
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

2017 

Dynamic Collapse of Double Hull Composite Cylinders: Dynamic Collapse of Double Hull Composite Cylinders: 

Hydrostatic and Shock-Initiated Implosion Hydrostatic and Shock-Initiated Implosion 

Nicholas A. DeNardo 
University of Rhode Island, ndenardo@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
DeNardo, Nicholas A., "Dynamic Collapse of Double Hull Composite Cylinders: Hydrostatic and Shock-
Initiated Implosion" (2017). Open Access Master's Theses. Paper 1075. 
https://digitalcommons.uri.edu/theses/1075 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1075?utm_source=digitalcommons.uri.edu%2Ftheses%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


DYNAMIC COLLAPSE OF DOUBLE HULL COMPOSITE CYLINDERS:   

HYDROSTATIC AND SHOCK-INITIATED IMPLOSION 

BY 

NICHOLAS A. DENARDO 

 

 

 

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

MECHANICAL ENGINEERING AND APPLIED MECHANICS 

 

 

 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2017



 

MASTER OF SCIENCE THESIS 

OF 

NICHOLAS A. DENARDO 

 

 

 

 

 

 

 

 

APPROVED:  

Thesis Committee: 

Major Professor  Arun Shukla 

   James M. LeBlanc 

   James Miller 

      Nasser H. Zawia 

  DEAN OF THE GRADUATE SCHOOL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2017 



 

 

ABSTRACT 

An experimental investigation of double-hull composite cylinders during underwater 

implosion is performed.  Composite materials offer several unique advantages for underwater 

applications, including greater specific strength and stiffness than metals, as well as better 

corrosion resistance.  Double hull composite structures, which feature a low density core 

between two facesheets of comparatively higher density, increase these benefits further by 

adding increased bending strength and acoustic attenuation.  Despite these advantages, there 

exists a large knowledge gap with regards to the underwater implosion behavior of double hull 

composite structures.  To that end, a series of experimental studies is performed to address 

said knowledge gaps and help provide fundamental understanding of the behavior of these 

structures during implosion. 

First, the dynamic collapse of hollow and filled double hull composite cylinders is 

investigated experimentally.  Carbon-fiber/epoxy double cylinders with and without 

parametrically-graded PVC foam cores in between are collapsed in a large-diameter pressure 

vessel, and dynamic pressure data is used in conjunction with underwater DIC to determine 

the effect of the double hull structure on implosion mechanics. Buckling initiation and overall 

collapse behavior of the specimen are studied, as well as the pressure pulse from the implosion 

released into the fluid.  Incidents of the outer tube imploding but not the inner are reported, in 

addition to cases where both collapse. Results show heavier foam cores increase collapse 

pressure dramatically, and this increase in collapse pressure is predictively related to the 

mechanical and geometric properties of the foam cores themselves.  Normalized dynamic 

pressure emitted from implosions is shown to occur in distinct phases, with an additional 

under- and overpressure region present if the inner tube collapses.  When normalized for 

hydrostatic pressure, fluid impulses from various core densities are shown to remain constant.  

Energy flux from the implosions, presented as a percentage of available hydrostatic energy, is 

shown to increase as a function of core density. Increased foam crushing energy at higher core 



 

 

densities, and increased damage observed in post-mortem specimens from heavier cores, are 

identified as mechanisms responsible for these behaviors. 

 Second, an experimental study is performed which investigates the dynamic collapse 

of double hull composite cylinders under external hydrostatic pressure and shock loading.  All 

experiments are performed underwater in a 2.1 m diameter semi-spherical pressure vessel that 

approximates a free-field environment, and Digital Image Correlation (DIC) is used in 

conjunction with blast transducers to study collapse mechanics.  Specimens have carbon-fiber 

/ epoxy facesheets and a PVC foam core that is removed for control in some instances, and are 

brought to 80% of their natural buckling pressure before being subjected to an underwater 

explosion (UNDEX) at varying standoff distances.  Results show that double hull specimens 

implode below their natural collapse pressure when subject to explosive loading, but that the 

addition of the PVC foam core prevents implosion in some cases and substantially increases 

structural stability in others.  The double hull configuration with foam core is also shown to 

emit significant pressure pulses despite the noisy environment of the pressure vessel.   
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PREFACE 

This thesis addresses gaps in understanding of the implosion behavior of double hull 

composite cylinders.  Manuscript format is used.  Two experimental studies are presented, on 

the hydrostatic and shock-initiated implosion of the aforementioned structures. 

Chapter 1 investigates the hydrostatic implosion of double-hull composite cylinders.  

These structures have potentially extensive benefit for use in underwater structures, but their 

underwater collapse behavior has not been investigated extensively, and no experimental 

studies on the subject exist.  To that end, a series of experiments is performed on cylinders of 

filament wound, carbon-fiber/epoxy facesheets with PVC foam cores of parametrically graded 

density.  Mechanics unique to the collapse of these structures are observed for the first time, 

with different overarching collapse behaviors linked to changing system parameters.  This 

paper is prepared for submission to Journal of the Mechanics and Physics of Solids. 

Chapter 2 investigates the shock-initiated implosion of double-hull composite structures 

at subcritical hydrostatic pressures.  It is shown that there is a gap in understanding with 

regards to the underwater buckling and implosion behavior of these structures under shock 

loading, though they have several unique benefits for applications where underwater shock 

loading may be a factor.  This study seeks to address such gaps experimentally, by 

investigating the dynamics of carbon-fiber / epoxy tubes, with and without PVC foam cores, at 

varying magnitudes of shock loading.  This paper is prepared for submission to Journal of the 

Mechanics and Physics of Solids.
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ABSTRACT 

 The dynamic collapse of hollow and filled double hull composite cylinders is 

investigated experimentally.  Carbon-fiber/epoxy double cylinders with and without 

parametrically-graded PVC foam cores in between are collapsed in a large-diameter pressure 

vessel, and dynamic pressure data is used in conjunction with underwater DIC to determine 

the effect of the double hull structure on implosion mechanics. Buckling initiation and overall 

collapse behavior of the specimen are studied, as well as the pressure pulse from the implosion 

released into the fluid.  Incidents of the outer tube imploding but not the inner are reported, in 

addition to cases where both collapse. Results show heavier foam cores increase collapse 

pressure dramatically, and this increase in collapse pressure is predictively related to the 

mechanical and geometric properties of the foam cores themselves.  Normalized dynamic 

pressure emitted from implosions is shown to occur in distinct phases, with an additional 

under- and overpressure region present if the inner tube collapses.  When normalized for 

hydrostatic pressure, fluid impulses from various core densities are shown to remain constant.  

Energy flux from the implosions, presented as a percentage of available hydrostatic energy, is 

shown to increase as a function of core density. Increased foam crushing energy at higher core 

densities, and increased damage observed in post-mortem specimens from heavier cores, are 

identified as mechanisms responsible for these behaviors. 
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1.1. INTRODUCTION 

Implosion is a fluid-structure interaction problem that involves the buckling, collapse, 

and subsequent pressure pulse emission of an enclosed shell when external fluid pressure 

around the structure reaches critical value and the shell collapses dynamically.  This process 

happens in distinct stages, with the first phase of instability initiation followed by a second 

phase in which the walls buckle inward at high velocities and local pressure in the surrounding 

fluid drops via Bernoulli’s principle.  After a point, these walls make contact with one another, 

and abruptly decelerate to zero velocity.  As buckle propagation occurs, the sudden change in 

momentum of the walls simultaneously causes an immense pressure spike in the fluid, and a 

high pressure wave is released outward [1], [2]. 

Implosion has been studied for several decades, with early work in the field primarily 

focused on evaluating the acoustic pulses from deep sea implosions [3]–[5].  Following a 

series of high profile accidents and developing interest from the naval community, however, 

implosion research has been reinvigorated in recent years.  In the first of these events, a 

photomultiplier tube at the Super-Kamiokande Neutrino Observatory imploded during filling, 

causing a chain reaction of pressure pulses that destroyed a total of 7000/11000 such tubes 

within the facility and cost an estimated $20 million dollars of damage [6].  Later, the AUV 

Nereus imploded while on a deep-sea research dive off the coast of New Zealand.  The vehicle 

had been expected to reach the deepest depths of the ocean consistently; its failure resulted in 

a substantial loss of confidence in the subsea engineering community, in addition to the 

monetary and opportunity cost of the vehicle itself [7].  Jointly, these accidents emphasize the 

need for increased understanding of the implosion phenomenon, in terms of both the buckling-

based initiation of implosion as well as prediction and mitigation of its associated pressure 

pulse. 
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Several studies from the past decade partially address these gaps.  Turner and 

Ambrico performed experimental and computational investigations of the implosion of both 

glass spheres and metal tubes, and were able to identify key stages in the implosion process, as 

well as develop effective computational models that agreed well with their experimental 

results [1], [2].  Farhat et al. investigated the implosion of metal cylinders, and demonstrated 

that changes in geometry affect both buckling pressure and collapse mode by performing well-

corroborated experimental and computational studies [8].  Ikeda et al. performed experiments 

on the effect of geometry of metal tubes on the emitted pressure pulse from implosion [9].  

Gupta et al. performed an experimental investigation of implosion, and used high speed 

photography and digital image correlation to determine collapse velocities and displacements 

across the surface of the tube, and related that information to pressure pulse emission [10].  

Composite materials have also been studied with regards to the implosion 

phenomenon.  Because of their excellent strength- and stiffness-to-weight ratios, as well as 

their natural corrosion resistance, they make excellent candidates for marine engineering 

applications, including those where implosion is a matter for concern.  In that vein, the 

buckling of composite cylinders has been studied by several authors analytically and 

computationally, in an effort to predict their buckling mode shapes and critical collapse 

pressures [11]–[16].  Additionally, Pinto et al. studied the implosion behavior of glass- and 

carbon-fiber composite tubes.  This work included the performance of digital image 

correlation during the collapse process, and investigated both buckling behavior and pressure 

pulse mechanics [17], [18].  The mitigation of implosion pressure pulses via the application of 

polyurea coatings was also investigated [19]. 

That said, the previously mentioned works have only investigated the implosion of 

isotropic materials and classical composite laminates; there remains little work on the 

implosion of double hull-structured composite materials, where two facesheets of thin but 
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strong material are concentrically assembled with a thick but comparatively low density core.  

Moreover, the work that does exist primarily focuses on the buckling of sandwich structures 

and doesn’t address pressure pulse emission from the implosion process [20]–[26].  None of 

these studies include experimental verification of their analytical and computational results, 

and none address the effect of the sandwich construction on pressure pulse emission within the 

surrounding fluid. 

The aim of this study is to experimentally investigate the implosion of double hull 

composite structures, considering both buckling performance, as well as pressure pulse 

analysis and mitigation.  To most closely approximate the conditions of a submersible or other 

deep sea vehicle, cylindrical geometry will be investigated.  Double hull composites have 

several unique advantages for this kind of application:  in addition to the benefits of composite 

materials listed previously, double hull structures offer increased buckling resistance, 

excellent acoustic attenuation, and further increases in specific stiffness over monolayer 

composites [23].   

This study marks the first time that the mechanics unique to a double hull implosion 

have ever been reported, with several key differences from the behavior of monolayer 

structures being observed.  Double hull structures are found to emit “double pulses” during 

implosion wherein two distinct pressure pulses are registered, corresponding to the collapse of 

the outer and inner tubes, respectively.  The facesheets are also found to collapse 

independently of one another, such that the inner tube may or may not survive the collapse of 

the outer tube, depending on external hydrostatic pressure.   The outer tube is found to buckle 

and flatten against the inner tube, with a time delay sometimes occurring before the collapse 

of the inner tube, if it collapses at all. 
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1.2. MATERIAL SELECTION AND SPECIMEN DESIGN 

 The specimens in this study use carbon-fiber/epoxy tubes manufactured by Rock West 

Composites (West Jordan, UT) for their inner and outer facesheets.  The outer tube has a 

[±15/0/±45/±15] layup, with a nominal 60.4 mm ID and 1.7 mm wall thickness.  The inner 

tube has the same layup and nominal thickness, but a nominal ID of 38.6 mm.  Prior to 

assembly, the outer tube is painted by hand with a high-contrast, stochastic, black-and-white 

speckle pattern that covers half of its circumference and its entire length.  During assembly, 

the tubes are mounted concentrically and sealed using aluminum endcaps such that their 

unsupported length is 279.4 mm.  In addition to being sealed from water, the tubes are also 

sealed between one another so that water may not enter the inner tube in the event that the 

outer tube fractures or its seal is otherwise broken. 

