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ABSTRACT 

Iron Carbonate is a novel carbon-negative sustainable binder that is made from 

metallic iron powder waste and utilizes the chemistry of iron carbonation. To produce 

the binder, usually landfilled iron powder and other constituents (fly ash, limestone 

powder, metakaolin, sodium carbonate, sodium bicarbonate, powdered organic 

reducing agent, and water) are mixed together and exposed to a pressurized CO2 

regime that leads to slow external diffusion. The carbonation of iron particles results 

in the formation of complex iron carbonates that have binding capabilities and 

mechanical properties similar or better compared to ordinary Portland cement (OPC)-

based binders. The metallic particulate phase incorporated in the novel binders’ 

microstructure increases the toughness of Iron Carbonate because of the energy 

dissipation by plastic deformation of the unreacted and elongated iron particles which 

are strong and ductile. In addition, the matrix contains other additives including harder 

fly ash particles, softer limestone particles, and ductile clayey phases which 

significantly influence the overall fracture performance of the novel sustainable 

binder. 

Understanding the behavior of Iron Carbonate at high strain rates is important 

for a wide range of both military and civilian applications. The material behavior 

under highly dynamic conditions is significantly different from the material response 

under quasi-static conditions. The split Hopkinson (Kolsky) pressure bar (SHPB) 

system is used to test dynamic compressive mechanical response and failure behavior 

of Iron Carbonate under high strain rates to establish exceptional dynamic load 



 

 

mitigation characteristics for the carbon-negative sustainable binder under extreme 

combined environments. 

Dynamic tests are conducted on cylindrical Iron Carbonate specimens using a 

conventional SHPB set-up. The experimental arrangement includes a gas gun and 

three steel bars (a striker bar, an incident bar, and a transmitted bar), aligned along a 

single axis. The Iron Carbonate specimen is placed between the incident and 

transmitted bar and the striker projectile is fired toward the face of the incident bar. 

Due to the impact of the striker bar an incident pulse, a reflected pulse and a 

transmitted pulse are generated that build up the stress level in the specimen and 

compress it. Objective of the carried out dynamic compression tests on Iron Carbonate 

specimen is the determination of the stress equilibrium, true stress-strain plots and 

strain-rate. 

Analysis of the obtained pulses revealed that the transmitted pulses of the 

tested Iron Carbonate specimens were of much smaller magnitude than the incident 

and reflected pulses. As a result, achievement of stress equilibrium and homogeneous 

deformation of the Iron Carbonate samples was prevented. The small amplitude of the 

transmitted pulses is due to the possibly low mechanical impedance of Iron Carbonate. 

Testing specimens made of material with low mechanical impedance allows the 

incident bar-specimen interface to nearly move freely under stress wave loading, so 

that most of the incident pulse is reflected backward into the incident bar. Only a small 

portion of the loading pulse is transmitted through the specimen into the transmission 

bar. 



 

 

Therefore, the conventionally used experimental standard set-up of the SHPB 

system using steel bars has to be modified in order to determine accurate dynamic 

stress-strain responses for Iron Carbonate. To increase the magnitude of the 

transmitted pulses a softer material, such as aluminum, should be used as transmitted 

bar material instead of common steel. Furthermore, a hollow transmitted bar instead of 

a solid bar should be used. The lower Young’s modulus of an aluminum alloy and the 

smaller cross-section of the hollow bar increase the amplitude of the transmitted strain 

signals by at least an order of magnitude as compared to a conventional steel bar. 
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1 Introduction 

Portland cement is the primary constituent of concrete and has established 

itself as the mainstay of the modern construction industry and crucial material for 

civilization. Even though cement only comprises around 10-15% of the mass of 

concrete, its production is responsible for roughly 3% of the global anthropogenic 

greenhouse gas emissions and 5-7% of all anthropogenic CO2 emissions, making the 

cement industry a heavy polluter. Manufacture of 1 ton of Portland cement results in 

emitting about the same amount of CO2. Due to a growing world population, demand 

for housing and infrastructure and therefore concrete respectively cement as building 

material is increasing, especially in developing countries like China or India. 

To avoid potential climate change and to protect our resources and surrounding 

environment, CO2 emissions during production of Portland cement have to be 

drastically reduced. One way to reduce carbon emissions could be the use of novel 

carbon-negative sustainable binder developed by Dr. Das and his colleagues that 

utilizes the chemistry of iron carbonation. Iron carbonated binders made from metallic 

iron powder waste could potentially replace cementitious binders and thus reduce the 

overall production of Portland cement, resulting in a significant reduction of the 

carbon footprint of the cement and building industry. Iron Carbonate has strong 

environmental benefits because it consumes and sequestrates CO2 from Greenhouse 

gas-emitting industries. At the same time, iron carbonated binders have good 

mechanical properties similar or even better compared to Portland cement-based 

binders. 

This thesis gives a general overview of different approaches to improve 

sustainability and to reduce the carbon footprint of the cement production. It focuses 
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on the description of alternative cementitious materials, especially on a novel carbon-

negative sustainable binder called Iron Carbonate. However, the report also gives 

background about the carbon footprint and manufacture of ordinary Portland cement. 

The author tried to show the big picture of cement manufacturing and its many 

approaches to make it more sustainable. 

To facilitate acceptance of Iron Carbonate as a replacement for ordinary 

Portland cement, more research on specific material properties is needed. The 

characterization of Iron Carbonate behavior under impact and impulse loading is a 

prerequisite for the design of concrete structures. The material behavior under highly 

dynamic conditions is significantly different from material response under quasi-static 

conditions. 

Main objective of the present paper is to carry out a traditional analysis of a 

split Hopkinson pressure bar (SHPB) experiment on Iron Carbonate specimens. 

Analysis of Strain gage output signals using a MATLAB program will eventually 

provide stress, strain-rate and strain in the tested specimen under dynamic 

compression. 

The performance of novel concrete, made from industrial iron powder waste, 

under extreme dynamic loading conditions, will potentially establish exceptional 

dynamic load mitigation characteristics for the carbon-negative sustainable binder 

under extreme combined environments. Enhanced durability of the novel sustainable 

concrete through better resistance against dynamic loading would prolong its lifetime 

and make it even more sustainable. 
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2 Approaches to improve sustainability in cement 

manufacture 

2.1 Ordinary Portland Cement 

2.1.1 Importance of OPC 

Ordinary Portland cement (OPC) is a vital construction material as the 

dominant precursor of concrete, a widely-used mixture comprising coarse and fine 

aggregates, cement powder, water and, if applicable, performance-enhancing 

admixtures [1]. Portland cement consists of finely ground calcium silicate minerals 

that are hydraulically active [2]. It is considered one of the most important 

technological advances in the history of humanity, as OPC played and still plays a 

major role in the reconstruction and redefinition of many of the worlds’ major cities 

[3]. In addition, the scientific studies of cement have contributed significantly to 

progress in material sciences as a whole. OPC has become the centerpiece of the 

modern construction industry [2]. 

OPC is the most common form of cement [4] and has dominated concrete 

production for the past 150 years [2], being the most important component to the 

hardening reaction of the initial fluid phase of the mixture to form artificial rock. 

Concrete is formed when powdered cement creates a paste with water that binds and 

encapsulates sand, gravel and rocks and hardens with time. Portland cement and other 

hydraulic binders are used almost exclusively to make concrete [5] and other binding 

pastes, such as mortars, screeds, stucco, coatings, soil stabilizations and other 

applications [1]. 

Main reasons for the immense popularity in usage of concrete are good 

structural properties such as strength, acceptable durability, and fire resistance. 
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Furthermore, OPC-based concrete is widely available in almost every part of the 

world, easy to make off and on site, technologically simple and inexpensive to 

produce [5]. 

Although cement is a minor constituent comprising only 10-15% of the mass of 

concrete, it makes up a significant portion of the overall cost of concrete and its 

properties of the fresh and hardened cement paste [2]. Nonetheless, Portland cements’ 

popularity is due to its relatively low price compared to other construction materials. 

At the same time, cement has low margins for generating profit – cement prices have 

dropped in the U.S. since 2006 [1] – and profit generally can only be achieved by 

high-production turnover [2]. 

Cement, especially OPC, has become a crucial raw material for civilization [4] 

and represents the second most consumed material on the planet after water [1]. 

2.1.2 History and discovery of Portland Cement 

Cementitious materials played an important role throughout history in creating 

buildings and structures and were used widely in the ancient world [6]. First, the 

Egyptians used calcined gypsum as cement, followed by the Greeks and Romans using 

lime – made by heating limestone – together with sand and coarse aggregates for 

making mortar respectively concrete. The Romans were the first who systematically 

manipulated the properties of cementitious materials to fit specific applications. They 

discovered cement that sets under water and used it for building harbors. This cement 

was made by adding crushed volcanic ash to lime and named “pozzolanic cement” 

after the village of Pozzuoli near the volcano Mount Vesuvius. 
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In 1824, a British stone mason from Leeds named Joseph Aspdin, obtained a 

patent (No. 5022, issued 21 Oct 1824 [7]) for cement he produced in his kitchen stove. 

Aspdin heated finely ground limestone and clay until the limestone was calcined and 

afterwards ground the mixture into a powder, creating hydraulic cement, meaning that 

the cement hardened with the addition of water. He named it Portland cement because 

the concrete made from it looked like Portland stone, a widely-used building stone in 

England [6] quarried on the British Isle of Portland [8]. 

Even though history usually regards Aspdin as the inventor of Portland cement, 

Aspdin's cement was not produced at a high-enough temperature to be the real 

precursor of modern Portland cement [6]. Nevertheless, Joseph Aspdin laid the 

foundation for today's Portland cement industry with his invention. 

In 1845, Isaac Johnson finally produced the first modern Portland cement by heating a 

mixture of chalk and clay at much higher temperatures (1400-1500°C), at which the 

formation of the so-called clinker occurs [6]. Three important developments in the 

manufacturing process lead to modern Portland cement: development of rotary kilns, 

addition of gypsum to control the setting of cement and the use of ball mills to grind 

clinker and other raw materials. 

In 1868, the first recorded shipment of Portland cement to the U.S. took place 

[8]. The first Portland cement manufactured in the U.S. was produced at a plant in 

Coplay, Pennsylvania in 1871. 

2.1.3 Manufacture of OPC 

Ordinary Portland cement (OPC) is a complex multiphase material [5] 

consisting of compounds produced by burning limestone and clay together in a rotary 
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kiln. It is an artificial building material which – on a human time scale – does not 

return to its original form when it has reacted with water [5]; Portland cement is a 

hydraulic, meaning water-resistant material. 

The basic cement is produced through the calcination process in which calcium 

carbonate (limestone) is decomposed respectively decarbonated to calcium oxide 

(lime); calcium carbonate and silicon oxides (clay) are combined at temperatures 

around 1,450°C to form calcine, also called clinker [1]. The calcination reaction (in 

this case for Alite) is as follows: 

3CaCO3 + SiO2 →Heat  Ca3SiO5 + 3CO2 

calcium carbonate + silica →Heat calcium silicate (clinker) + carbon dioxide 

Alite (Ca3SiO5) and Belite (Ca2SiO4) are primary minerals in the clinker that emerge 

through chemical and mineralogical transformations of lime and silica in the 

clinkering zone [5]. In cement chemist notation Alite and Belite can also be written as 

C3S respectively C2S.  

The calcination process produces lumps of clinker that contain silicon, iron, 

aluminum, and calcium oxides; the latter form when heat drives CO2 out of the 

limestone’s calcium carbonate [4]. After the clinker has cooled to fix C3S and C2S in 

their highly hydraulic forms (“quenching”) [5], it is combined with gypsum and 

ground into a powder that can react with water and change from a paste respectively 

liquid solution into a solid phase [1]. The finer the cement clinker is ground, the faster 

the hardening reaction will be, due to an increased surface area of the cement powder 

that is in contact with water. The gypsum thereby controls how fast the cement will set 

[4]. Table 1 shows the main chemical compounds of a modern Portland cement 

finished clinker. 
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Table 1 - Primary constituents of a modern Portland cement finished clinker [1] 

Constituent Proportion Chemical Formula CCN 

Tricalcium silicate 50% Ca3SiO5 or 3CaO·SiO2 C3S 

Dicalcium silicate 25% Ca2SiO4 or 2CaO·SiO2 C2S 

Tricalcium aluminate 10% Ca3Al2O6 or 3Cao·Al2O3 C3A 

Tetracalcium 

aluminoferrite 
10% 

Ca4Al2Fe2O10 or 

4Cao·Al2O3·Fe2O3 
C4AF 

Gypsum 5% CaSO4·2H2O CS̅H2 

 

Portland cement sets through a series of simultaneous chemical reactions that 

produce products leading to a hardening process [4]. The so-called hydration reaction 

is most important to the final solid phase. Hydration is the chemical reaction of the 

cement with water. Chemical components of the clinker, such as C3S, C2S and C3A, 

react with water and form new compounds. The hydration produces a stable, 

amorphous solid hydrate called calcium silicate hydrate [1], also written as C-S-H 

(Cao-SiO2-H2O). This C-S-H gel continues to grow and expand in the presence of 

water and encapsulates other materials, such as coarse and fine aggregates within its 

matrix of hydrate solid. The chemical reaction in cement saturates water with calcium 

(Ca) and hydroxide (OH) ions, leading to the formation of solid calcium hydroxide 

and calcium silica hydrate (C-S-H) precipitating from the solution into pore spaces; a 

process that produces heat and is therefore exothermic. The negative hydroxide ions 

raise the alkalinity of the cement paste and make it an alkaline substance (pH > 12). It 

is important to note that the reaction products depend on many different factors, such 

as the initial ingredients, amount of water, ratio of calcium to silicon, additives, 

contaminants, temperature, and humidity [4]. 

Within the hydration reaction, Alite (C3S) and Belite (C2S) give rise to the C-

S-H gel; Alite is more reactive than Belite and begins to cure within hours after the 
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addition of water [4]. Therefore, it gives the forming concrete its initial strength. 

Belite is ultimately stronger but takes days or even months to begin hardening. 

However, Belite already forms at temperatures around 1,200°C, whereas Alite 

requires significantly higher temperatures of 1500°C. 

The overall manufacture process of Portland cement can be divided into 3 

major steps, the first one being the quarrying and milling together of the raw materials 

limestone and clay [1]. This is followed by pyroprocessing in the kiln: the raw meal, in 

form of finely divided particles, is exposed to high temperatures (1,400-1,500°C) to 

transform lime and silica into cement clinker (C3S, C2S, C3A and C4AF) through the 

calcination process. In the final step, the lumps of clinker are interground with gypsum 

(calcium sulfate dehydrate); gypsum controls the setting time and rate of hardening. 

Figure 1 shows the cement manufacture process in detail. 
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Figure 1 - Cement production process [9] 

 

 

The American Society for Testing and Materials (ASTM) has specified five 

types of Portland Cement, named Types I-V (see Table 2) [10]. Physically and 

chemically the cement types differ primarily in their content of C3A and in fineness. In 

terms of performance, they differentiate in the rate of early hydration and in the ability 

to resist sulfate attack. Table 2 lists the types of Portland cement. 

Table 2 - Main types of Portland cement (ASTM) and their general features [10] 

 Classification Characteristics 

Type I General purpose 
Fairly high C3S content for early 

strength development 

Type II Moderate sulfate resistance Low C3A content (<8%) 

Type III High early strength 
Ground more finely, may have slightly 

more C3S 

Type IV 
Low heat of hydration (slow 

reacting) 
Low content of C3S (<50%) and C3A 

Type V High sulfate resistance Very low C3A content (<5%) 

White White color No C4AF, low MgO 
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2.1.4 Carbon Footprint and environmental issues of OPC 

Many chemical compounds found in the Earth’s atmosphere act as so-called 

greenhouse gases [11]. These gases allow sunlight to enter the atmosphere freely but 

absorb from the Earth’s surface reflected infrared radiation and trap heat in the 

atmosphere. 

The release of greenhouse gases, such as carbon dioxide (CO2), methane (CH4) 

and nitrous oxide (N2O), into the atmosphere possibly causes a change in global 

climate and is a threat to future life and prosperity on the planet. CO2 thereby is the 

primary greenhouse gas emitted through human activities [12], for example, the 

production of cement. In the past decades, emission of greenhouse gases has been 

increasing due to population growth and increased industrialization and economic 

activity in developing countries [1]. At the beginning of the industrial revolution in the 

mid-eighteenth century, CO2 concentration in the air was approximately 280 ppm, 

increasing to 310 ppm in the 1950s [3]; currently (October 2016) the CO2 

concentration is at about 402 ppm [13], meaning that there has been a significant 

increase in the rate of increase of CO2 concentration over the past years. Figure 2 

shows the global monthly mean atmospheric CO2 averaged over marine surfaces; the 

red line represents the monthly mean values. The black line represents the monthly 

mean values after correction of the average seasonal cycle. The average CO2 

concentration has to remain below 450 ppm to limit the overall temperature increase to 

+3°C [14]. 
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Figure 2 - Global monthly mean CO2 since 2012 [13] 

 

Roughly 3% of the global anthropogenic (man-made) greenhouse gas 

emissions [15] and 5-7% of all anthropogenic carbon emissions are due to the 

manufacture of vast quantities of cement [1] [3] [14] making the industry a heavy 

polluter. Every ton of OPC produced releases – on average – a similar amount of CO2 

into the atmosphere [1] [5]. One ton of CO2 is approximately the amount of carbon 

dioxide that a tree absorbs over 100 years [16]. The cement production is a highly 

energy-intensive process: manufacture of cement is the third most energy intensive 

process, after the production of aluminum and steel [17], and accounts for 

approximately 2% of the total global primary energy consumption (representing 10-11 

EJ of energy annually [18]) respectively for 5% of the total global industrial energy 

consumption [19]. 

The emission of CO2 during the production of cement has three major sources: 

burning fossil fuel to heat the kiln, the calcination process itself and indirect sources, 
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such as grinding the raw materials, transportation, or the production of necessary 

electricity. 

Approximately 40% of the cement plant CO2 emissions result from the 

combustion fuel to heat the raw materials – interground limestone and clay – to 

sintering temperatures around 1500°C [1] [20]. Cement kilns are usually fired using 

coal, fuel oil, natural gas, petroleum coke, biomass, waste-derived alternative fuels, or 

mixtures of these fuels. Each tonne of OPC produced requires about 60-130 kg of – 

usually fossil – fuel, depending on the cement variety and process used. 

The main source of carbon emissions is the calcination process of calcium 

carbonate (CaCO3) to calcium oxide (CaO), also called lime, in order to produce the 

basic clinker (C-S-H). The high heat of 1500°C drives CO2 out of the limestone’s 

calcium carbonate [4]. Such temperatures are needed for the formation of the primary 

clinker mineral Alite (C3S), that gives concrete its initial strength. Alite is the main 

constituent of the Portland cement finished clinker, accounting for a share of about 

50%. (see Table 1). At the same time, Alite (C3S) has the highest carbon footprint of 

all individual clinker phases, followed by C3A, Belite (C2S) and C4AF with the lowest 

carbon footprint [14]. The decarbonation of limestone in the rotary kiln accounts for 

roughly 50% of the cement plant CO2 emissions [1]. The overall production of cement 

consumes large amounts of non-renewable raw materials: one ton of OPC starts from 

1.7 tons of raw materials. 

The remaining 10% cement plant CO2 emissions are due to indirect sources 

[1]. Operating of machinery for grinding the raw meal and transportation of unground 

and ground material causes carbon emissions, as well as the production of electricity 
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being used in the overall cement production process. Each ton of OPC produced 

requires approximately 110 KWh of electricity [1] [20]. 

Conservative estimates assume an annual CO2 emission of 3.24 billion tons as 

a by-product of the cement production [1]. The reason behind the large carbon 

footprint is simply the large quantity of worldwide produced and consumed concrete. 

The growing demand for cement will further increase carbon emissions. Assuming an 

exponential trend, the cement industry emissions in the year 2050 could rise to an 

alarming 32.7 billion tons of CO2 per year, representing 33 times the cement industry 

emissions from 1990. 

Besides CO2 emissions and the consumption of large amounts of non-

renewable raw-materials, the cement industry emits persistent organic pollutants 

(POPs), such as PCDD and PCDF [20]. These toxic chemicals have a negative impact 

on the environment and human health [21]. They persist for long periods of time in the 

environment and can accumulate and pass from one species to the next through the 

food chain. Furthermore, some of the nitrogen in the air is transformed into NOX 

(during the combustion of fuel) and some of the Sulphur into SO3 [5]. In addition, the 

manufacture process emits solid particles, also referred to as cement kiln dust (CKD), 

that can be collected in electrostatic precipitators and reintroduced into the kiln. 

However, if the alkali content of the CKD is too high, the particles have to be 

stockpiled, possibly contaminating the groundwater through leaching processes. 

It is important to notice that cement is always used in connection with many 

other materials [20], that themselves have a carbon footprint and influence on the 

environment. The large share of OPC-based concrete used worldwide is reinforced 
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with steel bars to increase the tensile strength of concrete structures. The production of 

steel also emits vast amounts of carbon dioxide and requires even more energy as the 

production of cement [22]; the contribution of steel to the environmental load of 

reinforced concrete is greater than the one of the aggregates but much less than the one 

of cement [15]. 

The expected increase in output of cement due to a growing population and 

construction boom under way in developing nations, such as China and India [4], calls 

for actions to reduce the environmental impact of the cement production. Especially, 

because developing countries only have a subordinate environmental awareness; 

economic growth is taking top priority. 

2.1.5 Durability of OPC 

Its many good structural properties – and its relatively low cost – make OPC-

based concrete the most popular construction material on the planet. However, OPC-

based concrete is not a material of endless durability and occurrence of structural and 

material degradation is quite common [2]. Given the immense environmental impact 

the cement production has, especially in terms of greenhouse gas emissions, it is 

concerning that its durability is limited. The main reasons for the poor durability of 

OPC-based concrete are the brittleness of the material, a low strength to weight ratio, 

high permeability, low tensile strength and ductility, shrinkage, and a weak resistance 

to acid. Over the past decades common OPC composition has supposedly changed 

from a Alite (C3S)/ Belite (C2S) ratio of 1.2 to 3.0, resulting in higher early age 

strengths but also in higher heat of hydration and less later age strength after 28 days. 
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Limited durability and degradation problems of OPC result from its 

microstructure and chemical composition consisting of unnatural compounds, such as 

C-S-H, CH, CA, and calcium sulfoaluminates, being prone to degradation in certain 

environments [2]. Calcium hydroxide (CH), also called portlandite, is the most soluble 

of the hydration products [10], meaning that CH dissolves when exposed to water; CH 

is highly mobile and reactive [2]. Thus, CH increases the porosity of the paste, making 

it more vulnerable to chemical attacks [10], such as sulfate attacks [2]. Therefore, CH 

represents a weak link from a durability point of view [10]. 

The major shortcoming of C-S-H (calcium silicate hydrate), the main and most 

important hydration product, is, that it is thermodynamically unstable [2]. It tends to 

deform to silica gel and calcium carbonate. In addition, the 2-dimensional bonding 

structure or network of C-S-H is not as strong as a 3-dimensional. Durability and 

material performance, such as tensile strength, toughness, crack resistance, and 

permeability to fluids, are restricted through a discontinuous and inhomogeneous 

nanostructure respectively microstructure. Structural reinforcements and admixtures 

can overcome most of the issues mentioned above. However, new alternative cements 

could help to improve durability and structural performance at the microstructural 

respectively chemical level. 

Sustainable cement depends on durability and lifetime of the cement [2]. 

Durability in turn is strongly linked to the permeability respectively porosity of the 

microstructure. A more compact hardened cement matrix would reduce permeability 

and ultimately extend the service life respectively life cycle of concrete structures [5]. 

Thus, it would reduce the ecological impact. High performance concrete (HPC) and 
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reactive powder concrete (RPC) are just two examples of approaches that improve 

compactness of the cement matrix. In addition, an adjusted Alite (C3S)/ Belite (C2S) 

ratio would improve later age strength.  

Furthermore, it is necessary to pay attention to the quality of the placing and 

curing of the concrete, which also have a significant impact on the durability. Aïtcin 

[5] calls for the establishment of precise specifications and the payment of contractors 

to specifically improve the quality of the placing and curing. The city of Montreal is 

one of the few cities that have realized that this low initial investment will eventually 

result in great monetary long-term savings [5]: durable concrete decreases the 

frequency at which a structure will have to be repaired or replaced. 

It should be pointed out, that concrete is still specified only on the basis of its 

compressive strength. The – sometimes harsh – environmental and placing conditions, 

in which concrete has to fulfil its structural functions, are usually not considered [5]. 

In this respect, one should appreciate OPC-based concrete’s versatility and ability to 

generally withstand environmental impacts with an acceptable durability. Nonetheless, 

with rising environmental awareness, the ecological impact of the cement and concrete 

production must be drastically reduced. 

2.1.6 OPC market and future development 

Nearly 3.6 billion metric tonnes of OPC worldwide were produced annually 

(2012) with a predicted rise in volume to more than 5 billion metric tons by 2030 [1]. 

