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ABSTRACT 

Diatoms are important ecologic indicators whose assemblage, chemistry, and valve 

features are reflections of their original environmental conditions. Fossil diatom 

biometrics are an emerging measurement introduced to supplement our understanding 

of the hydrographic history of the Southern Ocean. Here, we present a novel method to 

simultaneously measure fossil diatom assemblage and biometrics using a FlowCam, an 

instrument combining features from a flow cytometer and microscopic camera. It offers, 

computerized automatic identification to supplement manual, visual identifications, 

leading to increased counts and biometric measurements. To assess the viability of the 

FlowCam as a paleoceanographic tool, a FlowCam measured data set was compared to 

previously published diatom assemblage and biometric data generated by traditional 

microscopic methods from a Southern Ocean sediment core. Diatom assemblages and 

the biometric lengths of Fragilariopsis kerguelensis measured with the FlowCam 

showed similar trends to those produced by traditional microscopy. The biggest 

difference was the relative occurrence of Eucampia antarctica, which was observed 

more frequently using the FlowCam. The high biometric data output from the FlowCam 

was used to determine an empirically derived, minimum sample count and confidence 

intervals for future best practices. 
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PREFACE 

This document is in Manuscript Format and is intended for publication in 

Paleoceanography.   
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2 

 

INTRODUCTION 

 

Diatoms are a ubiquitous and diverse group of phytoplankton that play a key role 

in marine carbon, nitrogen, and iron biogeochemical cycles, serving both as a source 

and loss term (Sarthou et al., 2005; Buesseler, 1998). South of the Antarctic Polar 

Front, diatoms are the main primary producer and important carriers of carbon and 

dissolved silica into the deep ocean (Singer and Shemesh, 1995; Cortese and 

Gersonde, 2007). The biological exchange of nutrients is an important factor in diatom 

growth dynamics and ultimately, sequestration of atmospheric carbon by the ocean 

(Cortese and Gersonde, 2007). In turn, consumption of nutrients by diatoms in the 

Southern Ocean has widespread impacts on the global nutrient distribution related to 

subsurface water masses formed in the Southern Ocean (Sarmiento et al., 2004; 

Cortese and Gersonde, 2007). While some diatoms are cosmopolitan in nature, many 

diatom species are endemic to specific ranges of environmental conditions including 

temperature, salinity, sea ice presence, and nutrient availability. As a consequence of 

these narrow ecological preferences, diatom assemblages are used to characterize the 

physical properties in which the community lived (Cermeño and Falkowski, 2009; 

Baas-Becking, 1934; Zielinski and Gersonde, 1997). The diatom fossil record of the 

Southern Ocean is an excellent environmental archive of major climatic and physical 

changes over time (Burckle and Cooke, 1983).  

Across the Southern Ocean, the biogeographic distribution of many polar species 

are restricted by the temperature and salinity gradients of oceanographic fronts, the sea 

ice edge, and regions of heavy mixing or relatively stratified water (Zielinski and 
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Gersonde, 1997). Over glacial time scales, fluctuating limits on species extent are 

manifested as variations in the diatom assemblage. Despite the fact that assemblage 

composition is altered during deposition in the sediment, through dissolution of 

specific groups of diatoms, the remaining fossil assemblage and its chemistry are 

representative of surface hydrology (Pichon et al., 1992; Crosta et al., 2005; Zielinski 

and Gersonde, 1997). Fossil diatom assemblages provide an excellent first order 

assessment of environmental conditions and when combined with geochemical 

methods, they are likely to improve the quantitative nature of reconstructions related 

to nutrient dynamics as well. Emerging biogeochemical studies of nitrogen, carbon, 

and silicon are using diatom frustule associated stable isotopes to understand the 

degree of nutrient consumption over time (Singer and Shemesh., 1995; Sigman et al., 

1999; Robinson et al., 2004; De la Rocha et al., 1997; Popp et al., 1999). In the case of 

carbon and nitrogen, the organic matrix is thought to be naturally protected from 

diagenetic processes by the siliceous biomineral surrounding it (Singer and Shemesh., 

1995; Sigman et al., 1999; Robinson et al., 2004; De la Rocha et al., 1997; Popp et al., 

1999). Assemblage is needed for these studies to account for difference in how 

individual species contribution record the isotopic signature of the water in which they 

grew (i.e. degree of fractionation) (De la Rocha et al., 1997; Des Combes et al., 2008; 

Horn et al., 2011A; Sutton et al., 2011; Sutton et al., 2013; Studer et al., 2015). 

Because size is an important factor in explaining variations in the biogeochemical 

parameters of diatoms (Sarthou et al. 2005), it should be beneficial to compare the 

volumetric contributions, as opposed to simple counts, to evaluate the biogeochemical 

contribution of diatom species.  
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The measurement of a diatom’s shape and size, known as biometrics, is a recently 

developed tool for environmental reconstruction. Morphology appears to be directly 

related to the growth conditions and productivity of the diatom community (Crosta, 

2009; Burckle and McLaughlin, 1977). The size of diatoms, specifically their relative 

volume and surface area, can affect their internal chemical composition and their 

ability to uptake nutrients, making it an important consideration for understanding 

growth dynamics (Sarthou et al. 2005; Wilken et al., 2011). Diatoms have a two-phase 

reproductive cycle where asexual reproduction leads to a reduction of cell size and 

sexual reproduction restores size to its initial condition (Edlund & Stoermer, 1997). 

The initiation of sexual reproduction is thought to be related to primary production, 

occurring earlier when production rates are high (Burckle and McLaughlin, 1977; 

Assmy et al., 2006). A positive relationship has been found between diatom 

abundances and size (Cortese and Gersonde, 2007; Crosta, 2009), consistent with the 

idea that growth conditions affect both. Diatom size, in turn, becomes an important 

factor in predatory protection and interspecies competition both of which have effects 

on assemblage and bloom dynamics (Wilken et al., 2011). Biometric studies of 

Southern Ocean diatoms have been shown to complement assemblage information by 

improving estimates of frontal position, as a secondary stratigraphic indicator of 

glacial terminations, and as an additional constraint on nutrient characteristics of the 

opal belt (Cortese and Gersonde, 2007; Burcke and Cooke, 1983; Jouse et al., 1962). 

The biggest factor preventing biometrics from becoming a more commonly utilized 

parameter is the labor intensive nature of measuring biometrics using traditional 

microscopic methods. 
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The traditional method for categorizing fossil diatom assemblages, slide-based 

light microscopy, provides an excellent standard for the identification of diatom 

species despite some known biases (Moore, 1973; Law, 1983). The largest of these is 

not related to the microscopic method itself but rather from slide creation and covering 

(Battarbee, 1973; Moore, 1973; Drooger, 1978; Schrader and Gersonde, 1978; Law, 

1983). Counting bias can be influenced by size, depending on the conventions for 

counting fragmented particles, or by counting area (Law, 1983). By counting 300-400 

diatoms, species making up less than 5% of total may have very high error in their 

relative count (Drooger, 1978; Schrader and Gersonde, 1978). In addition to these 

biases, traditional microscopic identification is labor-intensive, limiting the quantity of 

data that can reasonably be collected during an experiment’s time frame. While this 

factor does not significantly impact studies designed to look at assemblage changes, 

where counts of 300 diatoms per sample are meaningful and relatively rapid (Schrader 

and Gersonde, 1978; Law, 1983; Zielinski and Gersonde, 1997), time consuming 

supplemental analyses, like diatom biometrics, are generally restricted for practicality. 

