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ABSTRACT 

Background Flavin-containing monooxygenases (FMO) constitute a class of 

oxidative enzymes. FMO3 and FMO5 are two major FMOs that are highly expressed 

in the liver. The study was performed to determine regulated expression of both 

enzymes by age, fructose, therapeutic agents and endoplasmic reticulum (ER) 

stressors. The expression of both enzymes in 33 extrahepatic tissues was determined 

as well. 

 

Methods The tissue distribution of FMO3 and FMO5 was determined by 

immunohistochemistry. For age-related expression, livers were collected and divided 

into 5 age groups: I (< 31 days), II (35-70 days), III (89-119 days), IV (123-198 days), 

and V (>18 years of age). These samples were analyzed for the expression of FMO3 

and FMO5 by RT-qPCR and Western blotting. For the regulated expression by other 

factors, human primary hepatocytes were treated with a chemical and the expression 

was determined. The reporter activity was determined in response to these chemicals. 

 

Results FMO3 and FMO5 were strongly stained in the liver but exhibited overlapping 

and distinct expression patterns in extrahepatic tissues. Both enzymes showed a 

neonatal surge in mRNA expression and were correlated well with age during the first 

7 months after birth. The mRNA expression of both enzymes was suppressed by ER 

stressors and induced by the steatotic agent valporic acid. Similar changes of the 

reporter activities were observed with an exception of fructose, a sugar associated with 



 

 

 

metabolic diseases. This carbohydrate induced FMO5 mRNA but did not activate the 

FMO5 reporter. 

 

Conclusions The expression of FMO3 and FMO5 varies depending on a tissue, age, 

ER stress and nutritional status. Of significance are the abundant presence of FMO3 

and FMO5 in some endocrine cells and regulated expression by ER-stressors and 

fructose. These observations conclude that FMO3 and FMO5, in addition to 

xenobiotic metabolism, are involved in pathogenesis, particularly related to metabolic 

diseases. 
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the requirements of Biomedical and Pharmaceutical Sciences, College of Pharmacy, 
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ABSTRACT 

Background: Flavin-containing monooxygenases (FMO) constitute a class of 

oxidative enzymes. FMO3 and FMO5 are two major FMOs that are highly expressed 

in the liver. The study was performed to determine regulated expression of both 

enzymes by age, fructose, therapeutic agents and endoplasmic reticulum (ER) 

stressors. The expression of both enzymes in 33 extrahepatic tissues was determined 

as well. 

 

Methods: The tissue distribution of FMO3 and FMO5 was determined by 

immunohistochemistry. For age-related expression, livers were collected and divided 

into 5 age groups: I (< 31 days), II (35-70 days), III (89-119 days), IV (123-198 days), 

and V (>18 years of age). These samples were analyzed for the expression of FMO3 

and FMO5 by RT-qPCR and Western blotting. For the regulated expression by other 

factors, human primary hepatocytes were treated with a chemical and the expression 

was determined. The reporter activity was determined in response to these chemicals. 

 

Results: FMO3 and FMO5 were strongly stained in the liver but exhibited overlapping 

and distinct expression patterns in extrahepatic tissues. Both enzymes showed a 

neonatal surge in mRNA expression and were correlated well with age during the first 

7 months after birth. The mRNA expression of both enzymes was suppressed by ER 

stressors and induced by the steatotic agent valporic acid. Similar changes of the 
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reporter activities were observed with an exception of fructose, a sugar associated with 

metabolic diseases. This carbohydrate induced FMO5 mRNA but did not activate the 

FMO5 reporter. 

 

Conclusions: The expression of FMO3 and FMO5 varies depending on a tissue, age, 

ER stress and nutritional status. Of significance are the abundant presence of FMO3 

and FMO5 in some endocrine cells and regulated expression by ER-stressors and 

fructose. These observations conclude that FMO3 and FMO5, in addition to 

xenobiotic metabolism, are involved in pathogenesis, particularly related to metabolic 

diseases. 
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INTRODUCTION 

Flavin-containing monooxygenases (FMOs, EC 1.14.13.8) constitute a class of major 

oxidative enzymes (Petriello et al., 2017; Phillips and Shephard, 2017; Rossner et al., 

2017). Traditionally, these enzymes are established to play important roles in the 

metabolism and detoxification of drugs, pesticides and dietary compounds (Phillips 

and Shephard, 2017). Emerging evidence, nonetheless, has linked their functionality to 

many pathophysiologic processes including metabolic diseases and aging (Petriello et 

al., 2017; Rossner et al., 2017). Without exceptions, all mammalian species examined 

express multiple forms (Hines et al., 2002; Phillips et al., 1995; Hernandez et al., 