In 2014, cement production already reached 4.3 billion tons [23]. Figure 3 shows that 

China dominates the global cement market by far with a production share of 56.5%, 

followed by Asia (15.5%), India (7.0%) and the USA (1.9%.). The global cement 
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production is increasing constantly, particularly in developing countries, such as China 

and India, that have a high demand for infrastructure and housing [1]. 

Figure 3 - World cement production in 2014, by region and main countries [%] [23] 

 

2015 domestic production of cement in the U.S. was about 80.4 million metric 

tons of Portland cement and 2.4 million tons of masonry cement, which was well 

below the record level of 99 million tons in the year 2005 [24]. The sales of cement 

have been increasing in 2015 with an overall value of $9.8 billion. Most of the 

increased sale was accounted for by imports and 70% of the sales were to make 

concrete. 99 plants in 34 States, as well as 2 plants in Puerto Rico, produced cement. 

The 5-leading cement-producing States, that accounted for nearly 50% of the U.S. 

production, were Texas, California, Missouri, Florida, and Alabama (descending 

order).  
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2.2 General approaches to improve sustainability of cement 

manufacture 

2.2.1 Definition of sustainable development 

1987 the UN-Brundtland Commission defined sustainable development as 

“development that meets the needs of the present without compromising the ability of 

future generations to meet their own needs” [25]. In addition, sustainable concrete 

structures were described as follows: “An environmentally sustainable concrete 

structure is a structure that is constructed so the total environmental impact during the 

entire life cycle, including use of the structures, is reduced to a minimum. […] the 

concrete and its constituents shall be extracted and produced in an environmentally 

sound manner.” 

2.2.2 CO2 reduction plan of the IEA for the cement industry 

The International Energy Agency (IEA) [9] has realized the need and urgency 

of drastically reducing the CO2 emissions of the cement production. To do so, the IEA 

has developed a so-called technology roadmap for the cement industry, outlining 

different growth scenarios and actions to reduce carbon dioxide emissions of the 

industry. 

The technology roadmap outlines major actions for the CO2 reduction [9]: 

improved thermal and electric efficiency of the cement plant (see section 2.2.2.1), use 

of industrial process wastes (see section 2.2.2.2), i.e. use of alternative, less carbon 

intensive fuels in the production process (see section 2.2.2.2.1) and substitution of 

carbon-intensive clinker with low-carbon materials having cementitious properties 

(see section 2.2.2.2.2), and carbon capture and storage, short CCS (see section 

2.2.2.3). 
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The IEA plans to reduce CO2 emissions from 2 Gt (2007) to 1.55 Gt (2050) 

[14]. At the same time, it is predicted that the cement production will drastically 

increase. The existing technologies (fuel efficiency, alternative fuels, clinker 

substitution) would enable reaching only half of the reduction goal. To fulfil the other 

half of the reduction, new CCS-technologies, capturing and storing CO2 emissions 

from the production process, are necessary. By now, those technologies are relatively 

unproven and could result in significant additional costs for society if implemented. 

The most powerful approach – in the opinion of the IEA – is the use of alternative 

fuels to produce heat for decarbonating limestone. 

However, it must be pointed out, that IEA’s assumptions and plans were 

developed in 2009 and are therefore somewhat dated. IEA assumed a high growth 

scenario with a 2050 production at 4.4 billion tons [9], which has been almost reached 

already in 2014 (4.3 billion tonnes [23]). 

2.2.2.1 Energy efficiency 

One approach to reduce the vast amount CO2 emissions of the cement industry 

is to improve the – thermal and electric – energy efficiency of the cement plant and 

cement production processes. Over the past decades many cement plants improved 

their energy efficiency and energy flexibility [14]. As already mentioned, cement has 

low margins for generating profit – cement prices have dropped in the U.S. since 2006 

[1] – and profit generally can only be achieved by a high-production turnover [2]. 

Therefore, improved production efficiency is a logical step for a cement producer to 

reduce production costs through lower energy costs. For instance, the so-called dry 

production process (low moisture content manufacture) replaced the insufficient so-

called wet production process of clinker. Even less efficient long dry kilns are phased 



 

31 

 

out by the industry [26]. The five-stage preheater with precalciner is currently 

considered “Best Available Technology” (BAT); the most recently developed 

technologies are typically the most energy efficient [14]. In 1990 the specific thermal 

energy consumption, using the mentioned preheater with precalciner as kiln type, was 

3,605 MJ/t clinker. In 2006, consumption was down to 3,382 MJ/t clinker, indicating a 

6% reduction (220 MJ/t) over 16 years [26]; the 2006 world average energy 

consumption was estimated at 4.2 GJ/t of clinker [14]. Currently, the BAT-kiln 

consumes 3.0-3.1 GJ/t clinker, which represents about half of the energy consumption 

of the old wet process. 

The theoretical minimum primary energy consumption (heat) for the clinker 

production reactions taking place is approximately 1.6-1.85 GJ/t [26]. However, there 

are limits and restrictions that keep energy efficiency from increasing above a certain 

point, for example unavoidable conductive heat loss through kiln surfaces. 

Furthermore, strengthened environmental requirements can increase power 

consumption, for instance due to more needed power for dust separation. Demand for 

higher cement performances or the use of clinker substitutes, such as fly ash or slag, 

require more energy for grinding cement finely. Nevertheless, improving plant 

efficiency is an ongoing process and not yet possible further improvement may be 

achieved through future developments. 

Efficiency is a function of initial and following cement plant investments, 

which are usually dictated by local energy prices [9]. It is the only approach to reduce 

carbon emissions that is managed by the cement industry itself; policy and legal 

framework mainly influence other approaches. 
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2.2.2.2 Utilization of industrial process wastes 

Waste production of industrialized societies, mostly associated with mineral 

processing, energy production, individual consumption and disposal of non-renewable 

resources, is increasing [2]. The majority of global industrial processes relied upon 

daily produce waste that is usually disposed in landfills by incineration. Due to the 

large and increasing amounts of industrial waste, it becomes less socially, 

environmentally and practically acceptable to simply landfill waste. Integrated waste 

management options include waste prevention and reduction, composting, incinerating 

with energy recovery, recycling and re-use of waste products. 

There are many industrial process wastes that are suitable for re-utilization in 

cement and concrete production [2]. Waste-derived fuels as a substitute for fossil fuel 

can be used in the burning process of the cement clinker. Supplementary cementitious 

materials (SCMs) can be used as a filler to replace Portland cement, for example 

combustion ashes, slags, kiln dust, foundry sand and other inorganic residues. Even 

organic materials like rice hull ashes (see section 2.3.1.6) can be used as a source of 

silica [20]. Mining wastes, such as tailings, brines, slags and residues from processing 

materials can also be re-used [2]. Discarded concrete can be recycled as aggregate in 

making new concrete. 

The following sections 2.2.2.2.1 and 2.2.2.2.2 give a more detailed summary 

about the use of alternative fuels and cement replacement materials. 

2.2.2.2.1 Alternative fuels 

Alternative fuels can partly replace conventional fuels, mainly coal and 

petroleum coke, that heat the cement kiln and thus lower CO2 emissions of the 

combustion. Cement kilns are well-suited for alternative fuels because the energy 
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component is used as substitute for fossil fuels and the inorganic components, such as 

ashes, can be integrated into the final clinker product [26]. Typical alternative fuels 

that are used by the cement industry, are pre-treated industrial and municipal solid 

wastes, discarded tires, waste oil and biomass. Alternative fuels derived from biomass 

and used as a fossil fuel substitute, can reduce CO2 emissions by 20-25% [1]. Sources 

for fuels from biomass are animal meal, scrap wood, agricultural residues, sewage 

sludge and biomass crops [26]. The use of waste-derived alternative fuels and biomass 

in clinker manufacturing is expected to be the most powerful approach to reduce the 

carbon footprint of cement [14]. 

Furthermore, it seems reasonable to use natural gas instead of coal or 

petroleum coal to fire the kiln because carbon and fuel prices are predicted to further 

increase in the future [26]. Natural gas has a significantly lower carbon content than 

conventional fossil fuels. Switching to natural gas would reduce CO2 emissions more 

significantly than the effect of increased use of alternative fuels. 

However, there are practical limitations for the use of waste-derived alternative 

fuels, even though cement kilns could technically use up to 100% of alternative fuels 

[26]. Some of the fossil fuel substitutes mentioned above have a low calorific value, 

high moisture content or high concentrations of harmful and hazardous substances. 

Alternative fuels burn differently compared to traditional fossil fuels and can therefore 

influence cement clinker properties and cement performance, for example decrease 

early strength and extend setting times [1]. This is due to the introduction of different 

inorganic components (ashes) into the kiln. 
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The IEA’s technology roadmap (see section 2.2.2) assumes that alternative fuel 

costs will increase with increasing costs for emitting carbon emissions into the 

atmosphere, making it difficult for the cement industry to source sufficient quantities 

of biomass at acceptable prices [26]. The assumption further states, that it will only be 

economically viable for the cement industry to use alternative fuels until 2030; until 

then prices of alternative fuels will reach about 30% of the conventional fuel costs. By 

the year 2050, IEA presumes an increase up to 70% of the conventional fuel costs. 

2.2.2.2.2 Clinker substitution 

Clinker is the main component in cement. After its production in the cement 

kiln through the calcination process, it is ground and mixed with up to 5% gypsum. 

The clinker then reacts with water and hardens through the hydration process. Other 

mineral components also have hydraulic properties, meaning that they harden with the 

addition of water, when they are ground and mixed with clinker and gypsum. Thus, 

these alternative hydraulic components, so-called supplementary cementitious 

materials (SCMs), can be used to partially substitute clinker in cement, reducing the 

volume of used clinker and – to some extent – process-, fuel- and power-related CO2 

emissions [26]. 

The clinker content in cement can vary. OPC can contain up to 95% clinker, 

the 5% balance being the added gypsum. The global average clinker to cement ratio in 

2006 was 78% [26]. It should be pointed out, that different national industry structures 

exist: in some regions (e.g. China and Latin America) the clinker ratio can be below 

75% [14] and there are differences about when adding clinker substitutes to the 

clinker. In most European countries clinker substitutes are added in the plant, reducing 
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the clinker to cement ratio, whereas in the U.S. and Canada, substitutes are typically 

added when producing the actual concrete [26]. 

Cement replacement materials are fly ash, ground blast furnace slag, natural 

pozzolans (e.g. silica fume, volcanic ash, rice husk ash), artificial pozzolans (e.g. 

calcined clay) and limestone [26]. A more detailed analysis of the different SCMs will 

be carried out in section 2.3.1. 

However, there are limitations to the implementation of substituting clinker 

with alternative hydraulic materials [26]: regional availability of good quality SCMs, 

increasing prices of SCMs, properties of SCMs, national standards for OPCs and 

composite cements, and common practice of construction contractors. 

The main challenge, according to IEA’s technology roadmap [9], will be the 

scarcity of good quality SCMs. Besides, clinker substitution does not play a big role in 

the IEA’s proposed approaches to improve the carbon footprint of the cement 

production. In their opinion, carbon capture and storage (CCS) technologies will have 

to reduce the major part of cement CO2 emissions [26]. However, Imbabi et al. [1] 

state that carbon-reducing cements will be the safest, most economical and elegant 

CCS technology, but in order to be successfully implemented, new concrete design 

guidelines, that allow an increased SCM use, have to be developed. 

2.2.2.3 Carbon Capture 

Carbon Capture and Storage (CCS) is a new technology that captures emitted 

CO2, compresses it into a liquid and transports it in pipelines to a permanent storage 

deep underground; the storage process is also called CO2 sequestration [26]. As 

already outlined in section 2.1.4, the cement industry emits large amounts of CO2 

through fuel combustion and limestone calcination in the kiln. That makes it 
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interesting to implement capture technologies in cement production plants. Two 

different, general CO2 capture technologies are considered appropriate for the cement 

production: post-combustion technologies and oxyfuel technology [26]. 

Post-combustion technologies are so-called end-of-pipe mechanisms that can 

be implemented without changing the clinker-burning process [26]. Therefore, those 

technologies could be suitable for both new kilns and retrofits. Post-combustion 

technologies include chemical absorption using chemical solutions (e.g. potassium, 

amines) and membrane technologies to capture CO2. Furthermore, an adsorption 

process, called carbonate looping, is applicable: calcium oxide is put into contact with 

CO2 containing combustion gas to produce calcium carbonate. 

Oxyfuel technology uses oxygen instead of air in cement kilns, resulting in a 

pure CO2 stream [26]. 

However, CCS technologies are not yet proven at the industrial scale in cement 

production and require a high initial investment [26]. Due to higher specific costs, 

smaller kilns (capacity less than 4000-5000 tons per day) will probably not be 

equipped with CCS technology. Retrofits will not be common either. The IEA also 

predicts that carbon capture technologies will not be commercially available before 

2020. In addition, CCS essentially requires a CO2 transport infrastructure (e.g. 

pipelines) and access to save and long-term storage sites, as well as a supporting 

political and economic framework. 

CCS technologies could be used to provide CO2 as a constituent to produce 

alternative cements, such as sequestrated carbon cement, like Calera cement (see 
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section 2.3.2.6), or carbonate binders (see section 2.3.2.7) that are exposed to a 

pressurized CO2 curing regime. 

2.2.3 Other approaches to reduce the carbon footprint of the cement 

industry 

2.2.3.1 Nanoengineering 

Nanoengineering could help to create green concrete by nanoengineering 

higher strength and toughness from first principles [27]. Based on Galileo’s Strength 

of Materials Theory, the CO2 impact of cement is driven by volume: increasing the 

strength of a cement-based concrete would therefore result in a decrease of its 

environmental impact [16]. Theoretically, an increase in the material strength by 100% 

would result in halving the environmental impact. Thus, the size of concrete columns 

and beams could be reduced because of the higher concrete strength, at the same time 

reducing the carbon footprint. 

Increasing the strength of a concrete by a factor of λ could reduce the 

environmental footprint for pure compressive members, such as columns and perfect 

arches and shells, by λ
-1

 [27]. The environmental footprint for beams in bending and 

slabs could be reduced by a factor of λ
-2/3

 respectively λ
-1/2

. 

Mechanics could help to develop a sustainable concrete. The nanoengineering 

approach starts at the electron and atomic scale and upscales strength, fracture and 

stiffness properties from nanoscales to macroscales [27]. Nanoindentation analysis of 

heterogenous composites combined with micromechanics-based scaling relations and 

atomistic simulations, could link the atomic structure of the main OPC-hydration 

product C-S-H with its nanomechanical morphology and macroscopic performance. 
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C-S-H phases exist in three structurally different forms: Low Density (LD), 

High Density (HD) and Ultra-High-Density (UHD). Increasing the packing density of 

C-S-H respectively reducing the C-S-H gel porosity would result in an overall higher 

strength of the concrete. A “dry concrete”, meaning a very low water-cement ratio 

(w/c) in concrete, would favor almost exclusively the formation of strong UHD C-S-H 

[27], creating a so-called high-performance concrete (HPC) [5]. A w/c of 0.15 results 

in a hydration degree of around 60%, a 50% C-S-H solid volume formation and a 10% 

gel porosity [27]. But at the same time a low water content worsens workability of the 

cement paste, as a low w/c means that the concrete mix is less flowable. Using 

admixtures (see section 2.2.3.2), such as superplasticizers, can help making the paste 

workable again. 

2.2.3.1.1 Gorilla cement 

Gorilla cement also orientates on the nanoengineering approach (see previous 

section 2.2.3.1) and on the idea that tougher cement would allow using less material 

while having comparable mechanical properties [28]. An increased resistance of the 

binding phase C-S-H (calcium-silicate-hydrates) to fracture would make cement more 

durable and increase sustainability even more. Therefore, it is important to understand 

the influence of the cement composition on the fracture resistance of C-S-H. 

Rigidity theory focuses on the atomic topology and how it affects macroscopic 

properties [28]. In glass science, the development of so-called Gorilla glass by 

Corning was based on rigidity theory. Complex molecular networks were reduced to 

simple mechanical trusses, creating a flexible, stressed-rigid, or isostatic network as 

requested. The characteristics of the network depend on the number of chemical 
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constraints in comparison to the number of degrees of freedom of the atoms: lower 

(flexible), higher (stressed-rigid), or equal (isostatic). 

Figure 4 - Computed C-S-H fracture toughness with respect to Ca/Si molar ratio as a function of 

number of atomic constraints [28] 

 

Rigidity analysis of C-S-H molecular models shows that isostatic compositions 

achieve the highest fracture toughness of C-S-H grains, at a Ca/Si molar ratio of 1.5 

[28]. Isostatic systems are able to deform and show relatively high surface energy. In 

comparison, stressed-rigid compositions tend to break in a brittle way because a high 

number of constraints completely lock the systems. Flexible systems, on the other 

hand, can deform and have some ductility, but the surface energy is low. Figure 4 

shows the fracture toughness of C-S-H with respect to composition as a function of the 

number of constraints. OPC typically has a Ca/Si molar ratio of 1.7. 
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By replacing OPC-based clinker with silica-rich by-products, such as fly ash 

(see section 2.3.1.1), the relative amount of calcium (Ca) in cement can be reduced 

[28]. Decreasing the Ca/Si molar ratio of C-S-H from 1.7 to 1.5 would significantly 

increase C-S-H toughness by 70%. Less material with still comparable performance 

could be used, reducing the carbon footprint of cement. 

2.2.3.2 Chemical Admixtures 

Concrete usually consists of roughly 8-15% cement, 80% coarse and fine 

aggregates and 2-5% water [15]. Chemical admixtures are added to the concrete mix 

right before or during mixing [29] and can reduce the water and cement dosage 

consumed for a given strength [15]. Nanoengineering (see section 2.2.3.1) shows that 

a low w/c ratio in concrete favors the formation of UHD C-S-H. Furthermore, 

admixtures could make concrete more durable. Therefore, use of admixtures could 

help to reduce the carbon footprint of cement and concrete. However, use of advanced 

admixtures can be expensive. 

Chemical admixtures can be classified in five categories: air-entraining, water-

reducing, retarding, accelerating, and plasticizers (superplasticizers) [29]. In addition, 

there are other special admixtures with the following functions: corrosion inhibition, 

shrinkage reduction, alkali-silica reactivity reduction, workability enhancement, 

bonding, damp proofing, and coloring. Effectiveness of an admixture depends on type 

and amount of cement, water content, mixing time, slump, and temperatures of the 

concrete and air. 

2.2.3.3 Recycling concrete 

Recycling concrete construction waste to produce aggregate that in turn can be 

used for the production of new concrete could reduce energy consumption and CO2 
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emissions [5]. Coarse and fine aggregates represent between 70 to 75% of the 

concrete’s mass. Especially concrete with a high packing density, namely high-

performance concrete (HPC) has great potential for recycling. That is, because each 

time a material is recycled, it results in a decrease in performance of the new material. 

Initially selected materials lose some of their original properties when recycled. Also, 

it should be noted that grinding concrete construction waste into usable aggregates 

requires energy. The processing of construction debris creates macro- and micro-

cracking in the solid [20] reducing durability. 

2.3 Modification of cement for improved sustainability 

2.3.1 Blended OPC-based cements (Supplementary Cementitious 

Materials) 

Blended Portland cements are hydraulic cements consisting of a homogeneous 

mixture of Portland cement and a replacement material [2], such as fly ash, ground 

granulated blast furnace slag, ground limestone, silica fume and others. Blended OPC-

based cement is produced by intergrinding the replacement material with Portland 

cement clinker or by mixing both during concrete mix proportioning. Replacement 

materials, also referred to as supplementary cementitious materials (SCMs), can be 

natural pozzolans or waste-derived materials, mainly industrial by-products. Those 

silica- or alumino-silicate-rich materials react with calcium hydroxide (CH) from OPC 

to form C-S-H phases. SCM particles usually hydrate in the same way as OPC does 

[1]. However, SCMs supply more silicate in the mixture which then reacts with excess 

hydrated lime and alkalis released during OPC hydration. 

Advantages of the use of blended OPC-based cement are a lower heat of 

hydration, better workability of the fresh paste, higher resistance to alkali-aggregate 
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reaction, reduction of permeability of the material [2] and higher ultimate strength 

[19]. In addition, the carbon footprint of blended cement is much lower than of pure 

OPC. CO2 emission reduction of the total CO2 emissions from the cement industry 

could reach 5-20% through common production and use of blended cements [19]. 

Drawbacks are lower early age strength and higher CaO content that restricts 

use in certain aggressive environments [2]. 

The following sections 2.3.1.1 to 2.3.1.6 introduce some common SCMs used 

for blending Portland cement. 

2.3.1.1 Fly ash and pulverized fuel ash (PFA) 

Fly ash and PFA are produced during coal and lignite combustion of power 

plants [5]. Fly ash and PFA are essentially the same but collected at different stages of 

combustion [1]: fine grained fly ash is carried with combustion fuel gases and 

collected by electrostatic precipitation, whereas fuel ash is left in the region of 

combustion. 

Generally, the term fly ash describes a large family of powders having the 

same grain-size distribution as Portland cement and containing vitreous particles [5]. It 

is chemically composed of silicon oxides (SiO2), aluminum oxides (AlO3) and iron 

oxides (Fe2O3, Fe3O4) [1]. Two different types of fly ash can be differentiated, even 

though ASTM does not use the classification: calcium rich Class-C fly ash and 

aluminosilicate rich, truly pozzolanic, Class-F fly ash. However, the fly ashes 

recovered in the dedusting system have varying chemical and phase composition 

depended on the fuel and combustion type and contained impurities [5]. They are 

composed of all fused and unfused residues present in the coal or lignite being burned. 

Leaving the flame, some particles are quenched and solidify in the shape of vitreous 
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glass spheres. Other impurities are not fused because they rapidly pass through the 

flame. Therefore, fly ashes usually contain a certain amount (< 6%) of unburned 

carbon that varies depending on the energy production of the power plant. The carbon 

content is important because some admixtures can be absorbed by carbon particles. 

OPC blended with fly ash hardens by calcium hydroxides, produced during 

Portland cement hydration, reacting with fly ash particles [1]. Reactivity can be 

increased by grinding the fly ash and thus creating freshly fractured surfaces [5]. 

Fly ash can typically replace up to 30% of the mass of OPC in a concrete mix 

[1]. Its pozzolanic properties are used to lower permeability and heat of hydration. The 

spherical particle shape improves workability of the paste. Also, use of fly ash lowers 

the carbon footprint of cement. 

The American company CeraTech produces cement containing 95 percent fly 

ash [4] [30]. It uses supposedly half as much water as the Portland cement it replaces 

and has better durability. CeraTech cement is made through a chemical reaction with 

several liquid additives [4] instead of being baked in a kiln. Another company, the 

Sefa Group, has developed a process for making concrete with fly ash taken from the 

ground in addition to what can be captured from coal-fired power plants [30]. This 

technique could help clean up landfills filled with ash that has been sitting for years. 

2.3.1.2 Ground granulated blast furnace slag (GGBS) 

Ground granulated blast furnace slag (GGBS) is an industrial by-product of the 

iron and steel production. Slag is left-over while extracting pig iron from the melted 

raw iron ore, consisting of calcium and magnesium aluminosilicates [1]. Its pozzolanic 

properties depend on the cooling method used to quench the material. There are 3 
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main types of blast furnace slag: air cooled slag, granulated slag, and expanded slag. 

All slags can be used as raw feed materials for cement clinker production. 

Granulated slag is formed by quickly quenching melted slag with water, 

resulting in a glassy sand-like material [1]. Ground into a fine powder, this material 

develops strong hydraulic cementation properties when reacting with alkali, Air 

cooled slag and expanded slag can also be used as supplementary cementitious 

material (SCM) in Portland cement. But mainly those slags are used as aggregates in 

concrete and bitumen applications. 

GGBS hydrates similar to Portland cement when mixed with water [31]. 

Typical blends with OPC range from 60% Portland cement and 40% GGBS to 30% 

Portland cement and 70% GGBS. 

OPC blended with GGBS sets more slowly than pure OPC, depending on the 

amount of GGBS in the cement mix [31]. However, the GGBS blend continues to gain 

strength over a longer period resulting in improved durability extended service life. 

Another advantage of the use of GGBS is the reduction of CO2 emissions due to 

significantly less required energy to perform calcination in the kiln [1]. 

2.3.1.3 Ground limestone 

Limestones are sedimentary rocks primarily containing calcium carbonate [17]. 

Limestone powder can either be interground with OPC clinker in the cement 

manufacturing process or blended with cement during concrete batching [32]. ASTM 

standard allows for up to 15% of limestone powder in Portland cement.  

Blending OPC with limestone powder, thus creating Portland Limestone 

Cement (PLC), densifies the microstructure of the paste [1] because limestone 

chemically combines with aluminate phases in OPC [32]. Intergrinding limestone with 
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cement improves particle packing [1]. Also, fine limestone particles act as nucleation 

sites that enhance the rate of hydration of the OPC phases [32]. 