A significant drawback to using traditional microscopy for biometric analysis is that 

most studies limit measurements to only spatial changes, temporal changes, or a single 

species to accommodate the time requirement. In addition, as frustule based 

geochemical proxies are increasingly common, estimates of relative volumetric 

species contributions, rather than simple counts, become more important, increasing 

the need for comprehensive biometric data (Shukla et al., 2013). 

To address these limitations, we present a potentially complementary method to 

microscopy for assessing first order changes in a sedimentary diatom assemblage that 
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provides robust biometric data as well. This method is not meant to replace 

microscopy in evaluation of diatom assemblages but rather to provide a tool to 

estimate changes in the relative contributions of major groups and provide biometric 

data for each valve counted.  

 

STUDY LOCATION 

 

TN057-13 PC4, from a 1996 cruise of the R/V Thomas Thompson, is an Atlantic 

sector Southern Ocean sediment core that spans to the last glacial period. It was 

recovered from 53.1728°S, 5.1275°E, about 2° N of the modern sea-ice edge and near 

the southern boundary of the Antarctic Polar Front, an area where diatoms can provide 

critical paleoenvironmental data (Orsi et al, 1995; Gersonde et al., 1999). I chose 

TN057-13 PC4 for its established diatom stratigraphy (Crosta, personal 

communication, 2010; Nielson and Hodell, 2005), high resolution glacial/ interglacial 

age control and opal record (Anderson et al., 2009), available biometric data for two 

diatom species (Shukla et al., 2013; Shukla et al., 2016), and ancillary geochemical 

data (Horn et al., 2011A) which I compare to the FlowCam results.  
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METHODS 

 

A FlowCam is a fluid based imaging system akin to a flow cytometer developed 

to assist with identification and quantification of living plankton communities (Fluid 

Imaging Technologies, Inc., 2011). Individual particles pass in front of a magnifying 

lens and are photographed.  The magnification is limited such that the primary benefits 

of the FlowCam are the high numbers of particles counted and the spatial dimensions 

recorded in each photograph. The distinct forms are then categorized based on user 

defined machine learning. This approach gives us the tools to 1. identify large number 

of diatoms in a short time. 2. automatically categorize diatom groups and 3. perform 

biometric assessment synchronously with assemblage. I sought to create an operating 

procedure for FlowCam analysis of fossil diatoms that will prioritize high diatom 

counts, automatic identification, and biometric parameterization. I established a 

protocol for analyzing fossil material on the FlowCam, after which, I generated a 

downcore record of diatom assemblage and biometric information from sediment core 

TN057-13 PC4 (Figure 1). 

This methodology was developed using a FlowCam VS (Fluid Imaging 

Technologies, Inc.). A flowcell, composed of an optically clear glass sleeve fit with 

tubing on both ends, takes the place of the traditional glass slide. The flowcell is fixed 

vertically in the flow chamber, connecting to a sample funnel above and a syringe 

pump at it base. The shape of the flowcell restricts flow so that particles are forced 

along a single plane. As sample is pumped across the flowcell, the FlowCam, fitted 

with an optical magnifying lens, images its field of view at an assigned rate. The 
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software then isolates pictures of each “individual” particle it encounters. The 

FlowCam can distinguish particles in one of two ways; using a fluorescence sensor or 

as the brightness difference between trial images and calibrated background (Auto-

image mode). The FlowCam takes field of view pictures of the sample and the 

software crops particles based on their differences from the background. The 

FlowCam exports the cropped particles into two collage types; one of raw images and 

a second, binary collage which is used to calculate spatial measurements of each 

particle (Figure 2). Particle images are processed in VisualSpreadsheet, a FlowCam 

native program, where they are assigned spatial characteristics and can be organized 

into libraries. Particles are sorted into classifications based on associated spatial data. I 

used two spatial quantities, maximum and minimum feret diameter, to measure 

biometric properties of the diatoms. Many diatom species are flat along one axis and 

thereby, tend to orient in the flowcell so that images are taken perpendicular to the 

diatom’s valvar axis. Maximum and minimum feret distance measures length (apical 

axis) and width (transapical axis) respectively which are important parameters for 

defining the biometrics of pennate and centric diatoms (Figure 3).  

The FlowCam was operated with a X10 objective lens and illuminator with a 100 

µm flowcell and 1 ml syringe pump. This allowed an effective particle range of 5 – 

100 µm, though sometimes particles greater than 100 µm appeared because the 

flowcell’s opening size. Trials were performed under the default settings of Auto-

Image mode for this flowcell and pump size (which determines rate of flow and 

imaging rate) (Fluid Imaging Technologies, 2011) except for segmentation threshold 

(Supplementary C), which was set to a dark pixel value of 10, and flash duration, set 
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so that mean pixel intensity is between 160 and 180. Around 1 – 10 mg of 

disaggregated sample, in this case diatom frustules, physically isolated and chemically 

cleaned following Horn et al. (2011B), was placed in ~ 10 ml of Milli-Q water to form 

a liquid slurry which was continuously mixed to ensure homogeneity. Before 

introducing sample into the FlowCam, at least 0.5 ml of deionized water was 

introduced in the pipette tip holder. For each sample, a test trial was conducted to 

confirm adequate focus and particle concentration. If particles physically blocked the 

flowcell or if the particle density was such that the FlowCam could not digital isolate 

all particles, samples were diluted until these conditions were met. At the start of each 

sample trial, between 0.1 and 0.5 ml of sample slurry (depending on estimated 

concentration) was quickly pipetted into the FlowCam after imaging had begun. As 

fluid levels began to drop in the pipette holder, deionized water was layered on top of 

sample to allow the total volume of sample to be imaged. Trials were completed when 

particle images were no longer being captured. Flowcells were rinsed between trials to 

ensure no cross contamination. Samples were analyzed in replicate with a target of 

10,000 particles per sample collage. 

Initially, diatoms were sorted into three major groups: Centrics, Fragilariopsis 

spp. and Eucampia antarctica Identifications were largely based on Scott and 

Marchant’s Antarctic Marine Protists (2005). Ultimately, the assemblage counts and 

identifications were a combination of machine and operator effort. From test trials, 

libraries were compiled to teach the FlowCam the filter values needed to automatically 

distinguish diatom groups from each other. Libraries were made using at least 60 

particles for each group. Centrics and Fragilariopsis spp. were chosen as good 
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candidates for automatic analysis because both had characteristic shapes and size 

ranges and were different from each other (Fischer, 2002). Identifications are first 

made by VisualSpreadsheet and then by an operator who looks at both the machine 

identifications and the rest of the collage for unmarked diatoms. This method ensured 

that machine identifications are accurate and that whatever could not be identified by 

machine alone was counted. Diatom counts were defined as being identifiable to one 

of the three diatom groups and having greater than half of its frustule. In cases where 

silicoflagellates, Rhizosolenia, or radiolarians could be identified, they were placed in 

unique libraries but not used for subsequent assessments. After these initial 

identifications were made, each group was further broken down into species 

identifications when possible. For example, Fragilariopsis kerguelensis was separated 

from the rest of the Fragilariopsis spp.. After the assemblage classification was made, 

two biometric classifications were made using the Centrics group and Fragilariopsis 

kerguelensis, the largest and most abundant of the Fragilariopsis species. F. 