2004; Lattard et al., 2004; Hao et al., 2009). The human genome encodes a total of 11 

FMO genes but only 5 of them produce catalytic proteins, which are commonly 

referred to as FMO1, 2, 3, 4 and 5, respectively (Hernandez et al., 2004). The first 4 

genes are closely clustered in the chromosome 1 (Hernandez et al., 2004; Hao et al., 

2009). While the FMO5 gene is also located in chromosome 1, but it is 20 Mb away 

from others. Interestingly, other species have similar genomic arrangement among 

these FMO genes. For example, the mouse genome has 4 Fmo genes (1 to 4) closely 

clustered in chromosome 1, whereas the Fmo5 gene is located in chromosome 3 

(Hernandez et al., 2004). In addition, many FMO genes produce alternative splicing 

transcripts, further diversifying the expression species (Lattard et al., 2004; Rossner et 

al., 2017). 
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FMO enzymes, like many other drug-metabolizing enzymes, have a broad tissue 

distribution. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) 

transcripts for all 5 FMOs among 23 different tissues with few exceptions (Nishimura 

and Naito, 2006). No FMO1 transcript is present in leukocytes, nor is FMO2 mRNA 

in leukocytes and placenta. Among tissues that expression FMO mRNA, the relative 

abundance on FMO1 mRNA varies by as much as 6000-fold between the liver and 

bone marrow (Nishimura and Naito, 2006). While the liver generally expresses the 

highest abundant drug-metabolizing enzymes, other organs but not the liver express 

the highest mRNA of FMO1, FMO2 and FMO4. The kidney has the most abundant 

mRNA expression of FMO1 and FMO4; the lung has the most abundant mRNA 

expression of FMO2. The tissue expression patterns are largely similar cross species 

but there are exceptions. For example, Western blotting detects higher expression of 

FMO3 in the kidney than liver (Novick et al., 2009). The cellular localization shows 

species-differences as well. For example, rat FMO3 is predominately expressed in the 

perivenous region whereas mouse Fmo3 in the periportal region (Janmohamed et al., 

2004; Novick et al., 2009). The cellular localization of human FMOs remains largely 

unknown. 

 

 

The expression of FMOs is regulated by xenobiotics and inflammatory stimuli (Chung 

et al., 1997; Zhang et al., 2009; Celius et al., 2010; Rudraiah et al., 2014). Rifampicin, 

a prototypical activator of the pregnane X receptor in human, has been shown to 

induce FMO4 and FMO5 (Rae et al., 2001). Extracts from phellinus baumii, a widely 
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used medicinal plant in Asia, have been shown to induce mouse Fmo2, Fmo3 and 

Fmo4 but not Fmo1 and Fmo5 (Sainkhuu et al., 2016). Interestingly, the induction of 

FMO mRNA may not lead to significant induction of FMO protein (Celius et al., 

2010; Rudraiah et al., 2014). The environmental chemical 3-methylcholanthrene, for 

example, induces Fmo3 mRNA by as much as 30-fold but only modest increase 

occurs at Fmo3 protein (Celius et al., 2010). Furthermore, inflammatory stimuli 

regulate the expression of FMOs but the regulatory effect varies depending on an 

inflammatory model and an FMO gene as well as a strain (Zhang et al., 2009). For 

example, the immunostimulant lipopolysaccharide downregulates fmo1 but not fmo4. 

The downregulation in HeoU mice is greater than that in HeJ mice. Consistent with an 

established role of FMOs in detoxification, overexpression of FMOs protects against 

endoplasmic reticulum (ER) stress, a common initiator for many pathological 

processes (Liao et al., 2016). 

 

In addition to xenobiotics and inflammatory stimuli, many other factors have been 

shown to regulate the expression of FMOs including age, sex and hormones (Dolphin 

et al., 1996; Cherrington et al., 1998; Ripp et al., 1998; Koukouritaki et al., 2002; 

Larsen-Su et al., 2002; Zhang and Cashman, 2004; Hines, 2006;). In humans, FMO1 

is considered to be a fetal liver enzyme and the expression of FMO1 mRNA and 

protein decreases with gestational days (Dolphin et al., 1996; Koukouritaki et al., 

2002). In contrast, FMO3 is expressed higher in adult livers at both mRNA and 

protein levels (Dolphin et al., 1996; Koukouritaki et al., 2002). In mice, high levels of 
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FMO1 and FMO5 are present in postnatal and adult animals (Janmohamed et al., 

2004). In contrast, FMO2, 3 and 4 exhibit age-dependent increases with FMO3 being 

expressed the highest. Several FMOs exhibit sex-preferable expression (Janmohamed 

et al., 2004). For example, female mice express higher liver Fmo1 than male, but the 

opposite is true in the kidney. Consistent with sex-preferable expression, sex 

hormones have been shown to regulate the expression of FMOs. The female sex 

hormone 17β-estradiol, for example, decreases FMO activity by 56% in cultured rat 

hepatocytes (Coecke et al., 1998). In male mice, castration dramatically increases 

FMO3 expression, and testosterone replacement to castrated mice results in ablation of 

FMO3 expression (Falls et al., 1997). 

