
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2012

Mounting a Windows Software Raid as a Virtual Disk Mounting a Windows Software Raid as a Virtual Disk

Daniel N. Ducharme
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Ducharme, Daniel N., "Mounting a Windows Software Raid as a Virtual Disk" (2012). Open Access
Master's Theses. Paper 1036.
https://digitalcommons.uri.edu/theses/1036

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1036&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1036?utm_source=digitalcommons.uri.edu%2Ftheses%2F1036&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

MOUNTING A WINDOWS SOFTWARE RAID AS A VIRTUAL DISK

BY

DANIEL N. DUCHARME

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2012

MASTER OF SCIENCE THESIS

OF

DANIEL N. DUCHARME

APPROVED:

Thesis Committee:

Major Professor Dr. Victor Fay-Wolfe

Dr. Gerard Baudet

Dr. Qing Yang

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2012

ABSTRACT

When an investigator attempts to bring a write blocked Windows dynamic

disk online, Windows will refuse to mount it. This forces investigators to use the

few tools that have built-in support for dealing with the RAID or to image the

partition, and then mount the image. While imaging did not use to be an issue,

with the rising sizes of disks available at low cost, it is becoming prohibitively

expensive to image every software RAID. The solution is to mount the RAID

through the use of a driver as a virtual disk.

The research was conducted by first analysing the Windows Dynamic Disk

Logical Disk Manager database for the information needed in order to mount the

RAID. Once the important information was identified, a Storport miniport driver

was modified in order to mount the RAID after receiving the information. Finally

the read function of the driver was designed handle mirrored, simple, spanned, and

striped dynamic disks.

Speed results show that the driver achieves speeds between 4-10% slower on

average and up to 15% slower when write blocked. The driver has been proven

to be compatible with 32 bit Windows Vista, Server 2008 and 7, as well as 64 bit

Windows 7 while in test mode. The hashes of the volume show it to be a bit-perfect

copy of the Windows implementation, and several different file types were tested

and open correctly without modifying the hash. Finally the driver has been tested

and functions correctly on spanned, striped, mirrored, and simple RAIDs as well

as correctly handling corrupted, linux, or GPT RAIDs when the RAID data was

hand entered.

ACKNOWLEDGMENTS

It is a pleasure to thank those who made this thesis possible. I would like to

thank my major professor, Dr. Victor Fay-Wolfe, whose guidance and editing was

essential for the writing of this thesis.

This thesis would not have been possible without the help Sean Alvarez and

Kevin Bryan both of whom were instrumental in helping to clear up the bugs and

getting the front end working.

And most importantly I would like to thank my wife, Tracey Ducharme, who

stood besides me these last few years while I pursue my education.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . iv