Due to increased hydration, limestone powder improves early age strength. 

However, it can reduce later age strength because of a dilution effect [22]. Besides 

improving cement properties, limestone is a low-cost material that is readily available 

[1]. Furthermore, it is easier to grind than Portland cement clinker and therefore 

reduces energy consumption during cement manufacturing. The use of limestone also 

improves workability and reduces bleeding of the concrete mix. Besides, it has a 

synergetic chemical effect with alumina-bearing SCMs, such as fly ash or metakaolin, 

improving properties of the mix [32]. 

Another advantage of limestone powder is that is reduces CO2 emissions of 

cement. PLC containing 20% limestone can reduce CO2 emissions by 10% compared 

to pure OPC, having a similar performance [1]. 

2.3.1.4 Silica fume 

Silica fume, also called microsilica, is a by-product of the fabrication of 

silicon, silicon metals and ferrosilicon alloys. It is collected in the dedusting system of 

electric arc furnaces during the metal and alloy production [5]. Silica fumes are very 

reactive fine pozzolans that can also have a filler effect. They can be blended with 

Portland cement in binary, ternary or quaternary blended cements. 

For producing silicon, the raw material quartz (SiO2) is reduced to the metallic 

state Si in the electric arc furnace [5]. During the silicon production process SiO 

vapors form within the arc. In contact with air, SiO vapors oxidize and form very 

small SiO2 vitreous particles that are collected in a dedusting system together with 

some impurities, such as untransformed quartz particles, carbon particles and graphite 
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particles. SiO2 particles are a hundred times finer than Portland cement particles. 

Silica fumes have a constant chemical composition because the raw materials for 

producing silicon or ferrosilicon themselves have a constant chemical composition. 

During the hydration of silica-fume blended cement, portlandite (calcium 

hydroxide, Ca(OH)2) is present at the beginning and reacts in the cause of the 

hydration with silica-fume particles to form C-S-H phases [5]. 

Advantage of the use of silica fume is decreased bleeding of the concrete mix 

[5]. Furthermore, silica fume modifies the microstructure of the hydrated cement paste 

to be denser. Therefore, silica fumes reduce the permeability of the concrete and 

increases protection of steel reinforcement [1]. The transition zone around coarse 

aggregates is much more compact compared to pure Portland cement [5]. 

Also, use of silica fume reduces CO2 emissions. Approximately 0.432 kg of 

CO2 is avoided for every kg of silica fume substituted in cement [1]. 

Major drawback of silica fume is the high cost because of limited availability 

of the raw materials [5]. In addition, use of silica fume greatly increases water demand 

of a mix, which makes it hard to use, especially because many building codes limit 

water addition to around 6% [1]. 

2.3.1.5 Calcined clay (Metakaolin) 

Calcined clays were used in the earliest produced concretes. Clay or shale is 

calcined at relatively low temperatures (700-750°C), being dehydrated and its 

crystalline structure getting disorganized [5]. Active silicon tetrahedra reacts with 

liberated lime from Portland cement hydration of C3S and C2S. Metakaolin (2 

SiO2·Al2O3) is produced by calcination of kaolin which is a particular clay mineral (2 

SiO2·Al2O3·2H2O). 
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Metakaolin increases strength, durability and workability, but it also increases 

the water demand in concrete [5]. 

2.3.1.6 Rice husk ash 

The protecting husk of rice grains against rain represents about 20% of a 

grain’s mass and has a siliceous skeleton [5]. Rice husks can be burned at relatively 

low temperatures (700-750°C). The resulting rice-husk ashes are essentially composed 

of vitreous silica but they can also contain unburned carbon. The vitreous silica from 

rice-husk ashes has excellent pozzolanic properties.  

Major drawback of rice-husk ashes is an increased water demand of the fresh 

concrete mix [5]. 

2.3.1.7 Other types of supplementary cementitious materials 

Natural pozzolans are ancient binders containing a sufficient amount of 

reactive silica (> 25%), alumina and iron oxide [5]. They are of volcanic origin or 

sedimentary rocks and harden in the presence of water and lime from Portland cement 

hydration. Silica reacts with lime to form C-S-H. Use of natural pozzolans decreases 

the carbon footprint of the cement clinker production. 

Another type of SCM is diatomaceous earth, also called Tripoli or kiselghur 

[5]. It is composed of siliceous skeleton of Microalgae and therefore contains very 

reactive silica. However, use of diatomaceous earth increases water demand due to 

higher porosity. It is not suitable for blending cement. 

Perlite is produced by heating rhyolitic rock, a volcanic silica-rich rock, which 

is then transformed into a spongy, water absorbing mass [5]. It is used as ultra-

lightweight aggregate for production of thermal and acoustic insulating concrete. 

Drawback of perlite is its high absorptivity that limits use as SCM in concrete. 
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2.3.2 Alternative cements 

2.3.2.1 Calcium aluminate cement (CAC) 

Calcium aluminate cements (CACs) were initially developed to resist sulfate 

attack and are mainly used in refractory and building chemistry applications 

nowadays, for example as rapid hardening mortars and floor screeds [18]. They 

contain primarily monocalcium aluminate (CA) and sometimes small amounts of 

C12A7, CA2, Silica (C2S, C2AS) and ferrite. 

Like Portland cement, CAC is made in a rotary kiln [1] [5]. But instead of the 

typical calcium silicates found in clay, bauxite (aluminum ore) is used for mixing with 

limestone. Afterwards, the mixture is fused into a cement clinker in the same way as 

Portland cement. 

In CAC, the temperature during hydration impacts not only the rate of reaction 

(as it does during Portland cement hydration), but also the phases that form and the 

conversion process of those phases, meaning the rate of transition from metastable to 

stable hydrates [18]. Metastable hydrates CAH10 and C2AH8 form at low curing 

temperatures; CAH10 being the dominant metastable hydrate that forms at 

temperatures below 15°C. As the curing temperature increases to 30°C, metastable 

hydrates C2AH8 are also formed. The conversion of the metastable hydrates CAH10 

and C2AH8 to stable C3AH6 phases is a thermodynamically inevitable process and 

results in the additional formation of AH3 gel and release of water. Stable C3AH6 

hydrates are predominantly formed at higher curing temperatures above 70°C. Figure 

5 illustrates the conversion process and approximate temperature ranges for the 

formation of metastable and stable hydrates. It also shows that metastable phases have 

higher strength than stable phases. During the conversion process, hydrates are 
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densified and the paste increases porosity, consistently leading to a decrease in 

strength of the material. 

Figure 5 - Schematic of conversion process and approximate temperature ranges for the 

formation of metastable and stable hydration products [18] 

 

A CAC microconcrete, that is isothermally cured at 20°C in a laboratory, has a 

relatively dense microstructure filled with CAH10-hydration products [18]. At the 

same time, large amounts of unreacted CA are present. Nevertheless, the porosity of 

the CAC microstructure is similar to a high-performance Portland cement. CAC 

microconcrete, that is cured at higher temperatures (38°C), shows little unreacted CA 

and high amounts of porosity, consequently resulting in a lower strength for 38°C 

isothermal curing in comparison to 20°C isothermal curing of CAC-concrete. 

Besides influencing the formation of metastable and/or stable phases, the 

curing temperature also effects early-age volume changes [33]. Under isothermal 

curing, the formation of metastable CAH10 hydrates resulted in shrinkage of the 

material, whereas the formation of stable C3AH6 phases was linked to expansion. 
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CAC has many advantages over Portland Cement (PC) [18]: rapid hardening 

respectively strength gain and enhanced durability through better resistance to sulfate 

attack, alkali-silica reaction and abrasion (denser microstructure). In addition, CAC 

production has a lower carbon footprint than PC production. 

The major drawback and challenge of CAC is the inevitable conversion 

process that occurs in hydrated CAC over time [18]: metastable hydrates convert to 

stable hydrates, increasing the porosity of the microstructure, and consistently reduce 

strength of the material. Another challenge, that limits widespread use of CACs, is 

high costs of bauxite, main source of alumina in CAC, due to limited supply. Both of 

these challenges need to be solved, if CAC should be considered as a viable alternative 

to Portland cement. Currently the use of pure CACs is limited to refractory 

applications [1] [5]. The combination of common SCMS, such as GGBS [1], and use 

of admixtures (chemical accelerators) with CACs, lowers costs and results in no 

formation of metastable hydrates [18]. Therefore, a conversion process over time does 

not take place. Nevertheless, more research on the understanding of the CAC 

hydration reaction kinetics is needed. 

2.3.2.2 Calcium sulfoaluminate cement (CSA) 

Calcium sulfoaluminate cement (CSA) has been produced and used on an 

industrial scale in China since the late 1970s [1]. Called the “third cement series”, they 

are used in China as binders for various applications, for example for concrete in 

bridges, concrete pipes, precast concrete and low temperature constructions [18]. In 

Europe and the U.S. however, they are not commonly used. 

CSAs contain ye’eliminte (C4A3S̅) as major component (30-70%) that was 

discovered in the 1960s as a cementitious phase [18]. Furthermore, CSAs contain 30% 
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Belite (C2S) and 10-30% ferrite (Calcium Ferro Aluminate). CSA clinkers are 

produced from using limestone, bauxite and calcium sulfate as raw materials. The 

clinkers are interground with different levels of calcium sulfate (anhydrite or gypsum) 

to form different types of CSA, such as rapid-hardening, high strength, expansive or 

self-stressing and shrinkage compensated cements. 

CSA clinkers can be manufactured in conventional Portland cement plants 

using dry rotary kilns [1]. However, manufacturing CSA requires less heat and 

therefore less energy because CSA calcination needs lower temperatures (between 

1,250-1,350°C) compared to Portland cement. 

Two types of CSA clinker can be distinguished [18]: sulfoaluminate belite 

clinker (containing mainly C4A3S̅ and C2S) and ferrialuminate clinker (containing 

mainly C4A3S̅, C4AF and C2S). 

In Portland cement, hydration of C3S and C2S result in formation of C-S-H and 

CH (portlandite); the hydration of C3A and C4AF result in formation of ettringite 

and/or calcium monosulfoaluminate [5]. In CSA cement the hydration of ye’eliminte 

(C4A3S̅) and product development are influenced by adding calcium sulfate or calcium 

hydroxide; the w/c ratio needed for complete hydration is determined by the amount of 

added calcium sulfate, the maximum being 30% [18]. This is higher compared to 

Portland cement, where usually 5% of gypsum is added [1]. The addition of gypsum 

or anhydrite accelerates hydration kinetics [18] and eventually results in the formation 

of ettringite (C6AS̅3H32) according to the following two reactions (with and without 

presence of lime) [5]: 
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without presence of lime:  C4A3S̅ + 2CS̅H2 + 34H → C6AS̅3H32 + AH3 

in the presence of lime: C4A3S̅ + 8CS̅H2 + 6CH + 74H → 3C6AS̅3H32 

The microstructure of the formed ettringite depends on the presence of lime. Ettringite 

produced without presence of lime is not expansive and generally has a high early 

strength [5]. Therefore, it is suitable for shrinkage-resistant and self-stressing cements 

[3]. On the other hand, ettringite forming in the presence of lime, is expansive [5] and 

raises the early age strength of cement significantly [3]. This expansion is being used 

in expansive or shrinkage compensating cements [5]. 

CSA cements usually contain several hydraulic phases and similar reactions 

take place [18]. Generally, ye’eliminte (C4A3S̅) is more reactive than accessory 

phases, such as C2S, C4AF and CA. Additional hydration products can form 

depending on the clinker composition, for example strätlingite (C2ASH8), calcium 

silicate hydrates or CAH10. Figure 6 shows the phase development of CSA cement – 

containing C2S – as a function of hydration time (calculated by thermodynamic 

modeling). 

CSA cements react faster than Portland cement and most of hydration heat 

evolution occurs between 2-24 h of hydration [18]. The space-filling ettringite needles 

in combination with the occurrence of monosulfate, aluminum hydroxide, calcium 

silicate hydrates and/or strätlingite, create a dense microstructure with low porosity. 
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Figure 6 - Phase development of a CSA cement (w/c = 0.8) as a function of hydration time 

(calculated by thermodynamic modeling) [34] 

 

The main advantage of CSA is that these cements use the same production 

process as Portland cement, meaning that CSA clinkers can be manufactured in 

conventional Portland cement plants using dry rotary kilns [1]. In addition, 

manufacturing CSA requires a lower firing temperature of 1,250-1,350°C, which is 

approximately 200°C lower than for Portland cement [18]. Therefore, CSA calcination 

requires 25% less energy compared to Portland cement manufacturing [1]. 

Furthermore, CSA clinker is easier to grind, saving even more energy [18]. 

The CSA clinker itself further reduces the carbon footprint of the material due 

to a release of only 0.216 g of CO2 per g of cementing phase when made from 

limestone, alumina and anhydrite [18]. That is significantly lower compared to 

Portland cement; Alite (C3S) releases 0.578 g of CO2 per g of cementing phase when 

made from calcite and silica. Overall reduction of CO2 emissions using CSA cement is 

about 20% compared to OPC [1]. 
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Other advantages are: high early and late strengths, low pH (low alkalinity) 

leading to better protection of steel reinforcement from corrosion, low porosity and 

therefore high impermeability, high resistance to freeze-thaw and against chemical 

attacks, and durability comparable to OPC [18]. Good strength development and 

acceptable setting times are achieved by rapid formation of ettringite and variable 

quantities of amorphous gel phase [1]. Also, ettringite and AFm phases are able to 

bind heavy metals and are therefore of interest for encapsulating hazardous wastes 

[18]. 

Major drawbacks of CSA cement are high costs of bauxite (as for CAC, see 

section 2.3.2.1) and higher tendency of shrinkage [18]. The theoretical chemical 

shrinkage of CSA cement is about 11 cm
3
/g cement after 28 days, whereas Portland 

cement experiences only 4-5 cm
3
/g cement. Furthermore, CSA is very sensitive to the 

water/cement (w/c) ratio and temperature [3]. It needs a relatively high w/c ratio of 

typically 0.60 for complete hydration [18]. However, generally a lower w/c of 0.30-

0.45 is used, leading to self-desiccation of the cement. Carbonation also depends on 

the w/c ratio and tends to be more rapid than in Portland cement. Consequence of 

carbonation is the decomposition of ettringite, causing moderate strength loss. 

Even though, production of CSA emits fewer CO2 emissions due to a lower 

limestone content and reduced fuel consumption, SO2 emissions actually increase and 

are significantly higher compared to Portland cement [3]. 

Pure CSA cement can be blended with other industrial by-products, such as fly 

ash, blast furnace slag, phophogypsum, and others, to reduce the impact of high 

bauxite costs [1]. Cement manufacturer Lafarge has developed a class of cement 
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clinkers called Belite-Calcium Sulfoaluminate Ferrite (BCSAF) clinker. BCSAF can 

also be mixed with gypsum and produced in the same way as Portland cement. Due to 

the reactivity of the CSA phase, BCSAF cements can have greater early strength 

compared to Portland-slag cement; they are an intermediate between Portland cements 

and CSA cements and have the potential to be produced in large volumes. 

Nevertheless, high bauxite costs may become less important in the future, if 

costs for emitting CO2 into the atmosphere in form of taxes increase [1]. Still, new 

codes and standards need to be establishment to use greater amounts of CSA cements. 

Although, use of CSA seems promising, Shi et al. [3] think that CSA cements do not 

have the potential to lead the transition to the cements of the future. 
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2.3.2.3 Alkali-activated cement (AAC) 

Alkali-activated cements (AACs) are not based on limestone or calcium 

silicate; instead their chemistry is based on an aluminum-silicon system [1]. The two 

main components of AAC are a cementitious component and an alkaline activator [3]. 

AAC cements are composed of sand, water, natural or synthetic pozzolans and the 

mentioned alkali activator, such as caustic alkalis or alkaline salts. The activators are 

usually mixed into the water before further mixing to create an alkaline activating 

solution [1]. Different industrial by-products and waste materials can be used as the 

cementitious respectively aluminosilicate component. The solid aluminosilicate 

component can be entirely waste-stream materials which can be used with limited 

further processing [18]. Materials being used include granulated blast furnace slag, 

granulated phosphorous slag, steel slag, coal fly ash, volcanic glass, zeolite, 

metakaolin, silica fume and non-ferrous slag [3]. 

Alkali activation is the key element of this kind of cement. It is the process of 

cement particles being initiated to react after the addition of an alkaline solution in the 

early stages of mixing [2]. This leads to the release of chemical constituents forming a 

new binding phase and prepares the surface of the particles for bonding. The alkaline 

solution decomposes the precursors into silicate and aluminum units which then re-

combine to produce AAC [1]. 

The alkali activation of aluminosilicates is completely different from the 

chemical hydration process in Portland cement. The main reaction product of OPC is a 

C-S-H-type calcium silicate gel (Cao·SiO2·nH2O), whereas the reaction product of 

AAC is an alkaline aluminosilicate hydrate, N-A-S-H gel (Na2O·Al2O3·2SiO2·nH2O) 

[3]. The chemical composition of the N-A-S-H gel depends on the starting material 
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(level of available calcium [18]), type of alkaline activator, and curing conditions [3]. 

The initial formed gel phase will continue to structurally rearrange through extended 

curing into a thermodynamically more favorable form with increased density [18]. 

High-temperature curing is not required for high strength development in AACs; 

alkali-activated binders can set and harden at room temperatures and below [18]. 

Figure 7 shows the schematic alkali-activation process, indicating that one or both gel 

types will be formed, depending on the system composition [35]. A mixture of both C-

(A)-S-H and N-A-S-H gel can be obtained through blending low- and high calcium 

precursors [18]. 

Figure 7 - Schematic alkali-activation reaction process [35] 

 

Advantages of AACs are: high strength and durability in aggressive 

environments as result of alkali-activated phases being more insoluble compared to 

OPC [2]. Also, the setting process is much faster compared to OPC and AAC has a 
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good heat and fire resistance. Furthermore, AAC has a low environmental impact. 

Substituting Portland cement in concrete for alkali-activated binders could reduce CO2 

emissions by roughly 80% [18]. 

The N-A-S-H gel contains low levels of chemically bound water, which brings 

both advantages (e.g. fire resistance) and disadvantages in performance [18]. One of 

the drawbacks of low levels of chemically bound water is high permeability. Other 

general disadvantages of AAC are: sensitivity of activation conditions to amount of 

added water, handling of concentrated caustic solutions, high costs of activators [18], 

as well as rapid setting time, shrinkage crack and efflorescence [36]. In addition, good 

durability of AAC is strongly dependent on adequate curing regimes and the 

development of a compact and refined pore structure. Carbonation can also be 

problematic because there is no reservoir of available calcium to provide a pH buffer. 

Furthermore, common superplasticizers are often degraded by highly alkaline 

activators and therefore do not enhance the flow behavior of alkali-activated binders. 

Shen et al. [36] propose adding reactive magnesia cement (see section 2.3.2.5) to 

prolong setting time and reduce shrinkage of alkali activated cement. 

Phair [2] criticizes a lack of characterization techniques, international 

standards, processing know-how and field data that constrain growth of AACs. He 

also argues that it is difficult to produce cement with consistent properties because 

chemical and physical properties of the waste or secondary material can vary. 

Therefore, Phair [2] calls for the development of test procedures of the constituents 

before producing the cement. Materials should be assessed for their reactivity prior to 

usage to determine the amount of required alkali. 
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AACs were initially discovered by Glukhovsky in the late 1960s, who 

developed a binder from calcium-free aluminosilicate (clay) and an alkaline metal 

solution, calling it “soil cement” [3]. Glukhovsky distinguished two groups of binders 

depending on the composition of the starting materials: group 1 and group 2. 

Group 1 describes so-called alkaline-binding systems (Me2O-Al2O3-SiO2-H2O) 

[3]. Cements of group 1 have recently began to acquire technological significance, 

although already in 1982 Davidovits managed to produce binders by mixing alkalis 

with a burnt mix of kaolinite, limestone, and dolomite. He called those binders 

geopolymers [3] because of their supposed greater network of inorganic polymers [2] 

respectively their similar structure as organic thermoset polymers [18]. Known 

trademarks are: Pyrament, Geopolycem and Geopolymite [3]. 

Glukhovsky’s second group classifies as alkali-alkaline-earth binding systems 

(Me2O-MO-Al2O3-SiO2-H2O) [3]. Examples of cements belonging to this group are: 

Scandinavian F-cements and alkali-activated blended cements. 

Alkali activated cements can be separated into five categories based on the 

composition of their cementitious components [3]. The categories are described in the 

following sections 2.3.2.3.1 to 2.3.2.3.4. 

2.3.2.3.1 Alkali-activated slag-based cement 

Alkali-activated slag-based cements were mostly researched in the 1980s and 

1990s and can be further distinguished into the following categories respectively 

cementitious systems [3]: 

 Alkali-activated blast furnace slag cement 

 Alkali-activated phosphorus slag cement 

 Alkali-activated blast furnace slag-fly ash 

 Alkali-activated blast furnace slag-steel slag 
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 Alkali-activated blast furnace slag-MGO 

 Alkali-activated blast furnace slag based multiple component cement 

The main hydration product formed in all categories is a C-S-H gel containing 

Al in its structure [3]. There is no free Ca(OH)2. 

Advantages of alkali-activated slag cement are: much higher strength than 

OPC, increased impermeability to water and chlorides (under moist conditions), more 

resistance to corrosive media and fire, and acceptable carbonation rates [3]. 

However, performance is governed by the used slag, the dosage of activators 

and – not surprisingly – the curing conditions [3]. 

Drawback of alkali-activated slag cements is that conventional water reducers 

or superplasticizers designed for Portland cements cannot be used [3]. These 

commercial admixtures have little or no effect on workability and setting times of AA 

slag cements. 

2.3.2.3.2 Alkali-activated pozzolan cement 

As already mentioned, Glukhovsky developed a hydraulic binder by alkali-

activation of aluminosilicate materials, calling it “soil cement”. To highlight 

similarities in the formation of the binder and natural geological materials, and 

because of the presence of natural mineral analogues in hydration products of the 

binder, Krivenko [37] named binders of this category “geocements”. Davidovits [38] 

called these binders “geopolymers” because of their polymeric structure although 

Phair [2] points out that the term “geopolymers” describes a wide variety of composite 

materials with limited restrictions on their composition and Al-Si content. Phair [2] 

criticizes that geopolymer are not polymers in the chemical sense and that the 3-

dimensional Al-Si network is not infinite and homogenously space filling, as it should 
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be for a glass or polymeric monolithic solid. Geochemists classify only geologically 

derived organic resins, amorphous organic matter, macromolecules or asphaltens as 

geopolymers [2]. 

Alkali-activated pozzolan cements differ from other pozzolanic cements 

through low hydrate formation, lower porosity, and usage of aluminosilicates as 

bonding phase [2]. 

Alkali-activated pozzolan cements can be classified into the following 

cementitious systems [3]: 

 Alkali-activated fly ash cement 

 Alkali-activated natural pozzolan cement 

 Alkali-activated metakaolin cement 

 Alkali-activated soda lime glass cement 

2.3.2.3.3 Alkali-activated lime-pozzolan cement/ slag cement 

Lime-pozzolan mortars and concretes were discovered around 7000 BC and 

were among the earliest building materials [3]. The Romans commonly used lime-

pozzolan cements for building aqueducts and bridges. However, the invention of 

Portland cement drastically reduced use of these cements because OPC sets faster and 

has higher early age strength. 

The main hydration reaction product of alkali-activated lime-pozzolan cements 

is a C-A-S-H gel, although in highly alkaline environments a mixture of C-S-H and N-

A-S-H gel is possible [3]. As alkali activators, only alkali hydroxides and alkali 

sulphates can be used. 

Advantages of lime-pozzolan cements are its low cost and long durability [3]. 

The addition of alkali activators (alkali sulphates) even improves setting and can 
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double or triple early age strength. However, those cements may still not be strong 

enough for structural uses. 

Alkali-activated lime-pozzolan cements/ slag cements can be classified into the 

following cementitious systems [3]: 

 Alkali-activated lime-natural pozzolan cement 

 Alkali-activated lime-fly ash cement 

 Alkali-activated lime-metakaolin cement 

 Alkali-activated lime-blast furnace slag cement 

2.3.2.3.4 Alkali-activated calcium aluminate blended cement 

Recent studies deal with the use of calcium aluminate cement (CAC) as source 

of reactive alumina in the alkali activation of aluminosilicates [3]. Aluminum is very 

important for the formation of hydrated N-A-S-H gel. Also, a certain amount of 

reactive aluminum is essential for strength development in the final product. 

Generally, materials containing reactive alumina are not as plentiful as materials 

containing high reactive silica. 

Requirements for activating aluminosilicates by alkalis are: high solubility of 

aluminosilicates in basic media and high availability of Al2O3 and SiO2 in the medium 

[3]. In the alkali-activation of materials with low reactive alumina but high reactive 

silica content, proportions of under 30% of CAC can be used as source of reactive Al. 

