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ABSTRACT 

 

The aim of this thesis is to design, develop and test a new portable system for digital 

forensics imaging with real-time analysis over every live file. Currently large magnetic 

hard drives are infeasible to perform sequential imaging taking over 40 hours to 

complete before beginning with any forensic analysis. Attempted approaches included 

performing a limited (sparse) collection and performing a distributed live analysis using 

a high-end server environment, neither of which would be sufficient for field use. I 

designed and developed the code to test the system and developed comprehensive 

testing scenarios. I show that magnetic disk fragmentation has a direct, mostly linear 

impact over the speed at which a disk can be imaged and every live file be processed 

simultaneously. I show that RAM has a near exponential impact on simultaneous 

magnetic disk forensic imaging with all live file processing. I demonstrate that 

CASE/UCO has the potential to be the interoperable file format for digital forensics 

metadata exchange. I also demonstrate that a system for simultaneous forensic disk 

imaging with all live file analysis can be assembled with commercial off-the-shelf parts 

for less than $1000.  
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CHAPTER 1 

 

INTRODUCTION 

 

Digital forensic relies upon the scientific examination of digital evidence for 

use in court proceedings. The basic standard that is used for preservation of digital 

evidence is a bitstream image, which is a bit‐for‐bit copy of a source medium called a 

forensic image.  When traditional hard drives were small in capacity, making a 

forensic image onsite was relatively straightforward and not time intensive. However, 

in the last decade, storage sizes have grown to the point that even making a basic 

forensic image is can take days to complete, which substantially delays investigations.  

In 2013, Eric Zimmerman performed comprehensive testing of imaging speeds 

for a 1 terabyte hard drive. The fastest speeds achieved was a rate of approximately 

6.6 Gigabytes per minute (GB/min) for imaging. [1] A commercially available 16 

Terabyte magnetic hard drive would take a little over 40 hours to image before any 

data processing could be performed, since currently no forensic imaging tool performs 

simultaneous analysis of data while creating the forensic bitstream image.  

In this dissertation I describe how I created a digital forensic imaging process 

that addresses the excessive delays that the imaging process can cause in investigations 

by introducing simultaneous live allocated file processing capabilities based on 

hardware specification and source drive fragmentation.  I first created a non-distributed 

forensic imaging device (hardware and software), called SPARTA, that creates a 

CASE/UCO metadata file containing the hash analysis and signature analysis of every 

live allocated file in parallel with the bitstream image file creation.  This system of 
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parallel processing has imaging speeds equal to leading commercial and open-source 

tools. Once implemented, I tested SPARTA against a standard lab-built dataset that is 

fragmented to precise percentages.  In doing so, I produced interesting results showing 

how the system bottleneck will be I/O bus speed and disk fragmentation, and how the 

disk fragmentation affects the amount of RAM and processing cores necessary, page 

faults against the swap space, and the overall speed of output.  From this I derive results 

as to what is the relationship between disk fragmentation, RAM and processing cores 

such that disk imaging performance is not severely impacted by core forensic processing 

in parallel. 

The overall goals for this research were: 

1. Correctness – To develop a portable digital forensic imaging system that will 

create a correct bitstream forensic image file with simultaneous correct processing of 

each logical file.  

2. Efficiency – To develop a portable digital forensic imaging system that will 

perform a bitstream copy of a source medium with simultaneous live file processing 

3. Cost – To develop a system with commercial-off-the-shelf (COTS) parts with 

reasonable cost (less than $1000). 

4. Cross-Platform Compatibility – To develop a system with a metadata file 

output that can be easily imported into industry standard tools. 

Chapter 2 provides background on this research including work that addresses 

related problems in digital forensics imaging, as well as foundational work for my 

project. Chapter 3 describes the development of the SPARTA prototype. Chapter 4 

describes the experimental design and tests that I performed. Chapter 4 will also the 
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articulate the analysis of the results and how I met the four goals of the work listed 

above. Chapter 5 concludes by summarizing the contributions of this project and future 

work for extending the research. 

 

 

 



 

4 

 

CHAPTER 2 

 

BACKGROUND AND REVIEW OF LITERATURE 

 

2.1 Digital Forensics Imaging 

The National Institute of Standards and Technology (NIST) has one definition of 

digital forensics as “the application of science to the identification, collection, 

examination and analysis, of data while preserving the integrity of the information and 

maintaining a strict chain of custody for the data.” [2] Forensics is especially necessary 

when the examined evidence is to be used in court proceedings, where preservation of 

evidence is critical to establish authenticity and provenance for the examined artifacts. 

The basic standard that is used for preservation of digital evidence is a bitstream 

image, which is a bit-for-bit copy of a source medium called a forensic image. [2] 

When traditional hard drives were small in capacity, making a forensic image 

outside of a lab environment was relatively straightforward and not time intensive. 

However, in the last decade, storage sizes have grown to the point that even making a 

basic forensic image is problematic, let alone processing all the data after the creation 

of the forensic image. [3] 

For example, the website StorageReview.com tested a 6TB Western Digital 

magnetic hard drive. [4] The maximum bandwidth exhibited by the drive for 

sequential reads was 214.53 Megabytes per Second (MB/s). At that bandwidth, to read 

all of the sectors on disk to make the forensic image would take approximately 7.77 

hours. There would also need to be a full read-back of the data for hash verification to 

ensure that the data was read and copied correctly. Waiting on-site for at least 7 hours 
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for just forensic imaging, without verification and without forensic artifact analysis is 

not feasible, especially when dealing with multiple systems and multiple drives. If 6 

TB is difficult enough to address, as of the end of 2018, major retailers were selling 14 

terabyte (TB) hard drives. [5] The days of imaging on-site without artifact analysis are 

quickly ending due to the explosion of larger hard drives. 

 

2.2 Basic Hardware Imagers 

Many forensic examiners working in the digital forensics field, both in law 

enforcement and in the private sector, use a hardware solution for the creation of a 

bitstream image. These devices are called hardware duplicators, hardware imaging 

devices, disk imagers or forensic imagers. Examples of these tools include the Tableau 

devices TD2u, TD3, TX1, Logicube Falcon-NEO Forensic Imager, MediaClone 

SuperImager devices. [6] [7] [8] All of these devices support the following features: 

1. Basic sector imaging, copying the data sector-by-sector or grouping physical 

sectors together.  

2. Creating a cryptographic (or multiple cryptographic hashes) of the source 

bitstream while copying the data.  

3. Performing a read-back of the written data for computing a verification hash for 

validating that the data copied is an exact match to the source data. 

Based on limited testing and datasheet analysis, none of the devices logically 

analyze the file system for file cluster boundaries for intelligent grouping of sectors for 

imaging. Additionally, none of the listed devices performs file analysis because none 

of the devices inspects any of the logical data as it is being copied. For a 14TB hard 
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drive sold today, any of these devices would take over 24 hours to image, making this 

process unfeasible.  

 

2.3 Basic Software Imagers 

Before hardware imaging devices were commonplace, disk imaging was 

performed using primarily Linux tools. The standard used was GNU dd, which is a 

block I/O tool that when used properly can create a bitstream copy of a source device 

to a destination device or raw image file. [9] The GNU dd tool does not have any 

capability of performing any live file reconstruction nor analysis of files – it is simply 

a block I/O software tool. 

Two different software tools have been developed from the GNU dd tool with 

digital forensics features: dc3dd and dcfldd. dcfldd is an “enhanced version of dd” 

developed by Nicholas Harbour while at U.S. Department of Defense Computer 

Forensics Lab (DCFL). [10] The latest version of dcfldd is 1.3.4 released February 12, 

2006. dc3dd is a “patch” to the GNU dd program. [11] The latest version is 7.2.646 

released April 29, 2016. Both tools perform a simultaneous hash of the entire source 

disk while creating the bitstream image. However, neither tool provides the ability to 

do any analysis of the live file data, increasing the time delay between preservation 

and analysis of data.  

 

2.4 Triage 

Various techniques have been adopted to attempt to combat the size problem 

among digital forensics, the majority of which fall into a form of triage, which 
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attempts to selectively analyze items prior to imaging. [12] The advantage of this 

technique is that it can be performed in the field and does not require all systems to be 

brought back to the lab for analysis only to discover that the system did not contain 

relevant evidence. The problem with this technique is that it requires analysis prior to 

preservation to identify systems to preserve and analyze in depth at a later point. This 

delays the preservation of digital evidence, which could take hours as indicated above.  

 

2.5 Evimetry 

The issues surrounding software involved in digital forensics imaging and large 

drives have been tackled by developers. One of the most promising tools written by 

Dr. Bradley Schatz is Evimetry. [13] Evimetry allows for triage during imaging, 

allowing the examiner to indicate the areas of the disk to prioritize to collect and 

preserve for analysis. This is accomplished by using the Advanced Forensics Format 

(AFF) version 4, which is an evidence file format that creates a forensic image in a 

non-sequential manner. While extremely promising, Evimetry only outputs the image 

to AFF4, which is gaining support among commercial forensic tool manufacturers but 

is not as widely supported as Expert Witness Format (E01) or raw dd files. This is 

addressed by using a filesystem bridge developed by Schatz Forensics to allow the 

image file to be mounted to the examination system to be analyzed using any forensics 

tool. 

However, Evimetry does not address the issue of analyzing every file while 

creating the bitstream image that SPARTA addresses.  
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2.6 Sifting Collectors 

An alternative method is the creation of a sparse or partial logical image of the 

evidence as opposed to a full physical bitstream forensic image. The most promising 

of these techniques is the use of sifting collectors. [14] The problem with this 

technique is the fact that the entirety of the evidence is not collected nor examined. 

During a criminal trial, the use of sifting collectors will lead to the argument from the 

opposing counsel that there is a possibility of exculpatory evidence in the region not 

collected nor analyzed, leading to potential doubt among the jury in the process of the 

usage of sifting collectors. 

The figure below outlines the high-value areas identified by Grier and Richard III 

as being important versus those that are not used for forensic analysis. 

 

Figure 1 - Breakdown of Typical Disk According to Grier & Richard III 

In contrast to Sifting Collectors, SPARTA will analyze all live files, including 

those identified Windows OS files, in the event that individuals are masquerading files 

as Windows files.  
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2.7 LOTA 

The most promising area for expediting forensic imaging and analysis is the use of 

parallel processing: while making the forensic image, perform automated analysis at 

the file level. This is outlined in a process called a latency-optimized target acquisition 

(LOTA). [15] However, there are key holes in the paper surrounding the LOTA 

system that make it unsuitable for a field device for processing all live files during a 

full physical acquisition.  