 

 

The opposing effects on FMO expression by male and female hormones are also 

observed with other pairs of counterbalancing hormones such as glucagon and insulin. 

In mice, the glucose-elevating hormone glucagon induces all Fmos with Fmo3 being 

induced by as many as 14-fold (Miao et al., 2015). In contrast, insulin suppresses the 

expression of these enzymes by 30-69%. In streptozotocin-induced diabetic rats, 

insulin treatment reverses diabetic-induced elevation of FMO1 activity (Borbás et al., 

2006). An early microarray study reports a 59% decrease of FMO5 mRNA in Type 2 

diabetic patients (Takamura et al., 2004). In support of critical roles of Fmos in 

metabolic homeostasis, mice deficient in one of Fmos through knockout or 

knockdown exhibit a lean phenotype with decreased body weight and/or reduced 

adiposity (Shephard and Phillips, 2010; Veeravalli et al., 2014; Schugar et al., 2017; 
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Scott et al., 2017). Consistent with the lean phenotype, these mice show favorable 

metabolic profiles including lower levels of plasma glucose, cholesterol and 

triglycerides. 

 

 

In this study, we used a comprehensive approach and investigated human FMO3 and 

FMO5 for their subcellular localization, age-related expression and regulated 

expression by ER stressors, fructose and xenobiotics. Both FMO3 and FMO5 were 

strongly present in the liver but exhibited overlapping and distinct expression patterns 

in extrahepatic tissues. Both enzymes showed a neonatal surge in mRNA expression 

and were correlated well with age during the first 7 months after birth. Both enzymes 

were suppressed by ER stressors and induced by the steatotic agent valporic acid. 

These observations conclude that FMO3 and FMO5, in addition to xenobiotic 

metabolism, are involved in pathogenesis, particularly related to metabolic diseases.
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MATERIALS AND METHODS 

Chemicals and reagents: Brefeldin A (BFA) and Hanks balanced salt solution were 

from Sigma (St. Louis, MO). Dulbecco’s modified eagle medium (DMEM) and 

Taqman probes were from Life Technology (Carlsbad, CA). The goat anti-rabbit IgG 

conjugated with horseradish peroxidase was from Pierce (Rockford, IL). Thapsigargin 

(THAP) was from R&D Systems (Minneapolis, MN). Nitrocellulose membranes were 

from Bio-Rad (Hercules, CA). Expression constructs and the FMO5 reporter were 

from OriGene Technologies Inc (Rockville, MD). Unless otherwise specified, all other 

reagents were purchased from ThermoFisher Scientific (Fair Lawn, NJ). 

 

Immunohistochemistry: Formalin-fixed paraffin-embedded (FFPE) array slides with a 

total of 33 tissues were purchased from Pantomics Inc (Richmond, CA). The slides 

were warmed up in 60°C oven for 60 min followed by deparaffinization and 

rehydration, essentially as described previously (Yan et al., 1995). The slides were 

then incubated in Dako Target Retrieval Solution (Agilent, Santa Clara, CA) in 

pressure cooker in microwave for 15 min and then cool for 30 min. The slides were 

washed 3 times (3 min/each) in distilled water and then incubated in Dako quenching 

reagent for 10 min at room temperature. The quenched slides were washed 3 times 

again and incubated at 4C with primary antibody (FMO3 or FMO5) or pre-immunized 

rabbit serum at a dilution of 1:1000 overnight. After 3 washings, the slides were 

incubated with Dako EnVision + Dual Link System-HRP secondary antibodies (anti-

rabbit) followed by 3 washings. The washed slides were incubated with substrate-

chromogen for 10 min. The reactions were stopped in distilled water and the slides 
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were once again washed 3 times. Thereafter, the slides were dehydrated and mounted 

in Cytosealtm 60 media. 

