
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

2016 

Fifteen Years of Rhode Island Oyster Restoration: A Performance Fifteen Years of Rhode Island Oyster Restoration: A Performance 

Evaluation and Cost-Benefit Analysis Evaluation and Cost-Benefit Analysis 

Matthew Griffin 
University of Rhode Island 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Griffin, Matthew, "Fifteen Years of Rhode Island Oyster Restoration: A Performance Evaluation and Cost-
Benefit Analysis" (2016). Open Access Master's Theses. Paper 1044. 
https://digitalcommons.uri.edu/theses/1044 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1044?utm_source=digitalcommons.uri.edu%2Ftheses%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


FIFTEEN YEARS OF RHODE ISLAND OYSTER 

RESTORATION: A PERFORMANCE EVALUATION 

AND COST-BENEFIT ANALYSIS 

BY 

MATTHEW GRIFFIN 

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

ECOLOGY AND ECOSYSTEM SCIENCE 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2016 



 
MASTER OF SCIENCE THESIS 

 
OF 

 
MATTHEW GRIFFIN 

 
 
 
 
 
 
 
 
 
 
 

APPROVED:  
 

Thesis Committee: 
 

Major Professor 
      Michael A. Rice 
 

  
                Dale F. Leavitt 
 

  
                Hirostuga Uchida 
 

   
 Nasser H. Zawia 
  DEAN OF THE GRADUATE SCHOOL 

 
 
 
  
 
 

UNIVERSITY OF RHODE ISLAND 
2016 



ABSTRACT 

Federal, state and local non-profit organizations have long recognized the 

ecological and socioeconomic importance the oyster, Crassostrea virginica, 

represents to coastal communities. Shellfish restoration programs in Rhode 

Island date to the early 1900s and have been making considerable progress 

and gaining popularity in the past decade. To better understand both short and 

long term performance of oyster restoration in Rhode Island a compilation of 

all oyster restoration activities from 2000 to 2015 was undertaken. Restoration 

performance was assessed by comparisons of growth, survival, disease and 

recruitment over eleven years in two distinct programs; Roger Williams 

University’s Oyster Gardening for Restoration (2006 - 2014) and the North 

Cape Shellfish Restoration Program (2003 - 2008). Mean costs of restoration 

were weighed against cumulative value of ecosystem services provide by 

oyster reefs. Over 26 million oysters, encompassing 6.6 acres have been 

seeded in thirteen distinct restoration sites in Rhode Island waters including 

salt ponds, tidal creeks and open coves in Narragansett Bay. Mean growth of 

oysters in restoration sites was between 30-50 mm annually with mean 

survival of 22% and 55% for year one and two+ oysters, respectively. Mortality 

varies among sites and appears to be driven largely by disease. Mortality 

outpaces recruitment at all monitored sites leading to a decline of the 

population once seeding has ceased, driving the need for continued 

restoration to maintain desired ecosystem services. A cost-benefit model 

indicates Rhode Island oyster restoration is not equitable in terms of 



ecosystem services provided, as the cost of restoration is higher than the 

cumulative value of ecosystem services provided by the oyster reefs, thus, 

questioning the economic feasibility of restoration and emphasizing the 

importance of proper site selection coupled with alternate management 

strategies.
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CHAPTER 1 
 

INTRODUCTION 

 

 

The eastern oyster (Crassostrea virginica) is an epifaunal bivalve, 

distributed along the Atlantic and Gulf coasts from the Yucatan Peninsula, 

Mexico to the Gulf of St. Lawrence, Canada (Buroker 1983). Eastern oysters 

play a critical ecological role within our coastal environment. Often dubbed 

‘ecosystem engineers’, this role has been recognized as early as Moebius's 

(1883) pioneering monograph on oysters and oyster culture. Oysters are 

capable of benthic-pelagic coupling by filtering phytoplankton and seston and 

transporting this organic matter to the benthos, thus supplementing benthic 

food webs and accelerating nutrient cycling within the system (Dame 1993, 

Smaal and Prins 1993, Pietros and Rice 2003). Through filter feeding 

activities, C. virginica increases water clarity, reduces turbidity (Cloern 1982, 

Newell 1988) as well as reduces carbon, nitrogen, (Hargis and Haven 1999) 

and pollutants from the water column (Tolley et al. 2005). Oyster beds create 

complex biogenic structures, which increase species density, biomass and 

richness over nearby mud habitats (Tolley and Volety 2005, Manley et al. 

2010, Abeels et al. 2012, Quan et al. 2012) and serve as essential fish habitat 

(Coen et al. 1999, Peterson et al. 2003); ultimately increasing productivity 

within our coastal waters (Grabowski et al. 2004, Grabowski et al. 2008). 
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Oyster beds, when healthy, can provide a direct economic benefit to 

coastal communities through both commercial and recreational fisheries and 

the infrastructure which support them. In the late 1800s and early 1900s, 

Narragansett Bay housed over 21,000 acres of private oyster beds resulting in 

annual landings of 14 million pounds (DeAlteris et al. 2000). Oyster 

populations are of the most degraded ecosystems in the world, with a global 

reef loss of 85% and reefs in New England have been considered functionally 

extinct (Beck et al. 2011). Since the mid-1900s, Rhode Island’s oysters stocks 

have dramatically decreased due to overharvest, habitat and water quality 

degradation coupled with the spread of disease (DeAlteris 2000). Federal, 

State and local non-profit organizations have long recognized both the 

ecological and socioeconomic importance the oyster represents to Rhode 

Island. Various shellfish restoration programs in Rhode Island date to the early 

1900s (Rice et al. 2000) and have been making considerable progress and 

gaining popularity in the past fifteen years.  

 Since 2000, four distinct oyster restoration programs have been 

initiated in Rhode Island, including: 1) the North Cape restoration program 

(Rhode Island Department of Environmental Management/National Oceanic 

and Atmospheric Administration), aimed to address the natural resource 

injuries resulting from the release of 828,000 gallons of heating oil into Block 

Island Sound during the 1996 North Cape oil spill; 2) the Oyster Gardening for 

Restoration and Enhancement (OGRE) program (Roger Williams University), 

aimed at increasing spawning stock biomass of oysters through community 
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involvement; 3) the Environmental Quality and Incentives program (United 

States Department of Agriculture - Natural Resource Conservation Service), 

seeding oysters through cooperative help of aquaculturists; and 4) The Nature 

Conservancy in collaboration with the Rhode Island Department of 

Environmental Management, focusing on restoring oyster populations through 

increasing suitable settlement substrate. Each program has employed different 

approaches to restoration, including: direct seeding efforts of both single set 

oysters and spat on shell with varied density regimens and broodstock lines, 

targeting different habitat to increase oyster performance (i.e. substrate type, 

hydrodynamics, reef height, tidal height) as well as the construction of artificial 

reefs to increase suitable settlement substrate. Coupled with the 

aforementioned restoration programs, the Rhode Island Department of 

Environmental Management has addressed restoring oyster populations 

through the use of permanent closures and the creation of spawner 

sanctuaries.  

Monitoring restored populations and the associated habitat is a 

fundamental part of the restoration process and allows practitioners and 

managers to learn from previous efforts and progress toward more successful 

restoration (Brumbaugh et al. 2006). Despite the increase in shellfish 

restoration in Rhode Island, careful monitoring of the restored populations and 

associated habitat has, in some cases, taken a back seat to efforts of 

introducing shellfish into estuaries. Prior to 2011, monitoring of oyster 

restoration in Rhode Island was completed without standardized metrics, 
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resulting in mixed techniques and performed on varied temporal and spatial 

levels. Results from restoration monitoring have been, in some cases, 

reported in grant progress reports and, in other cases, have not been 

formalized or made available to the public. This lack of organization of data 

has resulted in the lack of ability to understand project performance in the 

context of oyster restoration on the state level.  

It has long been recognized the effectiveness of restoration projects 

must be evaluated against a reference (Fagan et al. 2008). To progress 

toward more effective restoration, managers must understand both, the 

reference of target or ‘un-degraded’ ecosystems as well as the reference of 

previous restoration methods and performance. Based on number of oysters 

seeded on an annual basis, Rhode Island restoration has increased by a 

factor of twenty in the past fifteen years. The number of restoration sites, 

methodology used and entities involved has also increased dramatically. 

Despite the increase in restoration, communication between practitioners (i.e. 

government, NGOs and academia) of basic achievements, performance 

results and research remains minimal. Two informal oyster restoration 

summits (2003 and 2007) were organized by restoration scientists at Roger 

Williams University (RWU) to attempt to coordinate activities and share 

information, which led to the formation of the Rhode Island Shellfish Technical 

Working Group (RISTWG), a volunteer advisory council to the Rhode Island 

Coastal Resource Management Council (RI-CRMC). The RISTWG was 

created to provide a framework for coordination and communication between 
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the agencies and groups involved in various shellfish restoration activities. The 

RISTWG is represented by federal, state, academic, NGO, wild-harvesters, 

and aquaculturists, acting as a centralized body commenting on Rhode Island 

shellfish restoration activities and collaboratively working together to further 

state-wide shellfish restoration planning, prioritization, and goal setting. The 

RISTWG recognizes the lack of a centralized document detailing all oyster 

restoration practices, performance and shortfalls within the state, thus, 

hindering our ability to analyze oyster restoration across projects, sites, and 

methods; ultimately creating a bottleneck of knowledge and encumbering our 

ability to progress towards more successful restoration.  

The ability of oyster reefs to provide ecosystem services, including but 

not limited to increased water quality, habitat and fish production has gained 

recognition in both the scientific and political communities. Increasing water 

quality, habitat and fish production have been identified as federal priorities, 

set forth by the National Oceanic and Atmospheric Administration (NOAA). 

