 

egg or larvae actual digestion time (h) (from laboratory study). The actual digestion 

time was used instead of the functional time because actual digestion times were 

available for all experiments. This technique of using the model I= GID, described by 

Purcell ( 1997), reduced laboratory artifacts and revealed the actual diet of the 

ctenophore by relying on gut content data from field. collected ctenophores. However, 

this equation assumes that there is steady-state feeding by the predators and that food 

identified from gut content analysis (G) is the same food that will be used in the 

measurements of digestion times (D). In addition, this method assumes that the animals 

collected for gut contents are representative of the population at that location. A % 

clearance rate was calculated from the ingestion rate and densities of prey in the water 

column (I/egg or larvae density). These ingestion rates were multiplied by the number 

of predators to estimate the percent of the prey population that could potentially be 
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consumed. The calculation of% clearance rate relies upon "I" or the calculated 

ingestion rate and is therefore dependent on the gut content approach. 

Statistical Analysis 

Descriptive statistical analyses such as mean and standard deviation of M. leidyi 

and ichthyoplankton abundances were performed using the Microsoft® Excel 2000 

software package. I used the Sigmastat® statistical software package to perform one 

way ANOV As to determine the variability of both ctenophore and fish egg and larval 

abundance by station and date. Because there was a significant difference among 

stations for ctenophore abundance, I used Sigmastat® to perform an All Pairwise 

Multiple Comparison Test or Tukey Test. In order to examine if digestion times of fish 

eggs and larvae were affected by independent variables such as ctenophore size, date, 

prey size, and temperature, a multiple linear regression analysis was performed using 

Sigmastat® software. Pearre's (1982) electivity index, C, was used to assess M. leidyi's 

prey-selectivity in situ at Fox Island and Dutch Island. Electivity analysis could not be 

performed at the other stations, because total gut content data was not collected, only 

ichthyoplankton data. 

RESULTS 

Seasonal Abundance of Predator and Prey 

Mnemiopsis leidyi was the most abundant gelatinous predator collected in 

Narragansett Bay during the study period. The M leidyi population in Narragansett 

Bay was characterized by a rapid increase in abundance which spanned several orders 
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of magnitude and then a steep decline in late summer through early fall (Fig. 1-3). The 

change in ctenophore abundance in Narragansett Bay was significantly related to both 
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Figure 1-3. Abundance of M. leidyi in Narragansett Bay, RI, 2001-2002. A. M leidyi 
abundance at Fox Island station. B. M leidyi abundance at Dutch Island station. 
Closed circles represent ctenophores = lcm total length and open circles > 1 cm in total 
length. Data courtesy of B. Sullivan, unpublished. 
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sampling date and station (one-way ANOVA, p<0.001 and p<0.05, respectively). The 

increase in volume of M leidy i spread down-bay; beginning in March in the Providence 

River and progressing southward throughout the summer and fall (Appendix A). 

Total predator densities were <100 m-3 until mid-June, when a dramatic increase 

in total ctenophore abundance was observed at both stations (Fig. 1-3). The M leidyi 

population experienced a rate of increase of22.5% d- 1 during this time, which coincided 

with the time that was previously identified as the spawning period of numerous local 

fish species, including cunner (Tautogolabrus adspersus), tautog (Tautoga onitis), 

butterfish (Peprilus triacanthus), atlantic menhaden (Brevoortia tyrannus) and searobin 

(Prionotus spp.) (French 1991). But the maximum egg population appears to have 

occurred earlier at Fox Island and Dutch Island than the time of increase ofMnemiopsis 

(Fig.1-4a). Of the 14 identified species of fish eggs and larvae in the ichthyoplankton 

samples, the species composition was dominated by butterfish, cunner, tautog, and 

searobin eggs (Fig. 1-5A). The same four species were the dominant eggs found in the 

gut contents of M. leidyi during the sampling period (Fig 1-5B). 

The highest total mean fish egg density (of three tows), 73.2 ± 82.2 m-3, was 

recorded on May 29 at Fox Island when mean ctenophore abundance (of duplicate 

tows) was low at 2.9 m-3 (Fig. 1-4A). Fish larvae reached a peak average abundance (of 

three tows) of 34.1±59.8 lOOm-3 larvae on June 18 at Prudence Island and were 

inversely related to ctenophore abundance at 3 out of 5 stations. Prudence Island and 

Warren River did not exhibit this pattern and ctenophore abundance and fish larvae 

increased simultaneously (Appendix B). Abundance of fish eggs and larvae was not 

significantly different among stations during the survey (one-way ANOV A, p=0.318). 
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Figure 1-4. Mean abundance of all sizes of M. leidyi and fish eggs and larvae at two 
stations in the West Passage of Narragansett Bay during the summer of 2002. Open 
circles represent all sizes of M. leidyi and closed circles are fish eggs or larvae. A. Fox 
Island, B. Dutch Island. The standard deviations for fish egg and larvae mean 
abundances are included. Error bars are not visible when the standard deviation 
approaches zero. See Appendix F for standard deviation and coefficient of variation 
values of ctenophore abundance estimates. 
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Figure 1-5. A. Percent composition of fish eggs determined from enumerated weekly 
ichthyoplankton tows taken at 5 stations in Narragansett Bay, RI from May-August 
2002. B. Percent composition of fish eggs identified in the gut contents of> 1,000 M. 
leidyi at the same 5 stations from May-August 2002. 
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Further analysis of the abundance patterns of fish eggs and M. leidyi at each 

station was performed during the period characterized by the greatest fish egg decline 

(Table 1-2). Based on% clearance rate calculations for this time period (Table 1-3), I 

determined the percentage of the fish egg decline per day that could be attributed to 

predation by M. leidyi. At every station except Prudence Island, the values obtained 

indicated that over 100% of the fish egg decline could be explained by M leidyi 

predation. However, these values are not consistent with the observation that the timing 

of M. leidyi peak abundance was not synchronous with the period of greatest fish egg 

decline. Therefore, the decline was further examined in terms of tidal flushing from the 

lower West passage to Rhode Island Sound at a rate of 20-40% per day (Kremer and 

Nixon 1978). This revealed that the decline in fish eggs can be completely explained by 

physical flushing at all stations. 

Digestion rates of M leidyi on fish eggs and larvae 

M leidyi digestion times increased with increasing egg size, but the effect of 

differing larval sizes could not be evaluated because .all larvae were approximately 

equal lengths. Digestion rates of M leidyi for fish eggs and larvae decreased with 

increasing temperatures (Table 1-4; Table 1-5). In both temperature treatments, mean 

fish egg digestion times, 1.5 ± 0.6 hrs. (13°C) and 1.1±0.4 hrs. (21.5°C) were longer 

than those for fish larvae, 1.2 ± 0.2 hrs. (7.5°C) and 0.4 ± 0.05 hrs. (24°C). A Q10 of 0.7 

was calculated for fish egg digestion by M leidyi using the following equation: 

Q 1 o = In k 1 - In k? * 10 
deltaT 
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Table 1-2. : Results of the analysis of the period of greatest fish egg decline. The 

exponential model, N1=Noe-k1, was applied to determine the percent fish egg decrease d- 1, 

where No = initial number of prey, Ni = number of prey at time, t, e =base of natural 

logarithm, t = time in days, and k = the fraction of the standing stock of prey removed d-

1 The loss rate of 20-40% due to flushing is based on a tidal mixing model for the 

lower West Passage of Narragansett Bay (Kremer and Nixon 1978). 

Station Period of No, #m-3 Nti # m-3 Decrease d-1, Loss due Maturation 
egg decrease % to or 

flushing mortality 
d-', % d-',% 

FI 5129-6112 73 3.7 21.3 20-40 60-80 

DI 5/29-6/12 19.8 5.9 8.6 20-40 60-80 

Pl 6/11 -6/18 18.2 3.6 23.1 20-40 60-80 

WR 614-6125 8.2 4.7 2.6 20-40 60-80 

GB 6/11-6/19 7.4 1.8 17.7 20-40 60-80 
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Table 1-3: Data for I = G/D and % clearance rate calculations. A digestion time of 1.1 hours was used in all the 
calculations. 

Station/ Date I,# offish G, #of eggs or N, #of P, proportion % of I*# I* # # ofM. # ofM. #of 
eggs or larvae M. with eggs in gut fish of of leidyi leidyi fish 
larvae M. leidyi guf1 leidyi eggs cteno. cteno. > lcmm· <lcm eggs 

ingested guts cleared > lcm <lcm 3 m .3 m·3 
h·I h-1 m-3 m-3 

FI, 5129102 0.1 0.1 18 0.12±0.16 0.01 0.01 0 0.1 2.9 73 

WR, 6/4/02 0.4 0.48 40 0.4 75±0.155 15.8 1.3 0 3 0.7 8.2 

PI, 6/4/02 0.06 0.08 26 0.08±0.11 0.1 0.007 0 0.1 2.6 6.9 

GB, 6/4/02 0.6 0.7 17 0.71±0.22 17.9 2.1 0 3.2 7 11.5 

GB, 6/11 /02 0.56 0.6 13 0.62±0.27 7.3 0.8 0 1.5 23 11.5 
w 
--....) PI, 6/11/02 0.2 0.25 16 0.25±0.21 0.02 0.005 0 0.02 20.4 18.2 

FI, 6112102 0.1 0.1 41 0.15±0.1 1 330.7 4.6 0 34.8 185.3 1.4 

PI 6/18/02 0.17 0.2 21 0.19±0.17 1.4 0.1 0 0.3 33.8 3.6 

WR, 6118102 0.1 0.1 55 0.11±0.08 20.4 1.3 0 13.4 68.9 6.5 

DI, 6119102 0.16 0.2 34 0.18±0.13 125.7 2.3 0 14.1 277.1 1.8 

FI, 6/19/02 0.05 0.1 35 0.06±0.08 68.2 21.8 0 42.0 640.6 3.2 

GB, 6119102 0.04 0.06 81 0.05±0.05 8.3 0.1 4.4 2.6 97.6 1.4 

WR, 6125102 0.09 0.1 20 0.1±0.13 3.8 0.2 0 1.7 171.1 4.1 

FI, 6126102 0.05 0.06 35 0.06±0.08 70.1 1.4 0 27 472.3 2 



Table 1-4. Digestion rates of M leidyi on fish eggs and larvae at low temperatures, 7 .5-13 degrees Celsius. ND denotes "no 
data." 

Date Prey type Temp., M leidyi Functional Actual Prey Other prey in gut 
oc total length, digestion digestion number 

cm time, h time, h 

5123102 Searobin egg 13 4.2 ND 1.2 1 

5123102 Tautog egg 13 4.1 1.1 1.1 1 

6110102 unidentified eggs 13 5.3 2 2.8 2 

6110102 Cunner egg 13 2.9 ND 2.3 1 

6/10/02 Cunner egg 13 3.3 ND 1.3 1 14 Acartia tonsa 
w 
00 copepodites 

6124102 Cunner egg 10 4.8 1.5 2.5 1 1 Acartia tonsa, 

7 A. tonsa 

copepodites 

1127103 Winter flounder larva 7.5 2.5 ND 1.1 1 4 Podon 

1127103 Winter flounder larva 7.5 1.6 ND 1.0 1 3 Podon, 1 Crepidula 

1128/03 Winter flounder larva 7.5 2.9 0.7 1.4 2 1 Crepidula 

1128/03 Winter flounder larva 7.5 3.4 0.65 1.4 2 



Table 1-5. Digestion rates of M leidyi on fish eggs and larvae at high temperatures, 21 .5-24 degrees Celsius. ND denotes 
"no data." 

Date Prey type Temp., M. leidyi Function Actual Prey Other prey in gut 
oc total length, al digestion number 

cm digestion time, h 
time, h 

8/7/03 Tautog egg 24 3.8 1.0 1.2 1 11 Acartia tonsa adults, 

1 crab zoea, 8 ovoid 

bodies 

8/7/03 Tautog egg 23 4.1 ND 0.6 1 1 A. tonsa adult, 1 crab 

(.;.) zoea, detrital mass 
\0 

8/20/03 Summer flounder egg 21.5 ND ND 0.7 1 

8/20/03 Summer flounder egg 21.5 1.8 1.0 1.2 2 

8/20/03 Summer flounder egg 21.5 5.3 1.2 1.5 4 

8/20/03 Summer flounder larva 21.5 4.5 0.4 0.6 1 

8/21/03 Summer flounder larva 24 5.2 0.3 0.4 1 

8/21/03 Summer flounder larva 24 3.1 0.2 0.3 1 



where kl is the rate at temperature tl and k2 the rate at temperature t2. Multiple 

linear regression analysis indicated that the length of digestion time in ctenophores 

depends on both temperature and prey size (Table 1-6). 
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Table 1-6. Multiple regression a analysis of ctenophore digestion time in 

relation to prey size and temperature. 

Variable Range Mean P-value 

X1, prey size (mm) 0.94-3.0 1.8 0.004 

X2, temperature 7.5-24.0 15.9 0.002 

Y 1, digestion time (h) 0.32-2.75 1.2 

a Regression equation: Y1=2.972 - (0.386 * X 1) + (0.0661 * X 2) , r2 = 0.580; 
ANOVA F = 10.375, p = 0.001 , SE of estimate = 0.475. 
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Gut Content Analyses 

Jn situ gut content analyses of M. leidyi during the period of highest 

ichthyoplankton abundance (May 22- June 7) revealed that 19 .6% of the ctenophores 

examined had consumed at least one fish egg with a range from 0-71 % over the 

sampling season. Of 1,031 ctenophore guts examined from May to August, 6.9% 

contained at least one fish egg, with one having 5 in the gut. This study shows that a 

broad size range of ctenophores are capable of ingesting fish eggs. The largest 

ctenophore to have ingested a fish egg was 10.l cm total length, the smallest was 0.5 

cm, and the mean ctenophore size that ingested a fish egg was 5.2 cm. Only 2 

ctenophores < 1 cm consumed a fish egg and the median size of M. leidyi that ingested 

an egg was 5.4 cm and the mean size was 5.2 cm total length. The size distribution of 

the % of ctenophores that consumed fish eggs revealed that the percentage of M leidyi 

that ingested fish eggs was roughly 5 times higher when the predators were larger than 

4 cm total length (Figure 1- 6). The percent composition of fish eggs in the 

ichthyoplankton diet of M leidyi consisted of butterfish eggs (39%), tautog (23%), 

cunner (19%), and searobin (19%). 
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Only one fish larva was observed in gut contents during the study. An electivity 

analysis was performed to compare the proportions of fish eggs versus other prey in the 

diet of M. leidyi and that found in the environment. Electivity of M. leidyi was 

examined at the Fox Island station and was found to be positive 23% of the time with 

respect to fish eggs and negative 8% of the time. All positive and negative values were 

significantly different from 0 (p<0.0005). The date of peak abundance of ctenophores 

in the bay coincided with positive electivity for fish eggs. Electivity was also examined 

at Dutch Island and was positive 42% of the time with respect to fish eggs and negative 

16% of the time. All positive and negative values were significantly different from 0 

(p<0.01). 

Predation rates on fish eggs 

Predation rates by M leidyi on fish eggs were calculated from the numbers of 

ichthyoplankton prey found in the predator's gut contents, the temperature-specific 

digestion times, and the field densities of predator and prey. Accordingly, estimates of 

predation on fish eggs in Narragansett Bay ranged fr~m <l to 111 eggs consumed m-3 

d 1• These values are comparable to previous estimates that range from 0 to 14. 7 and 21 

to 174 (Monteleone and Duguay, 1988) and 10 to 79 eggs m-3 d-1 (Purcell, 1994). The 

percent clearance ranged from less than 1 % to over 300% h-1 during periods oflow and 

high ctenophore abundance, respectively (Table 1-3). Predation rates on eggs were 

highest at Dutch and Fox Island stations where M leidyi reached the highest densities 

while prey densities were low. On June 4, Greenwich Bay was the station where the 

most fish eggs were found in ctenophore guts. Thus, individual feeding rates on eggs 
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were highest in Greenwich Bay, even though fish egg densities were higher at other 

stations. The stations were divided into upper-bay and lower-bay based on results of a 

Tukey all-pairwise comparison test of% clearance rates. Accordingly, Warren River, 

Greenwich Bay, and Prudence Island were placed into the upper-bay category and were 

characterized by% clearance rates between 0.5-13.4% h-1• Dutch Island and Fox Island 

were grouped in the lower-bay and had% clearance rates of70.1-330.7% h-1• Predation 

on fish eggs was not detected in samples taken after June 26. Variability in the 

estimates of predator abundance was examined by calculating the coefficient of 

variation for replicate tows and these values ranged from 0-84% with a mean of 28% 

(Appendix D). 

Temperature and Salinity 

The year 2002 was unusually warm and had the second highest mean annual 

water temperature (12.5°C) since 1956 (Hawk 1998) (Fig. 1-7). The seasonal 

temperature pattern in Narragansett Bay is characterized by a spring increase, a peak in 

early fall, and an autumnal decline (Fig. 1-8). 

The temperature during the sampling period, May-August 2002, ranged from 

13-25°C at all stations and M. leidyi was present across the entire temperature range. 

