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Abstract 

This thesis analyzes three observational data sets related to the El Nino/Southern 

Oscillation (ENSO) phenomenon to determine if E SO can be considered as a 

low-dimensional chaotic system. In order to test this hypothesis, I apply Bara­

hona and Poon's [1996] method for detecting nonlinear determinism in short , noise­

contaminated time series, and calculate the correlation dimension, De. A slightly 

modified version of the Vallis [1986] model is used to provide a context for inter­

preting the results, and to validate the computations done on the observational 

data. 

When applied to observational ENSO data, the Barahona and Poon algorithm 

indicates that low-order nonlinear mapping functions have predictive power which 

is not significantly different from linear models. In contrast, when the algorithm 

is applied to correspondingly sampled data from the Vallis model , the algorithm 

shows the presence of nonlinear determinism, even when these data are strongly 

contaminated with noise. 

There is a weak convergence of the correlation dimension in the observational 

data to a De value between 8 and 10. This indicates that the phase-space dimension 

of E SO is at least 8. 

These results suggest that either (1) ENSO is not governed by low-dimensional 

nonlinear dynamics, or (2) noise related to local physical processes overwhelms the 

E SO chaotic signal in the observational data. 
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1 Introduction 

El iiio/Southern Oscillation (E SO) is an interannual climatological disturbance 

centered on the tropical Pacific, and it has global effects and relevance. In this 

thesis , I investigate the possibility that variability associated with E SO can be 

attributed to low-dimensional , dissipative, chaotic dynamics. 

1.1 ENSO 

The term "Southern Oscillation" describes a fluctuation in the Southern Hemi­

sphere 's atmospheric pressure over the tropical Pacific and Indian Oceans [ Philan­

der, 1990]. When surface pressure is high over the eastern Pacific, it tends to be 

low over the eastern Indian Ocean and vice versa. The two regions for which this 

negative correlation is largest are referred to as the "centers of action." "El Nino" 

refers to an appearance of anomalously warm surface waters off the coasts of Peru 

and Ecuador. El iiio events , also referred to as E SO events , are coincident with 

the Southern Oscillation state being such that the atmospheric pressure is low in 

the east and high in the west. The time interval between successive ENSO events 

averages about 4 years , but these intervals range from one to eight years in length. 

E SO and the Sou them Oscillation are considered to be part of a regional cycle 

with global effects. 

Some studies of observational ENSO time series have suggested the possibility 

of low-dimensional chaotic determinism in E SO 's dynamics [Elsner and Tsonis , 

1993; Bauer and Brown, 1992; Hense, 1987]. Additionally, several ENSO models 
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exhibit chaotic properties [Tziperman et al. , 1995; Jin et al. , 1994; Miinnich et al., 

l991 ; Vallis , 1986, 1988] . The Vallis [1986] model is used in this work; it is described 

in Section 3. 

Poor prediction of ENSO events has an important effect on the world economy 

[Philander, 1990]. Conventional models and prediction schemes did not anticipate 

the recent large E SO event [ CPC, 1997]. If E SO can be shown to behave in 

a manner consistent with low-dimensional chaos, then it is possible that chaotic 

prediction techniques can be fruitfully employed to forecast future ENSO events. 

1.2 Chaos 

Chaos refers to the seemingly erratic time-dependent behavior that can occur in 

otherwise simple, deterministic systems. To be termed chaotic, a bounded time 

series must not be asymtotically periodic, and it must have at least one positive 

Lyapunov exponent. 1 For this work, I focus on low-dimensional dissipative chaos, 

which is operationally defined as a bounded chaotic system having a dimension 

significantly less than ten. Nonlinearity is a necessary - but not sufficient -

condition for chaotic dynamics. 

If E SO is chaotic as described above, what would that mean? In reality, E SO 

is governed by a vast number of equations describing the Newtonian physics which 

all of the molecules in the atmosphere and the ocean must obey. Even with the 

1 The Lyapunov exponents quantify the exponential divergence (in time) of ini­
tially close trajectories. If the vector distance between two nearby trajectories goes 
as s = s-OeLt , then the eigenvalues of the matrix L are the Lyapunov exponents for 
that system. 
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continuum hypothesis , the effective scale of the smallest fluid motions in the ocean is 

of order 1 cm, and there are 1024 such centimeter-size parcels in the ocean. If E SO 

is governed by low-dimensional nonlinear dynamics , only a much smaller number 

of equations is important in interpreting and predicting the dynamics. Thus, there 

would exist a simple model capturing all of the important physics of the system. 

evertheless, knowing this would not in itself tell us anything about the feasibility 

of finding that model , or about the uniqueness of that model. 

Two methods were used to examine the degree of nonlinearity in ENSO data 

sets. Originally, I also planned to calculate the Lyapunov exponents for the E SO 

attractor, however , that calculation relies on knowledge of an upper bound for the 

fractal dimension of the attractor. The results from the two methods cited in this 

study (Sections 4 and 5) indicate that Lyapunov exponents are essentially incalcu­

lable from the available data sets. 

The first method used is taken from Barahona and Poon [1996]. This method 

finds appropriate linear and nonlinear iterated map models for the given data set. It 

then calculates a "goodness of fit" metric for those linear and nonlinear models. If 

a nonlinear model has significantly greater predictive power than the linear model , 

then the data set is said to have underlying nonlinear deterministic dynamics. This 

method is described in greater detail in Section 4. 

The second computation done for this work is the calculation of the correlation 

dimension [ Grassberger and Procaccia, 1983] for the climate time series. If time 

series data are taken from all of the phase variables of a chaotic system, they will 

lie on a chaotic orbit , a "strange attractor." The fractal dimension of this attractor 
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can be calculated on a subset of those variables (or a linear combination of that 

subset) to reconstruct an analog to the original phase space. The theory of time­

delay embedding says that even a single time series can be used in this manner , and 

the correlation dimension of the reconstructed orbit constitutes a lower bound for 

the actual number of independent variables controlling the time evolution of that 

system. For high enough embedding dimensions , the correlation integrals should 

be approximately linear in log-log space. The slope of that line is the correlation 

dimension. The details of this method are described in Section 5. 

Section 6 summarizes the results and concludes the main part of this thesis. 
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2 The Data Sets 

2.1 SOI 

The Southern Oscillation Index (SOI) is a standardized, monthly-averaged sea­

level atmospheric pressure (SLP) difference between Tahiti and Darwin, Australia. 