Many approaches to achieve these goals exist including (e.g. managing 

combined sewage treatment outflows, restoring upland and shoreline grass 

habitats, implementing artificial reefs and restoring shellfish beds) and are 

practiced locally. Oyster restoration has been touted as a cost-effective 

approach (Piehler and Smyth 2011, Grabowski et al. 2012) and is often funded 

on this basis. Values of ecosystem services are likely to be highly context 

specific, dependent upon practice, scale of restoration, population dynamics, 

biophysical and chemical parameters of the given habitat and management of 
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the restored area. Valuation of ecosystem services, in economic terms, by 

oyster reefs has been published in primary literature (Henderson and O’Neil 

2003, Piehler and Smyth 2011, Grabowski et al. 2012). The published values 

have not been fit to Rhode Island oyster restoration data and an 

understanding of the cost-benefit analysis of Rhode Island restoration efforts 

does not exist. Quantifying the value associated with ecosystem services of 

Rhode Island oyster reefs and understanding the changes in cost-benefit 

ratios dependent upon practice and site location will enhance our ability to 

maximize our investments and to appropriately allocate limited funding.  

This work aims to: 1) document past oyster restoration in Rhode Island 

from 2003 to present, including methods and completed effort; 2) measure and 

analyze restoration performance and 3) incorporate these data into a cost-

benefit analysis based on ecosystem services provided by oysters. This 

information will allow us to comment on the efficacy of oyster restoration in the 

state and provide suggestions for future efforts. Ultimately this document will 

provide an additional tool for authorities to adaptively manage oyster 

restoration to optimize both ecological services and economic investment. 
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CHAPTER 2 

 

METHODOLOGY 

 

 

 Data Compilation 

 To allow for analysis of restoration performance across sites, years and 

projects, data was compiled from multiple sources including direct field work, 

annual reports, progress reports and personal communication.  Monitoring and 

restoration data from the North Cape Shellfish Restoration Program (NCSRP) 

was personally collected from 2004 to 2009. Monitoring and restoration data 

from Roger Williams University’s Oyster Gardening for Restoration and 

Enhancement (OGRE) was accessed through annual reports from 2006 to 

2011 and personally collected from 2011 to 2014. Restoration data from The 

Nature Conservancy (TNC) and the United States Department of Agriculture – 

Natural Resources Conservation Service, Environmental Quality Incentives 

program (EQIP) were generated from annual reports, progress reports and 

personal communication. Raw monitoring data from TNC and EQIP restoration 

efforts were not available, therefore, these programs were excluded from 

calculations of restoration performance and cost-benefits.  

 

Population Structure and Site Characteristics 

North Cape restoration sites were surveyed between July and October 
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of 2004 to 2008 and 2011 to 2013. Site boundaries were re-established using 

a hand held Garmin Global Positioning System and direct observation to 

determine the limits of oysters seeded in previous years. Seeded boundaries 

were then marked with surface floats and boundary edges measured with a 

100 m tape, ensuring the area surveyed was accurately calculated. An 

average of 1.9% of total site area was sampled using 1 m2 quadrats. Boats 

traveled an approximate grid within the site boundary, evenly distributing 

quadrats in a haphazard un-biased distribution. Divers excavated all live and 

recently dead ‘boxes’ (hinges still intact) oysters within each quadrat, in which 

a subsample of 50 live specimens and 50 boxes were measured from umbo to 

lip to the nearest mm. To assess recruitment to the site, oyster recruits or 

‘over-set’ were tallied independently from the seeded cohorts. Total oyster 

abundance (± SE) within each site was estimated from mean densities 

sampled, using total site area as the basis for extrapolation.  

 Oyster Gardening for Restoration and Enhancement (OGRE) sites were 

monitored between July and October each year from 2011 to 2014. Due to the 

varied seeding practices between North Cape and OGRE restoration 

programs, monitoring methods differed slightly. OGRE sites were seeded with 

multiple, highly dense oyster beds with negligible presence of oysters between 

beds. North Cape sites were seeded with a lower density of oysters over a 

large area. In efforts to keep density variances to a minimum OGRE oyster 

bed were sampled independently from one another. Oyster beds were 

sampled using evenly distributed, haphazardly deployed quadrats. Large 
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beds, generally greater than 100 m2, with highly variable oyster distributions 

were sampled with 1 m2 quadrats, while smaller beds with evenly distributed 

oysters were sampled with 0.25 m2 quadrats. The smaller seeded footprint in 

comparison to the North Cape sites, allowed for greater overall sampling 

coverage. On average 5.2% of total bed area was sampled. Divers excavated 

all live oysters and boxes within each quadrat and in which a subsample of 50 

live specimens and 50 boxes were measured from umbo to lip to the nearest 

mm. As an indicator of recruitment to the site, oyster recruits or ‘over-set’ was 

tallied independently from the seeded cohorts. Density was calculated 

independently for each bed and number of oysters (± SE) per bed was 

estimated from mean densities sampled, using bed area as a basis for 

extrapolation.  

The majority of oyster beds in both programs (OGRE and North Cape) 

were over seeded on an annual or biannual basis, creating a reef of mixed 

cohorts. Tracking growth and survival of individual cohorts was accomplished 

through assessments of length distributions. Due to the reefs composition of 

mixed cohorts discerning precise 1st year survival and growth was not reliable. 

To track annual growth and survival on a finite scale, experimental reefs were 

seeded with single cohorts in Quonochontaug Pond, Smelt Brook Cove and 

Bissel Cove from 2011 to 2014. Within the experimental reefs first year 

survival was calculated by dividing the mean density of live oysters by the sum 

of dead oysters including scars (presence of CaCO3 shell deposits on the 

setting media but absence of both valves). Annual growth was calculated by 
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comparing length distributions between survey years. 

Relative index of recruitment to restoration sites and surrounding areas 

was monitored with the use of artificial spat collectors. These consisted of 

individual polyethylene mesh bags filled with approximately 4 L of surf clam 

(Spisula solidissima) shell, moored to the seabed and hung in mid-water 

column with a surface float. Spat collectors were located in close proximity to 

each restoration site and spread throughout the water body, up to three 

kilometers away from the site of restoration, in efforts to observe spatial 

distribution of recruitment. Locations were chosen based on local 

hydrodynamics and wind patterns. Collectors were deployed prior to the first 

seasonal oyster spawn and retrieved in the fall of each survey year, as to 

represent one season of recruitment activity. Upon retrieval, collectors were 

transported to the RIDEM Coastal Fisheries Laboratory (North Cape 2004 – 

2008) or Roger Williams University (OGRE 2011 – 2013) for analysis, where 

number of oyster spat per collector was enumerated. Depending on site size, 

five to ten spat collectors were placed within each body of water annually.  

 

Disease Monitoring 

Samples of 25 oysters were collected for disease testing from all North 

Cape and OGRE restoration sites in each survey year. Oysters sampled were 

from cohorts seeded in previous years, with the exception of Spectacle and 

Potter Coves (2011 – 2013), where the size and condition of shell hindered the 

proper protocol for analysis. At these sites, wild oysters in close proximity to 
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the restoration areas were collected for disease sampling. All oysters were 

collected between September 1st and October 5th within each year and ranged 

from 60 to 90 mm valve height. Samples were transported on ice to the 

Aquatic Diagnostic Laboratory at Roger Williams University, where presence 

and severity of Perkinsus marinus, the pathogen causing dermo disease, was 

assessed using Ray’s fluid thioglycollate medium and visual inspection of 

tissue. Results were reported in percent prevalence of the disease in each 

sample as well as intensity; a measure of concentration of P. marinus spores 

in infected individuals. Samples were also assessed through traditional 

histopathology for presence and severity of Haplosporidium nelsoni (MSX), 

Haplosporidium costale (SSO) and trematodes. Mean disease prevalence per 

site was compared using normal quantile transformations followed by Analysis 

of Variance and Tukey’s post-hoc test (α = 0.05). Regression analysis was 

used to test the relationship between density of oysters and percent 

prevalence of dermo (α = 0.05). 

 

Performance Evaluation 

 Performance metric evaluations were calculated for all North Cape and 

Oyster Gardening for Restoration and Enhancement sites. Due to the lack of 

available data, performance evaluations were not calculated for The Nature 

Conservancy and Environmental Quality and Incentives Program restoration 

efforts. Performance evaluations include first year survival, year two plus 

survival, recruitment to the restoration footprint and prevalence of dermo 
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(Perkinsus marinus). First year survival and annual growth were calculated 

using only data from the experimental reefs, described above (see Site 

Monitoring), and reefs in which first year cohorts were discernable (Bissel 

Closed 2, 2007; Potter Cove, 2004 – 2006; Saugatucket River, 2004 – 2006; 

Smelt Brook Cove, 2004 – 2006 & experimental reefs; Spectacle Cove 2004 -

2006). Evaluations were computed by calculating the mean value of the given 

metric (e.g. recruitment) for each restoration site within all years and projects 

where data were available. Mean performance metrics were compared 

between sites using normal quantile transformations followed by Analysis of 

Variance and Tukey’s post-hoc test (α = 0.05). 

 Despite potential differences in mean growth, survival, recruitment and 

disease between restoration sites and practices, the ultimate success of 

restoration hinges on sustainability of oyster reefs post implementation. 

Sustainability was assessed based on the level of natural mortality (year 2+) 

weighed against recruitment. A sustainability index (SI) was calculated for 

each site each year post restoration implementation. The index is based on 

the following equation. 

SI = Ri - Mi 
Where: Ri = percentage recruits of the total population 

                                Mi = percentage of mortality 
 
Mean SI was compared between sites with normal quantile transformations 

followed by Analysis of Variance and Tukey’s post-hoc test (α = 0.05).  

