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ABSTRACT

The  Internet  of  Things  (IoT)  architecture  currently  being  implemented  in

commercial  applications  does  not  fully  realize  the  potential  of  IoT devices.  The IoT

devices themselves lack the computational power to perform significant and real-time

feedback for the data being gathered at edge devices. The current architecture places most

of  the  computational  burden  on  various  cloud  servers.  This  creates  a  performance

bottleneck due to unpredictability in network latency and reliability. 

The  amount  of  data  flowing  through  the  cloud-to-things  continuum will  only

continue to grow, increasing stress on the cloud and network. This type of bottleneck

creates difficulties for devices, such as those in Smart Communities, that require reliable

connectivity with in depth real-time feedback. These communities host a level of context

that is unique to each of them and can be used to help maximize the usefulness of the

local network while sending more contextually relevant information back to the cloud for

deeper learning.

The  master  thesis  research  was  aimed  at  developing,  implementing,  and

evaluating a Fog Computing based IoT system. The deployment of the framework on

several IoT devices will be set up with example data to be processed. These devices will

be set up in a mesh topology with fog gateway devices. In this research, we developed

three  testbeds  to  test  the  fog  computing  architecture  and  its  performance  in  IoT

applications where smart communities are targeted. Each of the three different testbeds

will  run  the  most  appropriate  OS  for  the  device  and  will  be  capable  of  managing

communication with the things via Bluetooth,  as well  as providing access to a cloud

service. 



The aims is to evaluate the timing, CPU load, and memory load, and network

measurements  throughout  each  stage  of  the  cloud-to-things  continuum  during  an

experiment  for  determining  features  from  a  finger  tapping  exercise  for  Parkinson’s

Disease patients. It will be shown that there are limitations to the proposed testbeds when

trying  to  handle  upwards  of  35  clients  simultaneously. These  findings  lead  us  to  an

appropriate distribution of processing the leaves the Intel NUC as the most appropriate

fog device. While the Intel Edison and Raspberry Pi find a better footing at in the edge

layer, bridging communication protocols and maintaining a self-healing mesh topology

for “thing” devices in the personal area network.
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LIST OF DEFINITIONS

Term Definition Source

Actuator “An actuator  is  a  mechanical  device for  moving or
controlling a mechanism or system. It  takes energy,
usually transported by air, electric current, or liquid,
and converts that into some kind of motion.”

[Sclater et al. 
2007] 

Architecture “The fundamental organization of a system embodied
in  its  components,  their  relationships  to  each other,
and to the environment, and the principles guiding its
design and evolution”.

[IEEE-1471-2000] 

Authentification Authentication is the process of verifying a user’s true
identity. This  may  involve  the  use  of  one  or  more
means  of  proof  of  identification,  also  known  as
factors, such as PIN codes and smart cards.

[Nexsus] 

Authorization Granting  of  rights,  which  includes  the  granting  of
access based on access rights.

[ISO 7498-2:1989]

Cloud Or, "The Cloud," is generally used as shorthand for
Cloud Computing. The name "Cloud" comes from the
fluffy  cloud  typically  used  in  Visio-style  network
diagrams to represent a connection to the Internet.

[IoT Guide] 

Cloud 
Computing

A general  term  for  the  delivery  of  various  hosted
services over the Internet. The "as-a-Service" moniker
is  used  for  cloud  services  such  as  Software-as-a-
Service,  Platform-as-a-Service  and Infrastructure-as-
a-Service. The back-end for many IoT devices may be
delivered via the Cloud.

[IoT Guide] 

Edge computing This concept places applications, data and processing
at  the  logical  extremes  of  a  network  rather  than
centralizing  them.  Placing  data  and  data-intensive
applications  at  the  Edge  reduces  the  volume  and
distance that data must be moved.

[IoT Guide] 

Edison Intel's  development  board,  slightly  larger  than  a
standard  SD-card,  targeting  the  wearable  vertical.
Edison Developer Kits are embedded with Yocto and
have  development  support  for  the  Arduino  IDE,

[IoT Guide]
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Eclipse, Intel XDK and Wolfram.

Embedded 
System

A computer  system dedicated  to  a  specific  task  or
tasks,  operating  within  a  larger  mechanical  or
electrical  system.  Program  instructions  written  for
embedded  systems  are  referred  to  as  firmware,
contrasting  with  the  general  purpose  computer
systems programmable for multiple tasks. Embedded
systems often operate in isolation.

[IoT Guide]

Fog Computing A  term  coined  by  Cisco,  Fog  Computing  is  an
approach  to  networking  backhaul  that  places  a
substantial portion of the data and processing at the
edge of  the network  (on routers)  rather  than in  the
Cloud.  Cisco  associates  the  term  IOx  with  the
architecture  that  combines  Linux  with  IOS.  Fog
Computing, which is meant to contrast  with "Cloud
Computing,"  is  evocative  of  fog being close  to  the
ground  and  is  also  known as  Fog  Networking  and
Fogging.

[IoT Guide]

Fog node The  physical  and  logical  network  element  that
receives feeds from IoT devices using any protocol, in
real time; Runs IoT-enabled applications for real-time
control and analytics, with millisecond response time;
Provides  transient  storage,  often  1–2  hours;  Sends
periodic data summaries to the cloud

[Cisco] 

Industrial 
Internet of 
Things

A  subdiscipline  of  IoT,  encompassing  IP-enabled
systems  such  as  factory-floor  monitoring,  HVAC,
smart  lighting  and  security.  Also  referred  to  as
Industry 4.0 (Industrie 4.0) and Industrial IoT.

[IoT Guide]

Industrie 4.0 Invoking a fourth industrial revolution, Industrie 4.0
creates  intelligent  manufacturing  networks  where
decentralized  smart  factories  can  communicate  and
react to each other autonomously. For example, in an
Industrie  4.0  factory,  self-predictive  systems  would
trigger  maintenance  processes  autonomously  and
automatically adapt logistics to the resulting changes
in production. The term, also known as Industry 4.0,
was first used at the Hannover Messe in 2011.

[IoT Guide]

IoT A network of physical devices that are connected via [IoT Guide]
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the  Internet  and  that  can  communicate  their  status,
respond to  events  or  even act  autonomously. Using
sensors and actuators, the IoT connects digital devices
and  even  everyday  objects,  thereby  extending  the
Internet into the physical world. "Things" can include
sensors recording the physiological measurements of
humans.

IoT Services and
People

An extension if IoT that keeps people as the decision
makers,  who  program  and  control  the  production
processes  and activities  performed by Things.  Used
primarily in the IIoT context, the term was coined by
SICS and ABB.

[IoT Guide]

Local Area 
Network (LAN)

A network  of  devices  in  relatively  close  proximity,
prior  to  the  point  of  transmission  over  leased
telecommunication  lines.  The  two  most  common
communications  technologies  used  in  LANs  are
Ethernet and WiFi.

[IoT Guide]

Mesh Network An  ad-hoc  network  infrastructure  where  the  nodes
communicate  directly  with  each  other  without  the
need to  pass through a central  structure such as  an
ISP. The only way to shut down a mesh network is to
eliminate every node, and one of the most dramatic
demonstrations  of  the  technology  was  during  the
Hong Kong protests  of  October  2014 during which
the direct communication between protesters' devices
confounded  the  government's  ability  to  block
communication.  The  adaptivity  of  mesh  networks
makes them ideal for IoT applications.

[IoT Guide]

Middleware Middleware  is  computer  software  that  provides
services  to  software  applications  beyond  those
available  from  the  operating  system.  It  can  be
described  as  "software  glue".
Middleware makes it easier for software developers to
implement communication and input/output, so they
can focus on the specific purpose of their application.

[Wikipedia, Middle
2017]

Multi-tenancy The term "software multitenancy" refers to a software
architecture  in  which  a  single  instance  of  software
runs on a server and serves multiple tenants. A tenant
is a group of users who share a common access with

[Wikipedia, Multi 
2017] 
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specific  privileges  to  the  software  instance.  With  a
multitenant  architecture,  a  software  application  is
designed to provide every tenant a dedicated share of
the instance - including its  data,  configuration,  user
management, tenant individual functionality and non-
functional  properties.  Multitenancy  contrasts  with
multi-instance architectures, where separate software
instances operate on behalf of different tenants.

Orchestration A type of composition where one particular element is
used  by  the  composition  to  oversee  and  direct  the
other  elements
Note  1  to  entry:  The  element  that  directs  an
orchestration  is  not  part  of  the  orchestration
(Composition  instance)  itself.
Note 2 to entry: See ISO/IEC 18384-3:2016, 8.3.

[ISO/IEC 18384-
1:2016] 

Reliability Ability  of  a  system  or  component  to  perform  its
required  functions  under  stated  conditions  for  a
specified period of time.