CHAPTER

1 Introduction . 1

1.1 Problem . 1

1.2 Goals . 2

1.3 Background . 3

1.3.1 A Review of RAIDs and Windows Dynamic Disks 3

1.3.1.1 Spanned Volumes 4

1.3.1.2 Striped Volumes 5

1.3.1.3 Mirrored Volumes 6

1.3.1.4 RAID-5 Volumes 7

1.3.2 Master Boot Records and GUID Partition Tables 8

1.3.3 Logical Disk Manager . 9

1.3.4 Law Enforcement . 11

1.3.5 Windows Device Drivers 13

1.3.5.1 Windows Driver Model 14

1.3.5.2 Windows Driver Foundation 16

1.3.5.3 Virtual Disk Service 17

1.3.5.4 Storport Miniport 18

iv

Page

v

1.3.6 Programming Language Considerations 19

1.3.6.1 C++ Programming 19

1.3.6.2 Visual C# and .NET Programming 20

List of References . 21

2 Review of Literature . 24

2.1 EnCase . 24

2.2 Linux NTFS . 25

2.3 ProDiscover . 25

2.4 RAID Recovery for Windows . 25

2.5 SMART Linux . 26

2.6 X-Ways Forensics . 26

2.7 Linux-NTFS Project . 27

2.8 Virtual Storport Miniport Driver 28

List of References . 28

3 Methodology . 30

3.1 Computer Setup . 30

3.1.1 Hardware Configuration 30

3.1.2 Disk Configuration . 30

3.1.3 Software Installation . 37

3.1.3.1 Driver Installation on Windows 7 x86 37

3.1.3.2 Driver Installation on Windows 7 x64 43

3.1.3.3 Driver Installation on Windows Server 2003 x86 47

3.1.3.4 Driver Installation on Windows Server 2003 x64 49

Page

vi

3.1.3.5 Driver Installation on Windows Vista x86 49

3.1.3.6 Driver Installation on Windows Vista x64 49

3.1.3.7 Driver Installation on Windows Server 2008 x86 49

3.1.3.8 Driver Installation on Windows Server 2008 x64 49

3.1.3.9 Front-End Installation 49

3.2 Software RAID Testing . 50

3.2.1 Speed Testing . 51

3.2.2 Hash Testing . 53

3.2.3 Operating System Compatibility Testing 56

3.2.4 Configuration Compatibility Testing 56

3.2.5 Content Testing . 66

List of References . 66

4 Findings . 68

4.1 Speed Testing . 68

4.1.1 HD Pro Results . 68

4.1.1.1 Windows Mounted 68

4.1.1.2 Windows and Software RAID Virtual Disk
Mounted . 69

4.1.1.3 Software RAID Virtual Disk Mounted 70

4.1.1.4 Write Blocked 71

4.1.2 HD Speed Results . 72

4.1.2.1 Windows Mounted 72

4.1.2.2 Windows and Software RAID Virtual Disk
Mounted . 73

Page

vii

4.1.2.3 Software RAID Virtual Disk Mounted 74

4.1.2.4 Write Blocked 74

4.1.3 HD Tach Results . 75

4.1.3.1 Windows and Software RAID Virtual Disk
Mounted . 75

4.1.3.2 Software RAID Virtual Disk Mounted 76

4.1.3.3 Write Blocked 77

4.1.4 Charted Results . 78

4.2 Hash Testing . 83

4.2.1 Spanned RAID . 83

4.2.2 Striped RAID . 85

4.3 Operating System Compatibility Testing 86

4.3.1 Windows Server 2003 x86 86

4.3.2 Windows Server 2003 x64 86

4.3.3 Windows Vista x86 . 87

4.3.4 Windows Vista x64 . 90

4.3.5 Windows Server 2008 x86 90

4.3.6 Windows Server 2008 x64 93

4.3.7 Windows 7 x86 . 93

4.3.8 Windows 7 x64 . 95

4.4 Configuration Compatibility Testing 98

4.4.1 Spanned RAID . 98

4.4.2 Corrupted Spanned RAID 99

4.4.3 GPT Spanned RAID . 103

Page

viii

4.4.4 Striped RAID . 107

4.4.5 Simple RAID . 109

4.4.6 Mirrored RAID . 110

4.4.7 Multiple Disk Striped RAID 112

4.4.8 Linux RAID . 114

4.5 Content Testing . 118

List of References . 123

5 Conclusion . 124

5.1 Speed Testing . 124

5.2 Hash Testing . 124

5.3 Operating System Compatibility Testing 124

5.4 Configuration Compatibility Testing 125

5.5 Content Testing . 125

5.6 Final Conclusion and Future Work 125

APPENDIX

A Important Front-End Code . 127

A.1 Bytes Per Sector . 127

A.2 Master Boot Record . 127

A.3 Logical Disk Manager . 129

A.3.1 Private Header . 133

A.3.2 Table Of Contents Block 136

