
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Dissertations

2019

SPARTA: SYSTEM FOR PORTABLE ACQUISTION WITH REAL-TIME SPARTA: SYSTEM FOR PORTABLE ACQUISTION WITH REAL-TIME

ANALYSIS ANALYSIS

Joseph Greenfield
University of Rhode Island, joseph.greenfield@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Greenfield, Joseph, "SPARTA: SYSTEM FOR PORTABLE ACQUISTION WITH REAL-TIME ANALYSIS" (2019).
Open Access Dissertations. Paper 1082.
https://digitalcommons.uri.edu/oa_diss/1082

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F1082&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/1082?utm_source=digitalcommons.uri.edu%2Foa_diss%2F1082&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

SPARTA: SYSTEM FOR PORTABLE ACQUISTION WITH

REAL-TIME ANALYSIS

BY

JOSEPH GREENFIELD

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2019

DOCTOR OF PHILOSOPHY DISSERTATION

OF

JOSEPH GREENFIELD

APPROVED:

Dissertation Committee:

Major Professor Victor Fay-Wolfe

 Lisa DiPippo

 Yan Sun

 Nasser H. Zawia

 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2019

ABSTRACT

The aim of this thesis is to design, develop and test a new portable system for digital

forensics imaging with real-time analysis over every live file. Currently large magnetic

hard drives are infeasible to perform sequential imaging taking over 40 hours to

complete before beginning with any forensic analysis. Attempted approaches included

performing a limited (sparse) collection and performing a distributed live analysis using

a high-end server environment, neither of which would be sufficient for field use. I

designed and developed the code to test the system and developed comprehensive

testing scenarios. I show that magnetic disk fragmentation has a direct, mostly linear

impact over the speed at which a disk can be imaged and every live file be processed

simultaneously. I show that RAM has a near exponential impact on simultaneous

magnetic disk forensic imaging with all live file processing. I demonstrate that

CASE/UCO has the potential to be the interoperable file format for digital forensics

metadata exchange. I also demonstrate that a system for simultaneous forensic disk

imaging with all live file analysis can be assembled with commercial off-the-shelf parts

for less than $1000.

iii

ACKNOWLEDGMENTS

Firstly, I would like to thank my advisor, Professor Victor Fay-Wolfe. Not many

advisors would take on a part-time Ph. D. student, let alone one all the way across the

country. His advice, guidance and support were invaluable while engaging in the

practical research elements and writing of this thesis. Given my unique circumstance,

his patience was necessary for this thesis to come to fruition.

Aside from my advisor, I would like to thank the rest of my thesis committee:

Professor Lisa DiPippo, Professor Yan Sun and Professor Qing Yang for their

comments, feedback and encouragement throughout the process.

I would like to thank the many members of the digital forensics research

community, especially Dr. Bradley Schatz for providing ideas and insight into digital

forensics research that helped formulate the problems tackled in this thesis.

I would also like to thank my professional mentor and business partner, Brad

Maryman. I will always be grateful that he took me under his wing when I first engaged

professionally in digital forensics, and I will always rely upon his guidance and advice.

Last, but absolutely not least, I would like to thank my family: my mother Sally for

providing unconditional support, my father Jon for always showing me the value of

investing in myself through education, my daughters Valentina and Ariella for always

making me smile and laugh.

But most of all, this work is dedicated to my wife Fernanda. Without her by my

side, nothing in my life, professional or personal, would be possible.

iv

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER 1 .. 1

INTRODUCTION .. 1

CHAPTER 2 .. 4

BACKGROUND AND REVIEW OF LITERATURE .. 4

2.1 Digital Forensics Imaging ... 4

2.2 Basic Hardware Imagers ... 5

2.3 Basic Software Imagers .. 6

2.4 Triage .. 6

2.5 Evimetry ... 7

2.6 Sifting Collectors .. 8

2.7 LOTA .. 9

2.8 FIREBrick ... 10

2.9 Foundational Related Work .. 10

2.10 CASE/UCO... 11

2.11 Test Dataset Developed .. 12

2.12 Fragmentation Generation Tools .. 12

CHAPTER 3 .. 14

METHODOLOGY AND SYSTEM DEVELOPMENT .. 14

3.1 SPARTA Requirements .. 14

3.2 Software Design and Development .. 14

3.3 System Design Flow and Pseudocode .. 15

v

3.4 Fundamental Differences With SPARTA Compared to Other Tools 19

3.5 Operating System Configuration .. 20

3.6 Hardware Design .. 21

CHAPTER 4 .. 25

TESTING AND FINDINGS .. 25

4.1 Development of SPARTA Testing Dataset .. 25

4.2 Testing Imaging Tools and SPARTA with No Analysis .. 26

4.3 Testing Processing Tools .. 27

4.4 Combined Imaging and Processing Times ... 29

4.5 Testing the SPARTA Prototype With Variable Cores and RAM 30

4.6 Analysis of Memory Dependency .. 32

4.7 Analysis of Processing Core Dependency .. 38

4.8 Analysis Of SPARTA Correctness Goal .. 41

4.9 Full Disk Imaging Correctness Analysis .. 42

4.10 File Hash and Signature Correctness Analysis ... 42

4.11 Analysis of the SPARTA Efficiency Goal ... 44

4.12 Analysis of the SPARTA Cost-Effectiveness Goal .. 47

4.13 Analysis of the SPARTA Cross-Compatibility Goal.. 48

CHAPTER 5 .. 50

CONCLUSION .. 50

APPENDICES ... 55

APPENDIX I – SPARTA SOURCE CODE .. 55

APPENDIX II – TESTING RESULTS .. 66

BIBLIOGRAPHY .. 67

vi

LIST OF TABLES

TABLE PAGE

Table 1 - Processor Core Comparison ... 22

Table 2 - SPARTA Prototype Complete Component Cost .. 23

Table 3 - Industry Tool Imaging Times ... 27

Table 4 - Industry Tool Analysis Times .. 28

Table 5 - Combined Average Imaging and Processing Times 30

Table 6 - Summary of SPARTA Testing Results .. 31

Table 7 - Speed Increases with Increase in RAM With 8 Cores 34

Table 8 - Speed Increases with Increase in RAM With 6 Cores 35

Table 9 - Speed Increases with Increase in RAM With 4 Cores 36

Table 10 - Speed Increases with Increase in RAM With 2 Cores 37

Table 11 - Sampling of File Extensions and Hashes.. 43

Table 12 - SPARTA Signature and Hash Analysis Results ... 43

Table 13 - SPARTA Speed Versus Industry Mean Speeds With 0% Fragmentation .. 45

Table 14 - SPARTA Speed Versus Industry Mean Speeds With 5% Fragmentation .. 45

Table 15 - SPARTA Speed Versus Industry Mean Speeds With 10% Fragmentation 46

Table 16 - SPARTA Speed Versus Industry Mean Speeds With 20% Fragmentation 46

Table 17 - SPARTA Speed Versus Industry Mean Speeds With 50% Fragmentation 47

Table 18 - Cost Optimized SPARTA Components ... 48

vii

LIST OF FIGURES

FIGURE PAGE

Figure 1 - Breakdown of Typical Disk According to Grier & Richard III 8

Figure 2 - SPARTA Proposed Digital Forensic Imaging Process 19

Figure 3 - Front-facing image of SPARTA Prototype ... 24

Figure 4 - Back-facing image of SPARTA Prototype, including SATA connectors. . 24

Figure 6 - Forensic Tool Processing Times ... 29

Figure 7 - Combined Average Imaging and Processing Times 30

Figure 8 - SPARTA Test Results with 8 Cores ... 33

Figure 9 - SPARTA Test Results with 6 Cores ... 35

Figure 10 - SPARTA Test Results with 4 Cores.. 36

Figure 11 - SPARTA Test Results with 2 Cores.. 37

Figure 12 - SPARTA Test Results with 32 GB RAM ... 38

Figure 13 – Fragmentation Effects on Processing Speed with 32 GB RAM 39

Figure 14 - SPARTA Test Results with 16 GB RAM ... 40

Figure 15 - SPARTA Test Results with 8 GB RAM ... 41

1

CHAPTER 1

INTRODUCTION

Digital forensic relies upon the scientific examination of digital evidence for

use in court proceedings. The basic standard that is used for preservation of digital

evidence is a bitstream image, which is a bit‐for‐bit copy of a source medium called a

forensic image. When traditional hard drives were small in capacity, making a

forensic image onsite was relatively straightforward and not time intensive. However,

in the last decade, storage sizes have grown to the point that even making a basic

forensic image is can take days to complete, which substantially delays investigations.

In 2013, Eric Zimmerman performed comprehensive testing of imaging speeds

for a 1 terabyte hard drive. The fastest speeds achieved was a rate of approximately

6.6 Gigabytes per minute (GB/min) for imaging. [1] A commercially available 16

Terabyte magnetic hard drive would take a little over 40 hours to image before any

data processing could be performed, since currently no forensic imaging tool performs

simultaneous analysis of data while creating the forensic bitstream image.

In this dissertation I describe how I created a digital forensic imaging process

that addresses the excessive delays that the imaging process can cause in investigations

by introducing simultaneous live allocated file processing capabilities based on

hardware specification and source drive fragmentation. I first created a non-distributed

forensic imaging device (hardware and software), called SPARTA, that creates a

CASE/UCO metadata file containing the hash analysis and signature analysis of every

live allocated file in parallel with the bitstream image file creation. This system of

2

parallel processing has imaging speeds equal to leading commercial and open-source

tools. Once implemented, I tested SPARTA against a standard lab-built dataset that is

fragmented to precise percentages. In doing so, I produced interesting results showing

how the system bottleneck will be I/O bus speed and disk fragmentation, and how the

disk fragmentation affects the amount of RAM and processing cores necessary, page

faults against the swap space, and the overall speed of output. From this I derive results

as to what is the relationship between disk fragmentation, RAM and processing cores

such that disk imaging performance is not severely impacted by core forensic processing

in parallel.

The overall goals for this research were:

1. Correctness – To develop a portable digital forensic imaging system that will

create a correct bitstream forensic image file with simultaneous correct processing of

each logical file.

2. Efficiency – To develop a portable digital forensic imaging system that will

perform a bitstream copy of a source medium with simultaneous live file processing

3. Cost – To develop a system with commercial-off-the-shelf (COTS) parts with

reasonable cost (less than $1000).

4. Cross-Platform Compatibility – To develop a system with a metadata file

output that can be easily imported into industry standard tools.

Chapter 2 provides background on this research including work that addresses

related problems in digital forensics imaging, as well as foundational work for my

project. Chapter 3 describes the development of the SPARTA prototype. Chapter 4

describes the experimental design and tests that I performed. Chapter 4 will also the

3

articulate the analysis of the results and how I met the four goals of the work listed

above. Chapter 5 concludes by summarizing the contributions of this project and future

work for extending the research.

4

CHAPTER 2

BACKGROUND AND REVIEW OF LITERATURE

2.1 Digital Forensics Imaging

The National Institute of Standards and Technology (NIST) has one definition of

digital forensics as “the application of science to the identification, collection,

examination and analysis, of data while preserving the integrity of the information and

maintaining a strict chain of custody for the data.” [2] Forensics is especially necessary

when the examined evidence is to be used in court proceedings, where preservation of

evidence is critical to establish authenticity and provenance for the examined artifacts.

The basic standard that is used for preservation of digital evidence is a bitstream

image, which is a bit-for-bit copy of a source medium called a forensic image. [2]

When traditional hard drives were small in capacity, making a forensic image

outside of a lab environment was relatively straightforward and not time intensive.