Salinity ranged from 25.4-31.3 psu among stations, with lower salinities recorded at the 
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Figure 1-7. Mean annual, near surface, water temperature at Newport, RI, in the lower 
East passage (1955-94) calculated from monthly means of hourly readings from the 
National Oceanic and Atmospheric Administration (NOAA) station #8452660 (closed 
diamonds) and at Fox Island in the middle of the West Passage measured once each 
week (1992, 1995-98) (open circles) (Hawk 1998) and 2002. The measurements for 
2002 are surface samples collected using a Yellow Springs Instruments 600XLM multi­
parameter water quality monitor at Fox Island (D. Gifford, unpublished). The annual 
mean for 2002 is circled on the graph. 
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Figure 1-8. Annual near surface water temperature for 2001 -2002 at Dutch Island and 
Fox Island stations. Measurements were taken weekly using a Yellow Springs 
Instruments 600XLM multi-parameter water quality monitor. Open circles represent 
Dutch Island and closed circles are Fox Island. Labels for the months (i.e. "N" for 
November) start at the beginning of the month. Data courtesy of D. Gifford, 
unpublished. 
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Warren River station and in the West Passage at Fox Island. The highest salinity, 31.3 

psu, occurred at Dutch Island on July 1, 2002. Ctenophores were found throughout the 

entire salinity range. 

DISCUSSION 

Predation on the early life history stages of marine fish is potentially the single 

most important source of mortality. A likely result of predation is the regulation of fish 

egg and larvae abundances, which may, in tum, affect recruitment (Bailey and Houde, 

1989). To affect fish recruitment, ctenophore predation must remove a significant 

number of fish eggs, which prevents maturation into larvae and the escape of 

ctenophore predation. M. leidyi has been shown to prey successfully on fish eggs and 

larvae in both laboratory and field studies. In the field, timing of fish spawning and 

explosive ctenophore population growth dictate the extent to which M leidyi can 

decrease the ichthyoplankton in Narragansett Bay. If most of the fish spawn and the 

eggs mature into larvae before ctenophores become abundant, then the fish are not 

subjected to intense predation because of their timing relative to the ctenophore 

abundance. Therefore, perhaps the most important factor to consider when examining 

predation of fish eggs and larvae by ctenophores is the degree of spatial-temporal 

overlap of predator and prey (Frank and Leggett 1982). 

The degree of temporal overlap was considered by examining the predator-prey 

abundance patterns that show that the peak of M leidyi occurred at the end of the period 

of highest fish egg density. In other words, ctenophore abundance was relatively low 

during the period of the greatest decrease of fish eggs at each station. Although, gut 

content analyses revealed that M. leidyi consumed fish eggs at all stations, eggs were 
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only present in 6.9% of the ctenophore guts examined. This data supports the 

conclusion that M. leidyi preys upon fish eggs. However, the low percentage of 

ctenophores that ingested fish eggs combined with the lack of temporal overlap between 

predator and prey means that M leidyi did not substantially diminish fish eggs at the 

stations sampled. Other fish egg predators such as fish and crustacean larvae, fish egg 

maturation, and flushing from the bay might explain the decline observed in the bay 

during early-mid June. 

Another important result of the gut content analyses was that very small M. 

/eidyi (0.5 cm) can consume fish eggs, but do so very infrequently. The former differs 

from the findings of a previous laboratory study that stated "larval tentaculate 

ctenophores ( <0.9 cm) did not consume bay anchovy eggs" (Monteleone and Duguay, 

1988). Ctenophores larger than 4 cm had higher feeding rates, particularly in the first 

two weeks of June, but all sizes did sometimes consume fish eggs contrary to the 

findings of previous studies (Appendix C). Specifically, gut content data from the 

present study show that 2 ctenophores < 1 cm consumed a fish egg. The mean size of 

M leidyi that ingested an egg was 5.2 cm. Of the 1,031 ctenophores examined for gut 

contents, 36% were <l cm total length, so there was not an equal representation of 

smaller ctenophores. 

Gut content data also suggest that the decline in fish larvae does not appear to 

be due to ctenophore predation. Only one fish larva was found out of 1,031 ctenophore 

guts examined. The lack of predation on fish larvae agrees with findings of Purcell et al 

(1994) as they failed to find any fish larvae in the gut contents of M. leidyi (n=75) in 

Chesapeake Bay. Plausible explanations for this include: rapid digestion times of M. 
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/eidyi for fish larvae found in this study 0.4 ± 0.05 hrs. (24°C), low in situ densities of 

fish larvae also observed in the present study (<35 lOOm-3), and/or low swimming 

speeds of the ctenophores which may have resulted in fewer encounters with fish larvae 

(Cowan and Houde 1992). Also, if the escape response of a fish larva can be assumed 

to approximate that of an adult Acartia tonsa, then the larva may be strong enough to 

escape an intial contact with the ctenophore (Costello et al. 1999). Given the numerous 

factors that may prevent researchers from finding larvae in field-collected ctenophores, 

it seems that alternate approaches warrant consideration. I propose that a laboratory 

experiment to compare M leidyi's ability to capture fish larvae with its capture of other 

prey types (e.g. copepods) would be useful in addressing this issue. 

In recent literature, the application of immunological techniques has been 

suggested as a method with which to identify highly-digested fish larvae in ctenophore 

guts (Purcell 1985). A preliminary assessment of the Ouchterlony Immunoassay 

technique was conducted in conjunction with the present study (n=50) and it was unable 

to detect fish eggs or larvae in ctenophores that had ingested each prey type (Feller et al. 

1979). This was likely due to extreme dilution caus~d by the high water content of M. 

leidyi (96%) (Kremer 1975). Therefore, this approach does not appear to be sufficient 

to further our understanding of M leidyi predation on ichthyoplankton. 

Ctenophore predation was quantitatively estimated by calculating individual 

ingestion rates using the ingestion model, I = GID. I calculated a range of ingestion 

rates from 0.04 to 0.6 eggs h- 1• Based on the small degree of temporal overlap of M 

leidyi and fish eggs, I conclude that results obtained using the ingestion model should 
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not be extrapolated over a 24-hour period as the steady state feeding assumption is most 

certainly violated in this case. 

I also calculated individual clearance rates and percent clearance rates, which 

were highly variable. This is because they respond to changes in both predator and prey 

densities. For example, the range of individual clearance rates for M leidyi > lcm total 

length was 10.6-578.1 liters d-1 g wet weighf 1. A laboratory study by Kremer (1975) 

examined M. leidyi clearance rates on copepods and reported a range of 0.61-2.03 liters 

g wet weighf1 for ctenophores larger than 8g wet weight. Individual clearance rates 

from this study differ greatly from those Kremer observed and this can likely be 

attributed to the patchiness of fish eggs in Narragansett Bay. At Dutch Island and Fox 

Island, the % clearance rates ranged from 70-330.7% of the eggs cleared h-1, whereas 

values in the upper-bay were 0.5-13.3% of the eggs cleared h-1• A recent study in 

Narragansett Bay estimated percent clearance of M. leidyi on fish eggs between 4.6-

62.5% h-1 (Sullivan unpublished). The peak abundance of ctenophores in the study by 

Sullivan et al (2001) was 350 m-3. In the present study, M leidyi obtained a maximum 

abundance of 846 m-3 at Fox Island, which is 2.5 times higher than the peak abundance 

recorded in Sullivan's survey. Tow-derived estimates of predator abundance were 

characterized by small amount of variability (Appendix D), which is incorporated into 

the % clearance estimates. As such, the extremely high % clearance values in the 

lower-bay are attributed to very high densities of predators and relatively low densities 

of prey. Abundance data from the lower bay stations show that the period when fish 

eggs are abundant does not coincide with the period of peak ctenophore abundance 

(Figure 1-4). As a result, my predation estimates seem too high to be reasonable in 
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Narragansett Bay given the small amount of temporal overlap between predator and 

prey. 

Furthermore, the percent of ctenophores with fish eggs present in their guts was 

greater in the upper bay despite higher % clearance rates from lower bay stations (Table 

1-3). The discrepancy between observed ctenophore ingestion and the predation impact 

estimated by the ingestion model using the predator and prey densities is evidence that 

the latter is not appropriate in this type of application. As a result, a mechanistic 

numerical model of M. leidyi biomass was developed as an alternate approach for 

examining ctenophore predation on ichthyoplankton in the bay (manuscript #2). 

Numerous factors determine the extent to which M leidyi can impact 

ichthyoplankton stocks in coastal ecosystems. Some factors that were not addressed in 

the present study include diel periodicity in ichthyoplankton as Govoni and Olney 

(1991) observed peak densities of fish eggs in the Chesapeake Bay from dusk to dawn 

and vulnerability of fish larvae to predation (Paradis et al. 1996). So, these estimates 

may be conservative or underestimates of both fish egg density and ingestion by 

ctenophores. Also, an on-going study in Narragansett Bay is addressing diel differences 

in M. leidyi predation. The findings ofthis study may provide important information 

concerning M. leidyi predation on ichthyoplankton. It is likely that interannual variation 

of predation is considerable. 

This study has shown that M leidyi is a predator of fish eggs in Narragansett 

Bay, but did not considerably reduce their standing stocks during this year. M leidyi 

predation on fish larvae is rare. 
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CHAPTER 2 : A Carbon Budget Model of the Seasonal Biomass of the ctenophore 
Mnemiopsis leidyi 

INTRODUCTION 

At the outset of marine ecosystem modeling, Riley ( 1946) described "two 

opposite approaches" used to test hypotheses in the field of oceanography. The first 

method was "descriptive" and relied on measurements analyzed with statistics, while 

the other was an assumption-based, synthetic approach that sought the "mathematical 

derivation of relationships" (Riley 1946). In manuscript 1, I used a traditional 

descriptive approach to examine the possible predatory impact of the secondary 

consumer, Mnemiopsis leidyi, on ichthyoplankton by calculating their ingestion and % 

clearance rates based on gut content analyses coupled with laboratory-determined 

digestion times and predator and prey densities. The conclusion was that M leidyi is a 

predator of fish eggs in Narragansett Bay, but does not considerably reduce their 

standing stocks and that predation on fish larvae is rare. 

The present study is representative of the alternative approach, whereby a 

carbon budget model was developed to examine the ~mount of prey carbon necessary to 

support the observed changes in ctenophore biomass in Narragansett Bay. The model 

output is a first order approximation of the extent to which M leidyi's metabolic 

demands can be met by invoking individual and then collective prey categories. The 

goal is to determine if ichthyoplankton play an important role in supporting the 

observed biomass. Few, if any, studies have attempted to compare these two methods 

and their results, which is key to determining how well the observed phenomena are 

understood. 
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Recently, it has been suggested that climatic warming is increasing water 

temperatures in Narragansett Bay and that this allows M leidyi to experience explosive 

population growth during the spawning season of local fish species (Sullivan et al 

2001). This suggests that M. leidyi may have a better opportunity to reduce 

ichthyoplankton stocks in the bay ifthere is sufficient spatial-temporal overlap between 

predator and prey and M leidyi eat a significant number of fish eggs. In other words, 

the carbon in fish eggs and larvae may be contributing to the rapid population increase 

of M. leidyi in June. 

One condition that allows ctenophores to increase their populations rapidly is 

suitable food (in terms of quantity and quality). Understanding the nutritional value of 

the prey present in the environment and how efficiently the predator uses the procured 

nutrients can give researchers insight into the causes of massive population growth 

events. 

Carbon comprises 1. 7% of the ctenophore' s dry weight. This is equivalent to 

4% of the organism's wet weight, which is a large amount given the high water content 

of the ctenophore (Kremer 1975). Based on the body composition of the organisms, 

carbon is the most important constituent and plays a key role in overall protein 

metabolism, the major energy source for ctenophores (Kremer 1975). Therefore, a 

carbon budget model can provide important information about the increase in 

ctenophore biomass observed in the summer in Narragansett Bay. 

Numerical models of gelatinous zooplankton have been developed for a variety 

of estuarine systems (i.e. the Black Sea, the Chesapeake Bay, and Narragansett Bay) to 

examine population dynamics and the factors that control seasonality of the organisms. 
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For example, a population model of the carnivorous ctenophore, M. leidyi in 

Narragansett Bay showed that food availability was the main factor controlling the 

predator's abundance rather than predation, as had been previously suggested (Kremer 

1975). Also, the model indicated that predation brought about the decrease of the 

biomass of ctenophores in the fall, but it did not limit the maximum seasonal 

abundance. 

Over the last decade the Black Sea ecosystem received a great deal of attention 

from biologists as the invasive ctenophore, M leidyi, reportedly destroyed stocks of 

commercially important species such as anchovy and the Mediterranean horse mackerel 

(Mutlu 1994; Shiganova 2001). More recently, models of the Black Sea ecosystem 

suggest that gelatinous zooplankton may play a much smaller role in the documented 

fish stock decline than previously reported and that over-fishing may have led to the 

fisheries crash (Gucu 2002). In this case modeling was used to successfully address 

tropho-dynamics within a complex ecosystem 

METHODS 

Field Sampling 

Narragansett Bay is a temperate, relatively well-mixed estuary on the northeast coast of 

the United States (Hicks, 1959). The lower region of the bay is divided into two 

passages, East and West, by Prudence and Conanicut Islands. Ctenophores, 

ichthyoplankton, and mesozooplankton were sampled at Dutch Island and Fox Island 

during May-August 2002. The stations were sampled weekly throughout the entire 

sampling season. Sampling stations were positioned where fish eggs and larvae were 
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most abundant during a 2001 ichthyoplankton survey in the bay (MacPhee, pers. 

comm.). 

Carbon Budget Model of M leidyi Population Biomass 

A dynamic numerical model was developed to simulate the seasonal biomass of 

M /eidyi in Narragansett Bay (Figure 2-1) and I compared the model results with those 

of a previous study, which suggest that fish eggs are a small component of the 

ctenophore's diet and fish larvae are rarely consumed (manuscript 1). Field-generated 

model inputs include: temperature and biomass data for the following forced 

compartments: M. leidyi, mesozooplankton (Acartia sp. was used as a proxy for this 

category), fish eggs, and fish larvae. Microzooplankton biomass was based on 

abundance data from the literature (Verity 1984). Carbon composition of the 

mesozooplankton and microzooplankton was estimated using values obtained from the 

literature (Durbin et al. 1992; Verity 1984) while values for fish eggs and larvae were 

calculated based on the size of the prey item and the assumption that 50% of the dry 

weight is carbon (Kremer and Nixon 1978). 
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Figure 2-1. A schematic representation of the ctenophore biomass model for 
Narragansett Bay. This version of the model includes inesozooplankton as the only 
prey compartment. A time step (dt} of one day was used for all runs of the model. 
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As a large amount of data was available from the 2002 Narragansett Bay M 

/eidyi survey, data and equations in the literature, and the author's experiments, many 

components of the model were forced seasonally rather than simulated {Table 2-1 ). 

Only seasonal biomass of the M leidyi population was computed 

mechanistically using the software package Stella®, Version 6. The in situ amount of 

ctenophore carbon at Dutch and Fox Island was examined using both the mean size of 

ctenophore present and the size frequency data of the population (Figure 2-2). 

Biomass was simulated at Dutch and Fox Island, because the time series were 

extensive at these stations and mesozooplankton data were also available. 

Growth Terms 

Ingestion rates were calculated according to the following equation: 

I (mg C m-3 d- 1) = (prey biomass)*(l-exp(-Grazing*M. leidyi biomass*dt)) (1) 
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Figure 2-2. M. leidyi carbon derived from size frequency of the in situ ctenophore 
population versus M leidyi carbon based on mean ctenophore size for A. Fox Island and 
B. Dutch Island. Open squares represent actual carbon from size frequency and closed 
squares are based on mean ctenophore size. 
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Table 2-1. Sources of data used in the carbon-based model of ctenophore ingestion. 

Data 

M. /eidyi density 

Mesozooplankton density 

Microzooplankton density 

Fish egg density 

Fish larvae density 

Temperature 

Respiration and excretion 

Predation Rate 

Flushing Rate 

Source 

B. Sullivan, unpublished (2002) 

B. Sullivan, unpublished (2002) 

P. Verity (1984) 

Author's data (2002) 

Author's data (2002) 

D. Gifford, unpublished (2002) 

P. Kremer (1975) 

C. Oviatt and P. Kremer (1977) 

J. Kremer and S.W. Nixon (1978) 
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where prey biomass is equal to one or more of the following prey types: 

mesozooplankton, microzooplankton, fish eggs, and fish larvae (mg C m-3). An 

assimilation efficiency (AE) of 75% was input into the model and is based on findings 

for the congener of M leidyi, M. mccradyi (Kremer 1975). In the schematic diagram of 

the model, A= Ingestion* AE and growth= A *Ctenobiomass. Ctenophore grazing (G) 

was computed as in Kremer (1975): 

G = (a*M leidyi weight/\-0.5) (2) 

Kremer' s formulation is based on prey removal experiments conducted in 20-25 liter 

tanks over forty-eight hours. Kremer's feeding rate model is used despite the results of 

a study by Monteleone and Duguay (1988), which show that small containers (<501) 

significantly reduce ctenophore feeding behavior. The container size used in Kremer's 

study ranged from 20-40 liters and was deemed sufficient given that studies in which 

larger containers are used may encounter problems with patchiness of prey during the 

experiments. 