kerguelensis was chosen specifically from the Fragilariopsis spp. group in order to be 

a point of comparison with Shukla et al. (2013). Particles were only placed in the 

biometric classification if the diatom was unbroken and correctly outlined by the 

FlowCam. Quartiles, skewness and kurtosis were estimated for each sample 

distribution. 
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RESULTS 

 

Of the 27 replicate samples analyzed from TN057-13 PC4 imaged by the 

FlowCam, a total of almost 650,000 individual particles were measured, including 

over 39,700 identifiable diatoms. From these diatoms, over 28,000 could be measured 

for biometric parameters. The average trial produced around 750 identifiable diatoms, 

530 of which could be measured. Only 2 - 13% of FlowCam measured particles were 

identifiable as one of the three diatom taxon, likely because the samples were cleaned 

for geochemistry, a process which likely broke frustules significantly. The remainder 

of the particles were diatomaceous in nature, but were broken and technically 

unidentifiable. Because the amount of sample material entering the FlowCam was not 

directly measured, absolute diatom count is not meaningful as a metric to compare 

trials. Values were normalized by dividing the absolute diatom count of each group by 

the total number of diatoms counted (Figure 4). Some recognizable species, like 

Thalassiothrix antarctica, were not included in this assessment because it was difficult 

to judge valve endings. It was often possible to identify the diatoms to the species 

level, but problems prevented this from occurring in all cases. Centric identifications 

were made for Thalassiosira lentiginosa, Thalassiosira oliveriana, Thalassiosira 

gracilis, Porosira glacialis, and Asteromphalus spp. based on features in the valve 

face for some but not all countable centrics. Our ability to identify to the species level 

is hampered by (1) the low magnification of the lens; and (2) a lack of focus for nearly 

half of the centrics imaged. Blurry images stem from efforts to maintain a good 

outline, for spatial information, which with the often somewhat concave or convex 
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valves resulted in a loss of detail on the valve face. Species identification for 

Fragilariopsis spp. was possible for 3 species; F. kerguelensis, F. rhombica and F. 

curta/F. cylindrus (F. curta/F. cylindrus are considered difficult to tell apart with 

general microscopy). Although F. kerguelensis and F. curta/ F. cylindrus often imply 

opposite environmental conditions, Fragilariopsis spp. was kept as a single group for 

assemblage comparison because species other than F. kerguelensis were not 

consistently present in the assemblage.  

In all cases, Thalassiosira lentiginosa and Fragilariopsis kerguelensis dominated 

and were the major component of assemblage change. Using the three groups 

Fragilariopsis spp., centrics, and E. antarctica, the downcore assemblage changes 

showed two unique regimes: 1. Fragilariopsis spp. dominated (60% or greater), 

between 100 to 800 cm and 2. Fragilariopsis-poor, 800 cm and deeper, which 

contains lower Fragilariopsis spp. contribution (40 – 70%), higher centric 

contribution, and a peak in Eucampia antarctica (Figure 5). 

The number of diatoms available for biometric measurements is a function of the 

composition of the assemblage. While the average trial measured over 500 diatoms for 

biometric data, most measurements are from F. kerguelensis because it dominated the 

downcore abundance. Centric abundance contributed to 17% of total diatoms 

identified and its biometric measurements were available for ~15% of diatoms 

identified. By contrast, F. kerguelensis biometric measurements were available for 

56% of diatoms identified meaning that it has more measurements than centrics. It is 

noteworthy that the depths between 800 - 900 cm, the inferred glacial period, had the 

fewest identifiable diatoms in its ~10000-particle count, which limited the number of 
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diatoms that could be measured for biometrics (Figure 4). 71% of all diatoms 

identified could be measured for biometrics during this study, ranging from 42 – 81% 

in individual samples. The unmeasured diatoms were essentially large fragments, 

identifiable and countable but would give incorrect length/diameter measurements.  

Apical length was measured on F. kerguelensis individuals. Large variations in 

apical length occur, with the full range encompassing 11 – 92 µm. Despite this large 

range, the average sample apical length varied between 31 - 35 µm across the last 

glacial transition. Temporal trends of average F. kerguelensis length shows bimodal 

peaks at 10 and 15 kya (Figure 7). Before that, this size trend was relatively stable 

between 27.5 kya and 17.5 kya, around 34 µm. Centrics also showed a large range 

between 14 – 121 µm with its average diameter varying between 28 - 41 µm. The 

temporal trends in centrics seem to be opposite of F. kerguelensis, peaking when F. 

kerguelensis’ sizes are smallest and decreasing/ leveling off as F. kerguelensis size 

increase (Figure 8). 
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DISCUSSION 

ASSEMBLAGE COMPARISON ACROSS METHODOLOGIES 

 

In order to show that the FlowCam captures robust relative assemblage data and 

both accurate and precise biometric measurements, I compare the Crosta (personal 

communication, 2010)/ Nielson and Hodell (2005) and Shukla et al.’s (2013) 

microscopic data of species composition (Figure 5) and biometric measurements 

(Figure 7), respectively to the FlowCam data. One of the major features observed from 

previous studies of TN057-13 PC4 is a shift in the diatom assemblage across the last 

deglacial period, where T. lentigenosa gives way to F. kerguelensis upon deglaciation 

(Nielson and Hodell, 2005; Shukla et al. 2013; Shukla et al., 2016). Our results show 

that the relative diatom abundance determined with the FlowCam shifts similarly at 

this time (Figure 5). Both counting methods show that before the glacial termination, 

centrics and Fragilariopsis spp. contribute around 50% each, or near parity.  After the 

termination, Fragilariopsis spp. dominates the assemblage, contributing upwards of 

65% throughout the Holocene. The FlowCam shows an overall bias towards higher 

relative abundance of Fragilariopsis spp., with a greater proportional contribution 

than determined by microscopic counts.  This bias is likely because the FlowCam’s 5 - 

100 µm range might not encompass the full natural range of centrics at this location; it 

may exclude some large centrics that could have been counted in traditional 

microscopy. Despite this bias, the FlowCam provides a good first order assessment of 

the relationship between centric and pennate dominated assemblages.  
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A key difference in relative abundances between the FlowCam and the 

microscope counts is the much higher abundance of Eucampia antarctica recorded by 

the FlowCam relative to the other diatom taxon. While E. antarctica made up less than 

5% of the assemblage with traditional microscopy, its proportion in the FlowCam was 

as high as an order of magnitude greater, making up 36% of the assemblage during the 

deglacial transition (Figure 5). The trends of relative abundance are the same for both 

methods, but the overall contribution of E. antarctica is greater with the FlowCam. 

The difference in E. antarctica counts is probably a result of differences in the 

technique used to separate and concentrate diatom frustules. E. antarctica is more 

resistant to dissolution and breakage (Pichon et al., 1992) than many other diatom 

species and it would also appear more frequent if other species’ frustules were 

preferentially broken during the cleaning process, which includes gentle sonification. 