 

Cost-Benefit Analysis 
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To assess the effectiveness of Rhode Island’s oyster restoration, based 

on financial investments and ecological returns, a cost-benefit model was fit to 

Rhode Island oyster restoration performance over the past 15 years. The 

model weighed projected annual dollar value returns associated with the sum 

of water quality improvement, fish production, and submerged aquatic 

vegetation enhancement per acre of oyster reef against the cost of 

implementing one acre of oyster reef and extrapolated over a fifty year time 

frame. To account for loss of ecosystem services provided by oyster reefs due 

to oyster mortality, the cumulative value of ecosystem services was 

discounted at a rate of 3% per year between seeding intervals. It was 

assumed inflation will impact the value of ecosystem services and costs of 

restoration equally.  

Costs associated with Rhode Island oyster restoration were derived 

from the North Cape Shellfish Restoration Program and Oyster Gardening for 

Restoration and Enhancement annual budgets. Annual operation costs 

associated with the OGRE program were calculated by multiplying the total 

cost of hatchery operation budgets and OGRE field staff by the percentage of 

overall effort to complete oyster restoration. Annual operation costs of the 

North Cape oyster restoration program was derived from the sum of individual 

line items associated with oyster restoration efforts. Staff salary was divided by 

the percentage of overall effort to complete oyster restoration activities. 

Educational, research, and other extraneous services outside of oyster 

production, nursery, and seeding were excluded from cost calculations within 
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both programs. Overhead and indirect expenses were not included in staff 

salary costs. Cost of restoration was converted to dollar value per acre of reef 

by dividing the annual restoration cost by the annual acreage seeded within 

each program. Total mean cost per acre of restored reef was calculated using 

data from both programs. 

The economic value of ecosystem services provided by oyster reefs 

was adapted from Grabowski et al. (2012); the procedures from his work are 

outlined below (see Grabowski et al. (2012) for precise methodology). It 

should be noted, due to lack of data within the Northwest Atlantic, the 

ecosystem services provided by oyster reefs (nitrogen removal, fish 

production, and submerged aquatic vegetation enhancement) were calculated 

using data from estuaries in the southeastern United States.  

Proxy measures were used to determine the value of water quality 

services (i.e. the cost of providing the same ecosystem service through 

alternative means). To determine the amount of incremental nitrogen removed 

from the system by oyster reefs, the nitrogen flux in soft-sediment bottom was 

subtracted from the nitrogen flux in oyster reefs. The net hourly rate of 

nitrogen removal was determined to be 246 and 12 micromoles of nitrogen per 

square meter per hour during the day in oyster reefs and in mud habitat, 

respectively (Piehler and Smyth 2011). Nitrogen removal by 1 m2 of oyster 

reef was converted to annual kilograms of nitrogen removed per acre of oyster 

reef and multiplied by the rate of nitrogen removal by the trading price per 
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kilogram of nitrogen removed for estuarine sites in the North Carolina Nutrient 

Offset Credit Program.  

Nitrogen removal through the consumption of phytoplankton was based 

on the estimated removal of 40 micrograms per liter (µg/L) of chlorophyll-a. A 

carbon:chlorophyll-a ratio of 30 (Wienke and Cloern 1987) was used to 

convert chlorphyll-a removal to carbon removal, followed by converting carbon 

removal to nitrogen removal using the Redfield ratio (Redfield 1958). The 

estimated value of nitrogen removal was calculated using the trading price per 

kilogram of Nitrogen in the North Carolina Nutrient Offset Credit Program. 

Nitrogen stored in oyster shell and tissue was not accounted for, as harvest is 

prohibited from all restored oyster reefs in Rhode Island. 

Newell and Koch (2004) suggest that the oyster’s ability to reduce 

turbidity and by depositing nutrients in biodeposits enables oyster reefs to 

promote the growth of submerged aquatic vegetation in shallow estuarine 

waters at an estimated rate of 0.005 hectare of SAV per one hectare of oyster 

reef. The importance of submerged aquatic vegetation as nursery ground for 

many coastal species is well understood (Thayer et al. 1978). Grabowski et al. 

(2012) used surveys of local resident’s willingness-to-pay to determine the 

value of eelgrass habitat in the Peconic River Estuary, coupled with the value 

of ecosystem services provided by seagrass habitat, to estimate the value of 

seagrass beds per hectare. This value was multiplied by the estimated rate of 

growth of seagrass beds created by one hectare of oyster reef.  

Peterson et al. (2003) estimated 10 m2 of restored oyster reef habitat 
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creates an additional 2.6 kilograms of fish and mobile crustacean production 

annually. This figure was derived by comparing densities of all species of fish 

and commercially important crustaceans on oyster reefs versus mud bottom 

throughout the Gulf of Mexico and southeast Atlantic states. Enhanced value 

of commercial fish landings per m2 of oyster reef was estimated using the data 

above as augmented fish production estimates from oyster reefs (Grabowski 

and Peterson 2007). 

 Oyster harvest value was not taken into account for the Rhode Island 

model as all reefs are protected from harvest. Oyster reefs can function as 

natural living erosion protection, however, all Rhode Island oyster reefs are 

low lying with very little relief so this benefit is not realized; therefore, it was not 

included in the model.  

 

Mapped Footprint of Restoration Reefs 

Discrete footprints of restoration efforts were mapped in ArcMap 10.4.1 

for each restoration site and project (i.e. North Cape, OGRE, EQIP and TNC). 

North Cape and OGRE restoration reefs were measured in-situ via direct 

observation to determine the extent of reef. Survey stakes were placed on the 

reef boundaries and perimeters measured with a handheld tape measure. 

Coordinates of survey stakes were recorded with a handheld GPS. Reef 

coordinates and boundaries were transposed in ArcMap followed by 

calculations of reef area. Reef area calculations for EQIP sites were 

accomplished in-situ for Smelt Brook Cove and measured by telemetry via 
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aerial satellite imagery where possible (i.e. Ninigret Pond, southern sanctuary 

and Potter Pond). Mean area was calculated with observed measurements 

(n=15) and extrapolated across total number of reefs seeded. Locations of 

EQIP and TNC reefs were derived from a combination of direct observation to 

determine reef extent, satellite imagery, progress reports, and personal 

communication.  
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CHAPTER 3 

 

RESULTS 

 

PROGRAM INTRODUCTION AND SEEDING HISTORY 

North Cape Restoration Program 

The North Cape Restoration program aimed to address the natural 

resource injuries resulting from the release of 828,000 gallons of heating oil 

into Block Island Sound during the 1996 North Cape oil spill (DeAngelis et al. 

2009). Following a legal settlement in 2000, the trustees established a 

Shellfish Restoration Program, implementing projects focusing on the 

enhancement of the northern quahog (Mercenaria mercenaria) and restoring 

bay scallop (Argopecten irradians) and eastern oyster (Crassostrea virginica) 

populations to Rhode Island waters. The goal of the shellfish restoration 

program was to restore lost wet-tissue biomass and lost ecological services 

due to the oil spill. Field efforts commenced in 2002 and were carried out 

through 2008. Oyster restoration components of the program focused on 

increasing the spawning stock biomass of C. virginica to areas of suitable 

habitat, ultimately aiming to increase recruitment to the population. Site 

locations were initially selected based on local benthic substrate, 

hydrodynamics, fishing history and presence and abundance of predators and 

diseases. Oyster larvae for the program were set on surf clam, Spisula 

solidissima, shell using remote setting techniques (Jones and Jones 1998, 
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Kennedy 1996), raised in a nursery grow-out for one season (June – 

November) and seeded on unprepared or un-cultched sites (Hancock et al. 

2004, 2006, 2007; DeAngelis et al. 2008). An exception to this was the season 

of 2008, in which oysters were set as singles and raised in an upweller for one 

season prior to seeding. A total of seven sites have been seeded since 2003 

including: Saugatucket River, Narragansett; Smelt Brook Cove, South 

Kingstown; Bissel Deep, Bissel Channel and Bissel Cove Closed, North 

Kingstown; Spectacle Cove, Portsmouth and Potter Cove, Prudence Island 

(Figure 1, Appendix A-K). All sites are subtidal with a depth range between 0.2 

– 2.0 meters at mean low tide. Within each site, oysters were seeded in a 

large contiguous area with mean site size of 2,733.8 m2 ± 293.9 m2 and range 

of 2,016 – 3,324 m2 (Table 1). Average density of seeded oysters was 107 

oysters m-2. Over 5.4 million oysters were seeded over the course of the 

program, encompassing 13,699 m2 or 4.0 acres (Table 2). All oysters seeded 

during the North Cape program were sourced from Muscongus Bay Hatchery, 

Bremen, ME and set on shell at the RI-DEM Coastal Fisheries Laboratory in 

Jerusalem, RI. Monitoring of restoration activities took place at most sites from 

2004 – 2008 and 2011 – 2013. 

 

Oyster Gardening for Restoration and Enhancement 

Roger Williams University’s Oyster Gardening for Restoration and 

Enhancement program (OGRE), aims to increase the spawning stock biomass 

of C. virginica in suitable habitats within Rhode Island waters, as well as 



 

20 
 

promote the education and stewardship of our estuarine resources. The 

program is a cooperative effort between University scientists and citizens of 

the state, in which waterfront property owners maintain an oyster nursery off 

their docks or moorings, rearing viable oysters for restoration. All oyster 

broodstock for the program comes from a native Rhode Island line; originating 

from Blue Bill Cove, Portsmouth, RI and Greenhill Pond, Narragansett RI. 