 

 

Liver RNA and S9 fractions: A total of 59 tissue samples were used in this study as 

described previously. Briefly, liver tissues were acquired primarily from the 

University of Maryland Brain and Tissue Bank for Developmental Disorders 

(Baltimore, MD). The samples were divided into several groups: I (1-31 days, n=12, 

Male/female= 6/6), II (35-70 days, n=13, M/F= 5/8), III (89- 119 days, n=10, M/F= 

7/3), IV (123-198 days, n=10, M/F=8/2) and IV (adult, n=14, M/F= 7/7). Isolation of 

total RNA from the liver tissues was described previously (Shi et al., 2011), and the 

quality was determined by electrophoresis. S9 fractions were prepared by differential 

centrifugation as described previously (Shi et al., 2011). The use of the human 

samples was approved by the Institutional Review Board. 

 

 

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western 

analysis: The mRNA levels were determined by RT-qPCR with TaqMan Gene 

Expression Assay (Applied Biosystems, Foster City, CA). The TaqMan assay 

identification numbers were: FMO3, Hs00199368_m1 (NM_001002294.2), FMO5: 

Hs00356233_m1 (NM_001461.3), and polymerase (RNA) II, Hs01108291_m1 

(NM_000937). All samples were analyzed in triplicate and the signals were 

normalized to polymerase (RNA) II and then expressed as relative levels of 
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mRNA. For Western analysis, S9 fractions (0.25 g) were resolved by 7.5% SDS-

PAGE in a mini-gel apparatus and transferred electrophoretically to nitrocellulose 

membranes. After nonspecific binding sites were blocked with 5 % non-fat milk, the 

blots were incubated with an antibody against FMO3, FMO5 or CES1. The primary 

antibodies were subsequently localized with goat anti-rabbit IgG conjugated with 

horseradish peroxidase, and horseradish peroxidase activity was detected with a 

chemiluminescent kit (Super Signal West Pico). The chemiluminescent signals were 

captured by an ECL Imager (Thermo Fisher Scientific, Fair Lawn, NJ) and the relative 

intensities were quantified by the ECL Imager Analysis Software. 

 

Culture and treatment of primary hepatocytes: Plated human primary hepatocytes were 

obtained from the Liver Tissues Procurement and Distribution System (University of 

Minnesota). Fresh medium (free serum) was added to each well, and the cultures were 

returned to the humidified chamber. Hepatocytes were cultured in the same medium 

for overnight and treated with a chemical at clinically relevant concentrations for 24 h. 

Treated hepatocytes were collected and total RNA was isolated. The expression of 

FMO3 and FMO5 was determined by RT-qPCR. 

 

Reporter constructs and co-transfection assays: The FMO3 promoter reporter (-4940 

FMO3Luc) was a gift of Ronald N. Hines of the National Health and Environmental 

Effects Research Laboratory, and the FMO5 promoter reporter (-1082FMO5Luc) was 

purchased from OriGene Technologies Inc. To determine the reporter activities, co-

transfection of Huh7 cells was performed. Transfection mixtures contained 100 ng of a 
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reporter plasmid and 0.2 ng of CMV Renilla luciferase plasmid. Cells were transfected 

for 12 h and the medium was replaced with fresh medium supplemented with 1% fetal 

bovine serum. The treatment lasted for 24 h and the cells were washed once with 

phosphate buffered saline and collected by scraping. The reporter enzyme activities 

were assayed with a Dual-Luciferase Reporter Assay System as described 

previously (Yang et al., 2011). 

 

Other analyses: Protein concentrations were determined with BCA assay (Pierce) 

based on albumin standard. The preparation of antibody against CES1 was described 

elsewhere (Zhu et al., 2000). Data are presented as mean SD of at least three separate 

experiments, except where results of blots are shown in which case a representative 

experiment is depicted in the figures. Statistical analyses were performed with SPSS-

PASW Statistics 18. Significant differences were tested according to Spearman for 

correlation or One-way ANOVA followed by a DUNCAN’s test for comparison of 

means. In all cases, significant differences were observed when p values were less 

than 0.05. 

 

RESULTS 

Tissue distribution and cellular localization   The focus of this study is on FMO3 

and FMO5, because they are major FMO enzymes in human liver (Phillips and 

Shephard, 2017). An early study detected the presence of FMO3 and FMO5 

transcripts in a wide range of tissues (Nishimura and Naito, 2006). In this study, we 

initially tested whether FMO3 and FMO5 proteins have a broad tissue distribution and 
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whether they are localized in certain cell populations in a tissue. 