This FlowCam bias may potentially be exploitable because E. antarctica is an 

important ice edge (Zielinski and Gersonde, 1997; Burckle and Cooke, 1983; Jouse et 

al., 1962; Fryxell & Prasad, 1990), ice rafted debris (Zielinski and Gersonde, 1997), 

and stratigraphic indicator for glacial conditions (Kaczmarska et al., 1993; Burckle 

and Cooke, 1983; Jouse et al., 1962). The FlowCam could potentially be a robust, 

quick method to gauge E. antarctica contributions for stratigraphic purposes.  

 

COMPARISON OF BIOMETRICS 

 

Existing measurements of F. kerguelensis average length from Shukla et al., 

(2013) allow for a comparison of FlowCam based measurements with those from 
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microscopy. Biometric data for Thalassiosira lentiginosa from TN057-13 PC4 is also 

available (Shukla et al. 2016). F. kerguelensis length measured with the FlowCam 

shows approximately the same absolute value and downcore variation as length 

measured by microscopy from Shukla et al. (2013) (Figure 7). The two datasets show 

the same general bimodal peaks in mean length centered at 10 kya and 15 kya during 

the last deglacial that correspond to episodes of peak opal flux (Anderson et al., 2009; 

Shukla et al., 2013).  While the FlowCam initially looks to have slightly lower average 

length than that of Shukla et al. (2013) (0.5 µm or less in most cases), the difference is 

not a significant as the confidence intervals for Shukla et al. (2013) are greater than 

1.5 µm (Table 1). 

The interpretation of centric average diameter is more complicated than F. 

kerguelensis because it contains multiple genera that may have different natural size 

ranges and contributions over time and the flowcell caps sizes at ~100 µm. Although 

the majority of identifiable centric diatoms, by both methods, are T. lentiginosa, 

differences in mean diameter between Shukla et al.’s (2016) T. lentiginosa data and 

this study’s centric diameter measurements suggest that other species may have 

significant contribution to the average diameter for centrics as a whole (Figure 8). 

Centrics show a unique size trend with a maximum just before the major deglacial 

increase of F. kerguelensis and decreases toward the present. There was no major 

change in size range for either diatom group over time or in the size distributions. The 

trends in both interquartile ranges roughly mimicked that of its average 

length/diameter, but the quartile changes were almost equally proportional it changes 

in length. These interquartile changes were not statistically different than what is to be 
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expected from size changes alone. Similarly, there was no distinguishable difference 

between skewness and kurtosis between glacial and interglacial assemblages. While 

mean is not normal a meaningful metric in a skewed distribution, because skewness 

and kurtosis do not change significantly with time, changes in mean are actually show 

shifts in the whole distribution.  

 

ENVIRONMENTAL INTERPRETATION OF BIOMETRICS 

 

Supplementing assemblage data with the biometric data from multiple groups 

allows for a more specific interpretation of past events than only having a single 

group, and in this case, helps to look at growth conditions over the stages of the last 

deglaciation. In comparing the biometric data from F. kerguelensis and centrics, I 

observe differences in the timing of their peaks, likely resulting from different 

environmental preferences, which are in phase with different stages of the deglacial.  

My data suggests that two major features of deglaciation at TN057-13 PC4, the retreat 

of sea ice and upwelling, are not synchronous events and that biometrics helps explain 

the environmental conditions that existed between them. Deglaciation began and sea 

ice influence waned at 20 kya where E. antarctica peaks and then sharply declines 

(Figure 8). The trend of F. kerguelensis size has been discussed in previous literature 

and is in phase with opal flux from a time of inferred peak nutrient supply as 

deglaciation took place (Shukla et al., 2013; Anderson et al., 2009) (Figure 7). This 

upwelling begins at roughly 17.5 kya where opal flux rapidly begins to increase. My 

data suggest an interval between these events where there was lower sea ice influence 
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but no indication of nutrient input from the upwelling (Figure 8; Horn et al., 2011; 

Anderson et al., 2009).  

During this 2.5 ky interval, centric average diameter and diatom nitrogen 

isotope values (as δ15N) increase while dust flux stays relatively high. The increase of 

centric average diameter implies better growth conditions for centric diatoms, which 

was possibly due to alleviation of light limitation, caused by the retreat of sea ice, or 

perhaps related to the persistent iron supply (EPICA et al., 2004) (Figure 8). The peak 

in centric average diameter seems to occur with the transient peak in the diatom bound 

δ15N record (Figure 8). Higher δ15N values suggest that the demand for nutrients was 

greater than the supply, consistent with relief of either light or micronutrient 

limitation, without a significant change in the supply of major nutrients.  

It has been suggested that the assemblage changes alone may influence the 

δ15N record through species specific differences in the isotopic fractionation of 

nitrogen during incorporation into the diatom frustules (Horn et al., 2011B). The 

timing of the observed δ15N shifts is not quite synchronized with the assemblage 

changes, making attribution to species changes difficult. Moreover, there is 

disagreement between the Horn et al., (2011a) culture data and data from the fossil 

record (Studer et al., 2015). Studer et al., (2015) found that centrics appeared to record 

higher δ15N values than the total assemblage. The observed increase in δ15N values 

approaching 17.5 ka could potentially be related to assemblage changes, related to a 

peak in volumetric contributions from centrics, consistent with a peak in their size 

rather than simply the result of changing growing conditions related to nutrient supply 

and demand. This relationship should be a line of inquiry in future studies.  
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ASSESSMENT OF INCREASED BIOMETRIC COUNTS 

 

Biometrics is emerging as metric of growth conditions of diatom communities 

despite the difficulty in acquiring large datasets. The FlowCam makes biometric 

measurements rapidly, allow for high quantities of data. If robust, it could potentially 

increase the accessibility of measuring biometrics and provide robust statistical 

analysis. I used the surplus of biometric data gathered from TN057-13 PC4 to look at 

the potential implications of having increased biometric data and how this affects our 

ability to resolve changes in average frustule size in fossil records. The available 

studies of Southern Ocean diatoms with biometric data limited the number of 

biometric measurements to 100 or less for a single species. Shukla et al., (2013) 

measured apical valve length and calculated area of Fragilariopsis kerguelensis on 

100 individuals per sample (Shukla et al., 2013). Using the FlowCam, I imaged up to 

1200 biometric eligible F. kerguelensis per trial from TN057-13PC4 samples in 

replicate. The associated biometric data has the potential to provide a more 

representative assessment of average valve length and will allow us to define an 

optimal sample size. Here, I will compare these two biometric datasets. 

There are two goals when looking to improve the biometric assessments of F. 

kerguelensis: (1) Ensure the number of counts is large enough to provide a measured 

average valve length and standard deviation that is representative of the population’s 

true value; and to (2) have small enough confidence intervals that I can distinguish 

environmentally relevant size changes. F. kerguelensis shows a large variation in size; 

its normal ecological range is between 8 and 92 µm (Shukla et al., 2013; van der Spoel 
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et al., 1973; Fenner et al., 1976; Assmy et al., 2006). The distribution of F. 

kerguelensis is right skewed with mean length typically in the mid 30’s. The 

associated high deviation makes it difficult to determine when a representative dataset 

has been collected.  