However, in the last decade, storage sizes have grown to the point that even making a

basic forensic image is problematic, let alone processing all the data after the creation

of the forensic image. [3]

For example, the website StorageReview.com tested a 6TB Western Digital

magnetic hard drive. [4] The maximum bandwidth exhibited by the drive for

sequential reads was 214.53 Megabytes per Second (MB/s). At that bandwidth, to read

all of the sectors on disk to make the forensic image would take approximately 7.77

hours. There would also need to be a full read-back of the data for hash verification to

ensure that the data was read and copied correctly. Waiting on-site for at least 7 hours

5

for just forensic imaging, without verification and without forensic artifact analysis is

not feasible, especially when dealing with multiple systems and multiple drives. If 6

TB is difficult enough to address, as of the end of 2018, major retailers were selling 14

terabyte (TB) hard drives. [5] The days of imaging on-site without artifact analysis are

quickly ending due to the explosion of larger hard drives.

2.2 Basic Hardware Imagers

Many forensic examiners working in the digital forensics field, both in law

enforcement and in the private sector, use a hardware solution for the creation of a

bitstream image. These devices are called hardware duplicators, hardware imaging

devices, disk imagers or forensic imagers. Examples of these tools include the Tableau

devices TD2u, TD3, TX1, Logicube Falcon-NEO Forensic Imager, MediaClone

SuperImager devices. [6] [7] [8] All of these devices support the following features:

1. Basic sector imaging, copying the data sector-by-sector or grouping physical

sectors together.

2. Creating a cryptographic (or multiple cryptographic hashes) of the source

bitstream while copying the data.

3. Performing a read-back of the written data for computing a verification hash for

validating that the data copied is an exact match to the source data.

Based on limited testing and datasheet analysis, none of the devices logically

analyze the file system for file cluster boundaries for intelligent grouping of sectors for

imaging. Additionally, none of the listed devices performs file analysis because none

of the devices inspects any of the logical data as it is being copied. For a 14TB hard

6

drive sold today, any of these devices would take over 24 hours to image, making this

process unfeasible.

2.3 Basic Software Imagers

Before hardware imaging devices were commonplace, disk imaging was

performed using primarily Linux tools. The standard used was GNU dd, which is a

block I/O tool that when used properly can create a bitstream copy of a source device

to a destination device or raw image file. [9] The GNU dd tool does not have any

capability of performing any live file reconstruction nor analysis of files – it is simply

a block I/O software tool.

Two different software tools have been developed from the GNU dd tool with

digital forensics features: dc3dd and dcfldd. dcfldd is an “enhanced version of dd”

developed by Nicholas Harbour while at U.S. Department of Defense Computer

Forensics Lab (DCFL). [10] The latest version of dcfldd is 1.3.4 released February 12,

2006. dc3dd is a “patch” to the GNU dd program. [11] The latest version is 7.2.646

released April 29, 2016. Both tools perform a simultaneous hash of the entire source

disk while creating the bitstream image. However, neither tool provides the ability to

do any analysis of the live file data, increasing the time delay between preservation

and analysis of data.

2.4 Triage

Various techniques have been adopted to attempt to combat the size problem

among digital forensics, the majority of which fall into a form of triage, which

7

attempts to selectively analyze items prior to imaging. [12] The advantage of this

technique is that it can be performed in the field and does not require all systems to be

brought back to the lab for analysis only to discover that the system did not contain

relevant evidence. The problem with this technique is that it requires analysis prior to

preservation to identify systems to preserve and analyze in depth at a later point. This

delays the preservation of digital evidence, which could take hours as indicated above.

2.5 Evimetry

The issues surrounding software involved in digital forensics imaging and large

drives have been tackled by developers. One of the most promising tools written by

Dr. Bradley Schatz is Evimetry. [13] Evimetry allows for triage during imaging,

allowing the examiner to indicate the areas of the disk to prioritize to collect and

preserve for analysis. This is accomplished by using the Advanced Forensics Format

(AFF) version 4, which is an evidence file format that creates a forensic image in a

non-sequential manner. While extremely promising, Evimetry only outputs the image

to AFF4, which is gaining support among commercial forensic tool manufacturers but

is not as widely supported as Expert Witness Format (E01) or raw dd files. This is

addressed by using a filesystem bridge developed by Schatz Forensics to allow the

image file to be mounted to the examination system to be analyzed using any forensics

tool.

However, Evimetry does not address the issue of analyzing every file while

creating the bitstream image that SPARTA addresses.

8

2.6 Sifting Collectors

An alternative method is the creation of a sparse or partial logical image of the

evidence as opposed to a full physical bitstream forensic image. The most promising

of these techniques is the use of sifting collectors. [14] The problem with this

technique is the fact that the entirety of the evidence is not collected nor examined.

During a criminal trial, the use of sifting collectors will lead to the argument from the

opposing counsel that there is a possibility of exculpatory evidence in the region not

collected nor analyzed, leading to potential doubt among the jury in the process of the

usage of sifting collectors.

The figure below outlines the high-value areas identified by Grier and Richard III

as being important versus those that are not used for forensic analysis.

Figure 1 - Breakdown of Typical Disk According to Grier & Richard III

In contrast to Sifting Collectors, SPARTA will analyze all live files, including

those identified Windows OS files, in the event that individuals are masquerading files

as Windows files.

9

2.7 LOTA

The most promising area for expediting forensic imaging and analysis is the use of

parallel processing: while making the forensic image, perform automated analysis at

the file level. This is outlined in a process called a latency-optimized target acquisition

(LOTA). [15] However, there are key holes in the paper surrounding the LOTA

system that make it unsuitable for a field device for processing all live files during a

full physical acquisition.

1. There is a lack of research surrounding the requirements to perform targeted

processing of files while performing a bit-stream image of a digital evidence

source. The LOTA system details only processing cores required for certain

tasks, but does not address memory requirements beyond “assuming a RAM-

rich configuration…” [15] In a portable field device that is cost-conscious, a

clear establishment of RAM requirements is necessary.

2. The paper clearly identified file fragmentation as an area outside the scope of

the project. What is lacking is quantifying the relationship between file

fragmentation on-disk with efficacy of parallel processing of logical file data.

The LOTA system reference HDD was described as “best case scenario as it was

created in one shot.” [15] There is no published research literature to analyze the

relationship between file processing for digital forensics and file fragmentation,

which is something that this thesis seeks to establish.

The SPARTA system, in comparison to the LOTA system, will be a field-capable

system that seeks to process all live files while simultaneously creating a full forensic

disk image with verification. The results of the live file processing will be saved to a

10

metadata file for importing into an analysis tool so that efforts do not need to be

duplicated after acquisition and partial processing.

2.8 FIREBrick

Portable digital forensic tools are necessary for situations in which the digital

source mediums cannot leave the environment. This is common with civil litigation

cases where the computers are the property of the opposition and the only authorized

work is to make a digital forensic image. Portable open source digital forensic devices

have been developed, such as the FIREBrick prototype. [16] Yet when comparing the

FIREBrick prototype against the LOTA system, for example, the FIREBrick appears

to be woefully underpowered to perform any parallel processing.

2.9 Foundational Related Work

INDXParse is a suite of forensic tools written by Willi Ballenthin, a Reverse

Engineer at Mandiant/FireEye. [17] The suite provides a range of capabilities for

parsing different data structures unique to the NTFS file system. The prototype for

SPARTA will perform the simultaneous analysis of NTFS volumes, and Mr.

Ballenthin has made his INDXParse NTFS parser tools available as open source. The

project leverages the tools in the suite to parse the master file table records of the drive

to build the cluster-to-sector map described in Chapter 3.

The Sleuth Kit (TSK) is a collection of utilities for forensics developed by Dr.

Brian Carrier of Basis Technology. [18] The singular usage of TSK in this project is

the utility to extract the Master File Table (MFT) from the NTFS formatted volume

11

prior to creating the bitstream image. To do this, I utilized the following two

commands that are a part of TSK: mmls, which will list the partition table of a disk

and the starting offsets; and icat, which will extract a file based on the inode number

or MFT entry number. The exact sequence of commands used for extracting the MFT

from a given drive is as follows:

 mmls <source drive> | grep NTFS | awk ‘{print $3}’ | bc

 icat -o <sector> <source drive> 0 > MFT.raw

The first command will result in an integer number corresponding to the sector

number of the NTFS volume. The second command will extract the file corresponding

to MFT entry number 0 of the volume starting at the provided sector number of the

provided source drive. MFT entry number 0 always refers to the MFT itself, so the

result of this command will be the MFT encapsulated as a file for processing.

2.10 CASE/UCO

SPARTA will export all file processing results to an intermediary forensic

metadata file utilizing the new Cyber-investigation Analysis Standard Expression

(CASE) format. [19] This would be one of the first tools to use the standard that has

initial wide support among researchers, the open source community and the large

commercial vendors.

CASE is the successor to the intermediary format known as the Digital Forensics

Extensible Markup Language (DFXML). [20] It is part of the new Unified Cyber

Ontology (UCO), with the CASE portion lead by Dr. Eoghan Casey from the

University of Laussane. [21] Dr. Casey and his team had a paper accepted to the

12

Digital Investigation Journal (Issue 22, September 2017), establishing it as the new

standard for tool interchange. Per the website, it has been supported by many

companies and vendors, including DC3, FireEye, MITRE, NIST, AccessData, Basis

Technology, Blackbag, Cellebrite, Europol, Guidance Software, IBM, Magnet

Forensics, NCCoE, Nuix, Oxygen Forensics and the Volatility Foundation.

2.11 Test Dataset Developed

For testing SPARTA, I created a standard lab-built dataset that is fragmented to

precise percentages. The dataset will be representative of a real world system: the

extracted files from a fully functional Windows 10 system with the entire Govdocs1

corpus data, approximately 1 million files made available through the Digital Corpora.

[22] This drive is approximately 282 GB of data on a 320 GB magnetic hard drive.

This is in contrast to the testing done in the LOTA system: an ext4 formatted volume

with approximately 1.8 million files and the m57 drive from the Digital Corpora,

which was a 10 GB virtual disk.

2.12 Fragmentation Generation Tools

To create fragmented disks for testing, I used the tools provided by the company

Raxco software as a part of the PerfectDisk tools for artificially creating disk

fragmentation. The specific tool I used was called SCRAMBLE.exe. [23] This tool

will take a provided disk volume and proceed to implement a pseudo-random

fragmentation algorithm to a non-deterministic number of files on the disk. I then

tested the fragmentation percentage using the built-in Windows Disk Defragmentation

13

tool for Windows 10. Should the fragmentation percentage exceed the target, I used

the Piriform Defraggler tool to selectively defragment a number of files and retest the

volume fragmentation to ensure I was in the correct threshold.

This process allowed for five different physical disks containing the exact same

data to be fragmented at the following levels: 0%, 5%, 10%, 20% and 50%.

14

CHAPTER 3

METHODOLOGY AND SYSTEM DEVELOPMENT

3.1 SPARTA Requirements

The overall system for the SPARTA prototype is a system that will take in as an

input a full disk or disk image with a single NTFS volume. NTFS is the focused file

system for two reasons: it is designed with a singular structure defining all file cluster

allocation (the Master File Table) and it is the default file system for all Windows

systems. As output, the prototype will produce the following: a bitstream image file

(dd) containing the entire contents of the input disk and a CASE/UCO metadata file

with the results of the live file forensic analysis.

3.2 Software Design and Development

After performing the background research, I decided to write the project in Python

2.7. While Python is an interpreted language with known performance limitations, the

theory was that with modern processing the limitations of the interpreted

scripting/programming language would not be as much of a bottleneck as transfer

speeds from the SATA bus. The test results described in Chapter 4 confirmed the

theory.