In this case, CAC does not undergo normal hydration, although it still forms 

metastable phases. The Al and Ca present in CAC are taken up into the N-A-S-H gel, 

which is the primary reaction product. In addition, depending on blend proportions 

and reaction conditions, small amounts of C-A-S-H gel can be obtained. 

Alkali-activated calcium aluminate blended cements can be classified into the 

following cementitious systems [3]: 
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 Alkali-activated metakaolin/ CAC 

 Alkali-activated pozzolan/ CAC 

 Alkali-activated fly ash/ CAC 

2.3.2.3.5 Alkali-activated Portland blended cement (hybrid cements) 

One common solution to reduce the carbon footprint of Portland cement is the 

use of supplementary cementitious materials (SCMs) as cement replacement [3]. Blast 

furnace slag, phosphorous slag, coal fly ash and natural pozzolans are widely used as 

SCMs. 

However, the use of SCMs in cement respectively concrete lengthens setting 

times and lowers early age strength [3]. The addition of alkaline activators can 

improve properties, such as early age strength, of blended Portland cement. Reason for 

improvement is the enhanced potential pozzolanicity of the SCMs. The compatibility 

of C-S-H gel and N-A-S-H gel could be important for future applications. Alkaline 

activation could serve as a link in transition from Portland cement to alternative 

cements. 

Nevertheless, more research is needed on understanding the effect of alkali 

activators on silicoaluminous materials and the relationship between reaction 

mechanisms [3]. Many aspects of the reactive process are still poorly understood. 

Alkali-activated Portland blended cements can be classified into the following 

cementitious systems [3]: 

 Alkali-activated Portland blast furnace slag cement 

 Alkali-activated Portland phosphorus slag cement 

 Alkali-activated Portland Fly ash cement 

 Alkali-activated Portland blast furnace slag-steel slag cement 

 Alkali-activated Portland blast furnace slag-fly ash cement 

 Alkali-activated multiple components blended cements 
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2.3.2.4 Supersulfated cement 

Supersulfated cements have promising potential for industrial applications 

[18]. They can be used for repair mortar applications, such as rendering, injection 

mortars and masonry mortars. Supersulfated cement binder contains only minor 

amounts of Portland cement clinker, which mainly functions as alkaline activator. 

Main constituents are 70-90% ground granulated blast furnace slag, 10-20% calcium 

sulfate and low quantities (<5%) of an alkaline activator, usually Portland cement 

clinker. Other possible alkaline activators are calcium hydroxide, potassium 

hydroxide, and sodium carbonate. Slag used for supersulfated cements should have 

high CaO, MgO and Al2O3 contents. 

Hydration of supersulfated cement starts with the dissolution of the slag 

promoted by the alkaline pore solution [18]. Then, dissolved aluminum, calcium and 

silicon ions react with the added calcium sulfate to form C-S-H phases, ettringite and 

minor hydration products, such as AFm phases or hydrotalcite. Generally, the 

hydration degree of Portland cement is greater than the hydration degree of slags. 

Samples of hydrated supersulfated cements with blastfurnace slags showed hydration 

degrees of 15-25% between 28 and 90 days. However, slag chemistry, slag fineness, 

and the kind and amount of alkaline activator used, strongly influence hydration 

reaction kinetics. Too high amount of alkaline activator has a significant negative 

impact on strength development and volume stability of the binder. 

Figure 8 shows the phase composition of hydrated supersulfated cement as a 

function of the hydration degree of the slag; calculated by thermodynamic modeling 

[39]. 
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Figure 8 - Phase composition of supersulfated slag as a function of slag dissolved [39] 

 

The microstructure of hydrated supersulfated cements is dominated by several 

µm large ettringite crystals with fibrous or plate-like C-S-H phases in between, 

occurring on the surface of the slag grains [18]. The ettringite crystals are responsible 

for setting and early age strength development. 

Main advantages of supersulfated cements are their very low heat of hydration 

and good durability in chemically aggressive environments due to low capillary 

porosity [18]. They have a good resistance against chlorides, seawater, high sulfate 

concentrations and frost. In addition, supersulfated cements are made almost entirely 

from waste materials. 

Nevertheless, the mixture composition is very sensitive to the chemical 

composition of the slag and too high amounts of alkaline activator decrease strength of 

the binder [18]. Other disadvantages are longer setting times compared to OPC, as 

well as slow and poor early age strength development. Furthermore, carbonation is an 

issue, especially in combination with insufficient curing. It causes decomposition of 

ettringite, leading to an increase in capillary porosity with the result of a dusting of the 
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concrete skin. Another drawback is the high cost and limited availability of the 

materials [1]. 

2.3.2.5 Magnesia cement 

Magnesia cement, also referred to as water-activated-magnesium-oxide based 

cement, reactive magnesium oxide cement or Sorel cement, is widely regarded as a 

promising low carbon cement [36]. It is considered ancient cement because cement 

similar to modern magnesia cement was used to build the Great Chinese Wall [1]. 

Also, it was commonly used in the Soviet Union [5]. 

Magnesia cement consists of normal hydraulic cement, such as Portland 

cement, reactive magnesium oxide, and a certain amount of pozzolans, for example fly 

ash [36]. The key constituent of magnesia cement is reactive magnesium oxide 

(MgO), also known as caustic calcined magnesia, caustic magnesia or CCM [1]. It is 

produced by burning magnesite in a kiln at relatively low temperatures below 750°C. 

Magnesite is an ore composed of 90% MgCO3 (magnesite), 7% SiO2 and 3% CaCO3. 

Hydration of reactive magnesia in magnesia cement leads to transformation 

into the main hydration product brucite (Mg(OH)2, magnesium hydroxide) [36]. 

Brucite forms a fibrous layered structure [36] and – when exposed to the atmosphere – 

carbonates to magnesite (MgCO3) [1]. 

Magnesia cement is considered an alternative to Portland cement because 

magnesium and calcium both belong to the same elemental group and have similar 

high abundances [36]. Therefore, magnesium-based cement could be a substitute for 

calcium-based Portland cement. 

Main advantage of magnesia cement is its permeability, which makes it useful 

for heat regulation and control in buildings, especially in warm climates [1]. That is 
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the reason for magnesia cement also being referred to as “living cement”. Imbabi et al. 

[1] claim that production of magnesia cement requires 30% less energy compared to 

OPC production. Therefore, magnesia cement is supposed to have a lower 

environmental impact due to burning reactive magnesia at lower temperatures and – 

more importantly – subsequent reabsorption of CO2 by the main hydration product 

magnesium hydroxide (brucite) [36]. 

Disadvantage is that magnesium oxide is not as available as calcium sourced 

from limestone making production more expensive [1]. Also, the addition of magnesia 

in Portland cement to produce magnesia cement, create a more complex material 

system which is more difficult to recycle or reuse [36]. 

However, Shen et al. [36] carried out a life cycle carbon emission study on 

magnesia cement in comparison with Portland cement. The results show that magnesia 

cement is not as environmentally friendly as it is widely believed and actually has a 

bigger life cycle carbon footprint than Portland cement. According to the authors of 

the study, magnesia cement production emits 79-395 kg/ton more direct CO2 than 

Portland cement production. In addition, thermodynamic analysis concludes that 

magnesia cement cannot absorb CO2 from the environment during its service life. On 

the other hand, Portland cement can absorb more than 250 kg CO2 per ton. Also, 

magnesia cement supposedly has a lower performance than OPC: reactive magnesia 

cement has a 3 times lower strength than Portland cement. Another issue is that the pH 

value of the magnesia cement paste is too low to protect steel reinforcement in 

concrete from corrosion. 
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Although it is true that burning temperatures for calcining magnesite in the kiln 

are much lower, the energy consumption of reactive magnesia production is even 

higher than energy consumption of Portland cement clinker [36]. Magnesium 

carbonate supposedly has a higher loss on ignition than calcium carbonate of Portland 

cement. This leads to usage of more raw materials and consequently emittance of 

more raw material CO2 than OPC. The above-mentioned study lists the following 

sources of CO2 emissions for magnesia cement: 1.1 tons of raw material CO2 and 0.5 

tons of fuel-derived CO2, adding up to 1.6 tons of CO2 per ton of produced reactive 

magnesia. 

Furthermore, there is no proof that magnesia cement reabsorbs environment 

CO2 [36]. Thermodynamic analysis shows that magnesia cement cannot absorb CO2, 

whereas at the same time, Portland cement can absorb approximately 250 kg of CO2 

per ton of cement. 

Therefore, Shen et al. [36] conclude that magnesia cement is not a promising 

low carbon cement. Decomposition of magnesite produced more CO2 emissions than 

decomposition of calcium carbonate of Portland cement. In addition, fuel-derived CO2 

emissions are higher. The overall carbon footprint of magnesia cement is bigger than 

the one of Portland cement. 

Shen et al. [36] claim that Portland cement blended with waste-derived supplementary 

cementitious materials (SCMs), for example fly ash or blast furnace slag, have greater 

environmental benefits and better performance than magnesia cement. The most 

promising low carbon cement is alkali activated cement (see section 2.3.2.3) because it 

is mainly made with industrial waste products and requires only a cement milling step 
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as preparation [3]. Reactive magnesia cement could contribute to improve alkali 

activated cement by prolonging setting time and reducing shrinkage when added [36]. 

Different companies have developed and merchandised types of magnesia 

cement, for example Grancrete (US Gypsum), TecEco cements (TecEco) and 

Novacem (Novacem Ltd.) [1]. Novacem is a blend of magnesium oxide and hydrated 

magnesium carbonates. It is composed of magnesium silicates mixed with water and 

special additives [36]. It claims to be a carbon negative product absorbing more CO2 

than it produces during its manufacturing process. Hydrated Novacem cement 

supposedly absorbs respectively emits -100 to +320 kg CO2 per ton of produced 

cement. Furthermore, strength development is supposed to be similar to OPC. 

Novacem is made of magnesium silicate burned at low temperatures (700°C), 

emitting less fuel-derived CO2 emissions and almost no raw material CO2 [36]. 

Therefore, it has a lower carbon footprint than Portland cement. Drawback of 

Novacem is that its hydration products cannot react rapidly with SCMs preventing 

development of a blended Portland cement with Novacem. 

The 2010 MIT Technology Review ranked Novacem to be among the top ten 

emerging technologies [1] [40]. Despite the material’s promise, the Novacem 

company could not attract investors and raise enough funds [30]. The company sold its 

intellectual property to Calix Limited, an Australian technology company, and was 

liquidated in September 2012. 

2.3.2.6 Sequestrated carbon cement 

A Californian company called Calera Corporation has developed a cement that 

mimics natural marine cement found in coral reefs [1]. When making their shells and 

reefs, coral take the calcium and magnesium in seawater and use it to form carbonates 
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at normal temperatures and pressures [41]. Calera cement is produced by filtering 

captured CO2 gas (e.g. from power or cement plants) through sea water. Calcium and 

magnesium from the sea water react with CO2 and produce cement [1]. Calera calls 

the production process “Mineralization by Aqueous Precipitation” [42]. Calera cement 

is of snow white color, air permeable and has higher strength than regular OPC [1]. 

The company is running a pilot plant, fueled with natural gas that produces up to two 

tons of cement from CO2 and industrial waste per day, sequestering about 400 kg of 

CO2 in each ton of the material [30]. California Department of Transport is interested 

in using Calera cement for building sidewalks respectively streets [1]. However, 

Calera Corporation meanwhile finds it more profitable to use the material to make 

fiber cement boards used in bathroom tile backing or exterior siding [30]. 

Other companies using similar ideas are Carbon Sciences and Carbon Sense 

Solutions [41]. Carbon Sciences plans to use flue gas and leftover water from mining 

operations, so-called mine slime, often containing magnesium and calcium, to create 

cements similar to Calera cement. Carbon Sense Solutions wants to accelerate the 

natural process of cement absorbing CO2 by exposing a fresh concrete batch to flue 

gas. 

2.3.2.7 Carbonate binders 

Carbonate binders, also calcium carbonate binders, could have a great impact 

on effectively reducing the carbon footprint of the cement and construction industry. 

Calcium carbonate binder can be produced through the reaction of a Ca(OH)2 source, 

e.g. hydrated lime, and CO2 [43]. At the same time, carbonate binders form over 

thousands of years in nature. Examples of naturally occurring calcium and/or 

magnesium carbonate binders are: limestone, beachrock, dolomite, magnesite, and 



 

71 

 

marble. These geological formations have a compacted, interlocked and well-

developed crystalline calcium and/or magnesium carbonate microstructure. Thus, 

these formations often have superior chemical and physical properties. Secondary 

carbonate rocks, formed by mineral trapping, have a high compressive and tensile 

strength, indicating that mineral carbonation can be used to form sustainable binders 

[44]. To develop artificial carbonate binders with similar microstructures, knowledge 

about key characteristics can be drawn from the geological evolution of carbonate 

binders in nature [43]. 

Carbonation of a cementitious material occurs naturally but the reaction is very 

slow due to a “low” concentration of CO2 in the atmosphere [45]. Exposing the 

material to pressurized CO2 leads to a faster CO2 uptake, microstructure densification 

and rapid compressive strength gain. 

By using industrial by-products, such as metallic iron powder waste (see 

section 2.3.2.7.2), subjecting it to a pressurized CO2 curing regime, and replacing 

Portland cement, the carbon footprint of cementitious materials could be significantly 

lowered [45]. 

2.3.2.7.1 Lime carbonation 

One way of obtaining artificial calcium carbonate is through the so-called lime 

carbonation process. Calcium carbonate is obtained through the reaction of calcium 

hydroxide, i.e. hydrated lime (Ca(OH)2), and CO2, as it occurs during carbonation of 

cement [43]. Cement hydrates (calcium hydroxide and calcium silicate hydrates) react 

with CO2 and form calcium carbonate that improves durability of the concrete. 
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The exothermic carbonation reaction starts with a CO2 diffusion process, 

followed by the formation of calcium carbonate (CaCO3) [43]. The chemical reaction 

for carbonation of hydrated lime is as follows: 

Ca(OH)2 + CO2 → CaCO3 + H2O + 74 KJ 

The presence of water is important to the carbonation process because it occurs 

through a dissolution-precipitation mechanism [43]. However, the diffusion of CO2 in 

water is much slower than in air. Therefore, cement saturated with water slows down 

the carbonation reaction. Initial porosity and water content influence the rate of CO2 

diffusion because the newly formed CaCO3 is accommodated in the internal pores, 

resulting in reduced permeability of the material. In addition, the formation of CaCO3 

depends on the amount and solubility of available Ca(OH)2 and on the CO2 

concentration. Increasing CO2 concentration and pressure increases the dissolution of 

CO2 in water and therefore increases the amount of Ca(OH)2 conversion and depth of 

carbonation. However, both the rate of carbonate formation and CO2 diffusion 

decrease with increasing compaction pressure due to decreasing porosity of the 

hydrated lime. The solubility of Ca(OH)2 and CO2 in water decreases with increasing 

temperature. Other factors, such as relative humidity and thickness of the specimen, 

also influence the rate of carbonation of hydrated lime. Nonetheless, it should be 

pointed out that not the amount of Ca(OH)2 controls the strength of the binder but 

rather the morphology (crystalline structure). 

2.3.2.7.2 Iron carbonation 

Das et al. [44] developed a sustainable novel binder that utilizes the chemistry 

of so-called iron carbonation that resorts to the essential idea of basic mineral 

carbonation. However, Das et al. [44] take this concept one step further by carbonating 
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metallic waste iron powder instead of the already mentioned hydrated lime (see 

section 2.3.2.7.1). 

Subject of the present paper is to test the performance of this novel sustainable 

concrete under extreme dynamic loading conditions in a so-called split Hopkinson 

pressure bar system to indicate durability under extreme dynamic stresses.  

Determination of the dynamic stress-strain curve of a material is one of the 

objectives of an SHPB test [46]. From the stress-strain curve, mechanical properties, 

such as dynamic failure strength and dynamic Young’s modulus, can be derived. 

For more detailed information about Iron Carbonate please refer to chapter 3. 

For more detailed information about the split Hopkinson pressure bar experiment 

please refer to chapter 4. 

2.3.2.7.3 Portland cement-fly ash-magnesia blend carbonation 

Mo et al. [45] produced a supposedly low-carbon cementitious binder by 

blending Portland cement with fly ash (see section 2.3.1.1) and reactive magnesia (see 

section 2.3.2.5), and exposing it to a pressurized CO2 curing regime to accelerate 

carbonation [45]. Carbonating the MgO-containing cement blend not only decrease 

CO2 emissions but also enhances the microstructure of the carbonate products (CaCO3 

and/or (Ca, MgCO3) and improves mechanical properties. 

Up to 60% of Portland cement was replaced by fly ash and reactive MgO [45]. 

According to the authors of the study, the combination of 20% MgO and 40% fly ash 

has the lowest carbon footprint (562.8 kg CO2 per ton of cement blend). CO2 

emissions of the cement paste decrease with increasing content of fly ash but increase 

with increasing MgO content. 
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2.3.2.8 Other types of cementitious systems 

Besides the more common and promising alternative cements presented in this 

report, numerous other alternative binders exist but are only produced in small 

quantities. These alternative cements will be briefly described in this section. 

One new hydraulic binder is an improved version of supersulfated cement (see 

section 2.3.2.4) called “0 per cent Portland cement binder” [5]. This type of cement 

uses no Portland cement but instead anhydrite and some alkali rich cement kiln dust 

(CKD). The binding properties rely on the formation of massive and very stable 

ettringite crystals. 

Another new type of hydraulic binder is a mixture of Portland cement and 

CalCiFrit (High Fluoride and aluminosilicates) that is obtained by processing spent 

pot liner (SPL) from the aluminum industry [5]. Pots are electrolytic cells in which 

aluminum is extracted from alumina. Those cells have to be replaced every 6 to 8 

years. They are composed of refractory bricks, graphite, cryolite and usually contain 

SiO2, Al2O3, CaO, Na2O and F. However, SPLs are classified as hazardous waste 

because they also contain cyanids. The company NovaPb has developed a process to 

transform SPL into non-hazardous slag or binder that can be blended with Portland 

cement. 

A ternary blended cement that contains two industrial by-products is also a 

new type of binder. It is composed of 70% Portland cement, 20% CalCiFrit, 5% silica 

fume and 5% gypsum [5]. 

Numerous cements have been developed but are only used in very small 

quantities. Those cementitious materials include – amongst others – cement based on: 

zinc oxychloride, aluminum oxychloride, silicophosphate, sodium metaphosphate, 
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calcium phosphate, zinc phosphate, magnesium phosphate, ammonium phosphate and 

magnesia, ammonium tripolyphosphate and magnesia, aluminosilicates and magnesia 

[5]. 

Alinite is also an alternative cement that can substitute up to 20% of Portland 

cement [5]. It is produced by introducing calcium chloride as a source of lime in the 

raw meal. Main advantage of alinite is its relatively low processing temperature 

(1150°C) compared to OPC. 

Another alternative cement similar to alinite is so-called belinite [5]. It is 

produced by introducing magnesia in the raw meal. 
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2.4 Specifying alternative binders 

There are two different types of specifications for building materials, namely 

prescriptive and performance-based specifications [18]. Other than performance-based 

regulations, prescriptive standards prevent the use of alternative, non-Portland cement 

binders. However, both types of regulations are included within the ASTM standards. 

ASTM C150 has prescriptive standards, whereas ASTM C1157 has performance-

based standards but is not widely accepted among state regulatory authorities.  

The RILEM Technical Committee 224-AAM develops international standards 

for non-Portland cements with a focus on alkali-activated binders [18]. The 

Committee suggests using performance instead of chemistry as primary criterion for 

acceptance of a binder type. 

Composition-based (prescriptive) standard mix specifications should be 

replaced by performance-based specifications [2]. Challenge for introducing such 

standards is the development of testing regimes to test and validate a wide range of 

binders [5], often very different from common OPC binders. Aïtcin [5] calls for tests 

being “restrictive enough to ensure good performance of materials when they are 

mixed and placed under less-controlled real-world conditions”. 
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2.5 Preliminary Summary and Conclusion 

The Portland cement production is responsible for roughly 3% of the global 

anthropogenic greenhouse gas emissions and 5-7% of all anthropogenic CO2 

emissions, making the cement industry a heavy polluter. Many different approaches 

try to make cement manufacture more sustainable and reduce the carbon footprint of 

OPC. 

The International Energy Agency (IEA) [26] developed a technology roadmap 

for the cement industry and pointed out ways of CO2 emission reduction. According to 

them, the following actions should be taken to reduce the carbon footprint of cement: 

improving thermal and electric efficiency of the cement plant, use of industrial process 

wastes (use of alternative, less carbon intensive fuels in the production process and 

substitution of carbon-intensive clinker with low-carbon materials having cementitious 

properties), and use of carbon capture and storage technologies. 

The existing technologies (fuel efficiency, alternative fuels, clinker 

substitution) would enable reaching only half of the IEA’s CO2 reduction goal by 

2050. To fulfil the other half of the reduction, new CCS-technologies, capturing and 

storing CO2 emissions from the production process, are necessary. By now, the most 

powerful approach, according to the IEA, is the use of alternative fuels. 

Other general approaches for CO2 reduction are: use of chemical admixtures, 

recycling concrete, and nanoengineering. The latter focuses on increasing the strength 

of a cement-based concrete on the nanoscale level through increased packing-density. 

An increase in strength would result in a decrease of its environmental impact because 

less material would be needed. 



 

78 

 

The modification of the cement recipe itself is another major concept for 

improved sustainability. Main possibilities are blending OPC with so-called 

supplementary cementitious materials (SCMs), thus reducing the amount of OPC 

clinker, or developing new, alternative binders that can be manufactured at lower kiln 

temperatures. 

SCMs are usually industrial by-products that would be landfilled otherwise. 

Common SCMs for OPC-based blended cement include fly ash, ground granulated 

blast furnace slag (GGBS), ground limestone, silica fume, metakaolin and others. 

Silica- or alumino-silicate-rich SCMs react with calcium hydroxide (CH) from OPC to 

form C-S-H phases. The carbon footprint of blended cement is much lower than of 

pure OPC due to lower processing temperatures of most SCMs and reduced OPC 

clinker content. 

Alternative binders include calcium aluminate cement (CAC), calcium 

sulfoaluminate cement (CSA), alkali-activated cement (AAC), supersulfated cement, 

magnesia cement, sequestrated carbon cement, and carbonate binders.  

CAC contains primarily monocalcium aluminate (CA) and like Portland 

cement, it is made in a rotary kiln. But instead of the typical calcium silicates found in 

clay, bauxite is used for mixing with limestone. CAC has many advantages over 

Portland Cement (PC): rapid hardening respectively strength gain and enhanced 

durability through better resistance to sulfate attack, alkali-silica reaction and abrasion 

(denser microstructure). In addition, CAC production has a lower carbon footprint 

than PC production. Major drawback and challenge of CAC is the inevitable 

conversion process that occurs in hydrated CAC over time: metastable hydrates 
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convert to stable hydrates, increasing the porosity of the microstructure and 

consistently reduce strength of the material. 

CSA contains ye’eliminte (C4A3S̅) as major component and cementitious 

phase. They can be manufactured in conventional Portland cement plants. However, 

manufacturing CSA requires less heat and therefore 25% less energy because CSA 

calcination needs lower temperatures compared to OPC and reduces CO2 emissions 

about 20%. Good strength development, durability and acceptable setting times are 

achieved by rapid formation of ettringite and variable quantities of amorphous gel 

phase. Major drawbacks of CSA cement are high costs of bauxite, higher tendency of 

shrinkage and increased SO2 emissions. 

AAC is not based on limestone or calcium silicate, instead their chemistry is 

based on an aluminum-silicon system. The two main components of AAC are a 

cementitious component and an alkaline activator. Different industrial by-products and 

waste materials, e.g. granulated blast furnace slag, fly ash, silica fume and metakaolin, 

can be used as the cementitious respectively aluminosilicate component. Alkali 

activation is the key element of this kind of cement. The alkaline solution decomposes 

the precursors into silicate and aluminum units which then re-combine to produce an 

alkaline aluminosilicate hydrate, N-A-S-H gel.  

Advantages of AACs are: high strength, durability in aggressive environments, 

faster setting process, good heat and fire resistance, and a low environmental impact. 

Substituting Portland cement in concrete for alkali-activated binders could reduce CO2 

emissions by roughly 80%. Drawbacks are high permeability, sensitivity of activation 

conditions and possible degradation of common superplasticizers. 
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Supersulfated cement contains ground granulated blast furnace slag as main 

constituents, calcium sulfate and low quantities (<5%) of an alkaline activator, usually 

Portland cement clinker. By the alkaline pore solution dissolved aluminum, calcium 

and silicon ions react with the added calcium sulfate to form C-S-H phases, ettringite 

and minor hydration products.  

Main advantages of supersulfated cements are their very low heat of hydration, 

good durability in chemically aggressive environments and good resistance against 

chlorides, seawater, high sulfate concentrations. In addition, supersulfated cements are 

made almost entirely from waste materials. Drawback is sensitivity of the mixture to 

chemical composition of the slag and to too high amounts of alkaline activator. Other 

disadvantages are longer setting times compared to OPC, and slow and poor early age 

strength development, as well as carbonation causing decomposition of ettringite. 