Strongly negative SOI values are associated with ENSO events. Tahiti and Darwin 

are chosen because they are near the centers of action for the Southern Oscilla­

tion [Philander, 1990] and because there is a large enough quantity of high-qualitiy 

data available to make a consistent time series. The version of the SOI used in 

this study is the Climate Prediction Center (CPC) standardized SOI. The data set 

starts September, 1932 and it continues through April , 1998. The CPC archives the 

SOI from 1880 through the present, but there are several large data gaps during 

1880- 1932, so the set used here starts at the end of the last such gap. Thus, 788 

monthly-averaged data points were used for this study. This data set is referred to 

as the "SOI". For more details, see Appendix A. 

2.2 Daily T-D 

The short length of the SOI limits the accuracy of the computational procedures 

used in this study. However, lengthy historical measurements are hard to come by, 

and in any event would not extend significantly farther back into the past than the 

SOI does. The only other option, then, is to obtain data with a higher time sampling 

rate than the SOI's monthly rate. To address this need, a daily analog to the SOI 

was computed for these analyses from a spatially gridded data set. 
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Although I obtained the base data set through tape archives [Walters, 1997] at 

the ational Center for Atmospheric Research, it was originally produced at the 

Australian National Meteorological Research Centre [Seaman, et. al., 1995]. It 

employs time and spatial averaging to fit all available SLP data (from 4/24/1972 

through 12/31/1992) to a 47 x 47 grid extending across the southern Pacific region. 

It lists SLP values daily for the grid points at Greenwich Mean Time (GMT) 23:00 

until 4/8/73, and twice a day at 11:00 and 23:00 GMT thereafter. 

The spatial bins used for this set are about 350 km across (at 17°8) . Because the 

size of the area represented by a grid point is so large, only one grid point was used 

to acquire the SLP at Tahiti and one at Darwin. The grid points used are: (9 ,33) 

centered at 16.4472°8, 149.036°W for Tahiti, and (12,10) centered at 13.5319°8, 

130.601°E for Darwin. 

After extracting the appropriate data from the archive, a daily composite data 

set was calculated. For days with two available data points, an average of the two 

points was used. For days with only one data point available, that point was used. 

There were 69 missing days with no individual gap being more than 9 days long, so 

a cubic spline interpolation was calculated to fill in for those days with zero available 

data points. Finally, the daily SLP value for Darwin was subtracted from that for 

Tahiti. Altogether, 7557 such "pseudo-SOI" values were computed. These data will 

be referred to as the "T-D" (Tahiti minus Darwin) data set . 

6 



2.3 Darwin SLP 

To compliment the other two data sets , a daily SLP time series at Darwin was 

constructed. The Darwin data set is used separately because it is a directly mea­

sured data set , and because it has the largest number of available daily data points 

(16895). However, the Darwin SLP series has a large seasonal component, which 

could interfere with the calculation of ENSO statistical and chaotic properties. 

Eight-times-daily SLP data for Darwin were obtained directly from the Aus­

tralian Bureau of Meteorology. This data set spans the time period from July 1, 1951 , 

2:00 local time, through September 30, 1997, 21:00 local time. To reduce the impact 

of the diurnal cycle, a daily average was taken by directly averaging all of the avail­

able data points between O:OOZ and 23:59Z. Except for one day, every day had at 

least 3 measurements. That one day had no data, and the SLP for that one day was 

taken to be the average of the SLP measurements for the previous and following 

days. Finally, 1000 mbar was subtracted from each SLP value. This processing 

resulted in a (residual) SLP series 16895 days long. The data set will be referred to 

as the "Darwin SLP" data. 

2.4 Random numbers 

For the analysis techniques used in this work, it is helpful to compare the results with 

an equivalent random data set. Therefore, for each data set, a surrogate data set 

was constructed following the method described in Tsonis and Elsner [1993]. The 

Fourier transform of the data set was computed, and then the frequency amplitudes 
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were multiplied by a random phase factor , ei<f>, where <P is uniformly distributed in 

the interval 0 to 2n. The inverse transform was then used as a surrogate series. 

This process produces a random series with a mean, variance, and autocorrelation 

function similar to the original series. Although in theory the inverse transform of 

the newly randomized data should be real if </;(!) = <P( - !) , in practice, numerical 

errors induced a significant imaginary part to the inverse. Thus, for this analysis 

two additional computational steps were performed. First, the imaginary part of 

the inverse transform was dropped (the real part was used). Secondly, the stan­

dard deviation, a , was manually adjusted to match the a of the original time series. 

Inspection of the random time series obtained in this way indicated that their auto­

correlation functions match those of the original data sets well. Figure 1 shows the 

autocorrelation functions for the SOI and its corresponding random surrogate data 

set. 
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Figure 1: Autocorrelation functions for the SOI (left) and its random surrogate 

(right). 
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3 The Vallis Model 

3.1 Model Physics 

Vallis [1986] proposed a simple model for ENSO which captures many of its quali-

tative features. The Vallis equations are 

du 

dt 
dTw 

dt 
dTe 

dt 

2~x (Te - Tw) - C(u - u*) 

u -

2~x (T - Te) - A(Tw - T*) 

u -
---;:-(Tw - T) - A(Te - T*). 
2ux 

The free variables are Te (upper-ocean temperature in the East) , Tw (upper-ocean 

temperature in the West) , and u (eastward velocity of the upper-ocean). The other 

parameters, A , B , C , T, T* , and u* are predetermined. A is the Newtonian tern-

perature damping constant, B is a coupling constant, C is the frictional damping 

constant , T is the mean deep-ocean temperature , T* is the relaxation temperature 

of the ocean, and u* is the mean trade wind velocity. In this research , A , B , C , and 

f' are taken to be the values suggested by Vallis [1986] (see table below) 

I parameter I value 

A 0.083333 month- 1 

B 2 m2 sec- 2 0 c-1 

c 0.25 month- 1 

f' 0 °C 
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which are chosen to correspond to the real ocean dynamics, and to make one time 

unit correspond to about one month, but T* and u* are adjusted to match the 

observed E SO dynamics more closely. Figure 2 shows 2000 months of Vallis model 

data. This figure , as with all Vallis model data sets used in this thesis , was calculated 

using a fourth-order Runge-Kutta integration with 6t = 0.05 month. The model 

output with this time interval is refered to as the Vallis "daily" data set. 