Additionally, the additional components of the CASE/UCO implementation as

well as the INDXParse library indicated that the project implementation would be

expedited by using Python to align with the existing libraries.

15

The development environment was a licensed academic version of PyCharm by

JetBrains.

3.3 System Design Flow and Pseudocode

While most digital forensic imagers begin immediately reading the bitstream from

the source disk, SPARTA requires some preprocessing to process these files live. The

preprocessing steps are as follows

1. Read the file signatures list that will be used to validate the file signature with

the extension.

2. Examine the source disk and extract the Master File Table from the NTFS

volume.

3. Iterate through the Master File Table and analyze each entry for live, allocated

file entries.

4. For each live, allocated file entry

a. If the file has resident data in the Master File Table, immediately queue

the file data for processing. Files that are resident to the Master File

Table do not use clusters to store data. Rather, the data resides in the

Master File Table entry, so the data for the file has already been copied

and ready to be processed.

b. If the file has non-resident data, process the cluster-runs which contain

the list of clusters that contain the data for the file.

c. Map out each cluster run from a logical offset from the previous run (as

stored in the Master File Table) to a physical offset from the beginning

16

of the volume. This data will be stored in the data structure called a

cluster map.

d. Determine which cluster run is the last in the physical ordering and

mark it as the last cluster. This will allow the system to know if all

clusters for a given file have been read from the bitstream.

5. End of preprocessing for SPARTA

After preprocessing completes, the main portion of the system begins to execute.

The main thread begins to read the bitstream image from the source drive. The read

for the preliminary portions of the drive, before the NTFS volume, are done sector-by-

sector (512 bytes at a time) and written subsequently to the destination drive. While

the sectors are being read in individually, the MD5 and SHA1 imaging hashes are

being computed.

Once the bitstream read pointer reaches the first sector of the NTFS volume (the

Volume Boot Record), the logic proceeds with the main SPARTA parallel processing

engine as follows:

1. Create a thread-safe queue called unprocessed file queue.

a. Create a thread pool for processing these file objects. Initial testing

created ten threads in the pool.

2. Create a thread-safe queue called processed file queue.

a. Create a thread pool for these processed files. Initial testing created one

thread in this pool.

3. Set the cluster number to 0.

17

4. Lookup the current cluster number in the cluster map built from the Master

File Table.

5. If the cluster number does not appear in the map, then read the cluster,

compute the stream hash, and write the cluster to the bitstream output.

6. If the cluster is in the map

a. Based on the data in the cluster map, read the entire cluster run length,

which is avariable number of consecutive clusters depending on the

run.

b. Add the data block read-in to the correct logical offset of the file object.

c. If this was the last cluster run for the file (in other words, if all logical

clusters have been read), then add the file object to the queue created in

step one.

d. If this was not the last cluster run, then mark in the cluster map that the

file object has been created and waiting for the rest of the data.

e. Write the cluster-run data to the output data stream.

7. Move on to the next cluster if we are not at the end of the drive.

8. Once we reach the end of the drive, wait until the file processing object queue

is empty before ending the main thread.

While the bitstream is being processed, the thread pool created above works on the

file object queue as follows:

1. Wait until an item is in the unprocessed file queue.

2. Hash the logical file data based on the logical file size extracted from the MFT.

18

a. Currently, the system supports file MD5 hash. SHA1 hash support

would be trivial.

b. Iterate through the file signature list and determine if the first bytes

match any signature.

i. If we have a match, assign that file type to the file and break out

of the iteration

c. Move the file object from the unprocessed file queue to the processed

file queue

d. Wait until we have another entry, and repeat

The processed file queue is designed to output the results of the file processing to

the CASE/UCO output standard as follows:

1. Wait until an item is in the processed file queue.

2. Pop the top item off the queue and send it to the CASE/UCO processor. This

will write the appropriate JSON structure to conform to the CASE/UCO

standard.

3. Wait until we have another entry.

The following diagram illustrates the overall proposed digital forensics imaging

process utilized by SPARTA.

19

Figure 2 - SPARTA Proposed Digital Forensic Imaging Process

3.4 Fundamental Differences With SPARTA Compared to Other Tools

The following is a comprehensive list of functionality that is unique to SPARTA

compared to other industry tools.

1. SPARTA performs an initial pass over the Master File Table (MFT) in the

NTFS volume to build an inverse cluster map. This is similar to what is

performed in the LOTA system designed by Rousev.

2. SPARTA performs a disk read of variable length based on cluster run size.

This is a unique feature only capable because of the initial pass of the MFT.

This should allow for faster overall read speeds from the source disk as

magnetic media benefits from longer sequential reads. This is a key

differentiating factor compared to open source software tools which allow for a

fixed-size block for reads but are incapable of variable size based on cluster

runs due to the lack of MFT parsing.

It is unclear if the LOTA system designed by Rousev performs a variable read

Source Drive

•Offline Disk

Read Bitstream
From Source

•Compute
Source Hash

•Perform live file
analysis

•Hash

•Signature

•Write
Bitstream to
Destination

•Write file
analysis to
metadata file

Read Bitstream
From Destination

•Compute
Destination
(Verification)
Hash

Process Evidence

•Ingest
metadata file

•Other Analysis

20

based on the cluster size, as his research was solely based upon unfragmented

source disks.

3. SPARTA writes the forensic processing results into a CASE/UCO format that

will be a standard for data exchange between forensic tools. It is unclear if

Wirespeed or LOTA export metadata into any format that can be utilized by

other tools.

3.5 Operating System Configuration

The Operating System chosen for the prototype was a Linux operating system.

Linux was primarily chosen for both performance and low cost. Linux is a modular

system that would allow for a full field unit to remove all unnecessary components

from the prototype to maximize efficiency. This is in contrast to consumer operating

systems like Microsoft Windows or Apple MacOS, that do not allow for the

customization necessary for a performance field unit. Additionally, Microsoft

Windows has a retail cost of $129.99 for the Home Edition, which would be an

unnecessary cost for the unit.

A requirement of a forensics duplicator/imager is the ability to protect the source

evidence from alterations from normal operating system behavior during the forensic

imaging. Both Microsoft Windows and Apple MacOS, by default, do not have

mechanisms to write-protect directly attached drives. While most Linux distributions

by default are not configured to write-protect attached devices, it is a relatively minor

change to enable this feature.

21

The Linux distribution used was Ubuntu 18.04 LTS (long-term support), and

within the OS the following changes were made to enable write-protection to attached

devices.

1. Using the dconf-editor tool, the following two keys were disabled:

org.gnome.desktop.media-handling automount

org.gnome.desktop.media-handling automount-open

2. Within the /etc/udev/rules.d file, under 10-myudisks2.rules, the following rule

was added:

ACTION==”add|change”, SUBSYSTEM==”block”,

ENV{UDISKS_IGNORE}=”1”

The two above rules would prevent any attached devices from being automounted

as read/write to the Operating System. Attached devices can be mounted as read/write,

but would require specific user action to do so. This ensures that the operator would

specifically indicate the destination device for all imaging actions. There is the

understanding that a user error could result in overwriting of the source (for example,

a misused DD command), but this is an assumed risk for all Linux-based forensic

imaging devices.

3.6 Hardware Design

The main aspect of SPARTA that differentiates it from many other research

projects focusing on parallel processing of digital evidence during forensic imaging is

the fact that it is designed as a low-cost field unit. In order to achieve the research goal

22

of cost-affordability, an investigation into the current hardware availability was

necessary to determine if such a goal was attainable.

A selection of motherboard, processor, RAM, video card and solid-state drive (for

the Operating System and OS swap space) was necessary for the basic components of

the field prototype. Due to the portability requirements of the field prototype, the

motherboard would be limited to only Mini-ITX selections. At the time of this

research, the latest AMD selection in the Mini-ITX motherboard format was using the

AM4 processor socket, while the Intel selection used the 1151 processor socket

format. Based on these socket formats, the following processors would be the

exemplar processors in the various core configurations needed for testing the

performance of the system (Note that for each processor core selection, the processor

listed is the lowest cost processor available from Newegg.com, a major retailer of

hardware components):

Table 1 - Processor Core Comparison

Number of Cores Intel Processor Cost AMD

Processor

AMD Cost

2 Pentium G5500 $94.99 A6-9500 $55.74

4 Core i3-8100 $119.99 Ryzen 3 1200 $94.99

6 Core i5-8400 $193.99 Ryzen 5 1600 $159.99

8 Core i7-9700K $399.99 Ryzen 1700X $159.99

Based on the comparison of the major processors available on retail markets, it

was decided to build the entire prototype around an AMD platform due to the lower

price on all processors with equivalent CPU cores available.

While the amount of RAM available would vary between 8 GB and 32 GB, the

type and speed of the RAM would not used as a variable for testing. The RAM chosen

would be based on the least expensive configuration available at the time of testing.

23

The solid-state drive would be used for both the operating system, SPARTA software

as well as the operating system virtual memory. To attempt to reduce the impact of the

system secondary memory throughput as a performance bottleneck of the system, a

selection would be made of a high-speed solid-state drive, preferably of the M.2

variant so that the system would be I/O bound based on the SATA source and SATA

destination drives.

Based upon the research above, the following components were used for building

and testing the SPARTA prototype as of 6/19/2018.

Table 2 - SPARTA Prototype Complete Component Cost

Component Make and Model Cost

Motherboard ASRock Fatal1ty AB350 Gaming-ITX/ac $104.99

Processor AMD Ryzen 7 2700X 8-Core $319.99

RAM 32GB DDR4 2400 $299.99

Power Supply Rosewill Hive 550W $54.99

Case Cooler Master Elite 130 $40.16

Video Card Gigabyte Radeon R5 230 $36.99

SSD Crucial MX500 M.2 2280 1 TB $219.99

Total $1,077.10
A unique feature of the motherboard chosen is the ability to enable or disable

CPU cores within the BIOS. This enabled testing of the prototype for variable cores to

emulate testing different physical CPUs without the requirements of purchasing

different CPUs for testing.

24

The following are images of the completed prototype device.

Figure 3 - Front-facing image of SPARTA Prototype

Figure 4 - Back-facing image of SPARTA Prototype, including SATA connectors.

Note that the backside has two internal SATA and two internal SATA power

connectors for the source and destination disks.

25

CHAPTER 4

TESTING AND FINDINGS

4.1 Development of SPARTA Testing Dataset

In order to establish equivalent testing for the SPARTA prototype as well as

existing forensic tools, I developed a dataset that would be representative of a typical

user’s Windows system. The dataset included files and folder structure used for

Windows 10, extracted from a virtual machine provided by the Microsoft Windows

Dev Center. [24] Additionally, the files available from the GovDocs corpus from the

Digital Corpora were included to give a variety of typical user files. [22]

Approximately 410,000 files from the GovDocs were included in the dataset, with

data types including Microsoft Word, Excel, PowerPoint, JPEG, PDF and plain text

files. The overall dataset of Windows and GovDocs files equaled approximately 282

Gigabytes, making it one of the largest datasets used for testing imaging and

processing speeds.

The dataset was copied onto five magnetic hard drives. Each of the drives was a

Western Digital Blue Drive, Model WD3200AAKS with 16 Megabytes of cache and

320 Gigabytes in capacity. By ensuring that each of the five drives was the same make

and model, I eliminated as much variability in drive mechanics that would impact the

performance metrics. All testing of forensic imaging and processing used the same

destination disk: a Western Digital Blue WD5000AAKS, 500 Gigabytes in capacity

with 16 Megabytes of cache. While each of the drives are only SATA 2 and not SATA

26

3 speeds, the read and write speeds on average of magnetic media does not exceed the

maximum throughput of 3 Gigabits per Second available in SATA 2.