We suggested above that the FlowCam biometric measurements are statistically 

indistinguishable to results from traditional microscopy for F. kerguelensis. The 

FlowCam’s true benefit over the traditional method stems from its higher counts and 

due to the law of large numbers, increased precision of the mean. The ultimate goal of 

large numbers is to capture the precision needed to differentiate mean values and 

minimize the effects of outliers. To have a first order estimate of when these goals are 

met, F. kerguelensis length was plotted as a running average for multiple FlowCam 

trials (Figure 9). At low counts, these graphs show a random walk that eventually 

becomes centered around the true population mean. The point at which this random 

walk begins to show low fluctuation is generally a function of the population’s 

variance and one of the functions used when calculating minimum sample size. I 

interpret that when fluctuation of the value falls to a minimum, it is closest to the 

populations’ true values and the effects of outliers was minimum. The consensus from 

these graphs was that this uncertainty often occurred after 100 counts, which means 

that 100 counts may not adequately define these F. kerguelensis distribution.  

To address my second goal, I must first determine what amplitude of F. 

kerguelensis size changes are required to infer actual environmental changes. Previous 

studies have documented a range of changes in F. kerguelensis average length across 

different environmental shifts including ~9 µm decrease across the last glacial 
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maximum (Nair et al., 2015), ~3 µm increase between the Hypsithermal and the 

Neoglacial (Crosta, 2009), ~4-6 (with a maximum of 10) µm between the last glacial 

and the Holocene (Gersonde and Cortese, 2007), and at total range of ~10 µm, 

attributed to geographic position, from samples spread across the Southern Ocean 

(Gersonde and Cortese, 2007). Therefore, the inferred environmentally influenced 

range of average valve size changes is between 3 - 10 µm. The question remains 

whether these changes are related to environmental conditions or random variability. 

To test this, I assumed that real changes were reflected in a 3 µm mean size shift and 

then asked how many biometric measurements are needed to narrow confidence 

intervals sufficiently to see such a change given the variance in the data. In order to 

make this estimate, I use the standard equation for minimum sample size (Equation 1; 

Charan and Biswas, 2013; Bennett et al., 2017) and assumed a normal distribution for 

the size data. This assumption allows me to make quick, first order estimations of 

minimum sample size, but are likely underestimated because we are dealing with a 

skewed distribution. To test that my standard deviations capture the same variability as 

traditional microscopy, I compared the range of values to a known core. Because 

standard deviations were not provided in Shukla et al.’s (2013) assessment of TN057-

13 PC4, data from an East Antarctic core, published by Crosta (2009), is used to 

estimate the range of standard deviation of average F. kerguelensis length in the 

Southern Ocean. Crosta’s (2009) standard deviation of average F. kerguelensis length 

ranged between 7.4 - 15.5 µm while this study showed a range of 8 – 12.5 µm, 

showing that much of the variance is preserved across methods. Confidence intervals 

will be reported as E (Equation 1) which represents the distance between the true 
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population value and its upper or lower limit. These confidence intervals would ideally 

need to be half of the environmentally significant value, in this case 1.5 µm, or less in 

order to capture a 3 µm change (the smallest of the recorded changes). Using Crosta’s 

(2009) extremes and assuming I want the measurement to be within 1.5 µm at 95% 

confidence, you would need to measure 93 F. kerguelensis in the best scenario 

(standard deviation = 7.4) and over 400 in the worst scenario (standard deviation = 

15.5). Because of the 100 counts used, Crosta’s (2009) 95% intervals really reflect a 

range of 1.5 – 3 µm, which implies their data cannot be used to resolve a change of 3 

µm between points without application of other statistical techniques. This assertion 

also applies to other biometric studies where the small sample size may not have the 

confidence intervals to resolve the environmental changes inferred to be related to 

their data (Crosta, 2009; Cortese and Gersonde, 2007; Nair et al., 2015, Shukla et al., 

2013; Shuka et al., 2016). 100 counts with the FlowCam yields a similar 95% 

confidence interval of 1.5 – 2.3 µm, showing that this inability to resolve small 

average length changes is not necessarily based on method, but instead, a result of the 

high variance of the measurements. This method of resolution only applies when the 

difference between two points (or series of points) is needed. In many cases, a trend is 

still significant even in cases where points cannot be individually resolved as different. 
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Equation 1. Standard equation for sample size 

𝑛 = [
𝑧𝑎

2⁄
𝜎

𝐸
]2 

n = necessary sample size (count) 

Za/2 = Z score for confidence intervals (1.96 at 95%) 

σ = standard deviation 

E = maximum difference between average measurement 

and true population average 

 

It appears that, on average, the 100-count standard cannot always precisely 

represent average lengths and would not likely have small enough confidence intervals 

to resolve size changes that have been purported to be environmentally significant. 

Given an abundant and easily identifiable organism, such as F. kerguelensis, the 

FlowCam is a good tool for this problem because of the lower time costs than 

traditional microscopy. Ideally, future studies would like to spend the least amount of 

time per FlowCam sample, i.e. measuring the least counts, and still capture all of the 

information needed, including length and standard deviation, with small enough 

confidence intervals to resolve environmental changes. While the values in Table 1 are 

slightly underestimated due to the skewed nature of the F. kerguelensis length 

distribution, they provide a first order assessment of how many counts are needed to 

decrease our confidence interval. Given the standard deviations calculated in this 

study, a 300-count per each sample would likely be the lowest count needed to provide 

confidence intervals less than 1.5 µm (Table 1) in order to resolve 3 µm changes in 

average frustule length.  
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POTENTIAL IMPACTS AND FUTURE WORK 

 

The FlowCam seems to be a useful paleoceanographic tool because it can capture 

first order diatom assemblage information and provide a large number of biometric 

data for a statistically more robust result. The FlowCam also has the potential to pick 

out indicator species, such as E. antarctica, for stratigraphic assessment. The ability of 

the FlowCam to measure first order changes in diatom assemblage can be useful when 

paired with biogeochemical data, especially in scenarios like nitrate utilization where 

major diatoms groups are shown to have significant impacts on the total δ15N (Horn et 

al., 2011A; Studer et al., 2015). Future studies could use the high quantity of biometric 

measurements from the FlowCam to calculate the volumetric contributions of different 

diatom groups (calculated as a function of length and width) and use them for the basis 

for comparing biogeochemical records rather than counts, which should be a better 

representation of the relative contributions to chemistry by a given organism.  

This methodology could be improved in the future through analysis of changes 

within the Fragilariopsis spp. group. F. curta and F. cylindrus, seasonal sea ice zone 

diatoms, differ from F. kerguelensis, an open ocean diatom, by having opposite 

environmental and ecological requirements for growth (Crosta, 2009). The distinction 

between these species could lead to assessment of yearly sea ice cover and would be 

keystone in any study in which F. curta and F. cylindrus are particularly abundant. 

While I was able to distinguish between these species within the Fragilariopsis spp. 

group with FlowCam images, identifications for F. curta and F. cylindrus had much 

lower abundance than is reported in literature. This discrepancy is likely because our 
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FlowCam methodology did not look at particles smaller than 5 µm, so in turn, it does 

not fully encompass the natural size range of species at this site. While there appeared 

to be more F. curta/cylindrus in glacial samples, the abundance was so low that it is 

unlikely statistically robust. It would be, however, possible to capture this range in 

future experiments by sieving samples into a small size fraction. The smaller size 

fraction could then be run in the FlowCam with the 50 µm flowcell under the X20 lens 

to increase magnification needed to view this size range. This method may also be 

useful in identifying Chaetoceros resting spores which is a proxy for spring ice 

melting (Crosta, 2009). Similarly, a shift to a larger flow cell, could be implemented 

for capturing the full spectrum of centric sizes, above 100 µm. There may be issues 

with using the same sample on two different flowcell sizes because it would involve 

changing the flowcell between trials or saving sample for later. A valid option for the 

use of two FlowCams could involve simultaneously inputting the same sample 

through different FlowCam flowcells in attempts to create a method for mixed 

distributions and the standardization of volume/material.  