Alpha (a) in equation 2 is represented by the following exponential equation: 

a = aoe KT (3) 

where <lo= 0.04 L/mg day K = 0.05 C-1 are constants based on Kremer's calculations 

(1975) and Tis temperature in °C. The temperature equation used in the model was 

formulated based on surface sample measurements for 2002 collected using a Yellow 

Springs Instruments 600XLM multi-parameter water quality monitor at Dutch Island 
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and Fox Island (D. Gifford, unpublished, Figure 1-7, manuscript 1 ). The observed 

temperature pattern during the sampling period can be described with the equation: 

Temp (°C) = 13.5 - 10 * cos [2n (day- 50) I 365] 

where 13 .5°C is the mean and the amplitude is 10°C. 

(3) 

As a first order approximation, an assumed organism size of 5 grams wet weight 

was input into the model. This weight represents a mid-range value as determined in 

Kremer's (1975) M leidyi population model. 

Loss Terms 

The loss terms in the model are predation by butterfish, flushing from the bay, 

respiration and excretion, and egg production. A constant loss due to predation by the 

butterfish, Peprilus triacanthus, of 10% of the ctenophore biomass per day was used in 

the initial runs of the model (Oviatt and Kremer 1977). A range of20-40% was 

determined appropriate for the amount of hydrodynamic exchange between the lower 

West Passage of Narragansett Bay and Rhode Island Sound in a model developed by 

Kremer and Nixon (1978). As such, a flushing rate of20% of the ctenophore biomass 

per day was used in the initial model simulation. Respiration was determined to be a 

function of temperature only and was input into the model according to Kremer (1 975): 

R = 4.4exp o.IsT, where R is weight-specific respiration and Tis temperature in degrees 

Celsius. Excretion was calculated as in Kremer (1975), Exe = 0.67*R, where R = 

respiration. The equation input into the model for loss due to egg production is based 
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on Kremer' s formulation (1975) and is as follows: E = O.Olexp o.i isw, where Eis the 

fraction of unrnetabolized assimilation put into reproduction and Wis the organisms 

wet weight in grams. 

Sensitivity Analysis 

The model's sensitivity to variations in various parameters was examined. M. 

/eidyi weight was varied to determine how important the value was in the model runs. 

In the sensitivity analyses, a logical array of values was tested based on approximate 

ranges of each from Narragansett Bay. For example, ctenophore weights of 1 and 10 

grams wet weight were tested and temperature values of 11.5, 15.5, and 20.5 °C. Other 

parameters were tested with a sensitivity analysis similar to that of Kremer and Nixon 

(1978) where the model was run with Yz and 2 times the initial values from the standard 

run. 

RESULTS 

Simulations for Dutch Island were initiated on June 1 with an initial M leidy i 

biomass of 25 mg C m-3 whereas for Fox Island, the in~tial biomass was 7 mg C m-3. 

These initial model biomass values were based on a range of field biomasses observed 

from June to July. The field biomass of M. leidy i at Fox Island was characterized by 

oscillatory patterns of peaks and valleys during June and July (Figure 2-3A). At Dutch 

Island, the pattern was dominated by one, large peak in the beginning of the season 

(Figure 2-3B). The overall patterns of ctenophore biomass predicted by the model at 

both stations show little agreement to the field data. The model output at Dutch Island 

captured the initial peak observed in the field data, but the timing and magnitude of the 

model output was later than the field data (Figure 2-3B). The magnitude of ctenophore 
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biomass observed in the field fell below the range of values predicted by the model 

(Figure 2-3). The results at both stations are based on simulated ctenophore biomass 

when only mesozooplankton was forced as a prey source. 
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Figure 2-3. Field estimates of M leidyi biomass versus modeled M leidyi biomass 
from June-July 2002 at A. Fox Island and B. Dutch Island. The solid line is the field 
d_ata and the dotted lines represent model outputs. The range covered by the model 
simulations results from varying the initial ctenophore biomass. 
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M. leidyi biomass was also simulated when all prey categories were available, but the 

change was negligible in the beginning of the season and increased throughout the 

remainder of the season (Figure 2-4). 

Sensitivity analyses were run to test the sensitivity of the model to initial 

conditions and changes in model parameters. In the sensitivity analysis of temperature 

and M. /eidyi weight, a logical array of values was tested based on approximate ranges 

of each from Narragansett Bay. Varying the temperature by ±2 °C resulted in a 

relatively small change in the estimated ctenophore biomass. Increasing the 

temperature from an initial 13.5°C to 20.5°C resulted in a difference of 46.5% at Dutch 

Island (Table 2-2). It appears that the model is fairly robust to temperature changes 

within the range that is typical of the summer months in Narragansett Bay (Figure 2-

5B). Also, when the weight of M. leidyi was decreased to 1 g at Fox Island and Dutch 

Island, the difference was 28.6% at each station. These results indicate that the model is 

fairly insensitive to changes in the weight of the ctenophores that make up the 

population. 

The model appears to be very sensitive to mesozooplankton biomass, predation 

by butterfish, and choice of flushing rate (Figure 2-5A). The mesozooplankton results 

are not surprising as Kremer ( 197 5) observed that "the exact choice of food 

concentration proved to be the most critical parameter of all." This was attributed to 

forcing the compartment with no daily feedback from predation by the ctenophores to 

the mesozooplankton biomass (Kremer 1975). 

The sensitivity of the model to predation is attributed to the fact that it was 

formulated as a constant loss per day instead of as a function of predators in the 
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environment. Butterfish are the only documented predator of M. leidyi still present in 

Narragansett Bay, but it likely that there are other fish that feed on the ctenophores. 
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Figure 2-4: A. M leidyi biomass at Fox Island from the field data (solid line) and two 
runs with mesozooplankton prey (dashed lines) and with all prey categories (squares). 
B. Ctenophore biomass at Dutch Island from the field data (solid line) and two runs 
with mesozooplankton prey (dashed lines) and with all prey categories (squares). 
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Table 2-2: Results of sensitivity analyses for various model 
parameters are shown with the percent difference(% D) from the 
initial run of the model. Both Dutch and Fox Island are included in 
the table. 

Model input varied Scenario %D,DI % D,FI 

None Initial 

Temperature l l .5°C 12.6 5.9 
Temperature 15.5°C 11.8 4.7 
Temperature 20.5°C 46.5 14.9 

M. leidyi wet weight lOg 33.0 23.4 

M. leidyi wet weight lg 28.6 28.6 

Mesozooplankton 2X 483.1 128.3 
biomass 
Mesozooplankton Yi 69.7 63 .9 
biomass 
Predation 15% 42.7 41.1 
Predation 5% 22.8 48.0 
Flushing 10% 70.2 157.7 
Flushing 40% 88.7 69.8 

Percent difference was calculated using the following equation: % D = I Cs1andard-C.ensitivi1yl 

x 100% C standard 
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The flushing rate was set at a mid-range value, 20%, which may not be 

appropriate for the summer months in Narragansett Bay. However, in this case, the 

mid-range value was deemed sufficient as a first order approximation was the goal of 

the model. 

DISCUSSION 

A numerical model of M leidyi seasonal biomass was developed and has been 

applied to two mid-bay stations, Dutch and Fox Island, in Narragansett Bay. In 

preliminary runs of the model, an average ctenophore biomass was input into the model 

and the model output agreed with the field data. However, when I compared the 

average ctenophore biomass with ctenophore biomass based on size frequency of the in 

situ population, I found that the biomass based on the size frequency data was different 

from the average (Figure 2-2). As a result, all runs of the model presented herein use 

the size frequency ctenophore biomass and do not agree well with the field data. Future 

efforts will focus on re-parameterizing the model to the size frequency based 

ctenophore biomass. 

I also compared the model predictions with field data to examine the extent to 

which mesozooplankton, fish eggs, fish larvae, and microzooplankton could support the 

observed ctenophore biomass. Plankton studies show that initiation of the summer 

increase of M leidyi coincides with a rapid decline in the copepod population in 

Narragansett Bay (Deason and Smayda 1982). Based on these results, the model was 

run with mesozooplankton as the lone prey source and these runs show that copepods 

would be an adequate carbon supply for the field biomass estimates in magnitude and 

the rate of biomass increase. However, the timing of the peak ctenophore biomass was 
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not as well captured at Fox Island or Dutch Island. The model was re-run at both 

stations with mesozooplankton, microzooplankton, fish eggs, and fish larvae as carbon 

sources and the results did not change in the beginning of the season. I conclude that 

the initiation of rapid ctenophore population growth in the bay is primarily supported by 

copepods and that fish eggs, fish larvae, and microzooplankton are not an important 

source of carbon during this time. Later in the season when the copepods are 

diminished, however, there seems to be an increase in ctenophore biomass due to the 

addition of these alternate prey sources. 

Sensitivity analysis of the model showed that mesozooplankton biomass, 

predation, and choice of flushing rate had the largest effects on the ctenophore biomass 

estimates. This indicates the need for more detailed mesozooplankton population 

information and a better-constrained estimate of predation by accounting for the 

fluctuation in predator populations. 

The ability of M leidy i to exploit its prey environment is crucial to its success in 

Narragansett Bay. The ctenophore is a generalist and it feeds primarily on the prey type 

that is most abundant in the water column. During June 2002, mesozooplankton 

dominated the prey assemblage and therefore, supported the observed increase in 

ctenophore biomass. 
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APPENDICES 

APPENDIX A 

Na ragansett Bay, Al 

0 5 10 Km 

Figure A-1: Stations in Narragansett Bay where M. leidyi biovolumes were recorded 

and b. Plots of the corresponding ctenophore data for each station from Klein-MacPhee 

(2002); where the x-axis is the date and the y-axis is mL of M leidyi per m-3. 
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APPENDIXB 

A. GRAPHS OF M LEIDY! AND ICHTHYOPLANKTON ABUNDANCE FOR 
WARREN RIVER, GREENWICH BAY, AND PRUDENCE ISLAND (EAST) 
ST A TIONS. B. ICHTHYOPLANKTON COUNTS OF a. FISH EGGS AND b. FISH 
LARVAE IN ALL TOWS AT ALL STATIONS. 
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Greenwich Bay: 
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B. 
a. Fish egg raw data from 20% subsample. 

,-
Volume 

Net filtered, Cunn Butterf 

Date Station Mesh Re~icate# m3 er Tauto_g_ ish 

5/22/02 Dutch Island 133um 1 103.4 370 300 

i--5/29/02 Dutch Island 133um 1 168.5 480 450 1840 

5/29/02 Dutch Island 133um 2 111.6 50 350 1120 

6/12/02 Dutch Island 133um 1 104.8 380 155 195 

6/12/02 Dutch Island 133um 2 69.7 153.7 58 69.6 

6/12/02 Dutch Island 133um 3 76.4 25 4 37 

6/19/02 Dutch Island 133um 1 69.9 4 44 4 

6/19/02 Dutch Island 133um 2 66.7 20 60 40 

6/19/02 Dutch Island 133um 3 72.4 46.2 128.7 23.1 

6/26/02 Dutch Island 133um 1 47.2 46 12 6 

6/26/02 Dutch Island 133um 2 64.8 37.8 8.4 12.6 

6/26/02 Dutch Island 133um 3 98.3 56 24 
7/1/02 Dutch Island 133um 1 65.4 150 55 15 
7/1/02 Dutch Island 133um 2 40.2 40 12.5 10 
7/1/02 Dutch Island 133um 3 61 .3 4 92 14 

7/10/02 Dutch Island 133um 1 82.9 29.4 12.6 2.1 
7/10/02 Dutch Island 133um 2 61 .2 13.2 3.3 13.2 
7/10/02 Dutch Island 133um 3 65.9 5 1 
7/17/02 Dutch Island 133um 1 83.0 9.9 3.3 
7/17/02 Dutch Island 133um 2 52.6 17.5 2.5 
7/17/02 Dutch Island 133um 3 53.8 2 1 
7/24/02 Dutch Island 133um 1 73.9 
7/24/02 Dutch Island 133um 2 67.7 10 5 
7/24/02 Dutch Island 133um 3 99.7 5 5 
7/31/02 Dutch Island 133um 1 91 .9 10 
7/31/02 Dutch Island 133um 2 92.6 10 
7/31/02 Dutch Island 133um 3 85.7 5 2 6 
8/7/02 Dutch Island 133um 1 76.8 
8/7/02 Dutch Island 133um 2 71 .5 
8/7/02 Dutch Island 133um 3 83.3 

8/14/02 Dutch Island 133um 1 45.6 6.6 
8/14/02 Dutch Island 133um 2 70.0 3.3 
8/14/02 Dutch Island 133um 3 59.9 2 
8/19/02 Dutch Island 133um 1 78.6 1.7 
8/19/02 Dutch Island 133um 2 73.4 2 3 
8/19/02 Dutch Island 133um 3 51 .1 2 
5122102 Fox Island 133um 1 55.9 3 17 5 
5129102 Fox Island 133um 1 44.3 20 70 50 
6/12/02 Fox Island 133um 1 22.9 40 25 75 
6/12/02 Fox Island 133um 2 28.8 40 5 35 

f- 6/12/02 Fox Island 133um 3 51 .7 25 4 37 
6/19/02 Fox Island 133um 1 39.5 17.5 27.5 40 
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6/19/02 Fox Island 133um 2 37.7 30 6 54 

6/19/02 Fox Island 133um 3 34.6 6 15 32 

i--6126102 Fox Island 133um 1 38.0 16.5 23.1 9.9 

6126102 Fox Island 133um 2 37.8 33 16.5 9.9 

6126102 Fox Island 133um 3 35.0 34 5 19 

7/1/02 Fox Island 133um 1 57.9 49.5 36.3 33 

7/1/02 Fox Island 133um 2 21.0 15 2.5 5 

7/1/02 Fox Island 133um 3 23.4 2 10 9 

7/10/02 Fox Island 133um 1 35.3 3 1 

7/10/02 Fox Island 133um 2 55.5 9 6 

7/10/02 Fox Island 133um 3 32.2 16.5 

7/17/02 Fox Island 133um 1 23.0 

7/17/02 Fox Island 133um 2 28.2 

7/17/02 Fox Island 133um 3 37.4 

7/24/02 Fox Island 133um 1 75.3 

7/24/02 Fox Island 133um 2 60.6 

7/24/02 Fox Island 133um 3 67.5 

7/31/02 Fox Island 133um 1 80.4 

7/31/02 Fox Island 133um 2 42.4 

7/31/02 Fox Island 133um 3 93.1 3 1 1 
8/7/02 Fox Island 133um 1 52.7 

8/7/02 Fox Island 133um 2 62.3 
8/14/02 Fox Island 133um 1 49.8 2.5 
8/14/02 Fox Island 133um 2 47.8 2.5 
8/14/02 Fox Island 133um 3 46.5 2 
8/19/02 Fox Island 133um 1 56.7 
8/19/02 Fox Island 133um 2 47.2 
8/19/02 Fox Island 133um 3 62.8 

Greenwich 
6/4/02 BC!Y_ 133um 1 6.5 52.8 3.3 72.6 

Greenwich 
6/4/02 Bax 133um 2 5.9 45 15 67.5 

Greenwich 
6/11/02 Bax 133um 1 47.5 35 1 89 

Greenwich 
6/11/02 Bay 133um 2 108.2 194.4 194.4 180 

Greenwich 
6/11/02 Bax 133um 3 58.7 70 85 145 

Greenwich 
6/19/02 BC!Y_ 133um 1 63.4 20 20 37.5 

Greenwich 
6/19/02 Ba_y 133um 2 65.0 20 12.5 65 

Greenwich 
6/19/02 BC!Y_ 133um 3 56.3 2 12 10 

Greenwich 
6/25/02 BC!Y_ 133um 1 29.8 50 20 

Greenwich 
6/25/02 Bax 133um 2 13.1 57.5 27.5 5 

Greenwich 
6/25/02 Bax 133um 3 8.9 6 5 
7126102 Greenwich 133um 1 57.8 
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Bay 
r-- Greenwich 

7/26/02 Ba_y_ 133um 2 66.4 5 
r-- Prudence 

6/4/02 East 133um 1 8.8 25 7.5 17.5 
r-- Prudence 

6/4/02 East 133um 2 9.7 59.4 29.7 6.6 
r-- Prudence 

6/4/02 East 133um 3 8.8 9 3 
r-- Prudence 

6/11/02 East 133um 1 39.0 120 16 438 
Prudence 

6/11/02 East 133um 2 34.8 97.5 71 .25 37.5 
Prudence 

6/11/02 East 133um 3 43.1 204.6 178.2 128.7 
Prudence 

6/18/02 East 133um 1 28.3 2 10 7 
Prudence 

6/18/02 East 133um 2 13.8 7.2 10.8 32.4 
Prudence 

6/18/02 East 133um 3 28.9 80 20 45 

6/4/02 Warren River 133um 1 7.2 16 34 28 

6/4/02 Warren River 133um 2 7.9 75 40 60 
6/4/02 Warren River 133um 3 6.8 8 14 4 

6/18/02 Warren River 133um 1 53.1 1 69 11 
6/18/02 Warren River 133um 2 38.8 105 120 25 
6/18/02 Warren River 133um 3 44.1 69.3 354.2 30.8 
6/25/02 Warren River 133um 1 50.9 185 155 
6/25/02 Warren River 133um 3 49.9 32 2 38 
7126102 Warren River 133um 1 109.4 
7126102 Warren River 133um 2 79.3 
7126102 Warren River 133um 3 90.8 