Oysters are conditioned, spawned and remotely set on S. solidissima shell 

within the RWU hatchery. Oysters are then transported to OGRE volunteers 

who maintain the bivalves in Taylor floats during the nursery phase, for one 

summer prior to seeding in the fall of each year. The OGRE program began as 

a pilot project in 2006, enlisting the help of 18 volunteers, producing 54,000 

oysters for restoration and has since grown to over 100 volunteers’ state-wide, 

producing between 200,000 – 500,000 oysters annually. Since 2006 ten sites 

have been seeded: Jenny’s Creek, Prudence Island; Bristol Harbor, Bristol; 

Town Pond, Portsmouth; Sandy Point, Greenwich; Bissel Cove, North 

Kingstown; Smelt Brook Cove, South Kingstown; Ninigret Pond, Charlestown; 

Quonochontaug Pond, Charlestown, Winnapaug Pond, Westerly and Great 

Salt Pond, Block Island (Figure 1, Appendix A-K). Oysters were seeded 

directly on un-cultched benthic substrate in each site with the exception of 

Town Pond. Within the Town Pond restoration site four rectangles (9 m x 20 

m) were clutched with 10 cm of surf clam shell prior to seeding oysters. All 

sites with the exception of Town Pond are subtidal with a mean ranging from 

0.0 – 2.0 meters at mean low tide. Sites were selected based on local benthic 
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substrate, hydrodynamics, fishing history and presence and abundance of 

predators and diseases. In contrast to the North Cape program, oysters were 

seeded in multiple small beds within each site. Mean bed size is 514 m2 with a 

range of 215 – 1,074 m2 (Table 2). Mean density of seeded oysters at the 

outset of restoration was 786 oysters m-2. Nearly 3.4 million oysters have been 

seeded over the course of the program encompassing 1.2 acres (Table 3). 

Monitoring of restoration sites seeded in the OGRE program took place 

between 2011 – 2013 and selected sites were also monitored in 2014 (i.e. 

Town Pond, Bissel Cove) 

 

Environmental Quality and Incentives  

The Environmental Quality Incentives Program, run by the Natural 

Resource Conservation Service (NCRS) began oyster restoration efforts in 

Rhode Island waters in 2008. The program ran from 2008 to 2010 and started 

again in 2015. This program aims to increase spawning stock biomass of 

oysters through the direct seeding of oyster spat on shell. Commercial 

aquaculturists were hired to nursery rear spat on shell for one season prior to 

seeding in designated restoration sites chosen by the Rhode Island 

Department of Environmental Management. Between 2008 and 2010 oysters 

were seeded in Jenny’s Creek, Prudence Island; Bissel Cove, North 

Kingstown; Smelt Brook Cove, South Kingstown; Ninigret Pond, Charlestown; 

Quonochontaug Pond, Charlestown, Winnapaug Pond, Westerly, Potter Pond, 

South Kingstown and Great Salt Pond, Block Island (Figure 1, Appendix A-K). 
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Prior to seeding, benthic substrate in all sites were cultched with surf clam 

shell. All sites are subtidal with depth range of 0.2 – 1.5 meters at mean low 

tide. Multiple high density oyster beds were created within each restoration 

site. Mean bed size seeded was 24 m2 with a range from 13 – 52 m2. Over 

seventeen million oysters have been seeded through EQIP efforts between 

2008 and 2010 encompassing an estimated seeded area of 0.71 acres (Table 

5).  

 

The Nature Conservancy 

The Rhode Island Chapter of The Nature Conservancy (TNC) 

commenced oyster restoration efforts in 2012 and employed a different 

approach from that of the North Cape, OGRE and EQIP restoration efforts. 

The Nature Conservancy aims to enhance remnant populations of oysters 

through increasing suitable settlement substrate. This assumes the bottleneck 

of the population exists not in viable broodstock and larval availability, rather a 

lack of appropriate substrate for successful settlement. Four 3 m x 24 m reefs 

were created in Foster’s Cove and two 3 m x 24 m reefs were created at 

Grassy Point, Ninigret Pond (Figure 1, Appendix H), in 2012 with 17.2 yd3 of 

steamed surf clam and oyster shell, encompassing a total reef area of 0.11 

acres. All reefs were located in subtidal waters with a depth of less than 1 foot 

at mean low tide. In 2013 the reefs were repurposed with the addition of 

Oyster Castles®, a specialized manufactured concrete unit using a blend of 

proprietary material, placed on top of the 2012 shell. These reefs were 
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monitored in the summer of 2015.  

In 2015, eight reefs were built in the Ninigret Pond spawner sanctuary 

(Figure 1, Appendix G), using 131 tons of a mixture of steamed surf clam shell 

and recycled oyster shell. All reefs were subtidal with a mean depth of 0.75 m 

at low water. Mean reef size was 40.8 ± 5.0 m2, with a range of 25 m2 to 89 

m2, encompassing a total reef area of 0.08 acres. An estimated 38,700 spat 

on shell oysters were seeded on half the reefs with mean shell height of 28.1 ± 

6.1 mm. Oyster seed for the project was sourced from Aquacultural Research 

Corporation (Dennis, MA).  

Two 0.25 acre reefs, comprised of surf clam shell, were installed in the 

Quonochontaug Pond eastern spawner sanctuary in 2014 (Appendix I). No 

oysters were seeded on these reefs. 

The combined efforts of the North Cape, OGRE, EQIP and TNC 

restoration programs have resulted in over 26 million seeded oysters on 6.6 

acres within Rhode Island coastal waters (Figure 2, Table 8). The Natural 

Resource Conservation Service is currently compiling seeding data from the 

2015 EQIP restoration efforts. Monitoring of the 2015 EQIP reefs is ongoing.  

Total number of oysters seeded and acres restored, reported herein, does not 

account for the 2015 EQIP restoration efforts (expected data availability, May 

2017). 

 

MONITORING RESULTS 

 Raw monitoring data of oyster performance within the Environmental 
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Quality Incentives Program between 2008 – 2014 does not exist. Raw 

monitoring data from The Nature Conservancy projects was not available. Due 

to unavailability of contiguous data from these projects (TNC and EQIP), they 

were excluded from calculations of restoration performance and cost-benefits. 

Performance of oysters within TNC, EQIP, OGRE and North Cape sites is 

assumed to be similar, as comparable practices were implemented (see 

discussion). Specifics of restoration efforts (i.e. area seeded and oysters 

planted) for TNC and EQIP programs was provided in this work, as it is 

important within the context of overall restoration efforts in the state. The 

following data and analysis presented is from the North Cape (2003 – 2008) 

and OGRE (2006 – 2014) efforts.  

 

Estimated Population and Length Distribution 

  Total number of oysters in all North Cape sites in the fall of 2013 was 

8,439 ± 1,922 oysters with a site range of 912 – 4,638 oysters. As of 2013, 

Bissel Cove has the highest estimated population of oysters (4,639 ± 630), 

followed by Smelt Brook Cove (1,732 ± 285), Spectacle Cove (1156.9 ± 504) 

and Potter Cove (912 ± 603) (Table 1). Total number of oysters in all OGRE 

sites in the fall of 2013 was 211,722 ± 29,453. Bissel Cove had the highest 

estimated population of oysters (68,445 ± 4,755), followed by Smelt Brook 

Cove (63,622 ± 2,986), Town Pond (55,363 ± 18,199), Quonochontaug Pond 

(22,357 ± 1,943) and Jenny’s Creek (1,935 ± 571) (Table 2). 

Mean valve height (umbo to lip) of live oysters was 106.5 ± 3.4 mm 
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across all North Cape sites and 96.3 ± 1.0 mm across all OGRE sites during 

2013 monitoring events. Tracking growth of single cohorts within Bissel Cove, 

Smelt Brook Cove and Quonochontaug Pond from 2011 to 2013 revealed a 

mean annual growth of 32 ± 0.6 mm (shell height). Experimental sites were 

seeded in 2011 within the same cohort and tracked until 2014. First year 

growth post planting was significantly different between sites (p<0.0001) 

(Figure 3). First year shell height was largest in Bissel Cove (59.6 ± 1.6 mm) 

followed by Smelt Brook Cove (44.9 ± 1.5 mm) and Quonochontaug Pond 

(40.1 ± 1.3 mm). Second year shell height was significantly larger in Bissel 

Cove (86.3 ± 2.1 mm) compared to Smelt Brook Cove (78.2 ± 2.4 mm) 

(p<0.0001) and Quonochontaug Pond (71.8 ± 1.8 mm) (p=0.354). Third year 

shell height was significantly larger in Bissel Cove (118 ± 3.0 mm) compared 

to Smelt Brook Cove (108.4 ± 2.7 mm) (p=0.0152). Year three growth data is 

not available from Quonochontaug Pond. 

 

Survival 

Based on data from the experimental reefs where single cohorts were 

tracked, mean first year survival was 32 ± 23%. Including available data from 

all sites and years, mean first year survival drops to 21.9 ± 2.2%. Using data 

from all years, first year survival was highest in the Saugatucket River (32.8 ± 

12.6%) followed by Bissel Cove (26.8 ± 5.7%), Smelt Brook Cove (24.5 ± 

9.0%), Quonochontaug Pond (19.4 ± 3.5 %), Potter Cove (13.8 ± 3.4%) and 

Spectacle Cove (9.7 ± 1.4%) (Figure 4). Differences in mean first year survival 
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were not significant between sites (p=0.2167) 

 Year two plus survival varied greatly between sites and years with a 

mean yr. 2+ survival across all sites of 55 ± 5%. Year 2+ survival was highest 

within Town Pond (74.2 ± 20.8%) followed by Quonochontaug Pond (69.5 ± 

22.5%), Bissel Cove (68.2 ±12.3%), Saugatucket River (67.8 ± 22.6%), 

Spectacle Cove (63.7 ± 17.7%), Smelt Brook Cove (58 ± 4.4%), Jenny’s Creek 

(43 ± 11%) and Potter Cove (39.2 ± 15.4%) (Figure 5). Differences in mean 

survival in year 2+ were not significant (p=0.6319). Length distribution of 

oyster boxes reveals 40% of overall mortality occurs between 5 – 50 mm valve 

heights, during the first year post planting. Twenty seven percent of overall 

mortality occurs between 80 – 120 mm height (Figure 6a), which will be 

discussed later. Excluding first year mortality in distribution plots of oyster 

boxes, 75% of mortality occurs between 80 – 120 mm valve height, as would 

be expected in areas of high disease pressure (Figure 6b). 