1. There is a lack of research surrounding the requirements to perform targeted 

processing of files while performing a bit-stream image of a digital evidence 

source. The LOTA system details only processing cores required for certain 

tasks, but does not address memory requirements beyond “assuming a RAM-

rich configuration…” [15] In a portable field device that is cost-conscious, a 

clear establishment of RAM requirements is necessary.  

2. The paper clearly identified file fragmentation as an area outside the scope of 

the project. What is lacking is quantifying the relationship between file 

fragmentation on-disk with efficacy of parallel processing of logical file data. 

The LOTA system reference HDD was described as “best case scenario as it was 

created in one shot.” [15] There is no published research literature to analyze the 

relationship between file processing for digital forensics and file fragmentation, 

which is something that this thesis seeks to establish.  

The SPARTA system, in comparison to the LOTA system, will be a field-capable 

system that seeks to process all live files while simultaneously creating a full forensic 

disk image with verification. The results of the live file processing will be saved to a 
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metadata file for importing into an analysis tool so that efforts do not need to be 

duplicated after acquisition and partial processing.  

 

2.8 FIREBrick 

Portable digital forensic tools are necessary for situations in which the digital 

source mediums cannot leave the environment. This is common with civil litigation 

cases where the computers are the property of the opposition and the only authorized 

work is to make a digital forensic image. Portable open source digital forensic devices 

have been developed, such as the FIREBrick prototype. [16] Yet when comparing the 

FIREBrick prototype against the LOTA system, for example, the FIREBrick appears 

to be woefully underpowered to perform any parallel processing.  

 

2.9 Foundational Related Work 

INDXParse is a suite of forensic tools written by Willi Ballenthin, a Reverse 

Engineer at Mandiant/FireEye. [17] The suite provides a range of capabilities for 

parsing different data structures unique to the NTFS file system. The prototype for 

SPARTA will perform the simultaneous analysis of NTFS volumes, and Mr. 

Ballenthin has made his INDXParse NTFS parser tools available as open source. The 

project leverages the tools in the suite to parse the master file table records of the drive 

to build the cluster-to-sector map described in Chapter 3. 

The Sleuth Kit (TSK) is a collection of utilities for forensics developed by Dr. 

Brian Carrier of Basis Technology. [18] The singular usage of TSK in this project is 

the utility to extract the Master File Table (MFT) from the NTFS formatted volume 
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prior to creating the bitstream image. To do this, I utilized the following two 

commands that are a part of TSK: mmls, which will list the partition table of a disk 

and the starting offsets; and icat, which will extract a file based on the inode number 

or MFT entry number. The exact sequence of commands used for extracting the MFT 

from a given drive is as follows: 

 mmls <source drive> | grep NTFS | awk ‘{print $3}’ | bc 

 icat -o <sector> <source drive> 0 > MFT.raw 

The first command will result in an integer number corresponding to the sector 

number of the NTFS volume. The second command will extract the file corresponding 

to MFT entry number 0 of the volume starting at the provided sector number of the 

provided source drive. MFT entry number 0 always refers to the MFT itself, so the 

result of this command will be the MFT encapsulated as a file for processing.  

 

2.10 CASE/UCO 

SPARTA will export all file processing results to an intermediary forensic 

metadata file utilizing the new Cyber-investigation Analysis Standard Expression 

(CASE) format. [19] This would be one of the first tools to use the standard that has 

initial wide support among researchers, the open source community and the large 

commercial vendors. 

CASE is the successor to the intermediary format known as the Digital Forensics 

Extensible Markup Language (DFXML). [20] It is part of the new Unified Cyber 

Ontology (UCO), with the CASE portion lead by Dr. Eoghan Casey from the 

University of Laussane. [21] Dr. Casey and his team had a paper accepted to the 



 

12 

 

Digital Investigation Journal (Issue 22, September 2017), establishing it as the new 

standard for tool interchange. Per the website, it has been supported by many 

companies and vendors, including DC3, FireEye, MITRE, NIST, AccessData, Basis 

Technology, Blackbag, Cellebrite, Europol, Guidance Software, IBM, Magnet 

Forensics, NCCoE, Nuix, Oxygen Forensics and the Volatility Foundation.  

 

2.11 Test Dataset Developed 

For testing SPARTA, I created a standard lab-built dataset that is fragmented to 

precise percentages. The dataset will be representative of a real world system: the 

extracted files from a fully functional Windows 10 system with the entire Govdocs1 

corpus data, approximately 1 million files made available through the Digital Corpora. 

[22] This drive is approximately 282 GB of data on a 320 GB magnetic hard drive. 

This is in contrast to the testing done in the LOTA system: an ext4 formatted volume 

with approximately 1.8 million files and the m57 drive from the Digital Corpora, 

which was a 10 GB virtual disk. 

  

2.12 Fragmentation Generation Tools 

To create fragmented disks for testing, I used the tools provided by the company 

Raxco software as a part of the PerfectDisk tools for artificially creating disk 

fragmentation. The specific tool I used was called SCRAMBLE.exe. [23] This tool 

will take a provided disk volume and proceed to implement a pseudo-random 

fragmentation algorithm to a non-deterministic number of files on the disk. I then 

tested the fragmentation percentage using the built-in Windows Disk Defragmentation 
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tool for Windows 10. Should the fragmentation percentage exceed the target, I used 

the Piriform Defraggler tool to selectively defragment a number of files and retest the 

volume fragmentation to ensure I was in the correct threshold.  

This process allowed for five different physical disks containing the exact same 

data to be fragmented at the following levels: 0%, 5%, 10%, 20% and 50%.   
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CHAPTER 3 

 

METHODOLOGY AND SYSTEM DEVELOPMENT 

 

3.1 SPARTA Requirements 

The overall system for the SPARTA prototype is a system that will take in as an 

input a full disk or disk image with a single NTFS volume. NTFS is the focused file 

system for two reasons: it is designed with a singular structure defining all file cluster 

allocation (the Master File Table) and it is the default file system for all Windows 

systems. As output, the prototype will produce the following: a bitstream image file 

(dd) containing the entire contents of the input disk and a CASE/UCO metadata file 

with the results of the live file forensic analysis.  

 

3.2 Software Design and Development 

After performing the background research, I decided to write the project in Python 

2.7. While Python is an interpreted language with known performance limitations, the 

theory was that with modern processing the limitations of the interpreted 

scripting/programming language would not be as much of a bottleneck as transfer 

speeds from the SATA bus. The test results described in Chapter 4 confirmed the 

theory.  

Additionally, the additional components of the CASE/UCO implementation as 

well as the INDXParse library indicated that the project implementation would be 

expedited by using Python to align with the existing libraries. 
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The development environment was a licensed academic version of PyCharm by 

JetBrains.  

 

3.3 System Design Flow and Pseudocode 

While most digital forensic imagers begin immediately reading the bitstream from 

the source disk, SPARTA requires some preprocessing to process these files live. The 

preprocessing steps are as follows 

1. Read the file signatures list that will be used to validate the file signature with 

the extension.  

2. Examine the source disk and extract the Master File Table from the NTFS 

volume.  

3. Iterate through the Master File Table and analyze each entry for live, allocated 

file entries. 

4. For each live, allocated file entry 

a. If the file has resident data in the Master File Table, immediately queue 

the file data for processing. Files that are resident to the Master File 

Table do not use clusters to store data. Rather, the data resides in the 

Master File Table entry, so the data for the file has already been copied 

and ready to be processed.  

b. If the file has non-resident data, process the cluster-runs which contain 

the list of clusters that contain the data for the file.  

c. Map out each cluster run from a logical offset from the previous run (as 

stored in the Master File Table) to a physical offset from the beginning 
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of the volume. This data will be stored in the data structure called a 

cluster map.  

d. Determine which cluster run is the last in the physical ordering and 

mark it as the last cluster. This will allow the system to know if all 

clusters for a given file have been read from the bitstream. 

5. End of preprocessing for SPARTA 

After preprocessing completes, the main portion of the system begins to execute. 

The main thread begins to read the bitstream image from the source drive. The read 

for the preliminary portions of the drive, before the NTFS volume, are done sector-by-

sector (512 bytes at a time) and written subsequently to the destination drive. While 

the sectors are being read in individually, the MD5 and SHA1 imaging hashes are 

being computed.  

Once the bitstream read pointer reaches the first sector of the NTFS volume (the 

Volume Boot Record), the logic proceeds with the main SPARTA parallel processing 

engine as follows: 

1. Create a thread-safe queue called unprocessed file queue.  

a. Create a thread pool for processing these file objects. Initial testing 

created ten threads in the pool.  

2. Create a thread-safe queue called processed file queue. 

a. Create a thread pool for these processed files. Initial testing created one 

thread in this pool. 

3. Set the cluster number to 0. 
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4. Lookup the current cluster number in the cluster map built from the Master 

File Table. 

5. If the cluster number does not appear in the map, then read the cluster, 

compute the stream hash, and write the cluster to the bitstream output. 

6. If the cluster is in the map 

a. Based on the data in the cluster map, read the entire cluster run length, 

which is avariable number of consecutive clusters depending on the 

run. 

b. Add the data block read-in to the correct logical offset of the file object. 

c. If this was the last cluster run for the file (in other words, if all logical 

clusters have been read), then add the file object to the queue created in 

step one.  

d. If this was not the last cluster run, then mark in the cluster map that the 

file object has been created and waiting for the rest of the data. 

e. Write the cluster-run data to the output data stream. 

7. Move on to the next cluster if we are not at the end of the drive. 

8. Once we reach the end of the drive, wait until the file processing object queue 

is empty before ending the main thread. 

While the bitstream is being processed, the thread pool created above works on the 

file object queue as follows: 

1. Wait until an item is in the unprocessed file queue. 

2. Hash the logical file data based on the logical file size extracted from the MFT. 
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a. Currently, the system supports file MD5 hash. SHA1 hash support 

would be trivial. 

b. Iterate through the file signature list and determine if the first bytes 

match any signature. 

i. If we have a match, assign that file type to the file and break out 

of the iteration 

c. Move the file object from the unprocessed file queue to the processed 

file queue 

d. Wait until we have another entry, and repeat 

The processed file queue is designed to output the results of the file processing to 

the CASE/UCO output standard as follows: 

1. Wait until an item is in the processed file queue. 

2. Pop the top item off the queue and send it to the CASE/UCO processor. This 

will write the appropriate JSON structure to conform to the CASE/UCO 

standard.  