After ensuring that each of the source drives had the dataset copied, I marked them

with a specific measure of fragmentation: 0%, 5%, 10%, 20%, and 50%. Raxco

software provides free utilities for generating disk fragmentation, to be used for testing

defragmentation tools. [25] By utilizing a combination of the Scramble utility, which

performs an entire disk fragmentation and Piriform’s Defraggler [26], which allows

for file-based defragmentation, I was able to accurately establish the appropriate levels

of disk fragmentation on each disk as measured by the Windows 10 built-in tool for

defragmenting disks.

4.2 Testing Imaging Tools and SPARTA with No Analysis

For each of the forensic imaging tools, the source drive and destination drives used

were the 0% Fragmented drive developed in 4.1 and the standard destination drive

listed in 4.1. The available hardware devices available for testing were a Tableau TX-1

and a Tableau TD2u. Both were updated to the latest firmware available from the

Tableau Firmware Update v7.29 tool. The software tools used were Guymager and

DC3DD, tested on the SPARTA hardware platform with 8 physical cores and 32 GB

of RAM.

Each of the tools was configured to make a single DD bitstream images,

unsegmented, with MD5 and SHA1 hash computations and verifications. The results

of the testing are as follows.

27

Table 3 - Industry Tool Imaging Times

Tool Time

Tableau TX-1 1:45

Tableau TD2u 1:44

Guymager 1:43

DC3DD 1:43

Average 1:43

It is interesting to note that each of the imaging results are within 2 minutes of

each other and the average of 1 hour and 43 minutes.

The SPARTA prototype was tested as a simple forensic imager with no file

analysis. The prototype was configured at the maximum specifications of 8 cores and

32 GB of RAM. Three test runs of operating as a simple disk imager were performed,

and the results recorded. The average time for SPARTA to perform as a disk imager

was 1 hour, 43 minutes, equaling those of the simple imaging software and hardware

tools. This result demonstrates that the decision to use Python as the base

programming language did not increase the time necessary to perform forensic

imaging as compared to established tools. There was a concern that using a language

like Python, which is not as efficient as C or C++, would increase the time to image,

but the results clearly show that not to be the case.

4.3 Testing Processing Tools

Many of the processing tools for forensics available and widely used in industry

are closed-source paid products. I have valid professional licenses for the following

tools that I used to test evidence processing: EnCase v. 6.19.7 by OpenText, Forensic

Explorer v4.3.5 by GetData, and X-Ways Forensics 19.8 SR-6 by X-Ways Software

Technology. Autopsy is an open-source digital forensic analysis tool. Each of the

28

forensic tools is installed on my forensic workstation with an Intel i7-6700 4-core

processor with 64 GB of RAM.

I made a valid forensic image from the 0% fragmented drive as tested using MD5

and SHA1 hash verification and copied the DD image file to the destination drive

(WD5000AAKS). I used each of the tools to perform an MD5 hash of each file as well

as perform a file signature analysis, which compares the data in the file header with

the extension listed in the file name. These are two common forensic practices which

many, if not most, examiners perform with each system.

I repeated the file signature and file hash analysis with each level of fragmentation

(0%, 5%, 10%, 20% and 50%) from the destination drive. The results are below, with

fragmentation level indicated in percentages and time listed as hh:mm.

Table 4 - Industry Tool Analysis Times

Tool 0% 5% 10% 20% 50%

Autopsy 1:03 1:30 2:55 3:30 2:11

EnCase 0:57 1:15 1:14 1:33 1:48

Forensic

Explorer 1:22 2:02 2:27 2:49 3:17

X-Ways 1:03 1:28 2:10 2:39 1:51

Average 1:06 1:33 2:11 2:37 2:25

For better representation, the following chart demonstrates the increase in

processing time necessary for each increased level of fragmentation.

29

Figure 5 - Forensic Tool Processing Times

With the exception of 10% fragmentation with EnCase and 50% fragmentation

with Autopsy, each of the tests performed with an increase in fragmentation led to an

increase in the time necessary to process the evidence. Further analysis would need to

be performed to determine the rate of increase for processing time compared to

fragmentation as no apparent linear or exponential pattern appears to fit well with the

data.

4.4 Combined Imaging and Processing Times

Taking the average tool imaging time of 1 hour, 43 minutes with the average

processing time for each measured level of fragmentation, we arrive at the following

table, which compares the sum of imaging and processing with measured

fragmentation percentage.

0:00

0:28

0:57

1:26

1:55

2:24

2:52

3:21

3:50

0%
Fragmentation

5%
Fragmentation

10%
Fragmentation

20%
Fragmentation

50%
Fragmentation

Forensic Tool Processing Times

Autopsy EnCase Forensic Explorer X-Ways Average

30

Table 5 - Combined Average Imaging and Processing Times

Fragmentation Percentage Time

0% 2:50

5% 3:17

10% 3:55

20% 4:21

50% 4:09

The following measurements are charted below:

Figure 6 - Combined Average Imaging and Processing Times

We now have the baseline time measurements to determine if the SPARTA design,

code and hardware can meet the efficiency standard of being within 10% of industry

standard tools based on the averages taken above.

4.5 Testing the SPARTA Prototype With Variable Cores and RAM

The SPARTA prototype was used to test each scenario with varying disk

fragmentation percentages of 0%, 5%, 10%, 20% and 50%, varying processing cores

of 2, 4, 6 and 8, and varying available system RAM of 8 GB, 16 GB and 32 GB. Each

scenario was run three times, with the averages of the three runs documented in the

table below.

0%, 2:50

5%, 3:17

10%, 3:55

20%, 4:21
50%, 4:09

0:00

0:28

0:57

1:26

1:55

2:24

2:52

3:21

3:50

4:19

4:48

0% 10% 20% 30% 40% 50% 60%

Average Processing and Imaging Times

31

Table 6 - Summary of SPARTA Testing Results

Test

Case Cores

RAM

(GB) Fragmentation

Mean Time

Taken

Mean Major

I/O Page Faults

01a 8 32 0% 2:15:49 28

01b 8 32 5% 2:17:24 1032722

01c 8 32 10% 2:40:51 5122570

01d 8 32 20% 2:58:32 8425078

01e 8 32 50% 3:24:21 15262436

02a 6 32 0% 2:15:51 34

02b 6 32 5% 2:19:01 1132811

02c 6 32 10% 2:42:05 5103129

02d 6 32 20% 3:00:12 8477996

02e 6 32 50% 3:22:59 15290330

03a 4 32 0% 2:16:39 30

03b 4 32 5% 2:19:09 1076391

03c 4 32 10% 2:42:29 5125908

03d 4 32 20% 3:01:06 8423466

03e 4 32 50% 3:32:49 15287473

04a 2 32 0% 2:15:52 20

04b 2 32 5% 2:18:50 1099323

04c 2 32 10% 2:42:14 5122519

04d 2 32 20% 3:01:40 8568607

04e 2 32 50% 3:27:04 15212920

05a 8 16 0% 2:22:58 1174263

05b 8 16 5% 2:37:47 9038080

05c 8 16 10% 2:59:24 9318398

05d 8 16 20% 3:16:19 13737885

05e 8 16 50% 3:39:54 19901736

06a 6 16 0% 2:17:37 1150437

06b 6 16 5% 2:34:41 5736121

06c 6 16 10% 2:59:23 9271466

06d 6 16 20% 3:14:31 13621883

06e 6 16 50% 3:47:31 20040071

07a 4 16 0% 2:17:55 1182597

07b 4 16 5% 2:38:35 5728819

07c 4 16 10% 2:58:49 9222047

07d 4 16 20% 3:17:23 13699034

07e 4 16 50% 3:50:05 19827439

08a 2 16 0% 2:18:04 1165167

08b 2 16 5% 2:35:44 5727463

08c 2 16 10% 2:58:58 9325907

08d 2 16 20% 3:16:43 13420610

08e 2 16 50% 3:57:44 19897716

32

09a 8 8 0% 2:58:54 15676195

09b 8 8 5% 3:12:02 19554098

09c 8 8 10% 3:44:44 27114027

09d 8 8 20% 4:02:46 31095330

09e 8 8 50% 4:43:03 37746095

10a 6 8 0% 2:57:39 15425255

10b 6 8 5% 3:07:12 19677461

10c 6 8 10% 3:44:24 26873317

10d 6 8 20% 4:05:12 31386859

10e 6 8 50% 4:38:09 37996071

11a 4 8 0% 2:56:09 15265835

11b 4 8 5% 3:12:12 19890188

11c 4 8 10% 3:42:36 26682159

11d 4 8 20% 4:09:33 31495900

11e 4 8 50% 4:46:57 37574447

12a 2 8 0% 2:57:23 15212506

12b 2 8 5% 3:10:29 19585107

12c 2 8 10% 3:43:35 26329441

12d 2 8 20% 4:00:50 31200088

12e 2 8 50% 4:37:41 36562924

The time listed in the scenario above is the total time to perform the bitstream

imaging, verification as well as perform the full file hash computations and file

signature analysis.

4.6 Analysis of Memory Dependency

The table above seems to indicate a fairly significant reliance upon RAM for

performing simultaneous file processing, with major page faults being the easiest

indicator. Each scenario 01a, 02a, 03a and 04a that had 32 GB of system memory

available had Major I/O page faults at fewer than 50. This is in stark contrast to

lowering the available RAM to 16 GB, which even in test case 05a with 8 cores led to

1174263 page faults, a significant increase. This indicates that a significant amount of

time was spent fetching memory pages from the swap space to populate main

33

memory, and that for the most efficient simultaneous file processing available RAM

should be maximized. Even though there were over one million more page faults, it is

likely that the swap space residing on an SSD minimized the time impact to only a 7

minute average increase.

When analyzing the processing speed of the SPARTA imaging and processing and

comparing all cases for which 8 processing cores are present, we get the following

chart comparing times with fragmentation and RAM.

Figure 7 - SPARTA Test Results with 8 Cores

The results indicate a direct relationship between available RAM and processing

times, with the dependency becoming more accentuated as fragmentation increases as

shown below.

0% 5% 10% 20% 50%

32 GB RAM 2:15:49 2:17:24 2:40:51 2:58:32 3:24:21

16 GB RAM 2:22:58 2:37:47 2:59:24 3:16:19 3:39:54

8GB RAM 2:58:54 3:12:02 3:44:44 4:02:46 4:43:03

Percent Fragmentation

SPARTA Test Results
8 Cores Comparison

34

Table 7 - Speed Increases with Increase in RAM With 8 Cores

Fragmentation

Difference

Between 16

GB and 32

GB

Speed

Increase

Difference

Between 8 GB

and 32 GB Speed Increase

0% 0:05:37 4% 0:43:06 24%

5% 0:17:23 11% 0:55:25 29%

10% 0:19:20 11% 1:03:03 28%

20% 0:18:31 9% 1:03:28 26%

50% 0:15:10 7% 1:25:45 30%

 Average 8% Average 27%

The table above indicates that an average of approximately 8% increases in speed

when averaging all runs when increasing the available RAM from 16 GB to 32 GB of

RAM. However, when increasing from 8 GB to 32 GB of RAM, the average speed

increase is approximately 27%.

The results of comparing SPARTA run times with 6 available processing cores, 4

processing cores and 2 processing cores are all listed below along with charts

indicating the speed difference between 8 GB of RAM and 32 GB of RAM, along

with the difference between 16 GB of RAM and 32 GB of RAM.