The PVC foam cores used in the specimens are from the Divinycell H series of foams, 

as produced and provided by DIAB, Inc. (DeSoto, TX).  Foam cores of different densities 

from this are parametrically graded across trials:  experiments are performed with Divinycell 

H35, H60, H80, and H100 foam cores, as well as with the foam core removed.  In all cases, 

the foam cores have a nominal 41.9 mm ID, and 9.2 mm thickness.  The cores are machined 

from flat sheets by first creating small rings with the aforementioned radial dimensions.  The 

rings are then stacked on top of each other during assembly to match the 279.4 mm 

unsupported length of the composite facesheets. 

 

1.3. EXPERIMENTAL PROCEDURE 

 All experiments are performed using a semi-spherical pressure vessel of 2.1 meter 

diameter, with a maximum static pressure rating of 6.89 MPa, shown in Figure 1.  The vessel 

is designed to maintain constant hydrostatic pressure through the collapse process, and has 

optical viewports mounted radially around its midsection for photography and lighting during 
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experiments.  Two high-speed cameras (Photron SA1, Photron USA, Inc., San Diego, CA) are 

mounted coaxially with the portholes of the tank, such that a stereoscopic viewing angle of 

17° is created toward the speckled surface of the double hull specimen after it is fixed within 

the vessel.  This enables performance of underwater 3-D DIC in post processing, in the 

manner presented in [10], [17] and [18]. 

 

Figure 1:  Experimental facility; (left) section through mid-height; (right) longitudinal section 

 

 To execute the experiments, specimens are mounted horizontally in the center of the 

vessel using thin steel cables that provide minimal acoustic reflections; the specimen is 

oriented such that the speckle pattern on the outer tube faces in the direction of the viewports 

and corresponding cameras.  To monitor the pressure pulse emitted by the implosion, 

tourmaline high-pressure blast transducers (PCB 138A05, PCB Piezotronics, Inc., Depew, 

NY) are mounted above and behind the implodable on its center and ends.  All sensors are 

mounted with their sensing elements at a nominal radial distance of 50 mm from the face of 

the outer tube, with those on the ends located at a longitudinal offset of 127 mm from the 
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midsection of the tube.  The amplified output from the pressure sensors is monitored using an 

Astro-Med Dash 8HF-HS portable data recorder (Astro-Med Inc., West Warwick, RI) at a 

sampling rate of 2 MHz. Once mounting is complete, the vessel is filled with filtered water, 

and sealed.  Nitrogen gas is introduced to an air pocket at the top of the vessel to pressurize 

the fluid at a rate of approximately 0.083 MPa/min.  Once critical pressure is achieved and 

implosion occurs, the cameras and pressure sensors are simultaneously end-triggered and their 

data saved, such that image and pressure data are directly matched in time. 

 

1.4. ANALYSIS 

1.4.1. INCREASE IN COLLAPSE PRESSURE 

The collapse pressure of double hull structures with a foam core increases with the 

stiffness of the foam.  When listing collapse pressures in this study, only those of the outer 

tube are given.  This allows for direct comparison between cases regardless of whether the 

inner tube collapses or not, and is used when listing all collapse pressures or changes thereof, 

unless otherwise noted.   

In predicting the collapse pressures of double hull structures, it was decided to focus 

on the increase in collapse pressure of the tubes on account of the double hull structure, rather 

than absolute pressures.  The increase in collapse pressure of a particular specimen is given 

by: 

∆𝑃𝑐𝑟 = 𝑃𝑐𝑟 − 𝑃𝑐𝑟,0 (1) 

Where ΔPcr is the increase in collapse pressure of the outer tube due to the double hull 

structure, Pcr is the experimentally measured collapse pressure of that specimen, and Pcr,o is the 

estimated collapse pressure of that same specimen if its foam core were to be removed.   

  



 

9 

 

1.4.2. COMPOSITE THICKNESS EFFECTS ON COLLAPSE PRESSURE 

In analyzing collapse pressure, it is necessary to account for thickness variation in the 

outer tubes:  small inconsistencies in the manufacturing process of the tubes resulted in 

variation of average thickness by as much as 0.254 mm, and the collapse pressures of 

composite tubes are sensitive to variations in thickness.  

From literature, the following equation can be used to estimate the collapse pressure 

of a composite cylinder without a foam core [27]: 

𝑃𝑐𝑟 =
𝛾√𝐸1𝐸2𝑡

5
2⁄

(1 − 𝜇12𝜇21)
3
4⁄ 𝐿𝑅𝑐

1
2⁄ 𝑅𝑜

(

 
 1

1 +
√𝐸1𝐸2𝐼
𝑅𝑐𝑅𝑜𝑡𝐺)

 
 

 (2) 

Where γ is a constant that depends on geometry, E1 and E2 are the longitudinal and hoop 

moduli of the composite cylinder, t is average thickness, μ12 and μ21 are the anisotropic 

Poisson’s ratios, L is Length, Rc is average cylinder radius, Ro is outer cylinder radius, I is 

moment of inertia about the centerline, and G is shear modulus.  Equation (2) shows that 

critical collapse pressure scales by a factor of t
2.5

.  It follows that: 

𝑃𝑐𝑟,1
𝑃𝑐𝑟,2

=
𝑡1
2.5

𝑡2
2.5 (3) 

Where Pcr,1 and Pcr,2 are the collapse pressures of two similar tubes with different average 

thickness, and t1 and t2 are those thickness values.  For the outer tubes used in this study, 

Equation (3) predicts the relationship between collapse pressures within 0.5 % for the hollow 

specimens.  Equation (3) can be rearranged to predict the collapse pressure of the outer tube of 

a given specimen with its core removed: 

𝑃𝑐𝑟,0 =
𝑡0
2.5

𝑡𝑟𝑒𝑓
2.5 𝑃𝑐𝑟,𝑟𝑒𝑓 (4) 

Where Pcr,o is the predicted collapse pressure of the outer tube of a given specimen, and to is 

that specimen’s measured thickness.  Pcr,ref and tref are the collapse pressure and thickness of 
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the reference specimens in this study, which had their cores removed when experimented on.  

Thus the change in the collapse pressure of a double hull specimen is given by: 

∆𝑃𝑐𝑟 = 𝑃𝑐𝑟 −
𝑡0
2.5

𝑡𝑟𝑒𝑓
2.5 𝑃𝑐𝑟,𝑟𝑒𝑓 (5) 

Careful thickness measurements of the outer tube were needed to make accurate predictions of 

the collapse pressure of the double hull structure using Eq. (5).   

 ΔPcr is critical in evaluating the true effect of core material on collapse pressure, as 

discussed later in Section 1.5.1. This is a very important quantity in the design of subsea 

vehicles, where avoiding collapse is paramount.   

 

1.4.3. IMPULSE 

The area under the pressure-time curve is often of more importance in terms of 

measuring implosion damage potential than the magnitude of the pressure alone.  To that end, 

the following equation is employed [28]: 

𝐼 =  ∫ 𝑑𝑃𝑑𝑡
𝑡

0

 (6) 

Where I is the impulse per unit area imparted to the water by the wavefront, dP is dynamic 

pressure, and t is an arbitrary time of interest.  In order to simplify the problem, the total 

impulse is calculated here for the underpressure regions only, under the assumption that the 

impulse for the overpressure region will be equal in magnitude, as discussed in [1], [8], [10].   

It will be shown in the results section of this paper that some double hull structures 

release “double pulses” during implosion wherein two distinct pressure pulses are emitted, 

each corresponding to the collapse of the outer and inner tubes.  In such cases, the following 

formula is used: 
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𝐼𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑑𝑃𝑑𝑡 + ∫ 𝑑𝑃𝑑𝑡
𝑡3

𝑡2

𝑡1

0

 (7) 

Where Itotal is the total impulse per unit area of the double hull structure’s collapse, t1 is the 

time at which the first underpressure region crosses the t-axis, t2 is the time at which the 

second underpressure region begins as the pressure traces crosses below the t-axis again, and 

t3 is the time at which the second underpressure region ends as the pressure trace crosses the t-

axis a third time.  

In order to compare the impulse behavior of the various foam cores, it is necessary to 

account for differences in collapse pressure caused by differing core strengths.  The following 

formula is used, which normalizes the impulse values from Equation (7) with respect to 

collapse pressure: 

𝐼𝑛𝑜𝑟𝑚 = 
∫ 𝑑𝑃𝑑𝑡 + ∫ 𝑑𝑃𝑑𝑡

𝑡3
𝑡2

𝑡1
0

∫ 𝑃𝑐𝑟𝑑𝑡 + ∫ 𝑃𝑐𝑟𝑑𝑡
𝑡3
𝑡2

𝑡1
0

 (8) 

Here, Inorm is the total impulse per unit area of the wavefront, normalized by an impulse term 

associated with the collapse pressure of the specimen in question.  Generally, the impulse of 

an implosion scales with the ambient hydrostatic pressure at which the implosion occurred.  

Equation (8) removes this effect via normalization, and allows for direct comparison of 

impulse between cases with different collapse pressures.  

 

1.4.4. ENERGY 

An acoustic energy flux analysis is also performed to measure implosion damage 

potential, where the afterflow energy flux through a surface some arbitrary distance from the 

event is given by [29]: 

𝐸𝐹 = 
𝐼𝑡𝑜𝑡𝑎𝑙

2

2𝜌0𝑅𝑠
 (9) 
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Where EF is acoustic energy flux, ρ0 is the density of the fluid, and Rs is the distance of the 

sensor from the surface of the collapsing tube.  Assuming a spherical pressure wave, the 

energy flux given by Equation (9) can be multiplied by the surface area of a sphere of radius 

equivalent to the standoff distance of the sensor to yield the total afterflow energy of the 

implosion pulse: 

𝐸𝐴 = 𝐸𝐹(4𝜋𝑅𝑠
2) (10) 

To compare directly between cases with differing collapse pressures, it is necessary to 

normalize this value with available hydrostatic energy: 

𝐸𝑛𝑜𝑟𝑚 =
𝐸𝐴
𝐸𝐻
  (11) 

Where EH is available hydrostatic energy prior to collapse, given by: 

𝐸𝐻 = 𝑃𝑐𝑟(𝛥𝑉𝑖𝑚𝑝𝑙𝑜𝑠𝑖𝑜𝑛) (12) 

and ΔVimplosion is the difference in displaced fluid volume before and after the implosion. 

 

1.5. RESULTS AND DISCUSSION 

1.5.1. PREDICTING COLLAPSE PRESSURE 

It is important to be able to predict the buckling behavior of a double hull structure as 

a function of material and geometrical properties.  To that end, a series of experiments were 

performed to determine the mechanical properties of the foam core materials (Table 1)[30].  

Comparting the stress-strain curves from the tests to the maximum compressive strain in the 

core immediately prior to buckling (Table 1), it can be seen that buckling initiation always 

occurred in the foam-crushing region of the stress-strain curve.  Plotting the measured 

crushing strengths of the foams against the ΔPcr values measured previously, a linear trend is 

observed in Figure 2A, intersecting the origin and having a nondimensional slope of 2.6.  This 

implies that for the given core geometry, it would be possible to find an even higher strength 
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core than those studied here, and that applying such a core in the specimen would very likely 

increase buckling strength along the line in Figure 2A.  Note that predeformation prior to 

buckling is sensitive to small irregularities in the geometry of the cylinders, so a trend is not 

observed between predeformation and core density in Table 1.   

