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ABSTRACT

The Traveling Salesman Problem (TSP) is one of the most ubiquitous combina-

torial optimization problems. Given a set of cities, the objective of the TSP is

to generate a solution that ultimately minimizes the total distance traveled and

ensures that each city on the tour is visited exactly once. The TSP is classified

as NP-hard, which implies that there is no polynomial time algorithm to solve

the problem to optimality. Consequently, exact algorithms cannot be utilized

to generate solutions in reasonable computing time. Metaheuristics have drawn

much attention in recent years and many advancements have been facilitated by

hybrid approaches wherein inspiration is drawn from other fields of study. Less

research has focused on the utilization of hybrid strategies for the advancement

of classic heuristic approaches.

This thesis presents a novel design conjoining two classic construction heuris-

tics with density-based clustering. The density-based spatial clustering of ap-

plications with noise (DBSCAN) is used in conjunction with both the nearest

neighbor and greedy heuristics. The efficacy of this method is evaluated by

comparing non-aided greedy and nearest neighbor heuristics with those uti-

lized in combination with DBSCAN. The results show that heuristic methods

utilizing DBSCAN can facilitate a significant reduction in computation time

while improving the quality of solutions obtained when compared with classic

construction heuristics.
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Chapter 1

Introduction

1.1 Optimization

The past decade has witnessed a significant expansion in both applied mathe-

matics and theoretical computer science. One field that has drawn considerable

attention is numerical optimization. Optimization is at the heart of the rapid

advancement of artificial intelligence, transportation and manufacturing sys-

tems, as well as of software development. The core objective of optimization is

to either maximize or minimize some quantitative measure that can ultimately

be represented by a single number. In order to do so, a model that is representa-

tive of the system characteristics must be formulated by identifying constraints

and variables that directly impact the parameter to be optimized. Optimiza-

tion algorithms are then used to compute the value of the system variables that

facilitate optimality.

An optimization problem can take on one of two compositions; discrete or

continuous form. Continuous optimization refers to problems in which model

variables can take on any value within a particular range, while discrete opti-

mization involves cases where variables can only equate to a value belonging to

a distinct set. Generally, continuous optimization problems are easier to solve

because the smoothness of such functions allows for the constraints and objec-

tive at a particular point to be used for the estimation of behavior at all nearby

points. Discrete problems are increasingly difficult to solve, as nearby points

do not necessarily have similar function values. There are several subfields of
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continuous optimization, including problems involving linear and nonlinear pro-

gramming, quadratic programming, and unconstrained optimization. Discrete

optimization problems consist of those involving integer linear programming

and combinatorial optimization [32, 43, 71].

1.1.1 Combinatorial Optimization

The primary objective of combinatorial optimization problems is to solve for

the optimal “object” (i.e., an integer number, permutation, or graph structure)

from a discrete set [14, 74]. Naturally, as the number of objects increases, the

ability to concisely represent the set in a graph or matrix becomes increasingly

more difficult. Thus, it is often necessary to employ heuristics, or algorithms

that can be used to generate approximate solutions [84].

One of the most widely used performance evaluations for optimization al-

gorithms is the time complexity, or total computating time. In combinatorial

optimization problems it is often infeasible to construct an algorithm that allows

for all problem instances to be solved for optimality within a time bound that

is polynomial [69]. Intuitively, problems that are solvable in polynomial time

are referred to as P , while NP indicates that the problem cannot be solved in

polynomial time. A further classification is that of NP-Hard problems, which

are considered to be the most difficult class of NP , as the computational time

grows exponentially with the problem size [60, 69]. Thus, heuristics techniques

are imperative for solving such problems, more specifically by allowing for ap-

proximate solutions to be obtained in reasonable computing times.

The fundamental motivation for expanded research within the field of combi-

natorial optimization is the array of applications such an optimization problem

can be employed. Some of the most common problems involving combinatorial

optimization include assignment problems, shortest path problems, and the

traveling salesman problem [57, 69]. The traveling salesman problem (TSP)

is a quintessential combinatorial optimization problem. Given a set of cities,
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and the corresponding distance between each pair, the problem objective is to

determine the shortest possible route that visits each city exactly once and fin-

ishes at the initial starting point. As an NP-Hard problem, optimal solutions

are not guaranteed in polynomial time and hence the difficulty of the problem

scales exponentially with its size. Consequently, exact approaches for solving

the TSP are only feasible for very small-scale problems. The importance of the

TSP is not only reinforced by the numerous applications of the problem princi-

ples, which are prevalent in vehicle routing, workshop scheduling, and computer

wiring. However, the TSP itself is also highly representative of a larger class of

problems, often serving as a benchmark for optimization algorithms. Moreover,

if an algorithm capable of solving the TSP in polynomial time were discovered,

this entire class of problems would also become solvable.

1.1.2 Clustering

Clustering has become an essential component to advancements in several fields

including that of data mining, machine learning, as well as statistical data

and pattern analysis [49, 16]. As a useful paradigm, clustering involves the

aggregation of data into groups or clusters based on patterns or similarities. In

practice, clustering can be considered as an assignment problem, as data points

are designated to a particular group based on some sort of similar characteristic.

Thus, clustering can be highly effective for the identification of relationships

among several data points.
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Figure 1: Varying methods of data clustering with the same set of points [89]

There are several different methods of data clustering which can be chosen

directly based on the data and its application. As illustrated in Figure 1, the

same data set can be clustered in several different forms based on the criterion

for a pattern and the ultimate objective of the data analysis. Generally the

entire collection of clusters is constructed by one of two methods: hierarchical

or partitional clustering. In partitional clustering, each data point is in exactly

one subset, whereas in hierarchical clustering each cluster could also include a

subcluster [89]. There are also several approaches for the overall formation of

a cluster, including that of well-separated, prototype-based, graph-based, and

density-based clustering.

One of the most widely used forms of density-based clustering is DBSCAN

(Density-Based Spatial Clustering of Applications with Noise) [15, 75]. DB-

SCAN was first proposed by Ester, Kriegel, Sander, and Xu in 1996 as a tool

for detecting arbitrarily shaped clusters, as well as noisy outliers in data points

[30]. With DBSCAN the density is determined by computing the number of

points within a region of a specified radius around a particular point. Despite

its proven usefulness in large databases [29, 92], DBSCAN has limited appli-
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cations within combinatorial optimization problems. It is conjectured to be

advantageous because it is uniquely suited to detecting arbitrarily shaped clus-

ters and is also designed to incorporate noise and thus is not constrained to

incorporate all data points.

1.2 Overview

This thesis presents the application of DBSCAN as a clustering assignment for

existing TSP heuristics. Moreover, two novel heuristics are proposed, namely

the clustered greedy heuristic and the clustered nearest neighbor heuristic. Al-

though these two heuristics are of primary examination in this thesis, these

clustering algorithms can also be employed with alternative heuristic methods.

The efficiency of DBSCAN utilized in combination with the greedy and near-

est neighbor heuristics is evaluated based on performance improvements when

compared with non-clustered results. The methods demonstrate that DBSCAN

facilitates an improvement in solution quality for both heuristics and a signifi-

cant reduction in computing time for the greedy heuristic.

The remainder of this thesis is structured as follows. Chapter 2 provides a

detailed background on the TSP and its applications. In Chapter 3 clustering

methods with application to heuristics for solving the TSP are reviewed. Chap-

ter 4 presents an examination of parameter derivation methods for DBSCAN,

as well as an evaluation of the overall performance of both the clustered greedy

and nearest neighbor heuristics. Conclusions and recommendations for future

work are given in Chapter 5.
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Chapter 2

The Traveling Salesman Problem

2.1 Origins

The traveling salesman problem (TSP) requires finding an optimal path for a

salesman to travel through a predetermined set of cities. Optimality is defined

as the shortest possible path in which the salesman visits each city only once

and returns to the same city in which he started. The TSP has a rich history

in applied mathematics and holds particular importance in theoretical mathe-

matics as well. Naturally, the TSP can be found in numerous transportation,

logistic, and vehicle routing applications. However, the application of the TSP

is becoming more relevant in a growing number of fields including genetic engi-

neering, satellite maneuvering, semi-conductor manufacturing, communication

networking, and numerous others [81, 2, 7, 8, 86].

One of the first documented appearances of a routing problem in mathemat-

ics was that of the knight’s tour where a solution was presented by Leonhard

Euler in 1757 [31]. The knight’s tour problem consists of finding a sequence in

which every square of a chess board is visited exactly once and the knight ends

it’s tour on the same square in which it started. As evident from the problem’s

name, only valid knight moves are permitted. The knight’s tour problem is

recognized as a precursor to more generalized routing problems as well as to

the TSP.
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TSP related mathematical formulations and problems were later studied by

Sir William Rowan Hamilton and Thomas Penyngton Kirkman in the 1800’s.

Hamilton presented a game in which a player needed to complete a tour through

twenty points using only the connections specified as part of the game. The

early work of Hamilton and Kirkman is presented in great detail in Graph The-

ory 1736-1936 [13]. The general form of the TSP, which is the focus of this

thesis, was first studied in the 1930’s by Karl Menger in Vienna and Harvard

[85]. The TSP gained more prominence after the problem was presented by

Hassler Whitney and Merrill Flood at Princeton in 1934 [33]. A robust ac-

counting of the TSP and its origins can be found in In Pursuit of the Traveling

Salesman, authored by William Cook [18]. In this work, Cook makes note of

original approaches to the TSP masked behind real world applications prior

to the problem being commonly referred to as the TSP, such as in farmland

equipment routing, school bus routing, and police watch tours.

Evolving research methods and solution strategies naturally spawned vari-

ants and abstractions of the TSP. Generally, there are three major variants of

the TSP in which most routing problems are derived. The majority of abstrac-

tions simply introduce an additional constraint on the solution space, or seek

to generalize a previously presented problem instance. The first form of the

TSP is the symmetric traveling salesman problem (sTSP); this is the case of

the problem that is most synonymous with the TSP. In the symmetric case,

the costs of traveling from one city to another is the same regardless of the

direction of travel. The asymmetric traveling salesman problem (aTSP) is that

in which the cost of traveling from one city to another is dependent on the

direction traveled. Lastly, the multiple traveling salesman problem (mTSP) is

that in which multiple salesman start at a single city and each city must be

visited by only one salesman with each traveler returning to the starting city.

The most ubiquitous mTSP’s include the vehicle routing problem (VRP) and

the capacitated vehicle routing problem (CVRP), which were initially intro-
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duced by Dantzig as the Truck Dispatching Problem [21]. In this variant of the

mTSP each truck is restricted by its capacity and must either deliver or pickup

some quantity of goods in each city it visits, always returning to the starting

city. Evidently, a tremendous number of objective criterion and constraints

can be introduced into these problems. Some of the most frequently studied

include multi depot routing, time window constraints, precedence constraints,

and variable salesman or vehicles [83].

While the concepts and applications of this research may also be employable

within other TSP variants, the primary focus will be on the sTSP, which will

hereby be referred to simply as the TSP.

2.2 Problem Formulation

As previously stated, this research focuses on the TSP and more specifically

the symmetric variant of the problem where costs between cities are symmetric.

The TSP can thus be formally constructed using the following mathematical

representation. Let G = (V,A) be an undirected, complete graph where V =

{v1, . . . , vn} is a set of nodes representing the cities and A = {{i, j} : i, j ∈ V }

is a set of arcs representing the edges between cities. C defines a cost matrix

in which cij = cji is the cost associated with edge {i, j} ∈ A. Additionally,

cij = 0 ∀ i, j where i = j. Typically the distance between nodes is the Euclidean

distance, or some similar metric as defined later in this section. The cost matrix

satisfies the triangle inequality when cij ≤ cik + ckj ∀ i, j, k. The objective of

the TSP is to find a tour that visits each node once and returns to the starting

node while minimizing the total distance traveled.
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2.2.1 Mathematical Programming Formulations

The TSP can be mathematically represented in numerous forms, as illustrated

by Orman and Williams’ survey of Integer Programming Formulations where

eight unique models are presented [72]. Although the research focuses exclu-

sively on the aTSP, the survey highlights the robust research and literature

dedicated to finding suitable mathematical representations of the problem.

The most cited mathematical formulation for TSP was formulated in 1954 by

Dantzig, Fulkerson, and Johnson [20]. The formulations presented in [72] rely

on the following conventions.

The set of cities:

N = {1, 2, 3, . . . n}

The path variables:

xij =


1 if arc(i, j) is in the tour

0 otherwise, i 6= j

The costs (distances):

cij = distance of arc(i, j)

The primary difference between the aTSP and the sTSP in the following

formulations is the binary assignment variables and the rules restricting the

iterators for i and j. In the symmetric case, only the upper triangle (or lower)

of the cost matrix, C, needs to be considered because the corresponding distance

value is identical where i, j = j, i. Although this distinction is important, for

the following formulations the generalized aTSP case is presented for robustness

and clarity.
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2.2.2 Conventional Formulation [20]

min
n∑

ij∀i 6=j

cijxij (1)

Subject to: ∑
j∀j 6=i

xij ∀i ∈ N (2)

∑
i∀i 6=j

xij ∀j ∈ N (3)

∑
ij∈M∀i 6=j

xij ≤ |M | − 1 ∀M ⊂ N | {1} /∈M |M | ≥ 2 (4)

This formulation has 2n + 2n − 2 constraints and requires n(n − 1) binary

variables. The exponential number of constraints make the formulation im-

practical for most applications. To overcome this, (4) is appended as a subtour

elimination constraint only when it is violated by an otherwise optimal solution

when only considering (2) and (3). Subtours occur when a path is produced

that does not originate at the first city and cycles between a subset of cities

in N . Constraint (4) prevents this by prohibiting the total number of binary

assignments to exceed the total number of variables that can be reached from

the first city. An illustrative example of subtours and how they can influence

the behavior of TSP solutions is presented in Figure 2. The subtour paths are

indicated by a red color to delineate them from the primary path in black. The

illustrated solution would satisfy both 2 and 3 because each city is entered and

exited exactly once. However, 4 would be violated as the subtour cities would

not exist in M . Numerical methods for implementing the subtour elimination

and further problem relaxations that are based on this formulation can be found

in [53].