35

Figure 8 - SPARTA Test Results with 6 Cores

Table 8 - Speed Increases with Increase in RAM With 6 Cores

Fragmentation

Difference

Between 16

GB and 32

GB Speed Increase

Difference Between

8 GB and 32 GB

Speed

Increase

0% 0:01:46 1% 0:41:47 23%

5% 0:15:41 10% 0:48:11 25%

10% 0:17:18 10% 1:02:19 28%

20% 0:14:19 7% 1:05:00 27%

50% 0:24:32 11% 1:15:10 26%

 Average 8% Average 26%

0% 5% 10% 20% 50%

32 GB RAM 2:15:51 2:19:01 2:42:05 3:00:12 3:22:59

16 GB RAM 2:17:37 2:34:41 2:59:23 3:14:31 3:47:31

8GB RAM 2:57:39 3:07:12 3:44:24 4:05:12 4:38:09

Percent Fragmentation

SPARTA Test Results
6 Cores Comparison

36

Figure 9 - SPARTA Test Results with 4 Cores

Table 9 - Speed Increases with Increase in RAM With 4 Cores

Fragmentation

Difference

Between 16

GB and 32

GB Speed Increase

Difference Between

8 GB and 32 GB

Speed

Increase

0% 0:01:15 1% 0:39:30 22%

5% 0:19:26 13% 0:53:04 28%

10% 0:16:20 9% 1:00:07 27%

20% 0:16:17 8% 1:08:27 28%

50% 0:17:15 8% 1:14:07 26%

 Average 8% Average 26%

0% 5% 10% 20% 50%

32 GB RAM 2:16:39 2:19:09 2:42:29 3:01:06 3:32:49

16 GB RAM 2:17:55 2:38:35 2:58:49 3:17:23 3:50:05

8GB RAM 2:56:09 3:12:12 3:42:36 4:09:33 4:46:57

Percent Fragmentation

SPARTA Test Results
4 Cores Comparsion

37

Figure 10 - SPARTA Test Results with 2 Cores

Table 10 - Speed Increases with Increase in RAM With 2 Cores

Fragmentation

Difference

Between 16

GB and 32

GB

Speed

Increase

Difference

Between 8 GB

and 32 GB

Speed

Increase

0% 0:02:12 2% 0:41:31 23%

5% 0:16:54 11% 0:51:39 27%

10% 0:16:44 9% 1:01:22 27%

20% 0:15:03 8% 0:59:10 24%

50% 0:30:39 14% 1:10:37 24%

 Average 9% Average 25%

The results of comparing the effects of RAM while keeping processing cores

constant provides a nearly identical speed percentage increase relationship. The speed

increases were between 7-9% when comparing the results of changing the RAM from

16 GB to 32 GB of RAM, regardless of how many processing cores are available. The

speed increases were between 25-27% on average when changing the amount of RAM

0% 5% 10% 20% 50%

32 GB RAM 2:15:52 2:18:50 2:42:14 3:01:40 3:27:04

16 GB RAM 2:18:04 2:35:44 2:58:58 3:16:43 3:57:44

8GB RAM 2:57:23 3:10:29 3:43:35 4:00:50 4:37:41

Percent Fragmentation

SPARTA Test Results
2 Cores Comparison

38

from 8 GB to 32 GB of RAM. What is interesting is that the speed increases were

more constant when going from 8 GB to 32 GB of RAM, staying between 22% to

27% as opposed to going from 16 GB of RAM to 32 GB of RAM, where the speed

increases can be as low as 2% and as high as 14%.

4.7 Analysis of Processing Core Dependency

Table 6 above does not seem to reflect a significant change in processing time

when comparing the effects of varying the processing cores. The chart below lists all

results when processing the drives using a fixed 32 GB of RAM.

Figure 11 - SPARTA Test Results with 32 GB RAM

We can see that when there is a fixed amount of RAM at 32 GB, the differences

between the slowest time for 0% fragmentation at 2:16:39 and the fastest time at 0%

fragmentation at 2:15:49 is only 50 seconds, which is negligible at less than 1%

compared to the total imaging and processing time is approximately 2 hours and 16

0% 5% 10% 20% 50%

8 Cores 2:15:49 2:17:24 2:40:51 2:58:32 3:24:21

6 Cores 2:15:51 2:19:01 2:42:05 3:00:12 3:22:59

4 Cores 2:16:39 2:19:09 2:42:29 3:01:06 3:32:49

2 Cores 2:15:52 2:18:50 2:42:14 3:01:40 3:27:04

Percent Fragmentation

SPARTA Test Results
32 GB Ram

39

minutes. Even at the 50% fragmentation, the difference between the slowest time of

3:22:59 and 3:32:49 is 9 minutes and 50 seconds, which is approximately 4.8%.

However, this difference seems to be exaggerated by the high amount of disk

fragmentation at 50%.

Another interesting observation is that the greater the fragmentation, generally the

greater the differences in time between the shortest and fastest processing. At 0%, the

difference is 50 seconds; at 5%, the difference is 1 minute, 45 seconds; at 10%, the

difference is 1 minutes, 38 seconds; at 20%, the difference is 2 minutes, 34 seconds;

and at 50%, the difference is 9 minutes and 50 seconds.

However, the overall comparison at least for 32 GB of RAM suggests that

fragmentation has a near linear effect on processing time as shown below.

Figure 12 – Fragmentation Effects on Processing Speed with 32 GB RAM

The results from evaluating the performance of SPARTA given 16 GB of

RAM largely reflect the results from 32 GB of RAM.

2:09:36

2:24:00

2:38:24

2:52:48

3:07:12

3:21:36

3:36:00

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

SPARTA Test Results 32 GB RAM

8 Cores 6 Cores 4 Cores 2 Cores

40

Figure 13 - SPARTA Test Results with 16 GB RAM

We again see that the difference between the most and fewest cores at 0%

fragmentation is 4 minutes, 54 seconds, but it is curious that the 2 Core version

performed better than the 8 core version. However, at 50% fragmentation the pattern

matches the previous runs with the 8 core version performing 17 minutes and 50

seconds faster than the 2 core version, which equates to a 7.5% speed increase.

The results from testing SPARTA with 8 GB of RAM is largely the same as testing it

with 16 and 32, with the data demonstrating little variation in testing times between 2

and 8 cores and a linear increase in time to process based on fragmentation.

0% 5% 10% 20% 50%

8 Cores 2:22:58 2:37:47 2:59:24 3:16:19 3:39:54

6 Cores 2:17:37 2:34:41 2:59:23 3:14:31 3:47:31

4 Cores 2:17:55 2:38:35 2:58:49 3:17:23 3:50:05

2 Cores 2:18:04 2:35:44 2:58:58 3:16:43 3:57:44

Percent Fragmentation

SPARTA Test Results
16 GB RAM

41

Figure 14 - SPARTA Test Results with 8 GB RAM

It is interesting to note that for each of the test scenarios, having 50%

fragmentation produced the greatest variability of times to process, even within the

testing groups.

4.8 Analysis Of SPARTA Correctness Goal

There are three different aspects of SPARTA that needed to be tested for

correctness:

1) The disk image being created. This would be tested using the created MD5

hash over the entire bitstream and comparing that hash to industry tools.

2) The file hashes being created. This would be tested by using the tool output

and comparing it with industry tools.

0% 5% 10% 20% 50%

8 Cores 2:58:54 3:12:02 3:44:44 4:02:46 4:43:03

6 Cores 2:57:39 3:07:12 3:44:24 4:05:12 4:38:09

4 Cores 2:56:09 3:12:12 3:42:36 4:09:33 4:46:57

2 Cores 2:57:23 3:10:29 3:43:35 4:00:50 4:37:41

Percent Fragmentation

SPARTA Test Results
8 GB Ram

42

3) The file signatures being created. This would be tested by comparing the

signatures identified with the base file types, as none of the files had renamed

file extensions to create a mismatch with file signatures.

4.9 Full Disk Imaging Correctness Analysis

The comparison was done using the SPARTA 0% fragmented disk, as all testing

for industry tools were performed using this drive.

The Tableau TX-1, TD2u, dc3dd and Guymager all reported the drive and created

image file to have the following hashes: MD5 - 92ba9cf58f755ec346eef3806771c96c;

SHA1 - 84ef8b1962c3aae4b8fce032f9a4627f6f4b8086.

The first SPARTA test was with no file processing. The log indicated that the

source MD5 hash was 92ba9cf58f755ec346eef3806771c96c and the destination

(image file) created hash was a match at 92ba9cf58f755ec346eef3806771c96c.

The second SPARTA test was with file processing with 0% fragmentation. The log

indicated that the test run with full file processing still generated a disk image with

consistent hashes of 92ba9cf58f755ec346eef3806771c96c for MD5 hashes. Each test

configuration with varying cores and RAM generated the same disk image with the

same MD5 hash, showing correctness with creating disk images.

4.10 File Hash and Signature Correctness Analysis

For testing file hash correctness, each of the fragmentation variations CASE output

files were saved for analysis. Ten files were chosen from this group to analyze their

signatures and hashes to determine if they were computed correctly. For the hashes,

they were compared against an analysis performed by X-Ways, a well-known forensic

43

tool. For the signatures, they were compared against the extensions of the files since

the files did not have a mismatch between the extension and the file signature.

The following files were compared and extracted:

Table 11 - Sampling of File Extensions and Hashes

File Extension X-Ways MD5 Hash

015153 DOC 0BAD84C28015926331F6D9294B4D015D

099482 XLS 19027D87B59EAAE81C111B852E331184

362288 PPT 7CFF13EC9C8DEA5492DF7A4A58D96C93

438880 JPG 20D8B7B143E76D938D43C50698F8107D

579373 CSV 9D94F7B0628FCFF44B44BD73A4085DE8

624122 LOG BDD1A7FF781233FDD4189730EBF872F4

673684 TXT 26E4866FBAF23E961C0DEC208B202D84

684368 SWF 592654273948A1CC4C8B810B1DA0C9AD

788215 JPG 5B3971CB3E6B66D023C90091DCCCD8CA

827646 DOC 73E83DCDEEA4DB48A83EEFFFEF856D27

After performing the SPARTA tests on all five levels of fragmentation, the file list

above was analyzed for extension and MD5 match. All five test cases produced the

same results shown below, as well as an indication as to whether it compared the hash

and/or signature correctly.

Table 12 - SPARTA Signature and Hash Analysis Results

File
Number

Extension Signature Match Hash Match

015153 DOC
Microsoft
Office
Document

Yes 0bad84c28015926331f6d9294b4d015d Yes

099482 XLS
Microsoft
Office
Document

Yes 19027d87b59eaae81c111b852e331184 Yes

362288 PPT
Microsoft
Office
Document

Yes 7cff13ec9c8dea5492df7a4a58d96c93 Yes

438880 JPG
Windows
Executable

No 20d8b7b143e76d938d43c50698f8107d Yes

579373 CSV None Yes 9d94f7b0628fcff44b44bd73a4085de8 Yes

624122 LOG
Advanced
Stream
Redirector

No bdd1a7ff781233fdd4189730ebf872f4 Yes

44

673684 TXT None Yes 26e4866fbaf23e961c0dec208b202d84 Yes

684368 SWF
Shockwave
Flash player

Yes 592654273948a1cc4c8b810b1da0c9ad Yes

788215 JPG
Windows
Executable

No 5b3971cb3e6b66d023c90091dcccd8ca Yes

827646 DOC
Microsoft
Office
Document

Yes 73e83dcdeea4db48a83eefffef856d27 Yes

Each of the file hashes were calculated and show that the file reassembly is

performed correctly. The signature for 6 of the 10 files were computed correctly,

specifically for any Microsoft Office Document or for plain text files, including

comma separated values. It appears as though the JPG files were not signature

matched correctly and the LOG file was not signature matched correctly. This would

indicate an error in the signature match lookup functionality of the tool or an error in

the signature tables used. However, this is a slight error that can be corrected in future

iterations or production systems. What is more important is the full data reassembly

being performed correctly as indicated by the valid hash match.