Foam Name Measured Density 
(kg/m3) 

Measured In-Plane 
Crushing Strength 

(MPa) 

Predeformation 
Strain at Buckle 

Initiation 
(%) 

H35 38 0.228 ± 0.008 10.5 ± 0.9 

H60 60 0.445 ± 0.015 20.0 ± 3.7 

H80 80 0.653 ± 0.018 11.1 ± 0.4 

H100 100 0.967 ± 0.044 18.7 ± 6.0 

Table 1: Relevant quasi-static foam core properties and data 

 

Plotting ΔPcr values versus the measured density of each foam core (Table 1) gives the 

data shown in Figure 2B.  The trend is nonlinear for this series of foams.  This is noteworthy 

from an applications perspective because it is often desired to minimize the weight of 

underwater vehicles.  This means that the mass-efficiency of the core increases with density 

for this series of foams, such that higher density cores are both stronger and more efficient per 

unit mass. 

 

Figure 2: Increase in collapse pressure as a function of (A) foam core crushing strength; (B) 

foam core density 
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1.5.2. COLLAPSE BEHAVIOR CATEGORIES 

Three overarching behaviors were observed in the collapse of the double hull 

specimens.  In 1), the outer tube collapsed and crushed the foam core but the inner tube did 

not collapse.  In 2), the outer tube collapsed and crushed the foam core, after which there was 

a brief dwell time before the inner tube collapsed.  In 3), the outer tube collapsed, crushed the 

foam core, and collapsed the inner tube in a singular motion, with no dwell in between. 

The outer tubes in this study collapsed in mode 3, whereas the inner tubes collapsed in 

an asymmetrical mode 2, if they collapsed at all (Figure 3).  In all cases where the inner tube 

collapsed, the outer tube collapsed first, then remained crushed against the surface of the inner 

during the latter’s collapse, conforming to its shape.  In behaviors 1) and 2), the outer tubes 

formed around the shape of the inner tube, rendering the inner’s shape clearly visible; there 

was not time for this to occur when the inner and outer tubes collapsed in a singular motion.  

 

Figure 3: Example collapse mode shapes; (left) mode 2; (right) mode 3 

 

The difference in collapse mode between the inner and outer tubes had no effect on 

the instability of the inner tube: collapse pressure of the inner tube was the dominant factor.  

The addition of a core increased the collapse pressure of the outer tube, sometimes to levels 

above that of the inner tube.  The collapse pressure of the outer tube had to be higher than that 
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of the inner tube (inner tube collapse pressure is approximately 2.4 MPa) for the inner tube to 

collapse.  

Detailed results from each case are presented here, with data from similar collapse 

behaviors grouped together to enable comparison. 

 

1.5.3. DIC CONTOURS 

DIC was utilized to obtain velocity and position data for the imploding cylinder to 

provide insight into the collapse mechanics of the double hull structure.  Radial velocity data 

was extracted from a line spanning the half-length of the tube, such that a longitudinal position 

of 0 corresponds to the tube’s center.  This data was taken from the duration of the collapse, 

allowing for comparison in time and longitudinal position.  Images of the specimens at key 

stages of its collapse were also used in conjunction with DIC contours of radial displacement 

to gain further understanding of collapse mechanics. 

 

1.5.3.1. PARTIAL COLLAPSE 

Figure 4 (A) and (B) show velocity contours for cases where the outer tube collapsed 

and the inner did not.  Both cases demonstrate this overarching behavior, though there is no 

foam core in (A) and there is one in (B).  Typically during implosion, wall contact occurs first 

at the center, and then propagates longitudinally in a phase commonly referred to as buckle 

propagation, as has been reported in [10], [17], [18].  The same behavior can be seen here, 

though in this case wall contact is made between the outer and inner tubes, with the crushed 

foam core between the two.  The center of the tube registers a velocity first, reaching a 

maximum of about 12 m/s then dropping off to 0 when wall contact occurs.  Following that, 

buckle propagation is observed as radial velocities of approximately 12 m/s toward the center 

of the tube spread along the length of the tube in time, then drop to zero as wall contact is 
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made at greater positions along the length of the tube.  The result is a half-crescent shape that 

is curved to the right in each contour.  The highest radial velocities are measured near the 

endcaps in both cases:  this is because the slope of the buckle increases as it propagates along 

the length of the tube, leading to dramatically higher radial velocities near the end of the tube 

[Figure 4 (C) through (F)].  Similar behavior has been observed in aluminum tubes [10]. Also 

of note are the higher overall radial velocities in (B), where those seen during buckle 

propagation are approximately 15 m/s.  This is because collapse pressure in (B) is 0.9 MPa 

higher than in (A), a difference of 64.3%. 
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Figure 4: DIC data for outer tube only collapse cases; (A) dR/dt line extraction for no core 

case; (B) dR/dt line extraction for H35 core case; (C)[-2.003 ms] Image of H35 core specimen 

prior to buckling, with dR contours superimposed; (D)[-0.003 ms] complete core crushing at 

midpoint; (E)[0.417 ms] buckle propagation of collapsed outer tube against inner tube; 

(F)[1.017 ms] completed collapse, with profile of uncollapsed inner tube visible; 

 

1.5.3.2. COMPLETE COLLAPSE, WITH DWELL 

 Figure 5 (A) and (B) show velocity contours for cases where the outer tube collapsed, 

a brief dwell occurred, and then the inner tube collapsed.  Here, the outer tube collapses with 

very similar mechanics to those seen in the previous section, exhibiting the same crescent 

shape seen in the velocity plots, with highest velocities at the endcaps.  The inner tube 

demonstrates different collapse mechanics however, as it exhibits constant collapse velocities 

along its length, and does not undergo buckle propagation.  This can be seen in the figure from 
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around time 1.0 ms onwards in (A), and 1.3 ms in (B).  In each instance, similar velocities 

occur along the tube length, with the result being a vertical line of high velocity instead of the 

half-crescent shape common to buckle propagation.   

The collapse of the inner tube happens more slowly in (A) than in (B).  In the H60 

case, the inner tube implodes with velocities of 10-12 m/s consistently being registered along 

the length of the tube, whereas in the H100 case, velocities are commonly 20-25 m/s along the 

length of the tube and occasionally reach as high as 30 m/s.  Maximum velocities in (A) are 

also lower than those in (B), with the former demonstrating peak velocities of approximately 

35 m/s while the latter shows about 45 m/s.  This is because collapse pressure in (B) is 1.74 

MPa higher than in (A), a difference of 67.7%. 

 Total collapse duration for the H60 specimen [Figure 4 (A)] is 3 ms, greater than that 

for any other case.  This occurs because the ratio between hydrostatic pressure and inner tube 

collapse pressure is about 1.1 in the H60 case, while being 1.7 for the H100 case.  In the 

former, the ratio is small enough that the pressure exerted on the inner tube during the dwell 

takes longer to overwhelm it, so it doesn’t collapse until about 1.5ms after the implosion of the 

outer tube.  Because the ratio is much higher for the H100 case, the duration of the dwell time 

is reduced, and the inner tube implosion begins about 1ms after the implosion of the outer 

tube.  For foam cores of lower strength, the outer/inner Pcr ratio does not exceed 1, so the inner 

tube does not collapse.  Because the ratio is just over 1 for the H60 specimens, that case 

features the longest dwell time. 

The uniform longitudinal collapse of the inner tube is likely due to material damage in 

the inner  tube causing an asymmetric collapse (visible from post-mortem specimens) that 

does not comply with the modal symmetry given by structural stability theory [31], [32]. 
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Figure 5:  DIC data for complete collapse with dwell cases; (A) dR/dt line extraction for H60 

core case; (B) dR/dt line extraction for H100 core case; (C)[-1.0115 ms] Image of H100 core 

specimen prior to buckling, with dR contours superimposed; (D)[0.4818 ms] complete core 

crushing at midpoint; (E)[0.8818 ms] end of buckle propagation of outer tube along inner 

tube; (F)[1.4685 ms] initiation of collapse of inner tube; (G)[2.0018 ms] completed collapse; 

 

1.5.3.3. COMPLETE COLLAPSE, WITHOUT DWELL 

 Figure 6 (A) shows a velocity contour for the case where the outer tube collapses on 

the inner in a singular motion with no time delay in between.  This type of collapse happens 

when the natural buckling modes of the inner and outer tubes align with one another, 

described in Section 1.5.6.3.   

A unique feature of (A) is that maximum collapse velocity is on the order of 60 m/s, at 

least 50% higher than that seen in other cases.  This velocity is located along the midsection of 

the tube, similar to the inner tube collapse mechanics described in Section 1.5.3.2.  These 

velocities are achievable because, without the dwell observed in other cases, the pressure in 

the fluid continues to accelerate the structure inward through the duration of the structure’s 
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motion.  Additionally, uniform high velocities are seen to occur along the length of the 

structure in time as the inner tube collapses, in much the same manner as described in the 

previous section.  These similarities occur despite the removal of the dwell period.  This 

implosion is also the fastest of all cases, with a total duration of 1.4 ms. 

 
Figure 6:  DIC data for complete collapse without dwell case; (A) dR/dt line extraction for 

H80 core case; (B)[-0.8160 ms] Image of H80 core specimen prior to buckling, with dr 

contours superimposed; (C)[0.1173 ms] complete crushing of foam core at midpoint; 

(D)[0.6240 ms] collapsing inner tube – note lack of buckle propagation of outer tube against 

inner; (E)[1.1040 ms] completed collapse;  

 

1.5.4. DOUBLE HULL IMPLOSION PRESSURE PULSE 

1.5.4.1. PARTIAL COLLAPSE 

 Figure 7 shows the pressure pulse emitted in cases where only the outer tube 

collapses.  Following buckling initiation at (A), there is a relatively smooth underpressure 

region until time 0 at (B), defined as the point at which matrix cracking begins in the tube.  

Defining the onset of matrix cracking in the outer tube as time 0 is convenient for composite 

double hull tubes, because it consistently occurs at similar radial deflections between cases, 
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whereas complete foam crushing and wall contact can vary depending on foam core density. 

Crack initiation at (B) results in high frequency variations in pressure being introduced to the 

signal, as well as a drop in pressure immediately after cracking begins.  At this point, the inner 

tube is still moving inwards radially, but eventually stops at (C):  in the no-core case, this 

corresponds to wall contact, and in the H35 case, this corresponds to complete crushing of the 

foam core against the inner tube. After this point, the pressure in the fluid rapidly increases to 

a maximum at (D), which is concurrent with the collapsed zone of the buckle spreading 

outward. The pressure spike occurs on account of the sudden change in momentum of the 

fluid. 

The characteristics of the pressure pulse seen for the double hull cylinders are similar 

to what has been reported in the literature for monolayer composite structures, but the 

“peakiness” of the behavior, as well as the maximum dynamic overpressure from the 

implosion, are reduced substantially in this  configuration compared to the single-cylinder 

configuration of similar dimensions reported in [17].   This reduction in overpressure is due to 

the reduced potential energy of the event, shown with Equation (12):  when the inner tube 

survives, the change in volume ΔVimplosion from implosion is reduced, and the less energetic 

event results in measurable reductions in waveform amplitude.  Additionally, the outer tubes 

in this study collapse entirely in a mode 3 shape, while the tubes in [17] initiate collapse in 

mode 3 but finish their collapse in mode 2.  In this study, the presence of the inner tube 

prevents the dynamic mode change.  Because of the 3-lobe shape here, one of the valleys 

collapses against the inner tube first, while the other two lobes wrap around the tube.  

Displaced fluid volume continues to be reduced by this action, absorbing energy.  The result is 

that the high-frequency pressure pulse observed in the single tube configuration is largely 

eliminated. 
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In the H35 case, shown on the bottom of Figure 7, the presence of the foam core 

causes energy absorption from cell crushing, and prevents outright wall contact; instead, the 

foam core densifies to a point where it cannot be crushed more, and a quasi-wall contact is 

made.  This causes a less abrupt change in fluid momentum which, combined with the 

aforementioned factors, reduces frequency and amplitude in the dynamic overpressure signal 

as compared with that of the reference. 
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Figure 7: Normalized pressure pulses from cases where only the outer tube collapsed; (top) 

No-core case, measured at midsection; (bottom) H35 foam core case, measured at midsection; 

(inset, top left, both figures) outer tube buckling mode shape and sensor location 

 

1.5.4.2. COMPLETE COLLAPSE, WITH DWELL 

  Figure 8 shows the pressure pulse recorded in cases where the outer tube collapses, a 

brief dwell occurs, and then the inner tube collapses.  Here, buckling initiation of the outer 
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tube occurs at (A), followed by a smooth underpressure region that exists until the onset of 

matrix cracking and associated drop in fluid pressure at (B).  The underpressure region then 

continues until (C), where the pressure trace crosses the t-axis and an initial over-pressure 

corresponding to the collapse of the outer tube against the inner is recorded at (D).  Following 

that, the inner tube begins to buckle because the hydrostatic pressure is greater than it can 

survive on its own.  What follows is a secondary implosion pulse corresponding to the 

collapse of the inner tube, with a new underpressure region in the pressure signal being 

created at (E).  At (F), there is a spike in pressure which corresponds to the development of 

damage in the inner tube as it collapses. The underpressure region continues until (G), where 

the inner tube makes wall contact with itself, and a secondary pressure peak is created which 

exceeds that of the first in amplitude. 