3. Wait until we have another entry.  

 

The following diagram illustrates the overall proposed digital forensics imaging 

process utilized by SPARTA. 
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Figure 2 - SPARTA Proposed Digital Forensic Imaging Process 

 

 

3.4 Fundamental Differences With SPARTA Compared to Other Tools 

The following is a comprehensive list of functionality that is unique to SPARTA 

compared to other industry tools. 

1. SPARTA performs an initial pass over the Master File Table (MFT) in the 

NTFS volume to build an inverse cluster map. This is similar to what is 

performed in the LOTA system designed by Rousev.  

2. SPARTA performs a disk read of variable length based on cluster run size. 

This is a unique feature only capable because of the initial pass of the MFT. 

This should allow for faster overall read speeds from the source disk as 

magnetic media benefits from longer sequential reads. This is a key 

differentiating factor compared to open source software tools which allow for a 

fixed-size block for reads but are incapable of variable size based on cluster 

runs due to the lack of MFT parsing.  

It is unclear if the LOTA system designed by Rousev performs a variable read 
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based on the cluster size, as his research was solely based upon unfragmented 

source disks.  

3. SPARTA writes the forensic processing results into a CASE/UCO format that 

will be a standard for data exchange between forensic tools. It is unclear if 

Wirespeed or LOTA export metadata into any format that can be utilized by 

other tools. 

3.5 Operating System Configuration 

The Operating System chosen for the prototype was a Linux operating system. 

Linux was primarily chosen for both performance and low cost. Linux is a modular 

system that would allow for a full field unit to remove all unnecessary components 

from the prototype to maximize efficiency. This is in contrast to consumer operating 

systems like Microsoft Windows or Apple MacOS, that do not allow for the 

customization necessary for a performance field unit. Additionally, Microsoft 

Windows has a retail cost of $129.99 for the Home Edition, which would be an 

unnecessary cost for the unit.  

A requirement of a forensics duplicator/imager is the ability to protect the source 

evidence from alterations from normal operating system behavior during the forensic 

imaging. Both Microsoft Windows and Apple MacOS, by default, do not have 

mechanisms to write-protect directly attached drives. While most Linux distributions 

by default are not configured to write-protect attached devices, it is a relatively minor 

change to enable this feature.  
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The Linux distribution used was Ubuntu 18.04 LTS (long-term support), and 

within the OS the following changes were made to enable write-protection to attached 

devices. 

1. Using the dconf-editor tool, the following two keys were disabled:  

org.gnome.desktop.media-handling automount 

org.gnome.desktop.media-handling automount-open 

2. Within the /etc/udev/rules.d file, under 10-myudisks2.rules, the following rule 

was added: 

ACTION==”add|change”, SUBSYSTEM==”block”, 

ENV{UDISKS_IGNORE}=”1” 

The two above rules would prevent any attached devices from being automounted 

as read/write to the Operating System. Attached devices can be mounted as read/write, 

but would require specific user action to do so. This ensures that the operator would 

specifically indicate the destination device for all imaging actions. There is the 

understanding that a user error could result in overwriting of the source (for example, 

a misused DD command), but this is an assumed risk for all Linux-based forensic 

imaging devices. 

 

3.6 Hardware Design 

The main aspect of SPARTA that differentiates it from many other research 

projects focusing on parallel processing of digital evidence during forensic imaging is 

the fact that it is designed as a low-cost field unit. In order to achieve the research goal 
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of cost-affordability, an investigation into the current hardware availability was 

necessary to determine if such a goal was attainable.  

A selection of motherboard, processor, RAM, video card and solid-state drive (for 

the Operating System and OS swap space) was necessary for the basic components of 

the field prototype. Due to the portability requirements of the field prototype, the 

motherboard would be limited to only Mini-ITX selections. At the time of this 

research, the latest AMD selection in the Mini-ITX motherboard format was using the 

AM4 processor socket, while the Intel selection used the 1151 processor socket 

format. Based on these socket formats, the following processors would be the 

exemplar processors in the various core configurations needed for testing the 

performance of the system (Note that for each processor core selection, the processor 

listed is the lowest cost processor available from Newegg.com, a major retailer of 

hardware components): 

Table 1 - Processor Core Comparison 

Number of Cores  Intel Processor Cost AMD 

Processor 

AMD Cost 

2 Pentium G5500 $94.99 A6-9500 $55.74 

4 Core i3-8100 $119.99 Ryzen 3 1200 $94.99 

6 Core i5-8400 $193.99 Ryzen 5 1600 $159.99 

8 Core i7-9700K $399.99 Ryzen 1700X $159.99 

Based on the comparison of the major processors available on retail markets, it 

was decided to build the entire prototype around an AMD platform due to the lower 

price on all processors with equivalent CPU cores available. 

While the amount of RAM available would vary between 8 GB and 32 GB, the 

type and speed of the RAM would not used as a variable for testing. The RAM chosen 

would be based on the least expensive configuration available at the time of testing.  
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The solid-state drive would be used for both the operating system, SPARTA software 

as well as the operating system virtual memory. To attempt to reduce the impact of the 

system secondary memory throughput as a performance bottleneck of the system, a 

selection would be made of a high-speed solid-state drive, preferably of the M.2 

variant so that the system would be I/O bound based on the SATA source and SATA 

destination drives.  

Based upon the research above, the following components were used for building 

and testing the SPARTA prototype as of 6/19/2018. 

Table 2 - SPARTA Prototype Complete Component Cost 

Component Make and Model Cost 

Motherboard ASRock Fatal1ty AB350 Gaming-ITX/ac $104.99 

Processor AMD Ryzen 7 2700X 8-Core $319.99 

RAM 32GB DDR4 2400 $299.99 

Power Supply Rosewill Hive 550W $54.99 

Case Cooler Master Elite 130 $40.16 

Video Card Gigabyte Radeon R5 230 $36.99 

SSD Crucial MX500 M.2 2280 1 TB $219.99 

Total  $1,077.10 
A unique feature of the motherboard chosen is the ability to enable or disable 

CPU cores within the BIOS. This enabled testing of the prototype for variable cores to 

emulate testing different physical CPUs without the requirements of purchasing 

different CPUs for testing.  
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The following are images of the completed prototype device. 

 

Figure 3 - Front-facing image of SPARTA Prototype 

 

Figure 4 - Back-facing image of SPARTA Prototype, including SATA connectors. 

Note that the backside has two internal SATA and two internal SATA power 

connectors for the source and destination disks.  
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CHAPTER 4 

 

TESTING AND FINDINGS 

 

4.1 Development of SPARTA Testing Dataset 

In order to establish equivalent testing for the SPARTA prototype as well as 

existing forensic tools, I developed a dataset that would be representative of a typical 

user’s Windows system. The dataset included files and folder structure used for 

Windows 10, extracted from a virtual machine provided by the Microsoft Windows 

Dev Center. [24] Additionally, the files available from the GovDocs corpus from the 

Digital Corpora were included to give a variety of typical user files. [22]  

Approximately 410,000 files from the GovDocs were included in the dataset, with 

data types including Microsoft Word, Excel, PowerPoint, JPEG, PDF and plain text 

files. The overall dataset of Windows and GovDocs files equaled approximately 282 

Gigabytes, making it one of the largest datasets used for testing imaging and 

processing speeds.  

The dataset was copied onto five magnetic hard drives. Each of the drives was a 

Western Digital Blue Drive, Model WD3200AAKS with 16 Megabytes of cache and 

320 Gigabytes in capacity. By ensuring that each of the five drives was the same make 

and model, I eliminated as much variability in drive mechanics that would impact the 

performance metrics. All testing of forensic imaging and processing used the same 

destination disk: a Western Digital Blue WD5000AAKS, 500 Gigabytes in capacity 

with 16 Megabytes of cache. While each of the drives are only SATA 2 and not SATA 
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3 speeds, the read and write speeds on average of magnetic media does not exceed the 

maximum throughput of 3 Gigabits per Second available in SATA 2.  

After ensuring that each of the source drives had the dataset copied, I marked them 

with a specific measure of fragmentation: 0%, 5%, 10%, 20%, and 50%. Raxco 

software provides free utilities for generating disk fragmentation, to be used for testing 

defragmentation tools. [25] By utilizing a combination of the Scramble utility, which 

performs an entire disk fragmentation and Piriform’s Defraggler [26], which allows 

for file-based defragmentation, I was able to accurately establish the appropriate levels 

of disk fragmentation on each disk as measured by the Windows 10 built-in tool for 

defragmenting disks.  

 

4.2 Testing Imaging Tools and SPARTA with No Analysis 

For each of the forensic imaging tools, the source drive and destination drives used 

were the 0% Fragmented drive developed in 4.1 and the standard destination drive 

listed in 4.1. The available hardware devices available for testing were a Tableau TX-1 

and a Tableau TD2u. Both were updated to the latest firmware available from the 

Tableau Firmware Update v7.29 tool. The software tools used were Guymager and 

DC3DD, tested on the SPARTA hardware platform with 8 physical cores and 32 GB 

of RAM.  

Each of the tools was configured to make a single DD bitstream images, 

unsegmented, with MD5 and SHA1 hash computations and verifications. The results 

of the testing are as follows. 
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Table 3 - Industry Tool Imaging Times 

Tool Time 

Tableau TX-1 1:45 

Tableau TD2u 1:44 

Guymager 1:43 

DC3DD 1:43 

  
Average 1:43 

It is interesting to note that each of the imaging results are within 2 minutes of 

each other and the average of 1 hour and 43 minutes.  

The SPARTA prototype was tested as a simple forensic imager with no file 

analysis. The prototype was configured at the maximum specifications of 8 cores and 

32 GB of RAM. Three test runs of operating as a simple disk imager were performed, 

and the results recorded. The average time for SPARTA to perform as a disk imager 

was 1 hour, 43 minutes, equaling those of the simple imaging software and hardware 

tools. This result demonstrates that the decision to use Python as the base 

programming language did not increase the time necessary to perform forensic 

imaging as compared to established tools. There was a concern that using a language 

like Python, which is not as efficient as C or C++, would increase the time to image, 

but the results clearly show that not to be the case. 

 

4.3 Testing Processing Tools 

Many of the processing tools for forensics available and widely used in industry 

are closed-source paid products. I have valid professional licenses for the following 

tools that I used to test evidence processing: EnCase v. 6.19.7 by OpenText, Forensic 

Explorer v4.3.5 by GetData, and X-Ways Forensics 19.8 SR-6 by X-Ways Software 

Technology. Autopsy is an open-source digital forensic analysis tool. Each of the 
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forensic tools is installed on my forensic workstation with an Intel i7-6700 4-core 

processor with 64 GB of RAM.  