Immunohistochemical staining was performed with tissue arrays (33 tissues). As 

shown Fig. 1, FOM3 was strongly stained in the liver and adrenal; moderately in the 

lung, brain cortex, spinal cord, thyroid, urinary bladder and testis; and slightly in the 

small intestine, pituitary, kidney, and ureter. In the liver, FMO3 was stained the most 

between central vein and portal triad. All staining was detected in the cytoplasm of 

hepatocytes. Hepatocytes surrounding the central vein was less stained. No staining 

was detected in the periportal area including bile ducts. In the adrenal gland, strong 

staining was restricted to the medullar with no staining of the cortex. In addition, 

moderate staining was detected in some of the pneumocytes of the lung, the colloid 

and follicular cells of the thyroid and spermatocytes of the testis. Slight staining was 

detected in some of the proximal tubes of the kidney. Interestingly, 

no staining was detected in the duodenum, colon and parathyroid gland. Table I 

summarizes the immunohistochemical staining of FMO3. 

 

FMO5, like FMO3, was stained strongly in the liver. Strong FMO5 staining was also 

detected in the parathyroid gland. In addition, FMO5 was stained moderately in the 

stomach and colon; and slightly in the small intestine, lung, pituitary, brain cortex, 

kidney, bladder, heart, testis, skeletal muscle and ureter. In contrast to FMO3 in the 

liver, FMO5 was stained across the entire hepatic acinus. In the parathyroid gland, 

strong staining was detected in oxyphil cells and moderate staining in chief cells. In 

the duodenum and colon, slight or moderate staining of FMO5 was detected in the 

epithelium, contrasting strikingly to no FMO3 staining in the digestive tract (Fig. 1, 
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Table I). In the adrenal, FMO5 was stained in the cortex but not medullar as seen with 

FMO3. In the kidney, FMO5 was stained in both proximal and distal tubules. Once 

again, Table I shows the relative staining intensity and cellular localization of 

immunohistochemistry. 

 

 

A surge in FMO3 and FMO5 mRNA expression during the neonatal period   It 

has been reported that the level of FMO3 mRNA is relatively low in pediatric livers 

compared with adult counterparts and the level of FMO3 protein is low in the liver 

during the first month of life and increases sharply thereafter (Koukouritaki et al., 

2002). The level of FMO5 mRNA, on the other hand, is slightly higher in pediatric 

liver, but the ontogenic expression of FMO5 protein remains to be determined. We 

previously reported that the expression of CES1 exhibited a neonatal surge in mRNA 

and protein expression between the first and second month after birth (Shi et al., 

2011). In this study, we tested whether the expression of FMO3 and FMO5 (mRNA 

and protein) has a neonatal surge as seen with CES1. Specifically, a large number of 

individual liver tissues were tested from donors at an age of birth to 198 days. Based 

on the age distribution among the donors, samples were divided into several groups: I 

(< 31 days), II (35-70 days), III (89-119 days), and IV (123-198 days). For 

comparison, liver tissues from adults were analyzed. 

 

The expression was determined by RT-qPCR and Western blotting. As shown in Fig. 

2A, group I (1-31 days of age) expressed the lowest level of FMO3 mRNA, whereas 
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group V, the adult group, expressed the highest level of FMO3 mRNA. Group I 

expressed ~10% of the adult level. Groups II to IV, the other three pediatric groups, 

expressed much higher FMO3 mRNA levels and represented 66-76% of the adult 

level. More importantly, a 7-fold increase of FMO3 mRNA was detected between 

group I and II. Overall, the level of FMO3 mRNA was correlated significantly with 

age in the pediatric samples. With an exception of group 1, the protein expression of 

FMO3 was consistent with the level of the mRNA in other groups. Interestingly, two 

samples in group 1 had extremely higher levels of FMO3 protein, which contributed to 

the high abundance in the pooled samples (i.e., group 1). The level of FMO5 mRNA 

(Fig. 2B), likewise, showed a surge between group 1 and 2. Group 2, 3 and 4 

expressed comparable levels of mRNA, and the adult group expressed slightly lower 

levels of FMO5 mRNA. As seen with FMO3, FMO5 mRNA was correlated 

significantly with age. In addition, FMO5 protein expression was consistent with the 

corresponding mRNA level with an exception of group 1. Once again, the very two 

samples in this group expressed a much higher FMO5 protein level than other samples 

in this group. 