 In the H100 case, the amplitude of the first pressure spike is much lower than that of 

the H60 case, because more energy is absorbed through core compressive strain during 

implosion.  This is because of the higher modulus and crushing strength of the H100 foam.  

However, the secondary spike is of much greater amplitude in the H100 case.  This is because 

collapse pressure is substantially higher, for greater EH.  The foam core absorbs relatively little 

energy during the collapse of the inner tube because it is already crushed, so its mitigating 

effects are minimized during that portion of the collapse.  Finally, the time delay between the 

inner- and outer-tube pulses is greater for the H60 case than any other.  This is because of the 

uniquely long dwell time for the H60 case discussed in Section 1.5.3.2. 
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Figure 8: Normalized pressure pulses from cases where the outer tube collapsed, dwelled 

briefly, then the inner tube collapsed; (top) H60 foam core case, measured at midsection; 

(bottom) H100 foam core case, measured at midsection; (inset, top left, each plot) outer tube 

buckling mode shape and sensor location 
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1.5.4.3. COMPLETE COLLAPSE, WITHOUT DWELL 

 Figure 9 shows the pressure pulse emitted when the inner and outer tubes collapse in a 

singular motion.  At (A), buckling initiation occurs, followed by a smooth underpressure 

region until (B), where extensive damage begins in the outer tube. As the inner tube begins to 

collapse, a small spike in pressure is seen at (C), likely corresponding to the development of 

damage in the inner tube. At (D), the inner tube makes wall contact with itself, and a large 

pressure spike is registered at (E). 

 The pressure pulse of a straight-through collapse appears qualitatively similar to that 

of the outer tube only collapse, but the underpressure region is of greater duration.  This is 

because the tube collapses a greater distance radially in one motion, so the associated 

underpressure duration is increased. Additionally, the pressure spike recorded in this case is of 

greater amplitude than that where only the outer tube collapses.  This is due to the greater 

potential energy of the event: change in volume is increased substantially when the inner tube 

implodes, so the pulse released is larger.   

The peak amplitude of the straight through collapse is less than that reported in 

literature for composite tubes of similar geometry [17].  In the reference, specimens similar to 

the outer tube in this study emitted a maximum dynamic overpressure of approximately 0.8, 

whereas the same value reported here is 0.6.  That is despite the substantial increase in 

collapse pressure in the double hull case (3.76 MPa vs 1.61 MPa in the reference).  This 

reduction in maximum overpressure despite increases in collapse pressure clearly 

demonstrates the mitigating effect of the foam core. 
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Figure 9: Normalized pressure pulse from case where the outer tube and inner tube collapsed 

in a singular motion, measured at midsection; (inset, top left) outer tube buckling mode shape 

and sensor location 

 

1.5.5. IMPULSE AND ENERGY 

Inorm for various implosion cases is plotted in Figure 10A, with foam core density on 

the horizontal axis.  To allow for direct comparison between cases, the integrals from t2 to t3 in 

both the numerator and denominator are taken to be zero for instances where the inner tube 

did not collapse.  The results are constant with foam core density, which implies that the 

impulse is mainly a function of collapse pressure, and is not directly influenced by core 

density or other properties.  The exception to this trend in the data is the case of the H60 core, 

which has a lower magnitude normalized impulse.  The reason for this is because of the 

uniquely long time delay between inner and outer tube collapses for these cases, discussed in 

Section 1.5.3.2.  As a result, it can be concluded that foam core properties do not directly 

affect impulse, with collapse pressure being the dominant factor instead. 

A plot of normalized energy values, which present the energy emitted by the 

implosion event as a function of available hydrostatic energy, is given in Figure 10B.  There, 
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normalized energy released increases with core density, with more variation in the H60, -80, 

and -100 cases.  The increase in variation is because the inner tube collapses in the 

aforementioned cases, and introduces new damage mechanisms.  The increase in normalized 

energy with core density is also significant, as there is a 57% increase in average normalized 

energy released between H35 and H100 core specimens.  This highlights the diminishing 

returns on energy absorption for higher density cores.  Though increasing core density also 

increases hydrostatic collapse pressure, the energy released by the implosion also increases, 

and does not scale with increase in hydrostatic energy.  Therefore, the amount of energy 

released in the collapse of double hull tubes increases with hydrostatic energy, and increased 

core density allows for increased absolute mitigation of implosion energy.  These returns do 

not scale, however, with slightly higher normalized energy released at higher foam core 

densities. 

 

Figure 10: Implosion emissions as a function of core density showing (a) normalized 

underpressure impulse; (b) normalized waveform energy 

 

1.5.6. POST-MORTEM SPECIMEN EVALUATION 

 The post-mortem analysis of the specimens yields additional insight into the 

mechanics of the collapse process, and helps to explain the energy mitigation behavior 

discussed above.  Generally, damage in heavier foam core cases is more extensive because 
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stronger foam cores enable higher collapse pressures:  in the H100 case, Pcr is approximately 

triple that of the H35 case, and because the inner tube also collapses, the energy of the event is 

increased even further.  This enables new damage mechanisms, which causes greater overall 

energy absorption in the heavier foam core cases.   

 

1.5.6.1. PARTIAL COLLAPSE 

 Figure 11 shows post-mortem images of the H35 foam core case, where only the outer 

tube collapsed.  At (A), there are longitudinal, through-thickness cracks in the outer tube, 

corresponding to the mode 3 shape of the specimen.  These connect to cracks in the 

circumferential direction at the endcaps (B), where complete fiber failure is observed as the 

endcaps shear the material during the dynamic collapse.  At (C), the surviving internal tube 

can be seen, with little to no apparent damage. The crushing of the foam core in mode 3 shape 

can be seen at (D), where the foam core has not recovered elastically at the locations where 

the outer tube buckles inward.  A mode 3 buckling shape can clearly be seen in the crushed 

shape of the core, reinforcing earlier findings suggesting that core crushing absorbs energy 

during the outer tube’s implosion.   Finally, note that the outer tube is largely elastically 

recovered from its imploded shape; this is characteristic of the implosion of all composite 

tubes, not just double hull specimens. 
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Figure 11: H35 core post-mortem specimen photographs; (top left) isometric view; (bottom 

left) top view; (right) right view; (A) longitudinal through-thickness cracks in outer tube, 

corresponding to mode 3 buckling shape; (B) circumferential through-thickness cracks from 

endcaps; (C) Intact inner tube; (D) foam core crushing in mode 3 shape. 

 

1.5.6.2. COMPLETE COLLAPSE, WITH DWELL 

 Figure 12 shows post-mortem images of the H100 foam core case, which collapsed 

completely but with a time delay between tubes.  At (A), longitudinal, through-thickness 

cracks corresponding to a mode 3 shape are seen.  In this case, one of those cracks has 

developed into a complete tear, indicated at (B).  One half of the tear folded under the other as 

the inner tube collapsed in an asymmetric mode 2 shape; this occurs in all specimens where 

the inner tube implodes in addition to the outer.   

Several important instances of damage should be noted at the tear.  First, the fibers 

along the tear have all failed, with substantial fiber pullout visible.  There is also significant 

delamination at the tear face (C), visible at both the ends of the tube as well as the surface of 

the damage itself. The tear propagated to the foam core (D).  The carbon/epoxy material of the 

outer and inner tubes has also not recovered to cylindrical shape (E) after being removed from 

the pressurized environment of the water.  This is because the broken fibers from the tubes 
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intertwine with one another where the tear and fold-under occurs, and also cut into the foam 

core material.  This prevents them from returning to their original shape, and implies the 

presence of residual stress in the material, even after it is removed from water. 

Finally, at (F), circumferential cracks from endcap-induced shear are seen.  The cracks 

extend entirely around the circumference of the specimen on one end and largely around it on 

the other, and the portion of the outer tube that was supported by the endcap is entirely 

detached on one end. 

 

Figure 12: H100 core post-mortem specimen photographs; (top left) isometric view; (bottom 

left) front view; (right) right view; (A) longitudinal through-thickness cracks in outer tube, 

corresponding to mode 3 buckling shape; (B) Edge of through thickness tear, where the outer 

tube has completely cracked and folded under itself; (C) Delamination at tear edge; (D) Torn 

foam core; (E) Incomplete elastic recovery; (F) circumferential through-thickness cracking 

from endcap shear. 

 

1.5.6.3. COMPLETE COLLAPSE, WITHOUT DWELL 

 Figure 13 shows post-mortem images of an H80-core specimen, where the inner and 

outer tubes both collapsed in a singular motion.  At (A), cracks corresponding to a mode 3 

buckling shape can be seen.  These generally occur on the lobes of the collapse shape, so that 

the areas between these cracks experience the highest radial velocities inward.  At (B), the 
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location where the outer tube collapsed on the inner can be seen, with a fold where the inner 

tube buckled inward.  Note that this fold occurred directly between the lobes indicated by 

cracks (A), and that there is another mode 3 lobe crack on the outer tube, at the exact opposite 

side of the outer tube.  This indicates that collapses with no dwell occur when the directions of 

the tubes align with one another (Figure 14), which is supported by high-speed imagery from 

the event [Figure 6 (B) through (E)].  Beyond that, there is complete through-thickness 

fracture of both the tubes and the foam core at the center of the folded-in location, as well as at 

the top and bottom hinges where the fold-in occurs (C).  There is substantial delamination and 

fiber pullout in these areas (D).  Finally, circumferential cracks created by shear from the 

endcaps can be seen at (E), which extend almost entirely around the circumference of the tube. 
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Figure 13: H80 core specimen post-mortem photographs; (top left) isometric view; (center 

left) front view; (bottom left) bottom view; (right) right view; (A) longitudinal cracking 

corresponding to lobes of mode 3 buckling shape; (B) center of fold where buckling directions 

of tubes aligned; (C) Through-thickness tearing of both the tubes and core corresponding to 

collapse of the inner tube; (D) Delamination and fiber pullout along tear edges; (E) 

Circumferential cracking from endcaps 

 

 

Figure 14: Schematic of buckling mode shapes in case where both tube collapse without a 

dwell; note collinear buckling direction of inner and outer tubes 
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1.6. CONCLUSIONS 

 The hydrostatic implosion of double hull composite cylinders with polymeric foam 

cores of parametrically graded density was investigated.  High-speed photography and 

dynamic pressure sensors were used to record implosion events in a unique facility, and 3-D, 

underwater DIC was used to attain full-field displacement data during the collapse.  Careful 

evaluation of the experimental data has enabled the following conclusions to be made: 

 The inner and outer facesheets of a double hull structure implode separately from one 

another, and, depending on collapse pressure, the inner tube may either survive or 

implode as well. 

 Double hull composite structures demonstrate one of three general implosion 

behaviors:  (1) The outer tube implodes but the inner survives; (2) The outer tube 

implodes, there is a brief time delay, then the inner implodes; (3) The outer and inner 

tubes implode in a singular motion with no dwell.  

 The inner tube implodes if the collapse pressure of the outer tube is higher than the 

inner.   

 The inner and outer tubes collapse in a singular motion if their natural buckling 

directions are aligned, but a dwell occurs if they are not. 

 The increase in critical pressure of the outer facesheet on account of the double hull 

structure is directly proportional to the strength of the foam core.  The proportionality 

constant has been shown to be a function of geometrical properties of the core. 