3.2 Seasonal Forcing 

Because the tropical Pacific Ocean is strongly influenced by seasonal forcing , for 

this research a seasonal forcing is included. In his original paper, Vallis [1986] 

suggested that a seasonal forcing could be added to the model by replacing the 

constant parameter, u* , with u*(t) = u*(l + 3sinwt) , where w = 1~;ar· However, 

this level of seasonal variation implies that the trade winds reverse for almost half of 

the year. According to Philander [1990], the real trade winds only reverse for about 

two months in the spring. In order to make the seasonal forcing more realistic , this 

research uses u* ( t) = u* (1 +a sin wt) and a is a constant amplitude chosen to make 

the trade wind reversal occur for only two months in the spring (see Figure 3). Using 

Vallis's value u* = -0.45 ms- 1 and taking t = 0 to be the beginning of the year, 

this requires that a = -1. l. 
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3 An analog to the SOI 3. 

Both the computational methods used here assume that only one time series is 

available, but the Vallis model has three independent phase variables. To make 

comparisons between the model and the data, one needs to choose which of the 

phase variables to use as a proxy to the data. I decided to use the phase variable 

which showed the clearest difference between the model "ENSO" and "normal" 

states. Figure 4 shows histogram plots of the variable values when they were at 

relative maxima. These were calculated for T* values which ranged from 2° to 20°C 

(with a step size of .01°C). At each T* value, the model was iterated to produce 

120,000 months of data and all of the model runs were combined to produce Figure 4. 

There are two distinct groups in the histogram for u corresponding to the ENSO 

and non-E SO conditions. Hence, it is easy to define an ENSO criterion in terms 

of the relative maximum of u. I have chosen the relative maxima of u being greater 

than 1 to be my criterion for defining an E SO condition, but any value between 

.9825 and 1.825 would have given identical results. 

3.4 Justification for T* change 

In order to make the frequency of ENSO event occurrences in the model match that 

of the SOI, the model T * parameter was adjusted. 

First , the SOI E SO event rate was calculated as follows. The SOI data set was 

smoothed using a 12-month-period low-pass Butterworth filter (applied in both the 

forward and reverse directions). Then as with Figure 4 , a histogram of the relative 
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SOI minima was plotted (see Figure 5) to find a suitable threshold SOI value for 

determining E SO events. The pronounced minimum at SOI= -0.9 suggests this as 

an appropriate threshold value. Finally, the number of SOI relative minima below 

this threshold were considered to be ENSO events (with a threshold value of -0.9, 

there were 15 ENSO events) , and the ENSO rate was calculated by dividing the 

number of SOI relative minima by the total number of years in the data set (788 

months= 65.67 years). This resulted in an SOI ENSO rate of 0.2284 year- 1
. 

Second, the model E SO rate was calculated as a function of T*. This is shown 

in Figure 6. Again, a model E SO event occurs (by definition) when a relative 

maximum of u is greater than 1. The number of relative maxima which were ENSO 

events is divided by the total number of years (12 model months) to calculate the 

model ENSO rate for each T* parameter value between 2° and 20°C in increments 

of 0.01°C. The model ENSO rate matches that of the SOI when T* is 7.32°C. 

13 



8 

6 

4 

2 

.. 0 
I-

-2 

-4 

-6 

-8 
10 

.· · 

T 
w 

.. ... 
. · · 

.. 
. • . 

10 

-10 -10 
u 
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o = -1.1, and T* = 7.32°C (see Sections 3.2 and 3.4.) Note that the system orbits 
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a= 3, from Val/is[1986) 
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Figure 3: Seasonal Forcing functions, u*(t) = u*(l+asinwt), u* = -0.45ms- 1
, and 

w = 27r /lyear . 

Top: Original seasonal forcing function, as suggested by Vallis [1986], here a= 3. 

Bottom: The revised forcing function used for this research, where a= -1.1. Note 

that the trade winds reverse slightly in mid-March through mid-April (months 2.2 

through 3.8). 
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Figure 4: Histograms of relative maxima for Vallis model variables with bin widths 

0.25 units, calculated for T* between 2°C and 20°C (see text). The number of 

relative maxima has been normalized so that the highest number in each plot is 

exactly one. The red dots mark the bins which have zero points in them. 
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4 B /P analysis 

Barahona and Poon [1996], describe a method for detecting nonlinear determinism 

in short, noisy time series. That algorithm is used here and referred to as the "B/P 

algorithm" or "B/P analysis" . 

4.1 Description of B/P algorithm 

Barahona and Poon [1996] use the discrete Volterra-Weiner-Korenberg (VWK) series 

as an iterated mapping function , where Yn = Yn(Yn- 1, Yn- 2, ... , Yn-1t) · So, 

Yncalc = + + + ao a1Yn-1 a2Yn-2 · · · 

(1) 

K is the memory of the system (this corresponds to an embedding dimension) , d 

is the degree of the polynomial, and M = (K + d)!/(d!K!) is the total number of 

terms in the complete expansion. The coefficients, am , are then calculated to find 

a best-fit VWK mapping function to the data. The parameters K and d are chosen 

to minimize Akaike 's information criterion, 

C(r) = logc(r) +r/N, (2) 

where r :::; M is the number of mapping function terms used to make short-term 

predictions on the data, and E is the standard one-step-ahead prediction error of 

those predictions. C ( r) essentially measures the "goodness of fit" of the mapping 

function to the data, where a low C(r) value means there is a good fit between 
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the VWK mapping function and the original data. Nonlinear mapping functions 

are constructed by setting d ~ 2, and for comparison, linear mapping functions are 

constructed by setting d = 1 and letting K vary between 1 and M , where M is 

the number of terms in the associated nonlinear mapping function. For instance, if 

K, = 2 and d = 2, then the nonlinear C ( r) calculation is calculated for the best-fit 

VWK mapping functions with K, ~ K , d ~ d and (K, , d) = (1, 1) , ... , (2 , 2) , in a 

recursive fashion. In other words , once ai is calculated for a given r , that value of 

ai is reused for all subsequent r. Figure 7 shows this case for Vallis model u data, 

and the following table explains what each point on the plot represents. 