Magnesia cement consists of normal hydraulic cement, such as Portland 

cement, reactive magnesium oxide, and a certain amount of pozzolans, for example fly 

ash. The key constituent is reactive magnesium oxide (MgO). Hydration of reactive 

magnesia leads to transformation into the main hydration product brucite (Mg(OH)2) 

which carbonates to magnesite (MgCO3). Main advantage of magnesia cement is its 

permeability and a supposedly lower environmental impact due to burning reactive 

magnesia at lower temperatures and – more importantly – subsequent reabsorption of 

CO2 by the main hydration product brucite. Drawback is the cost of magnesium oxide. 

However, a life cycle carbon emission study shows that magnesia cement is 

not as environmentally friendly as it is widely believed and actually has a bigger life 
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cycle carbon footprint than Portland cement. Furthermore, the study claims that there 

is no proof that magnesia cement reabsorbs environment CO2. 

Calcium carbonate binder can be produced through the reaction of a Ca(OH)2 

source, e.g. hydrated lime, and CO2, as it occurs during natural carbonation of cement. 

Exposing the material to an artificial pressurized CO2 environment leads to a faster 

CO2 uptake, microstructure densification and rapid compressive strength gain. Main 

reaction product is calcium carbonate that reduces permeability and thus improves 

durability of concrete. 

The iron carbonated binder is produced through mixing metallic iron powder 

waste containing metallic iron together with fly ash, limestone powder, metakaolin 

and an organic reducing agent, to react with aqueous CO2 in a pressurized curing 

regime. The iron carbonation reaction results in the formation of complex iron 

carbonates that have binding capabilities and mechanical properties comparable to 

OPC. The use of iron carbonated binders has strong environmental benefits because it 

consumes and sequestrates CO2 from GHG-emitting industries. 

This chapter 2 covers many interesting and promising approaches to reduce the 

carbon footprint of the cement production. So far, the most promising approaches 

seem to be increased use of SCMs like fly ash and the use of alkali-activated binders, 

as well as carbonate binders such as Iron Carbonate. In addition, understanding the 

nanostructure and increasing the packing density through nanoengineering and 

adjusted Ca/Si molar ratio, seems promising. Nonetheless, the author thinks that there 

is not just one way to go. In fact, a combination of improved cement plant efficiency, 

use of alternative fuels, use of carbon capture and storage technologies, together with 
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the use of SCMs and/or alkali-activated and carbonate binders, supported by findings 

of the nanoengineering concept, could be the solution for lowering the overall carbon 

footprint of cement production. In addition, primary criterion for specifying binders 

should change from a prescriptive towards a performance-based standard to facilitate 

the development and acceptance of new alternative binders such as Iron Carbonate. 

For that, a rethinking by many protagonists is needed, such as customers, 

cement producers, cement lobbies, governments, and many more. Understandably, 

cement producers fear high investments and pushing off their main and best-selling 

product for unproven alternative binders. Therefore, the individual governments and 

the whole international community must react by introducing stricter CO2 and GHG 

emittance rights, while at the same time offering incentives for production of 

sustainable binders. The author realizes that this will probably not happen in the near 

future due to egoistic interests of the individual governments, i.e. the U.S. 

government, that do not want restrict economic growth in their own countries. Also, 

many heavy polluters are developing countries such as China and India, for whom 

protecting the environment is not their priority. The author also wants to point out that 

protecting the environment is not so much about a potential climate change but about 

preserving the world we know for following generations and simply respecting our 

surrounding natural environment. 
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3 Iron Carbonate 

3.1 Introduction 

Das et al. [44] developed a novel carbon-negative sustainable binder that 

utilizes the chemistry of iron carbonation. Metallic iron powder waste is produced as a 

by-product during steel manufacturing in electric arc furnaces and shot-blasting 

operations of structural steel sections and generally landfilled at great economic and 

environmental costs. Several million tons of iron powder waste are landfilled all over 

the world nowadays, as it seems not economically feasible – yet – to retrieve iron from 

the disposed dust. 

The use of iron carbonated binders has strong environmental benefits because 

it consumes and (chemically) sequestrates CO2 from GHG-emitting industries [44]. 

The sequestration is permanent as opposed to often leaking physical trapping methods. 

Iron Carbonate could replace cementitious binders and thus reduce the overall 

production of Portland cement, resulting in a significant reduction of the carbon 

footprint of the cement and building industry. At the same time, iron carbonated 

binders have good mechanical properties similar to OPC. 

Drawback of the material is the slow rate of reaction product formation – 

which could potentially be solved by using organic dissolution agents that enhance the 

reaction rate [44]. Another disadvantage is the sensitivity of the reaction products to 

the starting material composition. 

Objective of this thesis is the testing of Iron Carbonate (IC) specimens in a 

split Hopkinson pressure bar system to simulate extreme dynamic loading conditions. 

Determination of the dynamic stress-strain curve of a material is one of the goals of an 
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SHPB test [46]. From the stress-strain curve, mechanical properties, such as dynamic 

failure strength and dynamic Young’s modulus, can be derived. 

The IC samples were manufactured by Dr. David Stone, a former colleague of 

Dr. Das at Arizona State University, and his company Iron Shell LLC, Tucson, AZ. 

3.2 Composition and carbonation reaction 

The iron powder consists of 88% Fe, around 10% of O and small quantities Cu, 

Mn and Ca [44]. Nonetheless, carbonation efficiency and mechanical properties are 

very sensitive to the starting material composition. Silica- and alumina-containing 

additives that are also common to Portland cement concrete, such as Class F fly ash 

(ASTM C618 conform), limestone powder (ASTM C568 conform) and metakaolin 

(ASTM C618 conform), facilitate iron dissolution and beneficially effect later-age 

properties. Thereby, fly ash is a source of silica, limestone powder provides nucleation 

sites, and metakaolin provides cohesiveness and keeps the consistency of the mixture. 

Metakaolin also minimizes the water demand. However, a too high content of 

metakaolin decreases compressive strength. It should be pointed out that iron powder 

is coarser than all the other components (see Figure 9). 

To produce the binder, all constituents (iron powder, fly ash, limestone 

powder, metakaolin, sodium carbonate, sodium bicarbonate, powdered organic 

reducing agent, (weak organic acid)) are dry mixed together before water is added 

[44]. It is important to note that water is added to obtain a uniform cohesive mixture 

and to ensure workability. Water is reduced in the chemical reactions but does not 

form part of the carbonated binder because the carbonation process of iron does not 

incorporate water. 
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Figure 9 - Particle size distribution of metallic iron powder, OPC, fly ash, metakaolin, and 

limestone powder [47] 

 

After Iron Carbonate is filled into molds, the specimens are demolded 

immediately and exposed to a pressurized CO2 regime, e.g. a plastic bag filled with 

100% CO2 that leads to slow external diffusion [44]. Exposing the material to CO2 

results in a faster CO2 uptake, microstructure densification and rapid compressive 

strength gain [45]. The carbonation of iron particles results in the formation of 

complex iron carbonates (FeCO3) that have binding capabilities and mechanical 

properties comparable to OPC [44]. The chemical reaction of metallic iron is as 

follows: 

Fe + CO2 + H2O → FeCO3 + H2 ↑ 

During the synthesis of Iron Carbonate, only a small fraction of the metallic 

iron powder is carbonated, which results in the presence of large amounts of residual 

metallic powder in the microstructure that increases the toughness of the binder 

compared to other OPC-based binders [48]. 
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3.3 Microstructure 

The microstructure is heterogenous and contains angular iron particles, 

spherical fly ash particles and other porous reaction products [49]. The dense reaction 

products (grey phases in the microstructure (see Figure 10)) are formed from the 

carbonation of smaller iron particles and their complexation with the other minor 

ingredients in the mixture [48]. 

Figure 10 - Microstructure of iron-based binder: 

(a) lower magnification (150x) image (scale bar corresponds to 100 μm); (b) higher magnification 

(1200x) image showing an elongated iron particle and the surrounding regions (scale bar 

corresponds to 10 μm); and (c) showing dissolution of Fe
+2

 from iron particle into the surrounding 

matrix (4300x) (scale bar corresponds to 1 μm) [48] 
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The final carbonated binder reaction product is an iron-oxalate-carbonate 

complex incorporating silica. It contains iron, calcium, aluminum, and silicon. Higher 

carbonation duration results in more reaction product formation and increased density 

because the reaction products fill the pores of the paste. The reaction products are 

passive and stable when exposed to air and do not deteriorate.  

This research study takes a step further to enhance the carbonation efficiency 

by the following two approaches: (i) supplementing the existing external carbonation 

with a suitable internal carbonation process at the binder scale (sodium carbonate 

(Na2CO3), sodium bicarbonate (NaHCO3) and organic acid trigger a CO2 releasing 

chemical reaction within the binder itself); (ii) tuning the porosity at concrete scale by 

using optimal aggregate gradation in order to provide easier access to CO2 into the 

material structure. It is anticipated that such an effort will enable formation of a 

uniform material structure in large-scale structural components and develop 

opportunities where an efficient high-performance multifunctional material (akin to 

Portland cement concretes) emerges to satisfy the growing demand for ecologically 

friendly construction materials. 

3.4 Material properties 

Material properties of Iron Carbonate are equal or better in comparison to 

conventional, non-sustainable OPC-based binders. The metallic particulate phase 

incorporated in the binders’ microstructure increases the toughness of Iron Carbonate 

because of the energy dissipation by plastic deformation of the unreacted and 

elongated iron particles which are strong and ductile [48]. In addition, the matrix 

contains other additives including harder fly ash particles, softer limestone particles, 
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and ductile clayey phases which significantly influence the overall fracture 

performance of the novel sustainable binder. 

Iron Carbonate binders can attain compressive strengths between 35–40 MPa 

which is the upper limit for achievable compressive strength of OPC-based concretes 

[47]. However, the compressive strength could be partially restricted by the presence 

of higher amounts of larger pores (average size > 0.2 μm) even though the total pore 

volumes are comparable to OPC-based binders [48]. Earlier tests with less refined 

mixtures and curing methods already indicated an enhanced compressive strength 

behavior (see Figure 11). 

Figure 11 - Compressive strengths of the iron carbonate mixtures (exposure condition: 3 days in 

CO2 and 2 days in air) [49] 

 

According to Dr. Das, tensile strength of Iron Carbonate is 4–6 MPa (see 

Figure 12). Unreacted iron particles of the Iron Carbonate are surrounded by 

carbonate reaction products and form a strong ductile matrix phase (see Figure 10, 

section 3.2) that could be responsible for the enhanced tensile strength [47]. 
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Figure 12 - Comparison between OPC and iron carbonate binder (control and fiber reinf.): (a) 

tensile strength, (b) ultimate strain; (c) tensile modulus [47] 

 

 

Iron Carbonate binders also have demonstrated to have four to six times higher 

flexural strengths than OPC-based binders (see Figure 13) [48]. This can be attributed 

to the combination of the strong carbonate matrix in combination with the presence of 

unreacted iron particles in the microstructure. 

Unreacted iron particles also result in a significantly higher peak load and 

improved post peak response compared to OPC binders [48]. Both the peak load and 

the residual load are significantly higher for the iron carbonate binder, with and 
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without fiber reinforcement. Furthermore, Iron Carbonate binders show an enhanced 

fracture performance due to the beneficial effects of the elastic, partially reacted or 

unreacted metallic particles on crack bridging and deflection [47]. Iron Carbonate has 

significantly higher crack growth resistance than OPC binders has also been shown to 

provide significantly higher total fracture energy than OPC. The additional 

incorporation of fibers in the microstructure improves the resistance even more. 

Figure 13 - Comparison of flexural strength of 6-day carbonated iron carbonate sample and OPC 

paste after 28 days for different fiber dosage (the error bars represent one standard deviation of 

flexural strength obtained from four replicate specimens) [48] 

 

Further material properties, provided by Dr. Das, include a young’s modulus of 

34 GPa. The higher value of the elastic modulus in comparison to OPC-concrete could 

be due to the presence of metallic iron particulate inclusions [47]. 

Tensile strain at failure of Iron Carbonate is 0.00035, according to Dr. Das. 

Controlled compressive strain tests have not been performed yet. Compressive strain 

at failure of ordinary concrete is 0.005 which could serve as a guiding value for Iron 

Carbonate; Dr. Das and the author expect an enhanced performance under 

compression of the Iron Carbonate binder. 
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Objective of the present paper is to carry out a traditional analysis of a split 

Hopkinson pressure bar (SHPB) experiment on Iron Carbonate specimens. Analysis of 

Strain gage output signals using a MATLAB program [50] will eventually provide 

stress, strain-rate and strain in the tested specimen under dynamic compression [51]. 

3.5 Preliminary summary 

Iron Carbonate is a novel carbon-negative sustainable binder that is made from 

metallic iron powder waste and utilizes the chemistry of iron carbonation. To produce 

the binder, usually landfilled iron powder and other constituents (fly ash, limestone 

powder, metakaolin, sodium carbonate, sodium bicarbonate, powdered organic 

reducing agent, and water) are mixed together and exposed to a pressurized CO2 

regime that leads to slow external diffusion. Exposing the material to CO2 results in a 

faster CO2 uptake, microstructure densification and rapid compressive strength gain. 

The carbonation of iron particles results in the formation of complex iron carbonates 

(FeCO3) that have binding capabilities and mechanical properties comparable or better 

compared to OPC. The metallic particulate phase incorporated in the binders’ 

microstructure increases the toughness of Iron Carbonate because of the energy 

dissipation by plastic deformation of the unreacted and elongated iron particles which 

are strong and ductile. In addition, the matrix contains other additives including harder 

fly ash particles, softer limestone particles, and ductile clayey phases which 

significantly influence the overall fracture performance of the novel sustainable 

binder. 
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4 Dynamic concrete tests using split Hopkinson bar systems 

4.1 Importance of understanding dynamic strain-rate effects on 

concrete 

Material properties such as yield stress or ultimate strength are generally 

obtained with standardized testing procedures under quasi-static loading conditions 

[52]. However, understanding the behavior of concrete at high strain rates is important 

for a wide range of both military and civilian applications [51]. Analyzing the 

response of concrete to dynamic loading, i.e. impact or explosive loading, is essential 

for destruction of military targets and for effective protection of defense structures, 

such as protective concrete shells of nuclear power plants or protecting public 

buildings from terrorist attacks. It is important for the design of airport runways that 

have to withstand repeated dynamic loads during aircraft takeoff and landing. Also, 

dynamic loading occurs from natural hazards such as tornadoes, earthquakes and 

ocean waves. Therefore, the characterization of concrete behavior under impact and 

impulse loading is a prerequisite for the design of concrete structures [53]. 

Dynamic loads or forces are the forces necessary to change respectively 

accelerate the motion of a body [54]. A suddenly applied load is referred to as impact 

load. A system under impact loading will vibrate until equilibrium is established if 

there is elastic action. 

The material behavior under highly dynamic conditions is significantly 

different from material response under quasi-static conditions [51]. This is mainly due 

to strain-rate dependence of the material response and high levels of hydrostatic 

pressure. In order to understand and model concrete structure damage from high-

velocity impact and blast loads, it is necessary to understand the strain rate effects on 
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cement-based materials [53]. The split Hopkinson (Kolsky) pressure bar (SHPB) 

system can be used to test dynamic compressive mechanical response and failure 

behavior of cement paste and concrete under high strain rates between 10
2
 s

-1
 to 10

4
 s

-1
 

(ε/s) [51] [52]. 

It should be pointed out that experimental studies on the dynamic behavior of 

cement-based materials at high strain rates are quite limited [53]. The accurate 

characterization of the dynamic behavior under valid testing conditions still faces 

many difficulties. 

Conventional concrete is commonly made with ordinary Portland cement and 

has two major issues that make it unsustainable: a high carbon footprint and restricted 

durability under extreme dynamic loading conditions that makes frequent repair and 

replacement necessary. 

The performance of novel concrete, made from industrial iron powder waste, 

under extreme dynamic loading conditions, will potentially establish exceptional 

dynamic load mitigation characteristics for the carbon-negative sustainable binder 

under extreme combined environments. Enhanced durability of the novel sustainable 

concrete through better resistance against dynamic loading would prolong its lifetime 

and make it even more sustainable. 
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4.2 History of split Hopkinson pressure bar system 

In 1872, John Hopkinson investigated the propagation of stress waves in iron 

wires [46]. Later (1914 [55]), his son Bertram Hopkinson invented a pressure bar 

system to obtain the pressure-time curve with the dynamic load produced by 

detonation [56]. However, this measurement technique was limited and its results were 

not accurate [46]. In 1949, Kolsky developed the so-called split bar system, consisting 

of a separated incident and transmitter bar with the specimen in between and 

condenser microphones [57]. Therefore, the split Hopkinson pressure bar (SHPB) is 

also referred to as Kolsky bar. In 1954, the system was modified by a striker bar to 

produce repeatable impact stress waves in the incident bar and by adopting strain 

gauges for measuring stress waves [58]. The SHPB system has been continually 

improved for increased accuracy for different materials under high strain loading [46]. 

Originally, the SHPB was designed for dynamic compression testing of metals but 

SHPB tests for tensions and torsion have been subsequently developed [59]. All 

versions are based on the same principle and differentiate only in loading and 

specimen gripping methods [52]. 
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4.3 Basic principle for split Hopkinson (Kolsky) bar 

Figure 14 - Split Hopkinson pressure bar test system [53] 

 

Dynamic tests are conducted using the split Hopkinson pressure bar (SHPB) 

respectively Kolsky bar systems [46]. The experimental arrangement involves 

mechanical and measurement systems [55]. A loading device (gas gun) and three 

aluminum or steel bars, aligned along a single axis [55], are included into the 

mechanical system: a striker bar, an incident bar, and a transmitted bar, as shown in 

Figure 14 [46]. The design of the bars leads to stresses imposed during impact of the 

striker bar remaining within the elastic limit throughout the test [55]. Steel bars should 

be used for harder materials [60] like concrete. Ideally the bar material should be 

linearly elastic with a high yield strength because the stress waves inside the bars are 

measured by surface strains [52]. The striker has the same cross-section and ideally 

the same material as the incident and transmission bars [52]. 

The thin and usually cylindrical specimen is placed between the incident and 

transmitter bars aligned with the common axis of the bar system. It should be noted 

that the diameter of the specimen after the test should be smaller than the diameter of 

the pressure bars [60]. To test the specimen under high strain rates, the axially aligned 

gas gun launches the striker bar inside a long gun barrel toward the incident bar at a 
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known velocity; the striker is launched by a sudden release of compressed air or light 

gas in a pressure storage vessel [52]. The impact of the striker bar on the free end of 

the incident bar induces a stress pulse [53] respectively a longitudinal compressive 

wave propagating in both directions [46], the amplitude depending on the velocity of 

the bullet [53]. The speed of the striker can be controlled and varied by changing the 

pressure of the compressed gas in the tank or changing the depth of the striker inside 

the gun barrel [52]. The impact velocity relates to the pulse’s stress level; the length of 

the pulse depends on the length of the striker bar [55]. The velocity of the striker can 

be measured optically or magnetically just before impact [52]. 

Figure 15 - SHPB system; x-t diagram of stress wave propagation in SHPB and typical strain gage 

signals [61] 

 

Due to the impact of the striker bar an incident pulse, a reflected pulse and a 

transmitted pulse are generated. At the free end of the striker bar, the left-propagating 

wave is fully released and forms an incident negative strain (compression) pulse εi (see 

Figure 15) [46]. The length and longitudinal wave velocity in the striker influence the 
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duration of εi. When reaching the bar-specimen interface, part of the incident wave is 

reflected as the reflected wave εr [46], creating a tensile pulse [53]. In order to avoid 

overlapping between the incident and reflected pulses, the incident bar should be at 

least twice as long as the striker [52]. Back and forth reflection (inside the specimen) 

is due to the wave impedance mismatch between the specimen and the bars [52, 53]. 

The remaining transmitted wave εt passes through the specimen to the transmitted bar 

[46] as a compression pulse [53]. Gradually the reflections build up the stress level in 

the specimen and compress it [52]. However, stress wave propagation in the specimen 

is usually ignored by assuming equilibrated stress in the sample because the specimens 

used in the experiments are very thin [52].  

The mechanical energy of a stress wave propagating in a long rod or bar takes 

the form of the strain energy through bar deformation and the kinetic energy through 

bar motion [52]. Figure 16 shows the typical pulse profiles. 

Figure 16 - Typical pulse profiles [61] 
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The measurement system consists of strain gages, a dynamic signal 

conditioning amplifier and a signal acquisition system [55]. To record the stress wave 

pulse, strain gauges are usually affixed symmetrically on the incident and transmitted 

bar surface [46]. It should be noted that the strain gages location should be far from 

the bar ends (at least 10 bar diameters from both ends) [52]. 

The strain gage signals are conditioned with a Wheatstone bridge [52] and/or 

half bridge and transferred to a dynamic signal conditioning amplifier and then to a PC 

system or oscilloscope [55]. The signal amplifier is necessary to accurately record the 

low-amplitude voltage output (usually in the order of millivolts) with an oscilloscope 

[52]. To record the short signal, both the amplifier and the oscilloscope should have a 

sufficient high frequency response with a minimum of 100 KHz [52]. 

Determination of the dynamic stress-strain curve of a material is one of the 

objectives of an SHPB test [46]. From the stress-strain curve, mechanical properties, 

such as dynamic failure strength and dynamic Young’s modulus, can be derived. 

However, SHPB tests do not simulate high hydrostatic pressures that occur 

during impact and penetration and therefore post-fracture behavior such as 

pulverization and granular flow cannot be determined [51]. Nonetheless, SHPB tests 

do simulate early stages of material failure and deformation, i.e. fracture and 

fragmentation [51]. 

Different from conventional material testing machines, the small-diameter 

Kolsky bars are not drastically stiffer than the specimen itself. Furthermore, the 

SHPB-system does not have a closed-loop feedback control system. Loading 

conditions cannot be monitored in real time and adjustment of the loading conditions 



 

99 

 

is not possible. The loading conditions must be determined without knowing the 

response of the specimen which makes Kolsky-bar experiments quite complex. [52] 

Figure 17 shows the 0.5 in.-diameter SHPB system as it is currently installed at the 

Dynamic Photomechanics Laboratory at the University of Rhode Island. 

It should be noted that in order to obtain statistically valid results from split 

Hopkinson (Kolsky) experiments, at least tests of 30 specimens are required [52]. 

Figure 17 - SHPB system (0.5 in. diameter) at the Dynamic Photomechanics Laboratory 

 

 

4.3.1 Strain-rate definition 

The mean strain-rate is defined as the total strain during loading divided by the 

total period [51]. However, this definition does not represent the actual strain-rate 

[53]. The instantaneous strain-rate can be higher than the mean strain-rate [62]; the 

strain-rate corresponding to the ultimate strength is more relevant to the compressive 
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failure of specimen [53]. Alternatively, the mean-strain rate can be defined as 

“average magnitude of the strain-rate histories over a period, in which the strain-rate is 

within 80% of the strain-rate at failure point” [63]. Chen et al. [53] used the strain-rate 

at failure point as representative strain-rate in their SHPB tests. 

For material property characterization, a dynamic stress equilibrium and 

constant strain-rate need to be achieved within the specimen [52]. It should be noted 

that ideal testing conditions are not satisfied over the entire duration of the Hopkinson 

(Kolsky) experiment because the specimen is initially at rest. Over time the stress 

waves simultaneously bring the specimen into near equilibrium and the strain-rate to a 

desired constant level. However, the specimen can fail as the strain-rate is still rising if 

the desired strain-rate is too high. Therefore, the strain-rate needs to be limited to a 

maximum. 

4.3.2 Pulse shaping technique 

Standard SHPB tests cannot be used for compressive testing of brittle concrete 

materials because elastic response is predominant before failure under uniaxial 

compression [53]. Due to small failure strains (< 1%) of brittle materials, the 

specimens could fail non-uniformly if loading is too fast as in conventional SHPB 

tests [46]. Thus, modification of the incident pulse is required to match the elastic 

response [53]. In order to experience a quasi-static load and uniform deformation 

(minimize wave dispersion [52]), dynamic loading of the specimen has to be slow 

enough [46]. 
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Figure 18 - Clay as pulse shaper on an 0.5 in. incident bar at the Dynamic Photomechanics 

Laboratory 

 

 

The so-called pulse shaping technique controls damage of brittle materials by 

placing a thin disk made of copper or any other soft material between the striker and 

the incident bar. The Dynamic Photomechanics Laboratory [60] of the University of 

Rhode Island (URI) generally advises the use of (Roma Plastilina) standard clay (see 

Figure 18) or lead pulse shapers that are lubricated with a thin layer of Dow Corning 

lubricant [60]. Figure 19 shows different loading pulses produced by pulse shaper of 

different materials. 