I made a valid forensic image from the 0% fragmented drive as tested using MD5 

and SHA1 hash verification and copied the DD image file to the destination drive 

(WD5000AAKS). I used each of the tools to perform an MD5 hash of each file as well 

as perform a file signature analysis, which compares the data in the file header with 

the extension listed in the file name. These are two common forensic practices which 

many, if not most, examiners perform with each system.  

I repeated the file signature and file hash analysis with each level of fragmentation 

(0%, 5%, 10%, 20% and 50%) from the destination drive. The results are below, with 

fragmentation level indicated in percentages and time listed as hh:mm. 

Table 4 - Industry Tool Analysis Times 

Tool 0% 5% 10% 20% 50% 

Autopsy 1:03 1:30 2:55 3:30 2:11 

EnCase 0:57 1:15 1:14 1:33 1:48 

Forensic 

Explorer 1:22 2:02 2:27 2:49 3:17 

X-Ways 1:03 1:28 2:10 2:39 1:51 

 

Average 1:06 1:33 2:11 2:37 2:25 

For better representation, the following chart demonstrates the increase in 

processing time necessary for each increased level of fragmentation. 
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Figure 5 - Forensic Tool Processing Times 

With the exception of 10% fragmentation with EnCase and 50% fragmentation 

with Autopsy, each of the tests performed with an increase in fragmentation led to an 

increase in the time necessary to process the evidence. Further analysis would need to 

be performed to determine the rate of increase for processing time compared to 

fragmentation as no apparent linear or exponential pattern appears to fit well with the 

data.  

 

4.4 Combined Imaging and Processing Times 

Taking the average tool imaging time of 1 hour, 43 minutes with the average 

processing time for each measured level of fragmentation, we arrive at the following 

table, which compares the sum of imaging and processing with measured 

fragmentation percentage.  
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Table 5 - Combined Average Imaging and Processing Times 

Fragmentation Percentage Time 

0% 2:50 

5% 3:17 

10% 3:55 

20% 4:21 

50% 4:09 

The following measurements are charted below: 

 

Figure 6 - Combined Average Imaging and Processing Times 

We now have the baseline time measurements to determine if the SPARTA design, 

code and hardware can meet the efficiency standard of being within 10% of industry 

standard tools based on the averages taken above.  

 

4.5 Testing the SPARTA Prototype With Variable Cores and RAM 

The SPARTA prototype was used to test each scenario with varying disk 

fragmentation percentages of 0%, 5%, 10%, 20% and 50%, varying processing cores 

of 2, 4, 6 and 8, and varying available system RAM of 8 GB, 16 GB and 32 GB. Each 

scenario was run three times, with the averages of the three runs documented in the 

table below. 
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Table 6 - Summary of SPARTA Testing Results 

Test 

Case Cores 

RAM 

(GB) Fragmentation 

Mean Time 

Taken 

Mean Major 

I/O Page Faults 

01a 8 32 0% 2:15:49 28 

01b 8 32 5% 2:17:24 1032722 

01c 8 32 10% 2:40:51 5122570 

01d 8 32 20% 2:58:32 8425078 

01e 8 32 50% 3:24:21 15262436 

02a 6 32 0% 2:15:51 34 

02b 6 32 5% 2:19:01 1132811 

02c 6 32 10% 2:42:05 5103129 

02d 6 32 20% 3:00:12 8477996 

02e 6 32 50% 3:22:59 15290330 

03a 4 32 0% 2:16:39 30 

03b 4 32 5% 2:19:09 1076391 

03c 4 32 10% 2:42:29 5125908 

03d 4 32 20% 3:01:06 8423466 

03e 4 32 50% 3:32:49 15287473 

04a 2 32 0% 2:15:52 20 

04b 2 32 5% 2:18:50 1099323 

04c 2 32 10% 2:42:14 5122519 

04d 2 32 20% 3:01:40 8568607 

04e 2 32 50% 3:27:04 15212920 

05a 8 16 0% 2:22:58 1174263 

05b 8 16 5% 2:37:47 9038080 

05c 8 16 10% 2:59:24 9318398 

05d 8 16 20% 3:16:19 13737885 

05e 8 16 50% 3:39:54 19901736 

06a 6 16 0% 2:17:37 1150437 

06b 6 16 5% 2:34:41 5736121 

06c 6 16 10% 2:59:23 9271466 

06d 6 16 20% 3:14:31 13621883 

06e 6 16 50% 3:47:31 20040071 

07a 4 16 0% 2:17:55 1182597 

07b 4 16 5% 2:38:35 5728819 

07c 4 16 10% 2:58:49 9222047 

07d 4 16 20% 3:17:23 13699034 

07e 4 16 50% 3:50:05 19827439 

08a 2 16 0% 2:18:04 1165167 

08b 2 16 5% 2:35:44 5727463 

08c 2 16 10% 2:58:58 9325907 

08d 2 16 20% 3:16:43 13420610 

08e 2 16 50% 3:57:44 19897716 
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09a 8 8 0% 2:58:54 15676195 

09b 8 8 5% 3:12:02 19554098 

09c 8 8 10% 3:44:44 27114027 

09d 8 8 20% 4:02:46 31095330 

09e 8 8 50% 4:43:03 37746095 

10a 6 8 0% 2:57:39 15425255 

10b 6 8 5% 3:07:12 19677461 

10c 6 8 10% 3:44:24 26873317 

10d 6 8 20% 4:05:12 31386859 

10e 6 8 50% 4:38:09 37996071 

11a 4 8 0% 2:56:09 15265835 

11b 4 8 5% 3:12:12 19890188 

11c 4 8 10% 3:42:36 26682159 

11d 4 8 20% 4:09:33 31495900 

11e 4 8 50% 4:46:57 37574447 

12a 2 8 0% 2:57:23 15212506 

12b 2 8 5% 3:10:29 19585107 

12c 2 8 10% 3:43:35 26329441 

12d 2 8 20% 4:00:50 31200088 

12e 2 8 50% 4:37:41 36562924 
 

The time listed in the scenario above is the total time to perform the bitstream 

imaging, verification as well as perform the full file hash computations and file 

signature analysis.  

 

4.6 Analysis of Memory Dependency 

The table above seems to indicate a fairly significant reliance upon RAM for 

performing simultaneous file processing, with major page faults being the easiest 

indicator. Each scenario 01a, 02a, 03a and 04a that had 32 GB of system memory 

available had Major I/O page faults at fewer than 50. This is in stark contrast to 

lowering the available RAM to 16 GB, which even in test case 05a with 8 cores led to 

1174263 page faults, a significant increase. This indicates that a significant amount of 

time was spent fetching memory pages from the swap space to populate main 
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memory, and that for the most efficient simultaneous file processing available RAM 

should be maximized. Even though there were over one million more page faults, it is 

likely that the swap space residing on an SSD minimized the time impact to only a 7 

minute average increase.  

When analyzing the processing speed of the SPARTA imaging and processing and 

comparing all cases for which 8 processing cores are present, we get the following 

chart comparing times with fragmentation and RAM. 

 

Figure 7 - SPARTA Test Results with 8 Cores 

The results indicate a direct relationship between available RAM and processing 

times, with the dependency becoming more accentuated as fragmentation increases as 

shown below. 

 

0% 5% 10% 20% 50%

32 GB RAM 2:15:49 2:17:24 2:40:51 2:58:32 3:24:21

16 GB RAM 2:22:58 2:37:47 2:59:24 3:16:19 3:39:54

8GB RAM 2:58:54 3:12:02 3:44:44 4:02:46 4:43:03

Percent Fragmentation

SPARTA Test Results
8 Cores Comparison
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Table 7 - Speed Increases with Increase in RAM With 8 Cores 

Fragmentation 

Difference 

Between 16 

GB and 32 

GB 

Speed 

Increase 

Difference 

Between 8 GB 

and 32 GB Speed Increase 

0% 0:05:37 4% 0:43:06 24% 

5% 0:17:23 11% 0:55:25 29% 

10% 0:19:20 11% 1:03:03 28% 

20% 0:18:31 9% 1:03:28 26% 

50% 0:15:10 7% 1:25:45 30% 

 Average 8% Average 27% 

 

The table above indicates that an average of approximately 8% increases in speed 

when averaging all runs when increasing the available RAM from 16 GB to 32 GB of 

RAM. However, when increasing from 8 GB to 32 GB of RAM, the average speed 

increase is approximately 27%.  

The results of comparing SPARTA run times with 6 available processing cores, 4 

processing cores and 2 processing cores are all listed below along with charts 

indicating the speed difference between 8 GB of RAM and 32 GB of RAM, along 

with the difference between 16 GB of RAM and 32 GB of RAM. 
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Figure 8 - SPARTA Test Results with 6 Cores 

Table 8 - Speed Increases with Increase in RAM With 6 Cores 

Fragmentation 

Difference 

Between 16 

GB and 32 

GB Speed Increase 

Difference Between 

8 GB and 32 GB 

Speed 

Increase 

0% 0:01:46 1% 0:41:47 23% 

5% 0:15:41 10% 0:48:11 25% 

10% 0:17:18 10% 1:02:19 28% 

20% 0:14:19 7% 1:05:00 27% 

50% 0:24:32 11% 1:15:10 26% 

 Average 8% Average 26% 

 

0% 5% 10% 20% 50%

32 GB RAM 2:15:51 2:19:01 2:42:05 3:00:12 3:22:59

16 GB RAM 2:17:37 2:34:41 2:59:23 3:14:31 3:47:31

8GB RAM 2:57:39 3:07:12 3:44:24 4:05:12 4:38:09

Percent Fragmentation

SPARTA Test Results
6 Cores Comparison
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Figure 9 - SPARTA Test Results with 4 Cores 

Table 9 - Speed Increases with Increase in RAM With 4 Cores 

Fragmentation 

Difference 

Between 16 

GB and 32 

GB Speed Increase 

Difference Between 

8 GB and 32 GB 

Speed 

Increase 

0% 0:01:15 1% 0:39:30 22% 

5% 0:19:26 13% 0:53:04 28% 

10% 0:16:20 9% 1:00:07 27% 

20% 0:16:17 8% 1:08:27 28% 

50% 0:17:15 8% 1:14:07 26% 

 Average 8% Average 26% 

0% 5% 10% 20% 50%

32 GB RAM 2:16:39 2:19:09 2:42:29 3:01:06 3:32:49

16 GB RAM 2:17:55 2:38:35 2:58:49 3:17:23 3:50:05

8GB RAM 2:56:09 3:12:12 3:42:36 4:09:33 4:46:57

Percent Fragmentation

SPARTA Test Results
4 Cores Comparsion
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Figure 10 - SPARTA Test Results with 2 Cores 