 

Recruitment 

Monitoring relative recruitment via artificial spat collectors yielded 

positive results between 2011 and 2012 with five of the seven water bodies 

studied showing recruitment events. Between early June and October of each 

year, between 2011 – 2013, five spat collectors were deployed in the vicinity of 

Bissel Cove; seven spat collectors were deployed in Point Judith Pond; four 

spat collectors were deployed in Potter Cove; seven spat collectors were 

deployed in Quonochontaug Pond; four spat collectors were deployed in 
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Spectacle Cove; five spat collectors were deployed in Town Pond and four 

spat collectors were deployed in Jenny’s Creek. Recruitment to each site was 

measured as mean number of spat per bag. Mean recruitment across all sites 

and years was 0.89 ± 0.62 oysters per bag. Mean recruitment for each site 

across all years was highest in Bissel Cove (2.10 ± 1.84) followed by, 

Spectacle Cove (1.50 ± 0.87), Town Pond (1.40 ± 0.58), Potter Cove (0.81 ± 

0.56), Point Judith Pond (0.13 ± 0.25), Quonochontaug Pond (0.07 ± 0.07) and 

Jenny’s Creek (0.0) (Figure 7). 

Artificial spat collectors can demonstrate the relative abundance and 

settlement distribution pattern, but do not represent actual recruitment rates on 

the bottom (Brumbaugh et al. 2006). A more appropriate measure of 

recruitment rates on the bottom can be calculated from the number of new 

recruits to the actual restoration sites, derived from density monitoring. This 

method revealed a mean density of recruitment across all sites and years of 

0.83 ± 0.23 oysters m-2, representing 3.2 % of the total population of oysters in 

all monitored sites. The highest mean density of recruits across all years was 

Bissel Cove (2.63 ± 0.22) followed by Town Pond (1.75 ± 0.4), Potter Cove 

(0.56 ± 0.03), Quonochontaug Pond (0.55 ± 0.22), Spectacle Cove (0.25 ± 

0.05), Smelt Brook Cove (0.11 ± 0.03) and Jenny’s Creek (0.1 ± 0.1) (Figure 

8). Recruitment was significantly higher in Town Pond compared to Jenny’s 

Creek (p=0.042). Recruitment in all other sites was not significantly different. 

 

Disease Prevalence 
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Disease testing was completed within the North Cape restoration sites 

from 2004 to 2008 and again from 2011 to 2013 and within all OGRE sites 

between 2011 and 2013 (Table 7a-b). Oysters sampled had a mean valve 

height of 86.9 ± 2.6 mm and a mean mass of 78.9 ± 6.9 g. Test results 

revealed high prevalence of Perkinsus marinus in five of the ten sites sampled 

on an annual basis. Mean prevalence of dermo and intensity across all years 

was highest in Jenny’s Creek (98.7 ± 1.3%, intensity 2.5 ± 0.2), followed by 

Smelt Brook Cove (95.3 ± 1.7%, intensity 3.1 ± 0.2), Saugatucket River (90 ± 

8.9%, intensity 3.2 ± 0.4), Bissel Cove (81.3 ± 9.2%, intensity 2.4 ± 0.4), 

Ninigret Pond (80 ± 16.2%, intensity 1.5 ± .3), Spectacle Cove (64.8 ± 15.4%, 

intensity 3.2 ± 0.5), Potter Cove (32.5 ± 18.3%, intensity 1.0 ± 0.4), Town 

Pond (30.7 ± 19%, intensity 0.7 ± 0.4), Quonochontaug Pond (17.3 ± 17.3%, 

intensity 0.3 ± 0.3) and Great Salt Pond (12 ± 10.1%, intensity 0.9 ± 0.6) 

(Figure 9). Mean percent prevalence of P. marinus was significantly different 

across sites (p=0.0007). Dermo prevalence in Smelt Brook Cove was 

significantly higher than Quonochontaug Pond (p=0.0202), Great Salt Pond 

(p=0.0472) and Potter Cove (p=0.0326). Dermo was significantly higher in the 

Saugatucket River compared to Quonochontaug Pond (0.0406). Regression 

analysis showed no correlation between presence of dermo and density of 

oysters within Rhode Island restoration sites (r2=0.034).  

Other diseases appear to have very little impact on the oysters within 

the restoration sites monitored. Haplosporidium nelsoni (MSX) was only found 

at two sites (Spectacle Cove and Town Pond), both of which had a prevalence 
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of 4%. Haplosporidium costale (SSO) was not found in any sites. Trematode 

infections within oyster tissue were found at the following sites, Great Salt 

Pond with a prevalence of 4%; Jenny’s Creek with a prevalence of 8% and 

Spectacle Cove with a prevalence of 8%. Roseovarious crassostreae (ROD) 

was not monitored within the restoration sites. 

 

Sustainability Index  

Ultimately the success of restoration hinges on the ability of the reef to 

become self-sustaining post planting. Sustainability was assed based on the 

level of natural mortality (year 2+) weighed against recruitment. A 

sustainability index (SI) was calculated for each site each year post restoration 

implementation. A negative SI represents a reef in population decline, where 

mortality outpaces recruitment. An SI of zero represents a stable population, 

while a positive SI represents population growth. SI was negative or zero 

within all years and sites where data was available. Mean SI, across all years, 

was highest in Town Pond (-23.02 ± 26.36), followed by Quonochontaug Pond 

(-30.01 ± 27.89), Bissel Cove (-31.10 ± 12.59), Saugatucket River (-32.00 ± 

32.00), Spectacle Cove (-36.30 ± 17.74), Smelt Brook Cove (-41.94 ± 4.56), 

Jenny’s Creek (-57.00 ± 11.00) and Potter Cove (-60.80 ± 15.37) (Figure 10). 

The mean sustainability index across sites was not significantly different 

(p=0.6022).  

 

Cost-Benefit 
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 Mean costs of restoration per acre of restored reef (OGRE and North 

Cape Programs, 2004 – 2014) was $71,366 ± $8,592. The lack of recruitment 

to reefs hinders sustainability, prompting the need for maintenance seeding to 

preserve adequate oyster density to provide desired ecosystem services. 

Mortality estimates, indicate restoration reefs need to be reseeded every six 

years to maintain reef integrity, causing a stepwise linear slope of cumulative 

restoration costs (Figure 11). Maintaining one acre of oyster reef over 50 years 

within the current confines of our restoration sites is estimated at a value of 

$642,295. Estimated annual value of nitrogen removal per acre of oyster reef 

was $1,639. Estimated annual value of submerged aquatic vegetation 

enhancement based on the creation of 0.005 hectares of SAV per hectare of 

oyster reef was $1,046. Estimated annual value of fisheries production was 

$1,669 per acre of oyster reef. Total estimated annual value of ecosystem 

services provided by one acre of oyster reef was calculated at $4,353 (Table 

9). Cumulative value of ecosystem services provided by one acre of oyster 

reef over 50 years was estimated at $209,917. Modeling cumulative costs of 

restoration with cumulative value of associated ecosystem services indicates a 

net negative value of restoration from time of oyster seeding to 50 years post 

planting. The slope of cumulative value of ecosystem services is lower than 

cumulative value of restoration causing an increase in monetary deficit each 

year restoration is continued (Figure 11). The smallest monetary deficit 

(cumulative cost of restoration subtracted by cumulative value of ecosystem 

services) occurs during year six after the initial seeding event ($45,495). After 
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25 years of restoration the deficit increases to $251,802 and after 50 years of 

restoration the deficit increases to $432,378. 
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CHAPTER 4 

 

DISCUSSION 

 

 

 Rhode Island has long recognized the socioeconomic and ecological 

importance oysters represent to local communities and have invested 

substantial effort in restoring lost stocks to Narragansett Bay and coastal salt 

ponds. Since 2003, four distinct programs have seeded over 26 million 

oysters, encompassing 6.6 acres into Rhode Island coastal waters. Analysis of 

project performance and cost-benefit analysis of restoration efforts was 

undertaken using eleven years of data compiled from the North Cape and 

OGRE programs. Monitoring data for the Environmental Quality and Incentives 

Program and The Nature Conservancy’s restoration efforts was unavailable for 

this analysis. In most cases, TNC and EQIP efforts were sited in close 

proximity to North Cape and OGRE restoration with a common line of oysters 

and similar restoration practices, including: size of oysters at planting, height 

of restored reef, timing of planting and density of oysters seeded. Due to the 

lack of differences in restoration practices and locations, it is assumed TNC 

and EQIP restoration programs have performed similar to North Cape and 

OGRE programs. This assumption has been backed by qualitative observation 

of EQIP reefs and personal communication with TNC staff (Pers. Comm. Sara 

Coleman, Bryan DeAngelis). The compilation and analysis of monitoring 
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results indicates acceptable survival and excellent growth of oysters post 

planting, however, limited recruitment hinders overall project success.  

Assessment of size structure of all boxes within restoration sites reveals 

high mortality in the first year post seeding, with a mean survival across all 

years and sites of 22% (oyster valve length between 10 – 50 mm). High rates 

of mortality in the first year is expected and typically driven by predation and 

sedimentation. Oysters set on all sides of the setting media; subsequently, 

high mortality occurs in the act of planting, as oysters on the bottom of the 

media can become smothered by sediment. Pre-seeding oyster height was 

targeted at 20 mm to mitigate predation pressure, however, a large variance in 

the size of oysters during seeding events has been observed (Hancock et al. 