4.11 Analysis of the SPARTA Efficiency Goal

One of the goals of the SPARTA research is to demonstrate that parallel forensic

imaging and processing can be performed faster than sequentially imaging, verifying

and then processing the data. The question is further refined due to the previous

observation that disk fragmentation has a direct impact on processing speeds, even

when only processing evidence after imaging. So each level of fragmentation is

analyzed independently and configurations for which SPARTA is faster in all

scenarios will be determined to match the efficiency goal.

45

The following table demonstrates all configuration times at 0% fragmentation as

well as the average industry speeds.

Table 13 - SPARTA Speed Versus Industry Mean Speeds With 0% Fragmentation

Test

Case Cores

RAM

(GB) Fragmentation

Mean Time

Taken

01a 8 32 0% 2:15:49

02a 6 32 0% 2:15:51

04a 2 32 0% 2:15:52

03a 4 32 0% 2:16:39

06a 6 16 0% 2:17:37

07a 4 16 0% 2:17:55

08a 2 16 0% 2:18:04

05a 8 16 0% 2:22:58

Industry 0% 2:50:00

11a 4 8 0% 2:56:09

12a 2 8 0% 2:57:23

10a 6 8 0% 2:57:39

09a 8 8 0% 2:58:54

As seen above, every configuration with 16 GB of RAM or greater will beat

industry standard averages.

The following table demonstrates 5% fragmentation.

Table 14 - SPARTA Speed Versus Industry Mean Speeds With 5% Fragmentation

Test

Case Cores

RAM

(GB) Fragmentation

Mean Time

Taken

01b 8 32 5% 2:17:24

04b 2 32 5% 2:18:50

02b 6 32 5% 2:19:01

03b 4 32 5% 2:19:09

06b 6 16 5% 2:34:41

08b 2 16 5% 2:35:44

05b 8 16 5% 2:37:47

07b 4 16 5% 2:38:35

10b 6 8 5% 3:07:12

12b 2 8 5% 3:10:29

09b 8 8 5% 3:12:02

11b 4 8 5% 3:12:12

46

Industry 5% 3:17:00

It is interesting to note that at 5% fragmentation, every scenario will beat industry

standard tools.

The following table demonstrates 10% fragmentation.

Table 15 - SPARTA Speed Versus Industry Mean Speeds With 10% Fragmentation

Test

Case Cores

RAM

(GB) Fragmentation

Mean Time

Taken

01c 8 32 10% 2:40:51

02c 6 32 10% 2:42:05

03c 4 32 10% 2:42:29

04c 2 32 10% 2:42:14

05c 8 16 10% 2:59:24

06c 6 16 10% 2:59:23

07c 4 16 10% 2:58:49

08c 2 16 10% 2:58:58

09c 8 8 10% 3:44:44

10c 6 8 10% 3:44:24

11c 4 8 10% 3:42:36

12c 2 8 10% 3:43:35

Industry 10% 3:55:00

Again, every scenario at 10% fragmentation will be faster than industry tools.

The following table is the result of all testing at 20% fragmentation.

Table 16 - SPARTA Speed Versus Industry Mean Speeds With 20% Fragmentation

Test

Case Cores

RAM

(GB) Fragmentation

Mean Time

Taken

01d 8 32 20% 2:58:32

02d 6 32 20% 3:00:12

03d 4 32 20% 3:01:06

04d 2 32 20% 3:01:40

05d 8 16 20% 3:16:19

06d 6 16 20% 3:14:31

07d 4 16 20% 3:17:23

08d 2 16 20% 3:16:43

09d 8 8 20% 4:02:46

10d 6 8 20% 4:05:12

11d 4 8 20% 4:09:33

12d 2 8 20% 4:00:50

Industry 20% 4:21:00

47

Once again, SPARTA is faster in every configuration at 20% fragmentation

compared to industry tools.

Table 17 - SPARTA Speed Versus Industry Mean Speeds With 50% Fragmentation

Test

Case Cores

RAM

(GB) Fragmentation

Mean Time

Taken

02e 6 32 50% 3:22:59

01e 8 32 50% 3:24:21

04e 2 32 50% 3:27:04

03e 4 32 50% 3:32:49

05e 8 16 50% 3:39:54

06e 6 16 50% 3:47:31

07e 4 16 50% 3:50:05

08e 2 16 50% 3:57:44

Industry 50% 4:00:00

12e 2 8 50% 4:37:41

10e 6 8 50% 4:38:09

09e 8 8 50% 4:43:03

11e 4 8 50% 4:46:57

When we get to 50% fragmentation, the results are similar to the findings at 0%

fragmentation where all configurations in which there is at least 16 GB of RAM,

SPARTA will have faster imaging and processing speeds compared to industry tools.

So combining the results of all efficiency metrics establishes that given a

simultaneous digital forensics processing system with at least 16 GB of RAM, it will

outperform parallel processing using industry standard tools. It is notable that any

processing core configuration had no bearing over the ability for the system to reach

its efficiency goal.

4.12 Analysis of the SPARTA Cost-Effectiveness Goal

Based on the results of the efficiency goal, we have determined that the minimum

specifications for the SPARTA prototype are 16 GB of RAM, with any core

configuration. The design outlined in section 3.4 used a 32 GB RAM configuration.

48

We can alter the configuration slightly to reduce the cost while still keeping the

configuration to meet the efficiency goals as follows:

Table 18 - Cost Optimized SPARTA Components

Component Make and Model Cost

Motherboard ASRock Fatal1ty AB350 Gaming-

ITX/ac

$104.99

Processor AMD Ryzen 7 2400G Quad-Core $138.82

RAM 16GB DDR4 3000 $77.99

Power Supply Rosewill Hive 550W $54.99

Case Cooler Master Elite 130 $40.16

Video Card Gigabyte Radeon R5 230 $36.99

SSD Crucial MX500 M.2 2280 1 TB $109.99

Total $563.93

Note: prices on SSDs have come down significantly since the beginning of this

research project – nearly 50%.

The above component list indicates that the Cost-Effectiveness goal of having

commercial off the shelf (COTS) parts being less than $1000 is easily attainable with a

total component cost, before tax, equal to $563.93 when queried on September 14,

2019.

4.13 Analysis of the SPARTA Cross-Compatibility Goal

To achieve the cross-compatibility goal, a suitable metadata interchange format

was selected, the Cyber-investigation Analysis Standard Expression. The ontology

saves the results of forensic analysis into a standard JSON file. A Python API is

available on GitHub and was used in the software implementation in SPARTA.

In testing to determine whether the CASE output from SPARTA matches the raw

comma-separated values used in determining the correctness, it appeared as though the

CASE output was not consistent with the expected outputs. This could be to a

49

miscoding or may be due to an implementation issue in the API. All file metadata is

reflected accurately in the CASE output but the file signature and cryptographic hash

information is not accurate. Further testing and debugging with the CASE Python API

developers may be necessary, but this would be a fairly easy fix for production

systems.

50

CHAPTER 5

CONCLUSION

The primary goal of the dissertation was to determine if a new process for digital

forensics imaging could be developed to allow for simultaneous processing and forensic

imaging of magnetic hard drives. Based on my professional experience and discussions

with other examiners, I observed that a lot of human time was wasted waiting for a drive

to be imaged before any forensic analysis could be performed. To save human time,

different strategies have been researched to solve this problem. The strategy I have

employed was to determine if enough processing power was available in commercial

off the shelf (COTS) parts to allow for a limited set of forensic analysis to be performed

over all live files faster than sequentially processing all live files after forensic imaging.

The additional research quantification involved determining the limiting factors of

being able to perform all live file imaging. Specifically, the research endeavored to

determine if available system RAM, processing cores, or disk fragmentation were the

major factors impacting system performance to be able to perform simultaneous disk

imaging and forensic file processing.

After performing nearly 570 hours of testing (nearly 24 straight days), the

conclusions of the research are as follows:

1) Simultaneous processing of all live files during forensic imaging is not only

possible but will perform faster than sequentially imaging then performing

forensic analysis using industry standard tools.

51

2) Processing cores has no significant impact over the ability to perform the

requisite tasks.

3) Disk fragmentation has a near-linear impact over performance for all types of

file analysis, whether performed after the disk has been imaged or during

forensic imaging.

4) RAM has the greatest impact on whether forensic file analysis can be performed

during disk imaging and the impact appears to be exponential. With only 8 GB

of RAM available, file analysis cannot be performed, but with 16 GB or greater,

all files can be subjected to a limited set of forensic analysis during bitstream

imaging.

The contributions to the research community are significant. The first being the

establishing fact that disk fragmentation has a direct impact on the speed for file

analysis. This has wide-ranging implications in both research and industry tools. No

published research has quantified the effects of disk fragmentation on file processing,

and from the test results it is apparent that there is a direct impact.

Another contribution is the creation of fragmented datasets that can be used in the

forensic research community. While the dataset base is the Windows Operating System

and the Digital Corpora datasets, they are fragmented to precise measurements and can

be used for other testing.

Yet another contribution is the research results to indicate that all standalone digital

forensic imaging devices used in industry are obsolete. Manufacturers and designers

should be designing devices that can perform a selected set of digital forensic file

processing tasks while creating the bitstream image. Utilizing the available processing

52

power of the hardware, so long as enough RAM is provided, will result in faster time

for forensic investigators to begin analyzing processed data.

There are a series of limitations in the research project and implementation. The first

being the focus on magnetic hard drives. The design of solid state drives would suggest

that fragmentation does not play a role in ability to process data since data access is

constant across flash memory. However, without comprehensive testing, this remains

only a theory.

The second limitation is the selected set of file processing tasks, namely file hash

and file signature analysis. There are many other types of forensic file processes that

can be performed, including file indexing, compressed file expansion, registry analysis,

photo EXIF data analysis, and keyword searching. While Roussev began to outline CPU

cores necessary to achieve some of these tasks, further research needs to be performed

to determine both CPU cores and RAM requirements to perform different forensic file

analysis techniques while factoring in disk fragmentation.

The third limitation is the limitation on the CASE standard. While it has not gained

as widespread adoption as I hoped by the end of this research, the list of contributing

companies is promising and hopefully as time progresses more tools will allow for

importing of CASE data.

A fourth limitation is the base dataset used for testing. The only filesystem tested

was NTFS. FAT, APFS, ext and ZFS all have different structures for tracking

fragmentation and can lead to differing results in the effects of fragmentation on forensic

file analysis.

53

A potential limitation could be the size of the source disk compared to the internal

SSD used for swap space. Should the drive be too big for all of the incompletely

analyzed file fragments to be stored in the swap space, the system could crash. A

potential remedy is to turn off all simultaneous file processing when the source disk is

over double the size of the internal swap space, ensuring that all file fragments could be

stored in swap until the complete file is read and removed from the swap space.

The most easily identified future work is to do testing on Solid State Drives similar

to what I did in testing the SPARTA prototype. Comprehensive testing of fragmentation

on solid state drives (since SSDs support sector-based file systems such as NTFS and

FAT) could lead to conclusions on whether or not fragmentation has any bearing on

SSD performance. Additionally, testing SSDs will allow forensic examiners to

determine if the increased cost of SSDs will lead to more efficient human time.