10



Figure 2: Presence of subtours in a TSP solution

The basis for the conventional formulation and for every other mathematical

programming formulation for the TSP are 1,2, and 3. Together they construct a

classic problem known as the Assignment Problem [68]. The alternative math-

ematical formulations presented here differ from the Conventional Formulation

only by the way in which they seek to constrain the assignment of binary vari-

ables to produce full tours and to prohibit subtours or incomplete tours from

being valid.
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2.2.3 Sequential Formulation [67]

The sequential formulation of the TSP includes continuous variables to measure

the position at which a city is visited within a tour, defined as follows.

ui = sequence in which city i is visited,i 6= 1

min
n∑

ij∀i 6=j

cijxij (5)

Subject to: ∑
j∀j 6=i

xij ∀i ∈ N (6)

∑
i∀i 6=j

xij ∀j ∈ N (7)

ui − uj + nxij ≤ n− 1 ∀i, j ∈ N − {1}, i 6= j (8)

The sequential formulation contains n2 − n + 2 constraints and requires

n(n− 1) binary variables along with (n− 1) continuous variables to represent

the sequence. The objective function and the first two constraints are the same

as in the conventional formulation. Constraints (8) ensure that a sequence must

contain every city and that for any two cities they exist in the same sequence.

2.2.4 Commodity Flow Formulation [38]

The commodity flow formulation again introduces a continuous variable to con-

strain the problem and eliminate the possibility of subtours. The new contin-

uous variable is defined by the following:

yij = Flow in arc(i, j) , i 6= j

12



min
n∑

ij∀i 6=j

cijxij (9)

Subject to: ∑
j∀j 6=i

xij ∀i ∈ N (10)

∑
i∀i 6=j

xij ∀j ∈ N (11)

yij ≤ (n− 1)xij ∀i, j ∈ N, i 6= j (12)∑
j

y1j = n− 1 (13)

∑
j∀i 6=j

yij −
∑
j∀i 6=k

yjk = 1 ∀j ∈ N − {1} (14)

Equations 13 and equations 14 serve to restrict n − 1 units of a single

commodity to flow into the first city and only one unit to flow out of each other

city. The flow of a commodity is restricted by equation 12 as a unit is only

available to flow through an arc if it exists at the starting node. The commodity

flow formulation requires n(n + 2) constraints, n(n − 1) binary variables, and

n(n− 1) continuous variables.

2.3 Exact Algorithms

As an NP-hard problem, the TSP is difficult to solve to optimality for non-

trivial problem sizes. As is the case with many other difficult optimization

problems, numerous strategies and algorithms for finding quality solutions have

emerged. Generally, these approaches can be classified as either exact ap-

proaches or heuristic approaches.

Exact algorithms are those that guarantee that the optimization problem

will be solved to optimality. In regard to the TSP specifically, exact algorithms

are primarily derived from the Integer Linear Programming formulations pre-

sented in Section 2.2.1. The primary issue with exact algorithms is the com-
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putational time that is required to reach a solution. The largest verified solved

instance of a TSP to date contains 85,900 cities, which required a total 136

CPU years for solving [6, 5]. In practice, for a problem that may have dynamic

distances over a daily, weekly, or monthly time horizon, this length of time

nullifies the usefulness of this approach.

When Dantzig et al. [20] first introduced their formulation, there were no

algorithms that could solve integer linear formulations. Instead of an algorith-

mic approach, the relaxation solutions were examined for subtours and then

constraints were added until a valid solution was presented. Since that time

the preferred exact method for solving the TSP has remained that of branch

and bound algorithms. A diverse and thorough survey of these approaches

and lower bound calculations for linear programing methods are detailed in

[59, 6, 81].

2.4 Heuristic Methods

Heuristic approaches are concerned with generating reasonable solutions that

are not necessarily optimal, however that can be attained in reasonable com-

puting time. Heuristics to the TSP have garnered significant attention by

researchers because of the time complexity of the problem and the lack of a

polynomial bound method for providing optimal solutions. Many heuristic ap-

proaches seek to ensure a guaranteed worst case performance while others are

more concerned with empirical performance [59]. Heuristic approaches are typ-

ically evaluated by two fundamental elements. The first is the computational

complexity of the approach and the computational resources required to imple-

ment the algorithm. The second is the quality of the solution that is ultimately

provided. Quite obviously, the most popular heuristic methods often excel in

one area and suffer in the other following the No Free Lunch Theorems for

Optimization developed by Wolpert and Macready [91]. An extreme example

of this is comparing a random permutation to an exact approach. The random
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permutation generates a solution as fast as possible, however, the probability

of optimality is near zero and quality cannot be guaranteed. Alternatively, the

exact approach will guarantee optimality, however, could take years to find a

solution.

TSP heuristics are generally classified in two distinct categories, tour con-

struction methods and tour improvement methods. Tour construction algo-

rithms are described as methods that find a solution by immediately terminat-

ing upon generating a feasible tour. Tour improvement algorithms on the other

hand implement mechanisms that often seek to explore more of the solution

space, however do not perform robust searches. In practice, tour construction

algorithms are often predecessors to tour improvement methods that use the

tour constructor as a means of initializing a solution. Extensive reviews of

tour construction and tour improvement heuristics are detailed by Kurz [58],

Laporte [59], and Reinelt [81] among many others.

2.5 Tour Construction Methods

As with many heuristic methods for optimization, numerous variants exist for

any given algorithm. Efforts to improve empirical and computational perfor-

mance may exist only for a specific class of problem. Presented here are funda-

mental descriptions of core algorithmic techniques for constructing TSP tours.

2.5.1 Nearest Neighbors

The nearest neighbor algorithm is a simple and straightforward approach to

the TSP originally presented by Bellmore and Nemhauser in 1968 [10]. The

algorithm has also been referred to as the “next-best method” by Gavett in 1965

where the algorithm was used for production scheduling [37]. The fundamental

rule that defines the nearest neighbor heuristic is to always move to the nearest

city from the current city. Moreover, the algorithm initializes with a random

city and indexes that city to 1, i = 1. The next city visited is the minimum
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of cij for all j not in the current tour. This process repeats until all cities are

visited, at which time the edge from the last city to the first city is selected.

The nearest neighbor approach has been empirically shown to typically generate

solutions within 25% of optimal and has a computational complexity of O(n2)

[50, 70].

If the tour is viewed based on the iteration of the algorithm it can be quickly

realized that the algorithm initially performs well by adding the shortest edge

available from the current point. However, as the tour grows in length and the

number of cities in the set of unvisited cities approaches zero, large edges are

forced into the tour and the length of the tour begins to suffer tremendously.

This is due to the concept of forgotten cities; a problem illustrated in Figure 3,

where the final edge additions are highlighted in red. The forgotten cities are

bypassed because a path exists around or near them in which they are not the

nearest neighbor to any of the points selected. The nearest neighbor algorithm

and supporting proofs are further detailed in [82] by Rosenkrantz, Stearns, and

Lewis.

Figure 3: Final two edge additions utilizing the nearest neighbor algorithm
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2.5.2 Greedy Edge Addition

The greedy edge addition or multi-fragment heuristic is more commonly re-

ferred to simply as the greedy heuristic. Since the nearest neighbor algorithm

is a greedy technique, it is often mistakingly referred to as the greedy heuristic.

Nonetheless, the true greedy heuristic is based on seriation methods initially

presented by Gelfand in 1971 with applications in archaeological chronology

[39]. The ordering of a distance matrix for clustering was later improved upon

by Gruvaeus and Wainer by cascading search trees such that the smallest dis-

tance of one tree was immediately followed by a subtree beginning with the

remaining smallest distance [44]. The adaption and analysis of the greedy

heuristic specific to the TSP was presented by Bentley in 1992 [11].

The greedy heuristic starts with a set of all edges defined by their distance,

cij. A tour is constructed by selecting the shortest available edge that does not

violate either the cycle constraint or the degree constraint. The cycle constraint

ensures that subtours are not constructed and restricts any cycle from having

less than N edges. The degree constraint ensures that each node is restricted

to two, such that each city is arrived at and departed from only once. The

algorithm terminates when a cycle is produced with N edges.

The greedy heuristic typically provides a tour within 15-20% of the Held-

Karp lower bound which makes it a higher performing constructor than the

nearest neighbor approach, however, it is subject to providing far worse solu-

tions in particular instances [50]. This does, however, come at a computational

cost greater than nearest neighbors, with a complexity of O(n2 log2 n) [50, 70].

While not subject to forgotten nodes in the same way that nearest neighbors

is, the greedy heuristic does incur an increasing cost per edge as it iterates.

Finding edges that satisfy the cycle and degree constraint becomes increasingly

difficult as the tour grows. This is illustrated in Figure 4, where the final edge

additions are highlighted in red.
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Figure 4: Final two edge additions utilizing the greedy heuristic

2.5.3 Insertion

Insertion heuristics have been used as an intuitive approach to build a tour by

starting with a subtour and then extending the tour by inserting one new city

k at a time. The objective is to minimize the insertion cost, namely the tour’s

length, by inserting the city in between two consecutive cities that are already

on the tour. Varying schemes for insertion can be used to alter the order in

which nodes are inserted into the tour. The most common variants include the

following:

Nearest insertion: The nearest city k is added to the tour.

Farthest insertion: The farthest city k is added to the tour.

Cheapest insertion: The city k with the minimal cost of insertion is

added to the tour.

Arbitrary insertion: The city k is chosen randomly from the set of

cities not yet added to the tour.
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The cheapest insertion technique, which was first proposed by Karg and

Thompson in 1964, allows for the node that will result in the smallest increase

in the tour length to be added successively [54]. Both the cheapest and near-

est insertion techniques are rooted to the minimum spanning algorithm first

proposed by Prim in 1957 [78]. The spanning algorithm allows for all vertices

to be connected together with the minimum possible total edge weight. In-

sertion heuristics correspond with adding an edge to a partial spanning tree,

whereupon the insertion of each city is equivalent to a new edge.

Perhaps nonintuitively, the arbitrary insertion technique is also efficient in

deriving tours mainly due to the fact that choosing arbitrary or random points

requires little to no computation time for selection [82]. Farthest insertion

heuristics begin by selecting each successive point farther from the preceding,

so that an outline of the entire city is established. The construction of a general

outline can often facilitate improved performance when there are a limited

number of nodes, with solutions that are within 2/3 of the optimal length

[52]. Interestingly, the farthest insertion heuristic has been shown to produce

improved tour solutions when compared with nearest and cheapest insertion

techniques, as well as with nearest neighbor heuristics [82].

An alternative approach that builds upon the cheapest insertion heuristic

was proposed by Bass and Schubert in 1967. The approach is referred to as the

Convex Hull heuristic, as it finds the smallest convex set containing all points,

namely the Convex Hull, and correspondingly finds its cheapest insertion [9].

The Christofides algorithm, which has a guaranteed worst case ratio of 3/2, is an

alternative technique that was first proposed in 1976 [17]. The algorithm allows

spanning trees to become Eulerian, by first computing a minimum spanning tree

and then adding a minimum weight for odd degree nodes so that a Eularian

graph can be obtained. To this day the Christofides heuristic provides the best

“worst-case” performance guarantee for the TSP [4].
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2.6 Tour Improvement Methods

Tour improvement methods generally include any algorithmic methodology

that takes a tour and generates an improved tour. However, tour improve-

ment heuristics typically are limited to simple and local tour modifications

and exclude more complicated approaches. More complex methods that em-

ploy multiple layers of logic and explore globally are commonly referred to as

metaheuristics and are detailed in Section 2.7. Here, tour improvements are

restricted to local search processes where each improved tour is adjacent to

the previous tour, which requires that an improved tour be reachable from the

previous tour by a single move.