I r I VWK mapping function 

1 ao 0 by definition 

2 ao + a1Yn- 1 (1 , 1) - complete 

3 ao + a1Yn-1 + a2Yn-2 (2 , 1) - complete 

4 ao + a1Yn-1 + a2Yn-2 + a3y;_l (2 , 2) - truncated 

5 ao + a1Yn-1 + a2Yn-2 + a3y;_1 + a3Yn-1Yn-2 (2 , 2) - truncated 

6 ao + a1Yn- 1 + a2Yn-2 + a3y;_1 + a3Yn-1Yn-2 + a3y;_2 (2 , 2) - complete 

C(r) is calculated for nonlinear and linear VWK mapping functions of the orig­

inal data, and both such mapping functions are com pared to the C ( r) function for 

a linear mapping function of a random surrogate to that data set. (The surrogate 

data set is always recalculated from the given data set .) If C(r) for the nonlinear 

mapping function is significantly lower than that of the linear mapping function and 

the surrogate data, then the data set displays nonlinear deterministic dynamics. In 
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Figure 7 note that the nonlinear C ( r) function is not smaller than those of the linear 

and surrogate-linear VWK mapping functions. The data set is chaotic, so in princi­

ple, the algorithm should pick up nonlinear determinism. It does not , because K = 2 

(the embedding dimension) is smaller than the actual model phase space dimension 

of 3. Figure 8 shows the results for B/P analysis of the same data set with K = 5, 

d == 4. Here the nonlinear C ( r) function lies well below the linear and surrogate 

C(r) functions for r > 21 , indicating nonlinear determinism as expected. 

Also, in practice, the number of terms, M , in the VWK expansion should be 

much less than the length of the time series. Thus, there are limits on the magni­

tudes of K and d, and when the time series are short, this method is only useful in 

characterizing low-dimensional nonlinear dynamics. 

4.2 SOI 

Figure 9 shows the B/P algorithm applied to the SOI data set. The parameter 

values of K = 7 and d = 3 (M = 120) were chosen to maximize K without making 

the maximum number of terms in the VWK series too long compared to the length of 

the data set. (Other values of Kand d, with M < 130 were tried with similar results.) 

As is apparent from Figure 9, the linear and nonlinear mapping functions , and the 

mapping function based on a random surrogate to the SOI, have similar predictive 

capabilities. This indicates that E SO is not driven by a nonlinear , deterministic 

dynamical system with a small number of degrees of freedom, or that small-scale 

phenomena (random noise) overwhelm ENSO, or that monthly averaging of the 
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climate data (from compiling the SOI) obscures the results. To help distinguish 

between these possible explanations I use the algorithm on Vallis model data. 

4.3 Vallis Model 

The Vallis model (as described in Section 3) was used to generate a monthly-sampled 

data set. The length of the data set is chosen to correspond to the length of the 

SOI series. To investigate the effects of noise and other potential data problems on 

the detection of nonlinear determinism in the Vallis model , I set K = 5, d = 4 (and 

thus M = 126) in applying B/P analysis to this data set. Although other parameter 

values were tried, the nonlinear character of the data set is the most clear with these 

parameter values (Figure 8). 

4.4 Monthly averaging 

Figure 10 shows C(r) functions based on 788 monthly-averaged Vallis model data 

points. These look nearly identical to those for the monthly sampled output (Fig­

ure 8); the monthly averaging did not affect the algorithm's capability. 

4.5 Noise 

Surrogate noise with standard deviations , a , up to 100% of the signal standard 

deviation was added to the model data before the B/P algorithm was applied (Fig­

ure 11). When the noise strength was 60% or lower, then the system still displayed 

identifiable nonlinear determinism. The surrogate C ( r) functions in these plots are 
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surrogates of the noisy Vallis model data. Adding the noise to the Vallis daily data 

set before forming monthly averages produced essentially the same results. So, if 

the proposed E SO climate attractor is similar in essence to the Vallis model , the 

fact that nonlinear determinism was not detected in the observational data puts a 

lower limit of 60% on the noise level in the SOI data set. In other words , either the 

SOI is not characterized by low-dimensional nonlinear dynamics, or the noise in the 

data set is greater than 60%. 

4.6 Smoothing 

The monthly-sampled Vallis model data set described above with and without added 

noise (a= 100% of the signal a) was smoothed with a low-pass Butterworth filter 

(run forwards and backwards) before applying the B/P algorithm. The B/P analysis 

failed to detect nonlinearity for all possible period cutoffs greater than the yquist 

period (2 months) , thus smoothing cannot be reliably used to recover nonlinear 

determinism. This was observed in both smoothed pure data sets (Figure 12) and 

in smoothed noisy data sets (Figure 13). One possible explanation for this is that a 

smoothing algorithm increases interdependence among neighboring data points , and 

this interdependence is linear in nature. Thus smoothing enhances the predictive 

capabilities of linear mapping functions. 
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4. 7 Sub-sampled Vallis model 

A Vallis model data set was constructed to correspond in sampling interval and 

length with the T-D data set subsampled to 1 data point per 7 days. The data set 

was subsampled because the B/P algorithm does not work well with oversampled 

data. By trying various sampling intervals , I found that 1 point per 7 "days" 

seemed to be the optimal interval in resolving the nonlinear determinism of the 

Vallis model data when limited to 7557 daily points. 1079 such data points were 

analyzed (Figure 14) . 

4.8 Sub-sampled T-D 

The B/P algorithm was applied to a data set consisting of 1079 points from the 

T-D data subsampled to 1 data point per 7 days. The C(r) function for nonlinear 

mapping functions was not significantly different than the C ( r) function for the 

linear mapping functions or for mapping functions predicting the surrogate data 

set of the weekly sampled T-D (Figure 15). Thus, the T-D data set is either not 

characterized by low-order nonlinearity, or there is large localized noise obscuring 

the low-order nonlinear signal. For this data set , small-scale physical processes have 

been averaged out by the spatial binning process, so dynamical noise attributed 

to localized non-ENSO dynamics is not a likely explanation for the null result. 

Unless the binning process itself destroys the nonlinear signal, this indicates that 

the Southern Oscillation is a physical system with many significant variables , which 

this analysis cannot distinguish from "random." 
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4.9 Bi-weekly-subsampled Darwin SLP 

The daily-averaged SLP values from Darwin, Australia were subsampled on a bi­

weekly time scale. The resultant time series has 1207 points, and the parameter 

values used here were r;, = 7, and d = 3. The B/P analysis was then applied, and 

the C(r) for the linear (and surrogate data) mapping functions were smaller than the 

c ( r) for the nonlinear mapping function (Figure 16). Thus nonlinear determinism 

is not found in this data set. 
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Figure 7: C(r) plot for linear, surrogate-linear, and nonlinear mapping functions 

with K = 2 and d = 2 for the Vallis model with 788 points of monthly-sampled u 

values. 
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Figure 8: C ( r) plot for linear, surrogate-linear, and nonlinear mapping functions 

with "' = 5 and d = 4 for the Vallis model with 788 points of monthly-sampled u 

values. 
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Figure 9: C(r) plots for linear, surrogate-linear, and nonlinear mapping functions 

with K = 7 and d = 3 for the SOI data. 
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Figure 10: C(r) plots for linear, surrogate-linear, and nonlinear mapping functions 

with"'= 5 and d = 4 for the Vallis model. 