 In cases where the outer tube collapses but the inner does not, an implosion pulse is 

generated which is similar to a monolayer tube implosion, but of lower frequency and 

amplitude.  This is created by the outer tube collapsing and flattening against the 

inner. 
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 In situations where both inner and outer tubes implode, the pulse from the outer tube’s 

collapse is followed by a secondary implosion pulse from the collapse of the inner 

tube.  The impulse and amplitude of the second event may match or exceed that of the 

first. 

 After normalizing for collapse pressure, the impulse of a double hull implosion is 

constant with core density, regardless of whether the inner tube implodes or not.   

 Energy released by a double hull implosion, normalized by hydrostatic energy, 

increases slightly with core density.  This demonstrates diminishing efficiency in 

using higher density cores to mitigate the energy from implosion of double hull 

composite cylinders. 

  Specimens with stronger cores undergo increased damage from implosion, on 

account of their higher collapse pressures.  This increase in damage, combined with 

the increase in foam core crushing energy, causes higher strength cores to mitigate 

more energy in absolute terms than lower strength cores. 

 

1.7. ACKNOWLEDGEMENTS 

 The authors would like to acknowledge the Office of Naval Research and Dr. Yapa 

D.S. Rajapakse for providing financial support for this research under Grant No. N00014-10-

1-0662.  The authors would also like to acknowledge the DIAB Corporation (DeSoto, TX) for 

providing the foam core materials used in this study. 

 

1.8. REFERENCES 

[1] S. E. Turner and J. M. Ambrico, “Underwater implosion of cylindrical metal tubes,” J. 

Appl. Mech., vol. 80, p. 11013, 2012. 

 

[2] S. E. Turner, “Underwater implosion of glass spheres,” J. Acoust. Soc. Am., vol. 121, 

no. 2, p. 844, 2007. 



 

36 

 

 

[3] R. J. Urick, “Implosions as Sources of Underwater Sound,” J. Acoust. Soc. Am., pp. 

2026–2027, 1963. 

 

[4] M. Orr and M. Schoenberg, “Acoustic signatures from deep water implosions of 

spherical cavities,” J. Acoust. Soc. Am., vol. 59, no. 5, pp. 1155–1159, 1976. 

 

[5] P. E. Harben and C. O. Boro, “Implosion source development and diego garcia 

reflections,” in 23rd Seismic Research Review: Worldwide Monitoring of Nuclear 

Explosions, 2001, pp. 23–31. 

 

[6] E. Cartlidge, “Accident grounds neutrino lab,” Physics World, 2001. [Online]. 

Available: http://physicsworld.com/cws/article/news/2001/nov/15/accident-grounds-

neutrino-lab. [Accessed: 22-Jun-2016]. 

 

[7] “Robotic deep-sea vehicle lost on dive to 6-mile depth,” 2014. [Online]. Available: 

http://www.whoi.edu/news-release/Nereus-Lost. [Accessed: 22-Jun-2016]. 

 

[8] C. Farhat, K. G. Wang, A. Main, S. Kyriakides, L. H. Lee, K. Ravi-Chandar, and T. 

Belytschko, “Dynamic implosion of underwater cylindrical shells: Experiments and 

Computations,” Int. J. Solids Struct., vol. 50, no. 19, pp. 2943–2961, 2013. 

 

[9] C. M. Ikeda, J. Wilkerling, and J. H. Duncan, “The implosion of cylindrical shell 

structures in a high-pressure water environment,” Proc. R. Soc. A Math. Phys. Eng. 

Sci., vol. 469, no. 2160, 2013. 

 

[10] S. Gupta, V. Parameswaran, M. A. Sutton, and A. Shukla, “Study of dynamic 

underwater implosion mechanics using digital image correlation,” Proc. R. Soc. A 

Math. Phys. Eng. Sci., vol. 470, no. 2172, pp. 20140576–20140576, 2014. 

 

[11] H. Hernandez-Moreno, B. Douchin, F. Collombet, D. Choqueuse, and P. Davies, 

“Influence of winding pattern on the mechanical behavior of filament wound 

composite cylinders under external pressure,” Compos. Sci. Technol., vol. 68, no. 3–4, 

pp. 1015–1024, 2008. 

 

[12] S. H. Hur, H. J. Son, J. H. Kweon, and J. H. Choi, “Postbuckling of composite 

cylinders under external hydrostatic pressure,” Compos. Struct., vol. 86, no. 1–3, pp. 

114–124, 2008. 

 

[13] C. J. Moon, I. H. Kim, B. H. Choi, J. H. Kweon, and J. H. Choi, “Buckling of filament-

wound composite cylinders subjected to hydrostatic pressure for underwater vehicle 

applications,” Compos. Struct., vol. 92, no. 9, pp. 2241–2251, 2010. 

 

[14] C. T. F. Ross, A. P. F. Little, Y. Haidar, and A. A. Waheeb, “Buckling of carbon/glass 

composite tubes under uniform external hydrostatic pressure,” Strain, vol. 47, no. 

SUPPL. 1, pp. 156–174, 2011. 

 

[15] P. T. Smith, C. T. F. Ross, and A. P. F. Little, “Collapse of composite tubes under 

uniform external hydrostatic pressure,” J. Phys. Conf. Ser., vol. 181, pp. 156–157, 

2009. 



 

37 

 

 

[16] C. Yang, S.-S. Pang, and Y. Zhao, “Buckling Analysis of Thick-Walled Composite 

Pipe under External Pressure,” J. Compos. Mater., vol. 31, no. 4, pp. 409–426, 1997. 

 

[17] M. Pinto, S. Gupta, and A. Shukla, “Study of implosion of carbon/epoxy composite 

hollow cylinders using 3-D Digital Image Correlation,” Compos. Struct., vol. 119, pp. 

272–286, 2015. 

 

[18] M. Pinto, S. Gupta, and A. Shukla, “Hydrostatic implosion of GFRP composite tubes 

studied by Digital Image Correlation,” J. Press. Vessel Technol., vol. 137, no. 5, p. 

51302, 2015. 

 

[19] M. Pinto and A. Shukla, “Mitigation of pressure pulses from implosion of hollow 

composite cylinders,” J. Compos. Mater., 2015. 

 

[20] J.-H. Han, G. a. Kardomateas, and G. J. Simitses, “Elasticity, shell theory and finite 

element results for the buckling of long sandwich cylindrical shells under external 

pressure,” Compos. Part B Eng., vol. 35, pp. 591–598, 2004. 

 

[21] J. W. Hutchinson and M. Y. He, “Buckling of cylindrical sandwich shells with metal 

foam cores,” Int. J. Solids Struct., vol. 37, no. 46–47, pp. 6777–6794, 2000. 

 

[22] G. A. Kardomateas and G. J. Simitses, “Buckling of Long Sandwich Cylindrical Shells 

Under External Pressure,” Jam, vol. 72, no. 4, pp. 493–499, 2005. 

 

[23] A. V. Lopatin and E. V. Morozov, “Buckling of the composite sandwich cylindrical 

shell with clamped ends under uniform external pressure,” Compos. Struct., vol. 122, 

pp. 209–216, 2015. 

 

[24] J. Shen, G. Lu, D. Ruan, and C. Chiang Seah, “Lateral plastic collapse of sandwich 

tubes with metal foam core,” Int. J. Mech. Sci., vol. 91, pp. 99–109, 2015. 

 

[25] M. Ohga, A. Sanjeewa Wijenayaka, and J. G. A. Croll, “Reduced stiffness buckling of 

sandwich cylindrical shells under uniform external pressure,” Thin-Walled Struct., vol. 

43, no. 8, pp. 1188–1201, 2005. 

 

[26] K. Arjomandi and F. Taheri, “Stability and post-buckling response of sandwich pipes 

under hydrostatic external pressure,” Int. J. Press. Vessel. Pip., vol. 88, no. 4, pp. 138–

148, 2011. 

 

[27] K. L. Koudela and L. H. Strait, “Simplified Methodology for Prediction of Critical 

Buckling Pressure for Smooth-Bore Composite Cylindrical Shells,” J. Reinf. Plast. 

Compos., vol. 12, no. 5, pp. 570–583, 1993. 

 

[28] R. H. Cole, Underwater Explosions. Princeton, New Jersey: Princeton University 

Press, 1948. 

 

[29] A. B. Arons and D. R. Yennie, “Energy partition in underwater explosion phenomena,” 

Rev. Mod. Phys., vol. 20, no. 3, pp. 519–536, 1948. 

 



 

38 

 

[30] ASTM standard D1621, “Standard Test Method for Compressive Properties Of Rigid 

Cellular Plastics,” ASTM Int., 2016. 

 

[31] R. von Mises, “The Critical External Pressure of Cylindrical Tubes,” Zeitschrift des 

Vereines Dtsch. Ingenieure, vol. 58, no. 19, pp. 750–767, 1914. 

 

[32] R. von Mises, “The Critical External Pressure of Cylindrical Tubes Under Uniform 

Radial and Axial Load,” Stodola’s Festschrift, pp. 418–430, 1929. 

 



 

39 

 

CHAPTER 2: SHOCK INITIATED IMPLOSION OF DOUBLE HULL COMPOSITE 

CYLINDERS 

Prepared for submission to Journal of the Mechanics and Physics of Solids 

 

 

 

 

 

 

 

By: 

Nicholas DeNardo and Arun Shukla* 

Dynamic Photomechanics Laboratory 

Department of Mechanical, Industrial, and Systems Engineering 

University of Rhode Island, Kingston, RI 02881 

 

 

 

 

 

 

 

 

 

*Corresponding author: shuklaa@egr.uri.edu, Phone:  401-874-2283, Fax: 401-874-2355



 

40 

 

ABSTRACT 

 An experimental study is performed which investigates the dynamic collapse of 

double hull composite cylinders under external hydrostatic pressure and shock loading.  All 

experiments are performed underwater in a 2.1 m diameter semi-spherical pressure vessel that 

approximates a free-field environment, and Digital Image Correlation (DIC) is used in 

conjunction with blast transducers to study collapse mechanics.  Specimens have carbon-fiber 

/ epoxy facesheets and a PVC foam core that is removed for control in some instances, and are 

brought to 80% of their natural buckling pressure before being subjected to an underwater 

explosion (UNDEX) at varying standoff distances.  Results show that double hull specimens 

implode below their natural collapse pressure when subject to explosive loading, but that the 

addition of the PVC foam core prevents implosion in some cases and substantially increases 

structural stability in others.  The double hull configuration with foam core is also shown to 

emit significant pressure pulses despite the noisy environment of the pressure vessel.   
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2.1. INTRODUCTION 

This study seeks to address gaps in the understanding of the collapse mechanics of 

double hull composite structures during shock-initiated underwater implosion.  To that end, a 

series of experiments was performed to evaluate the response of carbon-fiber composite 

double-hull cylinders, with and without PVC foam cores, under simultaneous hydrostatic 

pressure and explosive loading.  The completion of this work helps enable implementation of 

these structures in underwater applications, where they have several key advantages, but have 

historically seen limited use from lack of complete understanding [1]. 

There are many benefits of composite materials for underwater structural applications: 

composites generally have higher specific strength and stiffness, improved corrosion 

resistance, and reduced weight in comparison with metals.  These benefits expand further in 

double hull composite configurations, where a foam core of relatively low density is 

sandwiched between two facesheets of higher density and stiffness: this configuration allows 

for increased acoustic attenuation, as well as improved bending strength, making double hull 

structures particularly good for preventing buckling.  This is important because buckling 

causes the initiation of an implosion, where structural instability results in the walls of an 

underwater gas-filled structure rapidly moving inward and contacting each another, collapsing 

the structure entirely and emitting high-pressure waves in the process [2].  While implosions 

may be initiated from hydrostatic pressure alone, sufficient instability to collapse the structure 

may also be caused by shock loading at sub-critical pressure, as in the case of a nearby 

underwater explosion (UNDEX)[3].   