[ISO/IEC 
27040:2015] 

Security The correct term is 'information security' and typically
information  security  comprises  three  component
parts: 

- Confidentiality. Assurance that information is
shared  only  among  authorized  persons  or
organizations. Breaches of confidentiality can
occur when data is not handled in a manner
appropriate to safeguard the confidentiality of
the  information  concerned.  Such  disclosure
can take place by word of mouth, by printing,
copying, e-mailing or creating documents and
other data etc.; 

- Integrity.  Assurance  that  the  information  is
authentic  and  complete.  Ensuring  that
information  can  be  relied  upon  to  be
sufficiently accurate for its purpose. The term
'integrity' is used frequently when considering
information security as it represents one of the
primary indicators of information security (or
lack of it).  The integrity  of  data  is  not only
whether the data is 'correct', but whether it can
be trusted and relied upon; 

- Availability.  Assurance  that  the  systems

[ISO/IEC 27001] 
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responsible  for  delivering,  storing  and
processing  information  are  accessible  when
needed, by those who need them. 

Sensor A device used to measure a specific characteristic of
the  surrounding  environment,  such  as  temperature.
The use of sensors and actuators to connect Things to
the  physical  world  are  a  key  component  of  IoT. A
properly  implemented  sensor  ideally  should  be
sensitive  only  to  the  characteristic  being  measured,
and should not interfere with what's being measured
nor be influenced by other characteristics.

[IoT Guide]

Ubiquitous 
Computing

The  concept  of  embedding  microprocessors  in
everyday things so they can communicate information
continuously. Ubiquitous devices are expected to be
constantly  connected.  Utility  smart  meters  are  an
example of ubiquitous computing,  replacing manual
meter-readers with devices that can report usage and
modify power settings on ubiquitous appliances.

[IoT Guide]

WiFi Wireless  technology that  lets  a  device connect  to  a
network via an access point (AP). IEEE 802.11 is the
generic  name given  to  the  WiFi  family  of  wireless
technologies.  The  802.11b  specification  has  been
rendered  obsolete  by  the  newer  Wi-Fi  standards
802.11g,  802.11n.  The  802.11p  and  802.11ah
standards are tailored for IoT applications.

[IoT Guide]

Wireless Sensor 
Network

Autonomous sensor nodes that are connected to one,
or sometimes several, other sensors to cooperatively
pass their data through wireless connections to a main
location.  Use  cases  include  area  monitoring,  health
care  monitoring,  environmental  sensing,  industrial
monitoring and more. Modern WSN's can operate bi-
directionally, enabling control of the nodes' activity.

[IoT Guide]
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CHAPTER 1. Introduction

Definition: The Internet of Things (IoT):

The Internet of Things (IoT) is a network of devices, or things, connected to the

Internet that can communicate their status, respond to events or even act autonomously.

The  IoT devices  discussed  in  this  thesis  consist  of  sensors  and actuators  capable  of

transmitting their collected data via Bluetooth Low Energy. These devices are limited in

power, processing and storage. The network topology connecting these devices varies but

here we will remain focus on implementing a mesh topology. This is an ad-hoc network

infrastructure where the nodes communicate directly with each other without the need to

pass through a central structure such as an ISP [IoT Guide]. 

Low -End Device Classification Levels

Class 0 Class 1 Class 2

Constrained Resources Limited Resources More Resources

Less than 10kB RAM
Less than 100kB Flash

Approx. 10kB RAM
Approx. 100kB Flash

Greater than 10kB RAM
Greater than 100kB Flash

Body Sensors Wireless Sensors Gateway Devices

PPG, IMU, PCG, Gemma nRF52XX, LilyPad Intel Curie, Raspberry Pi

Table 1: Low - End Device Classification Levels is a breakdown of which systems resources limit
the practicality of using a device within the IoT.

The main role of the IoT device is to periodically sample real world data. This

data  can  be  transmitted  to  other  devices  for  actions  such  as  decisions  and  storage.

Through the use of sensors and actuators, the IoT connects digital devices and everyday

objects, bringing the connectivity of the Internet into the physical world. Some of the

"things" devices can include sensors for recording the physiological measurements of

1



humans [Miorandi et al. 2012]. So as the things environment becomes more complex the

need  for  a  reliable  connection  to  the  Internet  either  directly  or  via  gateway  devices

becomes increasingly important.

Figure 1: This shows the general layout between things (left) their gateway device (center) and
the cloud (right). As new networks become available for the things, their bandwidth will increase,
forcing pressure on the network between the gateway and cloud. This trend towards congestion
continues as varieties of sensors and devices are developed with the intention of increasing the
understanding of the environment where they are deployed.

Such a gateway device can be considered to occupy the edge of the network. It is

the first device in the chain from thing to cloud. The device acting as a gateway is called

an  edge  device.  This  device  places  applications,  data  and  processing  at  the  logical

extremes of  a  network rather  than  centralizing  them.  Placing  data  and data-intensive

applications  at  the  edge  reduces  the  volume  and  distance  that  data  must  be  moved

[Miorandi  et  al.  2012].  However,  an  edge  device,  such  as  a  smartphone,  may  have

constrained resources such as limited battery life, storage, and/or computational power.

This  limited  functionality  may  require  processing  work  to  be  offloaded  to  external

resources.

2



The role of IoT in Smart Communities and Smart Cities

If the edge device (named edge for its existence at the end of a network) relies

heavily on external resources such as the cloud, it can put a huge stress on the network

resulting in bottlenecks leading to and from the cloud [Cisco, 2015]. This trend towards

congestion continues as varieties of sensors and devices are developed with the intention

of  increasing  the  understanding  of  the  environment  where  they  are  deployed.  This

continuously floods cloud data centers at a rapid rate creating a need for the cloud to

move closer  to  the device.  Therefore,  the paradigm of fog computing is  increasingly

identified as a useful tool to establish remote intelligence in the context of IoT. In this

thesis we discuss the recent development of a fog gateway and its role in orchestrating

the process of data acquisition, conditioning, analysis, and storage. In particular the aim

is to  identify  a way to reduce data transfer bottlenecks by pushing machine learning

capabilities away from the cloud and closer to the things. 

Defining an intelligent fog centric network for IoT-driven smart communities:

This  master  thesis  research  focuses  on  finding  a  balance  in  performance on

devices within the local network and the cloud, while reducing the transfer of data to the

cloud. The primary role of the fog gateway is to reduce the amount of, and reliance on,

data  sent  to  the  cloud by orchestrating  the  process  of  data  acquisition,  conditioning,

analysis, and short-term storage. The IoT devices are expected to collect and clean the

data, as well as adapt to the information passed back from the fog gateway or another IoT

device itself.  While the cloud plays a vital role in the ecosystem overall, it is not widely

researched in this master thesis. More emphasis was given to the fog computing and its

performance analysis.  This  fog  concept  coined  by CISCO aims  to  minimize  latency,

3



conserve bandwidth,  improve security, maintain reliability, and move data  to the best

place for processing [Cisco], thereby creating a greater reliance on the local network to

function.

Figure 2: The thing to cloud continuum: Devices with limited functionality, computational power
and resources appear at the bottom. These devices exist and interact with a small number of
other “things”, and typically in a usual context. Contexts such as home monitoring, personal
health and entertainment, asset delivery, and product manufacturing are just a few examples. The
fog aims to connect contexts with mutual interests into smart communities. This broader, but still
local network creates the fog environment that can deliver the most contextually relevant data to
the cloud.

The performance of the described fog architecture is  evaluated on several  fog

testbeds including the Intel Edison, Raspberry Pi and Intel NUC. They will run through

an experiment use case for a telemedicine facility that could analyze the motion of the

patients. The results demonstrate that the fog gateway provides a way to improve the

interactions among the general purpose sensing devices, smartphones, and the cloud. In

particular, the focus  is  to  evaluate  the timing,  CPU load,  memory load,  and network

measurements  throughout  each  stage  of  the  cloud-to-things  continuum.
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This thesis looks to provide insight on an approach for maintaining the real-time

response of things;  significant  to  the IoT industry. The response time is  vital  for  the

medical  population,  such  as  medical  emergencies  where  every  second  counts.  The

infrastructure set  up would allow the information leading up to  the emergency to be

easily accessible by medical personnel as the devices would be contextually aware. This

can be extended further into telehealth living facilities to provide around the clock home

monitoring  with  emergency  services  being  alerted  immediately  in  case  of  a  serious

problem.

Take  for  example  the  nursing  home  environment.  In  such  communities  there

exists  a  larger  than  usual  number  of  senior  citizens  living.  Also,  found  among  the

community members are varieties of devices used in their daily lives. These devices are

just  as  heterogenous  in  application  as  they  are  in  capabilities.  The  goal  of  a  smart

telehealth living facility is to utilize the data collected by these devices to improve the

wellbeing  of  the  uses  by  providing  them  with  near  real-time  feedback  that  can  be

descriptive as in  “what”,  diagnostic  as in  “why”,  predictive as in  “when”,  and lastly

prescriptive as in “how”. The fog layer gathers data a level broader than edge devices but

geographically  closer  to  the  edge  device  than  the  cloud.