2.6.1 2-opt

The k-opt algorithm and all subsequent variants are based on the 2-opt algo-

rithm originally formulated by Croes in 1958 [19]. Generally, a 2-opt move

consists of removing two edges from an already constructed TSP tour and re-

connecting the nodes for an improved result. Upon the two edge removal, four

nodes remain in the tour that have a degree of 1 and thus two separate paths

exist that must be connected. It can be seen that based on the disconnected

nodes, there exist only two ways of connecting the nodes that would result in

a valid tour, one of which was just disconnected. Thus, the 2-opt has only

one alternative option to connect the nodes. An illustration of a 2-opt opera-

tion is presented in Figure 5, wherein the edges chosen to be removed and the

new edges after the 2-opt move has been made are highlighted. If the tour is

viewed as a permutation vector, the 2-opt operation is essentially the rever-

sal of a segment in the permutation between two nodes. If {1, 2, 6, 5, 4, 3, 7, 8}

were the path in Figure 5 before 2-opt, the reversal would occur such that the

corresponding path segments would be {1, 2} . . . {6, 5, 4, 3} . . . {7, 8} resulting

in {1, 2, 3, 4, 5, 6, 7, 8}.
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Figure 5: 2-opt edge removal (left) and the subsequent edge additions (right) highlighted

Evidently the edge removal and subsequent edge addition is not always

an improvement. Qualifying the move to be made is the basis for the 2-opt

improvement algorithm. The algorithm iterates through all pairs of edges and

executes 2-opt if the operation is profitable. If the nodes indexed by {i, j, k,m}

and the cost matrix C are considered, then the search is based on selecting Cij

and searching all Ckm. A move is only executed if the following relationship

is true: Cij + Ckm > Cjk + Cim This continues until no 2-opt move exists

that satisfies the relationship at which time the tour is considered to be 2-opt

optimal.

The performance of 2-opt is very efficient and often results in tours within

5% of the Held-Karp lower bound [50]. However, one potential drawback to

2-opt is the fact that a single move can take up to O(n) to complete in a worst

case scenario [82]. Thus, considerable work has been done to ensure the best

data structures are employed and search reduction techniques are used. One of

the most meaningful is the observation by Steiglitz and Weiner that Cij > Cjk

must hold for a 2-opt to be profitable [88]. This can trim the search space
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significantly but does come at a cost in terms of memory. The search space can

be even further constrained by choosing only the m nearest neighbors for 2-opt

consideration but reduces the quality of the solution [50].

2.6.2 k-opt and Lin-Kernighan

The success of 2-opt naturally inspired similar mechanisms for higher dimen-

sions. The complete generalization of this technique, known as k-opt or r-opt,

was forumalated by Lin in 1965 [61]. Similarly to 2-opt, a 3-opt procedure

would remove 3 edges from the tour and then reconnect the degree 1 nodes

to complete the tour. This procedure continues until no 3-opt operation is

available that improves the tour. Any k-opt scales the same way. Naturally

a higher dimension k-opt routine would seem to provide a better tour but the

computational penalty can be extremely high and the relative improvement

to 2-opt and 3-opt is small. An analysis of k-opt routines by Christofides in

1972 and experimental results from Johnson in 1997 indicate that any check

of optimality requires O(nk) operations [62, 50]. Interestingly, the anlysis by

Christofides found a measurable improvement exists between 2-opt and 3-opt,

fails to exist between 3-opt and 4-opt, and exists again between 4-opt and 3-opt

[62]. These results prompt the question of how to determine what is a worth-

while dimension for k-opt. If speed is the primary concern then 2-opt will easily

outperform other k-opt routines. However, if solution quality supersedes the

speed of a solution then higher dimension k-opt routines would be justified. As

with 2-opt procedures, considerable research has focused on speeding up k-opt

procedures and making them as efficient as possible [51].

The challenge of choosing which k-opt routine to perform was considered

by Lin in 1973, whereupon the Lin-Kernighan heuristic also known as the LK

heuristic was first introduced [62]. The Lin-Kernighan heuristic addresses the

exact problem of determining which k-opt routine will provide the greatest im-

provement and dynamically determines which dimension to proceed with. In
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practice k is restricted to 2, 3, and 4. At each iteration the algorithm makes

the best dimension determination, completes the improvement at that dimen-

sion, and then repeats until no improvement is available. Lin-Kernighan has a

computational complexity of O(n2.2) and is able to achieve this by determining

that any k-opt move can be completed as a series of 2-opt moves [62]. The

Lin-Kernighan heuristic has proven to be one of the most effective heuristics

for the TSP and has spawned a tremendous number of variants seeking to im-

prove its performance [47]. A thorough review of current best practices and

Lin-Kernighan variants can be found in [79].

2.7 Metaheuristics

The final category of approaches to solving the TSP are categorized as meta-

heuristics. Unlike tour construction heuristics and tour improvement heuristics,

metaheuristics employ a deeper search of the solution space [73]. Fred Glover

introduced the term “metaheuristic” in 1986 to characterize a heuristic ap-

proach that can be described generally but employs heuristic methods specific

to the problem being solved [40]. Glover predicted that metaheuristics would

become very effective for solving combinatorial optimization problems. Since

that time a multitude of metaheuristics have been developed for several varia-

tions of combinatorial optimization problems.

Most metaheuristics are defined by a strategy that controls a search pro-

cedure. Underlying the strategy are typically the same operations that define

heuristic methods for the given problem. The power of metaheuristics is that

they can move out of local optimum and explore new solution spaces, make

the best use of heuristic procedures, and benefit from the cooperative use of

multiple heuristics methods [64]. Numerous metaheuristics have been shown

to find near optimal solutions in multiple combinatorial optimization problems

[14].
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Within metaheuristics for the TSP there exist three primary categories of

approaches: local search, population search, and learning mechanisms. For the

sake of brevity, only the most successful and widely used approaches will be

briefly described with some indication of their strengths and weaknesses.

2.7.1 Simulated Annealing

Simulated annealing was first introduced by Kirpkpatrick in 1983 as an opti-

mization technique based on annealing in metallurgy [56]. The TSP was used

as the first problem to test the approach for combinatorial optimization by

Kirkpatrick. The general structure for simulated annealing as proposed by

Kirkpatrick found in [55] is as follows. At every iteration of the algorithm, a

solution x is randomly generated from the neighborhood of the current solution

xt. If the cost of x is less than the current solution xt, f(x) ≤ f(xt), then the

current solution is updated: xt+1 = x. When the solution is not an improve-

ment, the current solution is updated with a probability pt. The probability of

updating with a worse solution is typically a decreasing function of both time

(iteration) and relative fitness, t and f(x) − f(xt). Normally the probability

function takes the following form [1]:

pt = exp
−[f(x)− f(xt)]

θt
(15)

In Equation 15, θt is the temperature at iteration t and is updated by the

cooling schedule or cooling function. The cooling schedule normally decreases

as the iterations increase. The result is that the probability of moving to a

worse solution decreases over time. The stopping criteria typically depends

on a fixed number of iterations or the number of iterations without a certain

amount of improvement.

The cooling schedule and probability function used in simulated annealing

guide the strategy of the algorithm and have a significant impact on its perfor-
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mance. However, the mechanisms that perform the neighborhood search can be

just as critical. In most cases for the TSP, a swap of two permutation members

or a 2-opt move are used to advance from the current solution to a neighbor

[81]. The starting solution is typically generated by a construction heuristic.

Simulated annealing performs similarly to 2-opt in terms of solution quality and

is capable of generating solutions comparable to Lin-Kernighan if the runtime

is extended. However, simulated annealing on large instances requires speedups

when 2-opt is used.

2.7.2 Tabu search

Another local search metaheuristic for the TSP is tabu search. Tabu search

was originally introduced by Glover in 1986 [40]. Tabu search works in much

the same way as simulated annealing does as it seeks to move from one solution

to a neighborhood solution in each iteration. The major difference is that tabu

search forces a move at each iteration even if the neighbooring solution is worse.

Intuitively, constantly moving in a neighborhood would eventually create a cycle

between solutions. To avoid this, recently visited solutions are excluded from

the search and become “tabu”. What makes specific implementations differ is

the way in which tabu solutions are stored in memory, how long they remain

tabu, and the mechanisms that explore the neighborhood [42].

In most tabu implementations for the TSP a 2-opt move is the preferred

method for exploring a neighborhood. The use of the restricted solutions in-

creases the efficiency of 2-opt because many of the moves would be restricted

before all 2-opt moves could be explored. As such, some of the most important

aspects of tabu search are the efficiency of the tabu constraint and the param-

eters controlling the tabu solutions. Parallel implementations and the use of

more robust search functions have proven tabu search to be very effective for

generating near optimal tours for the TSP [41].
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2.7.3 Ant Colony Optimization

Ant Colony Optimization is a learning metaheuristic for optimization that is

based on the behavior of ants in colonies searching for food. The introduction

of the concept came in 1991 by Colorni, Dorigo, and Maniezo in 1991 [66]. Ant

colonies find food by having ants initially wander away from the colony. As

the ants move away from the colony, they release a pheromone trail that marks

the path in which they have traveled. The pheromone acts as a communication

agent that signals to other ants how long the path is and the quality of food

that can be found along that path. However, in time the pheromone dissipates

and only the most frequently traveled paths are able to maintain a high level of

pheromone. This process results in a greater number of ants releasing a greater

amount of pheromone on the most rewarding paths.

The original formulations of ant colony algorithms were focused on appli-

cation to the TSP. Subsequent improvements and benchmarks additionally fo-

cused on the TSP and the general form can be taken as follows as found in

[66, 23, 24]. Each edge has two associative values, where the edge is defined by

(vi, vj. The first value is the visibility of the edge defined as vij = 1
dij

where dij

is the distance between the vertices. The second value is the pheromone level

of the edge, Γij, which is updated after each ant iteration. At each iteration, n

artificial ants are generated and set out on a tour based on nearest neighbors.

The distance however is based both on v and the strength of the pheromone,

Γ. At the end of an iteration, the pheromone level of each edge decays by 1-p

and the edges traversed in the resulting tours are increased. The pheromone

between two vertices is updated by the following function:

Γij = pΓij +
n∑

k=1

δkij (16)

In Equation 16, δ is the inverse of the length of the total tour by the k ant

traversing that path. The algorithm typically iterates for a fixed number of
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iterations or until a path becomes dominant based on the pheromone level.

Ant colony optimization has proven to perform well on the TSP but is often

difficult to scale to large problems because of its high usage of memory. The

approach has inspired other swarm and colony based variants for a larger set

of problems. The most recent advances and techniques are reviewed in [25].

2.8 Benchmark Problem Sets

A significant number of problem sets and benchmark problems have been used

to analyze the performance of TSP algorithms. The most well known and com-

prehensive collection of benchmark problems is referred to as TSPLIB [80]. The

collection includes symmetric and asymmetric TSP instances as well as capaci-

tated vehicle routing problems, sequential ordering problems, and Hamiltonian

cycle problems. The value of such a well known repository is that it allows

for an equal comparison of algorithms and provides a set of problems that are

feature rich enough to represent a variety of benchmarks. The reason feature

richness is important is because randomly generated TSP instances often are

categorized as uniform or clustered. Some algorithms perform well for uniformly

generated cases and others perform well for clustered instances, however not for

both. TSPLIB features a broad class of instances, many of which are derived

from real world geographic schemes. Among symmetric TSP instances, which

are the focus of this thesis, problem sizes range from 14 to 85,900 cities in the

repository.
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Chapter 3

Applications of Clustering for the TSP

3.1 Previous Approaches

The TSP has seen a myriad of approaches taken to produce high quality solu-

tions using heuristic methods. Many of the predominant heuristics used can be

found in Section 2.4. However, the relative success of many of these heuristics

has spawned more robust methods such as meta-heuristics as detailed in Sec-

tion 2.7 and hybrid approaches inspired by numerical methods in alternative

fields and applications. One such approach is the incorporation of clustering

algorithms into previously defined methods for solving the TSP in order to

improve the result obtained by the standalone TSP solver.

3.1.1 K-Means

K-means clustering is one of the most classic and widely used clustering methods

in multivariate classification, data mining, and unsupervised machine learning.

Originally introduced in signal processing, k-means aims to partition n obser-

vation vectors into k clusters where each observation is a member of the cluster

with the nearest mean [46, 65, 34]. The problem posed in k-means clustering

can be formulated by the following as found in [46]: Given a set of observations

(x1, x2, . . . , xn) where each observation is a d-dimensional real vector, parti-

tion the n observations into k sets, S, where k ≤ n, minimizing the following

objective function:
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min
k∑

i=1

∑
x∈Si

||x− µi||2 (17)

In the objective function 17, µi is the representative mean of the set Si.

Finding the optimal solution to this partitioning problem is proven to be NP-

hard for all d-dimension metric instances [36]. If k is fixed then the problem

can be solved to optimality with a time complexity of O(ndk+1) [48].

Due to the computational complexity of the k-means clustering problem

heuristic algorithms are generally used. By far the most common implementa-

tion and what has come to be known as the standard approach is Lloyd’s algo-

rithm [63]. Lloyd’s algorithm initializes by placing k points in the input plane

of dimension d. The algorithm then iteratively constructs a Voronoi diagram

across the k points. From the resulting Voronoi cells in the Voronoi diagram,

the centroid of each cell is computed and the kth site is moved to the centroid of

the corresponding cell. Lloyd’s algorithm terminates after convergence occurs,

which is typically an approximate measure of the relative convergence due to

the limitations of preciseness and increasingly slower convergence rate. Most

common implementations therefore terminate after the maximum distance up-

date for all centroids is less than a predefined lower bound, which for most

applications provides a solution that is practical and as useful as optimal. A

sample k-means result is illustrated in Figure 6 which includes the data points,

Voronoi cells, and centroids. The generalized k-means algorithm requires only

one argument to be passed for solving: a cost matrix which represents the

distance between the vectors being clustered for all n. However, for the pur-

poses of speed and to incorporate domain specific knowledge, k is also passed

in as an argument to determine the number of clusters that are to be used for

assignment.
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Figure 6: Sample k-means result [76]. Centroids (white), Voronoi Cells (colored)

The incorporation of clusters identified by k-means into an algorithm for

solving the TSP is intuitive and the concept of marrying the two seems simple.