An additional area of future work would be to apply the same technique to other file

systems, such as FAT. Having this ability to perform simultaneous processing of live

files while imaging large USB removable disks formatted with FAT32 would be a boon

to forensic investigators.

An additional area of future work would be to expand on this research and Roussev’s

work to determine the full requirements of forensic file processing, to include all types

of file processing normally and potentially performed by forensic investigators. This

research established that more than CPU cores are variables in efficacy of file

processing, but further research can be performed in this area.

This research endeavor began because I had logged too much time waiting for a disk

to finish imaging before I could begin with forensic file analysis. I wanted to determine

54

if, while I was waiting around for the image to be created, if some forensic file analysis

could be performed over all live files and if it would save time in the long-run. My

research conclusively states that the answer is yes: by giving a system enough RAM,

regardless of how much disk fragmentation exists, forensic analysis can be performed

while creating the bitstream image and it would save time compared to established

processes. I hope that forensic imaging device manufacturers read this paper so that new

devices can be made to speed up what we are trying to do: establish truth in a court of

law.

55

APPENDICES

APPENDIX I – SPARTA SOURCE CODE

#!/usr/bin/python

##Joseph Greenfield
##jsgreenfield@my.uri.edu

import argparse
import hashlib
import time
import datetime

for multi-threaded
from Queue import Queue
from threading import Thread

#for CASE/UCO Output
import case

#To add the INDXParse library
import sys
sys.path.insert(0, "/home/joe/INDXParse")

#INDXParse stuff
from BinaryParser import Mmap
from BinaryParser import OverrunBufferException
from MFT import *

#Progress Bar
from progressbar import ProgressBar, Percentage, Bar, ETA, AdaptiveETA

setting up a global Queues for file processing
num_processing_threads = 10
unprocessedFileQueue = Queue()
processedFileQueue = Queue()

instantiating the output document
case_output = case.Document()

instantiating the file signatures list
file_signatures = []

This will replace the tuples stuff that I wrote below
class FileData(object):

 def __init__(self, mft_record):
 self.mft_record = mft_record

56

 def mft_record(self):
 return self.mft_record

class UnprocessedFileData(FileData):

 def __init__(self, mft_record, file_data):
 super(UnprocessedFileData, self).__init__(mft_record)
 self.file_data = file_data

class ProcessedFileData(FileData):

 def __init__(self, mft_record, file_hash, file_signature):
 super(ProcessedFileData, self).__init__(mft_record)
 self.file_hash = file_hash
 self.file_signature = file_signature

class ClusterMapEntry(object):

 def __init__(self, run_length, mft_record, file_offset, last_run):
 self.run_length = run_length
 self.mft_record = mft_record
 self.file_offset = file_offset
 self.last_run = last_run

class FileSignatureEntry(object):

 def __init__(self, fileDescription, fileSig, fileExt, fileCategory):
 self.fileDescription = fileDescription
 self.fileSig = fileSig
 self.fileExt = fileExt
 self.fileCategory = fileCategory

def processFileFromQueue():
 while True:
 unprocessedFile = unprocessedFileQueue.get()

 filename =
unprocessedFile.mft_record.filename_information().filename()
 #print("Processing File: {}".format(filename))

 # hash only the logical file size
 filesize = unprocessedFile.mft_record.data_attribute().data_size()
 md5hash = hashlib.md5(unprocessedFile.file_data[0:filesize])

 fileSiganture = ""
 # checking signatures
 for signature in file_signatures:
 signature_length = len(signature[1])
 file_bytes_to_check =
unprocessedFile.file_data[0:signature_length]

 # signature_as_string = base64.encode(signature[1])

57

 if (file_bytes_to_check == signature[1]):
 # we have a signature match
 fileSiganture = signature[0]
 break

processedFileQueue.put(ProcessedFileData(unprocessedFile.mft_record,
md5hash, fileSiganture))

 unprocessedFileQueue.task_done()

def writeCaseOutput():
 while True:
 processedFile = processedFileQueue.get()
 fn = processedFile.mft_record.filename_information()
 si = processedFile.mft_record.standard_information()
 data = processedFile.mft_record.data_attribute()

 case_file = case_output.create_uco_object('Trace')
 case_file_property = case_file.create_property_bundle(
 'File',
 fileName=fn.filename(),
 extension=os.path.splitext(fn.filename()),
 isDirectory=False,
 createdTime=si.created_time(),
 accessedTime=si.accessed_time(),
 modifiedTime=si.modified_time(),
 metadataChangeTime=si.changed_time(),
 sizeInBytes=data.data_size()
)

 #print ("Processed Filename: {}\tHash: {}\tSignature: {}".format(
 # processedFile.mft_record.filename_information().filename(),
 # processedFile.file_hash.hexdigest(),
 # processedFile.file_signature))
 processedFileQueue.task_done()

 #Temporary Debugging

def parseMFTForFiles(mftpath):
 # initializing the physical cluster map
 # the key for the cluster map will be the physical cluster
 # the value will be a tuple [length of run, mft_record for run, logical
offset within the file,
 # and a boolean as to whether it is the last run in the runlist

 MFTProcessStart = datetime.now()
 print ("Beginning processing MFT at {}".format(MFTProcessStart))
 sys.stdout.flush()

 cluster_map = {}

58

 with Mmap(mftpath) as mftbuffer:
 enum = MFTEnumerator(mftbuffer)
 num_records = enum.len()

 pbar = ProgressBar(widgets=[
 "MFT Records Processed: ", Percentage(),
 ' ', Bar(),
 ' ', AdaptiveETA(),
], maxval=num_records).start()
 for mft_id in range(0, num_records):
 try:
 mft_record = enum.get_record(mft_id)
 if not mft_record.is_directory() and
mft_record.is_active():
 # the record is a file and allocated
 # building the clustermap

 data_attrib = mft_record.data_attribute()
 filename_attrib = mft_record.filename_information()
 # if the data is non-resident, then we care. Otherwise,
the data is in the attribute
 if data_attrib and filename_attrib and
data_attrib.non_resident() > 0:

 runlist = mft_record.data_attribute().runlist()
 dataruns = runlist.runs()

 # The code in MFT.py actually gives the runlist as
volume offsets
 # This will keep track of where in the logical file
the cluster run should be
 file_offset = 0
 last_offset = 0

 for (offset, length) in dataruns:
 cluster_map[offset] = ClusterMapEntry(length,
mft_record,file_offset, False)
 file_offset += length
 if offset > last_offset:
 last_offset = offset
 cluster_map[last_offset].last_run = True
 pbar.update(mft_id + 1)

 except OverrunBufferException:
 return
 except InvalidRecordException:
 mft_id += 1
 continue
 pbar.finish()

 MFTProcessEnd = datetime.now()
 print ("Complete Processing MFT. Time Taken: {}".format(MFTProcessEnd -
MFTProcessStart))

59

 return cluster_map

def printClusterMap(cluster_map):
 for cluster in cluster_map:
 cm_entry = cluster_map[cluster]
 print(
 "Cluster: {}\tLength: {}\tOffset: {}\tFile: {}\tLast Cluster:
{}".format(cluster, cm_entry.run_length,

cm_entry.file_offset,

cm_entry.mft_record.filename_information().filename(),

cm_entry.last_run))

def parseMBRforVBRLocation(mbr):
 # grab the first partition entry, and return the starting sector
 return struct.unpack("<I", mbr[454:458])[0]

def parseVBRforSectorsPerCluster(vbr):
 return struct.unpack("B", vbr[13:14])[0]

def parseVBRforTotalSectors(vbr):
 return struct.unpack("<Q", vbr[40:48])[0]

##This is the code for the non-threaded version
def processFile(mft_record, file_data, file_signatures, case_output):
filename = mft_record.filename_information().filename()
#hash only the logical file size
filesize = mft_record.data_attribute().data_size()
md5hash = hashlib.md5(file_data[0:filesize])
fileSiganture = ""

#checking signatures
for signature in file_signatures:
signature_length = len(signature[1])
file_bytes_to_check = file_data[0:signature_length]

#signature_as_string = base64.encode(signature[1])

if (file_bytes_to_check == signature[1]):
#we have a signature match
fileSiganture = signature[0]
break

print("File: {}\tMD5 Hash: {}\tSignature: {}".format(filename,
md5hash.hexdigest(),fileSiganture))

#adding the file to the output
case_file = case_output.create_uco_object('Trace')

60

case_file_property = case_file.create_property_bundle(
'File',
fileName=filename
)

def main():

 parser = argparse.ArgumentParser(description='SPARTA: System for '
 'Parallel Acquisitions
with '
 'Real-Time Analysis')
 parser.add_argument('source', action="store", help="Source Path (Device
or DD Image")
 parser.add_argument('destination', action="store", help="Destination
File Path")
 parser.add_argument('metadata', action="store", help="Path for file
metadata")
 parser.add_argument('mft_path', action="store", help="Source MFT path")
 parser.add_argument('--file_processing', action='store_true',
default=False, dest='file_processing')
 arg_results = parser.parse_args()

 sourcepath = arg_results.source
 destpath = arg_results.destination
 mftpath = arg_results.mft_path
 mpath = arg_results.metadata
 file_processing = arg_results.file_processing

 # writing preliminary information for Case output
 instrument = case_output.create_uco_object(
 'Tool',
 name='SPARTA',
 version='0.1',
 creator='Joseph Greenfield')

 performer = case_output.create_uco_object('Identity')
 performer.create_property_bundle(
 'SimpleName',
 givenName='Joe',
 familyName='Greenfield'
)

 action = case_output.create_uco_object(
 'ForensicAction',
 startTime=datetime.now()
)
 action.create_property_bundle(
 'ActionReferences',
 performer = performer,
 instrument=instrument,
 object=None,
 result=[]
)

61

 # instantiating our file processing threads
 for i in range(num_processing_threads):
 t = Thread(target=processFileFromQueue)
 t.daemon = True
 t.start()

 # instantiating our Case output builder thread
 t = Thread(target=writeCaseOutput)
 t.daemon = True
 t.start()

 # building datastructure for file signatures
 # right now, it will iterate through each signature and see if there is
a match
 # this is a very inefficient way to do it, but we'll see if there is a
significant impact on performance
 if file_processing == True:
 with open("signatures_GCK.txt", "r") as signatures:
 for line in signatures:
 currline = line.split(",")
 fileDescription = currline[0]
 fileSig = currline[1].replace(" ", "")
 fileExt = currline[4]
 fileCategory = currline[5].strip('\n')

 # fileSigBytes = fileSig.split(" ")
 # trying to convert the string to a byte array
 fileSigBytes = bytearray.fromhex(fileSig)

 file_signatures.append((fileDescription, fileSigBytes,
fileExt, fileCategory))

 # reading MFT for processing
 cluster_map = parseMFTForFiles(arg_results.mft_path)

 #printClusterMap(cluster_map)

 # we are building a dictionary of files that actually contain the
binary data for each file
 # the key will be the MFT record number, the value will be the binary
data
 files = {}

 # Disk imaging functionality
 with open(arg_results.destination, "wb") as dest:
 # attempting to open the source disk for stream reading
 print ("Destination file {} open for writing".format(destpath))
 md5hash = hashlib.md5()
 # starting timer
 start = time.time()

 source_numbytes = 0
 #determining number of bytes in the input drive
 fd = os.open(arg_results.source, os.O_RDONLY)