A.3.3 Volume Master DataBase 137

A.3.4 Volume BLocK . 140

Page

ix

B Important Driver Code . 186

B.1 RAID Configuration Storing . 186

B.2 Mirrored Read Method . 196

B.3 Striped Read Method . 198

B.4 Spanned Read Method . 201

BIBLIOGRAPHY . 206

LIST OF TABLES

Table Page

1 Feature Comparison . 27

2 Chart of Data of Disk Speed with RAID Speeds 79

x

LIST OF FIGURES

Figure Page

1 Just a Bunch of Disks. 5

2 Raid-0 . 6

3 Raid-1 . 7

4 Raid-5 . 8

5 Dynamic Disk Layout . 10

6 LDM Layout . 10

7 Disk Configuration Start Menu 31

8 Disk Configuration Computer Manager 32

9 Disk Configuration Initialize Disk 33

10 Disk Configuration Disk Selection 33

11 Disk Configuration Striped Volume Main Menu 34

12 Disk Configuration Striped Volume Main Disk Selection 34

13 Disk Configuration Striped Volume Mount Point 35

14 Disk Configuration Striped Volume Formatting Options 35

15 Disk Configuration Striped Volume Confirmation 36

16 Disk Configuration Striped Volume Main Menu 36

17 Windows 7 x86 Start Menu . 37

18 Windows 7 x86 Run Dialog . 38

19 Windows 7 x86 Hardware Wizard Starting Screen 38

20 Windows 7 x86 Hardware Wizard Select Advanced 39

21 Windows 7 x86 Hardware Wizard Select Show All Devices . . . 39

xi

Figure Page

xii

22 Windows 7 x86 Hardware Wizard Select the Devices 40

23 Windows 7 x86 Hardware Wizard Select uriSRVDinipt.inf . . . 40

24 Windows 7 x86 Hardware Wizard Confirm the Path 41

25 Windows 7 x86 Hardware Wizard Ensure the Correct Model . . 41

26 Windows 7 x86 Hardware Wizard Confirm the Install 42

27 Windows 7 x64 Windows Security Warning 42

28 Windows 7 x86 Hardware Wizard Install Complete 43

29 Windows 7 x86 Device Manager 43

30 Windows 7 x64 Hardware Wizard Install Complete 44

31 Windows 7 x64 Program Compatibility Assistant Warning . . . 45

32 Windows 7 x64 Elevated Command Prompt 46

33 Windows 7 x64 Test Mode Command 46

34 Windows 2003 x86 Hardware Wizard Hardware Attached 47

35 Windows 2003 x86 Hardware Wizard New Hardware Device . . 48

36 Windows 2003 x86 Hardware Wizard Install Complete 48

37 Software RAID Mount . 50

38 WinHex Open Disk . 53

39 WinHex Disk Choice . 54

40 WinHex Compute Hash . 54

41 WinHex Hash Choice . 55

42 WinHex Hash Computing . 55

43 WinHex Hash . 56

44 Ubuntu Starting Screen . 58

Figure Page

xiii

45 Ubuntu Manually Partition Disks 58

46 Ubuntu First RAID Drive . 59

47 Ubuntu Create Partition Table 59

48 Ubuntu Partition Free Space . 59

49 Ubuntu Create Partition . 60

50 Ubuntu Partition Size . 60

51 Ubuntu Partition Type . 60

52 Ubuntu Partition Use Type . 61

53 Ubuntu Physical Volume for RAID Partition 61

54 Ubuntu Finish Drive Setup . 61

55 Ubuntu Configure Software RAID 62

56 Ubuntu Write Changes . 62

57 Ubuntu Create MD ”RAID” Device 63

58 Ubuntu RAID Type . 63

59 Ubuntu RAID Disk Select . 63

60 Ubuntu Finish RAID Setup . 64

61 Ubuntu Partition RAID . 64

62 Ubuntu RAID Use Type . 64

63 Ubuntu FAT32 RAID Partition 65

64 Ubuntu Finish RAID Partition 65

65 HD Tune Windows Disk 1 Baseline 68

66 HD Tune Windows Disk 2 Baseline 69

67 HD Tune Online Disk 1 Baseline 69

Figure Page

xiv

68 HD Tune Online Disk 2 Baseline 70

69 HD Tune Offline Disk 1 Baseline 70

70 HD Tune Offline Disk 2 Baseline 71

71 HD Tune SafeBlock Disk 1 Baseline 71

72 HD Tune SafeBlock Disk 2 Baseline 72

73 HD Speed Windows Spanned Results 72

74 HD Speed Windows Striped Results 73

75 HD Speed Online Spanned Results 73

76 HD Speed Online Striped Results 73

77 HD Speed Offline Spanned Results 74

78 HD Speed Offline Striped Results 74