The inclusion of the fog layer and its concept allows for more sensors, or edge

devices, to interface with the cloud on a much larger scale than previously seen. Since the

cloud is not setup for this volume and variety of data, changes in the systems closer to the

edge than the cloud must be adapted to better utilize the cloud services available. That is

why in this paper we will discuss the development of a smart fog to reduce the data sent
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to the cloud by orchestrating the processes of data acquisition, conditioning, analysis, and

short-term storage. 

This thesis is structured by in the following manner:

● Chapter 2 will provide a detailed architecture of the fog environment by

defining the roles of an IoT device, a fog node, and cloud. The chapter will

explain what  fog is  and how it  can be used,  finally  concluding with a

thorough explanation of the fundamental framework composing the fog

system.
● Chapter 3 will provide a description of the specific configurations used by

the communication protocols, along with details for the overall fog system

setup used in the experiment. 
● Chapter 4 will run through the results of the experiment. The experiment

will  be  discussed  with  a  focus  on  each  category  of  data  acquisition,

conditioning,  analysis  and   storage  as  reducing  the  data  transfer

bottleneck.  A comparison of  the results  for our  experiment  to  those of

realistic payloads will be used to explore limitations in scale. Thus leading

into a breakdown of performance successes and concerns.
● Chapter  5  will  summarize  the  system  and  address  current  and  future

research topics that will help with some uncovered performance concerns.

Detailed configuration files,  data  sheets  showing hardware configurations,  and

pseudo-code  for  the  experiments  can  be  found  in  the  Appendices.

6



CHAPTER 2. Background -Intelligent Fog Centric Networks

2.1 What is Fog Computing?

Fog  is  a  system-level  horizontal  architecture  that  distributes  resources  and

services  of computing,  storage,  control  and networking anywhere along the cloud-to-

thing  continuum [Chiang et  al.  2016].  In  essence  the  fog is  a  middle  man aimed at

managing the constrained resources across a larger pool of otherwise unused devices, as

an effort to accelerate the speed at which decisions can be made accurately.

Figure 3: This is a general breakdown showing where services are performed in the path from
device to  cloud.  Devices  in  IoT-driven  communities  with limited functionality,  computational
power  and  resources  are  specific  in  function.  Moving  through the  continuum to  the  top  we
approach fog, which serves as the foundation for services to be incorporated between cloud and
devices,  but  physically  closer  to  the  user  than  the  cloud.  They  also  provide  the  closest
functionality to that of a cloud, but do not have nearly as much processing power on board.

This  fog-centric  architecture  addresses  a  specific  subset  of  challenges  in

bandwidth, latency and communication challenges associated with the next generation of

networks. The aim is to construct a local intelligence away from the cloud servers and

close to the edge devices in IoT environments. The fog works in conjunction with both

IoT  devices  and  the  cloud  by  combining  the  use  of  low-latency  storage  devices,
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computational  power  not  available  to  constrained  edge  devices,  low-latency  local

communication.  All  in  conjunction  with  wide  area  communication,  management  for

network measurements controls and configurations nearest the end user. In its simplest

form, the fog moves the cloud closer to the user.

The conjugation of these fog features mitigates the effects of wide area network

latency and jitter concerns caused by traffic congestion proves costly to time sensitive

tasks,  frequently  involving  medical  devices,  cyber-physical  systems,  and  industrial

equipment. In such contexts, uninterrupted service is key, while connectivity to the cloud

is bound to be intermittent [Bahar et al. 2017]. By providing uninterrupted service along

with prioritized service we can create several key features that were not feasible before

the integration of fog.

The fog provides four key features at a critical time in the growth and acceptance

of the internet of things. While being ever mindful of security threats it strives to allow us

the  ability  to  make  meaning  from  previously  unstructured  junk  data  collected  and

streamed to the cloud: 

● The first feature is cognition. Since the fog device is more closely connected to its

local network, it can determine where to carry out computational, storage, and

networking tasks.  Fog devices are  built  to  be aware of  the primary end users

specific requirements.
● The second feature  is  efficiency.  Fog can  orchestrate  the  dynamic  pooling  of

resources from previously unused end user devices. These resources can include

computational power, low-latency storage, and control functions currently spread

across the cloud to thing continuum. This would allow applications to make use of

idle user owned edge devices, such as phones, tablets, tvs, and more. Note that
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this continuum is just that, a smooth gradient of devices types. Figure 3 provides a

more detailed explanation of this continuum.
● The third feature is agility. This allows developing the technology and integrating

it into the systems created by manufacturers, product developers, and the like, to

affordably scale with their needs under a common infrastructure thereby helping

to  propel  rapid  innovation.  This  can  come  in  at  the  angle  of  testing  and

experimentation for advanced systems and quickly pivot towards implementing

the  application.  The  motivation  for  this  goes  hand  and  hand  with  openness,

provided by the use of open standards. The openness allows developers to work

together  creating  a  collection  of  diverse  applications,  where  individuals  may

develop standard application interfaces (APIs) and open software development

kits (SDKs) to manage the proliferation of new devices into the continuum. This

flow for innovation would follow the model of develop, deploy and then operate,

all within the open fog system.
● The fourth (and perhaps the most critical) feature is  latency. The fog provides a

feasible  way  for  complex  systems  to  return  near  real-time  feedback.  This

feedback  provides  processing  and  cyber-physical  system  control  to  the  end

user/device.  This  enables  data  networks  to  develop  more  intelligence  from

analytics of network edge data. It can provide this intelligence in time-sensitive

situations with the potential  to  save thousands of dollars in areas like nuclear

reactors and lives in the area of advanced medical devices. Reduced latency can

enable embedded artificial intelligence (AI) applications to react in milliseconds,

unnoticable by humans, but providing more time for critical tasks such improving

localized cyber security checks.
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2.2 Use-cases for fog centric IoT-driven communities

As this fog technology grows, it opens a gateway for new, previously impractical

applications. The devices and data used in these new potential applications vary widely.

This heterogenous environment creates a need for integrating these new applications into

the larger community for further innovation. A standard interface would therefore be of

great  value.  While  no  standard  has  yet  to  be  fully  accepted,  there  are  attempts  at

developing the systems that will be using the interface. Some of these systems are applied

in areas such as smart cities, health 

Figure 4: An outline of the types of networks that are most applicable for communication between
the layers of IoT. The idea is to highlight the appropriate range and bandwidth limitations given
the network communication focal point.

services, agriculture and general transportation [Guerra et al. 2017, Ha et al. 2014, Zao et

al. 2014]. These cases will be expanded on, but it is instructive to note that the big picture

fog platform must orchestrate the available devices and resources to create a symphonic

experience of various technologies.
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Case Study: Telemedicine and in-home technologies

WearUp is a study focusing on Parkinson’s Disease (PD), its interventions, and

existing wearable technologies for movement disorders. Along with the advancements of

smart textiles, this study looked into the design aspects of the electronic textiles, wearable

systems, and experiments for validating the involved technology. The WearUp project

describes the algorithms required to process data recorded from sensors integrated into

the WearUP glove, Figure 5 depicts this process. In the experiment, the WearUP glove

was used to quantify the repeatability and accuracy of finger tapping in both time and

amplitude. The setup realized that sensing, communicating, and processing in real-time

requires orchestrating information between the glove and mobile device. Mobile devices

such as smartphones or tablets are less constrained as far as battery life, storage, and

processing capacity.

Figure 5: An overview of WearUP, a smart glove technology for Parkinson’s Disease. The left
side depicts, the glove to be worn during the exercise along its is the embedded Arduino 101
board responsible for streaming the raw data to the tablet. The middle shows finger tapping mid-
exercise. The right is a real-time stream of processed data originating from the glove.

In the pilot study, nine healthy human participants were asked to perform a finger

tapping task. The task involves tapping the pointer finger against the thumb 15 times,

relatively quickly. Participants then rested their hands in the fully-opened position for

five seconds. The participants were then asked repeat the finger tapping task at a slower

speed.  Data  was collected  from each participant  for  3  rounds of  this  procedure.  The
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participants were instructed to determine their own  speeds to evaluate the performance

of  the  WearUp glove  in  detecting  variations  in  finger  tapping  velocity. After  human

patients  completed  the  exercise,  a  robotic  hand  repeated  the  procedure  in  order  to

calculate the standard deviation of error when known movements were measured by the

WearUP glove.  

At the conclusion of the experiment the system was able to consistently detect

finger taps and calculate their frequency. The system can also assess the amplitude of the

tapping motion. The experiment showed that the breaking down of required processing

and delegating those processes to external devices is effective in providing an IoT Service

for humans with near real-time feedback.

Example: Smart City in action

New York City has a couple example smart city initiatives [Guerra et al. 2017].

There are  multiple  projects,  with a common general  purpose or mission between the

applications. The aim is to improve the efficiency of basic city operations to enable more

civic services within existing budgetary constraints. While working towards this goal, it

is important for the city to address concerns of bandwidth and connectivity issues that

pop up during implementation stages. This is one reason why the push for 5G will be a

great relief to many of these concerns [Spectrum].

Two  eye  catching  projects  in  New York  City  are  showing  progressive  initial

results: 

● The first is from the Accelerated Conservation and Efficiency (ACE) program.