Though underwater implosion has been of interest for several decades, there has been 

a recent resurgence of experimental work in the field.  Turner and Ambrico clarified the 

collapse mechanics of cylindrical metal shells using experiments and simulations, and Farhat 

et. al did similarly while using high speed cameras to visualize the stages of the collapse [2], 
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[4].  Gupta et al further expanded the literature by using high speed photography in 

conjunction with digital image correlation (DIC) to study the implosion of metallic tubes[5].  

Pinto extended these techniques to the study of composite tubes[6], [7], thus adding to a body 

of work that had been focused largely on evaluating the collapse pressures of composite 

cylinders under hydrostatic conditions [8]–[11].   

A variety of work has been done on the phenomenon of shock-initiated implosion.  

Pegg performed a nonlinear finite element analysis of submerged cylinders with combined 

hydrostatic and impulse loading, and investigated the effect of varying impulse [12].  Tanov et 

al looked at the response of cylindrical laminated shells under suddenly applied lateral 

pressure [13].  Brett and Hung et al performed experiments on the UNDEX loadings of 

submerged cylinders, and compared their results to simulations [14], [15].  Fatt studied the 

underwater pulse loading of GFRP cylinders analytically using Mathieu equations and 

computationally, and found good agreement between the two [16].  Ikeda studied the 

implosion of Brass and Aluminum cylinders under hydrostatic pressure and UNDEX loading 

experimentally using high-speed imaging [17].  Finally, Pinto used high speed imagining and 

DIC to study the buckling and implosion of carbon-fiber/epoxy composite structures under 

UNDEX loading [18]. 

There is a wealth of literature on the behavior of sandwich structures to impulse and 

blast loading, both in air and water [19]–[35].  However, this body of work focuses on the 

behavior of plates and beams with few exceptions, and generally does not account for 

buckling in cases where cylinders are considered.  As such, there is a significant knowledge 

gap with regards to the behavior of sandwich-structured composite cylinders under combined 

hydrostatic and shock loading.  This study seeks to address that gap experimentally, with 

results showing that the addition of a foam core substantially increases structural stability by 

extending the duration of collapse, as well as preventing implosion completely in some cases. 
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2.2. MATERIAL SELECTION AND SPECIMEN DESIGN 

Double hull specimens are created from carbon-fiber/epoxy composite cylinders 

produced by Rock West Composites (West Jordan, UT), featuring an Epon 862 Resin system.  

The inner and outer tubes have nominal IDs of 38.6 mm and 60.4 mm, respectively.  The inner 

and outer tubes have otherwise the same constructions: both have a general purpose 

[±15/0/±45/±15] layup, 356 mm unsupported length, and 1.7 mm nominal wall thickness.  The 

outer tube has a random, black-and-white speckle pattern for DIC, applied by hand using flat 

paint.  The inner and outer tubes are assembled concentrically and fixed in place using 

aluminum endcaps, which are sealed from outside water and one another using o-rings.  To 

provide an additional backup seal, a thin layer of epoxy is applied to the gap between the end 

of the tube and the endcap.  This ensures that water will not enter the inner tube and affect its 

dynamics if damage allows water to enter the space between inner and outer tubes. 

Some cases include a PVC foam core made from H100 foam by DIAB Inc. (De Soto, 

TX).  This core is made by cutting rings of 41.9 mm ID and 9.2 mm thickness from a sheet of 

stock material, then stacking the rings concentrically between the inner and outer tubes.  The 

height of the stack of rings is matched to the unsupported length of the tubes, and the end 

result is that the volume between inner and outer cylinders is completely filled with H100 

foam when a core is included. 

 

2.3. EXPERIMENTAL PROCEDURE 

 Experiments are performed in a semi-spherical pressure vessel of 2.1 m diameter and 

maximum static pressure rating of 6.89 MPa (Figure 15).  The size of the vessel allows 

constant hydrostatic pressure to be maintained during collapse, and optical viewports mounted 

around the mid-height of the tank enable lighting and high speed photography inside the 



 

44 

 

chamber. Front-facing viewports have a 17° viewing angle which is used together with two 

high-speed cameras (Photron SA1, Photron USA, Inc., San Diego, CA) for stereoscopic 

recording of the specimen during the experiment, enabling 3-D DIC (VIC3D 2012, Correlated 

Solutions Inc., Columbia, SC) to be performed during post-processing in the manner of [5], 

[6], [18].  Viewports on the side of the tank are used with an additional high speed camera to 

track UNDEX bubble size. 

 

Figure 15:  Experimental setup; (left) top section view of pressure vessel through mid-height, 

showing high speed cameras, specimen, UNDEX, and lighting; (right) section view showing 

specimen and charge locations 

 

 Experiments are performed by mounting the specimen horizontally in the center of the 

tank using thin cables that provide minimal reflections, and the speckle pattern on the 

specimen is made to face the front viewports.  An exploding-bridgewire detonator of 80 mg 

PETN and 1,031 mg RDX (RP-85, Teledyne RISI, Inc., Tracy, CA) is mounted directly 

behind the specimen at a controlled standoff distance Rs of either 102 mm or 203 mm.  
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Piezoelectric blast transducers (PCB 138A05, PCB Piezotronics, Inc., Depew, NY) are 

mounted around the specimen and the explosive to record the pressure environment during 

and after the event.  These transducers are designed for liquids compatible with nylon 

(including water), have a rise time of less than 1.5 μs, a resolution of 0.7kPa, and a low 

frequency response of 2.5 Hz, and are therefore considered valid for this application. The 

amplified output from the pressure sensors is monitored using an Astro-Med Dash 8HF-HS 

portable data recorder (Astro-Med Inc., West Warwick, RI) at a sampling rate of 2 MHz.  

After mounting, the tank is sealed and filled with filtered water, then pressurized by 

introducing nitrogen gas to a small air pocket at the top of the chamber.  The water in the 

vessel is pressurized to 80% the collapse pressure of the specimen being studied, which is 

previously measured from identical samples by slowly pressurizing the same setup at a rate of 

0.083 MPa/min until natural collapse occurs.  When 80% collapse pressure is reached in the 

tank, a high voltage firing box is triggered alongside the cameras and pressure sensors, such 

that the charge detonates and imagery and pressure data are saved and matched in time.   

All trials are duplicated to ensure repeatability between experiments.  Average 

normalized RMSE of pressure signals is 4.3% for similar trials, with a maximum variation of 

bubble pulse period of 0.16 ms, and maximum variation in maximum overpressure of 2.18 

MPa.   Representative data is plotted unless there is significant deviation between trials, in 

which case differences are highlighted. 

Specimen Type Hydrostatic Pressure 

During Trial (MPa) 

Trials performed at  

Rs = 102 mm  

Trials performed at 

Rs = 203 mm 

Core Removed 0.979 2 2 

H100 Foam Core 2.896 2 2 

Table 2:  Summary of experiments performed 
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2.4. RESULTS AND DISCUSSION 

2.4.1. FEATURES OF THE PRESSURE HISTORY 

Pressure-time data recorded from blast transducers near the specimen is presented 

here, in order to provide complete information about collapse.  In each case, plots are taken 

from a sensor mounted 25mm from the back face of the specimen, as well as standoff distance 

Rs from the charge (Figure 16).  This provides an accurate representation of the pressure 

experienced by the specimen, as the shock wave arrives at both the sensor and the structure 

simultaneously.  Additionally, time 0 is taken by convention to be the time at which the 

explosive is fired for a particular case, such that the initial shock wave passes the structure 

shortly thereafter.  This convention is also upheld for image data throughout the paper, so 

pressure and DIC information can be directly compared in time.  All pressure and DIC data 

presented in this study is unfiltered. 

 

Figure 16:  Schematic of sensor position relative to specimen and charge locations 

  

Because the experiments in this study are performed in a closed vessel, reflections 

from the boundaries of the tank consistently affect the pressure signal by introducing a 

substantial amount of noise.  Based on the 2.1 m diameter of the vessel, and assuming a 

constant wave speed of 1500 m/s in water, it can be determined that tank reflections will first 

appear in the pressure signal approximately 1.4 ms after the initial shock, and will continue to 

recur at that interval.  This is shown to be true here, with initial reflections typically appearing 
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as a grouping of smaller pulses on account of the charge’s offset from the center of the tank.  

Reflections which follow the first set are generally less distinguishable, as the amplitude of the 

pressure wave attenuates significantly over distance and transmission of some energy occurs 

at the vessel’s boundaries. 

Another important feature of the pressure histories shown later are the secondary 

pulses from expansion and collapse of the UNDEX gas bubble.  These are identified by 

tracking bubble size over time via the side view camera of the tank, and recording the times of 

local minimums in bubble size.  Based on the wave speed of water, sensors register bubble 

pulses 0.07 ms and 0.14 ms after the minimum bubble radius is observed, depending on 

standoff distance.  Up to four bubble pulses are reported for any given case, after which the 

oscillatory motion of the bubble generally becomes less discernible, and definite minimums 

are not as easy to identify. 

Because the hydrostatic pressure at which experiments are performed in foam core 

cases is much higher (2.9 MPa instead of 1.0 MPa), the time period between bubble pulses is 

much lower.  This is well established theoretically, and given by the following empirical 

equation[36]: 

𝑇 = 𝐾 (
𝑌1 3⁄

𝑃0
5 6⁄
) (13) 

 

 Where T is the period of bubble oscillation, Y is total energy available (proportional 

for a given explosive to charge weight), K is a constant depending on the explosive, and P0 is 

the ambient hydrostatic pressure during the event.  Assuming constant values of K and Y 

between experiments, the relationship between bubble pulse periods at differing hydrostatic 

pressure is given simply by:  
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𝑇1
𝑇2
= (

𝑃0,2
𝑃0,1

)

5 6⁄

 (14) 

  

Where T1 and T2 are the time periods between bubble pulses at a given hydrostatic 

pressure, and P0,1 and P0,2 are the corresponding values of hydrostatic pressure.  For the 

experiments in this study, Equation (14) has an average accuracy of 92.5% between cases at 

varying hydrostatic pressures.  This shows that hydrostatic pressure is the primary factor in 

differing bubble-pulse periods.  Possible sources of experimental error result from the closed 

environment of the pressure vessel, including changing local pressure from wall reflections 

and specimen deformation. 

 

2.4.2. NO CORE, 102 MM STANDOFF CASE 

The collapse of the structure with core removed and a 102 mm standoff was the fastest 

of all cases, with the complete collapse of the structure happening in about 7.9 ms.  This can 

be seen through high speed imagery and DIC of the event, with center-point deflections of the 

outer cylinder presented in Figure 17.  At time 0, the explosive is fired and the center-point of 

the tube soon bows outward before the implosion of the outer cylinder initiates at 

approximately 1.0 ms, marked A.  From there, the outer tube buckles inward and impacts the 

wall of the inner cylinder at B, but rebounds outward to a maximum at time 3.00 ms, marked 

C.  It is important to note, however, that this measured rebound may be an artifact of the 

underwater DIC method: the pressure-time history from the experiment (Figure 19) shows 

tank wall reflections at about this time, and high speed imagery from the event (Figure 18) 

confirms this with noticeable changes in refractive index.  Regardless, the implosion of the 

inner tube can be seen to initiate at 4.00 ms, marked D, with the buckle inward collinear with 

that of the outer tube.  From there, the walls of the cylinder rebound briefly before continuing 
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inward at E and finally making centerpoint wall contact at F.  A phase commonly referred to 

as “buckle propagation” ([5], [7]) follows, with the walls of the cylinder making contact at 

increasingly higher longitudinal position, until the walls are completely collapsed at 7.93 ms, 

marked G. 

 

Figure 17:  Centerpoint radial displacement data (dR) for a no-core specimen with 102mm 

standoff 
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Figure 18:  High speed imagery with DIC contours superimposed for a no-core specimen with 

102 mm standoff.  Letter-labels to the left of the images correspond to those in Figure 17. 