Table 10 - Speed Increases with Increase in RAM With 2 Cores 

Fragmentation 

Difference 

Between 16 

GB and 32 

GB 

Speed 

Increase 

Difference 

Between 8 GB 

and 32 GB 

Speed 

Increase 

0% 0:02:12 2% 0:41:31 23% 

5% 0:16:54 11% 0:51:39 27% 

10% 0:16:44 9% 1:01:22 27% 

20% 0:15:03 8% 0:59:10 24% 

50% 0:30:39 14% 1:10:37 24% 

 Average 9% Average 25% 

 

The results of comparing the effects of RAM while keeping processing cores 

constant provides a nearly identical speed percentage increase relationship. The speed 

increases were between 7-9% when comparing the results of changing the RAM from 

16 GB to 32 GB of RAM, regardless of how many processing cores are available. The 

speed increases were between 25-27% on average when changing the amount of RAM 

0% 5% 10% 20% 50%

32 GB RAM 2:15:52 2:18:50 2:42:14 3:01:40 3:27:04

16 GB RAM 2:18:04 2:35:44 2:58:58 3:16:43 3:57:44

8GB RAM 2:57:23 3:10:29 3:43:35 4:00:50 4:37:41

Percent Fragmentation

SPARTA Test Results
2 Cores Comparison
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from 8 GB to 32 GB of RAM. What is interesting is that the speed increases were 

more constant when going from 8 GB to 32 GB of RAM, staying between 22% to 

27% as opposed to going from 16 GB of RAM to 32 GB of RAM, where the speed 

increases can be as low as 2% and as high as 14%.  

 

4.7 Analysis of Processing Core Dependency 

Table 6 above does not seem to reflect a significant change in processing time 

when comparing the effects of varying the processing cores. The chart below lists all 

results when processing the drives using a fixed 32 GB of RAM. 

 

Figure 11 - SPARTA Test Results with 32 GB RAM 

We can see that when there is a fixed amount of RAM at 32 GB, the differences 

between the slowest time for 0% fragmentation at 2:16:39 and the fastest time at 0% 

fragmentation at 2:15:49 is only 50 seconds, which is negligible at less than 1% 

compared to the total imaging and processing time is approximately 2 hours and 16 

0% 5% 10% 20% 50%

8 Cores 2:15:49 2:17:24 2:40:51 2:58:32 3:24:21

6 Cores 2:15:51 2:19:01 2:42:05 3:00:12 3:22:59

4 Cores 2:16:39 2:19:09 2:42:29 3:01:06 3:32:49

2 Cores 2:15:52 2:18:50 2:42:14 3:01:40 3:27:04

Percent Fragmentation

SPARTA Test Results
32 GB Ram
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minutes. Even at the 50% fragmentation, the difference between the slowest time of 

3:22:59 and 3:32:49 is 9 minutes and 50 seconds, which is approximately 4.8%. 

However, this difference seems to be exaggerated by the high amount of disk 

fragmentation at 50%.  

Another interesting observation is that the greater the fragmentation, generally the 

greater the differences in time between the shortest and fastest processing. At 0%, the 

difference is 50 seconds; at 5%, the difference is 1 minute, 45 seconds; at 10%, the 

difference is 1 minutes, 38 seconds; at 20%, the difference is 2 minutes, 34 seconds; 

and at 50%, the difference is 9 minutes and 50 seconds. 

However, the overall comparison at least for 32 GB of RAM suggests that 

fragmentation has a near linear effect on processing time as shown below.  

 

Figure 12 – Fragmentation Effects on Processing Speed with 32 GB RAM 

The results from evaluating the performance of SPARTA given 16 GB of 

RAM largely reflect the results from 32 GB of RAM. 
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Figure 13 - SPARTA Test Results with 16 GB RAM 

We again see that the difference between the most and fewest cores at 0% 

fragmentation is 4 minutes, 54 seconds, but it is curious that the 2 Core version 

performed better than the 8 core version. However, at 50% fragmentation the pattern 

matches the previous runs with the 8 core version performing 17 minutes and 50 

seconds faster than the 2 core version, which equates to a 7.5% speed increase.  

The results from testing SPARTA with 8 GB of RAM is largely the same as testing it 

with 16 and 32, with the data demonstrating little variation in testing times between 2 

and 8 cores and a linear increase in time to process based on fragmentation. 

0% 5% 10% 20% 50%

8 Cores 2:22:58 2:37:47 2:59:24 3:16:19 3:39:54

6 Cores 2:17:37 2:34:41 2:59:23 3:14:31 3:47:31

4 Cores 2:17:55 2:38:35 2:58:49 3:17:23 3:50:05

2 Cores 2:18:04 2:35:44 2:58:58 3:16:43 3:57:44

Percent Fragmentation

SPARTA Test Results
16 GB RAM
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Figure 14 - SPARTA Test Results with 8 GB RAM 

It is interesting to note that for each of the test scenarios, having 50% 

fragmentation produced the greatest variability of times to process, even within the 

testing groups. 

 

4.8 Analysis Of SPARTA Correctness Goal 

There are three different aspects of SPARTA that needed to be tested for 

correctness: 

1) The disk image being created. This would be tested using the created MD5 

hash over the entire bitstream and comparing that hash to industry tools. 

2) The file hashes being created. This would be tested by using the tool output 

and comparing it with industry tools. 

0% 5% 10% 20% 50%

8 Cores 2:58:54 3:12:02 3:44:44 4:02:46 4:43:03

6 Cores 2:57:39 3:07:12 3:44:24 4:05:12 4:38:09

4 Cores 2:56:09 3:12:12 3:42:36 4:09:33 4:46:57

2 Cores 2:57:23 3:10:29 3:43:35 4:00:50 4:37:41

Percent Fragmentation

SPARTA Test Results
8 GB Ram
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3) The file signatures being created. This would be tested by comparing the 

signatures identified with the base file types, as none of the files had renamed 

file extensions to create a mismatch with file signatures. 

4.9 Full Disk Imaging Correctness Analysis 

The comparison was done using the SPARTA 0% fragmented disk, as all testing 

for industry tools were performed using this drive.  

The Tableau TX-1, TD2u, dc3dd and Guymager all reported the drive and created 

image file to have the following hashes: MD5 - 92ba9cf58f755ec346eef3806771c96c; 

SHA1 - 84ef8b1962c3aae4b8fce032f9a4627f6f4b8086. 

The first SPARTA test was with no file processing. The log indicated that the 

source MD5 hash was 92ba9cf58f755ec346eef3806771c96c and the destination 

(image file) created hash was a match at 92ba9cf58f755ec346eef3806771c96c.  

The second SPARTA test was with file processing with 0% fragmentation. The log 

indicated that the test run with full file processing still generated a disk image with 

consistent hashes of 92ba9cf58f755ec346eef3806771c96c for MD5 hashes. Each test 

configuration with varying cores and RAM generated the same disk image with the 

same MD5 hash, showing correctness with creating disk images. 

 

4.10 File Hash and Signature Correctness Analysis 

For testing file hash correctness, each of the fragmentation variations CASE output 

files were saved for analysis. Ten files were chosen from this group to analyze their 

signatures and hashes to determine if they were computed correctly. For the hashes, 

they were compared against an analysis performed by X-Ways, a well-known forensic 
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tool. For the signatures, they were compared against the extensions of the files since 

the files did not have a mismatch between the extension and the file signature. 

The following files were compared and extracted: 

Table 11 - Sampling of File Extensions and Hashes 

File Extension X-Ways MD5 Hash 

015153 DOC 0BAD84C28015926331F6D9294B4D015D 

099482 XLS 19027D87B59EAAE81C111B852E331184 

362288 PPT 7CFF13EC9C8DEA5492DF7A4A58D96C93 

438880 JPG 20D8B7B143E76D938D43C50698F8107D 

579373 CSV 9D94F7B0628FCFF44B44BD73A4085DE8 

624122 LOG BDD1A7FF781233FDD4189730EBF872F4 

673684 TXT 26E4866FBAF23E961C0DEC208B202D84 

684368 SWF 592654273948A1CC4C8B810B1DA0C9AD 

788215 JPG 5B3971CB3E6B66D023C90091DCCCD8CA 

827646 DOC 73E83DCDEEA4DB48A83EEFFFEF856D27 

After performing the SPARTA tests on all five levels of fragmentation, the file list 

above was analyzed for extension and MD5 match. All five test cases produced the 

same results shown below, as well as an indication as to whether it compared the hash 

and/or signature correctly.  

Table 12 - SPARTA Signature and Hash Analysis Results 

File 
Number 

Extension Signature Match Hash Match 

015153 DOC 
Microsoft 
Office 
Document 

Yes 0bad84c28015926331f6d9294b4d015d Yes 

099482 XLS 
Microsoft 
Office 
Document 

Yes 19027d87b59eaae81c111b852e331184 Yes 

362288 PPT 
Microsoft 
Office 
Document 

Yes 7cff13ec9c8dea5492df7a4a58d96c93 Yes 

438880 JPG 
Windows 
Executable 

No 20d8b7b143e76d938d43c50698f8107d Yes 

579373 CSV None Yes 9d94f7b0628fcff44b44bd73a4085de8 Yes 

624122 LOG 
Advanced 
Stream 
Redirector 

No bdd1a7ff781233fdd4189730ebf872f4 Yes 
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673684 TXT None Yes 26e4866fbaf23e961c0dec208b202d84 Yes 

684368 SWF 
Shockwave 
Flash player 

Yes 592654273948a1cc4c8b810b1da0c9ad Yes 

788215 JPG 
Windows 
Executable 

No 5b3971cb3e6b66d023c90091dcccd8ca Yes 

827646 DOC 
Microsoft 
Office 
Document 

Yes 73e83dcdeea4db48a83eefffef856d27 Yes 

Each of the file hashes were calculated and show that the file reassembly is 

performed correctly. The signature for 6 of the 10 files were computed correctly, 

specifically for any Microsoft Office Document or for plain text files, including 

comma separated values. It appears as though the JPG files were not signature 

matched correctly and the LOG file was not signature matched correctly. This would 

indicate an error in the signature match lookup functionality of the tool or an error in 

the signature tables used. However, this is a slight error that can be corrected in future 

iterations or production systems. What is more important is the full data reassembly 

being performed correctly as indicated by the valid hash match. 