Volume Bay 
Net filtered; Searo Ancho Silverh 

Date Station Mesh Re~i-cate # m3 bin V'f_ ake 
5/22/02 Dutch Island 133um 1 103.4 110 20 840 
5/29/02 Dutch Island 133um 1 168.5 140 
5/29/02 Dutch Island 133um 2 111.6 110 
6/12/02 Dutch Island 133um 1 104.8 75 20 
6/12/02 Dutch Island 133um 2 69.7 31.9 11 .6 
6/12/02 Dutch Island 133um 3 76.4 7 
6/19/02 Dutch Island 133um 1 69.9 32 
6/19/02 Dutch Island 133um 2 66.7 50 
6/19/02 Dutch Island 133um 3 72.4 42.9 
6/26/02 Dutch Island 133um 1 47.2 2 
6/26/02 Dutch Island 133um 2 64.8 
6/26/02 Dutch Island 133um 3 98.3 10 
7/1/02 Dutch Island 133um 1 65.4 20 
7/1/02 Dutch Island 133um 2 40.2 10 
7/1/02 Dutch Island 133um 3 61 .3 6 

7/10/02 Dutch Island 133um 1 82.9 
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7/10/02 Dutch Island 133um 2 61.2 

7/10/02 Dutch Island 133um 3 65.9 3 

r--7/17/02 Dutch Island 133um 1 83.0 6.6 

7/17/02 Dutch Island 133um 2 52.6 5 

7/17/02 Dutch Island 133um 3 53.8 3 

7/24/02 Dutch Island 133um 1 73.9 

7124102 Dutch Island 133um 2 67.7 

7/24/02 Dutch Island 133um 3 99.7 1 

7/31/02 Dutch Island 133um 1 91 .9 

7/31/02 Dutch Island 133um 2 92.6 

7/31/02 Dutch Island 133um 3 85.7 

8/7/02 Dutch Island 133um 1 76.8 

817102 Dutch Island 133um 2 71 .5 ' 
8/7/02 Dutch Island 133um 3 83.3 

8/14/02 Dutch Island 133um 1 45.6 

8/14/02 Dutch Island 133um 2 70.0 

8/14/02 Dutch Island 133um 3 59.9 

8/19/02 Dutch Island 133um 1 78.6 5.1 
8/19/02 Dutch Island 133um 2 73.4 7 
8/19/02 Dutch Island 133um 3 51.1 1 
5/22/02 Fox Island 133um 1 55.9 13 
5/29/02 Fox Island 133um 1 44.3 60 10 190 
6/12/02 Fox Island 133um 1 22.9 10 10 
6/12/02 Fox Island 133um 2 28.8 5 
6/12/02 Fox Island 133um 3 51.7 7 
6/19/02 Fox Island 133um 1 39.5 37.5 2.5 
6/19/02 Fox Island 133um 2 37.7 9 
6/19/02 Fox Island 133um 3 34.6 34 
6/26/02 Fox Island 133um 1 38.0 3.3 
6126102 Fox Island 133um 2 37.8 6.6 3.3 
6126102 Fox Island 133um 3 35.0 1 

7/1/02 Fox Island 133um 1 57.9 23.1 9.9 
7/1/02 Fox Island 133um 2 21 .0 7.5 
7/1/02 Fox Island 133um 3 23.4 5 1 

7/10/02 Fox Island 133um 1 35.3 4 
7/10/02 Fox Island 133um 2 55.5 6 
7/10/02 Fox Island 133um 3 32.2 3.3 
7/17/02 Fox Island 133um 1 23.0 
7/17/02 Fox Island 133um 2 28.2 
7/17/02 Fox Island 133um 3 37.4 
7124102 Fox Island 133um 1 75.3 
7124102 Fox Island 133um 2 60.6 
7124102 Fox Island 133um 3 67.5 
7/31/02 Fox Island 133um 1 80.4 
7/31/02 Fox Island 133um 2 42.4 
7/31/02 Fox Island 133um 3 93.1 1 
8/7/02 Fox Island 133um 1 52.7 
8/7/02 Fox Island 133um 2 62.3 
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8/14/02 Fox Island 133um 1 49.8 2.5 

r-8/14/02 Fox Island 133um 2 47.8 2.5 

r- 8/14/02 Fox Island 133um 3 46.5 

8/19/02 Fox Island 133um 1 56.7 

i-- 8/19/02 Fox Island 133um 2 47.2 

8/19/02 Fox Island 133um 3 62.8 
Greenwich 

6/4/02 Ba_y_ 133um 1 6.5 13.2 3.3 
Greenwich 

6/4/02 Ba_y_ 133um 2 5.9 25 2.5 
Greenwich 

6/11/02 Ba_y_ 133um 1 47.5 27 
Greenwich 

6/11/02 Ba_y_ 133um 2 108.2 118.8 57.6 
Greenwich 

6/11/02 Ba_y_ 133um 3 58.7 55 15 
Greenwich 

6/19/02 Ba_y_ 133um 1 63.4 20 
Greenwich 

6/19/02 Bay_ 133um 2 65.0 10 5 
Greenwich 

6/19/02 Ba_y_ 133um 3 56.3 7 
Greenwich 

6/25/02 Ba_y_ 133um 1 29.8 5 5 
Greenwich 

6/25/02 Ba_y_ 133um 2 13.1 2.5 
Greenwich 

6/25/02 Ba_y_ 133um 3 8.9 1 
Greenwich 

7126102 Ba_y_ 133um 1 57.8 
Greenwich 

7126102 Bay_ 133um 2 66.4 
Prudence 

6/4/02 East 133um 1 8.8 
Prudence 

6/4/02 East 133um 2 9.7 19.8 36.3 
Prudence 

614102 East 133um 3 8.8 
Prudence 

6/11/02 East 133um 1 39.0 23 
Prudence 

6/11/02 East 133um 2 34.8 7.5 
Prudence 

6/11/02 East 133um 3 43.1 3.3 
Prudence 

6/18/02 East 133um 1 28.3 4 
Prudence 

6/18/02 East 133um 2 13.8 3.6 
Prudence 

6/18/02 East 133um 3 28.9 20 
6/4/02 Warren River 133um 1 7.2 14 
6/4/02 Warren River 133um 2 7.9 10 10 
614102 Warren River 133um 3 6.8 1 
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6/18/02 Warren River 133um 1 53.1 1 

r---6/18/02 Warren River 133um 2 38.8 20 5 

r- 6/18/02 Warren River 133um 3 44.1 7.7 7.7 

6125102 Warren River 133um 1 50.9 20 40 

r- 6/25/02 Warren River 133um 3 49.9 4 1 

7126102 Warren River 133um 1 109.4 

7126102 Warren River 133um 2 79.3 

7126102 Warren River 133um 3 90.8 

4 Small Four 
Rep Ii- Vol. Sea spot Men- mouth beard 

Net cate tilt., Tro floun hade flound Rockli 
Date Station Mesh # m3 ut -der n er n_g_ 

5122102 Dutch Island 133um 1 103.4 

5129102 Dutch Island 133um 1 168.5 

5129102 Dutch Island 133um 2 111.6 10 

6/12/02 Dutch Island 133um 1 104.8 

6/12/02 Dutch Island 133um 2 69.7 2.9 

6/12/02 Dutch Island 133um 3 76.4 

6/19/02 Dutch Island 133um 1 69.9 

6/19/02 Dutch Island 133um 2 66.7 
6/19/02 Dutch Island 133um 3 72.4 3.3 

6126102 Dutch Island 133um 1 47.2 2 
6/26/02 Dutch Island 133um 2 64.8 2 1 
6126102 Dutch Island 133um 3 98.3 4.2 

7/1/02 Dutch Island 133um 1 65.4 5 
7/1/02 Dutch Island 133um 2 40.2 
7/1/02 Dutch Island 133um 3 61.3 

7/10/02 Dutch Island 133um 1 82.9 8.4 
7/10/02 Dutch Island 133um 2 61 .2 
7/10/02 Dutch Island 133um 3 65.9 
7/17/02 Dutch Island 133um 1 83.0 
7/17/02 Dutch Island 133um 2 52.6 5 
7/17/02 Dutch Island 133um 3 53.8 
7/24/02 Dutch Island 133um 1 73.9 10 
7/24/02 Dutch Island 133um 2 67.7 
7124102 Dutch Island 133um 3 99.7 
7/31/02 Dutch Island 133um 1 91.9 10 
7/31/02 Dutch Island 133um 2 92.6 5 
7/31/02 Dutch Island 133um 3 85.7 

817102 Dutch Island 133um 1 76.8 1 
817102 Dutch Island 133um 2 71.5 
817102 Dutch Island 133um 3 83.3 

8/14/02 Dutch Island 133um 1 45.6 
8/14/02 Dutch Island 133um 2 70.0 9.9 
8/14/02 Dutch Island 133um 3 59.9 1 
8/19/02 Dutch Island 133um 1 78.6 6.8 
8/19/02 Dutch Island 133um 2 73.4 7 
8/19/02 Dutch Island 133um 3 51 .1 1 
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5122102 Fox Island 133um 1 55.9 

5/29/02 Fox Island 133um 1 44.3 20 10 

r-6/12/02 Fox Island 133um 1 22.9 10 

6/12/02 Fox Island 133um 2 28.8 

6/12/02 Fox Island 133um 3 51 .7 

6/19/02 Fox Island 133um 1 39.5 7.5 

6/19/02 Fox Island 133um 2 37.7 6 

6/19/02 Fox Island 133um 3 34.6 1 

6126102 Fox Island 133um 1 38.0 6.6 

6126102 Fox Island 133um 2 37.8 3.3 

6126102 Fox Island 133um 3 35.0 

7/1/02 Fox Island 133um 1 57.9 23.1 

7/1/02 Fox Island 133um 2 21 .0 

7/1/02 Fox Island 133um 3 23.4 

7/10/02 Fox Island 133um 1 35.3 

7/10/02 Fox Island 133um 2 55.5 

7/10/02 Fox Island 133um 3 32.2 

7/17/02 Fox Island 133um 1 23.0 

7/17/02 Fox Island 133um 2 28.2 

7/17/02 Fox Island 133um 3 37.4 

7124102 Fox Island 133um 1 75.3 1 

7/24/02 Fox Island 133um 2 60.6 1 
7/24/02 Fox Island 133um 3 67.5 
7/31/02 Fox Island 133um 1 80.4 
7/31/02 Fox Island 133um 2 42.4 1 
7/31/02 Fox Island 133um 3 93.1 1 

817102 Fox Island 133um 1 52.7 
817102 Fox Island 133um 2 62.3 1 

8/14/02 Fox Island 133um 1 49.8 4 
8/14/02 Fox Island 133um 2 47.8 4 
8/14/02 Fox Island 133um 3 46.5 
8/19/02 Fox Island 133um 1 56.7 
8/19/02 Fox Island 133um 2 47.2 
8/19/02 Fox Island 133um 3 62.8 

Greenwich 
614102 B'!l 133um 1 6.5 46.2 

Greenwich 
614102 B'!l 133um 2 5.9 30 2.5 

Greenwich 
6/11/02 B'!l 133um 1 47.5 

Greenwich 
6/11 /02 B'!l 133um 2 108.2 75.6 

Greenwich 
6/11/02 B'!l 133um 3 58.7 

Greenwich 
6/19/02 B'!l 133um 1 63.4 5 

Greenwich 
6/19/02 Bay 133um 2 65.0 2.5 17.5 

Greenwich 
6/19/02 BC!Y. 133um 3 56.3 
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Greenwich 
6/25102 Ba_y 133um 1 29.8 5 

Greenwich 
6/25/02 Ba_y 133um 2 13.1 

Greenwich 
6125102 Ba_y 133um 3 8.9 

r- Greenwich 
7/26/02 Ba_y_ 133um 1 57.8 

Greenwich 
7126102 Bay_ 133um 2 66.4 

Prudence 
6/4/02 East 133um 1 8.8 17.5 2.5 2.5 

Prudence 
6/4/02 East 133um 2 9.7 79.2 

Prudence 
6/4/02 East 133um 3 8.8 

Prudence 
6/11/02 East 133um 1 39.0 

Prudence 
6/11/02 East 133um 2 34.8 330 3.75 

Prudence 
6/11 /02 East 133um 3 43.1 491 .7 

Prudence 
6/18/02 East 133um 1 28.3 

Prudence 
6/18/02 East 133um 2 13.8 7.2 

Prudence 
6/18/02 East 133um 3 28.9 
6/4/02 Warren River 133um 1 7.2 
6/4/02 Warren River 133um 2 7.9 
6/4/02 Warren River 133um 3 6.8 

6/18/02 Warren River 133um 1 53.1 
6/18/02 Warren River 133um 2 38.8 5 
6/18/02 Warren River 133um 3 44.1 7.7 
6/25/02 Warren River 133um 1 50.9 
6/25/02 Warren River 133um 3 49.9 
7126102 Warren River 133um 1 109.4 
7/26/02 Warren River 133um 2 79.3 
7126102 Warren River 133um 3 90.8 

b. Fish larvae raw data 

Volume 
Net Rep. filtered, Butter Sea 

Date Station Mesh # M3 Cunner Tauto_g_ fish Robin 
5/22/2002 Dutch Island 133um 1 103.4 
5/29/2002 Dutch Island 133um 1 168.5 
5/29/2002 Dutch Island 133um 2 111.6 
6/12/2002 Dutch Island 133um 1 104.8 5 
6/12/2002 Dutch Island 133um 2 69.7 5.8 2.9 
6/12/2002 Dutch Island 133um 3 76.4 
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6/19/2002 Dutch Island 133um 1 69.9 

~/19/2002 Dutch Island 133um 2 66.7 3.3 

6/19/2002 Dutch Island 133um 3 72.4 

612612002 Dutch Island 133um 1 47.2 

6/26/2002 Dutch Island 133um 2 64.8 

6/26/2002 Dutch Island 133um 3 98.3 

7/1/2002 Dutch Island 133um 1 65.4 

7/1/2002 Dutch Island 133um 2 40.2 

7/1/2002 Dutch Island 133um 3 61 .3 

7/10/2002 Dutch Island 133um 1 82.9 8.4 

7/10/2002 Dutch Island 133um 2 61.2 3.3 

7/10/2002 Dutch Island 133um 3 65.9 1 

7/17/2002 Dutch Island 133um 1 83.0 6.6 3.3 

7/17/2002 Dutch Island 133um 2 52.6 

7/17/2002 Dutch Island 133um 3 53.8 1 

712412002 Dutch Island 133um 1 73.9 7.5 

7/24/2002 Dutch Island 133um 2 67.7 2.5 
7/24/2002 Dutch Island 133um 3 99.7 2 3 
7/31/2002 Dutch Island 133um 1 91 .9 
7/31/2002 Dutch Island 133um 2 92.6 
7/31/2002 Dutch Island 133um 3 85.7 
8/7/2002 Dutch Island 133um 1 76.8 
8/7/2002 Dutch Island 133um 2 71 .5 
8/7/2002 Dutch Island 133um 3 83.3 1 

8/14/2002 Dutch Island 133um 1 45.6 
8/14/2002 Dutch Island 133um 2 70.0 
8/14/2002 Dutch Island 133um 3 59.9 1 1 
8/19/2002 Dutch Island 133um 1 78.6 1.7 
8/19/2002 Dutch Island 133um 2 73.4 
8/19/2002 Dutch Island 133um 3 51 .1 
5/22/2002 Fox Island 133um 1 55.9 
5/29/2002 Fox Island 133um 1 44.3 10 
6/12/2002 Fox Island 133um 1 22.9 5 
6/12/2002 Fox Island 133um 2 28.8 
6/12/2002 Fox Island 133um 3 51 .7 
6/19/2002 Fox Island 133um 1 39.5 2.5 2.5 
6/19/2002 Fox Island 133um 2 37.7 
6/19/2002 Fox Island 133um 3 34.6 
6/26/2002 Fox Island 133um 1 38.0 
6/26/2002 Fox Island 133um 2 37.8 3.3 
6/26/2002 Fox Island 133um 3 35.0 1 
7/1/2002 Fox Island 133um 1 57.9 
7/1/2002 Fox Island 133um 2 21.0 
7/1/2002 Fox Island 133um 3 23.4 2.5 