 

 The pressure-time history recorded from the event provides further insight into 

collapse mechanics, and is plotted in Figure 19.  There, it can be seen that the implosion of the 

outer tube occurs following the initial shock wave, but before any reflections from the tank 

walls interact with the specimen.  As such, it is clear that the initial shock wave alone 

possesses enough energy to implode the outer tube at this ambient pressure and standoff 

distance.  As noted previously, the second set of reflections can also be seen to begin at around 

2.8 ms, and continue during the time of the rebound labeled C in Figure 17.  Interestingly, the 

first bubble pulse from the UNDEX appears to be concurrent with the buckling initiation of 

the inner cylinder.  Side view photography shows a minimum bubble radius at exactly 4.00 

ms, which is the same time as image D in Figure 18, and aligns with the local maximum in 

pressure marked bubble pulse 1 in Figure 19.  From this it may be concluded that the bubble 
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pulse is providing the energy to initiate the collapse of the inner cylinder, even though that 

structure’s collapse pressure is much higher than the ambient hydrostatic pressure in the tank.  

After this point, collapse of the inner tube continues until wall contact is made shortly after 7 

ms, which also happens to correspond with the second UNDEX bubble pulse, and buckle 

propagation continues until approximately 8 ms.  It is worth noting that, even though an 

implosion typically releases high-amplitude pressure waves concurrently with buckle 

propagation, it is not possible to distinguish that feature in the pressure trace here because the 

environment is already very noisy.   

 

Figure 19:  Pressure-time history for a no-core specimen with 102 mm standoff.  Dynamic 

pressure is plotted, such that 0 on the vertical axis corresponds to ambient hydrostatic 

pressure. 

 

Post-mortem imagery of the specimen used here is shown in Figure 20, with key areas 

of damage marked for both the inner and outer tubes.  Some of the most extensive damage is 

shown in areas A and D, where through-thickness axial cracking runs along the length of both 

the inner and outer tubes.  These cracks occur on the top and bottom of both tubes, and 

correspond to sections of the tubes that hinged during the Mode 2 collapse of the structure.  
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This can be seen by cross-referencing with Figure 18, and show that the tubes absorb energy 

through damage as they collapse.   

Also of interest is the back face circumferential cracking in the outer tube that forms a 

roughly circular shape and can be seen in areas marked B.  This cracking is interesting 

because it only appears on the back face of the tube, in the direction facing the UNDEX.  

These circumferential cracks are each about 82 mm from the midplane of the tube, which is 

itself 102 mm from the center of the UNDEX.  Using simple trigonometry, it can be 

determined that this corresponds to a radius of 130 mm in the initial shock wave, at which 

point the section of the tube bracketed by these cracks was loaded by the shock but the rest of 

the tube was not.  Given this non-uniform loading and lack of support from a core, the 

material likely experienced enough stress to fracture, further degrading the stability of the 

structure and leading to the short duration of collapse.  Interestingly, similar cracking can be 

seen at a corresponding location in the inner tube, marked C in Figure 20.  Again, 

corresponding cracks do not appear on the front face of the inner tube.  This implies that the 

back face of the outer tube impacted the inner with particularly high momentum, causing 

localized damage in the inner cylinder.  
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Figure 20: Post-mortem photographs of a no-core specimen with 102 mm standoff; (i) top 

view of outer tube; (ii) back view of outer tube; (iii) back view of inner tube; (iv) bottom view 

of inner tube 
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2.4.3. NO CORE, 203 MM STANDOFF CASE 

The collapse of the structure with core removed and a 203 mm standoff completes in 

13.8 ms:  this is a greater duration than the 102 mm standoff case, but still much shorter than 

either case where the foam core is included. 

DIC information from the event helps explain the key stages and processes of the 

collapse process: this is shown in Figure 21, which shows centerpoint radial displacement with 

key stages of the collapse marked, and Figure 22, which shows high-speed imagery from the 

marked times in the previous figure.  Following the firing of the explosive shortly after time 0, 

the outer tube can be seen to oscillate briefly before collapse initiates at 3.33 ms, marked A.  

Interestingly, this occurs after reflections from the tank walls interact with the specimen, as 

can be seen in Figure 23.  From this, it can be concluded that the initial shock wave alone does 

not possess enough energy to destabilize the outer tube.  Following the initiation of collapse at 

A, the walls of the outer tube move inward and impact the walls of the inner tube at B.  The 

walls of the inner tube immediately continue inward collinearly with those of the outer tube, 

but eventually stabilize briefly around 6.67 ms, marked C.   Shortly afterwards, the second 

bubble pulse is observed at 6.83 ms from side view imagery, and can be seen clearly in Figure 

23.  This leads to a substantial amount of cavitation in the tank, which causes brief loss of 

correlation.   

The second bubble pulse provides sufficient energy to collapse the inner tube, such 

that implosion of that structure initiates at 7.57 ms, marked D.  This continues until the 

structure collapses completely and makes wall contact at centerpoint at E.  A distinct buckle 

propagation phase is not observed following centerpoint contact, and the center of the 

structure appears to rebound outward briefly at F, while the buckle concurrently propagates in 

the direction of the endcaps, most clearly visible in Figure 22.  Finally, the center of the 
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structure moves back inwards to complete wall contact at 13.77 ms, marked G, and no further 

changes in the state of the structure are observed.   

It should be noted that the structure does not undergo complete collapse, as can be 

seen from end-state DIC contours in Figure 22G.  This implies that the inner tube of the 

double-hull structure still has some residual stiffness after the collapse event, and is able to 

resist complete collapse on account of that.  It appears that the inner tube only collapsed 

because the valley of its buckling mode shape was well aligned with that of the outer tube, and 

that the timing of the second bubble pulse was enough to partially collapse the inner tube in 

this configuration.   

 

Figure 21: Centerpoint radial displacement (dR) data for the no-core case with 203 mm 

standoff 
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Figure 22: High speed imagery with DIC contours superimposed for the no-core case, with 

203 mm standoff.  Letter-labels to the left of the images correspond to labels in Figure 21. 

 

The pressure history from the no core, 203 mm standoff case is plotted in Figure 23, 

and investigation of this data can help yield insight into the collapse dynamics seen above.  

Because the standoff distance of the explosive is much greater, the amplitude of the shock 

wave is substantially reduced from the 102 mm configuration, explaining why the outer tube 

does not collapse until it is subject to additional energy from tank reflections.  The first bubble 

pulse from the UNDEX can also be seen to occur around 4 ms, during which time the walls of 

the outer tube are collapsing inwards.  This adds additional energy to their collapse, and helps 

drive the inner tube inward after wall contact between inner and outer cylinders is made at 

5.23 ms.   As noted previously, the second bubble pulse can also be seen to occur shortly 

before the collapse of the inner tube initiates, which is likely the cause of that event.  Finally, 

it can be seen that the centerpoint rebound in Figure 22F also begins between bubble pulses 3 
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and 4, which are not easily distinguishable in the pressure history but can be observed in side 

view imagery.  Because the rebound occurs between pulses, the local pressure in the fluid 

would be at a relative minimum, helping to explain why the rebound seen above occurs and 

why residual stiffness in the outer tube would be better able to initiate the rebound during that 

time. 

 

Figure 23:  Pressure-time history for no-core case, with 203 mm standoff.  Dynamic pressure 

is plotted, such that 0 on the vertical axis corresponds to ambient hydrostatic pressure. 

 

Following the experiments, post-mortem specimens were inspected for damage, with 

Figure 24 showing post-mortem images from the no-core case with 203 mm standoff.  The 

most prominent damage is again in the form of longitudinal cracking along the length of the 

inner and outer tubes, marked A on the outer cylinder and E on the inner.  These longitudinal 

cracks correspond to the lobes of the mode 2 buckling shape, where the specimen hinged as it 

collapsed.  Back face, circumferential cracking can also be seen on the outer tube, labeled B, 

though it is not bilateral in the manner of the 102 mm standoff case, and shows more 

delamination and fiber pullout than that case as well.  Of note, however, is a small 

circumferential crack on the back face of C, which does not exhibit the extensive damage of 

the other cracks, but still shows the development of damage in that area.  It is also interesting 
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to note that damage has developed on the front face of the outer tube, in the area marked D.  

This is a departure from the 102 mm standoff case, which did not have damage in this area, 

though it was subject to a stronger blast.  The difference is likely because the duration of the 

collapse was longer in the 203 mm case, as a result of the lower-amplitude shock loading.  

Because of this, damage had a longer time to accumulate in the structure, particularly in the 

outer tube.  The inner tube does not have the back face damage present in the 102 mm 

specimen in Figure 20, showing that the impact between inner and outer facesheets was not as 

violent in the case of the 203 mm specimen. 
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Figure 24: Post-mortem photographs of a no-core specimen, with 203 mm standoff; (i) front 

view of outer tube; (ii) back view of outer tube; (iii) bottom view of outer tube; (iv) front view 

of inner tube; (v) bottom view of inner tube 

 

2.4.4. FOAM CORE, 102 MM STANDOFF CASE 

The addition of a foam core provides substantially increased stability for the double 

hull cylinders.  This is initially obvious from the 30.2 ms collapse duration of the H100 core 

specimen with 102 mm standoff:  this is more than double the duration of the no core, 203 mm 

case described in the previous section, even though the shock experienced by the specimen is 

of greater magnitude here.   
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Figure 25 shows centerpoint radial displacement data for the foam core, 102 mm 

standoff case, with key stages in the collapse marked.  Figure 26 shows high speed imagery 

from these times with DIC contours superimposed, thus providing information about the rest 

of the cylinder.  It is immediately clear from viewing Figure 25 that the qualitative behavior of 

the specimen is different when the foam core is added:  whereas cases with core removed 

resulted in collapse of the specimen in a roughly singular motion, it can be seen here that the 

inner tube oscillates for an extended duration after the collapse of the outer tube, before finally 

losing stability itself. 

Several key stages of the collapse are marked in Figure 25 and Figure 26.  Following 

arrival of the initial shock wave shortly after 0 ms, the tube can be seen to bow outward and 

oscillate for some time, before implosion of the outer tube initiates at about 4.00 ms, marked 

A.  Cross-referencing with Figure 27, it can be seen that this initiation occurs shortly after the 

second bubble pulse, indicating that the bubble pulse provided the energy to collapse the outer 

tube.  This highlights the reinforcing effect of the foam core, as the initial shock wave alone 

was able to collapse the outer tube in the no-core case with the same standoff.  Here, the outer 

tube did not collapse until subject to energy from the initial shock wave, two sets of 

reflections, and two bubble pulses, as well as a much higher ambient hydrostatic pressure, 

clearly showing the reinforcing effect of the core.  Collapse of the outer tube continues until 

B, at which point complete densification occurs in the foam core and the inner tube stops the 

inward motion of the walls. Interestingly, there is substantial damage in the outer facesheet at 

this time, as evidenced by circumferential cracks that appear to extend around much of the 

circumference of the structure.  These cracks are seen in analysis of post-mortem specimens, 

and highlighted in Figure 28.  After the outer tube crushes against the inner at B, the latter 

tube begins to oscillate at low frequency and an amplitude of about 4 mm for 23.1 ms, until 

collapse of the outer tube is initiated at E.  A local minimum and maximum are marked for 
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reference during this time as C and D, respectively.  Following initiation at E, the structure 

continues to collapse asymmetrically before making centerpoint wall contact at F, after which 

buckle propagation continues along the longitudinal axis of the structure and completes at 30.2 

ms, marked G. 

 

Figure 25: Centerpoint radial displacement (dR) data for the H100 core case, with 102 mm 

standoff 
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Figure 26: High speed imagery with DIC contours superimposed for the H100 core case, with 

102 mm standoff.  Letter-labels to the left of the images correspond to labels in Figure 25. 

 

 Pressure profiles recorded during the event help to explain the behavior seen above, 

and are plotted in Figure 27 with key features labeled.  Of particular note is the substantially 

reduced time period between bubble pulses.  This occurs because the ambient hydrostatic 

pressure is brought to a much higher level in the foam core cases (2.90 MPa vs 1.0 MPa), 

resulting in faster oscillations in bubble radius.  This means that the specimen is subject to a 

greater amount of energy in a given time period than in the no core case, though ambient 

hydrostatic pressure is 80% the natural collapse pressure of the specimen in both cases.   

 Four bubble pulses are recorded in the first six milliseconds of the collapse, with 

reflections typically occurring every 1.4 ms.  Despite this, the outer tube of the specimen does 

not initiate collapse until 4.00 ms, which clearly shows the stabilizing effect of the foam core.  