 

4.11 Analysis of the SPARTA Efficiency Goal 

One of the goals of the SPARTA research is to demonstrate that parallel forensic 

imaging and processing can be performed faster than sequentially imaging, verifying 

and then processing the data. The question is further refined due to the previous 

observation that disk fragmentation has a direct impact on processing speeds, even 

when only processing evidence after imaging. So each level of fragmentation is 

analyzed independently and configurations for which SPARTA is faster in all 

scenarios will be determined to match the efficiency goal.  
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The following table demonstrates all configuration times at 0% fragmentation as 

well as the average industry speeds. 

Table 13 - SPARTA Speed Versus Industry Mean Speeds With 0% Fragmentation 

Test 

Case Cores 

RAM 

(GB) Fragmentation 

Mean Time 

Taken 

01a 8 32 0% 2:15:49 

02a 6 32 0% 2:15:51 

04a 2 32 0% 2:15:52 

03a 4 32 0% 2:16:39 

06a 6 16 0% 2:17:37 

07a 4 16 0% 2:17:55 

08a 2 16 0% 2:18:04 

05a 8 16 0% 2:22:58 

Industry     0% 2:50:00 

11a 4 8 0% 2:56:09 

12a 2 8 0% 2:57:23 

10a 6 8 0% 2:57:39 

09a 8 8 0% 2:58:54 

 

As seen above, every configuration with 16 GB of RAM or greater will beat 

industry standard averages. 

The following table demonstrates 5% fragmentation. 

Table 14 - SPARTA Speed Versus Industry Mean Speeds With 5% Fragmentation 

Test 

Case Cores 

RAM 

(GB) Fragmentation 

Mean Time 

Taken 

01b 8 32 5% 2:17:24 

04b 2 32 5% 2:18:50 

02b 6 32 5% 2:19:01 

03b 4 32 5% 2:19:09 

06b 6 16 5% 2:34:41 

08b 2 16 5% 2:35:44 

05b 8 16 5% 2:37:47 

07b 4 16 5% 2:38:35 

10b 6 8 5% 3:07:12 

12b 2 8 5% 3:10:29 

09b 8 8 5% 3:12:02 

11b 4 8 5% 3:12:12 
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Industry     5% 3:17:00 

It is interesting to note that at 5% fragmentation, every scenario will beat industry 

standard tools.  

The following table demonstrates 10% fragmentation.  

Table 15 - SPARTA Speed Versus Industry Mean Speeds With 10% Fragmentation 

Test 

Case Cores 

RAM 

(GB) Fragmentation 

Mean Time 

Taken 

01c 8 32 10% 2:40:51 

02c 6 32 10% 2:42:05 

03c 4 32 10% 2:42:29 

04c 2 32 10% 2:42:14 

05c 8 16 10% 2:59:24 

06c 6 16 10% 2:59:23 

07c 4 16 10% 2:58:49 

08c 2 16 10% 2:58:58 

09c 8 8 10% 3:44:44 

10c 6 8 10% 3:44:24 

11c 4 8 10% 3:42:36 

12c 2 8 10% 3:43:35 

Industry     10% 3:55:00 

Again, every scenario at 10% fragmentation will be faster than industry tools.  

The following table is the result of all testing at 20% fragmentation. 

Table 16 - SPARTA Speed Versus Industry Mean Speeds With 20% Fragmentation 

Test 

Case Cores 

RAM 

(GB) Fragmentation 

Mean Time 

Taken 

01d 8 32 20% 2:58:32 

02d 6 32 20% 3:00:12 

03d 4 32 20% 3:01:06 

04d 2 32 20% 3:01:40 

05d 8 16 20% 3:16:19 

06d 6 16 20% 3:14:31 

07d 4 16 20% 3:17:23 

08d 2 16 20% 3:16:43 

09d 8 8 20% 4:02:46 

10d 6 8 20% 4:05:12 

11d 4 8 20% 4:09:33 

12d 2 8 20% 4:00:50 

Industry     20% 4:21:00 
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Once again, SPARTA is faster in every configuration at 20% fragmentation 

compared to industry tools.  

Table 17 - SPARTA Speed Versus Industry Mean Speeds With 50% Fragmentation 

Test 

Case Cores 

RAM 

(GB) Fragmentation 

Mean Time 

Taken 

02e 6 32 50% 3:22:59 

01e 8 32 50% 3:24:21 

04e 2 32 50% 3:27:04 

03e 4 32 50% 3:32:49 

05e 8 16 50% 3:39:54 

06e 6 16 50% 3:47:31 

07e 4 16 50% 3:50:05 

08e 2 16 50% 3:57:44 

Industry     50% 4:00:00 

12e 2 8 50% 4:37:41 

10e 6 8 50% 4:38:09 

09e 8 8 50% 4:43:03 

11e 4 8 50% 4:46:57 

When we get to 50% fragmentation, the results are similar to the findings at 0% 

fragmentation where all configurations in which there is at least 16 GB of RAM, 

SPARTA will have faster imaging and processing speeds compared to industry tools.  

So combining the results of all efficiency metrics establishes that given a 

simultaneous digital forensics processing system with at least 16 GB of RAM, it will 

outperform parallel processing using industry standard tools. It is notable that any 

processing core configuration had no bearing over the ability for the system to reach 

its efficiency goal.  

 

4.12 Analysis of the SPARTA Cost-Effectiveness Goal 

Based on the results of the efficiency goal, we have determined that the minimum 

specifications for the SPARTA prototype are 16 GB of RAM, with any core 

configuration. The design outlined in section 3.4 used a 32 GB RAM configuration. 
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We can alter the configuration slightly to reduce the cost while still keeping the 

configuration to meet the efficiency goals as follows: 

Table 18 - Cost Optimized SPARTA Components 

Component Make and Model Cost 

Motherboard ASRock Fatal1ty AB350 Gaming-

ITX/ac 

$104.99 

Processor AMD Ryzen 7 2400G Quad-Core $138.82 

RAM 16GB DDR4 3000 $77.99 

Power Supply Rosewill Hive 550W $54.99 

Case Cooler Master Elite 130 $40.16 

Video Card Gigabyte Radeon R5 230 $36.99 

SSD Crucial MX500 M.2 2280 1 TB $109.99 

Total  $563.93 

Note: prices on SSDs have come down significantly since the beginning of this 

research project – nearly 50%. 

The above component list indicates that the Cost-Effectiveness goal of having 

commercial off the shelf (COTS) parts being less than $1000 is easily attainable with a 

total component cost, before tax, equal to $563.93 when queried on September 14, 

2019.  

 

4.13 Analysis of the SPARTA Cross-Compatibility Goal 

To achieve the cross-compatibility goal, a suitable metadata interchange format 

was selected, the Cyber-investigation Analysis Standard Expression. The ontology 

saves the results of forensic analysis into a standard JSON file. A Python API is 

available on GitHub and was used in the software implementation in SPARTA.  

In testing to determine whether the CASE output from SPARTA matches the raw 

comma-separated values used in determining the correctness, it appeared as though the 

CASE output was not consistent with the expected outputs. This could be to a 
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miscoding or may be due to an implementation issue in the API. All file metadata is 

reflected accurately in the CASE output but the file signature and cryptographic hash 

information is not accurate. Further testing and debugging with the CASE Python API 

developers may be necessary, but this would be a fairly easy fix for production 

systems.
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CHAPTER 5 

 

CONCLUSION 

 

The primary goal of the dissertation was to determine if a new process for digital 

forensics imaging could be developed to allow for simultaneous processing and forensic 

imaging of magnetic hard drives. Based on my professional experience and discussions 

with other examiners, I observed that a lot of human time was wasted waiting for a drive 

to be imaged before any forensic analysis could be performed. To save human time, 

different strategies have been researched to solve this problem. The strategy I have 

employed was to determine if enough processing power was available in commercial 

off the shelf (COTS) parts to allow for a limited set of forensic analysis to be performed 

over all live files faster than sequentially processing all live files after forensic imaging.  

The additional research quantification involved determining the limiting factors of 

being able to perform all live file imaging. Specifically, the research endeavored to 

determine if available system RAM, processing cores, or disk fragmentation were the 

major factors impacting system performance to be able to perform simultaneous disk 

imaging and forensic file processing.  

After performing nearly 570 hours of testing (nearly 24 straight days), the 

conclusions of the research are as follows: 

1) Simultaneous processing of all live files during forensic imaging is not only 

possible but will perform faster than sequentially imaging then performing 

forensic analysis using industry standard tools. 
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2) Processing cores has no significant impact over the ability to perform the 

requisite tasks. 

3) Disk fragmentation has a near-linear impact over performance for all types of 

file analysis, whether performed after the disk has been imaged or during 

forensic imaging.  

4) RAM has the greatest impact on whether forensic file analysis can be performed 

during disk imaging and the impact appears to be exponential. With only 8 GB 

of RAM available, file analysis cannot be performed, but with 16 GB or greater, 

all files can be subjected to a limited set of forensic analysis during bitstream 

imaging.  

The contributions to the research community are significant. The first being the 

establishing fact that disk fragmentation has a direct impact on the speed for file 

analysis. This has wide-ranging implications in both research and industry tools. No 

published research has quantified the effects of disk fragmentation on file processing, 

and from the test results it is apparent that there is a direct impact.  

Another contribution is the creation of fragmented datasets that can be used in the 

forensic research community. While the dataset base is the Windows Operating System 

and the Digital Corpora datasets, they are fragmented to precise measurements and can 

be used for other testing.  

Yet another contribution is the research results to indicate that all standalone digital 

forensic imaging devices used in industry are obsolete. Manufacturers and designers 

should be designing devices that can perform a selected set of digital forensic file 

processing tasks while creating the bitstream image. Utilizing the available processing 
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power of the hardware, so long as enough RAM is provided, will result in faster time 

for forensic investigators to begin analyzing processed data.  

There are a series of limitations in the research project and implementation. The first 

being the focus on magnetic hard drives. The design of solid state drives would suggest 

that fragmentation does not play a role in ability to process data since data access is 

constant across flash memory. However, without comprehensive testing, this remains 

only a theory.  

The second limitation is the selected set of file processing tasks, namely file hash 

and file signature analysis. There are many other types of forensic file processes that 

can be performed, including file indexing, compressed file expansion, registry analysis, 

photo EXIF data analysis, and keyword searching. While Roussev began to outline CPU 

cores necessary to achieve some of these tasks, further research needs to be performed 

to determine both CPU cores and RAM requirements to perform different forensic file 

analysis techniques while factoring in disk fragmentation.  

The third limitation is the limitation on the CASE standard. While it has not gained 

as widespread adoption as I hoped by the end of this research, the list of contributing 

companies is promising and hopefully as time progresses more tools will allow for 

importing of CASE data.  