The FlowCam can also benefit from additional uses of structural deep learning. 

While this VisualSpreadsheet uses the spatial parameters of diatom particles, this is 

not the only bioinformatic method to quantify and identify diatoms. Other techniques 

such as symmetry contouring, Fourier descriptors, texture analysis, and striation 

descriptors can be used as digital data which quantifies the physical properties of a 

diatom (Fischer, 2004) and many of them can be improved by machine learning. 

Because the FlowCam has a large output of diatom images, it would be a useful tool 
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for creating training sets for other image based methods to potential improve accuracy 

for automatic detection of diatom taxon.  



 

27 

 

CONCLUSION 

 

Fossil diatom assemblages evaluated with a new FlowCam method show 

agreement with the trends measured by traditional microscopy. Because the FlowCam 

could not identify every diatom to the species level, order based groups were used for 

centrics and pennates, indicating that the FlowCam is suited for first order assessments 

in assemblage only. Microscopy clearly remains as the gold standard for species 

identifications. Comparison of average length data generated by both microscopy and 

FlowCam suggests that the FlowCam can accurately measure average biometric length 

of Fragilariopsis kerguelensis. Moreover, the FlowCam may be better suited for 

assessing downcore changes in biometric parameters because it can measure more 

particles and do more groups in less time than traditional microscopic assessments. 

The overabundance of biometrics from F. kerguelensis allowed empirical calculation 

of minimum sample number, confidence intervals, and environmental resolution. At 

the standard count of 100 for average length of F. kerguelensis, the FlowCam had 

95% confidence intervals between 1.5 and 2.3 µm, suggesting a resolution of 3-4.6 µm 

size differences at best. Future best practices should employ a count of 300 F. 

kerguelensis or more to resolve inferred environmentally relevant size changes of 3 

µm or greater.  
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FIGURES 

 

 

Fig. 1. A sea surface temperature map (decadal average (2000-2010)) showing the 

location of the studied core site, TN-057-13 PC4. The black lines reflect the Southern 

Ocean fronts, Antarctic Polar Front, Sub-Antarctic Front, and Sub-Tropical Front 

(inside to out). Winter sea ice in the Atlantic sector extends to the Antarctic Polar 

Front in the modern and evidence for summer sea ice in this area exists from diatom 

assemblage reconstructions (Gersonde et al., 2005).  This core should be sensitive to 

changes in the positions of the Polar Front and thus temperature changes as well as 

variations in the extent of sea ice. 
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Fig. 2. Example section of a FlowCam image collage. In this example, (a). T. 

lentiginosa; (b). three F. kerguelensis, and; (c). broken pieces of other diatomaceous 

material can be seen.  
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Fig. 3. Visual example of how feret/ caliper distances, from the binary data of two F. 

kerguelensis, are used to calculate apical and transapical valves respectively. (A). This 

F. kerguelensis is oriented vertically and has its largest feret distance along it length 

(apical) and its shortest feret distance across its width (transapical). (B). Even when 

diatoms are not in perfect orientation (this F. kerguelensis is 18° clockwise), feret 

distances are preserved, still measuring the longest and shortest axis. 
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 Fig. 4. A downcore comparison of the contributions of three taxon normalized 

to total diatoms identified. 
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Fig. 5. A downcore comparison of the relative contributions of three taxon to total 

assemblage between (a). FlowCam estimates and (b). microscopy determinations 

(Crosta, personal communication 2010). 
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Fig. 6. Chart of the relative proportion of diatom taxon and the amount of each that 

could be measured for biometrics. Blue – Fragilariopsis spp., Red – Centrics, and 

Green – E. antarctica. Darker red and blue show the proportion of its respective 

category that biometric data could be taken. About 71% of all identifiable diatoms 

were measured for biometric data. 
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Fig. 7. A downcore comparison of average apical length of F. kerguelensis from 

FlowCam and traditional microscopy (from Shukla et al., 2013) (a). Opal flux from 

Anderson et al., 2009 (b). The relationship between F. kerguelensis size and opal flux 

was demonstrated in Shukla et al., 2013 and thought to be a result from increased 

nutrients from upwelling (Anderson et al., 2009). 
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Fig. 8. A downcore comparison of (a). opal flux (Anderson et al., 2009), (b). diatom 

bound δ15N (Horn et al., 2011A), (c). mean diameter of centrics FlowCam, (d) dust 

inputs from Dome C, and (e). relative contribution of E. antarctica measured with the 

FlowCam. 
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Fig. 9. Running averages of apical length as more F. kerguelensis were captured in a 

FlowCam trial. These examples show that on any given trial, variance (both 

fluctuation and error) is large with lower count. These represent opposite scenarios: A. 

Fluctuations are minimal after 150 counts. B. Fluctuations occur at a small magnitude, 

but do not stabilize until later. After 300 counts, both scenarios exhibit the least 

amount of fluctuation. 
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TABLES 

Table 1. First order estimate of the theoretical decrease in 95% confidence intervals as 

biometric counts are increased based on the assumption that F. kerguelensis length 

distribution is normal. Scenarios are based on changes in the standard deviation. 

Standard deviations used are 8, 10.7, and 12 as the lowest, average, and highest values 

observed in this study respectively. In order to resolve a change in average length for 

one of these scenarios, the change would need to be greater than twice that value. 

 

95% confidence interval of average F. kerguelensis apical valve length 

(µm) Calculation of E for distance between upper or lower limit of 

confidence interval and its true value. 

 

Biometric Counts (n) 

Best 

Scenario 

Average 

Scenario 

Worst 

Scenario 

100 1.57 2.10 2.35 

200 1.11 1.48 1.66 

300 0.91 1.21 1.36 

400 0.78 1.05 1.18 

500 0.70 0.94 1.05 

600 0.64 0.86 0.96 

700 0.59 0.79 0.89 

800 0.55 0.74 0.83 

900 0.52 0.70 0.78 

1000 0.50 0.66 0.74 

1100 0.47 0.63 0.71 

1200 0.45 0.61 0.68 
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Table 2. Estimated increase in certainty of observing average F. kerguelensis apical 

length to within 1 µm of its true value as biometric counts increase. Values are 

overestimated as the distribution of F. kerguelensis length is assumed to be normal. 

Scenarios are based on changes in the standard deviation. Standard deviations used are 

8, 10.7, and 12 as the lowest, average, and highest values observed in this study 

respectively.  