79 HD Speed SafeBlock Spanned Results 74

80 HD Speed SafeBlock Striped Results 75

81 HD Tach Online Spanned Results 75

82 HD Tach Online Striped Results 76

83 HD Tach Offline Spanned Results 76

84 HD Tach Offline Striped Results 77

85 HD Tach SafeBlock Spanned Results 77

86 HD Tach SafeBlock Striped Results 78

87 Graph of Data of Disk Speed with RAID Speeds 80

88 Graph of Data of Maximum Disk Speed with RAID Speeds . . 81

89 Graph of Data of Minimum Disk Speed with RAID Speeds . . . 82

90 Graph of Data of Average Disk Speed with RAID Speeds 83

Figure Page

xv

91 Windows Spanned Raid Hash 84

92 Software RAID Virtual Disk Spanned Raid Hash 84

93 Windows Striped Raid Hash . 85

94 Software RAID Virtual Disk Striped Raid Hash 85

95 Windows Server 2003 x86 SoftwareRAIDMount.exe 86

96 Windows Server 2003 x64 SoftwareRAIDMount.exe 87

97 Windows Vista x86 SoftwareRAIDMount.exe 88

98 Windows Vista x86 Computer Drives 88

99 Windows Vista x86 Windows Files 89

100 Windows Vista x86 Software RAID Virtual Disk Files 89

101 Windows Vista x64 SoftwareRAIDMount.exe 90

102 Windows Server 2008 x86 SoftwareRAIDMount.exe 91

103 Windows Server 2008 x86 Computer Drives 91

104 Windows Server 2008 x86 Windows Files 92

105 Windows Server 2008 x86 Software RAID Virtual Disk Files . . 92

106 Windows Server 2008 x64 SoftwareRAIDMount.exe 93

107 Windows 7 x86 SoftwareRAIDMount.exe 94

108 Windows 7 x86 Computer Drives 94

109 Windows 7 x86 Windows Files 95

110 Windows 7 x86 Software RAID Virtual Disk Files 95

111 Windows 7 x64 SoftwareRAIDMount.exe 96

112 Windows 7 x64 Computer Drives 96

113 Windows 7 x64 Windows Files 97

Figure Page

xvi

114 Windows 7 x64 Software RAID Virtual Disk Files 97

115 Spanned Disk Setup . 98

116 Spanned Disk Mount Information 99

117 Spanned Disk Mounted in Computer 99

118 Corrupted MBR Setup . 100

119 Corrupted MBR Disk Mount Information 100

120 Corrupted MBR Disk Mounted in Computer 101

121 Corrupted Disk TOCBLOCK Removed 102

122 Corrupted Disk PRIVHEAD Removed 102

123 Corrupted LDM Disk Mount Information 103

124 Corrupted LDM Disk Mounted in Computer 103

125 GPT Spanned Disk Setup . 104

126 GPT Spanned Disk Start Sector 105

127 GPT Spanned Disk Size . 106

128 GPT Spanned Disk Mount Information 106

129 GPT Spanned Disk Mounted in Computer 107

130 Striped Disk Setup . 108

131 Striped Disk Mount Information 108

132 Striped Disk Mounted in Computer 109

133 Simple Disk Setup . 109

134 Simple Disk Mount Information 110

135 Simple Disk Mounted in Computer 110

136 Mirrored Disk Setup . 111

Figure Page

xvii

137 Mirrored Disk Mount Information 111

138 Mirrored Disk Mounted in Computer 112

139 Multidisk Striped Disk Setup 112

140 Multidisk Striped Disk Mount Information 113

141 Multidisk Striped Disk Mounted in Computer 113

142 Linux Disk Setup . 114

143 Linux Disk Start Sector . 115

144 Linux Disk Size . 115

145 Linux Disk Mount Information 116

146 Linux Disk Mounted in Computer 117

147 Linux Removable Drive Explorer 117

148 Volume Starting Hash . 118

149 Copy Error . 118

150 Volume Hash After Copying . 119

151 Music Successfully Playing . 119

152 Video Successfully Playing . 120

153 PDF Successfully Opened . 120

154 Image Successfully Opened . 121

155 Text Successfully Opened . 121

156 Volume Hash After Files Opened 122

157 Text Save Fails . 122

158 Volume Ending Hash . 123

CHAPTER 1

Introduction

1.1 Problem

Digital Forensic investigators must ensure that the disks they investigate are