The k-means clustering algorithm seeks to cluster the nodes that are closest to

each other relative to the distance in which they lie from the center of another

cluster. Abstractly, a good TSP solution would primarily contain edges between

nodes that are close together and closely connected nodes could be referred to

as a cluster of nodes given a good TSP solution. Therefore, generating a good

solution to a TSP with k-means would contain two solution steps, generating

solutions within identified clusters and then finding ways to connect the clusters

to produce a full TSP tour. Given that k-means also provides an imaginary

centroid node that is representative of the cluster, solutions can be abstracted

from a TSP tour that passes only through the centroids and then used as a

guide for incorporating the actual nodes into the TSP tour.

In current literature, direct implementation of k-means clustering as a tour

construction method for the TSP was presented by Deng, Liu, and Zhou in

[22] and by Phienthrakul in [77]. Both presented their k-means strategy as a
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method for initializing a population for an evolutionary algorithm. The results

taken from their approaches are difficult to assess because the solutions are

only presented after evolving the population for a large number of iterations

through the genetic algorithm. However, compared to a random initialization

the results were significantly improved. This lends credence to the concept that

a clustering mechanism can aide in constructing quality TSP solutions. The

strategy employed in [22] is illustrated in the following steps:

1 Cluster n cities into k groups using k = Int(
√
n+ 0.5)

2 Generate locally optimal paths within each cluster using a genetic algo-

rithm

3 Generate a global optimal path that traverses the k centroids representing

each cluster

4 Moving through the global path, remove one edge from each local path

and connect the local path to the global path

In the research of Deng, Liu, and Zhou’s, the process is repeated until an

initial population is produced. This results in differing solutions because the

edge removal at each local path is done randomly and no calculations are made

to remove the edge that would result in the shortest global path from the local

paths.

The strategy in [22] alludes to an interesting methodology for solving the

TSP. The first technique to note is the clustering of the cities in order to

divide the problem into smaller sets of cities. What this allows for is locally

optimal solutions to be generated that can then be used in a greater context of

a potentially globally optimal ordering of the sets. While the genetic algorithm

was used by Deng, Liu, and Zhou on three levels; locally, global sets, and then

global paths, any method for generating a tour could be used in its place at

all or some of the levels of the problem. Phienthrakul in [77] used the nearest
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neighbors heuristic to connect the clusters but used evolutionary computation

to arrange paths within clusters and eventually the final tours.

3.1.2 Affinity Propogation

Affinity propagation is a far more recent clustering method than k-means and is

based on message passing between data points and views the points as members

of a network in which information is exchanged. The algorithm was originally

presented by Frey and Dueck in 2007 [35]. The goal of the algorithm is to

identify the “exemplar” data points that are representative of a larger number

of points by finding the points in which the greatest amount of information

is passed through. Affinity propogation uses a graph structure to determine

clusters and allows individual points to “vote” on the data point they prefer

most to be their exemplar. In effect each node has an edge between itself and

its most preferred exemplar. The result of these connections are clusters in

which each point is reachable from any other point in the cluster through the

exemplar but is not reachable from any other cluster.

The formulation for affinity propagation as found in [35] is presented as

follows: The observations (x1, x2, . . . , xn) define the data points representing the

nodes of the graph. A similarity function, s, measures the similarity between

any two data points such that s(xi, xj) > s(xi, xk) ⇐⇒ xi is more similar

to xj than it is to xk. A responsibility matrix, R, is initialized with zeros and

will store values r(i, k) which quantifies how acceptable xk is in serving as the

exemplar for xi in relation to all other candidate exemplars for xi. A similar

availability matrix, A, is also initialized with all zeros and stores values for

the appropriateness for xi to choose xk as its exemplar while considering the

preference for other points to also choose xk as an exemplar. The algorithm

then iterates over two main update procedures until a termination criteria is
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reached. The first step is the responsibility update to R:

r(i, k) = s(i, k)−max
k 6=k′

[a(i, k′) + s(i, k′)] (18)

The second update step is to update the availability. Of key importance is

the two calculations that occur in this step, the second of which updates the

diagonal of A. This value represents the total availability of that node as an

exemplar to all other nodes.

a(i, k) = s(i, k)−min
i 6=k

[0,
∑

i′ 6∈(i,k)

max(0, r(i′, k))] (19)

a(k, k) =
∑
i′ 6=k

max(0, r(i′, k)) (20)

The algorithm iterates through Equations 18, 19, 20 until the cluster members

go unchanged for a predetermined number of iterations. The exemplars after

termination are determined by the sum of the responsibility and availability

matrices for that node to itself:

exemplar ⇐⇒ r(i, i) + a(i, i) > 0 (21)

Affinity propagation results in clusters in which each member of a cluster

can be directly measured against its similarity to the exemplar of that cluster.

From a network perspective in which the algorithm is frequently used, the most

important nodes for communication throughout the network are identified as

exemplars. An illustrative example is presented in Figure 7. In comparison

to k-means clustering, affinity propagation presents a number of advantages

that were motivating to the original formulation of the algorithm. The biggest

advantage is that a predetermination of the number of desired clusters does not

need to be made a priori [26]. Instead, the best number of representative clusters

are used to describe the data. However, in many cases a more malleable result
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might be desirable. In this case certain points may be suggested as exemplars

or a limit on the maximum number of cluster members that can be introduced

into the algorithm [27].

Figure 7: Sample Affinity Propagation result [76]

As a clustering method affinity propagation has proven to be useful in com-

puter vision, computational biology, text mining and networking [45]. With

respect to the TSP, [28] proposed the use of affinity propagation as a means

of constructing solutions. El-Samak and Ashour detail a two level genetic al-

gorithm similar to alternative approaches that use k-means as the clustering

mechanism but instead utilize affinity propagation as the initial clustering mech-

anism [28]. The methods employed in [28] are detailed as follows:

1 Cluster n cities into k groups using affinity propagation

2 Generate locally optimal paths within each cluster using a genetic algo-

rithm

3 Generate a global path by moving iteratively through each k cluster until

all clusters are connected
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The steps outlined by El-Samak and Ashour are not completely clear as to how

exactly clusters connect into a global path. According to their description, they

produce the same path over and over until a population is produced. However,

for a genetic algorithm this does not make sense as every chromosome in the

population would be identical. It can be inferred that low level cluster paths are

connected randomly to initialize a population. Similarly to previous clustering

approaches with the TSP, the results are promising compared to a standard

genetic algorithm but the quality of initial solutions from the clustering are

difficult to deduce.

3.2 DBSCAN

Current research has shown that the incorporation of clustering into algorithms

for solving the TSP is feasible and potentially promising. However, a limited

number of clustering methods have been employed and the incorporation of

clustering has not influenced a large number of heuristic or meta-heuristic ap-

plications. As one of the most frequently used clustering algorithms, it is no

surprise that k-means clustering has been used with the TSP. Applications of

k-means in [77] and [22] both use it as an initialization strategy for evolution-

ary algorithms. Affinity propagation has been used similarly as an initialization

strategy in [35]. However, other clustering algorithms have been used in differ-

ent capacities related to the TSP. Most notably perhaps is analyzing the per-

formance of particular algorithms on the TSP and using clustering as a method

of feature recognition for a TSP instance. In [87] the authors use GDBSCAN,

an extension of DBSCAN, to extract features from TSP instances in an effort

to produce clustering related meta-data that is then learned from to choose

the most appropriate TSP algorithm. The authors of [90] use GDBSCAN to

measure the structural properties of TSP instances. The use of GDBSCAN in

this capacity is partially responsible for the exploration of DBSCAN as an aide

to heuristic algorithms in this research. While GDBSCAN is a useful extension
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of DBSCAN, Euclidian metrics are used for the TSP and thus an extension

beyond DBSCAN is not required.

DBSCAN is an acronym for density-based spatial clustering of applications

with noise and was originally formulated in 1996 [30]. As the name alludes, DB-

SCAN was originally formulated for use in spatial databases where objects are

often irregularly clustered, arbitrary shapes exist, and large numbers of objects

are present. The authors make note of two key differences between DBSCAN

and more popular clustering algorithms. The first is the reliance on users to

have domain specific knowledge enough that they can appropriately conclude

the number of clusters a priori. As mentioned in Section 3.1.1 with k-means,

choosing the appropriate number of clusters can be challenging and unintuitive.

Secondly, partition and hierarchal clustering assumes all objects in a database

to be part of some cluster and thus the entire space must be considered as is

the case with affinity propagation. Therefore, partitioning of outliers and low

density areas in the space can significantly affect the final assignments of high

density regions resulting in poor overall classification. In effort to overcome

the shortcomings of other approaches, DBSCAN was formulated with three re-

quirements in mind: Minimal requirement of domain knowledge to derive input

parameters, ability to discover arbitrarily shaped clusters, and good runtime

efficiency for large databases.

3.2.1 Density-Based Clustering

DBSCAN’s core functionality is to detect clusters based on the density of points

in a region relative to the overall density of the database. The authors of

DBSCAN generalize their approach by describing the algorithm with concepts

not typically found in other clustering methods. For clarity and rigor the core

definitions that embody DBSCAN are detailed along with the parameters and

methods in which they are applied and outlined in [30].

Of utmost importance to DBSCAN are the input parameters that drive
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the behavior of the algorithm. The first parameter is Eps. Eps is the max-

imum allowable distance between two points for them to be considered part

of the same neighborhood. More formally, the eps-neighborhood of a point p,

can be defined by {q ∈ D|dist(p, q) ≤ Eps}. The second parameter of DB-

SCAN is MinPts. MinPts is the minimum number of points that are required

to constitute a cluster. Incorporating MinPts with the definition of an eps-

neighborhood establishes the concept of density reachability. The authors of

DBSCAN make a distinction between direct density reachability and density

reachability. A point p is direct density reachable from a point q if p is in the

Eps-neighborhood of q and the Eps-neighborhood contains at least MinPts. For

core points, direct density reachability is symmetric, but this does not extend

to the relationship between a core point and a border point. Core points are

points that exist inside a cluster and border points exist on the edge of a cluster.

The eps-neighborhood of a core point contains at least MinPts and is therefore

in what would be considered a higher density region. However, a border point

exists in the Eps-neighborhood of a core point but does not have MinPts in its

own neighborhood and cannot be considered core to the cluster. A point p is

considered density reachable from a point q if there is a chain of points that

are directly density reachable that connect p and q. A more stringent density

reachability is density connectedness in which p and q are density reachable

from the same point. These definitions and relationships between points are

what determine the identification of clusters in DBSCAN and are illustrated in

Figure 8.

Figure 8: DBSCAN connectedness and reachability [3]
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The DBSCAN algorithm as formulated in [30] is presented in Figure 9. It is

important to note that the iteration order does not affect the final assignments

or the discovery of clusters. This is because once a point is determined to be part

of a dense enough region to constitute a cluster, the explandClust function finds

all subsequent eps-neighborhoods of those points and the process continues until

all density reachable points are included in the cluster. Each point does undergo

the regionQuery, which can run in O(log(n)) given an indexing structure and

thus the average runtime complexity is O(n log(n)) [30].

Figure 9 Algorithm: DBSCAN

1: procedure DBSCAN(D, eps, MinPts)
2: C = 0
3: for p in D do
4: if p is unvisited then
5: p.visited = true
6: Neighborhood = regionQuery(D, p, eps)
7: if size(Neighborhood) < MinPts then
8: p.id = noise
9: else

10: C += 1
11: expandClust(p, Neighborhood, C, eps, MinPts)

12:

13: procedure regionQuery(D, p, eps)
14: return points in D within eps of p

15:

16: procedure expandClust(p, Neighborhood, C, eps, MinPts)
17: assign p to C
18: for q in Neighborhood do
19: if q is unvisited then
20: q.visited = true
21: Neighborhood’ = regionQuery(D, q, eps)
22: if size(Neighborhood’) ≥ MinPts then
23: Neighborhood = Neighborhood + Neighborhood’

24: if q is unassigned then
25: assign q to C

The connectedness of points and reachability definitions are what constitute

the definitions of clusters using DBSCAN. As previosuly mentioned, DBSCAN

does not require all points to be considered part of a cluster before termination.
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As such, after the algorithm is complete, points are considered as one of three

possible classifications: core points, border points, and noise points. Core

points are directly density reachable within a cluster, border points are density

reachable from the core points of a cluster, and noise points are points that do

not fall within a density region as defined by Eps and MinPts. A cluster with

respect to Eps and MinPts is a non-empty subset of the database, D, such that

the following conditions are satisfied:

• ∀p, q: if p ∈ C and q is density reachable from p given Eps MinPts, then

q ∈ C

• ∀p, q ∈ C: if p is density connected to q given Eps MinPts

This establishes a cluster as any set of points that meet the reachability and

connectedness criteria given Eps and MinPts. This simply establishes clusters

as any set of points where there are enough points in a small enough area to

constitute a dense region.