2004, 2006, 2007; DeAngelis et al. 2008), leading to increased predator 

pressure on oysters which have not reached a size of predator refuge. Initial 

density of remote set oysters, within Rhode Island, on media (i.e. surf clam or 

oyster shell) is typically between 10 – 200 oysters per shell leading to high 

inter-specific competition. After two to three years of growth post-seeding 

oyster density ranges between 0 and 20 oysters per shell media (Griffin, 

unpublished data). The precipitous drop in oyster density per shell media is 

largely a factor of physical space limitation. Observations of mortality in the 

first year post seeding also include sedimentation, as oysters can be 

smothered in areas of high sediment deposition and shell subsidence. 

Observed first year mortality on Rhode Island oyster reefs does not appear out 

of the ordinary, as year one morality of 20 – 30 % has been observed in other 
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regional oyster restoration efforts (Griffin 2015). 

Excluding first year mortality, highest mortality is observed in individuals 

with a shell length between 80 – 120 mm, which is indicative of mortality 

caused by Perkinsus marinus. Levels of P. marinus infection build with age, as 

does associated percent mortality (Encomio et al. 2005), explaining mortality 

of the older cohorts. Survival of year 2+ oysters varied greatly between sites 

and within sites between years. Mortality rates of oysters can vary across 

space and time due to differences in habitat quality, disease and predator 

pressure. Part of the observed variance of mortality between years is 

undoubtedly due to sampling error. Mortality was based on the change of 

oyster density observed during annual sampling events. Oyster density on 

restored reefs varies greatly due to the nature of seeding, which often involves 

dumping totes of spat on shell off the side of boat in a predetermined area; a 

less than precise operation. Limited recruitment to restored reefs does not 

allow oyster density to become homogeneous across the site as time passes. 

Haphazard quadrat sampling of reefs was employed during surveys, keeping 

the sample size high and consistent between years to reduce variance; 

however, the large standard errors associated with observed oyster densities 

greatly effects mortality estimates and confounds analysis comparing mortality 

across sites and years leading to non-significant results. Monitoring of oyster 

restoration efforts in the Chesapeake Bay has demonstrated year 2+ survival 

rates between 30 - 70% (Mann and Powell 2007). We observed a mean 

annual survival of 55% with a range from 25% to 100%, which appears to be 
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on par with highly intensive efforts in the Chesapeake Bay.  

Perkinsus marinus has been observed in eastern oysters for over 50 

years along the eastern and southeastern seaboards of the United States 

(Smolowitz 2013). Andamari et al. (1996) found no presence of P. marinus in 

oysters within four distinct locations (Pawcatuck River, Narrow River and 

Charlestown Pond) between 1991 and 1992. Mareiro et al. (2001) showed 

high prevalence and intensity of P. marinus in wild and cultured oyster 

populations throughout Narragansett Bay and Rhode Island salt ponds in 

1998, suggesting dermo made its presence in Rhode Island waters between 

1992 and 1998. Perkinsus marinus is now fairly ubiquitous within wild, 

restored, and cultured oysters in Rhode Island. Mean dermo prevalence 

between 2003 and 2014 was over 60% within six of ten monitored restoration 

sites. Markey and Gómez-Chiarri (2007) found similar results within five wild 

sites sampled in Narragansett Bay and the Coastal Ponds (Bissel Cove, 

Spectacle Cove, Saugatucket River, Narrow River, Great Salt Pond) between 

1998 and 2007, where disease testing showed dermo prevalence ranging 

between 62 – 100% with the exception of Great Salt Pond (7% in 2001).  

Prevalence of dermo is highly variable and directly correlates with 

temperature and salinity. Prevalence and intensity are generally highest in 

salinities greater than 12 ppt. Temperature also regulates the disease, as the 

prevalence and intensity oscillates with seasonal fluctuations in water 

temperature. Maximum prevalence and intensity generally lags 1-2 months 

behind maximum summer water temperature and minimum prevalence and 
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intensity lags 1-2 months behind minimum winter water temperatures 

(Burreson and Ragone Calvo 1996). Prevalence and intensity of dermo was 

similar across most sites with the exception of Smelt Brook Cove and 

Saugatucket River which exhibited significantly higher dermo rates compared 

to Potter Cove, Great Salt Pond, and Quonochontaug Pond. There is not 

enough variability in salinity or water temperature within the current restoration 

sites to influence the presence of dermo. All restoration sites with the 

exception of Saugatucket River experience salinities between 22 - 35 ppt 

depending on tidal cycle and amount of precipitation. Salinity at Saugatucket 

River varies between 4 - 24 ppt depending on tidal cycle and rainfall. The short 

pulses of low salinity in Saugatucket River are apparently not sufficient to 

extricate P. marinus, as the site has consistently high infection rates. Dermo is 

transmitted directly between oysters, as new infections are acquired as 

oysters feed and the parasite infects its host though gut epithelial tissue 

(Villalba et al. 2004, Bushek et al. 2002). This mechanism of transmission can 

cause densely populated oyster beds to be particularly susceptible to high 

levels of dermo. Regression analysis showed no correlation between presence 

of dermo and density of oysters within Rhode Island restoration sites. 

Two broodstock lines were used for restoration sites which were 

assessed for disease; Muscongus Bay’s selected hatchery line (North Cape) 

and wild stock from Blue Bill Cove, Portsmouth and Green Hill Pond, 

Narragansett (OGRE). The wild stock was chosen for potential disease 

resistance, as it resides naturally in areas of high dermo prevalence. 



 

37 
 

Restoration from both programs (North Cape and OGRE), encompassing both 

oyster lines, were undertaken in close proximity to one another in Bissel Cove 

and Smelt Brook Cove. Dermo prevalence was initially lower in the wild line 

compared to the Muscongus line in Bissel Cove (100% versus 32% after two 

years post planting) but then climbed to 100% in the wild line in subsequent 

years. Both lines had similar dermo infection rates in Smelt Brook Cove and 

similar mortality rates were observed in both lines across sites. These data 

suggest using a native oyster line did not have appreciable effects on disease 

prevalence and survival, however, this should be considered preliminary. 

Disease testing on year two cohorts did not take place during the same years 

for both lines (wild and Muscongus), therefore, a direct comparison of 

performance is difficult as disease can be highly ephemeral (Pers. Comm. R. 

Smolowitz). Gomez-Chiarri et al. (2010) compared survival of three different 

lines of oysters; disease resistant NEH, a local stock from Green Hill Pond 

(GHP) and a hybrid cross between the two (HYB) on ten commercial farms in 

Rhode Island between 2008 and 2010. Their data showed significantly higher 

survival of the NEH line (11 to 76%) compared to the local GPH and HBY 

stocks (2 – 62%) depending on the farm (Gomez-Chiarri et al. 2010). Impacts 

of dermo have clear and wide ranging effects on restoration efforts stemming 

from the associated mortality of older cohorts, thus, reducing spawning stock 

biomass, filtration capacity and associated ecological benefits. Further 

investigation on the efficacy of using native or modified lines to reduce disease 

pressure and increase survival within restoration settings is warranted.  
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No restoration program can become self-sustaining without adequate 

recruitment. While recruitment to spat collectors was low it is encouraging 

considering the same sites had been monitored with similar methods from 

2004 to 2008 without documenting a single recruitment event. Due to sparse 

recruitment to collectors, spatial and temporal settlement events were not 

detectable. Recruitment to restored reefs was modest with less than one 

recruit m-2 on an annual basis. Bissel Cove and Town Pond had consistently 

higher recruitment rates compared to all other sites but lacked significance 

due to high variance.  

Self-sustaining oyster reefs need a positive net balance of shell 

aggregate and accretion to allow for suitable settlement substrate. Many 

factors affect the rate of shell life including water chemistry, sulfide rich 

substrates, the presence of various sponges, polychaetes, mollusks and some 

algae (Pafford 1988). The half-life of oyster shell varies between 3 – 10 years 

depending on the given environment (Powell et al. 2006). Although the 

observed recruitment to Rhode Island reefs is a positive sign, a consistent set 

over multiple years has not been observed. History in Rhode Island indicates 

large recruitment events such as that observed in the 1990s and the modest 

event in 2010 occur on a decadal or multi-decadal pattern. The sporadic 

nature of recruitment events in Rhode Island leads to the loss of shell habitat 

and hinders reef building efforts. To overcome the hurdle of limited settlement 

substrate the Nature Conservancy has built fifteen reefs in Ninigret Pond with 

a combination of oyster/surfclam shell and Oyster Castles® and two reefs in 
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Quonochontaug Pond with surfclam shell. Results of monitoring indicated no 

or low recruitment in all but one location (Foster’s Cove) (Pers. Comm. Sara 

Coleman), which is known for consistent oyster sets. 

The cause of low recruitment to Rhode Island oyster restoration sites is 

not fully understood. DeAngelis et al. (2008) monitored temporal development 

of oyster gonads and estimates of larvae within the water column at two 

restoration sites in Point Judith Pond (Smelt Brook Cove and Saugatucket 

River) during the spawning season of 2008. Both sites were monitored weekly 

for oyster condition index and twice weekly for presence of veliger stage 

oyster larvae between June and September 2008. Gonadal development and 

larval abundance indicated regular and distinct periods of veliger stage larvae 

in the water column (Saugatucket River max = 1350 + 340 m-3; Smelt Brook 

Cove max = 8,575 + 4,400 m-3) with a peak in mid-July. Presence of veliger 

stage larvae and lack of recruitment suggest that the recruitment bottleneck 

exists between the free-swimming stage and recruitment of spat. This 

bottleneck may be driven by a myriad of factors including predation, disease, 

siltation or inadequate settlement substrate, or larval displacement greater 

than the study area (Dickie 1955, Hancock 1973, Wolf 1988). 