unaltered during the investigation process. Furthermore, the investigation process

is greatly simplified if disks can be accessed logically by having them presented

as a logical operating system volume. URI has developed Windows software write

blocking for many kinds of disks, but there is a major problem when attempting to

block the Windows implementation of dynamic disks (a form of software RAID[1]).

When the disks are correctly write-blocked, Windows will not mount them as a

logical volume. This leaves investigators currently stuck with two options, either

not to write-block the disks, or to use images of the disks and third party software

to rebuild a new image of the RAID. The first option is not forensically sound,

while the second option demands a special skill set and requires a lot of time and

disk space.

Windows dynamic disks are becoming more prevalent as Windows has made

it easier to set them up and utilize them. For many people this is the only RAID

system they can afford, and they are still powerful enough to handle most compa-

nies needs. While this is good news for the consumer, the prevalence of Windows

Dynamic Disks can be problematic for digital forensic investigators.

Dynamic disks are handled completely by the operating system (there is

no hardware support). Windows makes some assumptions such as: if a user

or the system marks the disk read-only, it can still write to the Logical Disk

Manager(LDM)[2] database, which is used to map locations in the RAID and is

stored outside of the partition. When you attach the drives using a write blocker

and attempt to bring the RAID online, Windows will not allow it, simply stating

1

that DiskPart could not mount the disk. This means that if an investigator fol-

lows proper procedure and uses any type of write blocker, hardware or software,

Windows will not allow the investigator to mount it. The current practice is: an

investigator images the entire dynamic disk pack, then either uses a tool such as

WinHex[3] to view the data or RAID Recovery[4] to put the dynamic disk back

together so that it can be viewed with Windows Explorer. While this method

works, it requires as much storage space as the full dynamic disk pack, which can

be multiple terabytes.

1.2 Goals

The goal of this project is to create a Windows driver application, called

Software RAID Virtual Disk, capable of mounting a Windows Dynamic Disk even

when the disk is offline, write blocked, or contains a small amount of corruption in

its LDM database. The application is being designed from the ground up with law

enforcement requirements in mind. In order to accomplish this overriding goal,

there are several programs that will need to be designed and implemented. The

first is a Storport miniport driver which will mount the disk as a virtual drive. The

second is an automated front end that will mount all of the dynamic disks found in

the system automatically. Finally the manual front end will allow an investigator

to add a RAID as long as he knows the information, circumventing the need to

process the LDM database.

The Software RAID Virtual Disk tool will build on the idea of a virtual

drive[5]. While there are programs that can mount an ISO as a CD in a virtual

drive, two open-source programs by VMBack called Virtual Floppy and Virtual

Disk[6, 7] are particularly useful. These programs already provide a driver that

mounts a virtual drive by modifying the incoming address request to point to the

right place in a file. What these programs do not do is to handle a dynamic disk.