 

  

 

 

 

 

 

Confidence that measured average F. kerguelensis apical 

length is within 1 µm of the actual population average 

 

Biometric Counts (n) 

Best 

Scenario 

Average 

Scenario 

Worst 

Scenario 

100 0.79 0.65 0.59 

200 0.92 0.81 0.76 

300 0.97 0.89 0.85 

400 0.99 0.94 0.90 

500 0.99 0.96 0.94 

600 0.99 0.98 0.96 

700 0.99 0.99 0.97 

800 0.99 0.99 0.98 

900 0.99 0.99 0.99 

1000 0.99 0.99 0.99 

1100 0.99 0.99 0.99 

1200 0.99 0.99 0.99 
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APPENDIX A – CORE TN057-13 PC4 

 

Table S1. Absolute counts of three diatom taxon and total particles measured in the 

FlowCam for the first of two replicate trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Trial A 

Depth 
(cm) 

Centric 
Count 

Pennate 
Count 

E. 
antarctica 

count 

Total 
Particles 
Counted 

125 395 1136 66 24378 

252 117 601 30 12897 

305 218 512 43 10439 

329 78 314 5 6510 

372 137 742 14 14721 

424 137 833 19 17776 

448 73 444 6 7470 

494 144 506 13 8970 

512 44 958 12 19615 

572 160 1095 18 19712 

648 57 739 19 12744 

691 129 1028 18 13884 

721 142 933 30 14028 

730 124 846 18 11953 

754 235 1373 28 13189 

759 128 840 14 7806 

770 148 642 39 11219 

775 179 704 44 14371 

785 168 542 60 17048 

789 86 240 29 9606 

812 68 144 132 14004 

835 50 87 46 7891 

855 140 260 53 12842 

865 145 151 77 10372 

875 47 119 35 4608 

895 49 93 33 4608 

904 75 147 40 7381 
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Table S2. Absolute counts of three diatom taxon and total particles measured in the 

FlowCam for the second of two replicate trials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 Trial B 

Depth 
(cm) 

Centric 
Count 

Pennate 
Count 

E. 
antarctica 

count 

Total 
Particles 
Counted 

125 215 644 38 12789 

252 142 552 21 13888 

305 133 374 36 8227 

329 103 529 16 10391 

372 133 685 24 12343 

424 202 933 20 21091 

448 86 451 6 7681 

494 111 466 16 8983 

512 41 790 12 16489 

572 176 1034 14 17956 

648 57 693 14 11870 

691 137 913 26 13535 

721 115 761 30 12019 

730 161 979 22 13769 

754 176 1084 36 12674 

759 145 1108 13 10063 

770 184 561 39 10880 

775 146 731 41 14422 

785 127 453 46 13830 

789 75 267 53 10548 

812 71 144 108 11755 

835 65 77 56 8269 

855 168 212 71 12258 

865 145 167 78 12486 

875 53 151 27 5756 

895 54 123 25 5756 

904 68 151 56 8291 
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Table S3. Number of diatoms measured for biometrics, average size, and standard 

deviation for centrics and F. kerguelensis 

Depth 
Centrics 

Measured 

Centric 
Average 

Diameter 

Centric 
Standard 
Deviation 

F. kerg 
Measured 

F. kerg 
Average 
Length 

F. kerg 
Standard 
Deviation 

125 518 35.02 11.19 1392 33.33 10.29 

252 197 34.13 9.83 784 34.00 11.29 

305 301 37.79 11.26 667 34.26 10.86 

329 160 29.34 8.01 670 33.13 9.86 

372 220 33.13 9.43 977 34.72 10.88 

424 301 32.67 8.99 1163 35.89 11.15 

448 142 35.16 11.99 604 37.02 11.32 

494 240 39.20 13.18 651 37.71 11.59 

512 74 29.97 9.64 1107 37.71 10.86 

572 290 38.55 15.34 1394 37.21 10.58 

648 102 34.26 10.46 1034 36.37 11.86 

691 231 34.76 8.68 1246 35.01 9.85 

721 236 35.34 9.15 1283 34.95 10.19 

730 254 35.39 8.50 1368 36.24 10.86 

754 368 36.53 9.98 1861 38.61 12.46 

759 257 36.58 9.39 1573 36.98 10.87 

770 298 40.08 10.82 951 34.90 10.86 

775 290 40.79 10.29 1149 34.59 10.64 

785 257 40.82 10.14 791 34.32 9.96 

789 138 39.69 11.55 372 35.01 10.19 

812 118 35.17 9.41 231 34.83 9.68 

835 101 34.76 8.10 109 32.55 7.90 

855 272 35.42 9.32 333 35.66 10.55 

865 247 35.84 9.67 210 34.95 10.25 

875 84 31.57 7.89 152 34.68 11.54 

895 90 31.67 7.83 156 34.61 11.31 

904 88 31.43 8.21 155 34.02 10.89 
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APPENDIX B – CORE ODP 1090 

Table S4. Assemblage of three diatom taxon at ODP 1090 (42°154.50’S, 8°154.00’E) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Centrics Fragilariopsis spp. E. antarctica 

B3,1 137-139 400 80 13 

B3,2 19-21 464 286 25 

B3,2 49-51 604 983 2 

B3,2 79-81 562 746 37 

B3,2 109-111 175 242 15 

B3,3 18-20 71 126 14 

B3,3 49-51 507 860 50 

B3,3 79-81 235 383 42 

B3,3 109-111 581 500 32 

B3,3 139-141 227 335 114 

B3,4 19-21 788 455 108 

B3,4 49-51 359 472 60 

B3,4 79-81 516 603 51 

B3,4 109-111 332 91 5 

B3,4 139-141 359 259 12 

B3,5 109-111 179 66 3 

B3,5 139-141 163 78 7 

D3,2 74-76 279 103 1 

D3,2 103-105 94 46 0 

D3,2 133-135 353 118 3 

D3,3 14-16 112 177 13 

D3,3 44-46 76 100 21 

D3,3 74-76 280 481 76 

D3,3 104.5-106.5 305 839 14 

D3,3 134-136 184 415 14 

D3,4 104-106 280 80 7 

D3,5 44-46 78 68 12 

E3,2 70-72 264 122 0 

E3,3 40-42 534 766 2 

E3,3 100-102 33 11 1 

E3,3 130-132 293 68 1 

E3,4 10-12 51 44 0 

E3,4 70-72 456 247 3 
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Table S5. Centric biometrics at ODP 1090 (42°154.50’S, 8°154.00’E) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 
Centrics 
Measured 

Centric 
Average 
Diameter 

Centric 
Diameter 
Standard 
Deviation 

B3,1 137-139 400 31.13 8.72 

B3,2 19-21 358 28.08 8.19 

B3,2 49-51 409 23.86 6.23 

B3,2 79-81 369 27.37 9.38 

B3,2 109-111 115 28.64 8.91 

B3,3 18-20 35 27.96 6.00 

B3,3 49-51 293 35.67 9.49 

B3,3 79-81 167 29.20 6.26 

B3,3 109-111 423 34.37 8.38 

B3,3 139-141 139 33.02 7.47 

B3,4 19-21 523 34.27 8.27 

B3,4 49-51 249 35.81 10.64 

B3,4 79-81 333 29.73 10.41 

B3,4 109-111 279 27.87 8.14 

B3,4 139-141 313 32.05 10.31 

B3,5 109-111 132 30.05 8.19 

B3,5 139-141 121 33.48 8.06 

D3,2 74-76 199 28.33 7.93 

D3,2 103-105 78 26.26 7.73 

D3,2 133-135 266 34.16 7.77 

D3,3 14-16 82 28.85 7.36 

D3,3 44-46 61 32.37 8.82 

D3,3 74-76 173 32.89 8.94 

D3,3 104.5-106.5 255 33.36 11.35 

D3,3 134-136 158 24.49 7.38 

D3,4 104-106 187 30.97 7.08 

D3,5 44-46 60 31.35 9.83 

E3,2 70-72 122 23.08 6.39 

E3,3 40-42 299 27.96 8.26 

E3,3 100-102 28 35.32 14.59 

E3,3 130-132 234 30.33 8.80 

E3,4 10-12 24 27.28 8.78 

E3,4 70-72 345 28.69 8.52 
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Table S6. F. kerguelensis biometrics at ODP 1090 (42°154.50’S, 8°154.00’E) 