The connectedness of points in extensive dense regions is what gives DB-

SCAN the flexibility to identify arbitrarily shaped clusters without having to

look beyond locally connected points from already dense areas. This flexibil-

ity is illustrated in a toy dataset taken from [76] that compares the results

of k-means and affinity propagation with that of DBSCAN found in Figure

10. The results give a good illustration of the positive and negative aspects

to using DBSCAN. The positive is that DBSCAN can identify clusters within

clusters as illustrated by the two ring dataset. Both affinity propagation and

k-means generate cluster assignments that exist in both rings. DBSCAN also

demonstrates tremendous flexibility in identifying the two separate crescent

shapes where as k-means and affinity propagation divide the crescent regions

by assigning them to different clusters. For application to the TSP, DBSCAN

is capable of following a “path” that naturally aligns with the objective of the

problem. As illustrated, this path need not have its shape predetermined. How-
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ever, as a density-based clustering algorithm, DBSCAN assigns all elements to

a single cluster in the case of a uniformly distributed dataset. Whether or not

this would be useful or correct would require domain specific interpretation. It

should also be noted that each algorithm’s performance is subject to choosing

of input parameters as previously mentioned. The adjustment of the number

of clusters for k-means and eps for DBSCAN could alter the results tremen-

dously. However, for purposes of comparing the behavior of the algorithms the

parameters chosen are well suited.

KMeans AffinityPropagation DBSCAN

Figure 10: Comparison of clustering methods on toy dataset [76]
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3.2.2 Parameter Analysis

Parameter selection for DBSCAN can significantly impact the discovery of clus-

ters within a dataset and can influence the final clustering assignments of points.

To date, there is no single automated method for extracting the “best” DB-

SCAN parameters and as such human reasoning and domain expert knowledge

is often the primary method for determining suitable parameters. Typically the

selection of MinPts and Eps are very influential on the selection of the other

and most methodologies rely on first establishing one of the parameters in order

to derive the other. This section serves to identify existing methodologies that

are primarily automated and could be used in conjunction with heuristics for

the TSP. The methods will be further examined in Chapter 4, however, visual

inspection of sample TSP instances can be effective for understanding the be-

havior of the derivation methods versus alternatives and the easiest methods

for determining parameters.

The original authors of DBSCAN [30] suggest an interactive approach when

establishing suitable parameters. For MinPts, the authors note that no dis-

cernible difference exists between MinPts = 4 and MinPts ≥ 4 for all two-

dimensional data with which they experimented. Increasing MinPts would

require additional computational time and thus working with values less than

or equal to four significantly reduces the search space. The proposed values for

MinPts in this research are restricted to two, three, and four. The reason for

considering MinPts ≤ 4 is because for applications to the TSP the relationship

between two nodes can be significant enough to constitute the basis for a clus-

ter. While a cluster arrangement with MinPts = 4 might be more meaningful,

there is no reason to eliminate the possibility that MinPts ≤ 4 could produce

favorable results. MinPts = 1 is not logical because every point would become

a cluster in and of itself regardless of Eps.

In [30] the authors derive Eps having already chosen the MinPts parameter.
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This is common amongst most parameter derivation methodologies and helps

guide the choice of Eps significantly. MinPts can be referred to as k in order

to generate a kth nearest neighbor set of distances. Sorting and plotting a

list of kth nearest neighbors allows for the creation of a k-distance plot that

plots data points against the distance to its kth nearest neighbor. Formulating

the kth nearest neighbor list and subsequent plot is the most common basis

for determining Eps. A sample k-distance plot for the berlin52.tsp instance is

featured in Figure 11.
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Figure 11: Sample multi k-distance plot for berlin52.tsp

In [30], the authors suggest visually inspecting the k-distance plot for the

first valley starting with the greatest k-distances. The algorithm would then be

run with the estimated parameter and tuned based on inspection of the results

by the user. This approach has two flaws when considering it for the TSP. The

first is that it operates under the assumption that the majority of points will be

core points and sets Eps based on a valley where the k-distance would consider

the minority of points to be noise. Secondly, the determination of Eps require
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user interpretation and could be difficult to justify or measure the robustness of

the choice. This difficulty is illustrated in Figure 12 where two potential valleys

are identified. Not only are they difficult to identify, but the exact point that

can be considered a valley is not clear. The shaded regions highlight potential

areas to choose as the valley and extract corresponding Eps values from. The

arrows approximate the sampling range that would be used under this method.
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Figure 12: Valley identification k-distance plot for berlin52.tsp

Another approach to choosing Eps is based on the expected k-distance under

an assumption of evenly spaced points in a grid. A process based on this idea

was used by the authors in [87]. The problem environment which they worked

in was uniform across all problems generated and had the following features:

Each TSP instance consisted of 100 cities generated within a [0,400] by [0,400]

grid. Using the same grid and the same number of cities allowed the authors

to establish an Eps = 40. This value roughly corresponds to the expected

distance of the 4th nearest neighbor assuming all points are evenly distributed

throughout the region. A generalization of this concept can be used given a
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b× b grid containing n points:

d4 = Eps =
b√
n− 1

(22)

Using this formulation the authors would have chosen Eps = 44.44 but there

approximation validates this technique was used. To employ this strategy with

other TSP instances the problem would either need to be scaled to a square grid

prior to establishing Eps or an approximation that follows the same method-

ology could be employed. In this research an approximation method is used

based on the maximum distance between the furthest most points within a

dataset to establish a “grid” that can then be used to estimate the distance of

the 4th nearest neighbor. The procedure for this estimation is based on the

maximum distance between two nodes in C. Notating the maximum distance

between two nodes as G, this value can be assumed as the hypotenuse of a

triangle covering a square grid of the region with dimensions b × b. Using the

pythagorean theorem the grid estimate is as follows:

G2 = b2 + b2 (23)

Rearranging Equation 23 results in the following grid approximation:

b =
G√

2
(24)

The approximation of b then allows for calculating Eps using Equation 22 as if

the grid had previously been known.

The two methods presented thus far for identifying an appropriate Eps are

not necessarily automated or flexible enough for use in conjunction with the

TSP. Determining Eps from a k-distance plot might be useful in a data mining

application where a subject matter expert could help guide the search but the

method is certainly not reliable enough to be used in an automated way. As for
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a grid approximation with a fixed calculation for Eps, the value might work well

as a starting point by a user but if it does not yield a positive result there is no

obvious path forward for tuning the value. As these two methods have obvious

shortcomings and the goal of this research is to develop useful clustering results

in conjunction with TSP heuristics, more flexible and automated methodologies

for determining Eps are explored.

One fully automated strategy for both Eps and MinPts was presented by

Zhou, Wang, and Li in [93]. The authors note that a sorted k-distance value

for a particular k is approximately Poisson distributed and thus the maximum

likelihood value for the distribution is the geometric mean. Following this

strategy, Eps is calculated as follows:

Eps = X̄ =
1

n

n∑
i=1

Xi (25)

This determination of Eps requires that a k level be determined in advance.

However, this value is not automatically used for MinPts. Instead, each Eps-

neighborhood in the dataset is queried for the number of points that lie within

it and then the average is taken to calculate a suitable value:

MinPts =
1

n

n∑
i=1

pi (26)

The authors compared results on benchmark clustering datasets to the meth-

ods proposed by the original DBSCAN authors and were able to achieve greater

accuracy. The use of the mean does pose an issue in a dataset that has extreme

outliers as this could artificially inflate the value for Eps above what is suitable

for the dataset. An extension of this research would be the use of the median in

place of the mean and then performing the same procedure. This extension will

be explored in this research. The most significant element of the research con-

ducted was that the most desirable clustering results on two-dimensional data

came when MinPts was not equal to 4 as prescribed by the original DBSCAN
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authors but was smaller. The results of the approach prove that an automated

strategy for determining Eps and MinPts can be effective.

Research conducted by van Hemert in [90] also used the geometric mean as a

starting point to determine Eps. Initially, the mean and standard deviation of k-

distance values were taken and the working range for Eps then became [X̄, X̄+

2σ]. Instead of choosing a singular value for Eps, s values were sampled at equal

distances throughout the range. In [90], s was initially set to 10. Subsequently,

DBSCAN was run given the s values for Eps and the predetermined value for

MinPts. After the runs complete, the number of clusters for each Eps are saved

and the values corresponding to the most frequent number of clusters are saved.

From this list, the median is taken and that value is used as Eps. In the event

that the most frequent number of clusters is not unique, the process is repeated

but instead with s = 2s and thus doubles the number of samples taken in the

range. This process repeats until the greatest number of clusters in the range is

unique. The method proposed works well but suffers similarly to other methods

explored in that the mean and standard deviation are susceptible to outliers

that skew the range.

Having research affirming the geometric mean as a method for calculating

Eps naturally leads to the use of other centrality measures. The most obvious

of which would be the median of a k-distance set. Using such an approach in

conjunction with a set of Eps values would eliminate the effect that outliers

could have on alternative calculation methods that involve the mean. Addi-

tionally, most proposed methods have a tendency to focus on values for Eps

that are greater than the mean or median values obtained in a k-distance plot.

As previously mentioned, this approach is rooted in data mining applications

where the assumption is that points exist in clusters and the primary goal is the

discovery of those clusters. For application to the TSP however, it cannot be

assumed that useful clusters exist a priori, thus more flexibility must be given

to Eps values such that consideration is given for situations where a minority
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of points might constitute a cluster.

With the idea of incorporating flexibility and robustness into a parameter

determination method, this research explores a larger set of possible Eps values

than previous research. The primary motivation for exploring a larger set of

Eps values is that clustering for solving the TSP may not require the same

set of rules that are typical for most clustering applications. In addition, a

single method for determining Eps may not be suitable for all TSP instances

and thus a larger set should be sampled. This research presents an additional

methodology for determining both Eps and MinPts that is based on the best

practices of other research yet incorporates a larger set of possible values by

drawing from grid search techniques. The grid requires a discrete candidate set

for MinPts to establish one dimension of the grid and is initialized, XMinPts =

[2, 3, 4]. The second dimension of the grid is also initialized as a discrete set of

values from the k-distance set. The granularity of the Eps set can be controlled

by the number of samples taken within the range bounded by the 0.1 quantile

and the 0.9 quantile. The set is initialized with 10 evenly spaced samples taken

within the range, XEps = [0.1q, . . . , 0.9q]. The grid values are then evaluated

based on the effectiveness of the parameters in conjunction with the chosen

heuristic. If particular regions of the grid perform more favorably the grid

can be reduced to a smaller region with finer granularity centered around that

region. This method does incur a greater computational cost than a singular

value determination but if a singular value did not perform well alternative

values would still need be explored.

The parameter determination methods presented in this research are evalu-

ated in conjunction with TSP heuristics that are adapted to work in conjunction

with cluster assignments. Therefore, reviewing the clustering assignments gen-

erated alone without a TSP tour is not useful in this research. The methods

used to generate suitable Eps and MinPts parameters throughout the rest of

this research are summarized in the following:
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1. Estimate the size of the grid encompassing all points by setting the di-

agonal, G , to the maximum distance between two nodes. Having the

diagonal, calculate the size of the grid assuming it to be square, b = G√
2
.

Use MinPts = 4 along with Eps = b√
n−1 .

2. Determine a k-distance set, X, for determining Eps by taking the mean

of the k-distance set, Eps = 1
n

∑n
i=1Xi. Use Eps to query the Eps-

neighborhood of every point and set MinPts to the mean of the query

values, MinPts = 1
n

∑n
i=1 pi.

3. Determine a k-distance set, X, for determining Eps by taking the median

of the k-distance set, Eps = median(X). Use Eps to query the Eps-

neighborhood of every point and set MinPts to the mean of the query

values, MinPts = 1
n

∑n
i=1 pi.

4. Develop a grid of points by establishing a possible set of MinPts, XMinPts,

and a candidate set of Eps values, XEps, that is constructed from evenly

spaced quantiles in the range [10th% . . . 90th%]. The product of these sets

creates a grid of parameters to be evaluated.

3.3 Heuristic Methods with Clustering

The novelty of this research is the incorporation of DBSCAN clustering assign-

ments into existing heuristics for the TSP. The goal is that clustering assign-

ments will be useful in improving the performance of well established heuristic

methods through this incorporation. Related research has been partly con-

ducted by incorporating k-means clustering and affinity propagation with a

genetic algorithm for solving the TSP [22, 77, 28]. In each of these previous

approaches a similar strategy was used. First, a path was produced within

each cluster with the goal of creating a locally optimal solution within each

cluster. Common amongst all previous research was the use of a genetic algo-

rithm in this capacity. Secondly, the locally optimal solutions are connected
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into a global path that traverses all nodes. In [22] the clusters were connected

globally using a nearest neighbors approach. In [77, 28], a genetic algorithm

was again used to complete the global tour. The low level first high level second

approach taken by previous researchers is important in utilizing the clustering

assignments. However, it is not always necessary but can be exploited to take

advantage of parallel computing. Instead the heuristic method being adapted

can be constrained to incorporate the clustering assignments. The exact imple-

mentation can be adapted to utilize best computing practices. This research

presents two novel methods based on well known heuristics. The first is the

Clustered Greedy Heuristic. The second is the Clustered Nearest Neighbor. Both

of these approaches are incorporated with DBSCAN as the clustering algorithm

but any clustering algorithm that maintains independent clusters could be em-

ployed with these methods.