The pulse shaper disc can have a thickness between 0.1-2.0 mm [46]; Chen et 

al. [53] used a 2.0 mm diameter. The striker bar impacts on the pulse shaper before the 

incident bar and generates a non-dispersive ramp shaped pulse compared to the 

standard rectangular shape [46]; Figure 20 shows the stress-strain curve of cement 

mortar with and without pulse shaping [53]. The incident pulse has a slow-rising front 
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and propagates into the incident bar. Thus, the pulse shaper facilitates the dynamic 

force balance [46] respectively dynamic stress equilibrium [53] in the specimen. 

Figure 19 - Loading pulses produced by pulse shapers of different materials [64] 

 

 

Figure 20 - Stress-strain curve of cement mortar with and without pulse shaping [53] 
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In conclusion, use of the pulse shaper has the following main functions: filter 

out high frequency noise generated during impact of the striker bar [53], ensure 

constant strain-rate during loading [46], and maintain force equilibrium across the 

sample [46] [53]. The time for rising of the incident wave is extended while the 

loading rate is reduced [53]. 

4.3.3 Dynamic compression tests 

Dynamic compression tests of SHPB are based on the assumptions of 1D 

elastic wave propagation in the bars and homogenous (uniform) deformation of the 

sample [46]. 

In SHPB experiments, the incident and transmitted bars must remain linearly elastic. 

Thus, the elastic wave theory can be used for data reduction; surface strains are 

linearly related to the stress waves inside the bars. Therefore, a high-strength bar 

material, i.e. alloy steel, is preferred. The yield strength of the bar material directly 

determines the upper limit of the striker impact speed. [52] 

One-dimensional elastic wave propagation can be achieved by using long bars 

[46] that also facilitate large deformation in the specimen [52]. The length of the stress 

pulse is supposed to be much larger than the bar diameter; the stress pulse is usually at 

least 10 times the size of the bar diameter [55]. The bars must be physically straight 

and able to move freely on their supports with minimized friction [52]. Furthermore, 

the whole bar system has to be aligned perfectly along the straight loading axis of the 

system [52]. 

Even a minor misalignment along the bar system can result in a bending wave 

[52]. Signals from the bending waves can also be detected by strain gages on the bar 
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surface and may cause distortion in the strain gage measurements. Also, a loading in 

bending subjects one face to tension and the other one to compression. Proper 

connections of the strain gages (on opposite legs or on the same leg) can automatically 

remove bending from the strain gage measurements. Ideally the bending wave should 

be eliminated by physically aligning the bar system. 

To ensure elasticity of the bar deformation throughout the SHPB test, the 

impact velocity of the striker bar is limited [46]. However, the stress pulse must be 

long enough to create at least 3 to 10 reverberations within the length of the specimen 

to create uniform longitudinal deformation [55]. Furthermore, the boundary interfaces 

between the sample and the bars must be well lubricated to achieve uniform radial 

deformation [55]. 

The homogeneity of the specimen deformation is influenced by the inertial 

effect (see section 4.3.3.1) and the interfacial friction effect (see section 4.3.3.2) [46]. 

4.3.3.1 Inertia effects and slenderness ratio 

The inertial effect becomes relevant for high strain-rates and has to be reduced 

in order to obtain valid dynamic tests [46]. The slenderness ratio, meaning the length 

to diameter ratio of the specimen (L/D), plays a major role in the inertial effects during 

SHPB tests. In order to limit the inertial effects associated with stress wave loading, 

the slenderness ratio should be limited. Davies et al. [65] proposed an optimal 

slenderness ratio of 𝐿 𝐷⁄ = √3 2⁄ , where L is the length of the cylindrical specimen, 

and [65]≈ 0.5 [51]. For the present SHPB experiment the optimal L/D ratio of the Iron 

Carbonate specimens was chosen to be 0.4 with a More information about the 

slenderness ratio can be found in the subsequent section 4.3.3.2. 
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4.3.3.2 Friction effect 

Interfacial friction on both ends of the specimen affects the SHPB testing 

results [57]. The friction between the specimen ends and the bars holds the specimen 

in place in the SHPB test setup [66] but can also lead to an apparent increase in 

obtained strength [51]. 

The specimen expands radially when loaded by the compressive stress wave, 

due to the Poisson’s effect [46]. The resulting interfacial friction force reduces 

accuracy of the testing results by applying a dynamic confinement to the compressive 

specimen and creates an inhomogeneous (three dimensional [52]) stress state [46]. 

To limit the interfacial friction force the boundary interfaces between the bars 

and the sample should be sufficiently lubricated [46] with Molybdenum disulfide 

lubricant [60] or WD-40. In addition, the bars must move freely [60]. Furthermore, the 

slenderness ratio L/D of the compressive specimen should be large enough. The 

International Society of Rock Mechanics (ISRM) recommends a slenderness ratio of 2 

or larger for testing rock-like materials [67]. However, the slenderness ratio still has to 

be short enough to limit the inertia effects [46]. According to Li et al. [68], the optimal 

slenderness ratio for metals lays between 0.5 and 0.61 to limit inertia effects on the 

accuracy of the experiment. For concrete-like specimen in SHPB experiments the 

acceptable slenderness-ratio ranges from 0.3 to 1.0 [68]. In this case, the optimal L/D 

ratio was chosen to be 0.4 for Iron Carbonate specimens. Thus, the cylindrical Iron 

Carbonate samples with a set diameter of 1.5 in. had to be cut to 0.6 in. length to fulfill 

the chosen ratio. As already mentioned, an optimal L/D ratio is needed to minimize 

both the inertial and friction effect. 
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Because the surface of concrete specimens is much coarser than the surface of 

metallic samples, the friction effect has to be considered even though the boundary 

interfaces are lubricated [68]. Not properly lubricated interfaces between a specimen 

and the pressure bars could result in stress and strain non-uniformity which could 

eventually lead to a significant over-prediction of the strain-rate effect (see section 

4.3.3.4). 

4.3.3.3 Compressive strength and dynamic increase factor (DIF) 

The dynamic compressive strength increases with increasing strain-rate [51, 

53]. This increase in compressive strength with increasing strain-rate could be 

attributed to “the generation and dynamic growth of interacting, compressive induced 

tensile micro-cracks” [69]. The moisture content in concrete also strongly influences 

the strain-rate sensitivity [70]. Inertial effects of the added water and increased 

fracture toughness of wet concrete could also be responsible for increased dynamic 

strength [70]. Other reasons for strength increase include the viscoelastic nature of 

hardened cement paste and time-dependence of crack growth [71]. 

However, contradictory findings exist regarding the strain-rate dependence of 

the compressive strength in SHPB experiments. Li et al. [68], Watstein [72], Takeda 

and Tachikawa [73], and Kvirikadze [74] agree with Grote et al. [51] and claim that 

dynamic compressive strength increases with increasing strain-rate. Hatano and 

Tsutsumi [75], and Cowell [76] report a constant compressive strength with increasing 

strain-rate. Others, e.g. Hughes and Watson [77], even claim that strength decreases 

with increasing strain-rate. Grote et al. [51] attribute those contradictory findings to 

inconsistency among the testing methods. 
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The ratio between the dynamic and static strength, known as dynamic increase 

factor (DIF), represents the strain-rate effect on the compressive strength [53]. It is an 

important parameter for the measurement of the strain-rate effect on the strength of 

cement-based materials such as concrete and other concrete-like materials [68]. 

Studies have shown that the DIF increases about 50% in average when the 

strain-rate varies from 10
-5

 to 10
1
 s

-1
 [78]. However, another study by Li et al. [68] 

claims that lateral inertia confinement in SHPB tests causes the strain-rate dependence 

of the DIF (see section 4.3.3.4). They conclude that the SHPB-obtained DIF has to be 

modified to eliminate lateral inertia confinement effects [68].  

4.3.3.4 Lateral confinement 

According to Li et al. [68], lateral confinement in SHPB tests can cause the 

already mentioned, apparent dynamic strength enhancement (of concrete samples) 

with increasing strain-rate. Lateral confinement in SHPB experiments is caused by 

contact surface restriction and lateral inertia effects during rapid compression. Lateral 

confinement effects on SHPB measurements are usually ignored for metallic samples. 

The use of lubricant, such as Molybdenum disulfide or WD-40, successfully reduces 

contact friction between metallic specimens and the steel bars. Also, the metal’s 

plasticity is hydrostatic-stress-independent. Therefore, lateral inertia induced lateral 

confinement does not affect the flow stress and dynamic strength. 

However, concrete and concrete-like samples respond completely different to 

lateral confinement because the material’s plasticity is hydrostatic-stress-dependent 

[68]. The measured uniaxial dynamic compressive stress of concrete-like materials can 

be greatly enhanced by lateral confinement due to lateral inertia. Li et al. [68] claim 

that this strength enhancement is often misinterpreted as strain-rate enhancement in 
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other publications, i.e. by Grote et al. [51]. Nonetheless, according to findings of Li et 

al. [68], the lateral inertia confinement effect can be neglected for strain-rates up to 

10
2
 s

-1
 which represents the transition point from weak strain-rate sensitivity to strong 

strain-rate sensitivity. 

4.3.3.5 Elastic modulus 

According to Chen et al. [53] the elastic modulus increases slightly when 

increasing the strain rate. Yan et al. [79] suggest that delay of crack development is 

responsible for an increase of the elastic modulus. The delay of both the creation of 

micro-cracks and the propagation of initial micro-cracks is due to the viscous 

resistance of free water and resistance of the coarse aggregates in the concrete [79]. 

Further addition of sand and coarse aggregates further increases the elastic modulus 

[53]. Rigid inclusions within the concrete matrix create greater stiffness to the matrix 

and also reduce dimensional instability of the matrix [53]. However, addition of stiff 

aggregates leads to internal stress gradients and strain concentrations. 

4.3.4 Dynamic tension tests 

Three common experimental arrangements (direct tension methods [46]) of 

split Hopkinson tension bars exist to generate tension stress waves to subject a 

specimen to dynamic tensile loads. As for dynamic compression testing, a striker bar 

initially produces a compression wave [55]. The split Hopkinson tension bar uses the 

same data analysis procedure as it is used for the split Hopkinson pressure bar [61]. 
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Figure 21 - Split Hopkinson tension bar: first arrangement [61] 

 

 

In the first arrangement (see Figure 21), the reflection of a compression stress 

wave at the free end of a bar generates the tension stress wave [55]. For experiencing 

tensile stresses the specimen has to be mounted (i.e. adhesive or threaded ends of the 

specimen that allow it to be screwed into the bars). An important feature of the 

arrangement is a so-called split ring that allows the initial compression wave to 

propagate through it without reflection. Thus, maintaining the specimen within the 

elastic region and letting the striker-induced compression wave propagate into the 

transmitter bar. At the free end of the transmitter bar, the compression wave is 

reflected as a tension stress wave which is then used as an incident pulse. Because the 

split ring cannot transmit any load (tension), it separates from the bar; the total tension 

pulse is applied on the sample. Reflected and transmitted pulses are generated within 

the bars which are used to analyze high strain rate behavior of the specimen. 

In the second arrangement (see Figure 22), a flange plate is attached to the end 

of the specimen to directly apply the incident tension stress pulse on the specimen to 

be tested [55]. By launching a striker bar at the flange plate, a compression wave is 
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generated. The compression wave is then reflected as tension stress wave from the free 

surface of the plate.  

Figure 22 - Split Hopkinson tension bar: second arrangement [61] 

 

In the third arrangement (see Figure 23), the incident bar is first fixed 

(clamped) at one position [55]. Tensile strain is stored within the left side of the bar by 

an axial actuator that pulls on the left side of the incident bar. Then, the clamp is 

suddenly released and the stored tensile strain energy generates a tensile stress pulse 

which is applied on the specimen. As in the second arrangement, the incident tension 

stress pulse is generated directly in the specimen. 

Figure 23 - Split Hopkinson tension bar: third arrangement [61] 

 

 

4.3.5 Split Hopkinson (Kolsky) bar experiments on brittle materials 

Brittle materials, such as glass or concrete, usually deform in a linear elastic 

manner under compression until they fail at small strains (typically <1%) [52]. 

Measurement of the deformation with bar signals is difficult. Therefore, a loading 



 

111 

 

pulse with constant stress rate is required to achieve deformation of a linear elastic 

specimen at a constant strain rate. 

Specimens made of brittle materials, which are used in SHPB-experiments, are 

very sensitive to stress concentrations because the material cannot yield locally [52]. 

Stress concentrations around the edges of brittle materials lead to premature failure 

and normally arise as a result of three main sources: non-parallel loading surfaces and 

poor flatness, bar misalignment, and indentation of a stiffer specimen into compliant 

bar end faces. Locally concentrated stresses cause uneven and premature failure of a 

specimen. With increasing stiffness of the material susceptibility to local stress 

concentrations increases, too. 

To reduce stress concentrations at the specimen’s edges two types of specimen 

configuration have been proposed [52]: Dumbbell shaped ceramic specimen (see 

Figure 24(a)) and specimen sandwiched between hard material-platens (see Figure 

24(b)). Platens between the specimen and the bars not only minimize indentation and 

stress concentration but also protect the bar end faces from sharp fragments. A 

commonly used platen material is Tungsten carbide (WC). The diameter of WC 

platens is about 12.7 mm to match the impedance with 19 mm- bars. A commonly 

used platen thickness is 6.35 mm; a thin platen can bend significantly when pressed by 

a hard, small diameter specimen. Therefore, the platens are often confined by press-fit 

metal rings to ensure integrity. Deformation of the plate along radial direction should 

match that of the specimen. 
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Figure 24 - Brittle specimen configurations [52] 

 

 

Besides having an adequate surface quality, the geometry of a brittle sample 

should be carefully designed, too [52]. The specimen diameter should be calculated in 

a way that stress in the transmitted bar is less than 30% of the bar yield strength. The 

incident pulse stress will be higher than the transmission pulse stress and should 

terminate shortly after specimen failure. For low strength specimen made of limestone 

or concrete, the diameter of the specimen should be the same as that of the steel bars 

to minimize stress concentrations on the specimen. 

Furthermore, the length-to-diameter specimen ratio in quasi-static compression 

experiments should be 2:1 to minimize end effects (see ASTM standard C39) [52]. To 

achieve high strain rates a short specimen should be used; the strain rate in a 

Hopkinson (Kolsky) bar experiment is inversely proportional to the specimen 

thickness. However, the achievable strain rate is limited by the small failure strain of 

the (brittle) specimen material. Brittle materials will fail before a constant strain rate is 

reached – during strain acceleration – if the expected strain-rate is too high. A too 

thick of a specimen in turn will prematurely fail from impact end, before even loading 

across its thickness, due to small failure strains. 
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However, Li et al. [68] claim that accuracy and more importantly validity of 

SHPB results for non-metallic materials such as concrete have not been thoroughly 

studied yet and are therefore questionable. 

4.3.5.1 Stress-strain behavior and toughness 

The stress-strain behavior of cement-based materials such as concrete is very 

sensitive to the strain rate [53]. Strain softening after peak stress is reflected by the 

descending of the stress-strain curves and reflects fragmentation of the specimens 

[80]. With increasing strain rate the stress-strain curves become less non-linear and 

characteristics become more linear [53]. 

The toughness of cement-based materials increases with the strain rate [53]. 

Higher strength and strains at high strain rates are responsible for the increase in 

toughness. 

4.3.6 Failure mode 

Fracture, fragmentation and pulverization occur when concrete experiences 

dynamic loading of sufficient amplitude [51]. According to Chen et al. [53] the 

dynamic failure pattern of cement paste, mortar and concrete specimen under high 

strain-rate loading resulted in the disintegration of the middle portion of the test 

cylinders into small pieces. The size and number of fragments are directly related to 

the strain-rate: the higher the strain-rate, the larger are the number and the smaller are 

the sizes of the fragments. 

Failure cracks in cement paste are generally straighter, longer and cleaner 

compared to the cracks in concrete specimens [53]. Schematic failure patterns of 

concrete at different strain-rates are displayed in Figure 25. Under static loading, 

cracks pass through the mortar and propagate along the interfaces (see Figure 25(a)), 
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whereas for high strain rates, the cracks are propagating in a more direct way 

fracturing particles (see Figure 25(b)). Reason for that is the rapid increase in stress 

before the cracks had time to extend along the path of least resistance. At higher strain 

rates the concrete is fractured into small pieces to dissipate energy (see Figure 25(c)). 

Figure 25 - Schematic failure patterns of concrete at different strain rates [53] 

 

 

4.3.7 Calibration of SHPB systems 

To check the alignment of the bar system, the striker bar should be launched 

directly on the incident bar [52]. Thereby the incident bar should be in direct contact 

with the transmitted bar without any specimen in between. An analytically predictable 

trapezoidal profile of the incident pulse with a clean baseline indicates a good 

alignment of the bars (see Figure 26). The complete incident pulse in the incident bar 

should be transmitted into the transmitted bar without any reflection, since both are in 

direct contact. 

If the incident bar is not in good alignment with the striker, the incident pulse 

is distorted while the baseline is fluctuating (see Figure 27) [52]. Misalignment 

between the incident and the transmitted bar generates a reflected pulse; the 
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transmitted pulse profile differs from that of the incident pulse (see Figure 27). A 

SHPB system that is misaligned should not be used for material characterization 

Figure 26 - Stress wave in the bars in good alignment [52] 

 

Figure 27 - Stress wave in the bars in misalignment [52] 
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4.3.8 Analysis of SHPB test 

A traditional analysis of a Split Hopkinson pressure bar (SHPB) experiment 

provides stress, strain rate and strain in the tested specimen [51]. Strain gage output 

signals are recorded on a digital oscilloscope; at the Dynamic Photomechanics 

Laboratory a Tektronix TDS 3014C Digital Phosphor Oscilloscope is used for 

recording. Strain measurements from the incident and transmitted bar are used to 

determine the time histories of the stress, strain and strain-rate in the tested sample 

during deformation. From the reflected and transmitted strain histories (see Figure 

28(a)), the stress and strain rate histories (see Figure 28(b)) can be obtained. 

Figure 28 - Data analysis for an SHPB experiment; (a) measured strain gage signals, (b) 

computed stress and strain rate histories, (c) computed strain history, and (d) stress-strain 

relationship [51] 
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The strain rate is not constant throughout the period due to the dynamic nature 

of the experiment [51]. Therefore, an average strain rate has to be calculated and used 

for the duration of loading. The stress-strain relation (see Figure 28(d)) can be 

obtained by combining the history of strain (see Figure 28(c)) with the history of 

stress (see Figure 28(b)). 

The DPML uses a MATLAB program to read and analyze the data from the 

pulses [60]. The program uses one-dimensional wave theory stress and strain 

equations along with the pulses to determine the equilibrium and true stress-strain 

plots of the specimen.  

A guideline about how the analyzes the results obtained by the oscilloscope 

along with the MATLAB code was prepared by the Dynamic Photomechanics 

Laboratory. 
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4.4 Preliminary Summary 

Understanding the behavior of concrete at high strain rates is important for a 

wide range of both military and civilian applications [52]. Therefore, the 

characterization of concrete behavior under impact and impulse loading is a 

prerequisite for the design of concrete structures. The material behavior under highly 

dynamic conditions is significantly different from material response under quasi-static 

conditions. 

Dynamic tests of concrete are conducted using the split Hopkinson 

respectively Kolsky bar systems [46]. The Hopkinson bar (SHPB) consists of three 

bars: a striker bar, an incident bar, and a transmitted bar. The specimen is placed 

between the incident and transmitter bars. To test the specimen under high strain rates, 

the striker bar is launched toward the incident bar at a known velocity. The impact of 

the striker bar on the free end of the incident bar induces a stress pulse [53] 

respectively a longitudinal compressive wave propagating in both directions. 

Standard SHPB tests cannot be used for compressive testing of brittle concrete 

materials because elastic response is predominant before failure under uniaxial 

compression [53]. The so-called pulse shaping technique controls damage of brittle 

materials by placing a thin disk made of copper or any other soft material such as clay 

between the striker and the incident bar. 

A Hopkinson (Kolsky) bar can also be used for dynamic tension and torsion 

testing but standard experimental set-up has to be modified. There are three common 

experimental arrangements (direct tension methods [46]) of split Hopkinson tension 

bars to generate tension stress waves to subject a specimen to dynamic tensile loads 

[55]. As for dynamic compression testing, a striker bar initially produces a 
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compression wave. The split Hopkinson tension bar uses the same data analysis 

procedure as it is used for the split Hopkinson pressure bar [61]. 

The stress-strain behavior of cement-based materials such as concrete is very 

sensitive to the strain-rate [53]. The strain rate also influences the compressive 

strength and elastic modulus of the concrete: with increasing strain rate both the 

compressive strength and the elastic modulus increase. 

The ratio between the dynamic and static strength, known as dynamic increase 

factor (DIF), represents the strain rate effect on the compressive strength [53]. 

A traditional analysis of a Split Hopkinson pressure bar (SHPB) experiment 

provides stress, strain rate and strain in the tested specimen [51]. Strain gage output 

signals are recorded on a digital oscilloscope and can be read and analyzed by using a 

MATLAB program [50] by the Dynamic Photomechanics Laboratory of the 

University of Rhode Island. 
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5 Testing of Iron Carbonate with SHPB system 

5.1 Iron Carbonate sample preparation 

Objective of the thesis is to test the performance of this novel sustainable 

concrete under extreme dynamic loading conditions in a 2 in.-diameter split 

Hopkinson pressure bar (SHPB) system to indicate durability under extreme stresses. 

The Iron Carbonate samples for testing were kindly provided by Dr. David 

Stone and his company Iron Shell LLC, Tucson, AZ. Dr. Stone sent 6 cylindrical Iron 

Carbonate samples (1.5 in. diameter, 2.6 in. long), 2 cubic samples, and 2 tiles that 

arrived on May 22, 2017. 

Figure 29 - Samples provided by Iron Shells LLC. P-series contains polypropylene fibers; S-series 

contains steel fibers 

 

The cylindrical samples were composed of steel dust, fly ash, limestone 

powder, metakaolin, and oxalic acid in powdered form, following the standard mixture 

recipe mentioned in the section 3.2. In addition, polypropylene fibers respectively 

steel fibers at 1% fiber volume fraction were added to both mixtures; the fracture 

energy is approximately 4 times higher at 1% fiber volume fraction [47]. The “P”-

labelled samples (see Figure 29) are made from one batch of standard Iron Carbonate 

mixture and contain polypropylene fibers. The three “S”-labelled cylinders (see Figure 
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29) are made from another batch of standard Iron Carbonate mixture and contain 1 in.-

thin steel fibers, according to Dr. Stone. 

Table 3 shows the exact dry mixture composition of the samples by weight 

percentage and the individual component manufacturer respectively the brand name. 

Table 3 - Iron Carbonate standard dry mixture composition 

Components material Manufacturer % by mass of the total 

powder 

steel dust Schuff Steel 62 

fly ash (Type F) Boral 21 

limestone powder Imerys 9 

metakaolin Burgess Pigments (Optipozz) 4 

oxalic acid Univar 4 

 

All mentioned components (steel dust, fly ash, limestone powder, metakaolin, 

oxalic acid, polypropylene or steel fibers) are initially dry mixed together. Water is 

added to obtain a uniform cohesive mixture and satisfying workability. Depending on 

the constituent proportions, the mass-based water-to-solids (w/s) ratio was chosen to 

be 0.3. As already mentioned water is not incorporated during the carbonation process 

of iron but serves as agent of mass-transfer and ensures desired workability and 

uniformity. 

The mixture is then tamped into cylindrical molds in five layers using a 

Harvard miniature compaction apparatus (ASTM D 4609, Annex A1) until the molds 

are filled completely [49]. Using a specimen ejector the specimens were demolded 

immediately after and placed inside clear plastic bags. Then, the samples were 

exposed to pure CO2 under positive pressure for 7 days while being kept damp during 

the entire curing period. 



 

122 

 

To limit inertial effects associated with stress wave loading in a SHPB system, 

the slenderness ratio, meaning the length to diameter ratio of the specimen (L/D), was 

chosen to be ≈ 0.4. This results in a specimen length of 0.6 in., given the set 1.5 in. 

diameter of the cylindrical Iron Carbonate samples. Please refer to chapter 4, i.e. 

section 4.3.3.1, for more detailed information about the split Hopkinson pressure bar 

and inertial effects. 

University of Rhode Island (URI) technical staff assistant Kevin Broccolo cut 

the cylindrical samples into 0.6 in.-thick specimen with a RYOBI circular saw using a 

DIABLO 10 in. saw blade. It was possible to cut the polypropylene fiber containing 

samples with a satisfying surface condition, although material and sample fabrication 

constraints limited accuracy and smoothness. The specimens’ surfaces were then 

smoothened by hand using first coarse grit (3M Pro Grade Precision Advanced 

Abrasives P80) and then fine grit (3M Pro Grade Precision Advanced Abrasives P320) 

sanding paper in order to limit interfacial friction (see section 4.3.3.1) on both ends of 

the specimen that can affect the SHPB testing results. Figure 30 shows four samples 

cut from a “P”-series cylinder and smoothened by hand with sanding paper. 