2

These programs will help to illustrate how certain problems in handling Windows

Dynamic Disks can be overcome. The final program that Software RAID Virtual

Disk builds on is the example Storport miniport driver by OSR Online. Their

driver is designed to mount a file as a disk, and with a few changes it is capable of

mounting a physical drive instead. It handles this through the Windows Storport

service, which replaced the old SCSIport service in Windows Server 2003.[8]

1.3 Background

As software RAIDs have become more prevalent and disk sizes have increased,

law enforcement find themselves seizing handling more software RAIDs. The prob-

lem is while proper procedure dictates that all processing be done while the evi-

dence is attached to some form of write blocker (hardware or software), Windows

will not process a dynamic disk that it is unable to write to. Up until this point,

that has left law enforcement with 2 options: either image the whole RAID and

use a tool like RAID Reconstructor to build the RAID into an image, or work with

3rd party tools such as WinHex that are capable of handling the RAID but don’t

make it accessible for other programs.

1.3.1 A Review of RAIDs and Windows Dynamic Disks

As the price of disks have come down and the size of programs and files

increased, the prevalence of redundant array of independent disks (hearinafter

referred to as a RAID) has increased. These RAIDs can be used for multiple

purposes, such as increasing performance or helping secure data even in the face

of multiple hard drive failures. The first RAID developed was the RAID 5 which

was built as a hardware RAID by the University of California.[9] Developers later

managed to duplicate the hardware RAID in software, further driving down the

cost and making it available to the common user.

3

Beginning in the year 2000, Microsoft began offering a easy alternative to

the expensive hardware RAID[10]. Starting in Windows 2000 Windows created

what they call a dynamic disk, which is software RAID and is now available in

Windows 2000, Server 2000, XP, Server 2003, Vista, 7, and Server 2008. There are

some restrictions though, such as, only the server operating systems can use either

the mirrored or RAID-5 dynamic disks. This has revolutionized RAIDs because

while not everyone has RAID controllers (and many of the best controllers are still

expensive), any PC user has access to change their normal disks into a dynamic

disk and have all of the power of a RAID without most of the cost. All that is

required now is a computer with more than one hard drive and a copy of Windows.

1.3.1.1 Spanned Volumes

The first of the popular RAID types is known simply as just a bunch of disks

in hardware RAIDs or a Spanned volume in dynamic disks. In this configuration

the user is simply attempting to maximize the available volume size with no care

to redundancy or performance. As the figure below shows, the data begins on the

first disk at A1 and just continues on until it hits the end of the disk. At that

point it moves onto the second and continues. In the computer this could look

like a 400 gigabyte drive even though it could be made up of four 100 gigabyte

drives. Given that hard drive prices are not linear with size, this allows the user

to simulate a large hard drive while saving money. However, if a drive dies while

in this configuration, all of the data on that disk is lost and as such backups are

important.

4

Figure 1. Just a Bunch of Disks.
[11]

1.3.1.2 Striped Volumes

The second type of RAID that sees common use is RAID-0 or Striped volume

as it is called in dynamic disks. This type of RAID attempts to maximize perfor-

mance but at the cost of redundancy. It does this by striping the data from one

disk to the next, so when the user asks for a large file, there is a good chance that

it can be found on both disks, allowing both of them to access that file in parallel.

Since, in many applications, the hard drive IO is one of the longest tasks, this can

have a great effect on speeding up performance. This comes at a price, however,

as if even one of these disks dies, the user loses access to all of the data whereas in

the spanned volume he would only lose access to the files that were on that disk.

5

Figure 2. Raid-0

1.3.1.3 Mirrored Volumes

If performance is not as big an issue, but having safe data is, that is where

RAID-1 or Mirrored dynamic disks comes in. As the next figure shows, all of the

data is not written once, but twice: one time on each of the disks. This means that

if one of the disks were to die, you would have lost nothing because the other disk

will have an identical copy. The downside is that it takes up twice as much room,

and there is no increase in performance. But for applications where data storage

is critical, such as a file server, mirrored volumes provide the peace of mind that a

dead or dying hard drive won’t cost you everything.