They focus on smart indoor lighting to reduce greenhouse gas emissions in city

agencies. It is especially useful for agencies which must operate 24/7, such as
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firehouses.  They successfully  implemented  this  project  and found a  3  million

kilowatt-hour  reduction  in  energy consumption.  That  is  to  say, it  reduced gas

emissions by roughly 520 metric tons of carbon dioxide annually. This shows how

appropriate solutions utilizing new forms of communication to automate control

of previously unwatched devices  can reduce both the cost and environmental

impact of these devices.
● LinkNYC is  another  relatively  appreciated  project.  It  is  a  free  to  use

communication  network  replacing  over  7,500  payphones  with  new  Link

structures. These structures provide free public WiFi, phone calls, devices charge

sets, and a tablet for city information about services, maps and directions.

These two specific use cases are by no means exhaustive. However, these cases

highlight  some  of  the  complexities  and  advantages  of  integrated  fog  computing.  In

keeping  with  the  order,  healthcare  and  activity  tracking  is  another  booming  area  of

interest trying to integrate this technology most appropriately.

Example: Fog for Efficient Energy Consumption

The third case addresses utility services. Here, the EHOPES data-centered fog

platform for smart living successfully reported more fine-grained energy consumption

detail to users through their mobile devices [Li]. These reports help improve insights on

energy generation along with identifying the primary culprits consuming the most power.

It also provided an increase in the transparency of energy usage while decreasing the cost

associated with the billing from both the provider and user. The system is a fog system, as

indicated by its  low latency, close proximity, real-time interaction,  and availability  to

multiple subscribers. The server can also condition, analyze and temporarily store data

before providing feedback to the user. Ideally these fog analytics are descriptive as in
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“what”,  diagnostic as in “why”, predictive as in “when”, and lastly prescriptive as in

“how”.

Developing these insights can be seen in this collection of use cases. While they

only address some areas of current research in  the IoT community they highlighted the

characteristics and purpose of fog devices. In particular, it showed how low-latency and

location awareness enrich services found at  the edge of a network. Such features are

shown  to  be  of  importance  in  high  bandwidth  applications  such  as  gaming,  video

streaming,  augmented  reality,  and  virtual  reality.  The  widespread  geographical

distribution  leads  to  appropriate  deployments  that  can  reliably  provide  streaming  to

moving devices like vehicles via proxies and access points, such as along highways and

tracks, in sharp contrast to the centrally located cloud [Gubbi et al. 2013]. That mobility

allows direct communication with mobile devices commonly found in the hands of many

end  users.  Other  characteristics  such  as  the  possibility  of  large  scale,  predominant

wireless  access,  and streaming for  real  and near  real-time applications  are  functional

characteristics. Finally, a common characteristic of great importance in both the quality of

data  being collected and the security  of the system itself  is  the ability  to incorporate

heterogeneous devices into the system based on trust.
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2.3 The pillars of a fog system

Figure 6: This figure, adopted from the OpenFog Consortium depicts the essential elements of a
successful fog architecture. Each pillar relies on the other seven to be fully functional. Depicted
within the pillar-supported cloud are the services that can be best provided by the fog.[Image
Credit: OpenFog Consortium] 

This section discusses the required foundations for which a fog architecture can

appropriately be built. While various researchers make progress on widespread possible

future applications, the OpenFog consortium has been developing a common reference

architecture.  They focus on what they refer to as the “pillars of a fog system” while

keeping the bigger picture in mind [OpenFog Architecture 2017]. The pillars are shown

in Figure 6.

Together, the pillars support a system built for contextually aware client centered

tasks. Also to assist other objects by enabling precise and learned autonomy. All of this is

alongside the efficiency brought to fruition by the dynamic pooling of available resources

within the users side of the architecture. Further creating the ability to scale for rapid
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innovation leading into the reliable and real-time feedback and control. These advantages

are termed CEAL, for cognition, efficiency, agility, and latency [OpenFog Consortium

2017]. 

Hierarchy

A well-structured but scalable hierarchy is required to maintain the flow of data

and computational workload appropriately within the context of a given situation. The

fog centric hierarchy is locally based, and tightly integrated with the devices in the user's

environment. This type of hierarchy is not inconsistent with current consumer electronics,

including personal home assistants and hubs. These personal home assistants, such as the

Amazon  Echo  and  GoogleHome  have  started  to  place  fog  nodes  in  user’s  homes.

However, these devices do not yet deploy the appropriate hierarchy. Instead they rely

heavily on data sent to and from the cloud for every request. Apple’s new HomePod,

however, differs from the other two in that it enacts a fog-appropriate hierarchy. In the

HomePod system, user generated data is not sent to the cloud upon every inquiry. Instead,

it is processed and understood from within the local network, as should be the case in a

fog system.

Continuing down the road of common consumer electronics, it is worth looking at

the hierarchy being enabled by the HomePod [Apple Keynote] as being most appropriate

and  the  ones  of  the  Amazon  Echo  and  GoogleHome  as  one  off.  Regardless  of  the

application, voice control for the system means that voice recognition must be reliable

and readily accessible. As such accomplishing this fundamental task, should not rely on

the cloud. This voice control allows many consumer devices to provide similar sensors

and devices for us to use such as screens and speakers. Many are also are specific in

16



function  while  sharing  communication  capabilities  like  WiFi,  Bluetooth,  Zigbee,  and

Thread.  They  can  therefore  communicate  and  provide  feedback  through  similar

interfaces. This is part of the standard interface, where many devices located near the user

can learn and inform at a local level. This is the groundwork for building cognition within

the fog hierarchy.

Openness

Stepping  where  fog  nodes,  edge  devices  and  the  like  have  taken  the  time  to

develop standard interfaces for openness a participant using the WearUp glove -- or a

smartwatch with a different telehealth application -- ready for their practice session could

use their tv in place of their misplaced phone. In such an open setting the glove would not

rely  on  the  user  to  possess  the  phone  to  enable  a  practice  session.  Instead  a  voice

command could start the home therapy practice relaying the phones prompts to be sent to

a nearby edge device, such as a tablet, computer, TV, or even the fog node itself. The fog

node would be able to communicate with devices nearest the user, like the tv screen in

front of them, and use the nearby device to relay those session prompts and feedback

from the misplaced phone to the user. Let us examine what exactly would be involved to

create this open environment.

Devices in the IoT ecosystem are incredibly diverse in nature and functionality.

This heterogenous population records an even more complex set of data. This data is not

always,  tied  to  the  developers  making the systems,  with the  likelihood of  such a  tie

decreasing over time. Each device tries to extract useful information from the gathered

data, but is often limited to its own knowledge base, making the analysis near sighted and

narrow in comparison to the potential results when many knowledge bases are properly
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integrated. This is beginning to be addressed for commercial users of cloud services from

companies including Amazon, Google, and IBM. 

These cloud services are powerful with the right data streams feeding into them.

However,  the  current  data  stream  being  generated  by  the  IoT  devices  is  fairly

unstructured. This unstructured data is given to the cloud with hopes that the cloud can

make sense of it. This tendency causes a great deal of stress on the cloud, while the IoT

devices expect reliable and timely responses to their queries. This is one area in which

fogs openness can be useful.

The fog devices should be operable with many of these cloud services and bridge

gaps between these services. This blanket coverage over various cloud platforms creates

an area for fog services to be deployed. These services can then be used by multiple

devices. This openness allows an edge device using a particular application to invoke a

reaction  in  a  separate  device  running  a  different  application  without  needing  to

orchestrate the needed chain of events. That is because the orchestration would instead

take place on the fog device. 

This idea of being open and the interoperability of cloud services on a fog layer

rests heavily on the development of horizontal services within middleware. This would

incorporate  services  for  network  acceleration,  content  delivery,  device  management,

video encoding, complex event processing, compression, crypto, and analytics platforms

algorithms and libraries. Developers could then work on creating the fog as a service for

business opportunities not yet available. However, this depends on the incorporation of

the other pillars into the design.

18



Scalability

Scalability  is  a  driving  force  behind  the  development  of  fog,  and  as  being  a

product  of  necessity  it  is  important  to  make  it  foundational  to  the  concept  itself.

Scalability provides users with the ability to go from a small working deployment to a

larger one with smooth accommodation in the network it relies on to function. This is

common in  the  IoT economy with businesses  employing pay as  you grow strategies

which could be excited by the predictive capabilities of this system. But this trend relies

on the maintenance of performance, capacity, reliability, security, and software to handle

the management of the any growth needed by the users.

One  way  to  improve  scalability  involves  virtualization  and  containerization.

These allow for dynamically allocating resources to specific applications or services that

require them, especially during bursty periods. This can lead the way to the prioritization

of services in an elastic, demand-driven environment.