Left: 788 points of monthly-sampled Vallis model u data. 

Right: 788 points of monthly-averaged Vallis model u data. The monthly averages 

were computed from a data set sampled 20 times per month. 
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Figure 11: C(r) plots for linear, surrogate-linear, and nonlinear mapping functions 

for the Vallis model with varying levels of correlated noise. For all panels, K = 5 

and d = 4. (The base data set used here is the same as that used in Figure 8, 788 

points of monthly sampled u data). 
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Figure 12: C(r) plots for linear, surrogate-linear, and nonlinear mapping functions 

for unsmoothed and smoothed (3-month lowpassed) Vallis model data (see text) 

with "' = 5 and d = 4. One can see that the smoothing alone makes the nonlinearity 

undetectable with this algorithm. 
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Figure 13: C(r) plots for linear, surrogate-linear, and nonlinear mapping functions 

for unsmoothed and smoothed (3-month lowpassed) noisy Vallis model data (see 

text) with""= 5 and d = 4. 
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Figure 14: C(r) plot for linear, surrogate-linear, and nonlinear mapping functions 

on the "daily" (8t = 0.05 months) Vallis model data set subsampled at 1 data point 

per 7 days. The parameter values used here are ,.., = 5 and d = 4. 
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Figure 15: C(r) plot for linear, surrogate-linear, and nonlinear mapping functions 

on the daily T-D (Tahiti minus Darwin sea-level-pressure) data set subsampled at 

1 data point per 7 days. The parameter values used here are K, = 7 and d = 3. 

34 



0 ' I T T T -1 T I I I I 

-0.1 -

-0.2 -

-0.3 

-0.4 f- -

~ 
~ 

f- -~ -0.5 

-0.6 f- -

-0.7 f- -

-0.8 f- -

linear 
-0.9 f- surrogate 

nonlinear 
-1 

10 20 30 40 50 60 70 80 90 100 110 120 

Figure 16: C(r) plot for linear, surrogate-linear, and nonlinear mapping functions 

on the Darwin SLP data set subsampled at 1 data point per 14 days (bi-weekly). 

The parameter values used here are "' = 7 and d = 3. 
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5 Correlation Integrals 

One of the earliest methods for characterizing a chaotic time series is the Grass berger 

and Procaccia [1986] method of calculating the correlation dimension, De, from the 

slope in log-log space of the correlation integral. 

5.1 Description of Grassberger-Procaccia method 

Consider a dynamical system with state vector , X, which evolves in ad-dimensional 

phase space. The correlation integral , C(l) , is defined as 

C(l) lim N\ x {number of pairs (i,j) whose 
N-too 

vector distance I xi - xj I is less than z} , (3) 

where N is the number of vector pairs , Xi , Xj , used in the calculation. The distance 

function can be any vector norm; in this study I use the Euclidian norm unless 

otherwise specified. If 

C(l) '""zv , (4) 

or equivalently logC(l) ,.__, vlogl , then vis called the correlation dimension, De. 

For instance, consider a line (a one-dimensional object), in an n-dimensional phase 

space. Equation 4 says that as the radius , l , of an n-dimensional hypersphere grows, 

the number of points encompassed by that hypersphere will grow as l1. 

When working with experimental data, one does not often have access to all of 

the components of the state vector , X. Therefore, Grassberger and Procaccia [1986] 

suggest using the method of time-delay embedding to apply their method to time 
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series consisting of a single variable. 

First one constructs a set of d-dimensional vectors from the original time series, 

x(t) as follows: 

(5) 

7 is a fixed time interval , and d needs to be larger than the attractor's dimension. 

Furthermore, for a bounded data set of non-infinite length, C(l) -+ 1 as l -+ oo 

(eventually, all the data are encompassed by a hypersphere of radius l). Also , if the 

time series is finite , there is some minimum distance between the embedded phase 

space vectors; thus for all l less than that minimum distance, C(l) = 0. So for 

real data sets, equation ( 4) only holds for a finite range of l values. This range of 

appropriate l values is referred to as the "scaling region". 

For this work, I calculate correlation integral derivatives , dC(d)(l)/dlogl , for em­

bedding dimensions , d, ranging from 2 to 14. A 0.41 log-unit width box average 

is applied to smooth the correlation integral derivatives. The scaling region is de­

termined to be the region , in log l space, where the correlation derivatives converge 

and are horizontal for large enough d. The derivative value in the scaling region is 

the correlation dimension, but the scaling region can be narrow. 

5.2 Vallis Model 

The Vallis model (as described in Section 3) is used to substantiate the correla­

tion integral calculations on the data sets. Although a similarly long data set is 

unavailable for comparison, the "true" correlation dimension for the model is cal-
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culated from 50,000 monthly sampled points. From the correlation derivative plot 

(Figure 17) , one can see that for all embedding dimensions greater than 3, there is a 

small range of l values where the derivatives apparently converge to 3.16. Thus, the 

correlation dimension, De, of the seasonally forced Vallis model is approximately 

3.16. At first this may seem unreasonable since there are only 3 independent phase 

variables in the model , and the correlation dimension is supposed to be a lower limit 

on the number of variables of the underlying physical system. However , the seasonal 

forcing introduces an explicit time dependence into the system, and so the effective 

number of phase variables is raised by one. Thus 3.16 is below the phase-space 

dimension of 4. 

The next step is to find out what can be determined from the available data 

sets. From the analysis of a 788-point (monthly sampled) Vallis data set (Figure 18, 

left) you can indeed tell that the De is bounded below 4. Because these calculations 

can be sensitive to time averaging, a 788-point monthly-averaged (but not otherwise 

smoothed) Vallis model data set was constructed. The results are hardly affected 

by the averaging (Figure 18, right) , so monthly averaging, similar to that done in 

calculating the SOI, does not significantly affect the algorithm. However, Figure 18 

also shows that the De may be underpredicted in these cases. Note that the slopes 

appear to be about 2- 3, rather than 3- 4 as in Figure 17. 