6

Figure 3. Raid-1

1.3.1.4 RAID-5 Volumes

The last of the popular RAIDs was also the first one developed and is the

perfect blend of redundancy and performance. In RAID-5 (which is also its dy-

namic disk name) the data is striped as it is in RAID-0, however, on one of the

three disks, instead of storing more data, it will store what is known as the parity

of the data. This parity can be combined with either of the other disks in order

to calculate what belongs on the third disk. This parity is also alternated between

disks so that it doesn’t matter what disk dies, some parity will be lost (which is

easily recalculated) and some data will be lost (which is easily recovered using the

parity). This means that as long as only one of the three disks is lost, nothing

is actually lost. Many of the hardware RAIDs even allow the dead disk to be

swapped out while the system is running and will sync the new disk to contain the

missing data all without interrupting the work flow. There are downsides to this

type of RAID: it requires more disks than any of the others and essentially loses

the space of an entire disk to parity.

7

Figure 4. Raid-5

1.3.2 Master Boot Records and GUID Partition Tables

Now that the RAID background has been covered, it is time to move to a

lower level on the disks, beginning with the Master Boot Record (or MBR) and

the GUID Partition Table (or GPT). The MBR began back with IBM’s DOS and

has continued through until today. It is a small 512 byte section of code located

at the beginning of the disk and contains the boot loader code needed to get the

operating system to begin loading. It also contains 4 slots for the primary partition

table; although if a disk has more then 4 partitions, one or more of those 4 slots

can point to an extended partition table instead. If the disk is a dynamic disk,

then it uses volumes instead of partitions, but within the MBR it will still list

one partition with the partition type code as 42.[12] This will then instruct the

computer to find the Logical Disk Manager (or LDM) located in the last 1 MB

of the partition and will contain the information about what volumes are present

and what type they are.

The GPT is far less common and normally only used on 64-bit server operating

systems. The GPT was developed by IBM in the 1990’s as shortcomings in the

MBR were beginning to surface. The first such problem was: as drives became

8

larger, the Cylinder-Head-Sector (CHS) addressing used in the old MBR was no

longer capable of addressing all the available space. For this reason the GPT

was constructed to use the Logical Block Addressing (LBA) that would later be

used in modern MBRs. The other major change was the number of partitions

that could be addressed. While MBRs can address more then 4 partitions with

the use of the extended partition table, the GPT can address up to 128 in its

table. Finally, the GPT also allows for some redundancy by having a backup of

the partition table, and if the stored checksum is invalid, it will automatically

rewrite the primary partition table with the backup copy.[13] When using a GPT,

it is a little different to find the volumes. The volumes themselves are stored in

a partition with the GUID AF9B60A0-1431-4F62-BC68-3311714A69AD while the

LDM database describing those volumes is in a separate partition with the GUID

5808C8AA-7E8F-42E0-85D2-E1E90434CFB3.

1.3.3 Logical Disk Manager

The LDM database is either located in the last 1 MB of the disk in an MBR

disk, or a LDM metadata partition in a GPT disk. In either case the LDM contains

all of the information needed about all of the volumes on the disk. It also contains

information about the disk pack or group of disks combined in the RAID so that

if one disk is missing, it can quickly figure out which one it is, and if using a RAID

such as mirrored or RAID-5, it can quickly rebuild it onto another free disk.

The LDM database is made up of several different pieces: the TOCBLOCK,

the VMDB, the VBLK, the KLOG and the PRIVHEAD. There are three copies

of the PRIVHEAD on a disk; the first is located right after the partition table; the

second is at the end of the LDM database, and the third is always in the last 512

bytes of the disk. The PRIVHEAD stores the starting location for the database

and the number of logs, TOCs, and VBLKs that are present. It also contains the

9

Figure 5. Dynamic Disk Layout

disk group name and the start and size of the logical disk, which is needed to

calculate the start of the volumes. The TOCBLOCK simply gives you the start

offset and size of the configuration section of the database and the log section. The

VMDB contains how many volumes, components, partitions, and disks are in the

database. The KLOG stores any changes that are being made to the database so

in the event of a failure, it can be rolled back to a consistent state.