Cutting of the steel fiber containing samples with the DIABLO 10 in. steel 

blade, however, resulted in rough and uneven specimen surfaces (see Figure 31). 

Those samples were not usable for the SHPB-experiments. In a second try, URI 

technical staff assistant of the Dynamic Photomechanics Laboratory, David Ferreira, 

cut the “S”-specimen with a QEP 4 in. diamond blade on a JET vertical milling 

machine resulting in surfaces of the samples being significantly smoother and more 

level (see Figure 31). However, all but one of the steel fiber containing samples failed 
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in the attempt to accurately cut them with the diamond blade. Therefore, only 

polypropylene fiber containing specimens could be tested in the SHPB. 

Figure 30 - Cut and smoothened samples from „P1“-cylinder 

 

Figure 31 - Steel fiber containing samples („S1“-series) cut with a diamond saw blade (left) and 

with a steel saw blade (right) 
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5.2 Experimental set-up 

The split Hopkinson pressure bar (SHPB) system was set up in the Dynamic 

Photomechanics Laboratory (DPML) of the University of Rhode Island. The 

experimental arrangement involves a mechanical, a measurement, and a video 

recording system. The set-up basically follows the common SHPB buildup that has 

been described in chapter 4, i.e. section 4.3. Figure 32 shows the 2 in.-diameter SHPB 

set-up. 

Figure 32 - 2 in.-diameter SHPB system at the Dynamic Photomechanics Laboratory 
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5.2.1 Mechanical system 

The mechanical system includes a loading device (gas gun) and three bars, 

aligned along a single axis [55]: a striker bar, an incident bar, and a transmitted bar, as 

shown in Figure 14, section 4.3 [46]. Both, the incident and transmitted bar, are made 

out of steel, have a 2 in.-diameter and a length of 8 ft. each, and are guided by four 

respectively 3 clamps. The striker bar also has a 2 in.-diameter but is made of 

aluminum, has a length of 6 in. and weighs 992.4 g. At an earlier stage, trial 

experiments were carried out using a striker bar made out of steel, weighing roughly 

2,000 g. To facilitate firing, the author decided to use a projectile made out of a much 

lighter material than steel. Since the loading unit can hold striker bars with up to 3.28 

in. - diameters, two PE (TIVAR®) and/or Acetal Resin (DELRIN®) O-rings are 

screwed on the aluminum projectile (see Figure 33). That is to keep the striker 

centered within the loading device (see Figure 34) and to ensure alignment with the 

incident bar along the same axis. However, the entire striker unit had to be lifted using 

specially manufactured 0.25 in.-thick aluminum plates to ensure proper alignment. 

Figure 33 - Aluminum striker with mounted O-rings 
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Figure 34 – Aluminum striker centered within gas gun by O-rings 

 

The whole SHPB system is mounted on a 4.9 in.-wide steel I-beam with screw 

clamps and/or screws. The present SHPB set-up at the Dynamic Photomechanics 

Laboratory with an approximate overall length of 23.4 ft. turns out to be too long to 

entirely fit on the stand. Therefore, a KWIK-STAK portable elevating truck is used to 

support the overhanging part of the transmitted bar for the duration of the SHPB tests 

on Iron Carbonate specimens (see Figure 35). A clamped wooden board in 

combination with square lumps of clay are used to stop the transmitted bar 

respectively to absorb the axial thrust and to attenuate the impact on the forklift. 
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Figure 35 - KWIK-STAK portable elevating truck to support the overhanging part of the SHPB 

system 

 

For firing the projectile, a compressed gas mechanism with automatic gas 

launcher and solenoid valve control box button is installed. The pressure regulator is 

clamped to the side of the stand whereas the gas tank is not mounted on the I-Beam 

(see Figure 36). However, for safety reasons the gas tank is strapped to the stand. 
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Figure 36 - compressed gas mechanism with gas tank, automatic gas launcher, and solenoid valve 

control box 

 

Non-flammable nitrogen gas is used as fluid for the gas gun. By pressing the 

solenoid valve release button, the nitrogen gets released suddenly from the gas gun 

chamber and the striker bar is launched toward the incident bar creating an incident 

pulse. 

For safety reasons, a Plexiglas box, manufactured by URI technical staff 

assistant David Ferreira, is placed over the interlocked specimen during the entire 

experimental procedure. 
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5.2.2 Measurement system 

The measurement system consists of strain gages, a dynamic signal 

conditioning amplifier and a signal acquisition system [55]. To record the stress wave 

pulse, two strain gages are affixed symmetrically on each the incident and transmitted 

bar surface [46]. A 120 Ω strain gage in combination with a 350 Ω strain gage were 

mounted on each of the two bars using a Vishay M-Bond 200 adhesive kit and 

following the manufacturers’ instructions for installing and soldering a CEA strain 

gage (refer to Vishay Instruction Bulletin B-127-14 [81]). 

The strain gage output signals are conditioned with a half bridge, transferred to 

a dynamic signal conditioning amplifier (Vishay 2310A signal conditioning amplifier, 

model 2360) via BNC cables and then to a Tektronix TDS 3014C Digital Phosphor 

Oscilloscope. Thereby, the signal amplifier accurately records the low-amplitude 

voltage output (usually in the order of millivolts) with the oscilloscope [52]. To record 

the short signal, both the amplifier and the oscilloscope have a sufficient high 

frequency response with a minimum of 100 KHz [52]. 

It should be noted that loading conditions cannot be monitored in real time and 

adjustment of the loading conditions is not possible [52]. The loading conditions must 

be determined without knowing the response of the specimen. 
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5.2.2.1 Settings of the digital oscilloscope 

The following Figure 37 shows the settings of the oscilloscope (Tektronix 

TDS 3014C Digital Phosphor Oscilloscope) used for recording the strain gage output 

signals. 

Figure 37 - Settings of the oscilloscope (red box) 

 

5.2.2.2 Settings of the amplifier and half bridge 

The following Figure 38 shows the settings of the amplifier (Vishay 2310A 

signal conditioning amplifier, model 2360) used for conditioning the strain gage 

output signals. shows the settings of the half bridge. It is important to note that a set 

consisting of one 120 Ω strain and one 350 Ω strain gage is used on each the incident 

and transmitted bar. Settings of the half bridge have to be done accordingly for each 

corresponding channel. 



 

131 

 

Figure 38 - Settings of the amplifier 

 

Figure 39 -  Settings of the half bridge 
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5.2.3 Video recording system 

To obtain slow-motion video footage of testing the Iron Carbonate specimens, 

a Photron Fastcam SA1.1 high-speed camera with a 180 mm lens and external trigger 

is used. The camera, mounted on a Quickset tripod, is connected to a Lenovo ideapad 

laptop with Photron FASTCAM viewer software to edit the video footage. The area of 

interest, i.e. a specimen placed between the incident and transmitter bars, is 

illuminated with two Frezzi HMI Super-Sun Gun 400 spotlights. 

5.2.4 Challenges 

The building up of the split Hopkinson pressure bar (SHPB) system in the 

Dynamic Photomechanics Laboratory (DPML) proofed to be extremely difficult and 

challenging for a number of reasons listed below. 

First of all, the setting-up was delayed because the Iron Carbonate samples, 

kindly provided by Iron Shell LLC, only arrived at the end of May instead of February 

2017. Furthermore, the author prepared to carry out dynamic compression tests with 

the – already set up and calibrated – 0.5 in.-diameter SHPB in the DPML. After 

examination of the Iron Carbonate samples, the author was informed to use the not 

readily set up 2.0 in.-diameter SHPB in the DPML because the validity of testing 

small 0.5 in-diameter samples would have been questionable. 

Cutting of the polypropylene fiber containing cylindrical samples into 0.6 in.-

thick specimen with a circular saw using a steel blade was possible, although material 

and sample fabrication constraints limited accuracy. Smoothening of the specimens’ 

surfaces by hand in several grinding steps using sanding paper was time consuming. It 

was not possible to cut the steel fiber containing samples with the steel blade and to 
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obtain usable specimen. In a second try, a URI technical staff assistant of the DPML 

tried to cut the steel fiber containing specimen with a specially ordered diamond saw 

blade on a vertical milling machine. All but one of the steel fiber containing samples 

failed in the attempt to accurately cut them. Therefore, the steel fiber containing 

specimens were not usable for dynamic compression tests in the SHPB. 

The set-up of the 2.0 in.-diameter SHPB was very difficult since the system 

was not been used for an unspecified amount of time. The overall length of 23.4 ft. 

turned out to be too long to entirely fit on the I-Beam stand. Therefore, a forklift is 

used to support the overhanging part of the transmitted bar for the duration of the 

SHPB tests on Iron Carbonate. Thus, good alignment and free movement of the steel 

bars for accurate results is very difficult and requires constant adjustment. For good 

alignment of the experiment the incident and transmitted bar should be in direct 

contact when pushed together. In the present set-up, however, there is a small gap 

between the two bars (see Figure 40) which the author was unable to close through 

adjustment of the bars and supporting clamps. Looking at Figure 50, it seems like the 

condition of the 2 bars could be the reason for them not being in direct contact; the 

transmitted bar seems to be larger than the incident bar. This misalignment may cause 

additional reflecting pulses. 
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Figure 40 - Gap between incident bar (left) and transmitted bar (right) indicating misalignment 

 

Also, the entire gas gun barrel had to be lifted using specially manufactured, 

0.25 in.-thick, aluminum plates to ensure proper alignment of the projectile with the 

incident bar. 

The existing drill holes in the I-Beam could only be used partially for 

mounting the SHPB system on the stand. Instead screw clamps had to be used to for 

fixing the experimental set-up. 



 

135 

 

Figure 41 – Opening of the SHPB gun barrel that had to be closed off 

 

Also, the gun barrel had to be closed off on one side with a specially 

manufactured aluminum plate (see Figure 41). In order to use fasteners to attach the 

plate to the end of the barrel, the threads of the threaded rods had to be repaired by 

David Ferreira. However, the closure with the plate turned out not to be airtight so that 

nitrogen gas could escape during the firing procedure of the projectile. This potentially 

reduced the velocity of the striker bar and distorted the results, despite the use of high 

gas pressures (> 400 psi). Later a round sheet of tan pure gum rubber was used in 

addition to the aluminum plate to completely seal the opening. 
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Figure 42 – Repositioned pressure regulator with short connector mounted on the SHPB stand 

 

However, the leakage was not the only reason that compromised the impact 

velocity of the striker bar: the high-pressure hose connecting the pressure vessel to the 

gun barrel turned out to be too long so that an immediate and complete release of the 

pressurized gas from the pressure vessel into the gun barrel was not possible. In order 

to use a shorter connector piece, the compressed gas mechanism as well as the gun 

barrel had to be dismantled, moved and put back together. Because of the short 

connector the pressure regulator had to be clamped to the side of the I-beam stand (see 

Figure 42). 

Furthermore, special couplings for connecting the gas tank to the pressure 

vessel had to be ordered and picked up from Grainger Industrial Supply in Warwick, 

RI. 



 

137 

 

A steel striker bar and later an aluminum striker bar with PE (TIVAR) and/or 

Acetal Resin (DELRIN) O-rings had to be specially manufactured in the machine shop 

of the DPML for the 2.0 in.-diameter SHPB (see Figure 33, section 5.2.1). 

Figure 43 - 120 Ω - strain gage (top) with terminal installed by the author 

 

Lastly, three out of four strain gages that were mounted on the incident and 

transmitted bar had to be replaced. Replacement was difficult and time consuming. 

Initially proper bonding of the strain gages on the steel bars was prohibited possibly 

by a thin layer of WD-40 on the bars’ surface. After thoroughly cleaning the bars 

using denatured alcohol and roughening the surface using 220-, 320- and 400- grit 

sandpaper, it was possible to apply the strain gages following the manufacturers’ 

instructions. For mounting the strain gages the Vishay M-Bond 200 adhesive kit was 

used. Since two out of four strain gages did not come with connected leadwires, the 
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wires had to be carefully soldered to the strain gage tabs. Figure 43 shows a 120 Ω 

strain gage with terminal that was installed by the author. 

In summary, it can be seen that setting up and calibration of the 2.0 in.-

diameter SHPB, that had not been used for a long time, was very challenging and time 

consuming and could have still be improved. Many parts had to be ordered or 

manufactured individually by the DPML machine shop and the author for the SHPB. 

5.3 Experimental procedure 

As a first step, diameter and thickness of the to-be tested Iron Carbonate 

specimen have to be measured with a caliper gauge and noted down. Then, a 

cylindrical Iron Carbonate specimen is placed between the incident and transmitter 

bars aligned with the common axis of the bar system. The friction between the 

specimen ends and the bars holds the specimen in place [66]. However, to limit 

interfacial friction, the boundary interfaces between the bars and the sample are 

lubricated [46] with Molybdenum disulfide lubricant [60] or WD-40. For safety 

reasons a Plexiglas box is placed over the specimen. The bars and the guiding clamps, 

as well as the aluminum striker bar and gun barrel are lubricated with WD-40, so that 

the bars are able to move freely.  

The projectile is placed into the striker unit and pushed to the end of the gas 

gun barrel with a flexible poly rod. As pulse shaper, a thin layer of clay is placed at the 

end of the incident bar facing the projectile (see Figure 18, section 4.3.2). 

Afterwards, the amplifier and the digital oscilloscope are turned on. The 

excitation voltage and gain are set to 10V and 100V respectively [60]. The reset 

switch is turned on for all four channels. To check if the strain gages are working the 
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resistance on the gauges should read around 350 Ω (120 Ω if a different type of gage is 

used for monitoring). Then, the voltage levels, trigger position, and data duration time 

(2 ms – 4 ms) are set for all four channels in the digital oscilloscope, depending on the 

experiment. The half bridge has to be balanced for all four channels by turning the 

reset button. Then, the digital oscillation is armed to capture the strain gage voltage 

signals. If necessary trigger levels have to be adjusted. Also, high noise of more than 

20mv should be avoided in the signals.  

To test the specimen under high strain-rates, nitrogen gas is released from the 

gas tank into the gas gun chamber until the required pressure level, e.g. 100 psi, is 

achieved. Then the solenoid valve control box button is turned on. Before firing the 

projectile, it has to be ensured that the specimen is well aligned between the bars. 

Also, the status of the trigger hold has to be verified. The projectile can be fired by 

pressing and holding the solenoid valve release button that suddenly releases the 

compressed nitrogen gas from the pressure storage vessel into the gun barrel. The 

speed of the striker can be controlled and varied by changing the pressure of the 

compressed gas in the tank or changing the depth of the striker inside the gun barrel 

[52]. As soon as the projectile hits the incident bar, the already set up Photron Fastcam 

can be manually started to record by pressing the external trigger. 

After the test, the captured voltage pulses are saved from the oscilloscope onto 

an USB flash drive for further analysis with a MATLAB program to determine the 

equilibrium and true stress-strain plots for the tested Iron Carbonate specimen. After 

the data is transferred from the oscilloscope to the USB flash drive, the data should be 

verified on a computer before turning off the amplifier and oscilloscope. 
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To complete the experiment, the solenoid valve release button has to be turned 

off. Also, it has to be made sure that all the left over nitrogen gas in the gas chamber is 

released. 

5.4 Data analysis 

The captured voltage pulses from the oscilloscope are analyzed using two 

MATLAB codes (Verify_Equilibrium and Steel_SHPB) provided by the Dynamic 

Photomechanics Laboratory of the University of Rhode Island. Objective is to 

determine the equilibrium and true stress-strain plots for the tested Iron Carbonate 

specimens. 

Before running the codes, is has to be made sure that the code has the right 

properties and dimensions of the pressure bars [60]. These include diameter, wave 

speed and material properties like the young’s modulus of the steel bars. 

As a first step the “Verify_Equilibrium”-code should be run [60]. In order to 

do so, the data from the oscilloscope has to have the following names for the four 

channels: “TEK00000”, “TEK00001”, “TEK00002”, and “TEK00003”. “TEK00000” 

and “TEK00001” represent incident and reflected pulses (channel 1 and channel 2). 

“TEK00002” and “TEK00003” represent the transmitted pulses (channel 3 and 

channel 4). The code and the data have to be saved in the same folder on the computer 

because the code accesses the data, converts the voltage output to microstrains, and 

averages channel 1 and channel 2 respectively channel 3 and channel 4.  

Default values for filtering are given in the code [60]. For incident and 

reflected pulse, a default value of 0.2 (fn = 0.2) is used. For the transmitted pulse, a 

default value of 0.05 (fn = 0.05) is used. Depending on the noise, the values of fn can 
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be changed. The value of “fn” can range from 0.001 to 0.99, higher values of “fn” 

meaning that the pulses were not filtered.  

When running the code, two figures are automatically created [60]: “Figure 1” 

gives the incident and reflected pulses; “Figure 2” gives the transmitted pulse (see 

Figure 44). 

Figure 44 – Incident and reflected pulse (left) and transmitted pulse (right) created by the 

MATLAB code [60] 

 

The incident starting time, incident end time, reflected starting time and 

transmitted starting time as shown in Figure 44 (grey circles) have to be noted and 

entered into the MATLAB code [60]. The code then generates three more figures that 

show the incident, reflected and transmitted pulses. Thereby “Front face” represents 

the forces calculated on the incident and reflected pulses and “Back face” represents 

the force calculated on the transmitted pulse. Ideally, front and back face should match 

perfectly (see Figure 45) and force equilibrium is achieved. 
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Figure 45 - Force applied on the specimen over time; matching incident and reflected pulses [60] 

 

Figure 46 - Force applied on the specimen over time; incident and reflected pulses do not match 

[60] 

 

However, most of the times the incident and reflected pulses do not match (see 

Figure 46) so that different values for the time of the incident pulse have to be tried 

[60]. Only the time of the incident pulse should be varied. The times of the reflected 

and transmitted pulses should not be changed. 
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After saving the obtained figures to the respective folder and noting down the 

used incident starting time, incident end time, reflected starting time and transmitted 

starting time, the “Steel_SHPB”-code should be opened [60]. The same values for 

filter as in the “Verify_Equilibrium”-code should be used. After entering the specimen 

thickness and diameter in inches, the code generates two figures: “Figure 1” shows the 

incident and reflected pulses; “Figure 2” shows the transmitted pulse. After entering 

the starting respectively end times of the pulses, the code creates an eng. stress-strain 

curve and true stress-time curve. By picking two points at the initial elastic region of 

the true stress-strain curve, the slope can be calculated. Following, two points at the 

linear region of the newly created diagram have to be picked (see Figure 47). 

Figure 47 - True strain over time diagram [60] 

 

In the MATLAB main window one can then see the strain rate value. Next, the 

final figure (eng. strain-rate vs. time) is created [60] and the analysis with the 

MATLAB codes is completed. 
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5.4.1 Digital Image Correlation 

Digital Image Correlation (DIC) is a non-contact optical technique for 

measuring strain and displacement by comparing digital photographs of a component 

at different stages of deformation [82]. By tracking random blocks of pixels, a DIC 

system can measure surface displacement and build up full field 2D or 3D deformation 

vector fields and strain maps. 

The edges of two tested Iron Carbonate specimens (P1-3 and P1-4) were 

painted white and provided with a random pattern of black dots to enable digital image 

correlation (DIC) while conducting split Hopkinson pressure bar experiments. In order 

to do so, deformation of each specimen in the SHPB was recorded using a Photron 

Fastcam camera (see section 5.2.3). 
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6 Results 

6.1 Verification of results 

6.1.1 Single-bar experiment 

By performing a single-bar experiment firing the striker solely at the incident 

bar, one can measure the true speed of sound in the bars and the time Δt between the 

start of the incident pulse and the occurrence of the reflected pulse. This time Δt can 

be used for indicating the beginning of the reflected pulse in a bar-to-bar experiment. 

Furthermore, bending of the incident bar can be determined on the basis of the pulses 

in the incident bar. 

The single-bar experiment was carried out using a gas pressure of 150 psi. 

Figure 48 shows the pulses obtained in the experiment. The time between the start of 

the incident pulse to the start of the reflected pulse was indicated to be Δt = 480 µs. 

Figure 48 - Incident and reflected pulse obtained in a SHPB single-bar test 
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The smaller pulses in between incident and reflected pulse indicate a minor 

misalignment, i.e. bending, of the incident bar and could potentially influence the 

SHPB results. 

6.1.2 Bar-to-bar experiment 

To check the alignment of the bar system, the aluminum striker bar is launched 

directly on the incident bar using a pressure of 300 psi. The incident bar itself is in 

direct contact with the transmitted bar without any specimen in between.  

Figure 49 - Original pulses of SHPB bar-to-bar experiment (300 psi gas pressure) 

 

 The generated incident pulse in the incident bar should be transmitted into the 

transmitted bar without any reflection, since both are in direct contact. However, 

misalignments between the incident and the transmitted bar or bending of the bars 

generate a reflected pulse. Please refer to chapter 4, section 4.3.7 for images of stress 
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waves in good respectively bad alignment. Figure 49 shows the original pulses 

obtained from the bar-to-bar experiment. It can be seen that a – small – reflected pulse 

is generated indicating misalignment of the two bars. As can be seen from Figure 50 

the incident and reflected bar are clearly misaligned because they are not in direct 

contact. The author tried to adjust the alignment but did not succeed (see section 

5.2.4). However, manufacturing constraints of the Iron Carbonate specimen comprise 

evenness of the specimens’ surfaces, as well causing a potential misalignment and 

affecting results. 

Figure 50 - Misalignment between incident (left) and transmitted (right) bar 

 

For material property characterization, a dynamic stress equilibrium and 

constant strain-rate need to be achieved within the specimen [52]. The forces 

calculated on the incident and reflected pulses (front face) should match the force 

calculated on the transmitted pulse (back face) to achieve force equilibrium.  
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Figure 51 – Force equilibrium

 

 

Figure 52 – Strain vs. time of incident-, reflected-, and transmitted pulses 
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Figure 51 shows the forces that would be applied on a specimen between the incident 

and transmitted bar. Front face and back face nearly match, meaning that force 

equilibrium is achieved. Figure 52 shows the transmitted pulse in relation to the 

incident and reflected pulses. 

6.1.3 Testing of aluminum specimen 

Before testing the prepared Iron Carbonate specimens, the results were verified 

by testing an aluminum 6061 specimen with the same dimensions (1.5 in. diameter, 

0.6 in. length) as the novel binder samples (see Figure 53). The aluminum sample was 

lubricated with Molybdenum disulfide lubricant and placed between the incident and 

transmitted bar. The projectile was fired at the incident bar using a pressure of 350 psi 

following the experimental procedure described in chapter 5, section 5.3. As a pulse 

shaper a thin layer of clay was applied on one face of the incident bar. 

Figure 53 - Aluminum 6061 specimen(1.5 in. diameter, 0.6 in. thickness) tested to verify future 

results 

 

The data analysis was carried out following section 5.4. The following figures 

were obtained using the DPML-MATLAB codes “Verify_Equilibrium” and 

“Steel_SHPB”: 
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Figure 54 - Original pulses obtained by testing a cylindrical aluminum 6061 specimen 

 

For material property characterization, a dynamic stress equilibrium and 

constant strain-rate need to be achieved within the specimen [52]. By adjusting the 

starting and ending times of the incident (-28 μs; 145 μs), reflected (435 μs) and 

transmitted (459 μs) pulses, one can achieve near force equilibrium (see Figure 55). 

“Front face” represents the forces calculated on the incident and reflected pulses and 

“Back face” represents the force calculated on the transmitted pulse. Ideally, front and 

back face should match perfectly (see Figure 45, section 5.4) to achieve force 

equilibrium. Minor inaccuracies could possibly be due to a misalignment between the 

incident and transmitted bar and prevent a perfect match of the front and back face. 
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Figure 55 -  Force applied on the aluminum 6061 specimen 

 

 

 Using the same starting and ending times of the incident, reflected and 

transmitted pulses in the “Steel_SHPB”-MATLAB code, one can obtain an 

engineering stress-strain graph (see Figure 56). Engineering stress, also known as 

nominal stress, is the applied load divided by the original cross-sectional area of a 

material [83]. Engineering strain, also known as nominal strain, is the amount a 

material deforms per unit length.  

By selecting the slope of the engineering stress-strain curve within the 

MATLAB-program, one can obtain the true strain-time graph (see Figure 59), the true 

strain conforming the natural logarithm of the quotient of current length over original 

length [83].  

F
o
rc

e 
[N

] 

Time [μs] 

x 10
5 



 

152 

 

Figure 56 – Initial engineering stress vs. engineering strain of aluminium 6061

 

Comparison of Figure 56 to Figure 58 and Figure 57 shows a similar initial 

stress-strain behavior of the tested aluminum specimen to results obtained by other 

researchers even though the tested aluminum 6061 specimen was barely deformed. 