After the outer tube implodes, bubble pulses and reflections continue, though individual pulses 

and reflections lose energy and become more difficult to discern after 7.5 ms.  Over time, a 
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gradual attenuation in the amplitude of the pressure trace is seen, so that when implosion of 

the inner tube initiates, the amplitude of the pressure signal is significantly lower than that 

seen at 7.5 ms and earlier.  As a result, the outline of a pressure pulse from the implosion of 

the inner tube can be seen, with a feint drop in pressure preceding wall contact of the inner 

cylinder at 29.3 ms, followed by a small spike in pressure concurrent with buckle propagation, 

as is typically emitted during an underwater implosion.  This pulse is not usually visible in the 

noisy environment of the pressure vessel that these explosive-initiated experiments are 

performed in.  However, the extended collapse duration and increased hydrostatic pressure of 

the foam core specimen allows a small but detectable pulse from the implosion of the inner 

tube to be registered. 
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Figure 27: Pressure-time history for H100 core case, with 102 mm standoff; (top) pressure for 

duration of collapse; (bottom) inset detailing first 7.5 ms of pressure history; Dynamic 

pressure is plotted in both graphs, such that 0 on the vertical axis corresponds to ambient 

hydrostatic pressure 

 

 Investigation of the post-mortem specimens for this case reveals more information 

about the failure modes of the structure, with images of the specimen shown in Figure 28.  The 

first thing to note is the circumferential tearing in the vicinity of the endcaps of the outer tube, 

marked A.  This damage of this type also appears in the inner tube, at locations marked E.  

Circumferential tearing does not appear in the specimens with core removed.  This is because 
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the foam core specimens have a higher collapse pressure, so the experiments on them are 

performed at a higher hydrostatic pressure.  As a result, the cylinders are driven inward more 

abruptly after losing stability, and undergo substantial tearing from endcap-induced shear.  

Large-scale delamination of fibers also occurs near the endcaps in regions marked B, and is 

enabled by the tearing at A, as well as the increased hydrostatic energy of the foam core cases.   

A massive longitudinal tear can be seen in the back of the specimen, marked by C.  

This tear extends the full length of the tube, such that the cylinder is fully parted at this 

location.  The face of the tear is marked by large scale delamination and fiber failure, as well 

as a folding of the bottom portion of the outer facesheet under itself.  There, the fibers of the 

tube have also pierced the foam core, keeping the outer facesheet in place after the specimen is 

removed from the pressurized environment.  This tear and fold-under corresponds to the back 

portion of the outer tube that folded inwards during the collapse of the inner tube.  Damage 

corresponding to the hinge on the front face can be seen at D, with delamination of the outer 

ply along the length of the tube visible.  The damage is much more significant at C however, 

and this is likely a result of accumulation of damage on the side of the specimen facing the 

UNDEX and subsequent bubble pulses.   

Also of note is the crushing of the foam core in an asymmetric mode 2 shape at the 

regions marked F.  This demonstrates that the core is absorbing energy during the collapse of 

the inner and outer facesheets.  Through-thickness longitudinal cracking can be seen in the 

inner tube at G, and corresponding to the regions that hinged during the collapse of the inner 

cylinder.  This occurs in much the same manner as the no-core specimens; however, the same 

characteristic cracking does not appear in the outer tube, further implying that the outer 

cylinder collapsed on account of damage.  Finally, it is worth noting that the back-face 

circumferential cracking seen in the no-core specimens is not present in this case.  Here, it 
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appears that the foam core provides enough support for the outer tube to prevent that damage 

from developing. 

 

Figure 28: Post-mortem photographs of the foam core specimen with 102 mm standoff; (i) 

front view; (ii) back view; (iii) bottom view; (iv) side view 

 

2.4.5. FOAM CORE, 203 MM STANDOFF CASE 

The case with an H100 foam core and 203 mm standoff is interesting because the 

specimens either did not implode at all, or only did so after a very long time relative to other 
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cases.  For the sake of completeness, the latter trial is focused on in this section, with relevant 

information included from the no-collapse trial where relevant.   

The specimen that imploded did so after 86.9 ms, about triple the duration of the case 

from Section 2.4.4.  Collapse of the outer tube did not initiate until 43.7 ms after the charge 

was fired, longer than the entire collapse duration of the specimen with 102 mm standoff.  

High speed imagery and DIC information help to explain the mechanics of this collapse 

process, with centerpoint radial displacement data plotted in Figure 29, with key stages of the 

collapse labeled.  High-speed imagery corresponding to these labels is shown in Figure 30, 

with DIC contours superimposed.  Figure 29 contains data from both trials, though labels only 

apply to the trail that imploded.  In the trial that did not implode, steady-state oscillations can 

be seen about the horizontal axis, beginning around 10 ms.  These oscillations continue 

indefinitely, though only about 64 ms of data is recorded.   

Key stages of the collapse are labeled in Figure 29 for the trial that did implode.  

Starting around 10 ms, the deflection from the second trial can be seen to diverge from the 

first, as the specimen bows outward slightly with positive radial displacement.  From there, 

the specimen oscillates radially with a frequency approximately the same as Trial 1.  This 

continues until 43.7 ms, marked A, at which point the outer tube loses stability and begins to 

collapse.  Collapse of the outer tube continues until B, at which point the outer facesheet 

makes a quasi-wall contact with the inner by crushing the foam core fully. 

It is important to understand why the first trial did not collapse and the second trial 

did.  This can be answered in part by image B in Figure 30.  There, damage in the form of 

circumferential cracking can be seen near the endcaps of the specimen.  An asymmetric 

collapse of the outer facesheet is also seen, where the bottom of the cylinder is not deformed 

in the image, but the top is crushed against the inner tube.  Combined, these factors indicate 

that the outer tube did not collapse from a structural instability, as that would result in a 
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symmetric modal buckling shape.  Rather, it is clear that the outer cylinder lost stability on 

account of material damage which eventually overwhelmed the structure.  It is difficult to 

identify when this damage would have initiated, as cracking can be too small for visible 

inspection and half the cylinder is not visible in the images.   

After the collapse of the outer facesheet at B, the inner cylinder continues to oscillate 

radially for 27.6 ms, before collapsing entirely at time 83.6 ms, marked D.  Meanwhile, 

damage in the outer cylinder continues to grow, as is apparent from the more extensive 

cracking in Figure 30C than in B.  Additionally, the inner tube can be seen to slowly trend 

toward greater negative radial deformation in the time period between B and D, indicating 

reduced stiffness of the inner facesheet.  After losing stability at D, centerpoint wall contact is 

made at 86.2 ms, marked E.  Buckle propagation then occurs in the specimen, ending at 86.9 

ms, marked F. 

 

Figure 29: Centerpoint radial displacement (dR) data from the H100 core cases and a 203 

mm standoff.  The specimen did not implode in trial 1, plotted in red.  The specimen did 

implode in trial 2, plotted in blue.  Important stages of the collapse in trial 2 are labeled. 
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Figure 30:  High speed imagery with DIC contours superimposed, from the H100 foam core 

specimen with 203 mm standoff.  Letter-labels to the left of the images correspond to labels in 

Figure 29. 

 

Pressure-time histories provide additional collapse information, with the pressure 

profile from the foam core, 203 mm standoff case plotted in Figure 31.  The bottom plot in the 

figure shows the reflections and bubble pulses in the first 7.5 ms of the collapse, though 

collapse of the outer tube does not initiate until well after this window.  Note the lower 

magnitude of the initial shock wave in this case as compared to the 102 mm standoff case, as 

well as the higher frequency of bubble pulse compared to 1.0 MPa cases.  Times of key events 

are marked in the top plot, but there does not appear to be any unique features corresponding 

to the collapse of the outer tube.  Interestingly, a definite pulse is registered after the implosion 

of the inner tube.  Following an underpressure region associated with the collapse of the inner 

tube, a peak in pressure is registered shortly after wall contact at 86.9 ms.  This peak is 

concurrent with buckle propagation along the length of the inner tube, as is typically observed 

during an implosion.  As with the 102 mm standoff case, the pressure pulse from the 
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implosion of the inner tube is registered here because noise in the pressure vessel attenuates 

over time.  Because the foam core specimen survives for a long time following the UNDEX 

event, and the hydrostatic pressure is higher, a small but significant pressure pulse is detected 

from the collapse of the inner tube.  Figure 31 shows only the pressure trace from the trial 

where the specimen imploded, as the pressure-time history from the other trial is the same 

with the exception of the inner tube implosion pulse. 

 

Figure 31:  Pressure-time history from the foam core, 203 mm case; (top) pressure for the 

entire duration of the collapse; (bottom) pressure for the first 7.5 ms, showing reflections and 

bubble pulses; Dynamic pressure is plotted, such that 0 corresponds to ambient hydrostatic 

pressure; data is taken from case where specimen imploded. 
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 Post-mortem analysis helps complete the understanding of failure and damage modes, 

with images of foam core specimens at 203 mm standoff plotted in Figure 32.  There, the first 

thing to note is circumferential tearing around the endcaps at A, as seen in the foam core, 102 

mm standoff case.  This tearing clearly resulted in loss of stability for the outer tube, though 

the tearing is less extensive than the 102 mm case because the magnitude of shock loading 

was reduced.  This allowed the outer tube to survive for a relatively long time before 

collapsing, at which point the pressure in the fluid from the UNDEX had attenuated even 

further.  As a result, the collapse was less violent after stability was lost, and damage was less 

extensive.  Similarly to the 102 mm case, axial cracking and delamination of fibers near the 

endcaps can also be seen at B.   

 Another similarity to the 102 mm case is the back-face longitudinal tear extending 

along the full length of the specimen at C.  This tear is again characterized by complete 

separation of the outer cylinder with itself, as well as massive fiber failure and delamination 

along the face of the tear.  This damage mode occurs where the outer tube folds on the inner as 

the latter structure collapses.  Corresponding damage on the front face is not visible in this 

case, however, due to the reduced magnitude of shock loading.  Large scale delamination of 

the outer plies of a small grouping of fibers can be seen at D.  Again as with the 102 mm 

standoff case, an asymmetric mode 2 shape can be discerned in the crushed shape of the foam 

core at E, and characteristic through-thickness cracking corresponding to hinging in a mode 2 

buckling shape can be seen in the inner tube at F.   

 For reference, a side-view image of the specimen that did not collapse is shown in (v) 

in Figure 32:  note the complete lack of any apparent damage in the inner tube, foam core, and 

outer tube.  As stated previously, there was likely some initial damage in the specimen that did 

implode, which grew over time as the structure was loaded by the UNDEX, secondary bubble 
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pulses, and reflections from the walls of the pressure vessel.  The post-mortem images in 

Figure 32 (i)-(iv) help reinforce this concept. 

 

Figure 32: Post-mortem photographs of the foam-core specimens with 203 mm standoff; (i) 

front view; (ii) back view; (iii) bottom view; (iv) side view; (v) side view of specimen that did 

not implode 

 

2.5. CONCLUSIONS 

An experimental study was performed to study the shock-initiated implosion behavior 

of double hull composite cylinders at sub-critical hydrostatic pressures.  High-speed 
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photography, underwater digital image correlation, and high-frequency blast transducers were 

used to study the mechanics of carbon-fiber / epoxy specimens with and without PVC foam 

cores under these conditions.  As a result of this work, the following conclusions can be made: 

 Double hull composite cylinders can implode at hydrostatic pressures 80% their 

natural collapse pressure, if they are subject to shock loading. 

 These structures may implode from the energy of the initial shock wave, a secondary 

bubble pulse, or loss of stability due to damage. 

 The addition of a foam core substantially increases structural stability: foam cores 

have been shown to increase the collapse duration of these structures substantially, as 

well as prevent collapse entirely in some cases.   

 The pulse from an implosion in a confined vessel is often insignificant when initiated 

by an UNDEX.  In cases where a foam core is added, the implosion pulse of the inner 

tube becomes significant, as the core delays collapse until noise in the vessel has 

attenuated. 

 The addition of a foam core may result in a vibrational response of the structure prior 

to collapse.  This can occur in the outer tube, as well as the inner tube after the 

collapse of the outer. 
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