7/10/2002 Fox Island 133um 1 35.3 3.3 3.3 
7/10/2002 Fox Island 133um 2 55.5 15 
7/10/2002 Fox Island 133um 3 32.2 
7/17/2002 Fox Island 133um 1 23.0 
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7/17/2002 Fox Island 133um 2 28.2 

7/17/2002 Fox Island 133um 3 37.4 1 

7/24/2002 Fox Island 133um 1 75.3 

7/24/2002 Fox Island 133um 2 60.6 

7/24/2002 Fox Island 133um 3 67.5 

7/31/2002 Fox Island 133um 1 80.4 5 

7/31/2002 Fox Island 133um 2 42.4 

7/31/2002 Fox Island 133um 3 93.1 2 

81712002 Fox Island 133um 1 52.7 

81712002 Fox Island 133um 2 62.3 2 1 

8/14/2002 Fox Island 133um 1 49.8 

8/14/2002 Fox Island 133um 2 47.8 

8/14/2002 Fox Island 133um 3 46.5 1 

8/19/2002 Fox Island 133um 1 56.7 

8/19/2002 Fox Island 133um 2 47.2 

8/19/2002 Fox Island 133um 3 62.8 
Greenwich 

6/4/2002 Bay_ 133um 1 6.5 
Greenwich 

6/4/2002 Ba_y_ 133um 2 5.9 
Greenwich 

6/11/2002 BC!Y_ 133um 1 47.5 
Greenwich 

6/11/2002 BC!Y_ 133um 2 108.2 
Greenwich 

6/11/2002 BC!Y_ 133um 3 58.7 10 
Greenwich 

6/19/2002 BC!Y_ 133um 1 63.4 7.5 7.5 
Greenwich 

6/19/2002 BC!Y_ 133um 2 65.0 2.5 2.5 
Greenwich 

6/19/2002 BC!Y_ 133um 3 56.3 
Greenwich 

6/25/2002 BC!Y_ 133um 1 29.8 
Greenwich 

6/25/2002 Ba_y_ 133um 2 13.1 
Greenwich 

6/25/2002 Bay 133um 3 8.9 
Greenwich 

712612002 BC!Y_ 133um 1 57.8 5 
Greenwich 

712612002 BC!Y_ 133um 2 66.4 11 1 
Prudence 

6/4/2002 East 133um 1 8.8 
Prudence 

6/4/2002 East 133um 2 9.7 3.3 
Prudence 

6/4/2002 East 133um 3 8.8 
Prudence 

6/11/2002 East 133um 1 39.0 1 1 
Prudence 

6/11/2002 East 133um 2 34.8 7.5 

97 



Prudence 
6/11/2002 East 133um 3 43.1 16.5 

Prudence 
6/18/2002 East 133um 1 28.3 

Prudence 
6/18/2002 East 133um 2 13.8 10.8 3.6 

Prudence 
6/18/2002 East 133um 3 28.9 

6/4/2002 Warren River 133um 1 7.2 

6/4/2002 Warren River 133um 2 7.9 

6/4/2002 Warren River 133um 3 6.8 

6/18/2002 Warren River 133um 1 53.1 1 

6/18/2002 Warren River 133um 2 38.8 5 

6/18/2002 Warren River 133um 3 44.1 

6/25/2002 Warren River 133um 1 50.9 

6/25/2002 Warren River 133um 2 49.9 

7/26/2002 Warren River 133um 1 109.4 

7/26/2002 Warren River 133um 2 79.3 

7/26/2002 Warren River 133um 3 90.8 2 

Net Rep. Vol. Bay Silver Sea 
Date Station Mesh # filt., m3 Anchov_y_ hake Trout 

5/22/02 Dutch Island 133um 1 103.4 
5/29/02 Dutch Island 133um 1 168.5 
5/29/02 Dutch Island 133um 2 111 .6 
6/12/02 Dutch Island 133um 1 104.8 
6/12/02 Dutch Island 133um 2 69.7 
6/12/02 Dutch Island 133um 3 76.4 
6/19/02 Dutch Island 133um 1 69.9 
6/19/02 Dutch Island 133um 2 66.7 
6/19/02 Dutch Island 133um 3 72.4 
6/26/02 Dutch Island 133um 1 47.2 
6/26/02 Dutch Island 133um 2 64.8 
6/26/02 Dutch Island 133um 3 98.3 

7/1/02 Dutch Island 133um 1 65.4 
7/1/02 Dutch Island 133um 2 40.2 
7/1/02 Dutch Island 133um 3 61 .3 

7/10/02 Dutch Island 133um 1 82.9 
7/10/02 Dutch Island 133um 2 61 .2 
7/10/02 Dutch Island 133um 3 65.9 
7/17/02 Dutch Island 133um 1 83.0 
7/17/02 Dutch Island 133um 2 52.6 
7/17/02 Dutch Island 133um 3 53.8 
7/24/02 Dutch Island 133um 1 73.9 
7/24/02 Dutch Island 133um 2 67.7 
7/24/02 Dutch Island 133um 3 99.7 
7/31/02 Dutch Island 133um 1 91 .9 
7/31/02 Dutch Island 133um 2 92.6 
7/31/02 Dutch Island 133um 3 85.7 
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8/7/02 Dutch Island 133um 1 76.8 

8/7/02 Dutch Island 133um 2 71.5 

8/7/02 Dutch Island 133um 3 83.3 

8/14/02 Dutch Island 133um 1 45.6 

8/14/02 Dutch Island 133um 2 70.0 

8/14/02 Dutch Island 133um 3 59.9 

8/19/02 Dutch Island 133um 1 78.6 

8/19/02 Dutch Island 133um 2 73.4 

8/19/02 Dutch Island 133um 3 51 .1 

5/22/02 Fox Island 133um 1 55.9 

5/29/02 Fox Island 133um 1 44.3 

6/12/02 Fox Island 133um 1 22.9 

6/12/02 Fox Island 133um 2 28.8 

6/12/02 Fox Island 133um 3 51 .7 

6/19/02 Fox Island 133um 1 39.5 

6/19/02 Fox Island 133um 2 37.7 

6/19/02 Fox Island 133um 3 34.6 
6/26/02 Fox Island 133um 1 38.0 
6/26/02 Fox Island 133um 2 37.8 

6/26/02 Fox Island 133um 3 35.0 
7/1/02 Fox Island 133um 1 57.9 
7/1/02 Fox Island 133um 2 21.0 
7/1/02 Fox Island 133um 3 23.4 

7/10/02 Fox Island 133um 1 35.3 
7/10/02 Fox Island 133um 2 55.5 
7/10/02 Fox Island 133um 3 32.2 
7/17/02 Fox Island 133um 1 23.0 
7/17/02 Fox Island 133um 2 28.2 
7/17/02 Fox Island 133um 3 37.4 
7/24/02 Fox Island 133um 1 75.3 
7/24/02 Fox Island 133um 2 60.6 
7/24/02 Fox Island 133um 3 67.5 
7/31/02 Fox Island 133um 1 80.4 
7/31/02 Fox Island 133um 2 42.4 
7/31/02 Fox Island 133um 3 93.1 
8/7/02 Fox Island 133um 1 52.7 
817102 Fox Island 133um 2 62.3 

8/14/02 Fox Island 133um 1 49.8 
8/14/02 Fox Island 133um 2 47.8 
8/14/02 Fox Island 133um 3 46.5 
8/19/02 Fox Island 133um 1 56.7 
8/19/02 Fox Island 133um 2 47.2 
8/19/02 Fox Island 133um 3 62.8 

Greenwich 
6/4/02 Bay_ 133um 1 6.5 

Greenwich 
6/4/02 Bay_ 133um 2 5.9 

Greenwich 
6/11/02 Bay_ 133um 1 47.5 
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Greenwich 
6/11/02 Ba_y_ 133um 2 108.2 

Greenwich 
6/11 /02 Ba_y_ 133um 3 58.7 

Greenwich 
6/19/02 Bay_ 133um 1 63.4 

Greenwich 
6/19/02 B~ 133um 2 65.0 

Greenwich 
6/1 9/02 Ba_y_ 133um 3 56.3 

Greenwich 
6125102 Ba_y_ 133um 1 29.8 

Greenwich 
6125102 Ba_y_ 133um 2 13.1 

Greenwich 
6125102 B~ 133um 3 8.9 

Greenwich 
7126102 B~ 133um 1 57.8 

Greenwich 
7126102 B~ 133um 2 66.4 

Prudence 
614102 East 133um 1 8.8 

Prudence 
614102 East 133um 2 9.7 

Prudence 
614102 East 133um 3 8.8 

Prudence 
6/11 /02 East 133um 1 39.0 

Prudence 
6/11 /02 East 133um 2 34.8 

Prudence 
6/11 /02 East 133um 3 43.1 

Prudence 
6/18/02 East 133um 1 28.3 

Prudence 
6/18/02 East 133um 2 13.8 

Prudence 
6/18/02 East 133um 3 28.9 
614102 Warren River 133um 1 7.2 
614102 Warren River 133um 2 7.9 
614102 Warren River 133um 3 6.8 

6/18/02 Warren River 133um 1 53.1 
6/18/02 Warren River 133um 2 38.8 
6/18/02 Warren River 133um 3 44.1 
6125102 Warren River 133um 1 50.9 
6125102 Warren River 133um 2 49.9 
7126102 Warren River 133um 1 109.4 
7126102 Warren River 133um 2 79.3 
7126102 Warren River 133um 3 90.8 

Vol. Small Four 
Net Rep. filt., 4spot Men- mouth beard 

Date Station Mesh # m3 flounder haden flounder Rocklin-9. 
5122102 Dutch Island 133um 1 103.4 
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5/29/02 Dutch Island 133um 1 168.5 

5129102 Dutch Island 133um 2 111 .6 

r-6/12/02 Dutch Island 133um 1 104.8 5 

6/12/02 Dutch Island 133um 2 69.7 

r-6/12/02 Dutch Island 133um 3 76.4 

6/19/02 Dutch Island 133um 1 69.9 

6/19/02 Dutch Island 133um 2 66.7 

6/19/02 Dutch Island 133um 3 72.4 

6126102 Dutch Island 133um 1 47.2 

6/26/02 Dutch Island 133um 2 64.8 

6/26/02 Dutch Island 133um 3 98.3 

7/1/02 Dutch Island 133um 1 65.4 

7/1/02 Dutch Island 133um 2 40.2 

7/1/02 Dutch Island 133um 3 61.3 

7/10/02 Dutch Island 133um 1 82.9 

7/10/02 Dutch Island 133um 2 61 .2 

7/10/02 Dutch Island 133um 3 65.9 

7/17/02 Dutch Island 133um 1 83.0 

7/17/02 Dutch Island 133um 2 52.6 

7/17/02 Dutch Island 133um 3 53.8 

7124102 Dutch Island 133um 1 73.9 
7124102 Dutch Island 133um 2 67.7 
7/24/02 Dutch Island 133um 3 99.7 
7/31/02 Dutch Island 133um 1 91 .9 
7/31/02 Dutch Island 133um 2 92.6 
7/31/02 Dutch Island 133um 3 85.7 

817102 Dutch Island 133um 1 76.8 
817102 Dutch Island 133um 2 71.5 
817102 Dutch Island 133um 3 83.3 

8/14/02 Dutch Island 133um 1 45.6 
8/14/02 Dutch Island 133um 2 70.0 
8/14/02 Dutch Island 133um 3 59.9 
8/19/02 Dutch Island 133um 1 78.6 
8/19/02 Dutch Island 133um 2 73.4 
8/19/02 Dutch Island 133um 3 51 .1 
5/22/02 Fox Island 133um 1 55.9 
5/29/02 Fox Island 133um 1 44.3 
6/12/02 Fox Island 133um 1 22.9 
6/12/02 Fox Island 133um 2 28.8 
6/12/02 Fox Island 133um 3 51 .7 
6/19/02 Fox Island 133um 1 39.5 
6/19/02 Fox Island 133um 2 37.7 
6/19/02 Fox Island 133um 3 34.6 
6126102 Fox Island 133um 1 38.0 
6126102 Fox Island 133um 2 37.8 
6126102 Fox Island 133um 3 35.0 

7/1/02 Fox Island 133um 1 57.9 
7/1/02 Fox Island 133um 2 21.0 
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7/1/02 Fox Island 133um 3 23.4 5 

7/10/02 Fox Island 133um 1 35.3 3.3 

r-7/10/02 Fox Island 133um 2 55.5 6 

7/10/02 Fox Island 133um 3 32.2 

7/17/02 Fox Island 133um 1 23.0 

7/17/02 Fox Island 133um 2 28.2 

7/17/02 Fox Island 133um 3 37.4 

7124102 Fox Island 133um 1 75.3 

7124102 Fox Island 133um 2 60.6 

7124102 Fox Island 133um 3 67.5 

7/31/02 Fox Island 133um 1 80.4 

7/31/02 Fox Island 133um 2 42.4 

7/31/02 Fox Island 133um 3 93.1 

817102 Fox Island 133um 1 52.7 

817102 Fox Island 133um 2 62.3 

8/14/02 Fox Island 133um 1 49.8 

8/14/02 Fox Island 133um 2 47.8 

8/14/02 Fox Island 133um 3 46.5 

8/19/02 Fox Island 133um 1 56.7 

8/19/02 Fox Island 133um 2 47.2 

8/19/02 Fox Island 133um 3 62.8 
Greenwich 

614102 B~ 133um 1 6.5 3.3 
Greenwich 

614102 B~ 133um 2 5.9 
Greenwich 

6/11/02 Ba_y 133um 1 47.5 
Greenwich 

6/11 /02 Ba_y 133um 2 108.2 
Greenwich 

6/11/02 B~ 133um 3 58.7 5 
Greenwich 

6/19/02 B~ 133um 1 63.4 
Greenwich 

6/19/02 Ba_y_ 133um 2 65.0 
Greenwich 

6/19/02 B~ 133um 3 56.3 
Greenwich 

6125102 B~ 133um 1 29.8 
Greenwich 

6/25/02 B~ 133um 2 13.1 
Greenwich 

6125102 B~ 133um 3 8.9 
Greenwich 

7126102 B~ 133um 1 57.8 
Greenwich 

7126102 Ba_y 133um 2 66.4 
Prudence 

614102 East 133um 1 8.8 
Prudence 

614102 East 133um 2 9.7 
614102 Prudence 133um 3 8.8 
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East 
t- Prudence 

6/11 /02 East 133um 1 39.0 
r-- Prudence 

6/11 /02 East 133um 2 34.8 3.75 
Prudence 

6/11/02 East 133um 3 43.1 
Prudence 

6/18/02 East 133um 1 28.3 
Prudence 

6/18/02 East 133um 2 13.8 
Prudence 

6/18/02 East 133um 3 28.9 

6/4/02 Warren River 133um 1 7.2 

6/4/02 Warren River 133um 2 7.9 

6/4/02 Warren River 133um 3 6.8 

6/18/02 Warren River 133um 1 53.1 

6/18/02 Warren River 133um 2 38.8 

6/18/02 Warren River 133um 3 44.1 

6/25/02 Warren River 133um 1 50.9 2.5 

6/25/02 Warren River 133um 2 49.9 

7126102 Warren River 133um 1 109.4 
7126102 Warren River 133um 2 79.3 
7/26/02 Warren River 133um 3 90.8 

Vol. 
Net Rep. filt., Pipe Sand 

Date Station Mesh # m3 fish Lance Seu~ Blenn_y 
5/22/02 Dutch Island 133um 1 103.4 
5/29/02 Dutch Island 133um 1 168.5 
5/29/02 Dutch Island 133um 2 111.6 
6/12/02 Dutch Island 133um 1 104.8 
6/12/02 Dutch Island 133um 2 69.7 2.9 2.9 2.9 
6/12/02 Dutch Island 133um 3 76.4 
6/19/02 Dutch Island 133um 1 69.9 
6/19/02 Dutch Island 133um 2 66.7 
6/19/02 Dutch Island 133um 3 72.4 
6126102 Dutch Island 133um 1 47.2 
6126102 Dutch Island 133um 2 64.8 
6126102 Dutch Island 133um 3 98.3 

7/1 /02 Dutch Island 133um 1 65.4 
7/1/02 Dutch Island 133um 2 40.2 
7/1/02 Dutch Island 133um 3 61 .3 

7/10/02 Dutch Island 133um 1 82.9 
7/10/02 Dutch Island 133um 2 61 .2 
7/10/02 Dutch Island 133um 3 65.9 
7/17/02 Dutch Island 133um 1 83.0 3.3 
7/17/02 Dutch Island 133um 2 52.6 
7/17/02 Dutch Island 133um 3 53.8 1 
7/24/02 Dutch Island 133um 1 73.9 
7124102 Dutch Island 133um 2 67.7 2.5 
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7/24/02 Dutch Island 133um 3 99.7 