However, comparison indicates that the present set-up of the split Hopkinson pressure 

bar is sufficient enough to give acceptable results. 
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Figure 57 - Dynamic stress-strain curves of Al-6061-T6 alloys showing (inset) material constants 

(m) and hardening coefficients (n) under the impacts at various strain rates [84] 
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Figure 58 – Initial part of the dynamic stress-strain curve of aluminum [85] 

 

Completing the data analysis of the aluminum specimen one can obtain Figure 

59 and Figure 60. The final strain-rate for aluminum provided by the MATLAB-code 

is 350 s
-1

. 

Figure 59 - True strain vs. time of aluminum 6061
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Figure 60 - Strain-rate vs. time of aluminum 6061

 

6.2 Expected results 

As already outlined in chapter 3, section 3.4, the author expects an enhanced 

performance under dynamic compression testing for the Iron Carbonate binder. 

Compressive strain at failure of ordinary concrete is 0.005 and can serve as a minor 

guiding value for Iron Carbonate. Tensile strain at failure of Iron Carbonate is 

0.00035, according to Dr. Das. 

Other material properties of Iron Carbonate have shown to be equal or better in 

comparison to conventional OPC-based binders. Main reason is the metallic 

particulate phase incorporated in the novel binders’ microstructure that increases the 

toughness of Iron Carbonate because of energy dissipation by plastic deformation of 

the unreacted and elongated, strong and ductile iron particles [48]. In addition, the 

matrix of Iron Carbonate contains other additives including harder fly ash particles, 

softer limestone particles, and ductile clayey phases which significantly influence the 

overall fracture performance of the novel sustainable binder.  
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Both Iron Carbonate mixtures contains polypropylene fibers respectively steel 

fibers at 1% fiber volume fraction; the fracture energy is approximately 4 times higher 

at 1% fiber volume fraction [47] and would also suggest an enhanced performance 

under dynamic compression in SHPB tests. 

Figure 61 - Dynamic compressive strength of paste, mortar and concrete [53] 

 

 Figure 61 shows the dynamic compressive strength vs. strain-rate for cement 

paste, mortar, and concrete, according to Chen et al. [53]. It shows that dynamic 

strength increases approximately linearly with increasing strain-rate. A similar 

material behavior, i.e. strength enhancement at high strain-rates, has been shown for 

other materials like rocks, ceramics, composites and steel. The author believes that 

dynamic compressive strength of Iron Carbonate will also increase with increasing 

strain-rate. 

 Figure 62 shows the dynamic stress-strain curves of paste, mortar and concrete 

at various strain-rates as described by a model developed by Chen et al. [53] and 

corresponding experimental results [53].  
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Figure 62 - Comparison of stress-strain curves of specimens determined by experiments and 

model [53] 

  

 

Mortar is found to have higher quasi-static compressive strength (~46 MPa) as 

compared to concrete (~30 MPa) due to different deformation and failure mechanisms 

[51]. Concrete fails premature due to development and growth of micro-cracks along 

aggregate-matrix interfaces as a result of high stress concentrations. Since mortar has a 

somewhat comparable material density (2100 kg/m
3
) and quasi-static compressive 

strength (~46 MPa) to Iron Carbonate (2500 kg/m
3
; 35–40 MPa), dynamic material 

behavior of mortar could serve as orientation for dynamic behavior of Iron Carbonate. 

Although, as already mentioned, incorporation of the metallic particulate phase in the 

novel binders’ microstructure and the addition of polypropylene fibers suggest an 

enhanced performance under dynamic compression in SHPB tests compared to analog 



 

158 

 

binder materials. Table 4 lists results of SHPB experiments on mortar carried out by 

Grote et al. [51]. 

Table 4 - SHPB experiments on mortar carried out by Grote et al. [51] 

 

 The stress in a specimen tested in a SHPB can be estimated based on one-

dimensional wave propagation analysis using the following equation [86]: 

σ(t)=
2Asρs

cs

A0ρ
0
c0+Asρs

cs

 
A0

As

 σ1(t) (1) 

In Eq.(1) ρ is the mass density, c is the elastic wave velocity of the bar material 

respectively the specimen, A is the cross-sectional area, and σ1 is the stress of the 

incident pulse [86] which can only be determined by carrying out a SHPB experiment 

(see section 6.3). Thereby, subscripts 0 and s represent the bar respectively the 
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specimen. Since the elastic wave velocity cs for Iron Carbonate is unknown to date, 

the author assumed a wave velocity similar to conventional concrete, according to 

Mohr [87]. The following Table 5 shows the values used to estimate the stress in an 

Iron Carbonate specimen during a conventional SHPB experiment according to Eq.(1): 

Table 5 - Values used in Eq.(1) to estimate stress in specimen during SHPB tests 

bar Iron Carbonate specimen 

A0=3.14 in2 As=1.77 in2 

ρ0=8000 kg m3⁄  ρs=2500 kg m3⁄  

c0=5010 m s⁄  cs= 3162 m s⁄  

A0ρ0c0 = 40,080,000 Asρscs = 4,446,563  

σ1=60 MPa* 

* 12 x 10
4
 N acting upon As 

 

The estimated stress in the specimen during SHPB tests following Eq.(1) 

calculates to σ(t) = 38 𝑀𝑃𝑎. Lu and Xu [88] claim that the dynamic compressive 

strength of concrete materials (at a strain rate of order 100 s
-1

) is about 1.5 times of the 

static compressive strength. Assuming a static compressive strength of 35 MPa for 

Iron Carbonate (see section 3.4) the dynamic compressive strength would come to 

52.5 MPa. The dynamic tensile strength increases 7 times compared to the static 

tensile strength at the same strain-rate [88]. 
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6.3 Results and Discussion  

Following the experimental procedure described in detail in section 5.3, the 

author tested four polypropylene fiber containing Iron Carbonate specimens in the 

SHPB, hereafter referred to as specimens P1-1, P1-2, P1-3 and P1-4.  

All specimens were tested using a gas pressure of 350 psi to fire the striker bar 

toward the incident bar. As pulse shaper a thin layer of standard clay was applied 

between the striker and the incident bar (see Figure 63). The surfaces of each 

specimen were lubricated with Molybdenum disulfide lubricant to reduce friction (see 

section 4.3.3.2). Although each experiment was carefully set up and monitored, testing 

of P1-3 failed to produce usable data for an analysis; the author suspects premature 

triggering of the digital oscilloscope as the reason for unsuccessful monitoring. 

Manufacturing constraints of the Iron Carbonate specimens comprised 

evenness of the specimens’ surfaces, causing misalignment between the steel bars and 

the specimens’ surfaces, potentially affecting the results by creating additional 

reflecting pulses. As can be seen from Figure 64 the specimen is clearly misaligned 

with the incident bar (left) because it is not in direct contact. 
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Figure 63 - Clay as pulse shaper on one face of the 

incident bar 

 

Figure 64 - Misalignment of Iron 

Carbonate specimen P1-2 

 

Non-parallel loading surfaces and poor flatness of brittle specimens (see 

Figure 64) as well as bar misalignment (see Figure 50) can lead to stress 

concentrations around the edges of the samples. Eventually those locally concentrated 

stresses cause uneven and premature failure of a specimen. Please refer to section 

4.3.5 for more detailed information. 

Figure 65 shows pictures of the tested Iron Carbonate specimens before and 

after exposure to dynamic compression during the SHPB experiments. All specimens 

failed and exhibited cracking. However, plastic deformation near the impact end 

facing the incident bar seems to be greater than near the end facing the transmitted bar. 

This nonhomogeneous deformation could potentially indicate a non-equilibrium stress 

state. Slow motion side view video footage supports the authors’ argument of 

nonhomogeneous deformation. 
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Nonetheless, the high strain-rate loading did not result in disintegration of the 

cylindrical samples into small pieces. This could be attributed to implementation of 

polypropylene fibers (at 1% fiber volume fraction) within the microstructure of the 

tested material; the fracture energy is approximately 4 times higher at 1% fiber volume 

fraction [47]. Also, as outlined in section 3.4, Iron Carbonate binders have 

demonstrated to have four to six times higher flexural strengths than OPC-based 

binders [48]. This can be attributed to the combination of the strong carbonate matrix 

in combination with the presence of unreacted iron particles in the microstructure. 

Unreacted iron particles result in a significantly higher peak load and improved post 

peak response compared to OPC binders [48]. Furthermore, Iron Carbonate binders 

show an enhanced fracture performance due to the beneficial effects of the elastic, 

partially reacted or unreacted metallic particles on crack bridging and deflection [47]. 

IC has significantly higher crack growth resistance than OPC binders and has also 

been shown to provide significantly higher total fracture energy than OPC. 
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Figure 65 - Undeformed and deformed Iron Carbonate specimens 
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Before and after each SHPB experiment, diameter and thickness of the Iron 

Carbonate specimen were measured with a caliper gauge and noted down. Table 6 

shows the undeformed respectively deformed diameter and thickness of the tested Iron 

Carbonate samples. 

Table 6 – Diameter Ø and thickness t of cylindrical Iron Carbonate specimens before 

(undeformed) and after (deformed) dynamic compression test in SHPB 

sample 

firing 

pressure  
Øundef. Ødef. Δ tundef. tdef. Δ 

[psi] [in] [in] [in] [in] [in] [in] 

P1-1 350 1.564 1.635 
+0.071 

(+4.54%) 
0.617 0.591 

-0.023 

(-3.73%) 

P1-2 350 1.564 1.625 
+0.061 

(+3.90%) 
0.635 0.619 

-0.016 

(-2.52%) 

P1-4 350 1.555 1.621 
+0.066 

(+4.24%) 
0.606 0.586 

-0.02 

(-3.30%) 

 

The captured voltage pulses from the digital oscilloscope of each SHPB test 

are analyzed using two MATLAB codes (Verify_Equilibrium and Steel_SHPB), 

according to section 5.4. Objective was to determine the equilibrium, true stress-strain 

plots and strain-rate for the tested Iron Carbonate specimens. The MATLAB-plots on 

the following pages were obtained using the incident pulse starting time, incident 

pulse end time, reflected pulse starting time and transmitted pulse starting time, 

chosen from the initial voltage pulses plots. The chosen times are listed in Table 7. 

The single-bar experiment (see section 6.1.1) helped to choose accurate starting times 

of the reflected pulses by providing the approximate time Δt = 480 µs between the 

start of the incident pulse to the start of the reflected pulse. For better filtering and 

noise reduction of the obtained transmitted pulses, the default value of 0.05 (fn = 0.05) 

was changed to 0.015 (fn = 0.015) in the MATLAB-code.  
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Table 7 - Incident pulse starting and end time, reflected pulse starting time and transmitted pulse 

starting time used in the MATLAB-codes 

instant of time P1-1 P1-2 P1-4 

start incident pulse  [µs] -20 -20 -20 

end incident pulse  [µs] 180 180 160 

start reflected pulse  [µs] 465 465 465 

start transmitted pulse  [µs] 460 460 480 

 

 Figure 67 and Figure 68 show the original pulses for each of the Iron 

Carbonate specimen. Noticeable are small transmitted pulses in comparison to the 

incident and reflected pulses. The transmitted pulses are hardly distinguishable from 

the pulses’ noise preventing proper interpretation of the signals and making it difficult 

to obtain a reliable dynamic stress-strain response. It indicates inaccurate results of the 

SHPB experiments on Iron Carbonate. 

Figure 66 shows typical pulses from a conventional SHPB experiment – akin 

to the set-up used for the present SHPB experiments – testing silicone rubber 

specimens having low mechanical impedance. The small amplitude of the transmitted 

pulse is similar to the transmitted signals in Figure 67 respectively Figure 68. 
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Figure 66 - Strain time records for(low impedance) RTV630 silicone rubber specimen using a 

conventional SHPB [89] 

 

Testing specimens made of material with low mechanical impedance allows 

the incident bar-specimen interface to nearly move freely under stress wave loading 

[89]. Most of the incident pulse is reflected backward into the incident bar and only a 

small portion of the loading pulse is transmitted through the specimen into the 

transmission bar. The fact that the magnitude of the reflected pulse (~700 µε) is 

insignificantly smaller than the initial magnitude of the incident pulse (~800 µε) 

supports the argument (Figure 67 and Figure 68). As a result the transmitted strain 

signal shows very small amplitude, as can be seen in Figure 66 and, more importantly, 

in the strain signals of the tested Iron Carbonate samples (see Figure 67 and Figure 

68). The small amplitude makes it hard to accurately interpret the measured results. 

A0ρ0c0  respectively Asρscs  represent the mechanical impedance according to 

Eq.(1) in section 6.2 [86]. If the mechanical impedance of the specimen is very low 

compared to that of the steel bar, the magnitude of the stress σ(t) in Eq.(1) is very low. 

Since σ(t) is proportional to the transmitted stress (see Eq.(3)), it too is very low. 
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Using values according to Table 5, section 6.2, the mechanical impedance of Iron 

Carbonate is roughly 11% of the impedance of the SHPB steel bars. 

Figure 67 - Original pulses of specimen P1-1 

 

If the dynamic yield strength of the specimen – within the rise time of the 

incident pulse (usually less than 10 µs) – is smaller than the amplitude of the stress 

pulse, homogeneous deformation in the sample cannot be reached prior to occurrence 

of failure [89]. This is due to the low elastic wave velocity in low-impedance 

materials. As stated previously, the nonhomogeneous deformation of the Iron 

Carbonate specimens results in a non-equilibrium stress state. Loading pulses should 

travel back and forth more than three times inside the specimen in order to achieve 

equilibrium. 

Also, both the incident and reflected pulse show some noise indicating an 

insufficient pulse shaping by the applied clay. Pulse shaping (see section 4.3.2) 

Incident 

Reflected 

Transmitted 
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increases the rise time of the incident pulse and thereby ensures homogenous 

deformation and stress equilibrium in low-impedance specimen [89]. 

Figure 69 shows incident-, reflected-, and transmitted pulses of specimen. 

Once again it becomes apparent that the transmitted pulse is of much smaller 

magnitude than the incident and reflected pulses preventing stress equilibrium. 
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(a) 

 

Figure 68 - Original pulses of specimen (a) P1-1, (b) P1-2, and (c) P1-4 
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(a) 

 

Figure 69 - Incident-, reflected-, and transmitted pulses of specimen (a) P1-1, (b) P1-2, and 

(c) P1-4 
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Figure 70 shows the forces applied on the Iron Carbonate specimens. “Front 

face” represents the forces calculated on the incident and reflected pulses and “Back 

face” represents the force calculated on the transmitted pulse. Ideally, front and back 

face should match perfectly to achieve (force) equilibrium. However, in the present 

SHPB results “Front face” and “Back face” do not match. As outlined before, the 

small amplitude of the transmitted pulse possibly prevents achievement of an 

equilibrium stress state. 

For the sake of completeness, the obtained but possibly inaccurate MATLAB-

plots of the stress-strain response of the Iron Carbonate specimens are included on the 

following pages. Although no stress equilibrium was achieved, the graphs of each 

specimen look somewhat similar in each Figure 71, Figure 72, and Figure 73 

indicating consistency of the experimental and analytical methods. The obtained but 

questionable strain-rates are listed in the following Table 8. 

Table 8 - Strain-rates of specimen P1-1, P1-2, and P1-4 obtained with the MATLAB-code 

specimen strain-rate [s
-1

] 

P1-1 318.99 

P1-2 269.49 

P1-4 320.77 
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(a) 

 

Figure 70 - Forces applied on specimen (a) P1-1, (b) P1-2, and (c) P1-4 
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(a) 

 

Figure 71 - Eng. stress vs. eng. strain of specimen (a) P1-1, (b) P1-2, and (c) P1-4 

 

 

 

(b) 
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(a) 

 

 

Figure 72 - True strain vs. time of specimen (a) P1-1, (b) P1-2, and (c) P1-4 
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(a) 

 

Figure 73 - Strain-rate vs. time of specimen (a) P1-1, (b) P1-2, and (c) P1-4 
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 The engineering respectively nominal strain-rate ε̇(t) in the specimen can be 

calculated based on the assumption of homogenous deformation of the specimens 

using the following equation [89]: 

ε̇(t)= - 
2c0

L
εr(t) 

 

(2) 

 

In Eq.(2) L is the original length of the specimen, εr(t) is the time-resolved strain of 

the reflected pulse in the incident bar, and c0 is the elastic wave velocity of the bar 

material. The DPML MATLAB-code uses an elastic wave velocity of c0 = 5010 
𝑚

𝑠
 

for the SHPB steel bars. 

The engineering respectively nominal axial stress σ in the specimen can be 

calculated using the following equation [89]: 

σ(t)=
A0

AS

E εt(t) 

 

(3) 

 

In Eq.(3) AS is the cross-sectional area of the specimen, εt(t) is the time-resolved axial 

strain in the transmitted bar, A0 is the cross-sectional area of the transmitted bar, and E 

is the Young’s modulus of the bar material. 

 In order to achieve stress equilibrium within the specimen, the amplitude of the 

transmitted pulse has to be increased. Following Eq.(3) it becomes clear that for 

increasing the transmitted strain  εt(t) under the same stress level σ(t) in the specimen, 

one need to reduce the Young’s modulus E of the bar material and/or the cross-

sectional area ratio 
A0

AS
 [89]. 

As a summary, it can be stated that the obtained transmitted pulses of the tested 

Iron Carbonate specimens are of much smaller magnitude than the incident and 

reflected pulses. As a result, achievement of stress equilibrium and homogeneous 
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deformation of the Iron Carbonate samples is prevented. The strain gage signals 

cannot be properly interpreted and obtainment of reliable dynamic stress-strain curves 

is averted because of the possibly low-impedance of Iron Carbonate. The 

conventionally used experimental set-up of the split Hopkinson pressure bar has to be 

modified in order to determine accurate dynamic stress-strain responses. Please refer 

to the following section 6.4 for detailed information about future modifications of the 

experimental set-up. 
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6.4 Implications for future research 

In general, alignment of the experimental set-up needs to be improved by 

adjusting the I-beam stand and clamps of the incident and reflected bars. Certainly, the 

portable elevating truck supporting the overhanging part of the transmitted bar should 

be replaced by a more stable and permanent stand. In addition, a more advanced 

system to stop the transmitted bar respectively to absorb the axial thrust and to 

attenuate the impact on the stand needs to be implemented. 

As already outlined in the previous section 6.3, the amplitude of the 

transmitted pulse has to be increased to achieve stress equilibrium in the specimens, to 

enable proper interpretation of the strain gage output signals, and to eventually obtain 

reliable dynamic stress-strain responses. To increase the transmitted pulse amplitude 

the Young’s modulus E of the bar material and/or the cross-sectional area ratio A0 AS⁄  

have to be reduced. The conventional split Hopkinson pressure bar system should be 

modified by using a softer material, such as aluminum or magnesium, as transmitted 

bar material instead of steel. Also, the author suggests using a hollow bar instead of a 

solid bar. A possible experimental set-up is shown in the following Figure 74. 

Figure 74 - Modified SHPB set-up using a hollow transmitted bar [61] 
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The lower Young’s modulus of an aluminum alloy and the smaller cross-

section of the hollow bar would increase the amplitude of the transmitted strain signals 

by at least an order of magnitude as compared to a conventional steel bar (see Table 

9). 

Table 9 - Magnifications in the transmitted signal for different incident and transmitted bar 

materials and area ratios [61] 

Incident Bar Transmitted Bar Magnification 

MS MS 1 

MS Al
1
 3 

MS Al
2
 12 

MS Lexan
1 

55 

MS Lexan
2
 160 

Al
1 

Al
1
 1 

Al
1
 Al

2
 3 

Al
1
 Lexan

1
 55 

Al
1
 Lexan

2
 140 

 

Figure 75 shows typical strain gage signals when using a solid transmitted bar 

in comparison with a hollow transmitted bar. A hollow transmitted bar increases the 

amplitude of the transmitted pulse significantly. 

MS: 3/4 in maraging steel bar 

Al
1
: 3/4 in aluminum bar 

Al
2
: 3/4 in aluminum tube 

 thickness 1/8 in. 

Lexan
1
: 3/4 in lexan bar 

Lexan
2
: 3/4 in lexan tube 

 thickness 1/8 in. 
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Figure 75 - Typical pulse signals of a solid and hollow bar transmitted bar [61] 

 

Also, both the incident and reflected pulse show some noise (see Figure 68) 

indicating insufficient pulse shaping by the applied clay. A different pulse shaping 

technique should be applied to slow down dynamic loading of the specimen enough to 

achieve quasi-static loading, to ensure homogenous deformation, and to reach stress 

equilibrium in the low-impedance specimen. The author suggests using thin copper 

plates for pulse shaping instead of clay. 

The author recommends cutting the cylindrical Iron Carbonate samples solely 

with the QEP 4 in. diamond blade on the JET vertical milling machine in the DPML 

machine shop instead of using the RYOBI circular saw with DIABLO 10 in. saw 

blade. Thus, the surfaces of the samples could be significantly smoother and more 

accurate and level. Misalignment between the specimen and the bars could be reduced. 

At last, the author thinks it would be important to test specimens made of 

ordinary Portland cement with the same exact experimental set-up to truly compare 

the material properties of Iron Carbonate with properties of commonly used OPC-

based binders.  
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7 Conclusive Summary 

Conventional concrete is commonly made with ordinary Portland cement 

(OPC) and has two major issues that make it unsustainable: a high carbon footprint 

and restricted durability under extreme dynamic loading conditions that makes 

frequent repair and replacement necessary. Manufacture of 1 ton of Portland cement 

results in emitting about the same amount of CO2. 

The use of iron carbonated binders has strong environmental benefits because 

it consumes and sequestrates CO2 from GHG-emitting industries. The sequestration is 

permanent as opposed to often leaking physical trapping methods. Iron Carbonate 

could replace cementitious binders and thus reduce the overall production of Portland 

cement, resulting in a significant reduction of the carbon footprint of the cement and 

building industry. 

The author expected an enhanced performance under dynamic compression 

testing for the Iron Carbonate binder in the split Hopkinson pressure bar (SHPB) 

experiment. The performance of Iron Carbonate, under extreme dynamic loading 

conditions, will potentially establish exceptional dynamic load mitigation 

characteristics for the carbon-negative sustainable binder under extreme combined 

environments. Enhanced durability of the novel sustainable concrete through better 

resistance against dynamic loading would prolong its lifetime, make it even more 

sustainable and would help to establish Iron Carbonate as a serious alternative for 

ordinary Portland cement. 

Other material properties of Iron Carbonate that have been already tested have 

shown to be equal or better in comparison to conventional OPC-based binders. Main 

reason for that is the metallic particulate phase incorporated in the novel binders’ 
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microstructure that increases the toughness of Iron Carbonate because of energy 

dissipation by plastic deformation of the unreacted and elongated, strong and ductile 

iron particles. In addition, the matrix of Iron Carbonate contains other additives 

including harder fly ash particles, softer limestone particles, and ductile clayey phases 

which significantly influence the overall fracture performance of the novel sustainable 

binder. 

Objective of the carried out dynamic compression tests in a split Hopkinson 

pressure bar (SHPB) experiment was the determination of the stress equilibrium, true 

stress-strain plots and strain-rate for Iron Carbonate specimens. Building up of the 

split Hopkinson pressure bar (SHPB) system in the Dynamic Photomechanics 

Laboratory (DPML) proofed to be extremely difficult and time consuming and 

analysis of the obtained pulses revealed that the transmitted pulses of the tested Iron 

Carbonate specimens were of much smaller magnitude than the incident and reflected 

pulses. As a result, achievement of stress equilibrium and homogeneous deformation 

of the Iron Carbonate samples was prevented. Thus, the strain gage signals could not 

be properly interpreted and obtainment of reliable dynamic stress-strain curves was 

averted. The main reason is believed to be the – in this paper determined – low 

mechanical impedance of Iron Carbonate. 

Testing specimens made of material with low mechanical impedance allows 

the incident bar-specimen interface to nearly move freely under stress wave loading, 

so that most of the incident pulse is reflected backward into the incident bar. Only a 

small portion of the loading pulse is transmitted through the specimen into the 

transmission bar. 
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Therefore, the conventionally used experimental standard set-up of the split 

Hopkinson pressure bar using steel bars has to be modified in order to determine 

accurate dynamic stress-strain responses for Iron Carbonate. To increase the 

magnitude of the transmitted pulses, the author recommends using a softer material, 

such as aluminum, as transmitted bar material instead of steel. Furthermore, the author 

suggests using a hollow transmitted bar instead of a solid bar. The lower Young’s 

modulus of an aluminum alloy and the smaller cross-section of the hollow bar would 

increase the amplitude of the transmitted strain signals by at least an order of 

magnitude as compared to a conventional steel bar. 

Although proper interpretation of the strain gage signals was not possible and 

reliable dynamic stress-strain curves could not be determined, the present paper is 

suitable to be used as helpful guide for future SHPB experiments on Iron Carbonate. 

By implementing the modifications described in detail in the present paper, the author 

believes that successful dynamic tests on Iron Carbonate can be carried out that 

eventually help to establish exceptional dynamic load mitigation characteristics for the 

carbon-negative sustainable binder under extreme combined environments. 
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