A fourth limitation is the base dataset used for testing. The only filesystem tested 

was NTFS. FAT, APFS, ext and ZFS all have different structures for tracking 

fragmentation and can lead to differing results in the effects of fragmentation on forensic 

file analysis.  
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A potential limitation could be the size of the source disk compared to the internal 

SSD used for swap space. Should the drive be too big for all of the incompletely 

analyzed file fragments to be stored in the swap space, the system could crash. A 

potential remedy is to turn off all simultaneous file processing when the source disk is 

over double the size of the internal swap space, ensuring that all file fragments could be 

stored in swap until the complete file is read and removed from the swap space. 

The most easily identified future work is to do testing on Solid State Drives similar 

to what I did in testing the SPARTA prototype. Comprehensive testing of fragmentation 

on solid state drives (since SSDs support sector-based file systems such as NTFS and 

FAT) could lead to conclusions on whether or not fragmentation has any bearing on 

SSD performance. Additionally, testing SSDs will allow forensic examiners to 

determine if the increased cost of SSDs will lead to more efficient human time.  

An additional area of future work would be to apply the same technique to other file 

systems, such as FAT. Having this ability to perform simultaneous processing of live 

files while imaging large USB removable disks formatted with FAT32 would be a boon 

to forensic investigators.  

An additional area of future work would be to expand on this research and Roussev’s 

work to determine the full requirements of forensic file processing, to include all types 

of file processing normally and potentially performed by forensic investigators. This 

research established that more than CPU cores are variables in efficacy of file 

processing, but further research can be performed in this area.  

This research endeavor began because I had logged too much time waiting for a disk 

to finish imaging before I could begin with forensic file analysis. I wanted to determine 
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if, while I was waiting around for the image to be created, if some forensic file analysis 

could be performed over all live files and if it would save time in the long-run. My 

research conclusively states that the answer is yes: by giving a system enough RAM, 

regardless of how much disk fragmentation exists, forensic analysis can be performed 

while creating the bitstream image and it would save time compared to established 

processes. I hope that forensic imaging device manufacturers read this paper so that new 

devices can be made to speed up what we are trying to do: establish truth in a court of 

law. 
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APPENDICES 

 

APPENDIX I – SPARTA SOURCE CODE 

#!/usr/bin/python 
 
##Joseph Greenfield 
##jsgreenfield@my.uri.edu 
## 
 
import argparse 
import hashlib 
import time 
import datetime 
 
# for multi-threaded 
from Queue import Queue 
from threading import Thread 
 
#for CASE/UCO Output 
import case 
 
#To add the INDXParse library 
import sys 
sys.path.insert(0, "/home/joe/INDXParse") 
 
#INDXParse stuff 
from BinaryParser import Mmap 
from BinaryParser import OverrunBufferException 
from MFT import * 
 
#Progress Bar 
from progressbar import ProgressBar, Percentage, Bar, ETA, AdaptiveETA 
 
# setting up a global Queues for file processing 
num_processing_threads = 10 
unprocessedFileQueue = Queue() 
processedFileQueue = Queue() 
 
# instantiating the output document 
case_output = case.Document() 
 
# instantiating the file signatures list 
file_signatures = [] 
 
 
# This will replace the tuples stuff that I wrote below 
class FileData(object): 
 
    def __init__(self, mft_record): 
        self.mft_record = mft_record 
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    def mft_record(self): 
        return self.mft_record 
 
 
class UnprocessedFileData(FileData): 
 
    def __init__(self, mft_record, file_data): 
        super(UnprocessedFileData, self).__init__(mft_record) 
        self.file_data = file_data 
 
 
class ProcessedFileData(FileData): 
 
    def __init__(self, mft_record, file_hash, file_signature): 
        super(ProcessedFileData, self).__init__(mft_record) 
        self.file_hash = file_hash 
        self.file_signature = file_signature 
 
class ClusterMapEntry(object): 
 
    def __init__(self, run_length, mft_record, file_offset, last_run): 
        self.run_length = run_length 
        self.mft_record = mft_record 
        self.file_offset = file_offset 
        self.last_run = last_run 
 
class FileSignatureEntry(object): 
 
    def __init__(self, fileDescription, fileSig, fileExt, fileCategory): 
        self.fileDescription = fileDescription 
        self.fileSig = fileSig 
        self.fileExt = fileExt 
        self.fileCategory = fileCategory 
 
def processFileFromQueue(): 
    while True: 
        unprocessedFile = unprocessedFileQueue.get() 
 
        filename = 
unprocessedFile.mft_record.filename_information().filename() 
        #print("Processing File: {}".format(filename)) 
 
        # hash only the logical file size 
        filesize = unprocessedFile.mft_record.data_attribute().data_size() 
        md5hash = hashlib.md5(unprocessedFile.file_data[0:filesize]) 
 
        fileSiganture = "" 
        # checking signatures 
        for signature in file_signatures: 
            signature_length = len(signature[1]) 
            file_bytes_to_check = 
unprocessedFile.file_data[0:signature_length] 
 
            # signature_as_string = base64.encode(signature[1]) 
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            if (file_bytes_to_check == signature[1]): 
                # we have a signature match 
                fileSiganture = signature[0] 
                break 
 
        
processedFileQueue.put(ProcessedFileData(unprocessedFile.mft_record, 
md5hash, fileSiganture)) 
 
        unprocessedFileQueue.task_done() 
 
 
def writeCaseOutput(): 
    while True: 
        processedFile = processedFileQueue.get() 
        fn = processedFile.mft_record.filename_information() 
        si = processedFile.mft_record.standard_information() 
        data = processedFile.mft_record.data_attribute() 
 
        case_file = case_output.create_uco_object('Trace') 
        case_file_property = case_file.create_property_bundle( 
            'File', 
            fileName=fn.filename(), 
            extension=os.path.splitext(fn.filename()), 
            isDirectory=False, 
            createdTime=si.created_time(), 
            accessedTime=si.accessed_time(), 
            modifiedTime=si.modified_time(), 
            metadataChangeTime=si.changed_time(), 
            sizeInBytes=data.data_size() 
        ) 
 
        #print ("Processed Filename: {}\tHash: {}\tSignature: {}".format( 
        #     processedFile.mft_record.filename_information().filename(), 
        #     processedFile.file_hash.hexdigest(), 
        #     processedFile.file_signature)) 
        processedFileQueue.task_done() 
 
        #Temporary Debugging 
 
 
def parseMFTForFiles(mftpath): 
    # initializing the physical cluster map 
    # the key for the cluster map will be the physical cluster 
    # the value will be a tuple [length of run, mft_record for run, logical 
offset within the file, 
    # and a boolean as to whether it is the last run in the runlist 
 
    MFTProcessStart = datetime.now() 
    print ("Beginning processing MFT at {}".format(MFTProcessStart)) 
    sys.stdout.flush() 
 
    cluster_map = {} 
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    with Mmap(mftpath) as mftbuffer: 
        enum = MFTEnumerator(mftbuffer) 
        num_records = enum.len() 
 
        pbar = ProgressBar(widgets=[ 
            "MFT Records Processed: ", Percentage(), 
            ' ', Bar(), 
            ' ', AdaptiveETA(), 
        ], maxval=num_records).start() 
        for mft_id in range(0, num_records): 
            try: 
                mft_record = enum.get_record(mft_id) 
                if not mft_record.is_directory() and 
mft_record.is_active(): 
                    # the record is a file and allocated 
                    # building the clustermap 
 
                    data_attrib = mft_record.data_attribute() 
                    filename_attrib = mft_record.filename_information() 
                    # if the data is non-resident, then we care. Otherwise, 
the data is in the attribute 
                    if data_attrib and filename_attrib and 
data_attrib.non_resident() > 0: 
 
                        runlist = mft_record.data_attribute().runlist() 
                        dataruns = runlist.runs() 
 
                        # The code in MFT.py actually gives the runlist as 
volume offsets 
                        # This will keep track of where in the logical file 
the cluster run should be 
                        file_offset = 0 
                        last_offset = 0 
 
                        for (offset, length) in dataruns: 
                            cluster_map[offset] = ClusterMapEntry(length, 
mft_record,file_offset, False) 
                            file_offset += length 
                            if offset > last_offset: 
                                last_offset = offset 
                        cluster_map[last_offset].last_run = True 
                pbar.update(mft_id + 1) 
 
 
            except OverrunBufferException: 
                return 
            except InvalidRecordException: 
                mft_id += 1 
                continue 
        pbar.finish() 
 
    MFTProcessEnd = datetime.now() 
    print ("Complete Processing MFT. Time Taken: {}".format(MFTProcessEnd - 
MFTProcessStart)) 
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    return cluster_map 
 
 
def printClusterMap(cluster_map): 
    for cluster in cluster_map: 
        cm_entry = cluster_map[cluster] 
        print( 
            "Cluster: {}\tLength: {}\tOffset: {}\tFile: {}\tLast Cluster: 
{}".format(cluster, cm_entry.run_length, 
                                                                                     
cm_entry.file_offset, 
                                                                                     
cm_entry.mft_record.filename_information().filename(), 
                                                                                     
cm_entry.last_run)) 
 
def parseMBRforVBRLocation(mbr): 
    # grab the first partition entry, and return the starting sector 
    return struct.unpack("<I", mbr[454:458])[0] 
 
 
def parseVBRforSectorsPerCluster(vbr): 
    return struct.unpack("B", vbr[13:14])[0] 
 
def parseVBRforTotalSectors(vbr): 
    return struct.unpack("<Q", vbr[40:48])[0] 
 
 
##This is the code for the non-threaded version 
# def processFile(mft_record, file_data, file_signatures, case_output): 
#     filename = mft_record.filename_information().filename() 
#     #hash only the logical file size 
#     filesize = mft_record.data_attribute().data_size() 
#     md5hash = hashlib.md5(file_data[0:filesize]) 
#     fileSiganture = "" 
# 
#     #checking signatures 
#     for signature in file_signatures: 
#         signature_length = len(signature[1]) 
#         file_bytes_to_check = file_data[0:signature_length] 
# 
#         #signature_as_string = base64.encode(signature[1]) 
# 
#         if (file_bytes_to_check == signature[1]): 
#             #we have a signature match 
#             fileSiganture = signature[0] 
#             break 
# 
# 
#     print("File: {}\tMD5 Hash: {}\tSignature: {}".format(filename, 
md5hash.hexdigest(),fileSiganture)) 
# 
#     #adding the file to the output 
#     case_file = case_output.create_uco_object('Trace') 
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#     case_file_property = case_file.create_property_bundle( 
#         'File', 
#         fileName=filename 
#     ) 
 
def main(): 
     
    parser = argparse.ArgumentParser(description='SPARTA: System for ' 
                                                 'Parallel Acquisitions 
with ' 
                                                 'Real-Time Analysis') 
    parser.add_argument('source', action="store", help="Source Path (Device 
or DD Image") 
    parser.add_argument('destination', action="store", help="Destination 
File Path") 
    parser.add_argument('metadata', action="store", help="Path for file 
metadata") 
    parser.add_argument('mft_path', action="store", help="Source MFT path") 
    parser.add_argument('--file_processing', action='store_true', 
default=False, dest='file_processing') 
    arg_results = parser.parse_args() 
 
    sourcepath = arg_results.source 
    destpath = arg_results.destination 
    mftpath = arg_results.mft_path 
    mpath = arg_results.metadata 
    file_processing = arg_results.file_processing 
 