Sample 
F. kerguelensis 
Measured 

F. kerguelensis 
Average length 

F. kerguelensis 
length Standard 
Deviation 

B3,1 137-139 36 31.03 7.64 

B3,2 19-21 155 30.21 7.71 

B3,2 49-51 497 25.61 6.89 

B3,2 79-81 394 27.66 7.80 

B3,2 109-111 128 28.48 9.21 

B3,3 18-20 40 28.50 6.66 

B3,3 49-51 330 29.72 8.73 

B3,3 79-81 212 30.97 9.09 

B3,3 109-111 263 30.52 7.83 

B3,3 139-141 152 28.74 8.44 

B3,4 19-21 245 29.40 8.82 

B3,4 49-51 241 29.49 8.31 

B3,4 79-81 347 30.18 8.72 

B3,4 109-111 52 28.04 7.72 

B3,4 139-141 154 29.94 7.61 

B3,5 109-111 34 28.22 7.64 

B3,5 139-141 37 33.79 12.78 

D3,2 74-76 62 28.50 9.72 

D3,2 103-105 19 25.08 5.77 

D3,2 133-135 55 36.87 21.64 

D3,3 14-16 99 28.43 9.60 

D3,3 44-46 51 32.22 10.81 

D3,3 74-76 219 30.52 8.97 

D3,3 104.5-106.5 490 32.01 10.99 

D3,3 134-136 223 31.86 10.87 

D3,4 104-106 48 29.25 9.67 

D3,5 44-46 41 32.74 12.60 

E3,2 70-72 46 29.05 10.06 

E3,3 40-42 344 31.10 7.70 

E3,3 100-102 6 31.57 5.87 

E3,3 130-132 30 32.01 9.18 

E3,4 10-12 11 25.94 3.93 

E3,4 70-72 134 28.36 11.62 
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APPENDIX C – STANDARD OPERATING PROCEDURE FOR IMAGING 

FOSSIL DIATOMS USING A FLOWCAM 

 

Introduction 

The Auto-image mode of the FlowCam is well suited to imaging fossil diatoms. 

Here, we outline a method for imaging fossil diatoms based on the use of relatively 

clean sedimentary diatoms, where much or all of the clay and other lithogenic and 

biogenic materials have been removed. The samples were also chemically cleaned to 

remove external organic matter.  

 

Instrument Setup 

Flow Cell Selection – Flow cell size should be larger than base large particle size 

(in microns). However, the illuminator, magnification lens, and syringe are based on 

the flowcell size and magnification is inversely related to the cell size. This means that 

the larger size flow cells result in imaging of a broader range particles but at weaker 

magnification.  

 

Sample Preparation 

Place ~10 mg of dried sample in ~10 ml of deionized water and mix to ensure 

homogeneity. Use a representative sample to focus the camera. The sample may need 

to be diluted further if the flowcell becomes jammed or the FlowCam does not capture 

individual particles.  
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Camera Settings 

See Important Parameters of the FlowCam for settings regarding image quality. In 

the camera settings, change Shutter Duration until the mean intensity value is between 

170 and 180. Change the value of the segmentation threshold to “Only Dark 

Threshold: 10” (see Segmentation Threshold Test below). Other parameters may be 

changed, but they are appropriate under the default setting (see Parameterization). 

 

Analyzing a sample  

The FlowCam should be prefilled with water, allowing all of the flowcell and half 

of the sample funnel to be filled. Auto-Image is the mode for running samples without 

fluorescence. As soon as the calibrations are over and the FlowCam begins to image, 

quickly pipette < 1 ml of sample into the sample funnel. As the level of water begins 

to drop, layer milli-q water into the sample funnel. The end point for a trial is 

adjustable (particle count, sample amount, time, etc...) but can be continuously run and 

stopped manually. Trials should end when no particles have been captured for around 

30 seconds.  

 

Parameterization 

Segmentation Threshold, Light and Dark Pixels – This setting, with two 

parameters, is used to define when the gradient in color between the calibrated 

background and a potential particle constitutes the outline of a particle. Higher values 

denote more contrast needed to fulfill criteria. Objects within a sample can differ 

considerably on how this parameter affects them but changes in range can be 
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identified after a test trial. Objects will have a dark or light "halo" around them. The 

goal for best biometric parameterization would be to have outline on the edge of 

particles, inside of the halos. Recommended values: Only Dark Threshold – 10. 

Particle Capture, Distance to Nearest Neighbor – This parameter sets the 

distance between two outlines, below which the images are considered to be from one 

particle. Recommended value - 5. 

Collage Image Border Padding – This value influences the ability of the 

FlowCam to “fill in” the particle outline in order to calculate area. When this value is 

underestimated, it will leave gaps in its fill and underestimate area and when it is 

overestimated, it will overshoot and artificially inflate the particle outline. 

Recommended value - 4.  

 

Segmentation Threshold Test 

The segmentation threshold distinguishes particles from its calibrated 

background. When this threshold is too high, the FlowCam will not distinguish all 

particles that need to be identified. When this threshold is too low, the FlowCam will 

capture and crop images where no particles exist. The goal for this methodology is to 

capture all identifiable diatoms while minimizing the number of extraneous (not real) 

particles. In order to find the best settings for capturing diatoms and measuring 

biometrics with the FlowCam, a single sample was run in the FlowCam and the data 

analyzed using different settings. The images from a single FlowCam trial were saved 

as .RAW files types. This allowed for that trial to be digitally recreated in the 

FlowCam, allowing processing of particles with different settings. For each setting, 
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diatoms were identified and counted. The setting of “Only Dark Threshold: 10” was 

chosen for use in this study because it seemed to capture the most identifiable diatoms 

and did not create erroneous particles. Under this setting, artifacts that affected the 

outline of particles seemed to be generally less than under settings with higher 

thresholds. This benefits biometric measurements as the outline seemed to capture the 

organism’s actual edge in most cases. 
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Table S7. Change in total particle count and countable diatoms with changes in 

FlowCam settings 

 

  

Dark 

Threshold 

Light 

Threshold 

Total 

Particles 

Countable 

Diatoms 

Notes 

50 50 1464 134  

30 30 3215 226  

20 20 4459 256 Outlines are distorted 

10 10 N/A N/A Does not pick out particles 

5 5 N/A N/A Does not pick out particles 

50 N/A 1364 140  

30 N/A 2592 218  

20 N/A 3425 255  

10 N/A 4322 287  

5 N/A 4775 287 Some images were blank 

background 
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