3.3.1 Clustered Greedy Heuristic

The Clustered Greedy Heuristic extends the greedy heuristic by incorporating

clustering assignments of nodes into the process of building a tour. As detailed

in Section 2.5.2, the greedy heuristic is a tour construction heuristic that has

been proven as one of the most reliable and best performing tour construction

heuristics. The greedy heuristic initializes by sorting the distance matrix of

TSP nodes into a queue such that the shortest edges are prioritized ahead of

longer edges. The algorithm then attempts to add edges into an undirected

graph based on this priority while it does not violate the construction of a

Hamiltonian cycle.

To simply describe the modified procedure, edge additions are made in the

same way they would be without clustering assignments but the additions are

constrained such that nodes within a cluster can only connect to other nodes

in the same cluster. The result of this is disjoint paths that traverse all of the

nodes within a cluster but do not complete a global tour. The remaining nodes,
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of which any not connected at all would be noise, are connected by adding edges

to connect the clusters and noise points to complete the tour. The goal is that

a clustering method that performs well can improve the performance of the

greedy heuristic when not considering the clustering assignments. The high

level procedure for the Greedy Clustering Heuristic is presented in Figure 13.

From a computational standpoint, the only additional complexity added to the

greedy heuristic is DBSCAN. However, the isolation of nodes in clusters allows

the edges to be added independently within the clusters before the global space

is considered. This process lends itself to parallelism, which can be used to

decrease the computational time of the algorithm. In addition, the sorting

of the distance matrix can be reduced to only the distances pertaining to the

nodes within the cluster being considered and further reduces the computational

complexity.

Figure 13: Flow Diagram for Clustered Greedy Heuristic

The Clustered Greedy Heuristic starts by reading a TSP instance and ex-
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tracting the nodes. The pairwise distance matrix, D, is then constructed based

on the given distance metric, which in most cases is Euclidean. The distance

matrix is then passed to both the greedy heuristic and to DBSCAN. For the

greedy heuristic, the distance matrix must be sorted to produce a vector of

edges, denoted by E, such that the shortest edges will be attempted to be

added first to the fully disconnected graph, G. For DBSCAN, the distance

matrix is paired with the inputted Eps and MinPts parameters to produce

cluster assignments for all nodes, C. As previously noted, the restriction of

edges withing a cluster allows for efficiencies to be gained during computation

such that the entire distance matrix need not be considered during sorting.

For every cluster generated by DBSCAN, edges are greedily added within the

cluster to produce a path through the nodes in the cluster. The resulting clus-

ter now is fully connected with the exception of two nodes that have only a

single connection, which will serve as the nodes to connect the cluster path to

the global path. After the cluster edge additions are made, the entire space is

considered, including the noise points and a global tour is greedily constructed.

The algorithmic procedure is presented in Figure 14. As can be seen in Fig-

ure 14, the main algorithm relies on two supporting functions for determining

whether an edge addition would be valid. The first is the degreeCheck, which

determines whether or not either of the nodes that the edge would connect can

be connected validly. The degree of a node is measured by the number of edges

connected to that node. A disconnected node has a degree of zero. In the case

when either node has a degree of 2, the node is already fully connected and

an edge addition involving that node would compromise the construction of a

valid tour. Otherwise, the edge can be assessed for the more computationally

expensive procedure of determining whether or not it forms an invalid cycle.

This is performed by cycleCheck.

The cycleCheck function determines whether or not the two nodes being

connected by the edge are already reachable from one another, in which case
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Figure 14 Algorithm: Clustered Greedy

1: procedure ClusteredGreedy(D, eps, MinPts)
2: C = DBSCAN(D, eps, MinPts)
3: E = sorted edge list s.t. e1 < e2
4: G = Fully disconnected undirected Graph of D
5: for cluster in C do
6: while edgeCount < m− 1 do
7: G′ = ei from E added to GC

8: if degreeCheck(G’, ei) then
9: if cycleCheck(G’) then

10: GC = G′

11: next ei
12: G =

∑
GC

13: while tour incomplete do
14: G′ = ei from E added to G
15: if degreeCheck(G’, ei) then
16: if cycleCheck(G’) then
17: GC = G′

18: next ei
19:

20: procedure degreeCheck(G’,e)
21: valid = true
22: for node in e do
23: if degree(node) > 2 then
24: valid = false

25:

26: procedure cycleCheck(G’)
27: valid = true
28: if G′ contains a cycle then
29: if cycle is non Hamiltonian then
30: valid = false
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if they are, the function determines whether the edge would complete a full

Hamiltonian tour. In practice, paths are stored as lists and as they are con-

nected the lists are merged. When the two nodes being connected are in the

same list, it is known that the edge cannot be added as it would complete a

non-Hamiltonian tour. The addition of the final tour does not undergo this

same check, however, because the tour would never complete if the number of

edges already in the graph was not considered. As such, in the case of m nodes,

the cycleCheck is bypassed when the number of edges, edgeCount, is equal to

m− 1. This hold because the number of edges required to complete the tour is

always equal to m. Alternatively, the edge addition loop could be terminated

at m− 1 nodes as it is in the cluster portion of the edge additions and the two

nodes with degree = 1 connected.

The final step in terminating the algorithm is the extraction of the path from

the graph, G. The path is extracted by performing a self avoiding walk for m

steps. The self avoiding walk moves from node to node with the restriction

that the next node must not be in the already traversed path. The result is a

permutation vector containing the constructed path for the TSP of length m.

In practice, the path is already in memory because it is required in cycleCheck

and can easily be extracted from the list of connected components.

3.3.2 Clustered Nearest Neighbor

The Clustered Nearest Neighbor Heuristic extends the Nearest Neighbor Heuris-

tic by incorporating clustering assignments of nodes into the process of building

a tour. The Nearest Neighbors Heuristic is detailed in 2.5.1 in and is one of the

most widely used heuristic methods for constructing solutions to the TSP. It is

often used as a tour constructor as an initialization for singular or population

based improvement methods. One reason for this is the simplicity of the algo-

rithm; start at a node and always move to the nearest available node until you

are able to return to the starting node. The other reason is that for situations
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in which multiple candidate solutions are required, such as initialization for a

population of solutions in an evolutionary algorithm, Nearest Neighbors is ca-

pable of producing numerous unique tours based on the choice of the starting

node.

The modification of the Nearest Neighbors is somewhat similar to the mod-

ification employed in the Clustered Greedy Heuristic. The movement from the

current node to the nearest neighbor proceeds in the same way it would in the

standard algorithm with the exception that nodes in a cluster can only move

to its nearest neighbor that also exists in the same cluster. Obviously this

procedure would get stuck in a cluster and not complete a tour, therefore this

constraint is relaxed when there are no unvisited nodes remaining in the cluster.

Any nodes that are not part of a cluster, such as the nodes designated as noise

from DBSCAN, are free to move to their nearest neighbor without restriction.

However, once a node is visited that is within a cluster, the nearest neighbors

are restricted to nodes that are within that cluster. The process diagram for

Clustered Nearest Neighbors is presented in Figure 15. As can be seen in the

diagram, once a node in a cluster is visited all nodes in that cluster must be

visited before nodes outside of the cluster are considered.
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Figure 15: Flow Diagram for Clustered Nearest Neighbor

The Clustered Nearest Neighbor algorithm starts by reading a TSP instance

and extracting the nodes. The pairwise distance matrix, D, is then constructed

based on the distance metric provided. The distance matrix is paired with Eps

and MinPts and passed to DBSCAN for the generation of cluster assignments,

C. A set of candidate nodes, T , is initialized to include all nodes in the TSP

instance and a fully disconnected undirected graph, G, is comprised of these

nodes. To initialize the process of constructing a tour, a random node, j,

from T is chosen as the starting point. The starting point can optionally be

supplied to the algorithm as an argument. The current node is determined by

finding the nearest neighbor to j. The current node is then removed from the
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candidate set. If the current node is a member of a cluster, the candidate set is

restricted to nodes that are also members of that cluster until the candidate set

is empty. Otherwise, the candidate set includes all remaining unvisited nodes.

The algorithmic procedure for performing the traversal is detailed in Figure 16.

Figure 16 Algorithm: Clustered Nearest Neighbors

1: procedure ClusteredGreedy(D, eps, MinPts)
2: C = DBSCAN(D, eps, MinPts)
3: G = Fully disconnected undirected Graph of D
4: T = set of all nodes in D \{m}
5: j = random node in T
6: while T 6= ∅ do
7: T ′ = {Ti} ∀ i.cluster = j.cluster
8: if j.cluster = noise or T ′ = ∅ then
9: T ′ = T

10: k = min{cjk|k ∈ T ′}
11: add edge ejk to G
12: j = k, remove k from T

The next node is always the nearest unvisited node to the current node

as would be expected from the name nearest neighbor. As a node is visited,

the edge between it and the previous node is added to the graph, G, and

simultaneously removed from the candidate set, T . In practice, the candidate

set of nodes need not be altered directly. Instead, a binary or boolean decision

set can be used track the eligibility of nodes based on what has already been

visited and whether or not the nodes are part of the same cluster.

The algorithm requires a cluster candidate set to only be constructed once,

at which point every node in the cluster is traversed and then the candidate

set of the cluster is empty and the global set of points is considered. The result

is that a tour enters and leaves a cluster exactly one time. This is in common

with the Clustered Greedy Heuristic. As with nearest neighbors, any of the

nodes in the TSP can be chosen as a starting node regardless of whether it is a

noise point or a member of a cluster. The algorithm terminates when there are

no longer any candidate nodes in the set and the path is extracted from G.
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Chapter 4

Implementation and Results

In order to examine the efficacy of the clustered greedy and nearest neighbor

heuristics, the algorithms performance were numerically evaluated through a

series of tests. Moreover, the clustered heuristics were utilized to solve several

benchmark TSP instances and thereupon compared to the results generated by

the classic, non-clustered approaches. This chapter presents a detailed descrip-

tion of the experimental setup utilized to analyze the clustered heuristics across

a wide range of problems. Further, the performance of several parameter deter-

mination methods for DBSCAN are examined. The performance improvements

facilitated by the clustered greedy and clustered nearest neighbor heuristics are

presented in regard to the determination method that results in the best per-

formance improvement.

4.1 Implementation

The development of reusable and flexible utilities is paramount in being able to

conduct research efficiently. Having a structure in place that organizes prob-

lem information allows for the majority of time to be spent on development and

experimentation. In addition, an environment that is well suited to numerical

computation, but is also easy to use and adapt as the research process evolves,

is necessary. In this research the Julia Programming Language was used for

all development, experimentation, and analyses. Julia is a high-level and high

performance dynamic programming language that has particular focus on nu-
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merical computing [12]. Julia integrates high performance with ease of use and

is perfectly suited to the challenges of implementing optimization heuristics in-

volving the TSP. All experimentation and subsequent computational runtime

analyses were performed on a machine running Ubuntu 16.04 featuring an Intel

Xeon CPU E5-2665 2.40GHz processor.

4.1.1 TSPLIB

For the experimentation of this research, TSPLIB [80] was utilized for bench-

mark problem instances. TSPLIB hosts 111 different symmetric TSP instances

ranging in size from 14 cities to 85,900 cities. At the core of TSPLIB are .tsp

files that store summary problem information and relevant data pertaining to

the particular problem instance. These files are text files that feature key-

words followed by the information elaborating that keyword. The authors of

TSPLIB break the information contained in a .tsp into two separate categories:

specification information and data.

The specification information is required to understand the problem and

also provides the required logic for correctly interpreting the data. The basic

information supplied in the specification is the name of the problem instance,

the dimension of the problem, the type of data provided, and the distance metric

to be used. The data portion of the file specifies the type of data provided by

the keywords in the file and also provides the actual problem data. The problem

data takes two general forms. The first option is that node coordinates for cities

are given and the distance metric provided by the specification section is to be

used to compute the distance matrix. The second option is that an explicit

distance matrix is given. Even when an explicit distance matrix is provided,

the coordinate nodes or a set of display nodes may be included that is intended

only for graphical representation of the problem.

In order to consolidate the data in a .tsp file and to generate a uniform

interface across all problem instances, a library was created that exports a
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single type in Julia, namely the TSP. The TSP type is similar to an object that

is featured in object oriented programming languages and is a data structure

that holds the useful information taken from a TSP instance. The fields of the

type and the type of data stored in each field are displayed in Figure 17.

type TSP
    name::String
    dimension::Integer
    weight_type::String
    weights::Matrix{Float64}
    nodes::Matrix{Float64}
    Dnodes::Bool
    ffx::Function
    pfx::Function
    optimal::Float64
  end

Figure 17: TSP type structure

The field information is obtained by parsing the .tsp file for keywords and

extracting the relevant data. In the case when a distance matrix is not explicitly

provided, the distance matrix is calculated based on the provided distance

metric. The type is constructed via two functions; readTSP() which accepts

a file path to a .tsp, and readTSPLIB() which accepts the name of a TSPLIB

instance to load from the library. The aptly named fields contain information

that is obvious. Some of the less obvious are described in more detail here to

understand how the type is to be utilized. The Dnodes field indicates whether

or not the nodes provided are for display only. If the nodes are not provided,

the nodes field is initialized as zeros. The ffx and pfx fields are fitness functions

to determine the length of a tour. The ffx field calculates the entire cost of

a tour, where the final node in a path vector must return to the first node.