62

 try:
 source_numbytes = os.lseek(fd, 0, os.SEEK_END)
 finally:
 os.close(fd)

 curr_sector = 0

 with open(arg_results.source, "rb") as source:
 # trying to read 512 byte blocks
 print ("Source file {} open for reading".format(sourcepath))
 # first block is MBR. Parse it.

 if file_processing == False:
 source_numsectors = source_numbytes / 512 + 1
 pbar = ProgressBar(widgets=[
 "Sectors Read: ", Percentage(),
 ' ', Bar(),
 ' ', AdaptiveETA(),
], maxval=source_numsectors).start()

 curr_sector = 0
 block = source.read(512)

 while block:
 curr_sector += 1
 pbar.update(curr_sector)
 md5hash.update(block)
 dest.write(block)
 block = source.read(512)

 else:
 source_numsectors = source_numbytes / 512 + 1
 pbar = ProgressBar(widgets=[
 "Clusters Read: ", Percentage(),
 ' ', Bar(),
 ' ', AdaptiveETA(),
], maxval=source_numsectors).start()

 block = source.read(512)
 curr_sector += 1
 pbar.update(curr_sector)
 vbr_sector = parseMBRforVBRLocation(block)
 md5hash.update(block)
 dest.write(block)

 # Now reading/writing padding sectors until VBR
 block = source.read(vbr_sector * 512 - 512)
 curr_sector = vbr_sector - 1
 pbar.update(curr_sector)
 md5hash.update(block)
 dest.write(block)

 # We should now be at the VBR. We should now be reading the
VBR ($Boot)

63

 block = source.read(512)
 # $Boot is cluster number 0
 clusterNum = 0
 curr_sector += 1
 # lookup the entry in the cluster map
 map_entry = cluster_map[clusterNum]
 # update our cluster numbering to the next cluster after
the full run
 clusterNum += map_entry.run_length
 sectors_per_cluster = parseVBRforSectorsPerCluster(block)
 bytes_per_cluster = sectors_per_cluster * 512
 #total_clusters =
parseVBRforTotalSectors(block)/sectors_per_cluster
 #md5hash.update(block)
 #dest.write(block)

 # we now have to read the rest of the $boot file
 block += source.read(bytes_per_cluster *
map_entry.run_length - 512)
 curr_sector += (map_entry.run_length - 1) *
sectors_per_cluster
 md5hash.update(block)
 dest.write(block)

 # if the $boot is done (unfragmented), then process it,
otherwise, we'll move on to the main processing code
 if map_entry.last_run:
 # (mft_record,block, file_signatures, case_output)

unprocessedFileQueue.put(UnprocessedFileData(map_entry.mft_record, block))
 else:
 # we add the $boot to the file map
 files[map_entry.mft_record.mft_record_number] = block

 # we read the rest of the drive by cluster runs
 while block:
 # if this cluster is assigned to a valid file
 if clusterNum in cluster_map:
 #[cluster_run_length, mft_record, offset, last_run]
= cluster_map[clusterNum]
 map_entry = cluster_map[clusterNum]

 mft_record_num =
map_entry.mft_record.mft_record_number()
 # read in the entire cluster run
 block = source.read(bytes_per_cluster *
map_entry.run_length)

 # check to see if the file has any data already
read
 # non-fragmented files fall under this category
 if mft_record_num not in files and
map_entry.last_run:

64

unprocessedFileQueue.put(UnprocessedFileData(map_entry.mft_record, block))
 else:
 if mft_record_num not in files:
 files[mft_record_num] =
bytearray(map_entry.mft_record.data_attribute().allocated_size())
 block_offset_start = map_entry.file_offset *
bytes_per_cluster
 block_offset_end = map_entry.file_offset *
bytes_per_cluster + map_entry.run_length * bytes_per_cluster

files[mft_record_num][block_offset_start:block_offset_end] = block

 if map_entry.last_run:

unprocessedFileQueue.put(UnprocessedFileData(map_entry.mft_record,
files[mft_record_num]))

 curr_sector += (map_entry.run_length - 1) *
sectors_per_cluster
 clusterNum += map_entry.run_length
 pbar.update(curr_sector)

 # otherwise, read the cluster and move on
 else:
 block = source.read(bytes_per_cluster)
 curr_sector += sectors_per_cluster
 clusterNum += 1
 pbar.update(curr_sector)

 md5hash.update(block)
 dest.write(block)
 imaging_end = time.time()
 pbar.finish()
 dest.close()
 source.close()
 print ("Imaging complete. Time taken: {}
seconds".format(imaging_end - start))
 print ("Items remaining in unprocessed queue:
{}".format(unprocessedFileQueue.qsize()))
 print ("Items remaining in processed queue for CASE output:
{}".format(processedFileQueue.qsize()))
 print ("Source hash: {}".format(md5hash.hexdigest()))
 print ("Computing Destination Hash")

 destmd5hash = hashlib.md5()

 dest_numbytes = 0

 with open(sys.argv[2], "rb") as dest:
 print ("Dest file {} open for computing hash".format(destpath))
 dest_numsectors = os.path.getsize(sys.argv[2])/512 + 1
 curr_sector = 0

65

 pbar = ProgressBar(widgets=[
 "Sectors Read: ", Percentage(),
 ' ', Bar(),
 ' ', AdaptiveETA(),
], maxval=dest_numsectors).start()
 block = dest.read(4096)
 curr_sector += 1
 pbar.update(curr_sector)
 destmd5hash.update(block)
 while block:
 block = dest.read(4096)
 curr_sector += 1
 destmd5hash.update(block)
 pbar.update(curr_sector)
 pbar.finish()
 dest.close()

 print ("Verification complete. Destination hash:
{}".format(destmd5hash.hexdigest()))
 if md5hash.hexdigest() == destmd5hash.hexdigest():
 print("Verification successful, hashes match")
 else:
 print ("Verification unsuccessful.")

 print ("Items remaining in unprocessed queue:
{}".format(unprocessedFileQueue.qsize()))
 print ("Items remaining in processed queue for CASE output:
{}".format(processedFileQueue.qsize()))
 unprocessedFileQueue.join()
 processedFileQueue.join()
 print ("All file processing complete")

 # writing the Case document output

 case_output.serialize(format='json-ld', destination=mpath)

 print ("SPARTA complete. Total time taken: {}
seconds".format(time.time() - start))

if __name__ == "__main__":
 main()

66

APPENDIX II – TESTING RESULTS

All testing results, as well as electronic copies of all source code, are available on the

GitHub repository:

https://github.com/jgreenfield11/SPARTA

https://github.com/jgreenfield11/SPARTA

67

BIBLIOGRAPHY

[1] E. Zimmerman, "Imager Comparison Testing," [Online]. Available:

https://docs.google.com/spreadsheets/d/1wXX5zYql7KIPgrsDdt6S5bTuGt_WR

jWaBde1D0fhG5k/edit?type=view&gid=0&f=true&sortcolid=11&sortasc=true

&rowsperpage=250#gid=0. [Accessed 31 October 2019].

[2] N. C. S. R. Center, "Glossary Entry for Digital Forensics," 6 March 2019.

[Online]. Available: https://csrc.nist.gov/glossary/term/digital-forensics.

[3] S. Garfinkel, "Digital forensics research: The next 10 years," Digital

Investigation, vol. 7, no. Supplement, pp. S64-S73, 2010.

[4] "WD Black 6TB HDD Review," 25 September 2015. [Online]. Available:

https://www.storagereview.com/wd_black_6tb_hdd_review.

[5] "Seagate IronWolf 14TB 7200 RPM 256 MB Cache SATA 6.0Gb/s 3.5"

Internal Hard Drive ST4000VN0008," 27 12 2018. [Online]. Available:

https://www.newegg.com/Product/Product.aspx?Item=N82E16822184759.

[6] "Tableau Catalog," Guidance Software, [Online]. Available:

https://www.guidancesoftware.com/tableau/hardware. [Accessed 09 April

2019].

[7] "Falcon-NEO Forensic Imager," Logicube, [Online]. Available:

https://www.logicube.com/shop/forensic-falcon-neo/?v=7516fd43adaa.

[Accessed 09 April 2019].

[8] "SuperImager Plus Forensic Units," MediaClone, [Online]. Available:

https://www.media-clone.net/Digital-Forensics-Imaging-Investigation-Platform-

s/1477.htm. [Accessed 09 April 2019].

[9] "Dd," Forensics Wiki, 16 December 2013. [Online]. Available:

https://forensicswiki.org/wiki/Dd. [Accessed 09 April 2019].

[10] "dcfldd - Latest version 1.3.4-1," sourceforge.net, 19 December 2006. [Online].

Available: http://dcfldd.sourceforge.net/. [Accessed 09 April 2019].

[11] "dc3dd," Sourceforge.net, 11 July 2018. [Online]. Available:

https://sourceforge.net/projects/dc3dd/. [Accessed 09 April 2019].

[12] M. K. Rogers, J. Goldman, R. Mislan, T. Wedge and S. Debrota, "Computer

Forensics Field Triage Process Model," Journal of Digital Forensics, Security

and Law, vol. 1, no. 2, 2006.

[13] "Evimetry," 27 December 2018. [Online]. Available: https://evimetry.com/how-

evimetry-works/.

[14] J. Grier and G. G. Richard III, "Rapid forensic imaging of large disks with

sifting collectors," Digital Investigation, vol. 14, no. Supplement 1, pp. S34-

S44, 2015.

[15] V. Roussev, C. Quates and R. Martell, "Real-time digital forensics and triage,"

Digital Investigation, vol. 10, no. 2, pp. 158-167, 2013.

[16] L. Tobin and P. Gladyshev, "Open Forensic Devices," Journal of Digital

Forensics, Security and Law, vol. 10, no. 4, 2015.

68

[17] W. Ballenthin, "williballenthin/INDXParse," Github, 1 October 2018. [Online].

Available: https://github.com/williballenthin/INDXParse. [Accessed 09 April

2019].

[18] B. Carrier, "Open Source Digital Forensics," Brian Carrier, [Online]. Available:

https://www.sleuthkit.org/. [Accessed 09 April 2019].

[19] E. Casey, S. Barnum, R. Griffith, J. Snyder, H. van Beek and A. Nelson,

"Advanced coordinated cyber-investigations and tool interoperability using a

community developed specification language," Digital Investigation, pp. 14-45,

2017.

[20] S. Garfinkel, "Digital forensics XML and the DFXML toolset," Digital

Investigation, vol. 8, no. 3-4, pp. 161-174, 2012.

[21] Z. Syed, A. Padia, T. Finin, L. Mathews and A. Joshi, "UCO: A Unified

Cybersecurity Ontology," in Workshops at the Thirtieth AAAI Conference on

Artificial Intelligence, 2016.

[22] Garfinkel, Farrell, Roussev and Dinolt, "Bringing Science to Digital Forensics

with Standardized Forensic Corpora," Digital Forensics Research Workshop,

2009.

[23] "PerfectDisk Tools," Raxco Software, [Online]. Available:

https://www.raxco.com/tools-utilities. [Accessed 09 April 2019].

[24] "Microsoft Windows Dev Center," 17 08 2019. [Online]. Available:

https://developer.microsoft.com/en-us/windows/downloads/virtual-machines.

[25] "Tools & Utilities," Raxco Software, [Online]. Available:

https://www.raxco.com/tools-utilities. [Accessed 17 08 2019].

[26] "Defraggler," Piriform, [Online]. Available:

https://www.ccleaner.com/defraggler. [Accessed 17 08 2019].

	SPARTA: SYSTEM FOR PORTABLE ACQUISTION WITH REAL-TIME ANALYSIS
	Terms of Use
	Recommended Citation

	FULL TITLE HERE IN ALL CAPS IN A FORMAT