J/31/02 Dutch Island 133um 1 91.9 

7/31/02 Dutch Island 133um 2 92.6 

7/31/02 Dutch Island 133um 3 85.7 

r- 8/7/02 Dutch Island 133um 1 76.8 

8/7/02 Dutch Island 133um 2 71 .5 

8/7/02 Dutch Island 133um 3 83.3 

8/14/02 Dutch Island 133um 1 45.6 

8/14/02 Dutch Island 133um 2 70.0 

8/14/02 Dutch Island 133um 3 59.9 

8/19/02 Dutch Island 133um 1 78.6 

8/19/02 Dutch Island 133um 2 73.4 

8/19/02 Dutch Island 133um 3 51.1 

5/22/02 Fox Island 133um 1 55.9 

5/29/02 Fox Island 133um 1 44.3 

6/12/02 Fox Island 133um 1 22.9 5 

6/12/02 Fox Island 133um 2 28.8 

6/12/02 Fox Island 133um 3 51.7 
6/19/02 Fox Island 133um 1 39.5 

6/19/02 Fox Island 133um 2 37.7 
6/19/02 Fox Island 133um 3 34.6 
6/26/02 Fox Island 133um 1 38.0 
6/26/02 Fox Island 133um 2 37.8 
6/26/02 Fox Island 133um 3 35.0 
7/1/02 Fox Island 133um 1 57.9 
7/1/02 Fox Island 133um 2 21 .0 
7/1/02 Fox Island 133um 3 23.4 

7/10/02 Fox Island 133um 1 35.3 
7/10/02 Fox Island 133um 2 55.5 12 
7/10/02 Fox Island 133um 3 32.2 
7/17/02 Fox Island 133um 1 23.0 
7/17/02 Fox Island 133um 2 28.2 
7/17/02 Fox Island 133um 3 37.4 
7/24/02 Fox Island 133um 1 75.3 
7/24/02 Fox Island 133um 2 60.6 
7/24/02 Fox Island 133um 3 67.5 
7/31/02 Fox Island 133um 1 80.4 
7/31/02 Fox Island 133um 2 42.4 
7/31/02 Fox Island 133um 3 93.1 

817102 Fox Island 133um 1 52.7 5 
817102 Fox Island 133um 2 62.3 

8/14/02 Fox Island 133um 1 49.8 2.5 
8/14/02 Fox Island 133um 2 47.8 
8/14/02 Fox Island 133um 3 46.5 
8/19/02 Fox Island 133um 1 56.7 
8/19/02 Fox Island 133um 2 47.2 
8/19/02 Fox Island 133um 3 62.8 

Greenwich 
614102 Ba_y_ 133um 1 6.5 
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Greenwich 
614102 BC!Y_ 133um 2 5.9 

Greenwich 

6/11/02 Bay_ 133um 1 47.5 
Greenwich 

6/11/02 Ba_y_ 133um 2 108.2 
Greenwich 

6/11/02 Ba_y_ 133um 3 58.7 
Greenwich 

6/19/02 Bay_ 133um 1 63.4 2.5 
Greenwich 

6/19/02 Ba_y_ 133um 2 65.0 2.5 
Greenwich 

6/19/02 Ba_y_ 133um 3 56.3 
Greenwich 

6/25/02 Ba_y_ 133um 1 29.8 
Greenwich 

6125102 Ba_y_ 133um 2 13.1 
Greenwich 

6125102 Bay_ 133um 3 8.9 
Greenwich 

7126102 Ba_y_ 133um 1 57.8 16 
Greenwich 

7126102 Ba_y_ 133um 2 66.4 
Prudence 

614102 East 133um 1 8.8 12.5 
Prudence 

614102 East 133um 2 9.7 3.3 
Prudence 

614102 East 133um 3 8.8 
Prudence 

6/11/02 East 133um 1 39.0 
Prudence 

6/11/02 East 133um 2 34.8 
Prudence 

6/11/02 East 133um 3 43.1 3.3 
Prudence 

6/18/02 East 133um 1 28.3 
Prudence 

6/18/02 East 133um 2 13.8 
Prudence 

6/18/02 East 133um 3 28.9 
614102 Warren River 133um 1 7.2 
614102 Warren River 133um 2 7.9 
614102 Warren River 133um 3 6.8 

6/18/02 Warren River 133um 1 53.1 
6/18/02 Warren River 133um 2 38.8 5 
6/18/02 Warren River 133um 3 44.1 7.7 
6/25/02 Warren River 133um 1 50.9 12.5 
6/25/02 Warren River 133um 2 49.9 
7126102 Warren River 133um 1 109.4 
7126102 Warren River 133um 2 79.3 
7126102 Warren River 133um 3 90.8 
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> 
Data for I = GID for 2 M leidyi size classes: >4cm and 1-4cm. A digestion time of 1.1 hours was used in all ~ 

~ 
the calculations. ~ z 

Station/ Date I, # of fish G, # of eggs or I, # of fish G, # of eggs I* # of I *# of # ofM. # ofM. # of ~ 
"""" eggs or larvae in eggs or or larvae in cteno. cteno. 1- leidyi leidyi 1- fish ~ 

larvae >4 cmM. larvae 1-3.9 cm >4cm m·3 4 cm >4cm 4cm eggs (j 

ingested by leidy i guf1 ingested M. leidyi m·3 m·3 m·3 m·3 

>4cm h- 1 by l-4cm gur' 

FI, 5129102 0.1 0.1 0 0 0 0 0 0 73 

WR, 614102 0.4 0.4 0 0.1 4.5 2.9 0.5 2.7 8.2 

PI, 6/4/02 0.1 0.1 0 0 0 0 0 0 6.9 

GB, 614102 0.5 0.6 0 0 38.5 0 3 0 11.5 

...... GB, 6/11102 0.5 0.5 0 0 18.8 0 1.6 0 11.5 
0 
O'\ PI, 6/11 /02 0.2 0.2 0 0 1.5 0 0.3 0 18.2 

FI, 6/12/02 0.2 0.2 0 0 25.7 0 5.1 29.7 1.4 

PI 6/18/02 0.1 0.1 0 0 0.6 0 0.2 1.4 3.6 

WR, 6/18/02 0.1 0.1 0 0 1.1 2.5 0.7 2.4 6.5 

DI, 6/19/02 0.3 0.3 0.1 0.2 1.8 11 0.3 13.9 1.8 

FI, 6/19/02 0.1 0.1 0 0 0.8 143 .3 0.4 41.6 3.2 

GB, 6119102 0 0 0 0 0.7 0.2 2.4 0.2 1.4 

WR, 6125102 0 0 0.1 0.1 0 0.1 1.2 0.1 4.1 

FI, 6126102 0 0 0 0 0.4 57.4 0.7 26.3 2 



APPENDIXD 

TEMPERATURE AND SALINITY DATA FROM PI, GB, AND WR 

Avg. 

Date Station A'11_: Tern~ Salini!Y_ 

6/4/2002 Pl 15.65 28.45 

6/11/2002 Pl 15.675 28.68 

6/18/2002 Pl 16.9225 28.7175 

6/4/2002 GB 18.32 26.61 

6/11/2002 GB 16.8475 27.515 

6/19/2002 GB 20.1 27.5975 

6/25/2002 GB 21.83 27.745 

712612002 GB 21.8 28 
6/4/2002 WR 15.6675 28.7525 

6/18/2002 WR 16.9025 28.1125 
6/25/2002 WR 20.7875 27.84 
7/26/2002 WR 21.8325 30.24 
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APPENDIX E 

CTENOPHORE DA TA FROM ABUNDANCE TOWS 

#of 
ctenophores 

Date Station net mesh re_Qlicate # volume filtered _(_m3J <1cm 1-1.9cm 

6/4/2002 Pl 1mm 1 10.87336245 32 

6/4/2002 Pl 1mm 2 10 22 

6/11/2002 Pl 1mm 1 18.90829694 490 

6/11/2002 Pl 1mm 2 24.19213974 360 

6/18/2002 Pl 1mm 1 9.43231441 360 7 

6/18/2002 Pl 1mm 2 9.825327511 290 8 

6/4/2002 GB 1mm 1 6.244541485 44 8 

6/11/2002 GB 1mm 2 8.951965066 190 6 

6/11/2002 GB 1mm 1 11 . 7 4672489 19 

6/19/2002 GB 1mm 2 8.471615721 900 20 

6/19/2002 GB 1mm 1 8.427947598 750 20 
6/25/2002 GB 1mm 2 5.371179039 34 1 

6/25/2002 GB 1mm 1 3.755458515 12 1 
7/26/2002 GB 1mm 2 66.2591687 5120 560 
6/4/2002 WR 1mm 1 8.515283843 3 16 
6/4/2002 WR 1mm 2 10.08733624 7 14 

6/18/2002 WR 1mm 1 6.812227074 85 11 
6/18/2002 WR 1mm 2 7.379912664 62 22 
6/25/2002 WR 1mm 1 7.379912664 290 4 
6/25/2002 WR 1mm 2 5.76419214 260 10 
7/26/2002 WR 1mm 1 194.9781659 2920 200 

Date ~ation 2-2.9cm 3-3.9cm 4-4.9cm 5-5.9cm 6-6.9cm 
6/4/2002PI 
6/4/2002PI 

6/11/2002PI 4 3 
6/11/2002PI 3 2 
6/18/2002PI 4 4 1 
6/18/2002PI 4 

6/4/2002GB 6 5 
6/11/2002GB 1 
6/11 /200~GB 3 1 
6/19/2002GB 2 
6/19/200~GB 1 
6/25/2002GB 
6/25/2002GB 
7/26/2002GB 
6/4/2002l'!Y_R 6 3 1 
6/4/2002l'!Y_R 5 8 3 1 1 

6/18/2002l'!Y_R 1 
6/18/2002jyy_R 
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6/25/2002~R 
6/25/20021-Y_R 
7/26/2002~R 

2 1 
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APPENDIX F 

RESULTS OF COEFFICIENT OF V ARIA TI ON ANALYSES OF REPLICA TE 
TOWS TAKEN TO ESTIMATE CTENOPHORE ABUNDANCE. 

Station Date Standard Coefficient of 
Deviation Variation, % 

DI 6/12/2002 36.7 84.4 

DI 6/19/2002 61.3 21.1 

DI 6/26/2002 16.5 2.2 

DI 7/1/2002 237.7 28.1 

DI 7/10/2002 60.4 9.2 

DI 7/17/2002 26.4 3.4 

DI 7/24/2002 39.9 17.3 

DI 7/31/2002 22.6 12.3 

DI 8/7/2002 155.2 70.5 

DI 8/14/2002 35.4 71.4 

WR 6/4/2002 0.0 0.0 

WR 6/18/2002 13.2 16.0 

WR 6/25/2002 43.3 25.0 

GB 6/11/2002 3.1 12.8 

GB 6/19/2002 12.2 12.2 

GB 6/25/2002 4.6 76.2 

Pl 6/4/2002 0.4 13.6 

Pl 6/11/2002 7.8 38.2 

Pl 6/18/2002 6.1 17.8 
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APPENDIXG 

RESULTS OF GUT CONTENT EXAMINATION FOR FISH EGGS. 

Ctenophore total Egg Species and No. 
Date Station le1J..9.thlcml l1J..9.ested 

5/22/2002 Fl 8 

5/22/2002 Fl 9 

5/22/2002 Fl 8 

5/22/2002 Fl 3.5 

5/22/2002 Fl 8 1 Gunner 

5/22/2002 Fl 9.2 

5/22/2002 Fl 6.5 

5/22/2002 Fl 5.9 

5/22/2002 Fl 7.2 

5/22/2002 Fl 7.4 

5/22/2002 Fl 8.5 

5/22/2002 Fl 8 

5/22/2002 Fl 8.4 

5/22/2002 Fl 6.2 

5/22/2002 Fl 5.9 

5/22/2002 Fl 6.8 1 Tauto_g_ 

5/22/2002 DI 6.2 

5/22/2002 DI 9 

5/22/2002 DI 8 

5/22/2002 DI 7 

5/22/2002 DI 1.3 

5/22/2002 DI 2.5 

5/22/2002 DI 2.2 

5/22/2002 DI 2.4 

5/22/2002 DI 2.8 

5/22/2002 DI 6 

5/22/2002 DI 8.5 

5/22/2002 DI 5 

5/22/2002 DI 2.5 

5/29/2002 Fl 3.9 

5/29/2002 Fl 3.2 

5/29/2002 Fl 5.5 

5/29/2002 Fl 2.5 

5/29/2002 Fl 2 

5/29/2002 Fl 6.6 

5/29/2002 Fl 0.8 

5/29/2002 Fl 8 

5/29/2002 Fl 1.5 

5/29/2002 Fl 9.2 

5/29/2002 Fl 4.4 
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512912002 Fl 1.5 

512912002 Fl 2 

512912002 Fl 1.7 

512912002 Fl 1.9 

512912002 Fl 2.5 

6/4/2002 WR 7.1 

61412002 WR 6.6 

61412002 WR 5.7 

6/4/2002 WR 1 

6/4/2002 WR 10.9 

6/4/2002 WR 5.1 

6/4/2002 WR 0.9 

6/4/2002 WR 6.6 

6/4/2002 WR 5.6 1 Gunner 
61412002 WR 3.9 

6/4/2002 WR 4.1 1 Searobin 

61412002 WR 4.8 

6/4/2002 WR 2.4 

61412002 WR 4.9 1 Gunner, 1 Tauto_g_ 
6/4/2002 WR 2.4 1 Butterfish 
61412002 WR 6.1 

61412002 WR 4.9 

61412002 WR 4.8 

6/4/2002 WR 4.1 1 Butterfish 
61412002 WR 2.4 

6/4/2002 WR 4 

61412002 WR 4.1 

6/4/2002 WR 7.6 

61412002 WR 7.5 1 Searobin 
61412002 WR 3.9 

61412002 WR 4.4 

61412002 WR 4.8 

61412002 WR 6.3 
5.4 2 Butterfish, 1 

61412002 WR Gunner, 2 Tauto_g_ 
61412002 WR 6.1 1 Butterfish 
6/4/2002 WR 8.1 

6/4/2002 WR 3.4 1 Butterfish 
6/4/2002 WR 5.1 1 Butterfish 
6/4/2002 WR 6.6 

6/4/2002 WR 4.1 

6/4/2002 WR 6.4 1 Taut~ 
6/4/2002 WR 5.4 

6/4/2002 WR 7.1 1 Gunner, 1 Taut~ 
6/4/2002 WR 4.5 
6/4/2002 WR 5.8 1 Gunner 
6/4/2002 WR 4.2 

6/4/2002 WR 4.6 
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6/4/2002 Pl 2.9 

6/4/2002 Pl 6.9 

6/4/2002 Pl 5.1 

6/4/2002 Pl 4.9 

6/4/2002 Pl 2.4 

6/4/2002 Pl 7.1 

6/4/2002 Pl 5.9 

6/4/2002 Pl 0.7 

6/4/2002 Pl 6.9 1 Tautqg_ 

6/4/2002 Pl 4.1 

6/4/2002 Pl 8.3 

6/4/2002 Pl 8.4 

6/4/2002 Pl 3.2 

6/4/2002 Pl 2 

6/4/2002 Pl 0.3 

6/4/2002 Pl 0.4 

6/4/2002 Pl 8.2 

6/4/2002 Pl 5.1 

6/4/2002 Pl 9.1 1 Tauto_g_ 

6/4/2002 Pl 5.6 

6/4/2002 Pl 2.4 

6/4/2002 Pl 7.9 

6/4/2002 Pl 3.4 

6/4/2002 Pl 1.8 

6/4/2002 Pl 4.5 

6/4/2002 Pl 4.6 

6/4/2002 Pl 7.2 

6/4/2002 Pl 3.4 

6/4/2002 Pl 1.9 

6/4/2002 Pl 5.4 

6/4/2002 GB 8.4 1 Searobin 
6/4/2002 GB 6.1 

6/4/2002 GB 4.4 2 Butterfish 
6/4/2002 GB 6.5 

6/4/2002 GB 4.1 1 Searobin 
6/4/2002 GB 10.1 2 Butterfish 
6/4/2002 GB 1.9 

6/4/2002 GB 7.2 2 Butterfish 
6/4/2002 GB 5.6 2 Butterfish 
6/4/2002 GB 8.1 

6/4/2002 GB 6.9 

6/4/2002 GB 4.9 

6/4/2002 GB 3.9 1 Tautqg_ 
6/4/2002 GB 5.9 

6/4/2002 GB 3.9 1 Tautqg_ 
6/4/2002 GB 2.8 

6/4/2002 GB 4.4 

113 



6/11/2002 GB 6.4 

6/11/2002 GB 7 1 Gunner 

6/11/2002 GB 6.9 1 Butterfish 

6/11/2002 GB 2.9 

6/11/2002 GB 5.4 

6/11/2002 GB 6.9 1 Butterfish, 1 Gunner 

6/11/2002 GB 8.4 1 Butterfish 

6/11/2002 GB 2.8 

6/11/2002 GB 4 

6/11/2002 GB 4 1 Butterfish 

6/11/2002 GB 5.8 

6/11/2002 GB 5.9 2 Gunner 
6/11/2002 GB 3.5 

6/11/2002 Pl 6.2 1 Searobin 
6/11/2002 Pl 5.8 1 Tauto__g_ 
6/11/2002 Pl 9.1 

6/11/2002 Pl 1.9 

6/11/2002 Pl 1 

6/11/2002 Pl 4 

6/11/2002 Pl 4.4 

6/11/2002 Pl 7.2 1 Gunner 
6/11/2002 Pl 8.2 

6/11/2002 Pl 2.5 

6/11/2002 Pl 4.5 

6/11/2002 Pl 7.1 1 Butterfish 
6/11/2002 Pl 6.9 

6/11/2002 Pl 3.5 

6/11/2002 Pl 10 

6/11/2002 Pl 4.2 

6/11/2002 Pl 1.1 

6/12/2002 Fl 8.6 1 Butterfish 
6/12/2002 Fl 7.2 1 Tauto__g_ 
6/12/2002 Fl 5.2 1 Butterfish 
6/12/2002 Fl 6.6 1 Searobin 
6/12/2002 Fl 6.6 1 Gunner 
6/12/2002 Fl 4.9 1 Searobin 
6/12/2002 Fl 8.6 