Programmability

Programmability  of  fog  nodes  enables  highly  adaptive  setups.  The  standard

interfaces allow the support for an adaptive infrastructure to change with the needs of

software and hardware layers. This assists developers to maximize the resources available

to  them  via  virtualized  and  contained  services  creating  efficient  deployments.  The

programmability  on  both  software  and hardware  layers  gives  a  way to  automatically

apply  patches  at  all  levels  in  response  to  any  new or  imposed  security  threats.  The

essence  of  which  is  to  provide  standard  and open interfaces  at  the  general  level  for

computational tasks and acceleration needs.
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Reliability, Availability, Serviceability

The importance of reliability, availability and serviceability (RAS) applies to the

areas of hardware, software and applications. That is, each area must be covered so that

application uptime is consistently maintained.

Reliability means that the integrity of the data generation must be maintained by

design.  It  must  also  be  possible  to  autonomously  meet  the  external  computational

requirements of the edge devices at any given time. The ideal is to initiate any requests

for  additional  resources  before  they  are  demanded.  Providing  reliability  means  it  is

necessary to provide maintenance and diagnostic tools to the system as needed. 

Availability  means there is  the ability to  isolate  faults  through fault  syndrome

detection and machine learning. Availability is not measured in uptime as reliability is,

but by the mean time to repair or MTTR. Availability requires redundancy in devices,

mesh networks, secure remote access and boot, along with the ability to provide these

features through backend support.

Serviceability  means ensuring that  the system as a whole is  easy for  users to

configure, upgrade and repair. Providing autonomous servicing from the cloud backend

by the manufactures themselves helps the deployment maintain a fluidity across the span

of time, such that the fog system being used grows.

Autonomy

In fog computing, autonomy means enabling decision making at all levels of the

hierarchy. This includes autonomous device discovery and management, with a secure

way to come online to perform requested operations. This allows devices to be added to

the system checking in with the cloud for authentication, authorization, or management.
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The fog system can then function properly even when its network connection to the cloud

is unavailable. When the network is available, the fog can serve as a proxy for the device

looking to connect. As a concrete example, my request to preheat the oven for cookies

shouldn’t require my voice to travel to the cloud. My fog device should have the ability to

autonomously handle such common queries. Allowing this type of decision making can

provide more contextual awareness to the edge network. If the cloud is not available the

data collected does not become information for knowledge to progress into intelligence.

Agility

When agility  is  paired  with  autonomy you can  provide  insights.  Contextually

based well aggregated and analyzed insights are then sent to the cloud for more in depth

intelligence.  This  reduces  the  latency  induced  by  transmission  of  vast  amounts  of

unstructured data to the cloud which would otherwise be required. The idea is to move

context creation as close to the data generation as possible without imposing too much

strain on the devices doing the collecting. As a result, more fine tuned strategic decisions

on system-wide and policy management can be maintained within the layers of fog.

Security

The security  pillar  is  discussed last  because  a  full  understanding of  security’s

importance depends on a foundational understanding of the other pillars. Fog devices

serve in some sense as the gatekeepers to the larger network of cloud services, making

their security essential. In scenarios where IoT devices have constrained resources, it is

up to the fog to maintain a secure and safe connection from device to device and to the

cloud. In the event of a security breach the should help to maintain localized infiltration,

not  allowing  the  wide  area  network  to  spread  the  breach.  However,  heterogeneous
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devices and needs mean that a single security solution can not fit all use cases. However,

a  few  security  protocols  are  selected  in  this  thesis  to  comply  with  the  proposed

architecture.

 Fog Gateway Protocols

The fog and IoT devices  exist  in  a  network that  is  meant  to  be safe without

malicious users. However, for the sake of caution and security, the network should be

viewed as hostile in some senses. That is the main reason behind ensuring that security,

like all other systems in the ecosystem, exists in every layer. Therefore, virtual private

networks should be used to shield the fog system from outside and there must be internal

encrypted communication.

Methods  for  encryption  can  be  homebrewed  for  secrecy.  However,  when

generally accepted practices are used, needed patches can essentially be crowdsourced,

which is an advantage. For this reason, the connection and socket for transferring data

from fog and edge devices is secured through TCP (for reliability) wrapped in Secure

Socket Layer/ Transmission Layer Security (SSL/TLS). Secured sockets provide a secure

communication framework for devices using different protocols such as TCP and UDP.

Transmission Control  Protocol  (TCP) is  a networking protocol  that  allows for

guaranteed and reliable  delivery of  files.  It  is  a  connection-oriented and bidirectional

protocol. In other words, both devices can send and receive files using this protocol. Each

point of the connection requires knowledge of the others Internet Protocol (IP) address

and a port number to make a connection with a specific device. Furthermore, we wrapped

the TCP sockets in SSL Sockets to ensure the security and privacy of data collected from

the users/patients.
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Secure Sockets  Layer (SSL)  is  a  network  communication  protocol  that  allows

encrypted  authentication  for  network  sockets  from  the  server  and  client  sides.  To

implement it in the proposed Fog architecture, we used two python modules, namely SSL

and  socket.  To create  the  certifications  for  the  server  and  client,  we  also  used  the

command line program called OpenSSL [OpenSSL 2015]. OpenSSL is an open-source

project  that  provides  a  robust,  commercial-grade,  and  full-featured  toolset  for  the

Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols. 

Once all the SSL certification keys are built, the client (things and edge devices)

can use secure sockets on the server and continuously listen for data transfer connections

to be made. The exact implementation used for these fog devices are explained in the

methodology chapter.
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CHAPTER 3. Methodology - Fog Computing Design, Development, and Evaluation

The  methodology  for  this  thesis  consists  of  goals  in  the  development,

implementation, and analysis of the overall system. The development of the framework

will  be set  up with example data  to be processed for  testing purposes.  The involved

devices will be set up in a mesh topology with the fog gateway devices setup in a star

topology. The fog will consist of three different testbeds. Each will be running the most

appropriate OS for the device and will be capable of managing communication with the

things via Bluetooth or WiFi, as well as provide access to a cloud service. 

Once the sensors, fog test beds, and cloud have been deployed, communication

throughout  the  system will  be  addressed.  Once  communication  is  in  place,  machine

learning algorithms are deployed on the fog nodes.  Rankings  on memory and power

usage are recorded and analyzed to evaluate the performance of the framework. This

evaluation will take into account the amount of data being transferred through each stage

of  the  cloud-to-things  continuum.  It  will  also  consider  memory  requirements  for

particular  algorithms.  After  the  framework  passes  for  simple  workloads,  it  will  be

incorporated into the mock day to day operations of a smart nursing home where it will

serve 35 clients.  While  it  is  being deployed,  an analysis  of the load of data  and the

fluctuations in latency will be observed. Any anomalies or difficulties will be looked into

and  discussed.

This  chapter  will  provide  an  explanation  of  the  fog  framework  including

protocols,  topologies,  and hardware  along with  the  reasons for  choosing each of  the
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devices.  The  framework  deployment  process  will  be  explained  in  enough  detail  for

replication, if desired. 

Figure 7:  Each of  the  layers  shown have  expected  applications  and system constraints.  IoT
Devices being the most limited can communicate at 
3.1 The fog architecture - from atom to Adam 

As we further our discussion on the fog architecture, it is instructive to consider

the  whole  picture.  The goal  of  fog  is  to  minimize  the  latency of  the  reaction  of  an

application. It seems appropriate, then, to examine the flow of information, from atom to

Adam the user. The thing device sensing, the edge node filtering and relaying, the fog

orchestrating analytics and data flow, the cloud developing deeper insights, all tied to the

user whom the technology is designed for play roles in the design considerations of a fog

platform. As the hardware for technology becomes geometrically smaller and lower in

power consumption, a door opens to new, previously impractical use cases. Following

this trend is the increased intimacy technology can maintain with its user, particularly in

the case of new, wearable technology. 

In  this  light,  we  will  discuss  the  components  involved  through  the  lens  of

WearUP, an electronic textile smart glove system designed for PD. As mentioned earlier,

we have carefully designed experiments on WearUP to test its repeatability, precision,
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and sensitivity in  quantifying the motor symptoms present  in the finger tapping task.

WearUP was tested using a robotic hand programmed to make precise finger tapping

movements.

Smart Glove as a Thing device - Flex Sensors, Inertial Motion Units, and Microphones:

This information is at the tip of your finger, literally. The concern is reliably and

accurately collecting all the relevant information. We need to understand how the hand is

positioned in space. This requires knowing the relative spatial orientation of the fingers

and palm. The glove uses single angle flex sensors and inertial motion units (IMU). So

what are these devices and what do they provide for the application?

The things  used  in  the  testbed perform a  variety of  measures  and are  tied  to

applications  that  require  the  derived  data  points  to  be  accurate  and  transported

appropriately.  The  first  thing  device  is  a  set  of  Flex  Sensors  tied  to  a  glove  in  a

application called WearUp. The flex sensors used are in essence variable resistors using

conductive  ink  that  increases  in  resistance  as  their  surface  area  increases.  These  are

placed between two flexible conductive traces housed in a clear insulative material. The

resistance when flat is roughly 20kΩ and when bent to a 90° angle increases to roughly

70kΩ. 