 

Regulated expression of FMO3 and FMO5 by ER stressors Both FMO3 and 

FMO5 have been implicated in metabolic homeostasis (Gonzalez Malagon et al., 

2015; Miao et al., 2015). ER stress is a common pathogenic theme for many diseases 

including metabolic disorders (Hetz and Saxena, 2017; Sozen and Ozer, 2017; Urra et 

al., 2017). On the other hand, it was reported that overexpression of FMO3 protected 

against ER-stress (Liao et al., 2016). We next tested whether ER-stress alters the 
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expression of FMO3 and FMO5. To have a broader implication, valproic acid and 

fructose were included. Valproic acid is a widely used antiepileptic agents with strong 

steatotic activity (Bai et al., 2017), whereas fructose consumption is closely associated 

with the development of metabolic disorders (Bidwell, 2017). Human primary 

hepatocytes were treated with these chemicals at clinically relevant concentrations and 

the expression of FMO3 and FMO5 was determined. As shown in Fig. 3A, THAP and 

BFA, profoundly downregulated FMO3 and FMO5 mRNA expression by as much as 

67%. Z-Guggulsterone, a lipid-lowering agent, suppressed FMO3 and FMO5 mRNA 

expression with FMO3 mRNA decreased to a greater extent (62 and 18%). Valproic 

acid (Val) induced the expression of FMO3 and FMO5 by 1.3 and 2.6-fold, 

respectively. Fructose (Fruct) differentially regulated the expression of FMO3 and 

FMO5. This dietary component suppressed FMO3 mRNA expression by 27%, 

whereas induced FMO5 mRNA expression by 127% (Fig. 3A). 

 

 

The altered mRNA expression of FMO3 and FMO5 pointed to two levels of 

regulation: mRNA stability, transcription or both. We therefore tested whether 

transcriptional regulation is involved. Promoter reporters were tested for their response 

to these chemicals. As shown in Fig. 3B, valproic acid (Val) markedly increased the 

activities of both reporters with the FMO5 reporter being increased 25% higher. In 

contrast, BFA repressed the activities of both reporters with the FMO5 reporter being 

repressed to a greater extent. THAP, on the other hand, repressed the FMO5 reporter 
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by as much as 85%. However, this ER-stressor showed little repressive activity toward 

the FMO3 reporter. 
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DISCUSSION 

Endogenous and xenobiotic compounds undergo phase I, phase II and phase III 

biotransformation (Almazroo et al., 2016). While phase III reactions are mediated by 

transporters, Phase I and phase II reactions are achieved by enzymes. Phase I reactions 

add or expose functional groups such as hydroxyl moieties, which serve the sites for 

phase II reactions. Nevertheless, oxidative metabolism represents the major phase I 

reactions, primarily catalyzed by P450s and FMOs (Strolin Benedetti, 2011). The 

P450 system has been well characterized. In contrast, the FMO system remains to be 

fully characterized. In this study, we have shown that FMO3 and FMO5, two major 

FMOs, have overlapping and tissue-differential expression. We have also shown that 

the mRNA expression of both FMO3 and FMO5 exhibited a neonatal surge between 

the first and second month after birth. The expression of FMO3 and FMO5 was 

regulated by ER stress and dietary component and xenobiotics. The regulated 

expression varied depending on an enzyme (i.e., FMO3 versus FMO5) and a 

compound. 

 

 

The cellular localization of FMO3 and FMO5 in the liver may have special 

implications in pharmacological interactions and zone-specific tissue toxicity. In this 

study, we have shown that FMO3 was stained the most between central vein and 

portal triad. Hepatocytes surrounding the central vein was less stained (Fig. 1, Table 

I). No staining was detected in the periportal area including bile ducts. This 
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localization differs from its rodent counterparts. Rat FMO3 is present around the 

perivenous region (centrilobular) gradually decreasing toward the periportal area, but 

the opposite is true with mouse Fmo3 (Janmohamed et al., 2004; Novick et al., 2009). 

FMO5, on the other hand, was stained across the entire hepatic acinus. Cellular 

localization of FMOs may alter therapeutic efficacy. For example, tamoxifen, a widely 

used anticancer agent, undergoes metabolism by FMO3 and CYP enzymes such as 

CYP3A4 (Gjerde et al., 2010). Importantly, metabolites produced by CYP3A4 but not 

FMO3 are therapeutically active. Based on the cellular localization, FMO3 is exposed 

to higher concentrations of tamoxifen upon oral administration than CYP3A4. It is 

conceivable that such competition leads to reduced efficacy, although the relative 

affinity toward tamoxifen is a critical factor. 

 

While FMOs are generally involved in xenobiotic metabolism, the cellular localization 

of FMO3 and FMO5 also points to physiological roles, particularly related to 

endocrinology. In this study, we have shown that FMO3 and FMO5 were strongly or 

moderately stained in the adrenal gland, parathyroid gland and/or thyroid gland (Fig. 