6/12/2002 Fl 7.2 

6/12/2002 Fl 5.4 

6/12/2002 Fl 5.2 

6/12/2002 Fl 8.2 

6/12/2002 Fl 7.9 

6/12/2002 Fl 6.4 

6/12/2002 Fl 6.6 

6/12/2002 Fl 4.2 

6/12/2002 Fl 8.6 

6/12/2002 Fl 5.7 
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6/12/200 2FI 9.1 

6/12/200 2FI 7.8 

6/12/200 2FI 6.5 

6/12/200 2FI 6.6 

6/12/200 2FI 6.4 

6/12/200 2FI 7.2 

6/12/200 2FI 7.8 

6/12/200 2FI 4.9 

6/12/2002 Fl 8.1 

6/12/2002 Fl 2.5 

6/12/2002 Fl 5.1 

6/12/2002 Fl 6.9 

6/12/2002 Fl 6.5 

6/12/2002 Fl 9.3 

6/12/2002 Fl 5.6 

6/12/2002 Fl 1 

6/12/2002 DI 1.7 

6/12/2002 DI 1.5 

6/12/2002 DI 1.1 

6/12/2002 DI 0.8 

6/12/2002 DI 1.9 

6/12/2002 DI 1 

6/12/2002 DI 1.1 

6/12/2002 DI 1 

6/12/2002 DI 1.2 

6/12/2002 DI 0.9 

6/12/2002 DI 1.1 

6/12/2002 DI 1 

6/12/2002 DI 1 

6/12/2002 DI 1 

6/12/2002 DI 1.4 

6/12/2002 DI 0.5 

6/12/2002 DI 0.3 

6/12/2002 DI 0.2 

6/12/2002 DI 0.7 

6/12/2002 DI 0.8 

6/12/2002 DI 1 

6/12/2002 DI 1.4 

6/12/2002 DI 1.3 

6/12/2002 DI 1 

6/12/2002 DI 1.2 

6/12/2002 DI 0.7 

6/12/2002 DI 1.1 

6/12/2002 DI 0.9 

6/12/2002 DI 5.8 

6/12/2002 DI 0.6 

6/12/2002 DI 1.3 
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6/12/2002 DI 0.4 

6/12/2002 DI 0.7 

6/12/2002 DI 1.1 

6/12/2002 DI 0.8 

6/12/2002 DI 0.9 

6/12/2002 DI 2.5 

6/12/2002 DI 0.5 

6/12/2002 DI 0.8 

6/12/2002 DI 6.2 

6/18/2002 Pl 5.1 

6/18/2002 Pl 7.1 1 Tauto_g_ 

6/18/2002 Pl 5.9 

6/18/2002 Pl 5.5 

6/18/2002 Pl 4.2 

6/18/2002 Pl 6.5 

6/18/2002 Pl 6.7 

6/18/2002 Pl 2.8 

6/18/2002 Pl 2.2 

6/18/2002 Pl 3.4 

6/18/2002 Pl 2.5 

6/18/2002 Pl 2.6 1 Tauto_g_ 
6/18/2002 Pl 5.9 1 Tauto_g_ 
6/18/2002 Pl 2.4 

6/18/2002 Pl 1 

6/18/2002 Pl 3.1 

6/18/2002 Pl 2 

6/18/2002 Pl 5.5 

6/18/2002 Pl 7.8 

6/18/2002 Pl 7.2 

6/18/2002 Pl 7.2 1 Cunner 
6/18/2002 WR 7.3 

6/18/2002 WR 4.1 

6/18/2002 WR 3.9 

6/18/2002 WR 3.3 

6/18/2002 WR 5.9 

6/18/2002 WR 5.4 1 Cunner 
6/18/2002 WR 3.9 

6/18/2002 WR 8.1 1 Cunner 
6/18/2002 WR 4.2 

6/18/2002 WR 2.8 

6/18/2002 WR 4 

6/18/2002 WR 1.8 

6/18/2002 WR 5 

6/18/2002 WR 4 1 Cunner 
6/18/2002 WR 5 

6/18/2002 WR 9.5 

6/18/2002 WR 3 
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6/18/2002 WR 0.8 

6/18/2002 WR 3 

6/18/2002 WR 6.8 

6/18/2002 WR 3.8 

6/18/2002 WR 4.1 

6/18/2002 WR 8.1 1 Tautog 

6/18/2002 WR 3.6 

6/18/2002 WR 1.6 

6/18/2002 WR 1.7 

6/18/2002 WR 0.9 

6/18/2002 WR 0.5 

6/18/2002 WR 0.5 

6/18/2002 WR 2.8 1 Butterfish 

6/18/2002 WR 2 

6/18/2002 WR 1.5 

6/18/2002 WR 1.8 

6/18/2002 WR 1 

6/18/2002 WR 1.5 

6/18/2002 WR 1.2 

6/18/2002 WR 1.2 

6/18/2002 WR 1.9 

6/18/2002 WR 1.4 

6/18/2002 WR 3.5 

6/18/2002 WR 1.3 

6/18/2002 WR 0.5 

6/18/2002 WR 1.9 

6/18/2002 WR 0.9 

6/18/2002 WR 1.1 

6/18/2002 WR 1.7 1 Tautog 
6/18/2002 WR 1.2 

6/18/2002 WR 1.2 

6/18/2002 WR 1.5 

6/18/2002 WR 1.5 

6/18/2002 WR 1.7 

6/18/2002 WR 1.3 

6/18/2002 WR 1.5 

6/18/2002 WR 1.8 

6/18/2002 WR 2.5 

6/19/2002 DI 7.2 2 Searobin 
6/19/2002 DI 4.2 1 Searobin 
6/19/2002 DI 1.7 

6/19/2002 DI 1.9 

6/19/2002 DI 5.7 

6/19/2002 DI 2.8 1 Tautqg_ 
6/19/2002 DI 2.1 1 Searobin 
6/19/2002 DI 0.6 

6/19/2002 DI 0.7 
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6/19/2002 DI 0.4 

6/19/2002 DI 5.5 

6/19/2002 DI 6.4 

6/19/2002 DI 0.8 

6/19/2002 DI 0.3 

6/19/2002 DI 2.2 

6/19/2002 DI 1.1 1 Butterfish 

6/19/2002 DI 1.7 

6/19/2002 DI 2.6 

6/19/2002 DI 0.9 

6/19/2002 DI 1.9 

6/19/2002 Fl 1.7 1 Tautog , 

6/19/2002 Fl 8.2 

6/19/2002 Fl 6.7 

6/19/2002 Fl 2.5 

6/19/2002 Fl 0.8 

6/19/2002 Fl 3.2 

6/19/2002 Fl 1.7 

6/19/2002 Fl 1.8 

6/19/2002 Fl 1.2 

6/19/2002 Fl 1.5 

6/19/2002 Fl 2 

6/19/2002 Fl 4.3 

6/19/2002 Fl 0.8 

6/19/2002 Fl 1.9 

6/19/2002 Fl 0.4 

6/19/2002 Fl 0.5 

6/19/2002 Fl 4.5 1 Searobin 
6/19/2002 Fl 1.9 

6/19/2002 Fl 0.9 

6/19/2002 Fl 0.8 

6/19/2002 GB 3.8 

6/19/2002 GB 2.9 

6/19/2002 GB 2.1 1 Butterfish 
6/19/2002 GB 1.5 

6/19/2002 GB 0.4 

6/19/2002 GB 0.3 

6/19/2002 GB 4.2 

6/19/2002 GB 7.1 

6/19/2002 GB 2.8 

6/19/2002 GB 2.1 

6/19/2002 GB 2.1 

6/19/2002 GB 1.2 

6/19/2002 GB 1.3 

6/19/2002 GB 0.6 

6/19/2002 GB 1.3 

6/19/2002 GB 0.9 
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6/19/200 2GB 0.7 

6/19/200 2GB 2.4 

6/19/200 2GB 1.8 

6/19/200 2GB 0.4 

6/19/2002 GB 5.3 

6/19/2002 GB 3.6 

6/19/2002 GB 4.1 

6/19/2002 GB 1.7 

6/19/2002 GB 1 

6/19/2002 GB 2 

6/19/2002 GB 0.5 

6/19/2002 GB 2 

6/19/2002 GB 1.9 

6/19/2002 GB 1.1 

6/19/2002 GB 1.2 

6/19/2002 GB 2.3 

6/19/2002 GB 0.8 

6/19/2002 GB 2 

6/19/2002 GB 1.6 

6/19/2002 GB 1.6 

6/19/2002 GB 1.2 

6/19/2002 GB 1.1 

6/19/2002 GB 0.9 

6/19/2002 GB 1.2 

6/19/2002 GB 1.7 

6/19/2002 GB 2.1 

6/19/2002 GB 0.6 

6/19/2002 GB 3.3 

6/19/2002 GB 0.6 

6/19/2002 GB 1.5 

6/19/2002 GB 2.8 

6/19/2002 GB 2 

6/19/2002 GB 1.2 

6/19/2002 GB 0.6 

6/19/2002 GB 1.8 

6/19/2002 GB 0.5 1 Searobin 
6/19/2002 GB 1.7 

6/19/2002 GB 1.3 

6/19/2002 GB 3.6 

6/19/2002 GB 1.4 

6/19/2002 GB 1.9 

6/19/2002 GB 6.3 1 Gunner 
6/19/2002 GB 1.9 

6/19/2002 GB 1.7 

6/19/2002 GB 0.8 

6/19/2002 GB 1.6 

6/19/2002 GB 1.6 
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6/19/200 2GB 1.8 

6/19/200 2GB 0.9 

6/19/2002 GB 0.5 

6/19/2002 GB 2.7 

6/19/2002 GB 1.7 

6/19/2002 GB 0.6 

6/19/2002 GB 1.6 

6/19/2002 WR 2.4 

6/19/2002 WR 0.9 

6/19/2002 WR 1.7 

6/19/2002 WR 7.4 

6/19/2002 WR 4.1 

6/19/2002 WR 3.8 

6/19/2002 WR 1.9 

6/19/2002 WR 2.5 

6/19/2002 WR 1.4 

6/19/2002 WR 1.6 

6/19/2002 WR 1.8 

6/19/2002 WR 2.5 1 Searobin 
6/19/2002 WR 1.9 1 Searobin 
6/19/2002 WR 2.1 

6/19/2002 WR 1.4 

6/19/2002 WR 0.9 

6/19/2002 WR 1.1 

6/19/2002 WR 1.5 

6/19/2002 WR 1.2 

6/19/2002 WR 1 

6/19/2002 GB 0.8 

6/19/2002 GB 0.9 

6/19/2002 GB 1.4 

6/19/2002 GB 0.8 

6/19/2002 GB 0.9 

6/19/2002 GB 1.1 

6/19/2002 GB 1 

6/19/2002 GB 1 

6/19/2002 GB 3.2 

6/19/2002 GB 1.1 

6/19/2002 GB 1 

6/19/2002 GB 0.8 

6/19/2002 GB 0.6 

6/19/2002 GB 1 

6/19/2002 GB 0.6 

6/19/2002 GB 0.7 

6/19/2002 GB 1 

6/19/2002 GB 2 

6/19/2002 GB 1.4 

6/19/2002 GB 1 
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6/19/2002 GB 1 

6/19/2002 GB 1 

6/19/2002 GB 2.6 

6/19/2002 GB 1.3 

6/26/2002 Fl 5 

6/26/2002 Fl 2.1 

6/26/2002 Fl 1.3 

6/26/2002 Fl 0.5 

6/26/2002 Fl 2.1 

6/26/2002 Fl 0.7 

6/26/2002 Fl 0.8 

6/26/2002 Fl 0.8 1 Butterfish 
6/26/2002 Fl 0.6 

6/26/2002 Fl 0.4 

6/26/2002 Fl 0.2 

6/26/2002 Fl 6.7 

6/26/2002 Fl 6.8 1 Gunner 
6/26/2002 Fl 1.4 

6/26/2002 Fl 1.8 

6/26/2002 Fl 1.5 

6/26/2002 Fl 1.2 

6/26/2002 Fl 1.8 

6/26/2002 Fl 1.4 

6/26/2002 Fl 1.9 

6/26/2002 Fl 0.3 

6/26/2002 Fl 0.3 

6/26/2002 Fl 1.8 

6/26/2002 Fl 2.5 

6/26/2002 Fl 1.2 

6/26/2002 Fl 2 

6/26/2002 Fl 0.3 

6/26/2002 Fl 2.1 

6/26/2002 Fl 1 

6/26/2002 Fl 1.2 

6/26/2002 Fl 2 

6/26/2002 Fl 1.6 

6/26/2002 Fl 2 

6/26/2002 Fl 1.4 

6/26/2002 Fl 1.7 

6/26/2002 DI 3.3 

6/26/2002 DI 1.3 

6/26/2002 DI 3.5 

6/26/2002 DI 2.8 

6/26/2002 DI 1.7 

6/26/2002 DI 0.5 

6/26/2002 DI 2.4 

6/26/2002 DI 1.7 
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6/26/200 2DI 2.6 

61261200 2DI 0.4 

6/26/200 2DI 0.9 

6/26/200 2DI 1.8 

6/26/200 2DI 2.1 

6/26/2002 DI 0.8 

6/26/2002 DI 0.9 

6/26/2002 DI 0.8 

6/26/2002 DI 2 

6/26/2002 DI 2.8 

6/26/2002 DI 1.1 

6/26/2002 DI 2 

6/26/2002 DI 2 

6/26/2002 DI 0.8 

6/26/2002 DI 0.8 

6/26/2002 DI 1.6 

6/26/2002 DI 1.2 

6/26/2002 DI 0.5 

6/26/2002 DI 0.7 

6/26/2002 DI 1.8 

6/26/2002 DI 4.2 

6/26/2002 DI 1.1 

7/1/2002 Fl 2.6 

7/1/2002 Fl 1.3 

7/1/2002 Fl 1.2 

7/1/2002 Fl 1.8 

7/1/2002 Fl 1.7 

7/1/2002 Fl 1.7 

7/1/2002 Fl 1.8 

7/1/2002 Fl 1.9 

7/1/2002 Fl 1.4 

1- 7/1/2002FI 0.6 

1-- 7/1/2002FI 1.6 

7/1/2002 Fl 1.6 

7/1/2002 Fl 1.4 

7/1/2002 Fl 0.9 

7/1/2002 Fl 1.5 

7/1/2002 Fl 1.1 

7/1/2002 Fl 1.4 

7/1/2002 Fl 1.7 

7/1/2002 Fl 1.1 

1--7/1/2002 Fl 1.1 

1-- 7 /1 /2002 Fl 1.4 

7/1/2002 Fl 1.2 

1-7/1/2002 Fl 1.2 

7/1/2002 Fl 1.2 

7/1/2002 Fl 1 
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7/1/200 2DI 2.4 