When put in the context of historical oyster landings in Rhode Island 

salt ponds, appropriate salinity regimes for successful oyster set, is a 

particularly compelling argument. Native oysters were abundant in all Rhode 

Island salt ponds prior to the construction of permanent breachways. Post-

breaching, oyster populations began to dwindle and reliable sets were only 
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observed in the back coves and along the edges of the pond where freshwater 

inundation lowered salinities (Lee 1980). Lower survival of oyster broodstock 

and settled spat in higher salinity waters is likely a function of increased 

predation, as higher salinity water houses a myriad of predators not found in 

less saline environments (e.g. starfish, whelk, mud crabs, Asian shore crabs, 

ctenophores). Furthermore, dermo MSX, SSO and ROD are more common in 

higher salinity environments. Few locations in Rhode Island’s coastal waters 

support a consistent wild oyster population. All of these locations (i.e. Green 

Hill Pond, Narragansett; Narrow River, Saunderstown; Seekonk River, 

Providence and Quicksand Pond, Little Compton) are located in low salinity 

environments. During small pulse events of oyster recruitment, as noted in 

2010, recruitment was highest along the fringes of salt ponds and back coves 

of Narragansett Bay where ground water inundation was observed (personal 

observation, Griffin). Recruitment events and sustainable oyster populations 

have been linked to low salinity environments outside of Rhode Island. 

Morality and river flow estimates in the James River, VA have been recorded 

since 1994. Data shows, in years of low flow, oyster mortality rates exceed 

70% and recruitment was hindered (Mann and Powell 2007). Extant subtidal 

oyster communities in the Chesapeake Bay are limited to upper sub-estuaries 

where lower salinity regimes exist (Mann and Powell 2007). Tolerated salinity 

ranges for oyster larval rearing is widely reported between 3 and 33 ppt 

(Calabrese and Davis 1970, Amemiya 1926, Carriker 1951, Davis 1958). 

Optimal salinity ranges for larval rearing has been reported between 17 and 29 
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ppt (Calabrese and Davis 1970, MacInnes and Calabrese 1979, Amemiya 

1926). These reported values have a wide range and encompass studies from 

broad geographic regions. These values do not take post settlement survival 

into account so miss the mortality link which is pertinent in the context of 

restoration. Further knowledge is needed to quantify how salinity relates to 

post-settlement survival on Rhode Island oyster reefs. With the current body of 

oyster restoration science, we are unable to pinpoint what is causing the 

recruitment bottleneck to our local reefs. 

Despite the mechanisms of recruitment failure, oyster settlement is 

consistently outpaced by natural mortality in all monitored restoration sites in 

Rhode Island, leading to a decline of the population once seeding has ceased. 

As a result of disease and subsequent mortality, our data suggest we lose a 

functional oyster reef, in-terms of ecosystem services, within six years post 

seeding. This has clear and wide-ranging implications. The loss of ecosystem 

services stems from the reduction of biomass, thus reducing total filtration 

capacity (loss of nitrogen removal and submerged aquatic vegetation 

enhancement) as well as the negative impact on fisheries production through 

the loss of biogenic structure of the reef. Remnant populations may persist for 

ten years post seeding as we observed in both Potter Cove and Spectacle 

Cove, but both of these sites had densities of less than 1 oyster m-2. While this 

wouldn’t provide much, in terms of ecosystem services, they might yet 

contribute to the total spawning stock biomass of oysters within our coastal 

waters. If we further assume that these remnant populations have been 
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disease challenged and survived, they may contain some as yet unknown 

aspect of disease resistance to offer to future populations.  

The cost-benefit model indicates Rhode Island oyster restoration is not 

equitable in terms of ecosystem services provided, as the cost of restoration is 

higher than the cumulative value of ecosystem services provided by the reef. 

Mortality outpaces recruitment within all restoration sites, prompting the need 

for maintenance seeding to preserve a functioning reef in terms of ecosystem 

services; thus, the cost of restoration is not fixed and the cumulative cost of 

restoration rises at a steeper slope than the cumulative value of ecosystems 

services. It should be noted the ecosystem services described herein (nitrogen 

removal, fish production, and submerged aquatic vegetation enhancement) 

were calculated using data from estuaries in the southeastern United States. 

Due to differences in temperature, sediment chemistry, fish assemblages and 

oyster productivity, we cannot assume reported values are directly comparable 

to oyster reefs in Rhode Island. It is, however, safe to assume reefs located in 

the southeastern United States perform at a higher level, in terms of 

production and nitrogen removal, than those found in New England waters; 

thus, fitting our data to this model would overestimate the ecological value of 

reefs. This assumption is based on warmer water temperatures in southern 

estuaries compared to Rhode Island, leading to a longer filtration season and 

higher levels of de-nitrification coupled with higher fish productivity.  

Grabowski et al. (2012) predict the initial investment of restoring one 

acre of oyster reef will be recouped through ecosystem services within 10 
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years of seeding. His model is based on self-sustaining reefs which are 

common to South Carolina but not Rhode Island. The lack of recruitment 

driving the need for maintenance seeding in Rhode Island tips the balance to 

net negative. If our reefs were self-sustaining, initial restoration investments 

would be recouped through ecosystems services in 17 years with an annual 

capital gain of $4,200 thereafter. 

Town Pond and Bissel Cove consistently performed higher than other 

sites in terms of growth, survival and recruitment but sustainability indices did 

not score significantly higher compared to other sites; likely due to the 

stochastic nature of the data. Specifically why Town Pond and Bissel Cove 

have excelled in terms of recruitment compared to other locations is unknown; 

however, we suspect that a combination of suitable settlement substrate, 

larval retention and fresh water inflow are among the responsible factors. 

Rhode Island’s highest performing restoration sites do not come close to 

maintaining a self-sustaining population, suggesting a re-prioritization of 

restoration goals (i.e. conducting restoration without the end goal of population 

recovery) or adaptively managing our restoration practices is needed.  
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CHAPTER 5 

CONCLUSIONS 

 

 

This study revealed the non-self-sustaining nature of oyster restoration 

sites within Rhode Island and the lack of a positive cost-benefit in terms of 

ecosystem services. Proper site selection is critical to successful restoration. 

Recruitment limitations and disease prevalence are currently thought to be the 

governing factors in the success of Rhode Island oyster restoration. It is 

suggested practitioners closely assess recruitment patterns and levels of 

disease within the body of water of interest prior to undergoing restoration 

efforts. In addition to recruitment monitoring, practitioners should assure 

adequate settlement substrate is available within the site or in the near vicinity 

(e.g. cobble substrate, boulders, rip-rap etc.). There is currently no silver bullet 

to address the problem of poor recruitment. Historically Narragansett Bay does 

not receive continuous and heavy sets of oysters. With the exception of a very 

limited number of coves and rivers, large recruitment events appear to occur 

on a decadal or multi-decadal pattern, thus, restoration sites will require 

maintenance seeding. At present, the Rhode Island Department of Health 

prohibits restoration from occurring within water that is prohibited to 

shellfishing. While the “attractive nuisance” aspect of this approach is 

admirable, this has the effect of blocking the implementation of restoration in 

sites with more appropriate salinity regimes for optimal recruitment (i.e. 12 – 
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20 ppt) or with known reliable recruitment (e.g. Narrow River, Green Hill Pond, 

Quicksand Pond, and Seekonk River).  

The science community needs to continue to study recruitment and 

mortality patterns as well as optimal genetic oyster lines for restoration within 

Rhode Island to better understand how we can maximize ecosystem services 

from our investment. Self-sustaining populations of oysters may never be 

realized within the current framework of oyster restoration within Rhode Island. 

While this sounds dire, it is not necessarily so – depending on how one views 

the problem. As our knowledge base increases, the restoration community in 

Rhode Island has the where-with-all to produce outstanding restoration sites 

leading to abundant ecosystem and community services within the life time of 

the reef. This may require maintaining the current level of restoration through 

maintenance seeding leading to a net revenue loss; which begets a social 

question of the willingness to pay for such restoration by the citizens of our 

State.  
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TABLES 

Table 1. Results of monitoring North Cape restoration sites in 2013 – the last year of full monitoring. Saugatucket River, 
Bissel Cove Deep and Bissel Cove Channel were not monitored in 2013 due to negligible population of oysters.  

 

Site 

 Mean 
No. 

Alive 
(m-2)  

 SE  
 Seeded 

Area (m-2)  
 Estimated 
Total Live  

 SE  

 Mean 
No. 

Recruits 
(m-2)  

 SE  

 % Recruits 
of Total 

Estimated 
Population  

Saugatucket River  -   -  2,048 - -  -   -   -  
Smelt Brook Cove 0.9 0.2 2,016 1,732 285 0.1 0.1 8.5 
Spectacle Cove 0.3 0.2 3,317 1,157 504 0.2 0.0 0.6 
Potter Cove 0.3 0.1 3,324 912 283 0.2 0.0 0.7 
Bissel Cove Deep - - 2,520 - - - - - 
Bissel Cove Channel - - 1,780 - - - - - 
Bissel Cove R2/R3 0.3 0.2 2,964 4,639 630 0.3 0.1 16.6 
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Table 2. Results of monitoring Oyster Gardening for Restoration and Enhancement sites in 2013 – the last year of full 
monitoring. Ninigret and Great Salt were not monitored in 2013. 

 

Site 

Mean 
No. 

Alive 
(m-2) 

SE 
Seeded 

Area 
(m-2) 

Estimated 
Total Live 

SE 

Mean 
No. 