Measuring this physical state requires a static state for comparison. We create this

static state by introducing a standard resistor. To measure the relative change in state

between the standard resistor and flex sensor, we design a simple voltage divider. This

allows us to extrapolate the desired information using Ohm's Law. A final consideration

for this set up is to maximize the voltage range to increase the signal to noise ratio. We

chose  to  use  a  standard  10kΩ resistor,  which  provides  a  potential  voltage  swing  of
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approximately  1v.  Later,  we  mapped  this  range  from 0  to  1024  as  the  flex  sensors

resistance reaches its maximum at a 90° angle.

Along  with  measuring  the  flex  for  each  finger,  we  needed  to  quantify  the

movement of the hand. We do this using an inertial motion unit (IMU). This device is

found in many handheld devices, including smartphones. This device measures the hand's

acceleration, orientation, and direction. It exploits physical phenomena and converts that

into  digital  values.                       

The accelerometer uses Newton’s first law “An object at rest will remain at rest

unless acted on by an unbalanced force. An object in motion continues in motion with the

same speed and in the same direction unless acted upon by an unbalanced force”. This is

also known as the law of inertia. A thought experiment of a ball resting on a plate can

help  illustrate  the  physics  of  the  accelerometer.                           

The gyroscope has a varying geometry but uses a reference point to maintain a

“level” plane.  The angular changes in the device's current orientation and the “level”

plane help us identify tilt. Whereas, the magnetometer measures the magnetic field and

uses  that  to  derive  a  sense  of  direction.                  

Our gloves use the LSM9DS1 set to provide a linear acceleration full scale of

±8g, a magnetic field full scale of ±8 gauss and an angular rate of ±500 dps. We set the

sample rate to 250Hz. This data is initially stored as an unsigned 16-bit integer. These

same values are passed directly to the Bluetooth payload. One concern in design for the

glove  is  this  passing  of  information.  The  IMU  communicates  serially  so  the  wires

connecting  the  IMU  to  the  Bluetooth  device  need  the  bandwidth  for  a  clock.

The MCU must be small enough to fit on the back of a hand, consume very little
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power such that the battery life of the glove extends beyond one practice session, and

have the  processing  power  to  compute  the  simple  mapping of  the  analog to  angular

values  at  close  to  real-time  speeds.  Currently,  the  MCU  being  used  meets  those

requirements and implements extra high-frequency filtering to reduce false readings.

Edge device - Intel Curie-Based, Low-Power Embedded System:

The edge device of interest is a microcontroller unit (MCU) used in a pair of

smart gloves for the WearUp application. It must be small enough to fit on the back of the

hand, consume minimal power so the glove’s battery life extends beyond one practice

session, and have the processing power to map the analog values to angular values in near

real time. Arduino 101, the currently implemented MCU, meets these requirements. The

Arduino 101 is a learning and development board which contains an Intel Curie Module.

This  board  is  designed  to  integrate  the  Curie’s  low  power-consumption  and  high

performance with the Arduino’s ease-of-use. The Arduino 101 also provides 19 channel

12-bit  ADCs, Bluetooth Low Energy capabilities, and power management circuitry to

ensure stability in reference to analog readings.

Once the glove is paired with a Bluetooth device, it  begins to capture angular

values from the finger flex sensors and store them as unsigned 8 bit integers in a first in,

first  out  (FIFO)  array.  Once  this  array  is  filled,  it  is  sent  over  an  available  BLE

connection using the standardized GATT UART Service. This service provides the name,

sensor location,  and control points of the detecting device.  An instance of the GATT

UART Service can be updated by calling the object's notification function. This function

is defined in the GATT UART Service header. Updating objects through functions is the

standard method in BLE libraries. Once the object is updated, changes will be transmitted
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to the paired device. The Smart Glove is always updating its local angular finger values

with regard to a  connected device.  It  is  handled by an interrupt  since requiring it  to

continue reading the values of the flex sensor without a paired device would waste power

sampling unnecessarily.

Fog Edge Node - An Android Phone, Intel Edison and Raspberry Pi:

The  Fog  edge  nodes  plays  a  role  in  protocol  bridging,  data  cleaning,  and

orchestrating the direction of the data flow. All of the sensors are connected to the MCU

which collects the data from the flex sensors. In order to preserve the subject’s freedom

of movement, we designed an application to wirelessly collect data from the glove. The

data from the Arduino board is sent to the WearUp smartphone application. WearUp is

designed to run on any Bluetooth 4.0 enabled device running Android 4.4 or higher. 

Figure8:  This  figure depicts  the  framework deployed for  the  WearUp application.  The glove
streams its  data to  the users edge device.  This edge device  prompts the  user on the correct
gestures to make. The edge device interacts with the fog for user authentication/authorization
and feature extraction.
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The mobile Android companion application serves as a bridge between WearUp’s

hardware and the user. The Android device running the WearUp application utilizes the

Bluetooth Low Energy (BLE) technology available  on both the Arduino 101 and the

device itself to receive updates from the glove every 100 milliseconds. This update comes

in  the  form of  a  byte  array  containing  essential  information  from the  Arduino  101,

including raw sensor data from all enabled sensors. The mobile application initially scans

for available BLE devices. Once BLE devices are discovered the mobile application must

filter the discovered devices to consider only Smart Glove hardware and ultimately pair

(bond) with the Smart Glove. After the device has paired with the mobile application,

data transfer can be initiated over the BLE protocol. After data is acquired the application

can then upload said data  to  a  remote  server  for  persistence,  redundancy, and future

access. The application should also display information to the user and physician. The

current mobile application is able to scan for BLE devices, display the available devices

along with MAC address, device name, local device name, signal strength, and service

ID,  connect  with the  Smart  Glove,  transfer  patient  data  information,  and display  the

fingers angular information to the user via a dynamic graph. 

Visual  feedback  such  as  graphs  are  important  for  applications.  A good  user

interface (UI) will keep a user engaged while communicating appropriately with users. A

flat, layered, UI design was chosen for the WearUp companion application to coincide

with  the  design  language  of  the  Android  OS.  The  dynamic  graph  section  of  the

application shows the user’s finger movement over time in a visually appealing way.

After cleaning and displaying the feeds, the Android device then parses this data and

sends it to another fog edge node for further processing.
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The Intel Edison platform used in this application is also part of the edge. It was

designed with a dual-core, dual-threaded Intel Atom CPU at 500MHz and a 32-bit Intel

Quark microcontroller at 100MHz. It has connectivity interfaces capable of Bluetooth 4.0

and dual band IEEE 802.11a/b/g/n via an on-board chip antenna. 

This  platform came with  a  Linux  environment  called  Yocto.  Yocto  is  not  an

embedded distribution of Linux, but rather provides an environment to develop a custom

Linux distribution. We did not create a Linux distribution, instead deploying a prebuilt

distribution of Debian/Jessie for 32-bit systems. We did this so we could deploy the same

environment on the Intel Edison and the Raspberry Pi.

The Raspberry Pi Model B platform used in this application has a 900MHz 32-bit

quad-core ARM Cortex-A7 CPU, and 1GB RAM. Since the Raspberry Pi does not have

built-in WIFI connectivity, a WIFI dongle based on the Real-tek RTL8188CUS chipset

was installed. This platform came with a custom Linux distribution called Raspbian. In

order to work in a consistent environment, Raspbian was replaced with the Debian/Jessie

distribution used on the Intel Edison.

Backend Cloud Network

In a cloud computing component, the server must be able to authenticate multiple

users  and  create  sessions  for  each  user.  Once  a  user  is  authenticated,  the  mobile

application uploads data based on the user ID. The cloud computing component of this

project can be expanded to many more platforms including iOS and web. To support the

centralized storage of clinical features and analytics, we implemented a backend cloud

database using PHP and MySQL. We run a LAMP server, specifically a Linux (Ubuntu

16.04), Apache2, MySQLi, PHP5.4 server. This open source solution uses Linux as the
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core  operating  system,  Apache  for  web  servicing,  MySQL  as  database  system  for

management and storage, and PHP for server interaction with applications [Sobell 2013].

The  main  component  of  the  backend  was  the  relational  database  development.  We

designed the database to be easy for the users and fog computers to interact with the

database. Three tables were created for the users (patients and clinicians). A fourth table

contains information extracted from patient data. Extracted features were obtained from

the Fog computer and entered in the data table [Bahar et al. 2017].

3.2 Implementing the fog Distributed MQTT

MQTT is a machine to machine (M2M) publish/subscribe messaging protocol,

designed to be lightweight for IoT devices. It is designed to be scalable for utility sized

data.  This is ideal for fog, where the aim is to send clean structured data rather than

massive quantities of data. Edge computing from the clients thereby allows for reduced

data  transfer.  Properly  implementing  this  messaging  protocol  can  assist  in  providing

services that fit with the pillars of fog.

Security is one of the most crucial pillars of fog. The data being sent to and from

all the users devices needs to be protected from the outside and inside. This can only be

done  by  implementing  the  latest  security  protocols  on  all  layers  within  the

communication functions. Figure 9 shows the layers involved and the protocols used at

each one. We first delve into the MQTT application and its configuration, then discuss a

framework for the layers it rests upon. 
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Figure 9: OSI Layering for the communication protocol stacks implemented for both Bluetooth
and WiFi communication strategies.