A twenty-times-monthly, "daily", Vallis model data set was generated to test 

the plausibility of doing correlation integral calculations on the daily T-D data 

(Figure 19). The apparent correlation dimension of the daily set is significantly lower 

than that of the monthly-sampled model data. Because this probably indicates an 
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oversampling problem, the calculation was repeated using a maximum norm in the 

integration instead of the Euclidian norm, as suggested by Grassberger [1986], but 

no improvement over the original calculation was found (Figure 20). 

5.3 Noisy Vallis Data 

To evaluate the effects of noise on the determination of the correlation dimension, 

various levels of normally distributed noise were added to the 788-point, monthly­

sampled, Vallis data set. The correlation dimension calculation is inconclusive if 

the noise has a standard deviation over 103 of the signal standard deviation (Fig­

ure 21). Nevertheless , with 5-103 noise , the correlation integral slopes display weak 

convergence similar to the boundedness observed for the noise-free data (Figure 22). 

5.4 SOI 

There is a weak indication in Figure 23 that De ~ 10 for the SOI data. This indicates 

that the supposed climate attractor has a fractal dimension greater than or equal to 

10, that the noise in the data is sufficiently large to destroy the convergence in the 

correlation integral calculation, or that the data set is too short to yield a reliable 

result. In any case, this result is consistent with the results from Section 4: the 

Southern Oscillation does not appear to be an example of low-dimensional chaos. 
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5.5 Daily T-D 

For embedding dimensions higher than 11 , the calculation indicates that the cor­

relation dimension for the T-D data set is roughly 8.5 (Figure 24). The same De 

estimate is obtained using the maximum norm (Figure 25). However , in the light 

of the analysis on the Vallis model cited above (Figures 17, 19, and 20) this may be 

an underestimate due to oversampling. 

5.6 Darwin SLP 

Figure 26 shows the correlation integral slopes calculated from the Darwin SLP 

data set. These slopes seem to converge to a value between 6 and 6.5 for embedding 

dimensions between 7 and 14. As with the results for the T-D data set, this too 

may be an underestimate. 
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Figure 17: Correlation integral 5-point derivatives of the Vallis model for various 

embedding dimensions, d. The data set used consisted of 50,000 points of monthly 

sampled u values. The arrow points to the scaling region. Inspection of this plot 

reveals that the De= 3.16. 
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Figure 18: Correlation integral derivatives of Vallis model data. 

Left: 788 points of monthly-sampled Vallis model u data. 

Right: 788 points of monthly-averaged Vallis model u data. The monthly averages 

were computed from a data set sampled 20 times per month. 
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Figure 19: The same as Figure 17 except the data set used was 7557 points of u 

values sampled 20 times monthly. 
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Figure 20: The same as Figure 17 except the data set used was 7557 points of u 

values sampled 20 times monthly. This calculation was done using a maximum norm 

rather than the standard Euclidian norm. 

44 



15% noise 20% noise 30% noise 
10 10 10 

- d = 10 - d= 10 - d = 10 
9 - d=9 9 - d=9 9 - d=9 

- d =8 - d=8 - d=8 

B - d=7 B - d=7 B - d=7 
- d=6 - d=6 - d=6 
- d=S ~ .. -- d=S ...... d=S 

7 7 
- d=4 

7 , 
- d=4 - d=4 

::::::.. - d=3 ::::::.. - d=3 ::::::.. - d=3 
'i) 'i) 'i) 

0 6 - d=2 0 6 - d=2 0 6 - d=2 
0 0 0 

i i cil 
..Q 

0 5 0 5 0 5 
Q) Q) Q) 
a. a. a. 
0 0 0 
Iii Iii Iii 
Iii 4 Iii 4 Iii 4 
0 0 0 

..Q ..Q ..Q 

3 3 3 

2 2 2 

Figure 21: Correlation integral derivatives for the Vallis model with 788 points of 

monthly-sampled data computed using the maximum norm. The maximum norm 

was used here because it resulted in better convergence of the correlation integrals. 

Surrogate noise is added as shown. 
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Figure 22: Same a.s Figure 21, but with less noise, a.s shown. 

46 



18 

16 

14 

~ 12 
::::::.. 

'ti' 
0 

0 
c)10 

..Q 
0 
~ 
0 8 

"'iii 
lij 
0 

..Q 
6 

4 

2 

0.2 0.3 0.4 0 .5 0.7 0 .8 0.9 

d = 14 
d = 13 
d = 12 
d = 11 
d = 10 
d=9 
d=8 
d=7 
d=6 

Figure 23: Correlation integral derivatives for the SOI data set. 

47 

1.1 



1B 

16 

14 

~ 12 
::::::.. 

'ti' 
0 

0 

Cl"I 0 
..Q 

0 
~ 
0 
Iii 
(ij 
0 

..Q 
6 

4 

2 

0.6 0.7 O.B 0 .9 1.2 1.3 

Figure 24: T-D correlation integral derivatives. 
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Figure 25: T-D correlation integral derivatives calculated using the maximum norm. 
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Figure 26: Darwin SLP correlation integral derivatives. 
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6 Synthesis and Conclusions 

6.1 Synthesis 

The arguments in Sections 4 and 5 rest on the assumptions that the SLP differ­

ence between Tahiti and Darwin is characteristic of the dynamics of the Southern 

Oscillation and that any measurement errors in the data sets have standard devia­

tions which are small compared to the signal standard deviation. The results from 

the B /P and correlation integral analyses indicate one (or more) of two possi bili­

ties: the dynamics are not those of low-order nonlinear determinism, or localized 

physical processes (dynamic noise unrelated to E SO) are obscuring an underlying 

large-scale, low-order nonlinear dynamics. 

Section 4 shows that the B/P algorithm does not detect low-order nonlinear 

determinism in the SOI, Darwin SLP or T-D data sets. In interpreting this result 

the following facts need to be considered. (1) Nonlinear determinism is detectable 

by the algorithm in Vallis model data sets with lengths and time-sampling rate the 

same or similar to the observational data sets. Thus the data sets' lengths and 

sampling rates are not responsible for the null result. (2) The model's nonlinear 

determinism is apparent when the short time series is contaminated with additive 

noise having a standard deviation of up to 60% of the signal's standard deviation. 