1). In the adrenal gland, FMO3 was strongly stained in the medullar, the main region 

that produces the catecholamines adrenaline and noradrenaline (Ehrhart-Bornstein and 

Bornstein, 2008). It remains to be determined whether FMO3 is involved in the 

biosynthesis and secretion of these hormones. FMO3 is nevertheless established to 

metabolize the catecholamine releasing agent tyramine (Lin and Cashman, 1997). The 

substantial staining of FMO3 in the follicular cells of the thyroid gland linked the 

functionality of this enzyme to the synthesis and secretion of thyroid hormones. 
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Interestingly, FMO5 was strongly stained in chief and oxyphil cells, two unique cell 

populations in the parathyroid gland. Chief cells are the source for parathyroid 

hormone, whereas the functionality of oxyphil cells remain to be elucidated (Howson 

et al., 2015). 

 

 

The precise roles of the abundant presence of FMO3 and/or FMO5 in the endocrine 

cells remain to be determined. One of the functional features shared by these cells is 

their high secretory capacity. FMO enzymes are abundant in the ER and present in the 

ER/Golgi transport vesicles (Hay et al., 1997). It is conceivable that FMO enzymes 

function as trafficking proteins for facilitated secretion of hormones (e.g., parathyroid 

hormone). These hormones, potentially regulated by FMOs for secretion, are all 

established to maintain energy balance and metabolic homeostasis (Hay et al., 1997; 

Lenders and Eisenhofer, 2014; Hannoush and Weiss, 2017). Interestingly, it has been 

increasingly recognized that FMO enzymes have broad impact on glucose, lipid 

metabolism and atherosclerosis. Indeed, FMO5 knockout mice show a lean phenotype 

with less weight gain and lower plasma glucose and cholesterol concentrations 

(Shephard and Phillips, 2010; Veeravalli et al., 2014; Schugar et al., 2017; Scott et al., 

2017). The metabolic effect of FMO5 is more evident in aged animals (Gonzalez 

Malagon et al., 2015). Likewise, knockdown of Fmo3 decreases plasma lipids, glucose 

and insulin (Miao et al., 2015; Shih et al., 2015). Conversely, overexpression of Fmo3 

delivers the opposite effect. It has been shown that the overexpression of this enzyme 

increases the conversion of trimethylamine to trimethylamine-N-oxide, a metabolite 
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linked to metabolic diseases (Oellgaard et al., 2017; Subramaniam and Fletcher, 

2017). 

 

The involvement of FMOs in metabolic homeostasis is confounded by metabolic 

conditions that regulate the expression of these enzymes. It has been reported that 

diabetic condition induced FMOs and insulin suppressed them (Takamura et al., 2004; 

Borbás et al., 2006; Miao et al., 2015). It remains to be determined how elevation of 

blood glucose (i.e., diabetic condition) interplays with insulin resistance (elevated 

insulin) in terms of regulated FMO expression. In this study, we have shown that 

valproic acid induced both FMO3 and FMO5 and activated their promoters (Fig. 

3). Interestingly, this antiepileptic is known to induce liver steatosis (Bai et al., 2017) 

and surprisingly reduce insulin resistance in rats (Kan et al., 2016). Mice deficient in 

Fmo3 or Fmo5 showed lean phenotypes with favorable lipid and sugar profiles, and 

transgenic expression of Fmo3 had the opposite effect (Shephard and Phillips, 2010; 

Veeravalli et al., 2014; Shih et al., 2015; Schugar et al., 2017; Scott et al., 2017). It 

appears that induction of FMO3 and FMO5 by valproic acid is a likely contributing to 

hepatic steatosis. Interestingly, fructose induced FMO5 mRNA but did not activate the 

FMO5 reporter (Fig. 3), suggesting that increased stability of FMO5 mRNA is 

involved in the mRNA induction. Given the fact that valproic acid induced FMO5 

mRNA and activated the FMO5 reporter, induced expression of FMO5 by fructose 

and valproic acid was achieved through distinct mechanisms. 
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It has been reported that the expression of FMOs is ontogenically regulated and our 

age-related expression study provides additional important findings regarding 

developmental regulation (Dolphin et al., 1996; Janmohamed et al., 2002; 

Koukouritaki et al., 2002). The mRNA levels of both FMO3 an FMO5 showed a 

postnatal surge (Fig. 2), as seen in many other drug-metabolizing enzymes. The adult 

group, compared with the pediatric groups (groups 2 to 4), expressed higher levels of 

FMO3 mRNA but surprisingly lower levels of FMO5 mRNA, although the changes 

did not reach the level of statistical significance. For the levels of protein expression, 

both FMO3 and FMO5 exhibited age-related increases with an exception of the 

postnatal group (group 1). As matter of fact, this group expressed slightly higher 

FMO3 protein than and comparable FMO5 protein to the adult group. Western 

blotting with individual samples detected unusually high protein expression of two 

samples. These two donors were premature babies with congenital heart defect. These 

two samples, nonetheless, had comparable levels of RNA. These findings collectively 

suggest that the expression of FMO3 and FMO5 is regulated through multiple 

mechanisms. It should be noted that an early study reported a postnatal surge of FMO3 

protein (Koukouritaki et al., 2002). 