    # writing preliminary information for Case output 
    instrument = case_output.create_uco_object( 
        'Tool', 
        name='SPARTA', 
        version='0.1', 
        creator='Joseph Greenfield') 
 
    performer = case_output.create_uco_object('Identity') 
    performer.create_property_bundle( 
        'SimpleName', 
        givenName='Joe', 
        familyName='Greenfield' 
    ) 
 
    action = case_output.create_uco_object( 
        'ForensicAction', 
        startTime=datetime.now() 
    ) 
    action.create_property_bundle( 
        'ActionReferences', 
        performer = performer, 
        instrument=instrument, 
        object=None, 
        result=[] 
    ) 
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    # instantiating our file processing threads 
    for i in range(num_processing_threads): 
        t = Thread(target=processFileFromQueue) 
        t.daemon = True 
        t.start() 
 
    # instantiating our Case output builder thread 
    t = Thread(target=writeCaseOutput) 
    t.daemon = True 
    t.start() 
 
    # building datastructure for file signatures 
    # right now, it will iterate through each signature and see if there is 
a match 
    # this is a very inefficient way to do it, but we'll see if there is a 
significant impact on performance 
    if file_processing == True: 
        with open("signatures_GCK.txt", "r") as signatures: 
            for line in signatures: 
                currline = line.split(",") 
                fileDescription = currline[0] 
                fileSig = currline[1].replace(" ", "") 
                fileExt = currline[4] 
                fileCategory = currline[5].strip('\n') 
 
                # fileSigBytes = fileSig.split(" ") 
                # trying to convert the string to a byte array 
                fileSigBytes = bytearray.fromhex(fileSig) 
 
                file_signatures.append((fileDescription, fileSigBytes, 
fileExt, fileCategory)) 
 
        # reading MFT for processing 
        cluster_map = parseMFTForFiles(arg_results.mft_path) 
 
    #printClusterMap(cluster_map) 
 
    # we are building a dictionary of files that actually contain the 
binary data for each file 
    # the key will be the MFT record number, the value will be the binary 
data 
    files = {} 
 
    # Disk imaging functionality 
    with open(arg_results.destination, "wb") as dest: 
        # attempting to open the source disk for stream reading 
        print ("Destination file {} open for writing".format(destpath)) 
        md5hash = hashlib.md5() 
        # starting timer 
        start = time.time() 
 
        source_numbytes = 0 
        #determining number of bytes in the input drive 
        fd = os.open(arg_results.source, os.O_RDONLY) 
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        try: 
            source_numbytes = os.lseek(fd, 0, os.SEEK_END) 
        finally: 
            os.close(fd) 
 
        curr_sector = 0 
 
        with open(arg_results.source, "rb") as source: 
            # trying to read 512 byte blocks 
            print ("Source file {} open for reading".format(sourcepath)) 
            # first block is MBR. Parse it. 
 
            if file_processing == False: 
                source_numsectors = source_numbytes / 512 + 1 
                pbar = ProgressBar(widgets=[ 
                    "Sectors Read: ", Percentage(), 
                    ' ', Bar(), 
                    ' ', AdaptiveETA(), 
                ], maxval=source_numsectors).start() 
 
                curr_sector = 0 
                block = source.read(512) 
 
                while block: 
                    curr_sector += 1 
                    pbar.update(curr_sector) 
                    md5hash.update(block) 
                    dest.write(block) 
                    block = source.read(512) 
 
            else: 
                source_numsectors = source_numbytes / 512 + 1 
                pbar = ProgressBar(widgets=[ 
                    "Clusters Read: ", Percentage(), 
                    ' ', Bar(), 
                    ' ', AdaptiveETA(), 
                ], maxval=source_numsectors).start() 
 
                block = source.read(512) 
                curr_sector += 1 
                pbar.update(curr_sector) 
                vbr_sector = parseMBRforVBRLocation(block) 
                md5hash.update(block) 
                dest.write(block) 
 
                # Now reading/writing padding sectors until VBR 
                block = source.read(vbr_sector * 512 - 512) 
                curr_sector = vbr_sector - 1 
                pbar.update(curr_sector) 
                md5hash.update(block) 
                dest.write(block) 
 
                # We should now be at the VBR. We should now be reading the 
VBR ($Boot) 
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                block = source.read(512) 
                # $Boot is cluster number 0 
                clusterNum = 0 
                curr_sector += 1 
                # lookup the entry in the cluster map 
                map_entry = cluster_map[clusterNum] 
                # update our cluster numbering to the next cluster after 
the full run 
                clusterNum += map_entry.run_length 
                sectors_per_cluster = parseVBRforSectorsPerCluster(block) 
                bytes_per_cluster = sectors_per_cluster * 512 
                #total_clusters = 
parseVBRforTotalSectors(block)/sectors_per_cluster 
                #md5hash.update(block) 
                #dest.write(block) 
 
                # we now have to read the rest of the $boot file 
                block += source.read(bytes_per_cluster * 
map_entry.run_length - 512) 
                curr_sector += (map_entry.run_length - 1) * 
sectors_per_cluster 
                md5hash.update(block) 
                dest.write(block) 
 
                # if the $boot is done (unfragmented), then process it, 
otherwise, we'll move on to the main processing code 
                if map_entry.last_run: 
                    # (mft_record,block, file_signatures, case_output) 
                    
unprocessedFileQueue.put(UnprocessedFileData(map_entry.mft_record, block)) 
                else: 
                    # we add the $boot to the file map 
                    files[map_entry.mft_record.mft_record_number] = block 
 
 
                # we read the rest of the drive by cluster runs 
                while block: 
                    # if this cluster is assigned to a valid file 
                    if clusterNum in cluster_map: 
                        #[cluster_run_length, mft_record, offset, last_run] 
= cluster_map[clusterNum] 
                        map_entry = cluster_map[clusterNum] 
 
                        mft_record_num = 
map_entry.mft_record.mft_record_number() 
                        # read in the entire cluster run 
                        block = source.read(bytes_per_cluster * 
map_entry.run_length) 
 
                        # check to see if the file has any data already 
read 
                        # non-fragmented files fall under this category 
                        if mft_record_num not in files and 
map_entry.last_run: 
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unprocessedFileQueue.put(UnprocessedFileData(map_entry.mft_record, block)) 
                        else: 
                            if mft_record_num not in files: 
                                files[mft_record_num] = 
bytearray(map_entry.mft_record.data_attribute().allocated_size()) 
                            block_offset_start = map_entry.file_offset * 
bytes_per_cluster 
                            block_offset_end = map_entry.file_offset * 
bytes_per_cluster + map_entry.run_length * bytes_per_cluster 
                            
files[mft_record_num][block_offset_start:block_offset_end] = block 
 
                            if map_entry.last_run: 
                                
unprocessedFileQueue.put(UnprocessedFileData(map_entry.mft_record, 
files[mft_record_num])) 
 
                        curr_sector += (map_entry.run_length - 1) * 
sectors_per_cluster 
                        clusterNum += map_entry.run_length 
                        pbar.update(curr_sector) 
 
                    # otherwise, read the cluster and move on 
                    else: 
                        block = source.read(bytes_per_cluster) 
                        curr_sector += sectors_per_cluster 
                        clusterNum += 1 
                        pbar.update(curr_sector) 
 
                    md5hash.update(block) 
                    dest.write(block) 
        imaging_end = time.time() 
        pbar.finish() 
        dest.close() 
        source.close() 
        print ("Imaging complete. Time taken: {} 
seconds".format(imaging_end - start)) 
        print ("Items remaining in unprocessed queue: 
{}".format(unprocessedFileQueue.qsize())) 
        print ("Items remaining in processed queue for CASE output: 
{}".format(processedFileQueue.qsize())) 
        print ("Source hash: {}".format(md5hash.hexdigest())) 
        print ("Computing Destination Hash") 
 
 
        destmd5hash = hashlib.md5() 
 
        dest_numbytes = 0 
 
        with open(sys.argv[2], "rb") as dest: 
            print ("Dest file {} open for computing hash".format(destpath)) 
            dest_numsectors = os.path.getsize(sys.argv[2])/512 + 1 
            curr_sector = 0 
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            pbar = ProgressBar(widgets=[ 
                "Sectors Read: ", Percentage(), 
                ' ', Bar(), 
                ' ', AdaptiveETA(), 
            ], maxval=dest_numsectors).start() 
            block = dest.read(4096) 
            curr_sector += 1 
            pbar.update(curr_sector) 
            destmd5hash.update(block) 
            while block: 
                block = dest.read(4096) 
                curr_sector += 1 
                destmd5hash.update(block) 
                pbar.update(curr_sector) 
            pbar.finish() 
        dest.close() 
 
        print ("Verification complete. Destination hash: 
{}".format(destmd5hash.hexdigest())) 
        if md5hash.hexdigest() == destmd5hash.hexdigest(): 
            print("Verification successful, hashes match") 
        else: 
            print ("Verification unsuccessful.") 
 
        print ("Items remaining in unprocessed queue: 
{}".format(unprocessedFileQueue.qsize())) 
        print ("Items remaining in processed queue for CASE output: 
{}".format(processedFileQueue.qsize())) 
        unprocessedFileQueue.join() 
        processedFileQueue.join() 
        print ("All file processing complete") 
 
        # writing the Case document output 
 
        case_output.serialize(format='json-ld', destination=mpath) 
 
        print ("SPARTA complete. Total time taken: {} 
seconds".format(time.time() - start)) 
 
 
if __name__ == "__main__": 
    main() 
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APPENDIX II – TESTING RESULTS 

All testing results, as well as electronic copies of all source code, are available on the 

GitHub repository: 

https://github.com/jgreenfield11/SPARTA 
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