Thus measurement errors, which are almost certainly less than 60% of the signal 

standard deviation, are not causing the nonlinear signal to be lost. (3) The B/P 

algorithm detected nonlinear determinism in a model data set which mimicked the 

monthly time-averaging of the SOI. Thus the SOI's time averaging is not masking 
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any nonlinear signal in the data. ( 4) Spatial averaging, such as that done in pro­

cessing the T-D data set, should average out any signals from small-scale physical 

processes unrelated to the large-scale dynamics. The fact that nonlinear determin­

ism is not detected in the T-D data set suggests that those small-scale processes are 

also not responsible for the null result. 

Thus, the most likely conclusion to be drawn from the B/P analysis in Chapter 

4 is that E SO is not an example of low-order chaos. The short lengths of the data 

sets put computational limits on the size of K, , consequently the B/P analysis can 

only be used to discern low-order nonlinearity. For these data sets , /'\, = 7 seems to be 

the largest possible embedding dimension, so this result leaves open the possibility 

that ENSO is driven by mid- or high-order nonlinear dynamics. 

Section 5 shows that the derivatives of the correlation integrals for the SOI 

and T-D data sets weakly indicate De ~ 8 - 10. This calculation is less immune 

to noise than the B/P calculations in Chapter 4: the model correlation integral 

derivatives only converge when less than about 10% noise is added. Furthermore, 

the model correlation integral derivatives apparently converge to De values which 

are less than the real model De, when the model data set has a length and sampling 

rate comparable those of the data sets. However, monthly averaging does not affect 

the model De calculations noticeably. 

Assuming that measurement noise is not significant, the correlation integral cal­

culations, nevertheless , place a lower bound on the number of dimensions in which 

ENSO evolves. Any false results here would be an underestimate of the real De, 

not an overestimate. Thus, it appears that the correlation dimension of the SOI 
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is at least eight, i.e., not "significantly less than 10" . Taking this as our criterion 

for "low-order" chaos we conclude from Sections 4 and 5 that the SOI, and hence 

ENSO, cannot be usefully described as low-order chaos. 

6.2 Conclusions about ENSO 

If one accepts the idea presented here that ENSO is not low-order chaos, what 

ramifications does this have? Most simply, one can say that currently available 

chaos prediction techniques will not enhance our ability to predict ENSO events. 

The lack of low-order nonlinear determinism implies that the tropical Pacific Ocean 

and atmosphere processes responsible for ENSO are complicated. Any models for 

ENSO which exhibit low-order chaos are probably too simple to produce reliable , 

accurate predictions of E SO episodes. 

If daily Tahiti SLP data from the 1950's to the present could be obtained, they 

could be combined with the Darwin SLP data set to produce a nearly 17,000 term 

"daily Southern Oscillation Index" . With such a long series it would be possible, 

in principle, to investigate the hypothesis that E SO is governed by medium-order 

chaos by increasing"' in the B/P method to values in the range of 10- 20. 
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A SOI source 

For this research, the Southern Oscillation Index data set was obtained from the 

OAA Climate Prediction Center in Washington DC through their web site at 

http : //nic . fb4 .noaa .gov :80/data/cddb/ 

This data set was downloaded May 6, 1998. Two data files from the site were used 

in compiling the complete SOI data set; these are "soi" and "soi . his" . 