7/1/200 2DI 0.9 

7/1/200 2DI 2.5 

7/1/200 2DI 2.1 

7/1/200 2DI 2 

7/1/200 2DI 2.5 

7/1/200 2DI 0.9 

7/1/200 2DI 2.4 

7/1/2002 DI 0.8 

7/1/2002 DI 1.9 

7/1/2002 DI 3.3 

7/1/2002 DI 2.9 

7/1/2002 DI 6 

7/1/2002 DI 1.8 

7/1/2002 DI 2.6 

7/1/2002 DI 1.6 

7/1/2002 DI 2.1 

7/1/2002 DI 1.4 

7/1/2002 DI 1.5 

7/1/2002 DI 1.6 

7/1/2002 DI 1.7 

7/1/2002 DI 1.6 

7/1/2002 DI 1.1 

7/1/2002 DI 1.4 

7/1/2002 DI 1.1 

7/10/2002 Fl 0.8 

7/10/2002 Fl 1.7 

7/10/2002 Fl 1.4 

7/10/2002 Fl 0.6 

7/10/2002 Fl 0.7 

7/10/2002 Fl 0.6 

7/10/2002 Fl 0.4 

7/10/2002 Fl 0.3 

7/10/2002 Fl 1.4 

7/10/2002 Fl 0.6 

7/10/2002 Fl 1.5 

7 /10/2002 Fl 0.6 

7/10/2002 Fl 0.5 

7/10/2002 Fl 0.5 

7 /10/2002 Fl 0.4 

7 /10/2002 Fl 0.4 

7 /10/2002 Fl 1.6 

7 /10/2002 Fl 1 

7 /10/2002 Fl 1.3 

7 /10/2002 Fl 0.9 

7/10/2002FI 3 

7/10/2002FI 2 

123 



7/10/200 2FI 1 

7/10/200 2FI 1 

7/10/2002 Fl 0.8 

7/10/2002 Fl 1.9 

7/10/2002 Fl 0.5 

7/10/2002 Fl 0.5 

7/10/2002 Fl 1 

7/10/2002 Fl 0.7 

7/10/2002 Fl 0.8 

7/10/2002 Fl 0.5 

7/10/2002 Fl 2.5 

7/10/2002 Fl 2.8 

7/10/2002 Fl 2.2 

7/10/2002 Fl 1.1 

7/10/2002 Fl 0.9 

7/10/2002 Fl 0.7 

7/10/2002 Fl 0.8 

7/10/2002 Fl 0.5 

7/10/2002 DI 6 

7/10/2002 DI 2.4 

7/10/2002 DI 0.4 

7/10/2002 DI 2.1 

7/10/2002 DI 1 

7/10/2002 DI 0.4 

7/10/2002 DI 0.7 

7/10/2002 DI 0.5 

7/10/2002 DI 2.2 

7/10/2002 DI 0.7 

7/10/2002 DI 0.3 

7/10/2002 DI 4.2 

7/10/2002 DI 1.7 

7/10/2002 DI 0.8 

7/10/2002 DI 3 

7/10/2002 DI 2.7 

7/10/2002 DI 6.4 

7/10/2002 DI 2 

7/10/2002 DI 0.7 

7/10/2002 DI 0.3 

7/10/2002 DI 2.4 

7/10/2002 DI 1 

7/10/2002 DI 5.1 

7/10/2002 DI 1.2 

7/10/2002 DI 0.4 

7/10/2002 DI 0.3 

7/10/2002DI 0.5 

7/10/2002DI 0.6 

7/10/2002DI 0.4 
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7/10/200 2DI 2.1 

7/10/200 2DI 0.9 

7/10/200 2DI 1.2 

7/10/200 2DI 2.8 

7/10/200 2DI 0.7 

7/10/200 2DI 0.3 

7/10/200 2DI 2.2 

7/10/200 2DI 0.4 

7/10/200 2DI 0.5 

7/10/2002 DI 0.3 

7/10/2002 DI 0.2 

7/17/2002 Fl 1.1 

7/17/2002 Fl 2.5 

7/17/2002 Fl 1.9 

7/17/2002 Fl 1 

7/17/2002 Fl 0.6 

7/17/2002 Fl 0.7 

7/17/2002 Fl 1.5 

7/17/2002 Fl 0.4 

7/17/2002 Fl 0.9 

7/17/2002 Fl 1.2 

7/17/2002 Fl 0.4 

7/17/2002 Fl 0.8 

7/17/2002 Fl 1.9 

7/17/2002 Fl 1.7 

7/17/2002 Fl 0.9 

7/17/2002 Fl 1.8 

7/17/2002 Fl 1.1 

7/17/2002 Fl 0.8 

7/17/2002 Fl 0.9 

7/17/2002 Fl 1 

7/17/2002 Fl 1.8 

7/17/2002 Fl 1.5 

7/17/2002 Fl 0.8 

7/17/2002 Fl 0.7 

7/17/2002 Fl 0.9 

7/17/2002 Fl 0.5 

7/17/2002 Fl 0.8 

7/17/2002 Fl 0.9 

7/17/2002 Fl 0.6 

7/17/2002 Fl 1.8 

7/17/2002 Fl 1.4 

7/17/2002 Fl 1.1 

7/17/2002 Fl 0.8 

7/17/2002 Fl 0.9 

7/17/2002 Fl 1.9 

7/17/2002 Fl 1.3 
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7/17/200 2FI 0.6 

7/17/200 2FI 0.8 

7/17/200 2FI 3 

7/17/200 2FI 1.5 

7/17/2002 DI 1.1 

7/17/2002 DI 0.9 

7/17/2002 DI 3.5 

7/17/2002 DI 0.6 

7/17/2002 DI 0.8 

7/17/2002 DI 1.2 

7/17/2002 DI 0.7 

7/17/2002 DI 0.3 

7/17/2002 DI 0.6 

7/17/2002 DI 3.5 

7/17/2002 DI 1.5 

7/17/2002 DI 1.6 

7/17/2002 DI 0.7 

7/17/2002 DI 3.6 

7/17/2002 DI 2 

7/17/2002 DI 1.4 

7/17/2002 DI 0.8 

7/17/2002 DI 1.3 

7/17/2002 DI 0.3 

7/17/2002 DI 0.5 

7/17/2002 DI 1 

7/17/2002 DI 5.5 

7/17/2002 DI 1.4 

7/17/2002 DI 1.1 

7/17/2002 DI 2.5 

7/17/2002 DI 1.2 

7/17/2002 DI 0.8 

7/17/2002 DI 1.5 

7/17/2002 DI 1.1 

7/17/2002 DI 0.8 

7/17/2002 DI 0.4 

7/17/2002 DI 1.1 

7/17/2002 DI 0.4 

7/17/2002 DI 2 

7/17/2002 DI 1.1 

7/17/2002 DI 1.2 

7/17/2002 DI 5.8 

7/17/2002 DI 5.8 

7/17/2002 DI 2.5 

7/24/2002 Fl 2 

7/24/2002 Fl 2.5 

712412002 Fl 1.5 

7/24/2002 Fl 0.9 
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7/24/200 2FI 1 

7/24/2002 Fl 1 

7/24/2002 Fl 0.7 

7/24/2002 Fl 1.7 

7/24/2002 Fl 1.7 

7/24/2002 Fl 1.1 

7/24/2002 Fl 1.5 

7/24/2002 Fl 1.7 

7/24/2002 Fl 0.6 

7/24/2002 Fl 1.1 

7/24/2002 Fl 1.3 

7/24/2002 Fl 1.4 

7/24/2002 Fl 1.8 

7/24/2002 Fl 2.4 

7/24/2002 Fl 1.9 

7/24/2002 Fl 2.5 

7/24/2002 Fl 1.1 

7/24/2002 Fl 0.6 

7/24/2002 Fl 1.9 

7/24/2002 Fl 0.7 

7/24/2002 Fl 0.6 

7/24/2002 Fl 1.5 

7/24/2002 Fl 1.1 

7/24/2002 Fl 0.8 

7/24/2002 Fl 2 

7/24/2002 Fl 1.7 

7/24/2002 Fl 0.8 

7/24/2002 Fl 0.7 

7/24/2002 Fl 0.6 

7/24/2002 Fl 1.7 

7/24/2002 DI 1.6 

7/24/2002 DI 2.8 

7/24/2002 DI 2.9 

7/24/2002 DI 0.6 

7/24/2002 DI 0.8 

7/24/2002 DI 1.1 

7/24/2002 DI 0.6 

7/24/2002 DI 3 

7/24/2002 DI 0.4 

7/24/2002 DI 2 

7/24/2002 DI 3.4 

7/24/2002 DI 2.1 

7/24/2002 DI 1.7 

7/24/2002 DI 0.5 

7/24/2002 DI 0.5 

7/24/2002 DI 0.9 

7/24/2002 DI 0.6 
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7/24/200 2DI 0.8 

7/24/2002 DI 1.7 

7/24/2002 DI 1.9 

7/24/2002 DI 0.7 

7/24/2002 DI 0.6 

7/24/2002 DI 1.6 

7/24/2002 DI 1.7 

7/24/2002 DI 1.7 

7/24/2002 DI 2 

7/24/2002 DI 1.9 

7/24/2002 DI 0.8 

7/24/2002 DI 1.2 

7/24/2002 DI 0.6 

7/24/2002 DI 0.5 

7/24/2002 DI 0.9 

7/24/2002 DI 0.9 

712612002 WR 0.9 

712612002 WR 2 

712612002 WR 1.1 

712612002 WR 1 

712612002 WR 0.8 

712612002 WR 0.9 

712612002 WR 1 

712612002 WR 0.9 

712612002 WR 0.5 

712612002 WR 1 

712612002 WR 1.1 

712612002 WR 1 

712612002 WR 0.6 

7/26/2002 WR 0.5 

712612002 WR 1.5 

712612002 WR 1 

712612002 WR 0.5 

712612002 WR 0.5 

712612002 GB 1.9 

712612002 GB 0.9 

712612002 GB 0.9 

712612002 GB 1.2 

712612002 GB 1 

712612002 GB 1.1 

712612002 GB 1.9 

712612002 GB 0.6 

712612002 GB 0.5 

712612002 GB 1.4 

712612002 GB 0.7 

712612002 GB 0.6 

712612002 GB 1.6 
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712612002 GB 1.1 

7/26/2002 GB 1.5 

712612002 GB 1.1 

712612002 GB 0.4 

712612002 GB 1.1 

712612002 GB 1 

712612002 GB 1 

7/31/2002 Fl 0.5 

7/31/2002 Fl 1.5 

7/31/2002 Fl 0.7 

7/31/2002 Fl 0.9 

7/31/2002 Fl 0.8 

7/31/2002 Fl 1 

7/31/2002 Fl 1.2 

7/31/2002 Fl 0.9 

7/31/2002 Fl 3 

7/31/2002 Fl 1.7 

7/31/2002 Fl 0.8 

7/31/2002 Fl 1.7 

7/31/2002 Fl 1.6 

7/31/2002 Fl 0.5 

7/31/2002 Fl 1 

7/31/2002 Fl 1.4 

7/31/2002 Fl 4.2 

7/31/2002 Fl 1.1 

7/31/2002 Fl 1.4 

7/31/2002 Fl 1.2 

7/31/2002 Fl 0.9 

7/31/2002 Fl 1.7 

7/31/2002 Fl 0.7 

7/31/2002 Fl 1.3 

7/31/2002 Fl 1.2 

7/31/2002 Fl 1.5 

7/31/2002 Fl 0.4 

7/31/2002 Fl 0.8 

7/31/2002 Fl 1 

7/31/2002 DI 2.5 

7/31/2002 DI 1.8 

7/31/2002 DI 0.6 

7/31/2002 DI 1.1 

7/31/2002 DI 5.1 

7/31/2002 DI 5.5 

7/31/2002 DI 3.5 

7/31/2002 DI 0.8 

7/31/2002 DI 0.9 

7/31/2002 DI 1.5 

7/31/2002 DI 0.8 
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7/31/200 2DI 7.2 

7/31/200 2DI 5.5 

7/31/200 2DI 2.8 

7/31/200 2DI 1.7 

7/31/200 2DI 1.3 

7/31/200 2DI 1 

7/31/200 2DI 1.7 

7/31/200 2DI 0.9 

7/31/2002 DI 0.6 

7/31/2002 DI 1.8 

7/31/2002 DI 0.6 

7/31/2002 DI 1.2 

7/31/2002 DI 1.3 

7/31/2002 DI 0.9 

7/31/2002 DI 0.8 

81712002 Fl 6.1 

81712002 Fl 5 

81712002 Fl 5.1 

8/7/2002 Fl 5.2 

81712002 Fl 4.9 

81712002 Fl 3.3 

81712002 Fl 2.7 

81712002 Fl 5 

81712002 Fl 0.8 

81712002 Fl 3.6 

81712002 Fl 0.5 

81712002 Fl 2.8 

81712002 Fl 4.1 

81712002 Fl 2.5 

81712002 Fl 1.2 

81712002 Fl 1.2 

81712002 Fl 0.3 

81712002 Fl 0.8 

81712002 Fl 5.2 

81712002 Fl 0.8 

81712002 DI 6 

81712002 DI 4.8 

81712002 DI 2.6 

81712002 DI 1.2 

81712002 DI 0.6 

81712002 DI 0.8 

81712002 DI 3.5 

81712002 DI 3 

81712002 DI 0.5 

8/7/2002DI 4.3 

8/7/2002DI 3.6 

81712002 DI 1.2 
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8171200 2DI 3.8 

8171200 2DI 1 

8171200 2DI 3.5 

8171200 2DI 1.9 

8171200 2DI 3.3 

8171200 2DI 3 

8171200 2DI 3.5 

81712002 DI 1 

8/7/2002 DI 3 

81712002 DI 2 

8/7/2002 DI 5.2 

81712002 DI 5 

81712002 DI 0.7 

8/14/2002 Fl 8.4 

8/14/2002 Fl 4.3 

8/14/2002 Fl 5.5 

8/14/2002 Fl 7.2 

8/14/2002 Fl 5.9 

8/14/2002 Fl 5.9 

8/14/2002 Fl 5.8 

8/14/2002 Fl 3.1 

8/14/2002 Fl 7.2 

8/14/2002 Fl 6.2 

8/14/2002 Fl 7.9 

8/14/2002 Fl 5.6 

8/14/2002 Fl 6.1 

8/14/2002 Fl 4.7 

8/14/2002 Fl 2.6 

8/14/2002 Fl 3.3 

8/14/2002 Fl 2.6 

8/14/2002 Fl 5.7 

8/14/2002 Fl 4.2 

8/14/2002 DI 5.4 

8/14/2002 DI 6.2 

8/14/2002 DI 3.2 

8/14/2002 DI 1.2 

8/14/2002 DI 4.6 

8/14/2002 DI 4.5 

8/14/2002 DI 2.7 

8/14/2002 DI 8.5 

8/14/2002 DI 3.4 

8/14/2002 DI 3.2 

8/14/2002 DI 1.7 

8/14/2002 DI 3.8 

8/14/2002 DI 2.4 

8/14/2002 DI 1.2 

8/14/2002 DI 4.5 
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8/14/200 2DI 3 

8/14/200 2DI 1 

8/14/200 2DI 1.1 

8/14/200 2DI 5.2 

8/14/200 2DI 5.9 

8/19/2002 Fl 3.5 

8/19/2002 Fl 1 

8/19/2002 Fl 4.2 

8/19/2002 Fl 1.7 

8/19/2002 Fl 1.4 

8/19/2002 Fl 2 

8/19/2002 Fl 1.2 

8/19/2002 Fl 1.7 

8/19/2002 Fl 3.5 

8/19/2002 Fl 1.5 

8/19/2002 Fl 2 

8/19/2002 Fl 2 

8/19/2002 Fl 1.5 

8/19/2002 Fl 1.4 

8/19/2002 Fl 2.4 

8/19/2002 Fl 1.8 

8/19/2002 Fl 2.1 

8/19/2002 Fl 2 

8/19/2002 Fl 1.6 

8/19/2002 Fl 1.5 

8/19/2002 DI 5.5 

8/19/2002 DI 1.1 

8/19/2002 DI 2.6 

8/19/2002 DI 3.5 

8/19/2002 DI 1.2 

8/19/2002 DI 4 

8/19/2002 DI 3 

8/19/2002 DI 2.8 

8/19/2002 DI 2.8 

8/19/2002 DI 3.7 

8/19/2002 DI 2.4 

8/19/2002 DI 1.7 

8/19/2002 DI 1.8 

8/19/2002 DI 2.6 

8/19/2002 DI 1.8 

8/19/2002 DI 1 

8/19/2002 DI 1 

8/19/2002 DI 2.2 

8/19/2002 DI 2.3 

8/19/2002 DI 1.6 
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APPENDIXH 

RESULTS OF DIGESTION RATE EXPERIMENTS WHERE THE EFFECT OF DYE 
WAS INVETSIGATED. 

Temp Ctenophore 
(degrees Total Prey Prey Dye? 

Date Cl len_g_thjcm l Dig_estion Time_{_h' tyQ_e number S_Q_ecies tyQ_e Y/N 

1/27/2003 7.5 2.5 1.1 larva 1 Winter flounder y 

1/27/2003 7.5 1.6 1.0 larva 1 Winter flounder N 

1/28/2003 7.5 2.9 1.4 larva 2 Winter flounder N 
1/28/2003 7.5 3.4 1.4 larva 2 Winter flounder y 

8/20/2003 21.5 ND 0.7 eQQ 1 S.FI. N 
8/20/2003 21.5 1.8 1.2 eQQ 2 S.FI. y 

8/20/2003 21 .5 5.3 1.5 eQQ 4 S.FI. N 
8/20/2003 21 .5 4.5 0.6 larva 1 S.FI. N 

8/21/2003 24 5.2 0.4 larva 2 S.FI. y 

8/21/2003 24 3.1 0.3 larva 1 S.FI. N 
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APPENDIX I 

TIME SERIES DATA INPUT INTO DUTCH ISLAND MODEL OF M. LEIDYI 
BIOMASS; A. MESOZOOPLANKTON, B. MICROZOOPLANKTON, C. FISH 
EGGS, AND D. FISH LARVAE AND THE FOX ISLAND MODEL; E. 
MESOZOOPLANKTON, F. MICROZOOPLANKTON, G. FISH EGGS, AND H. 
FISH LARVAE 
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