Alternatively, the pfx function can determine the cost of any given sized path

by calculating the path traversal cost between the nodes provided. Lastly, the

optimal field stores the optimal tour length if provided, which is the case for

all TSPLIB instances.
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4.1.2 Experimental Setup

The experimental setup deployed in this research examines the effectiveness

of the clustered greedy heuristic and the clustered nearest neighbor against

their standard versions. To provide a thorough and effective comparison of

both heuristics, 108 TSP problems ranging in size from 14 to 18,512 cities were

chosen from TSPLIB. The two largest problems of TSPLIB (i.e. greater than

18,512 cities) were excluded due to limitations in the available memory required

to solve such large problems. For both the clustered greedy and the clustered

nearest neighbor, multiple parameter determination methods are employed that

seek to find useful input parameters to DBSCAN. As detailed in Section 3.2.2,

four parameter determination methods are explored in this research. The first

method is referred to as the Square Estimate. It is used to estimate the size of

the tour space by calculating the diagonal and assuming the space to be square,

at which point MinPts is fixed to four and Eps is the expected distance of the

fourth nearest neighbor. The second method is based on taking the mean of

a k-distance set and then querying the average of the Eps-neighborhoods for

MinPts. This method will be referred to as Flexible Mean. The third method

is performed exactly as Flexible Mean but instead uses the median and thus

will be referred to as Flexible Median. The last method is a grid search across

two candidate sets, one for MinPts and the other for quantiles of a k-distance

set to determine Eps. The quantile values chosen for a broad exploration of

points are taken starting with the 10th% quantile and proceed for every 10th%

quantile up to the 90th%. The subsequent grid results in 27 different parameter

combinations. This last method will be referred to as Grid Search.

It must also be noted that each parameter determination method produces

a different quantity of parameter combinations and thus requires the clustered

heuristic to be executed proportionate to this quantity. Square Estimate de-

rives a single parameter and thus requires a single run, whereas Flexible Mean
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and Median are each run with three candidate values for determining the k-

distance level. The grid search is the most exhaustive but obviously the most

computationally expensive and examines twenty-seven different combinations

of Eps and MinPts.

With respect to the heuristics and their clustered counterparts, considera-

tion is given to the stochasticity of the nearest neighbor and clustered nearest

neighbor. For the nearest neighbor each iteration for a given TSP instance

may generate a unique solution from each starting point. To this end, the

evaluation of the performance of the parameter determination methods with

respect to the nearest neighbor considers only the best tour provided from the

candidate starting points. This is justified by the fact that in practice only the

shortest tour generated would be utilized as a solution and the effectiveness of

the parameter determination methods is most suitably measured by their best

performance.

4.2 Parameter Determination Evaluation

The parameter determination methods that require little guidance in determin-

ing parameters for DBSCAN are referred to as “automated”. In particular the

Flexible Mean, Flexible Median, and Square Estimate can all be considered as

such. While Square Estimate requires zero input parameters, Flexible Mean

and Flexible Median require only, k, which determines the k-distance level

from which to start. The best case scenario would be for any of these methods

to consistently generate high quality parameters for constructing TSP tours.

Each of the parameter determination methods examined are computationally

inexpensive and would mark a major step forward in automating the entire

process of determining parameters for constructing a quality TSP tour. The

Square Estimate is only capable of generating a single parameter combination

for Eps and MinPts. Flexible Mean and Flexible Median are both presented at

their respective k-level, signifying the k-distance set that is used for generating
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parameters.

The analysis of the Grid Search parameter determination method is per-

formed similarly to the analysis of the automated methods. The major differ-

ence is that the Grid Search is an exhaustive approach and would be difficult

to implement on larger problems without the incorporation of parallel com-

puting or some discerning criteria to significantly reduce the size of the grid.

Thus, the results of Grid Search serve as a basis for understanding the effective-

ness of deriving Eps across quantiles of the k-distance set in conjunction with

a predetermined value for MinPts. As previously mentioned, the experiments

performed in this research evaluate three MinPts values and samples Eps from

the k-distance set at nine evenly spaced quantiles.

To properly assess the performance, robustness, and consistency across the

entire class of benchmark TSP instances, the methods are measured based on

their overall performance and in relation to their counterparts. A comparative

summary of the performance of these different methods is broken into two sep-

arate sections each featuring performance comparisons for the clustered greedy

and clustered nearest neighbor. Each table features the mean percent error and

the standard deviation of the error with respect to optimality across all bench-

mark problems. The table also includes the relative percent best value, which

is a measure of the relative strength of the parameter determination method

against the other methods in the table. The value of the metric indicates the

percentage in which that method outperformed all other methods in the table.

4.2.1 Automated Method Results

Table 1 presents a comparison between the automated parameter determina-

tion methods for the clustered greedy heuristic. Across all benchmark problems,

the standard greedy heuristic obtained a mean error of 17.03% with a standard

deviation of 6.21. None of the automated methods were able to establish a

lower average error across all benchmark problems. However, the mean error
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for both Flexible Mean with k = 2 and Flexible Median k = 2 are comparable

to the standard greedy with means of 19.47% and 18.09% respectively. Given

the standard deviations of the standard greedy and the automated clustering

methods, there is significant variability across in its performance across the

benchmark problems. Comparing the Square Estimate to each of the adap-

tive parameter methods, it obtained the worst average performance but shows

promise having obtained the best solution 16.67% of the time relative to the

other methods. This again reinforces the parameter variability across the dif-

ferent TSP instances tested. Having the lowest mean errors, Flexible Mean and

Median also achieve the relative best solution 26.85% and 27.78% of the time

respectively.

Parameter Method % Error Relative
Epsilon k-level Mean Std. Dev % Best

Flexible Mean 2 19.47 7.29 26.85
Flexible Mean 3 21.78 8.18 5.56
Flexible Mean 4 21.74 8.40 10.19

Flexible Median 2 18.09 6.34 27.78
Flexible Median 3 20.23 7.69 10.19
Flexible Median 4 21.80 8.32 2.78
Square Estimate 4 21.81 8.62 16.67

Table 1: Automated Parameter Determination Comparison: Clustered Greedy

One of the key takeaways from Table 1 is that both Flexible Mean and

Flexible Median perform significantly better with a k-level of 2. With k = 2,

the magnitude of both Eps and MinPts would be smaller than higher values

of k. If utilized in combination, this would assist in the identification of small

dense areas as core points but would be highly likely to flexibly expand due to

the expected smaller value of MinPts. This gives some indication that allowing

the clustering to be as flexible as possible, thus allowing for small clusters to

form, lends itself to a better solution than only qualifying larger clusters.

Table 2 presents a comparison between the automated parameter determina-

tion methods for the clustered nearest neighbor heuristic. Across all benchmark

problems, the standard nearest neighbor obtained a mean error of 18.45% with
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a standard deviation of 5.63. None of the automated methods were able to

establish a lower average error across all benchmark problems and they per-

formed significantly worse than standard nearest neighbors. In all cases, the

automated methods have a higher mean and standard deviation than nearest

neighbors. Amongst the automated methods, Flexible Mean with k = 2 and

Flexible Median k = 2 can be clearly identified as the most superior param-

eter determination methods with means of 21.95% and 20.26% respectively.

They each also show the lowest standard deviations amongst the methods but

comparatively to the mean the standard deviations indicate highly variable per-

formance. The real dominance of the two superior methods is in the relative

strength against the alternative methods. Flexible Median with k = 2 obtained

the best relative solution on 42.59% of problems and Flexible Mean with k = 2

was best on 28.70% of problems.

Parameter Method % Error Relative
Epsilon k-level Mean Std. Dev % Best

Flexible Mean 2 21.95 7.23 28.70
Flexible Mean 3 24.73 8.54 5.56
Flexible Mean 4 25.84 8.66 2.78

Flexible Median 2 20.26 6.59 42.59
Flexible Median 3 23.06 8.21 6.48
Flexible Median 4 24.30 8.34 5.56
Square Estimate 4 24.84 9.22 8.33

Table 2: Automated Parameter Determination Comparison: Clustered Nearest Neighbor

Similar to the results of the methods utilized in conjunction with the clus-

tered greedy, Flexible Mean and Flexible Median at the k-level of 2 exhibit

the strongest performance. While the results do not indicate competitiveness

with the standard nearest neighbors algorithm, the performance of the clustered

greedy heursitic demonstrates that utilizing that particular k-distance set yields

the most desirable results. The consistency across the clustered greedy and the

clustered nearest neighbor is important in examining the usefulness of the pa-

rameter determinations, even when the performance in the clustered greedy

was much stronger than the clustered nearest neighbor.
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4.2.2 Grid Search

The relative performance comparison for all of the evaluated points used in

Grid Search for the clustered greedy heuristic can be found in Table 3. By

examining the grid quantiles, it is evident that lower quantiles, and thus smaller

values of Eps provide more useful clustering assignments resulting in better

solutions. The 10th% quantile across all k-levels outperforms all other grid

parameters on 47.23% of problems. Averaged across all problems, the 10th%

with k = 2 outperforms the standard greedy, achieving mean error of 16.97%

versus 17.03%, as does the 30th% quantile with k = 2. Amongst the rest of the

grid, the strongest results are found with k = 2 as they were with the adaptive

methods. The strongest relative points fall amongst the lower quantiles, namely

the 10th%, 20th%, and 30th%. Identifying better performance in lower quantiles

is important in reducing the size of Grid Search as well as for increasing the

granularity of samples in the promising regions. A further reduction could be

made to only include k = 2 as it consistently outperforms across most quantiles.
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Grid Values % Error Relative
Quantile k-level Mean Std. Dev % Best

0.1 2 16.97 6.16 35.19
0.1 3 17.21 6.03 5.56
0.1 4 18.3 6.39 6.48
0.2 2 17.14 6.03 2.78
0.2 3 17.79 6.18 5.56
0.2 4 19.99 7.26 2.78
0.3 2 16.85 5.85 3.7
0.3 3 18.76 6.64 2.78
0.3 4 21.11 8.27 2.78
0.4 2 17.55 5.94 0.93
0.4 3 20.55 7.82 1.85
0.4 4 22.16 8.24 0
0.5 2 18.18 6.42 0.93
0.5 3 20.9 7.95 0.93
0.5 4 22.33 8.65 0.93
0.6 2 19.1 7.06 0.93
0.6 3 21.01 7.92 0.93
0.6 4 22.29 8.1 5.56
0.7 2 20.2 7.73 0.93
0.7 3 21.66 8.31 3.7
0.7 4 22.78 8.16 4.63
0.8 2 21.3 8.14 0
0.8 3 22.31 8.67 2.78
0.8 4 22.37 8.4 3.7
0.9 2 21.95 8.39 0
0.9 3 21.42 8.17 0
0.9 4 20.33 7.52 3.7

Table 3: Grid Search Comparison: Clustered Greedy

The results of the parameter Grid Search for the clustered nearest neighbor

are presented in Table 4. Relative to the performance of the Grid Search for

the clustered greedy, clustered nearest neighbors does not fare as well. The

best performing grid points are at the 10th% and 20th% quantile with k = 2,

achieving a mean performance of 18.77% and 18.96% respectively. None of the

grid points obtain a better average error than the standard nearest neighbors

mean error of 18.45%. The Grid Search results do further evidence that the best

performing regions of the grid are the lower quantiles with k = 2, consistent

with the results of the clustered greedy.
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Grid Values % Error Relative
Quantile k-level Mean Std. Dev % Best

0.1 2 18.77 5.89 40.74
0.1 3 19.54 5.93 3.7
0.1 4 20.74 6.72 5.56
0.2 2 18.96 5.72 7.41
0.2 3 19.83 6.17 3.7
0.2 4 21.8 7.39 0.93
0.3 2 19.09 6.14 4.63
0.3 3 20.95 6.83 3.7
0.3 4 23.89 8.52 1.85
0.4 2 19.81 6.38 1.85
0.4 3 22.21 7.63 1.85
0.4 4 24.68 9.28 2.78
0.5 2 20.23 6.63 2.78
0.5 3 23 8.01 0
0.5 4 25.16 8.87 1.85
0.6 2 21.43 7.44 0.93
0.6 3 23.96 8.63 3.7
0.6 4 26.19 9.12 0
0.7 2 22.55 7.88 0
0.7 3 25.09 8.89 1.85
0.7 4 26.63 9.54 3.7
0.8 2 23.78 8.78 0
0.8 3 25.22 9.24 0.93
0.8 4 25.81 9.33 1.85
0.9 2 24.81 9.1 1.85
0.9 3 23.89 8.61 0.93
0.9 4 22.73 8.18 0.93

Table 4: Grid Search Comparison: Clustered Nearest Neighbor

67



4.3 Clustered vs. Standard Heuristic Performance

The performance comparison of the parameter determination methods gives

insight into the relative strength of each method and assesses the average per-

formance against optimality. Here the performance of the clustered greedy and

clustered nearest neighbor are compared to the performance of the standard

versions of the perspective algorithms without clustering. The comparison

of the clustered versions are made across the different parameter determina-

tion methods. The improvement frequency is presented as a measure of the

percentage of problem instances in which that particular parameter determina-

tion method outperformed the standard application of the particular algorithm.

The maximum improvement measures the greatest absolute improvement when

comparing the best result obtained by that method with the standard heuristic.

The maximum improvement is taken from the entire set of solutions obtained

by the method. For example, in a Grid Search for a given problem twenty-

seven solutions are obtained from which the best performing solution is then

compared with the solution from the standard heuristic.