(STAND TAHITI - STAND DARWIN) SEA LEVEL PRESS 
STA DARDIZED DATA 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1932 - - - - - - - - -1.1 -0.6 -0.6 0.2 
1933 -1.6 0.4 -0.4 0.3 0.5 -0.4 0.2 -0.2 0.3 0.2 0.5 0.9 
1934 0.7 0.0 -0.1 0.4 -0.5 0.8 0.2 -2.5 -0.7 0.3 1.1 -0.4 
1935 0.8 -0.7 1.3 0.3 -0.4 -0.2 0.0 0.1 0.6 0.7 0.2 -0.6 
1936 -0.3 -0.1 0.0 0.5 0.4 -0.3 0.3 -1.0 0.2 -0.1 -1.5 -0.1 
1937 1.1 -0.8 0.6 0. 1 -0.1 0.1 -0 .5 0.1 0.1 -0.5 -0.5 0.6 
1938 0.8 0.4 -0.5 0.3 1.0 1.3 1.8 1.0 0.9 1.3 0.0 1.6 
1939 2.1 0.8 1.1 0.7 -0.1 -0.2 0.8 -0.3 -1.1 -1.7 -1.0 -1.2 
1940 -0.1 -0.8 -1.3 -0.7 -1.2 -1.7 -1.6 -1.9 -2.0 -1.9 -0.9 -2.6 
1941 -1.4 -2.2 -1.4 -0.9 -0.6 -1.2 -2.0 -2.0 -0.9 -2.2 -1.1 -1.2 
1942 -1.8 -0.7 -0.8 -0.4 0.4 0.5 -0.2 0.2 0.9 0.7 -0.6 1.6 
1943 1.2 1.2 0.3 1.0 0.2 -0.7 0.2 0.6 0.5 0.8 0.2 -1.2 
1944 -1.2 0.4 0.5 -0.4 -0. l -0.4 -0.9 0.2 0.3 -1.0 -0.8 0.3 
1945 0.6 0.7 1.4 -0 .5 0.0 0.5 0.3 1.0 0.9 0. 1 -0.5 0.7 
1946 -0.4 0.4 -0.4 -0.7 -0.9 -0.9 -1.1 -0.6 -1.8 -1.4 -0.3 -0.9 
1947 -0.7 -0 .8 1.2 -0.4 -1.1 0.1 0.9 0.5 1.2 -0.3 0.7 0.5 
1948 -0.5 -0.5 -0.7 0.2 0.3 -0.5 0.0 -0.6 -0.9 0.5 0.2 -0.9 
1949 -1.1 0. 1 0.5 0.1 -0.5 -1.0 -0.2 -0.6 0.2 0.4 -0.8 0.7 
1950 0.5 2.1 1.9 1.2 0.6 2.0 2.0 1.1 0.7 1.6 1.0 2.7 
1951 1.7 0.6 -0.8 -0.6 -1.0 -0.3 -1.4 -0 .7 -1.3 -1.4 -1.0 -1.0 
1952 -1.2 -1.1 0.0 -0.5 0.6 0.5 0.4 -0 .4 -0.3 0.2 -0.2 -1.6 
1953 0.2 -1.0 -0.8 -0.1 -2.2 -0.3 -0.1 -1.9 -1.5 -0.2 -0.4 -0.7 
1954 0.6 -0.7 -0.3 0.4 0.3 -0.3 0.3 0.8 0.2 0.1 0.1 1.5 
1955 -0.7 1.8 0. 1 -0.5 0.9 1.1 1.7 1.2 1.5 1.5 1.3 1.0 
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Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1956 1.4 1.5 0.9 0.7 1.3 0.8 1.1 0.9 0.0 1.9 0.1 1.0 
1957 0.6 -0.5 -0.4 0.0 -1.0 -0.2 0.1 -1.0 -1.1 -0.2 -1.2 -0.5 
1958 -2.3 -1.0 -0.3 0.1 -0.9 -0.2 0.3 0.6 -0.4 -0.2 -0.6 -0.9 
1959 -1.2 -2.0 0.9 0.2 0.3 -0.6 -0.5 -0.6 0.0 0.3 1.0 0.8 
1960 0.0 -0.3 0.6 0.6 0.3 -0.3 0.4 0.5 0.7 -0.l 0.5 0.8 
1961 -0.4 0.7 -2.7 0.7 0.1 -0.3 0.1 -0.2 0.1 -0.7 0.6 1.6 
1962 2.2 -0.7 -0.4 0.0 1.0 0.4 -0.1 0.3 0.5 0.9 0.3 0.0 
1963 1.1 0.4 0.7 0.6 0.1 -1.0 -0.3 -0.5 -0.7 -1.6 -1.0 -1.6 
1964 -0.5 -0 .3 0.7 1.0 -0.l 0.4 0.4 1.3 1.4 1.3 0.0 -0.5 
1965 -0.6 0.1 0.2 -0.8 -0.l -1.0 -2.2 -1.2 -1.5 -1.2 -1.8 0.0 
1966 -1.7 -0.7 -1.7 -0.5 -0.7 0.0 -0.1 0.3 -0.3 -0.4 -0.1 -0.6 
1967 1.9 1.6 0.8 -0.3 -0.3 0.3 0.0 0.5 0.6 -0.2 -0.6 -0.8 
1968 0.4 1.1 -0.5 -0.2 1.1 0.9 0.6 -0.l -0 .3 -0.3 -0.5 0.0 
1969 -2 .0 -1.1 -0.l -0.6 -0.6 -0.2 -0.7 -0.6 -1.2 -1.3 -0.2 0.3 
1970 -1.4 -1.6 0.0 -0.4 0.1 0.7 -0.6 0.2 1.3 0.9 1.7 2.1 
1971 0.3 1.9 2.1 1.7 0.7 0.1 0.1 1.3 1.6 1.7 0.5 0.0 
1972 0.4 0.8 0.1 -0.4 -2.l -1.1 -1.9 -1.0 -1.6 -1.2 -0.5 -1.6 
1973 -0.5 -2.0 0.2 -0.2 0.2 0.8 0.5 1.1 1.4 0.6 2.9 2.0 
1974 2.7 2.0 2.2 0.8 0.9 0.1 1.2 0.5 1.3 0.8 -0 .3 0.0 
1975 -0.8 0.6 1.2 1.1 0.5 1.1 2.1 1.9 2.4 1.7 1.3 2.3 
1976 1.5 1.6 1.3 0.1 0.2 -0.l -1.2 -1.3 -1.4 0.2 0.7 -0.6 
1977 -0 .7 1.1 -1.3 -0.8 -0.9 -1.5 -1.5 -1.3 -1.0 -1.4 -1.6 -1.4 
1978 -0.4 -3.5 -0.8 -0.6 1.3 0.3 0.4 0.0 0.0 -0 .7 -0.l -0.3 
1979 -0.7 0.8 -0.5 -0.4 0.3 0.4 1.3 -0.6 0.1 -0.4 -0.6 -1.0 
1980 0.3 0.0 -1.2 -1.0 -0.3 -0.4 -0.2 0.0 -0.6 -0.3 -0.5 -0.3 
1981 0.2 -0.6 -2.l -0.4 0.7 1.0 0.8 0.4 0.4 -0.7 0.1 0.5 
1982 1.3 -0.l 0.1 -0.2 -0 .7 -1.6 -1.9 -2.5 -2.0 -2.2 -3.2 -2 .8 
1983 -4.2 -4.6 -3.4 -1.3 0.5 -0.3 -0.8 -0.2 1.0 0.3 -0.2 -0 .l 
1984 0.1 0.6 -0.9 0.2 0.0 -0.8 0.0 0.0 0.1 -0 .6 0.2 -0.4 
1985 -0.5 1.0 0.2 1.0 0.2 -0.9 -0.3 0.7 0.0 -0.7 -0.3 0.1 
1986 0.9 -1.6 0.0 0.1 -0.5 0.7 0.1 -1.0 -0.6 0.5 -1.5 -1.8 
1987 -0.9 -1.9 -2.0 -1.9 -1.7 -1.7 -1.7 -1.5 -1.2 -0 .7 -0.1 -0.7 
1988 -0.2 -0.9 0.1 -0.l 0.8 -0.2 1.1 1.4 2.1 1.4 1.9 1.3 
1989 1.7 1.1 0.6 1.6 1.2 0.5 0.8 -0.8 0.6 0.6 -0.4 -0.7 
1990 -0.2 -2.4 -1.2 0.0 1.1 0.0 0.5 -0.6 -0 .8 0.1 -0.7 -0.5 
1991 0.6 -0.l -1.4 -1.0 -1.5 -0.5 -0.2 -0.9 -1.8 -1.5 -0.8 -2.3 
1992 -3.4 -1.4 -3.0 -1.4 0.0 -1.2 -0.8 0.0 0.0 -1.9 -0.9 -0.9 
1993 -1.2 -1.3 -1.1 -1.6 -0.6 -1.4 -1.1 -1.5 -0.8 -1.5 -0.2 0.0 
1994 -0.3 -0.l -1.4 -1.8 -1.0 -0 .9 -1.8 -1.8 -1.8 -1.6 -0.7 -1.6 
1995 -0.6 -0.5 0.2 -1.1 -0.7 -0 .2 0.3 -0.l 0.3 -0.3 0.0 -0.8 
1996 1.0 -0.l 0.7 0.6 0.1 1.0 0.6 0.4 0.6 0.4 -0.2 0.8 
1997 0.5 1.6 -1.1 -0.9 -1.8 -2.0 -1.0 -2 .l -1.6 -1.9 -1.4 -1.3 
1998 -3.3 -2 .7 -3.4 -1.9 - - - - - - - -
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