Recruits 
(m-2) 

SE 

% 
Recruits 
of total 

Estimated 

Jenny's Creek 6 2 299 1,935 571 0.00 0.00 0.00 

Quonochontaug Pond 226 6 500 22,357 1,943 0.39 0.05 0.88 

Bissel Cove 134 25 503 68,445 4,755 5.79 0.38 4.25 

Town Pond 57 14 1,074 55,363 18,199 0.84 0.52 1.62 

Smelt Brook Cove 102 5 742 63,622 3,984 0.27 0.03 0.31 

Ninigret Pond - - 266 - - - - - 

Great Salt Pond - - 205 - - - - - 
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Table 3. Estimated number of oysters seeded by site and year during the North Cape Restoration Program. 
 

Site 2003 2004 2005 2006 2007* 2008 TOTAL 

Saugatucket River   48,700   137,400    272,800    575,642      276,115   1,310,657  

Smelt Brook Cove  114,400    86,900    372,900    425,600      276,115   1,275,915  

Bissel Cove Deep    137,400            137,400  

Bissel Cove Channel  112,400   137,400            249,800  

Bissel Cove Channel R1         439,362        439,362  

Bissel Cove Channel R2             552,231    552,231  

Spectacle Cove   96,600      361,200    222,389        680,189  

Potter Cove  140,800      370,900    288,389        800,089  

TOTAL  512,900   499,100   1,377,800   1,951,382     1,104,461   5,445,643  
 

* Oysters were not seeded in 2007 due to prioritizing resources on scallop restoration. 
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Table 4. Estimated number of oysters seeded by site and year during the Oyster Gardening for Restoration program. 
 

Site 2006 2007 2008 2009 2010 2011 2012 2013 2014 TOTAL

Jenny's Creek 27,000   128,000   286,000   441,000     

Bristol Harbor 27,000   102,000   95,000    224,000     

Town Pond 143,000   144,000  308,000  135,000  94,000    116,000  70,000    1,010,000   

Sandy Point 56,000    56,000       

Bissel Cove 40,000    57,000    40,000    84,000    74,000    93,000    27,000    415,000     

Smelt Brook Cove 52,000    48,000    48,000    49,000   50,000    21,000    38,000    35,000    341,000     

Quonochontaug Pond 52,000    57,000    48,000    63,000   50,000    41,000    116,000  42,000    469,000     

Ninigret Pond 38,000    40,000    35,000   41,000    34,000    58,000    246,000     

Winnapaug Pond 8,000      8,000         

Great Salt Pond 9,500      8,000      21,000   45,000    21,000    29,000    133,500     

TOTAL 54,000  430,000  733,500  328,000  476,000 405,000 285,000 450,000 182,000  3,343,500   
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Table 5. Estimated number of oysters seeded by site and year during the Environmental Quality and Incentives Program. 
 

Site 2008 2009 2010 TOTAL

Jenny's Creek 79,560 145,869 279,372 504,801

Bissel Cove 499,140 2,466,672 703,581 3,669,393

Potters Pond 666,666 1,013,856 1,680,522

Smelt Brook Cove 378,000 378,000

Ninigret Pond 1,835,280 5,478,097 1,630,219 8,943,596

Quonochontogue Pond 439,178 593,861 1,033,039

Winapaug Pond 626,971 291,983 918,954

Great Salt Pond 336,142 57,253 393,395

TOTAL 2,791,980 10,159,595 4,570,125 17,521,700  
 
 
Table 6. Estimated number of oysters seeded by site and year during The Nature Conservancy restoration efforts. 
 

Site 2015

Ninigret Pond 38,700

TOTAL 38,700  
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Figure 7a. Prevalence and intensity of Perkinsus marinus within North Cape restoration sites from 2004 – 2013. 
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Saugatucket River 28 2 100 4 100 5 100 2 100 4 96 2.8 96 3.3 100 2.5

Smelt Brook Cove 86 3 100 3 100 4 92 2 100 3 100 3.8 100 3.4 NA NA

Bissel Channel 0 0 11 1 10 1 NA NA NA NA NA NA NA NA NA NA

Bissel Closed NA NA NA NA NA NA 79 1 100 3 100 4 100 3.1 87 3.1

Spectacle Cove 13 1 60 1 40 1 100 2 NA NA 0 0 0 0 76 0.7

Potter Cove 14 1 24 1 0 0 92 1 NA NA 25 0.4 60 2.4 NA NA

20132004 2005 2006 2007 2008

Site

2011 2012

 
 
Figure 7b. Prevalence and intensity of Perkinsus marinus within Oyster Gardening for Restoration and Enhancement 

Sites from 2011 – 2013.  
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Town Pond 20 0.1 4 0.5 68 1.5

Bissel Cove 32 0.9 52 2.8 100 1.1

Quonnie Pond 0 0.0 0 0 52 0.88

Smelt Brook Cove 100 3.1 88 2.8 NA NA

Jenny's Creek 96 2.1 100 2.7 100 2.8

Great Salt Pond 0 0.0 4 2 32 0.7

Ninigret Pond 48 0.9 92 1.9 100 1.6

Site

2011 2012 2103
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Table 8. Total estimated number of oysters seeded by site between 2003 and 
2015. All programs combined.  

 

Site
Estimated No. 

Oyster seeded

Sandy Point 56,000                

Bristol Harbor 224,000              

Great Salt Pond 526,895              

Spectacle Cove 680,189              

Potter cove 800,089              

Winnapaug Pond 926,954              

Jenny's Creek 945,801              

Town Pond 1,010,000            

Saugatucket River 1,310,657            

Quonochontaug Pond 1,502,039            

Potter pond 1,680,522            

Smelt Brook Cove 1,994,915            

Bissel Cove 5,463,186            

Ninigret Pond 9,228,296            

TOTAL 26,310,843          
 
 
Table 9. Total estimated value of ecosystem services proved by oyster reefs 

per acre and mean costs of restoration. Ecosystem service values 
adapted from Grabowski et al. (2012). Cost of restoration per acre 
represent the mean operating cost of North Cape and OGRE 
programs from 2003 to 2014 to maintain one acre of oyster reef. 

 

Ecosystem Service 
Annual per acre 

value 

Fisheries production  $               1,669  

Nitrogen removal  $               1,639  

SAV enhancement  $               1,046  

TOTAL   $               4,353  

Restoration 
Implementation 

Per acre cost 

Mean   $         71,366.12  

se  $           8,591.58  
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Figure 1. Location of oyster restoration sites by program between 2003 and 2015.  
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Figure 2. Total number of oysters seeded by project and year from 2003 to 
2015. 
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Figure 3. Mean valve height of oysters, measured in millimeters, in three 
restoration sites; Bissel Cove, Quonochontaug Pond and Smelt 
Brook Cove. Sites not connected by same letter are significantly 
different for the given year [p = <0.0001, α = 0.05 (2012)], [p = 
<0.0001, α = 0.05 (2013)], [p = 0.152, α = 0.05 (2014)]. 

 

a 

a 

a 

b 

b 

b 

c 
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Figure 4. Mean percent survival of oysters during the first year post seeding (p 
= 0.2167, α = 0.05). 

 
 

Figure 5. Mean percent survival of oysters after 2+ years post seeding (p = 
0.6319, α = 0.05). 
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Figure 6a. Length frequency of live and dead oysters across all Oyster 
Gardening for Restoration and Enhancement sites. All cohorts 
included. Solid line represents lambda smoothing.  

 

 
Figure 6b. Length frequency of live and dead oysters, excluding first year 

cohorts, across all Oyster Gardening for Restoration and 
Enhancement sites. Solid line represents lambda smoothing. 
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Figure 7. Mean number of oysters per spat collector by site. Data represents 
monitoring between 2011 and 2013. Recruitment was not observed 
on spat collectors between 2004 and 2008. 
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Figure 8. Mean recruitment to restored oyster reefs by site between 2011 and 
2013. Recruitment was not observed on reefs between 2004 and 
2008. Sites not connected by same letters are significantly different 
(p = 0.0514, α = 0.05). 
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Figure 9. Mean percent Perkinsus marinus prevalence by restoration site. 
Data compiled from 2004 to 2013. Sites not connected by same 
letters are significantly different (p = 0.0007, α = 0.05). 
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Figure 10. Mean sustainability index by site from 2004 to 2013. Negative 
values represent population decline (p = 0.6022, α = 0.05). 

 

 
 



 

 

6
2 

Figure 11. Cost-benefit model of cumulative ecosystem services provided from one acre of oyster reef versus costs of 
restoration. ‘Actual’ restoration costs represent annual operation costs from North Cape and Oyster Gardening 
for Restoration and Enhancement programs to maintain one acre of oyster reef. ‘Theoretical’ restoration costs 
represent a self-sustaining population after the initial seeding.  
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APENDICES 

 
Appendix A. Oyster restoration in Town Pond, Portsmouth.  
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Appendix B. Oyster restoration in Spectacle Cove, Portsmouth. 
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Appendix C. Oyster restoration in Jenny’s Creek, Portsmouth. 
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Appendix D. Oyster restoration in Bissel Cove, North Kingstown. 
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Appendix E. Oyster restoration in the Saugatucket River, Narragansett. 
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Appendix F. Oyster restoration in Smelt Brook Cove, South Kingstown. 
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Appendix G. Oyster restoration in Ninigret Pond, Charlestown. Excluding 
TNC Oyster Castles (see Appendix H). 
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Appendix H. The Nature Conservancy Oyster Castle Reefs. Map provided by 
The Nature Conservancy. No oysters seeded on mapped reefs 
below. 
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Appendix I. Oyster restoration in Quonochontaug Pond, Charlestown. TNC 
reef location is approximate. 
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Appendix F. Oyster restoration in Winnapaug Pond, Westerly. OGRE site 
location is approximate. 
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Appendix K. Oyster restoration in Great Salt Pond, Block Island. 
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