The improvement comparison between the clustered greedy methods and

the standard greedy are presented in Table 5. The worst performing method

was the Square Estimate with a 33.53% improvement frequency. This is not

surprising but the result is still meaningful considering it is the only method

that generates a single comparable solution. Flexible Mean and Flexible Median

perform comparably, as expected from their previous comparison against each

other, with improvement frequencies of 43.52% and 52.78% respectively. The

greatest improvement frequency is from Grid Search, with 83.33% improvement

frequency. The Grid Search also obtained the largest maximum improvement

at 23.35%.
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Method Improvement Frequency (%) Maximum Improvement (%)
Flexible Mean 43.52 11.36

Flexible Median 52.78 12.19
Square Estimate 33.33 11.64

Grid Search 83.33 22.35

Table 5: Clustered Greedy Improvement vs Standard Greedy

Improvement comparisons for the clustered nearest neighbor are presented

in Table 6. The worst performing method was Square Estimate with 23.15%

improvement frequency and 4.09% maximum improvement. Flexible Mean and

Median achieved 33.33% and 48.15% improvement frequency and 6.5% and

5.67% maximum improvement respectively. Comparing the clustered nearest

neighbor improvement to the results in the clustered greedy, each parameter

method performed worse for both metrics with the exception of Grid Search.

Grid Search was able to outperform standard nearest neighbor on 94.44% of

problems with a maximum improvement of 10.28%. For each of the parameter

determination methods, maximum improvements for clustered nearest neighbor

were less than the maximum improvement of the clustered greedy.

Method Improvement Frequency (%) Maximum Improvement (%)
Flexible Mean 33.33 6.5

Flexible Median 48.15 5.67
Square Estimate 23.15 4.09

Grid Search 94.44 10.28

Table 6: Clustered Nearest Neighbor Improvement vs Standard Nearest Neighbor

For both the clustered greedy and the clustered nearest neighbor, the im-

provement results indicate that each parameter determination method is capa-

ble of achieving better solutions than the standard approaches. However, the

improvement frequency and maximum improvement do not take into account

on which particular problems the improvements are made or the distribution

of improvement. To effectively corroborate the improvements facilitated by the

clustered greedy heuristic, the ten most improved problem instances are pre-

sented in Table 7. Moreover, the greedy and clustered greedy heuristic’s total
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tour length, percent error from optimal, the method obtaining the result, and

the percent improvement are examined. A comparable evaluation is performed

for the best improvement results obtained by the clustered nearest neighbor in

Table 8.

Greedy Clustered Greedy
Problem Tour Error (%) Tour Error (%) Method Improvement (%)

pr76 147496 36.37 123323 14.02 Grid Search 22.35
dantzig42 1003 43.49 898 28.47 Grid Search 15.02
berlin52 9951 31.94 8861 17.49 Grid Search 14.45
pr226 97601 21.44 87940 9.42 Grid Search 12.02
ch150 7809 19.62 7098 8.73 Square Estimate 10.89
eil51 531 24.65 487 14.32 Grid Search 10.33
gr229 163844 21.72 150467 11.79 Grid Search 9.94
lin105 16766 16.60 15382 6.98 Flexible Mean 9.63

bier127 141339 19.49 130757 10.55 Grid Search 8.95
pr299 63333 31.42 59131 22.70 Grid Search 8.72

Table 7: Top 10 Improvements for Clustered Greedy vs Greedy

The best improvements obtained by the clustered greedy in Table 7 indicate

that the Grid Search method is responsible for the greatest improvements on the

best performing problems. The clustered greedy heuristic promoted a rather

significant improvement in generating solutions when compared to the standard

greedy. The most considerable advancement was seen in a TSP problem with 72

cities, wherein the clustered greedy heuristic showed a 22% improvement over

the classic greedy method. It is also clear that the clustered approach allows for

the algorithm to find solutions much closer to optimality. This is particularly

visible in the “lin105” problem, which includes 105 cities, wherein the generated

solution has only 6.98% error versus optimality. The clustered greedy also offers

the greatest improvement for problems in which the greedy produces some of

its worst solutions across the benchmark problems. More specifically, 90 of

the 108 tested problems showed an improvement over the classic greedy, 4

problems produced exactly equivalent solutions, and 14 problems exhibited a

0.25% or less increase in total tour length. Three of the problems that showed a

decrease in performance can be classified as the large problems, as they included

13,509, 14,051, and 18,512 cities respectively. However, there is not a distinct
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relationship between the performance and the problem size, as a problem with

15,112 cities showed an improvement of 0.75%. Thus, there does not appear

to be a discernible relationship between the improvements and the problem

size, however, it is clear that the largest improvements are seen in problems

considered to be of small and medium size.

Nearest Neighbor Clustered Nearest Neighbor
Problem Tour Error (%) Tour Error (%) Method Improvement (%)

p654 43253 24.85 39691 14.57 Grid Search 10.28
kroB100 26388 19.18 24675 11.44 Grid Search 7.74
berlin52 8920 18.27 8360 10.84 Grid Search 7.43
pr226 94122 17.11 88461 10.07 Grid Search 7.04

kroB150 32044 22.63 30345 16.13 Flexible Mean 6.5
bier127 135737 14.76 128052 8.26 Grid Search 6.5
lin105 17143 19.22 16232 12.89 Grid Search 6.34
gr96 68308 23.73 64854 17.47 Grid Search 6.26

swiss42 1547 21.52 1468 15.32 Grid Search 6.21
pr439 129060 20.37 122433 14.19 Grid Search 6.18

Table 8: Top 10 Improvements for Clustered Nearest Neighbor vs Nearest Neighbor

The ten best improvements for the clustered nearest neighbor are presented

in Table 8. Similarly to the clustered greedy results, Grid Search is responsi-

ble for the greatest improvement amongst the best performing problems. The

greatest improvement was obtained on a TSP problem with 654 cities, wherein

the clustered nearest neighbor showed a 10.28% improvement. The best re-

sult obtained is on a fairly large problem given the size of the other most

improved problems. The majority of significant improvements came on smaller

and medium sized problem instances. This is consistent with the improvement

results of the clustered greedy. Overall, the clustered nearest neighbor obtained

better solutions than the standard nearest neighbor on 70 of the 108 problems

tested, equal solutions on 33 problems, and was worse on 5 of the problems.

Similarly to the clustered greedy, the clustered nearest neighbor obtained its

worst relative results on the largest problems in the test set.
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Figure 18: Runtime Performance Comparison (a) Greedy vs. Clustered Greedy (b) Nearest
Neighbor vs. Clustered Nearest Neighbor

An additional element to consider when introducing DBSCAN as a clus-

tering method into the greedy and nearest neighbors is the effect that it has

on the runtime performance of the two algorithms. The runtime performance

comparison between the clustered and standard versions of the algorithms is

presented in Figure 18. The total runtime for the clustered greedy is calculated

as the mean across all clustered runs on a particular problem dimension and

includes the runtime for DBSCAN. In other words, this runtime does not ac-

count for the number of runs that may occur given a parameter determination

such as Grid Search that would require the algorithm be run 27 times. Instead,

the time is taken as if all instances had been run in parallel or a single instance

had been run.

For nearest neighbors, the runtime for a given problem dimension is the

summation of all run times across all potential starting nodes. The introduction

of DBSCAN into the nearest neighbor algorithm does not appear to affect the

runtime performance of the algorithm. This is logical because the smaller search
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tree that is utilized while moving inside of a cluster offers a performance gain

that is roughly equivalent to the computational cost of running DBSCAN. The

net result is that no significant gain or penalty is incurred from DBSCAN. On

the other hand, the introduction of DBSCAN to the greedy heuristic brings

about a significant decrease in computation time. The primary reason for

the decrease in runtime is that utilizing clustering assignments significantly

reduces the cost of some of the most expensive operations that the greedy is

required to perform. Inside of each cluster, a far smaller number of edges need

to be sorted and a much smaller dimension of constraint checks need to be

made. While the total number of edges across the clustered version and the

standard version are the same, the sum of the smaller dimension operations is

much less expensive than considering the entire dimension of the problem. As

the DBSCAN algorithm runs comparatively fast to the other operations and

introduces a performance gain through dimension reduction, its runtime results

in faster computation times, particularly as the dimension of the problem scales.

Method Mean Std. Dev % Best
Standard 17.03 6.18 36.11
DBSCAN 16.85 5.82 46.30
k-means 25.98 9.96 6.48

Affinity Propagation 24.00 6.94 11.11

Table 9: Clustered Greedy Comparison

Method Mean Std. Dev % Best
Standard 18.45 5.61 66.00
DBSCAN 18.77 5.87 13.00
k-means 27.29 9.59 24.00

Affinity Propagation 22.68 7.79 5.00

Table 10: Clustered Nearest Neighbor Comparison

Choosing the best performing parameters obtained from Grid Search and

using them to produce a single tour offers a valid comparison to alternative

clustering methods found in other research. The results of running k-means

and Affinity Propagation are offered in comparison to DBSCAN and without
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clustering in Figure 9 and Figure 10 for the greedy and nearest neighbor heuris-

tic, respectively. The results indicate that DBSCAN was not only the strongest

performing clustering method but also the best performing method overall when

compared to the standard greedy. The performance of these DBSCAN parame-

ters indicates that it provides a more useful clustering assignment than k-means

and affinity propagation when incorporated with the greedy heuristic. However,

the incorporation of clustering with the nearest neighbor heuristic did not prove

stronger for any of the clustering methods as the standard nearest neighbor ob-

tained the best result 66% of the time. DBSCAN performed best only 13% of

the time with k-means offering better clustering assignments 24% of the time.

The comparison for nearest neighbors validates the results across all parameter

determination methods that clustering assignments do not consistently improve

the standard nearest neighbor as they do with the greedy heuristic.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis presents methods for improving classical TSP heuristics through the

incorporation of density-based clustering. The algorithm presented for cluster-

ing TSP instances is DBSCAN and the two heuristic approaches in which it

is integrated are the greedy heuristic and the nearest neighbor heuristic. Four

methods for deriving suitable input parameters from TSP instances for DB-

SCAN are also examined. The effectiveness of these DBSCAN parameters are

measured by running all combinations of methods and algorithms on 108 bench-

mark instances taken from TSPLIB. This includes results from the clustered

greedy and clustered nearest neighbor. From these results, the overall perfor-

mance of the clustered heuristics is evaluated based on absolute performance,

performance relative to the standard version of the heuristic, and computational

runtime performance.

It is shown that constraining the classic heuristics by the clustering assign-

ments obtained from DBSCAN can introduce a significant improvement in tour

lengths for the TSP. The clustered greedy heuristic resulted in a maximum im-

provement of 22.35% when compared with the standard greedy algorithm. The

clustered nearest neighbor also improved results relative to the standard near-

est neighbor algorithm with a maximum improvement of 10.28%. The inclusion

of clustering into the greedy heuristic also brought about a significant decrease

in computation time, particularly on the largest problem instances, indicating
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the clustered greedy is more scalable than the standard greedy. For the nearest

neighbor algorithm, the computational expense of running DBSCAN was offset

by small performance gains and netted no performance penalty or gain.

While the results in this thesis are promising, the clustered versions of the

heuristics are shown to be highly sensitive to DBSCAN’s input parameters.

Amongst the three automated parameter determination methods presented,

there is not one derivation that consistently outperforms the standard heuristic

for either the clustered greedy or the clustered nearest neighbor. Each method

does increase performance on particular problems. Consequently, a grid search

was employed to explore points across the parameter input space. The grid

search proved that given suitable parameters, the clustered greedy and clustered

nearest neighbor can outperform standard results and generate near optimal

solutions. The increased performance and the computational expense of the grid

search highlight the trade-off that exists between qualifying input parameters

and obtaining improved solutions.

5.1.1 Future Work

This thesis demonstrates the effectiveness of increasing heuristic performance

through the integration of density-based clustering. The heuristics employed

in this research are simple and thus their shortcomings are not entirely over-

come by incorporating clustering assignments. However, the results prove that

DBSCAN is an effective algorithm for partitioning a TSP instance by reducing

the dimensions of the problem given appropriate input parameters. This has

led to the goal of extending this research in two main areas.

The first extension of this research involves finding a more robust density-

based clustering algorithm that either requires no parameters or is less sensitive

to its input parameters, as is DBSCAN. Ideally, an algorithm that is able to

adaptively generate clusters based on the problem space would be most prefer-

able. In recent years, numerous extensions of DBSCAN have been evaluated
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and have proven to be effective in other domains of research. One interesting

algorithm is the hierarchal DBSCAN (HDBSCAN), which requires only one

parameter and could lead to more flexible clustering and thus more desirable

results. An additional consideration is developing new automated methodolo-

gies for determining suitable DBSCAN parameters specific to the TSP. More-

over, developing a relationship between TSP attributes and the clustering input

parameters could also improve the effectiveness of DBSCAN.

A further extension of this research could focus on incorporating density-

based clustering with other heuristic or metaheuristic algorithms. Other re-

search has partially integrated clustering concepts, however, no effort to date

has been made specifically with DBSCAN. One potential method would be to

generate clusters through DBSCAN and then employ a more robust method,

such as simulated annealing, to develop shortest paths through the clusters.

This would then be followed by joining the shortest paths with the remaining

points to construct a tour. Future research will focus on integrating more ro-

bust TSP algorithms with a potentially more flexible density-based clustering

algorithm.
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