To be integrated into the fog infrastructure, all nodes must comply with transport

layer and socket security. Putting this into action has become more automated due to a

public push for security on all data. A free to use service called LetsEncrypt generates

SSL certificates through its application programming interface (API). This API relies on

answering challenges. We can install and use certbot to provide automatic communication

for any of  the cryptographic challenges.  As the certificates from LetsEncrypt  will  be

standard  domain  validation  certificates,  they  can  be  used  for  transport  layer  security

(TLS) applications like MQTT.

As fogs must be able to communicate with other fogs and the cloud, they should

be accessible with standard addressing, such as IPv4, IPv6 or IPSec, just as typical web

servers  are.  For  maintaining  this  within  any  subnets  of  the  private  IPs,  they  can  be

pointed to by the DNS server for domain validation; but only interactive from within the

private network.

The use of  these certificates  can be quickly enabled by pointing services like

mosquitto.  Mosquitto,  now housed by Eclipse, is a lightweight implementation of the

MQTT  protocol.  Upon  initial  setup,  mosquitto  will  provide  readable  plaintext  data
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transfers. It is freely accessible for any device to join. This means that any device can

begin to propagate and collect any data available from that broker. This is clearly not

meant to be used off the shelf and must be used with security measures chosen by the

designer. Luckily, mosquito is capable of handling much of this automatically. We only

need to let the configuration file know the location of the keys and certificates generated

by LetsEncrypt to secure the transport layer. We can also move the listening port from

1883 to 8883, the standard port for secure MQTT data communication.

After finishing the configuration of MQTT with a secure socket layer, unique ids,

usernames, and passwords will be assigned on devices looking to publish/subscribe for

additional protection. All of these will be used to create scenarios of authentication in

conjunction with authorization. A potential security weakness lays in the ability to allow

one set of usernames and passwords for multiple device connections. This was permitted

for convenience in this thesis, but with the certificate file, certified authority file, and

private server key, a reasonably secure MQTT+SSL is set for use.

For  Fog nodes  or  edge  devices  looking to  host  a  dynamic  web interface,  the

additional  implementation  using  MQTT over  websockets  would allow for  integration

with JavaScript. This only requires changing the listening port to 8083 and defining the

protocol as websockets within the mosquito configuration file. The dynamic web hosting

implementation was not used for this thesis but can be adapted for future work.

Now scalability depends on the fog device’s ability to broker edge devices and

data demands at any given time. This leaves edge devices free to stay in place as the

larger ecosystem grows. That is why it is important that MQTT allows the fog device to

filter queries based on the topics and types of messages.
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As a note regarding queueing, MQTT incoming messages are stored until picked

up by the client. This can be adjusted based on Quality of Service (QOS) parameters. It is

important to keep this in mind as the broker must deliver the message to every client, not

just one. Aside from QOS, queueing can be managed specifically by topics. The more

specific a topic, the fewer clients will need to receive messages on that topic, further

reducing the queue. The fog can also release holds after a set time to avoid build ups

caused by offline devices.

MQTT  brokers  can  be  successfully  deployed  on  embedded  devices,  mobile

phones and other edge and fog devices. The only requirement is networking capabilities

supporting a TCP/IP stack and room for an executable of ~120kB consuming ~3MB of

RAM per 1000 clients. Eclipse reports that tests with 100,000 clients at modest message

rates  as  successful  [545].  For  further  interoperability  with  other  applications  the

oneM2M, a Java based horizontal framework, can be used. It was not used in this thesis

but could be considered for a commercial deployment.

Authentication and Authorization:

A network layer common in VPNs is one layer suitable for a fog node. TLS/SSL

is suitable for encrypting on the transport,  but must also be usable for edge devices.

MQTT usernames and passwords can help by adding authentication on an application

layer. Furthermore, MQTT can encrypt payloads for full transport encryption. While a

nesting doll of encryption is useful for security purposes, implementing one under the

constraints of lower end edge devices can be trying.

From the MQTT application layer, further authentication can be achieved using

the client id creatively. The MAC address, the serial number, or a combination of the two
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could be used for the makeup of a 36 character UUID. This could be on top of a previous

transaction of a X.509 certificate during the TLS handshake. This is only the first step

because  an  appropriately  authenticated  client  could  still  be  ill  intentioned  or  behave

inappropriately. To prevent this, use of authorization for requests of topics, operations,

and service levels should be maintained by the fog node through topic permissions. This

chain of trust can maintain a reliable lightweight messaging system.

3.3 A testbed for evaluation

Figure 10: Shows the WearUp prototype glove being worn while the wearer performs a finger
tapping exercise. To the right is a sample data plot from that same experiment overlaid with
markers at each peak as determined by the fog device.
WearUp with Fog-Driven IoT 

The testbed was set up for the WearUp case study. The smart glove, with flex

sensors sewn onto the pointer finger and thumb to detect motion features such as tremors,

rigidity, and slowness, is shown above. This version uses an Arduino 101 with a Intel

Curie Chip. Voltages across the flex sensors are mapped to a range from 0 to 1024. The

adopted finger tapping motor task is part of the Unified Parkinson’s Disease Rating Scale

(UPDRS) [Geotz et al 2015]. Neurologists observe the frequency of tapping as a key

feature in the test. They also consider variations in  tapping speed and record a clinical
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score for this task. We adopted the finger tapping test for its high clinical value and its

ease  of  home  performance.                              

The task requires the patients to tap pointing finger and thumb together 10 times.

We had healthy participant perform the finger tapping test five times. The participant was

asked  to  vary  the  rate  of  finger  tapping  frequency  in  each  round.  A peak  detection

algorithm was deployed to measure the tapping’s intensity. The basic algorithm checks if

the amplitude of the signal is greater than a threshold and greater than nearby samples.

Such samples are considered peaks. Since each pinch includes micro movements or small

fluctuations which can result in duplicate peaks for a single tap, a temporal threshold is

also implemented. In this case, peaks less than ⅓ of a second apart are presumed to come

from the same pinching movement. Finally, the temporal separation of peaks is calculated

and converted to a frequency. 

The experiment was conducted using Intel Edison and Raspberry Pi (version 3),

and an Intel NUC. The Intel Edison (to be discontinued this year) used the same i386

Debian/Jessie distribution as the Raspberry Pi  3.  However, the Intel  NUC ran a full-

fledged Ubuntu  16.04 distribution.  All  three of  these devices  serve as  embedded fog

computers, giving us the ability to run Octave 3.8.2-4 and Python for data processing.

However, only the Intel NUC hosts a PostgreSQL database for storing data. The Intel

Edison and Raspberry Pi only stored data during processing. 

The Smart Glove must send sample sets with the collected data every 300ms. The

embedded fog computers must act as  gateways to the cloud as well as platforms for data

processing in between sample sets. The Edison platform has a core system consisting of

dual-core,  dual-threaded  Intel  Atom  CPU  at  500MHz  and  a  32-bit  Intel  Quark
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microcontroller at 100MHz, along with connectivity interfaces capable of Bluetooth 4.0

and  dual-band  IEEE  802.11a/b/g/n  via  an  onboard  chip  antenna.  The  Raspberry  Pi

platform has a 900MHz 32-bit quad-core ARM Cortex-A7 CPU, and 1GB RAM. The

Intel NUC uses an Intel Core i5-5250U Processor with 3M Cache up to 2.70 GHz and

16GB DDR3L-1333/1600 1.35V SO-DIMM RAM with a maximum bandwidth of 25.6

GB/s. Both the Raspberry Pi and Intel NUC use wired ethernet connections for the best

possible connectivity.
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CHAPTER 4. Findings

The developed benchmarking process tests timing, CPU load, and memory load,

and network measurements. The results were generated by combining the information

collected from the Octave Function Profile and the Linux program collectd. The Profile

function running inside Octave collected timing specifics for the particular algorithm,

while  the  collectd  program collected  timing,  CPU  and  memory  loads  for  the  entire

process. 

The definitions tied with CPU utilization, memory consumption, network traffic,

and overall  load,  are  determined  by  the  collectd  application.  Definitions  are  also

presented here. First, network traffic is “information about the traffic (octets per second),

packets  per  second  and  errors  of  interfaces  (of  course  number  of  errors  during  one

second).” Next, memory consumption is  memory “used, buffered, cached and free -- as

in consuming power but providing no use -- with the units of Bytes.” CPU Utilization is

“the amount of time spent by the CPU in various states, most notably executing user

code, executing system code, waiting for IO-operations and being idle.” Approximately

100 operations  can be scheduled per  second.  If  this  were reliably  precise,  this  could

provide a stable percentage base. However, this is not the case and the use of percentage

as a unit for utilization has been removed to avoid misinterpretation. Finally, “The system

load is defined as the number of runnable tasks in the run-queue and is provided by many

operating systems as a one, five or fifteen minute average” [collectd].