 

In summary, our work points to several important conclusions. First, both FMO3 and 

FMO5 are abundant proteins in hepatocytes, pointing to their roles in xenobiotic 

metabolism and maintenance of energy balance. Second, endocrine cells producing 

metabolically related hormones have a strong presence of FMO3, FMO5 or both. 

FMO enzymes are localized in the secretory pathway from the ER to Golgi complex, 
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suggesting that FMO3 and FMO5 are involved in hormonal secretion. Third, the 

expression of both FMOs is regulated by age, xenobiotics and nutritional components, 

and the regulation is achieved through multiple mechanisms. In addition, the catalytic 

action of FMO3 produces reactive oxygen species, which likely cause ER stress. It 

is conceivable that these enzymes likely regulate their own expression by products 

they produce. 
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LEGENDS FOR FIGURES 

 

Figure 1. Immunohistochemical analysis FFPE array slides were warmed up in 60°

C oven for 60 min followed by deparaffinization and rehydration. The slides were then 

incubated in Dako Target Retrieval Solution in pressure cooker in microwave for 15 

min and then cool for 30 min. The slides were washed 3 times and then incubated in 

Dako quenching reagent for 10 min at room temperature. The quenched slides were 

washed 3 times again and incubated at 4°C with primary antibody (FMO3 or FMO5) 

or pre-immunized rabbit serum at a dilution of 1:1000 overnight. After 3 washings, the 

slides were incubated with Dako EnVision + Dual Link System-HRP secondary 

antibodies (anti-rabbit) followed by 3 washings. The washed slides were incubated 

with substrate-chromogen for 10 min. The reactions were stopped and the slides were 

dehydrated and mounted in Cytosealtm 60 media. 

 

Figure 2. Expression of FMO3 and FMO5 as a function of age  

(A) Expression of FMO3 Total RNAs were subjected to RT-qPCR analysis for the 

level of FMO3 mRNA by a Taqman probe. The signals from each target were 

normalized based on the signal from Pol II and expressed as relative levels among all 

samples. The data are presented as mean SD, and the levels of FMO3 mRNA were 

correlated with age (days). An asterisk symbol indicates Statistical significance for 

the correlation (p < 0.05). To determine the expression of FMO3 protein, S9 fractions 

(0.25 g) were resolved by 7.5% SDS-PAGE and transferred electrophoretically to 

nitrocellulose membranes. The blots were incubated with an antibody against FMO3 

and re-probed with an antibody to CES1. The signal was captured by MyCEL Imager. 
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The membrane was stained with 0.1% Ponceau S to verify the equal loading. (B) 

Expression of FMO5 Once again, the expression of FMO5 was determined by RT-

qPCR and Western blotting. The data are presented as mean SD, and the levels of 

FMO5 mRNA were correlated with age (days). An asterisk symbol indicates 

Statistical significance for the correlation (p < 0.05). 

 

Figure 3. Regulated expression of FMO3 and FMO5 and determination of 

reporter activity 

(A) Regulated expression of FMO3 and FMO5 Human primary hepatocytes (n=6) 

were cultured and treated with brefeldin A (BFA, 2 μM), thapsigargin (THAP, 2 μM) 

and, Z-guggulsterone (Gugg, 10μM), Valporic acid (0.5 mM), Fructose (Fruct, 25 

mM) or vehicle for 24 h. The level of FMO3 or FMO5 mRNA was determined by RT-

qPCR with Taqman probes. (B) Determination of reporter activity. Cells (Huh7) were 

transfected with a reporter construct (50 ng) and the pRL-null Renilla (5 ng) for 24 h 

and then treated with a chemical at the same concentrations as described for the 

regulated expression experiment. The transfected cells were cultured for another 24 h, 

collected with PBS and resuspended in passive lysis buffer. The reporter activities 

were assayed with a Dual-Luciferase Reporter Assay System. The firefly 

luminescence signal was normalized based on the Renilla luminescence signal. 

Luciferase activities were determined with a Dual-Luciferase Reporter Assay System 

and the signals were expressed as percentages of the normalized luciferase activity of 

transfected cells treated with the vehicle. 
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