Two other parameters mentioned in the benchmark are  latency and  processing

time. Both of these measurements were taken using a tic toc method in Python. Processes

would start with a tic and end in a toc. The current processor time is kept as a floating
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point  expressed  in  seconds.  The  difference  between  the  toc  and  the  tic  is  stored  as

processing  time.  Latency was  recorded  by  measuring  the  response  time  of  a  “ping”

payload. One fog node would post the “ping” message in the same queue as the data

stream. A toc was called when the “ping” was returned. Again, the difference between a

toc and a tic was recorded.

4.1 The resulting performance

- Intel Edison and Raspberry Pi
The measurements are shown in the total process breakdown in the figure below;

they include the load added on by starting an instance of Octave. While the Intel Edison

and Raspberry Pi were set up identically, the Intel NUC -- being much less constrained in

processing power and storage -- was capable of implementing a few Python libraries

rendering Octave unnecessary. This is important to note in the results, as each instance of

Octave required additional startup time. We observed that the run time for an Edison (4s)

was much greater than that of the Raspberry Pi (2.5s), and that an increase in data sets

(N) produced a processing time of order Nlog(N). The Raspberry Pi could complete the

process almost 2x faster than the Edison. Furthermore, it could scale to 125+ datasets

while the Edison would gracefully crash.

The Intel Edison was not capable of maintaining the timing window needed for

300ms samples  to  be  processed  and  published  to  subscribers.  Furthermore,  the  Intel

Edison failed to remain active during the more demanding sections of benchmarking.

While  neither  device  provides  enough resources  to  be appropriate  fog  platforms,  the

Raspberry Pi is capable of acting as protocol bridge, or as an edge device. 
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Figure  11:  The  above  graphs  show  comparable  performance  between  the  Intel  Edison  and
Raspberry Pi. It can be seen that while the computations did not put a major stress on the CPU
Load for either device, the growth in processing time quickly became unreasonable for a fog
device and thus indicated a termination of increasing data sets [Bahar et al. 2017].

The created network places the fog node between the WearUp Glove and the

cloud. It is assumed that the arrival and service processes are geometrically distributed.

Since the fog node will be placed in locations with only a small number of devices, such

as nursing homes,  it  is  assumed that  the mean arrival  rate  for data  will  be once per

minute.  The service rate  for the fog nodes can be surmised from Fig.  11 under  total

runtime.
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- Intel NUC
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Figure 12: Above is the performance for the Intel NUC. The NUC was first set up to broker 5
publishers,  along  with  5  subscribers  each  interested  in  singular  topics.  The  increase  in  all
parameters  were  visually  almost  indistinguishable  from  an  idle  state.  Once  this  setup  was
multiplied by 7x,  the load grew by ~5x.  However, it  maintained acceptable processing times,
brokered connections and reduced outgoing traffic with feature extraction. 

Using Littles Law we can determine the average wait time for each device. When

running  one  set  at  a  time,  we found  that  the  average  wait  time  for  the  Edison  and

Raspberry Pi will be roughly 64.65 seconds and 12.39 seconds, respectively. These fog

nodes are used to collect data from the WearUp glove, process the data, and post the

processed data to a server in the cloud. Fig. 17 shows a breakdown in the average amount

of time spent on each step. The Raspberry Pi provided a service rate one third that of the

Edison.  Furthermore,  in  active  mode,  the  Raspberry  Pi  consumes  198mW/s  and  the

Edison consumes 529mW/s (see Fig. 11).

The Intel NUC far exceeds the capabilities of the Intel Edison and Raspberry Pi.

This result  is to be expected as the NUC is designed for media streaming, while the

Edison and Pi were designed for low power collection, process, and transmit functions.

Unlike  the  others,  the  NUC  encrypted  and  brokered  the  transactions  between  35
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interested  nodes  (referred  to  as  publishers/subscribers).  This  mix  showed  the  same

diversity in parties such that there were subscribers and publishes at layers above and

below the fog. 

4.2 Fog Performance Review

Some  of  the  concerns  raised  by  the  testbeds  include,  power  consumption,

reliability, and cryptography. The performance each of these devices could provide varied

drastically. These concerns were most prevalent in the Intel Edison and Raspberry Pi, and

less so in the Intel NUC.

The Intel Edison was unable to maintain a steady uptime when faced with more

than 25 clients. The primary reason for this was not in managing the wireless clients, but

rather in running multiple instances of octave. This caused the device to crash even when

each instance of a client connected was contained within separate virtual environments

for processing. Furthermore, when the Edison was running these algorithms, it was warm

to the touch. This heating indicated that this device was not appropriate to use as fog

device,  and should instead remain an edge device,  for bridging protocols and devices

onto the wide area networks previously not reachable to those devices constrained by

wired communication and personal area network limits.

The Raspberry Pi was capable of maintaining a reliable connection to the various

clients, unlike the Edison. However, it suffered from slow processing times. I believe this

can  be  overcome by  deploying  more  appropriate  algorithms.  It  was  noticed  that  the

numpy and scipy python libraries weighed down the upstart time for each instance of a

virtual environment. By importing only the required packages this time could be reduced.

Even after that alteration,  peaks could not be determined quickly enough for a near real-
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time response to data received from a client. These findings lead to the conclusion that

while the Raspberry Pi is  a better  fit  as an edge device than the Edison,  it  does not

provide the reliability and data crunching required of a fog device. 

Figure 13: Above is the latency of the fog for the Intel NUC. The latency was fit to a Log-Normal
Distribution where the mean was 8.511ms with the 95% confidence interval of 8.251 and 8.771.
This pdf was consistent was each client. The test ran with a maximum of 35 clients connected
simultaneously. 

It should also be noted that both the Intel Edison and Raspberry Pi could wrap all

the data in transport layer security without adding a significant time increase in latency

between receiving client data and successfully sending it back to the client.

The third testbed, and only one that could be a workable fog device, is the Intel

NUC. This device was capable of handling the same tasks given to the Intel Edison and

Raspberry Pi while not exceeding 10% of its available resources. On a separate test, not
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conducted on either the Intel Edison nor Raspberry Pi, required the Intel NUC to evaluate

training sets for machine learning whilst maintaining the reliable streams to each client.

The NUC successfully did this but required 80% of the available resources. The details of

the machine learning program used can be found in the appendix and a full discussion on

this is beyond the scope of this thesis.

Ultimately,  no  single  operating  system  best  works  across  all  three  of  these

devices. The closest to working is CentOS 7, but since it is still in its infancy for the

Raspberry Pi, many bugs do still exist [CentOS Bug]. The bugs found on the Intel Edison

are  less  supported  and  will  only  decrease  in  support  as  the  device  undergoes

discontinuation in December 2017. However, even with these differences in operating

systems, it was possible to deploy the same algorithms at the python package level of

abstraction. 
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CHAPTER 5. Conclusion

Throughout  this  thesis  we  discussed  the  paradigm  of  fog  computing.  We

identified a few strong examples such as LinkNYC and the Efficient Utilities projects,

showing how the fog is increasingly a useful tool to establish remote intelligence in the

context of IoT. We further tested three different testbeds as potential fog devices. Each of

these  testbeds  were  responsible  for  orchestrating  the  process  of  data  acquisition,

conditioning,  analysis, and storage for up to 35 clients simultaneously. The aim was to

identify a way to reduce data transfer bottlenecks by using these testbeds, in particular by

pushing  machine  learning capabilities  away from the  cloud and  closer  to  the  things.

While the Intel Edison and Raspberry Pi were determined to fit better in the edge layer,

we found that the Intel NUC was a capable device for the fog layer.

Figure 14: The most effective layering scheme deployed during the experiment.

The tests performed on each of these devices were not fully comprehensive in that

they neglected to include penetration testing. This will be an important focus when it is
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time for real-world deployment. However, the setup for a reasonably secure environment

existed.  The  entire  network  existed  within  a  virtual  private  network  with  TLS/SSL

enabled for all TCP/IP connections within the network, and Bluetooth security enabled

for connections outside of this reach. The MQTT connections forced SSL connection of

the designated secure port, 8883, for all clients connecting from outside of the network.

Furthermore, initiating communication required a username and password. Inside of this,

each  user  had  particular  permissions  limiting  their  control  over  communications.  No

cellular communication protocols were used. 

5.1 Additional opportunities

As  the  need  for  continuous  connectivity  increases  and  the  reliance  on  high

bandwidth  applications  follows,  the  current  generation  of  cellular  protocols  must  be

improved. This type of improvement is expected in 5G networks, but is not yet ready. As

a  reduction  in  bandwidth  is  a  current  bottleneck  in  4G  communications,  there  are

opportunities to increase 4G capabilities by deploying the discussed fog network.

5.2 Future research opportunities

This fog layer could open the gates for a variety of future projects and research

focuses. For one, it could be a useful tool in mitigating the effects of a security breach at

the  infrastructure  level.  The  level  of  connectivity  enabled  by  the  fog  will  provide

opportunities to improve the quality and depth of feedback to telehealth queries.  The

future  of  context  awareness  with  a  shorter  response  time  increased  reliability  could

include increased accuracy in machine learning algorithms in a variety of fields.
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