Figure 6. LDM Layout

There are several different types of VBLK and that is where the majority of

needed information is stored in order to access the volumes. The first type is the

Disk Group VBLK containing the group name and ID, which is only important

for establishing which disks belong in the group. The next VBLK is the Volume

10

VBLK which contains the unique Volume ID identifying it as well as listing if it is

currently an active volume. It also contains how many Component VBLKs there

are, which is the next important one. The main important part of the Component

VBLK is the stripe size which is needed in the event that there is a striped volume.

It also contains how many Partition VBLKs there are. The Partition VBLKs are

the most important to finding the volumes as they record both the start and the

size of each volume. The start is actually an offset from the logical disk start

referenced in the PRIVHEAD, but the size is the total size of the volume. It also

contains how many Disk VBLKs there are which contain a unique identifier for

each disk to help determine what disk is missing.[14]

1.3.4 Law Enforcement

Law Enforcement has strict procedures when dealing with a seized drive re-

gardless of if it is in a RAID. The first step to any investigation is to attach the

original seized disk to a write-blocker (which will be discussed later) and image

the entire disk onto another copy. By separating the original from the copy they

will work on, they can guarantee that the original has not been modified and can

show the court that they could not have tampered with evidence. This copy is a

byte for byte transfer of the data and can be stored in either an image file or be

written right to another disk.

In either case once this has been done, the investigator moves on to processing

the evidence. This involves using any tools at their disposal to find the evidence,

including things such as Windows Search and Windows Explorer. There are far

more powerful tools such as the ones Encase and AccessData produces, but it

can be time consuming to process the case, and sometimes a quick search with

Explorer will give enough evidence in order to take the case to court initially. This

is especially true when grabbing a large number of disks from a server or when

11

executing a subpoena to look for a reason to seize the drives where those powerful

tools are not at their disposal.

Regardless of tools used, the officers working the case need to be very diligent

in ensuring that no data is changed on any of the disks they are investigating or

else the case could get thrown out of court. To ensure that this doesn’t happen,

they use either a hardware or software write blocker. This is not the same thing

as marking a disk as read-only, because while you cannot make changes to a read-

only environment, the operating system is actually still making some changes which

could potentially change time stamps of when files were accessed and change the

hash of the disk.

The hash is the only proof that nothing was changed over the course of the

investigation. At the beginning of the investigation, when the copy is being made,

either an MD5 or SHA-1 hash is taken of the disk. These hashes pass all of the bytes

through a mathematical formula which computes a 128-bit value(if using MD5) or

a 160-bit value (if using SHA-1). In either case the change of even a single bit will

have large changes in the resulting value; so if at the end of the investigation the

hash still matches the one taken at the beginning, then it is pretty conclusive that

nothing was altered over the course of the testing.

Up until recently the only method to ensure that the hash could not be

changed was through the use of a hardware write blocker. Rather then plug the

hard drive directly into the computer, the investigator would instead plug them

into the write blocker and then attach that to the computer. To the computer

there has been no change, and it still sees the disk as normal. Any read command

or normal disk IO command (such as power down) will pass through the write

blocker and be executed as if it was not there, but any command that would result

in the changing of data (such as a write command) is blocked by the write blocker.

12

The biggest problem with a write blocker is the hardware needs to analyse every

command that goes through, which slows down the commands. They are also

expensive and can only be used on a fixed number of disks on a single computer

at a time.

Starting in 2005, the University of Rhode Island began programming a soft-

ware write blocker in-order to keep all of the protection of the hardware methods

but to mitigate some of the downsides. They have succeeded and now Safe Block

is in use in police stations around the world. Rather than build a large piece of

hardware to analyse the commands, Safe Block works by inserting a filter driver

directly above the disk driver. Because of the way the Windows driver stack works,

they get all commands going to the disk right before the disk driver does. Because

this is done in software, it is significantly faster then using a hardware blocker.

Also because it is software, you can block as many different disks on the same

computer as you want, and only licensing defines how many computers it can be

used on at the same time.[15]

1.3.5 Windows Device Drivers

The Windows Architecture is made up of 3 portions that are required to work

together in order for its proper operation. This discussion will begin with the first

and third part first and then finish with the second part where the core of the thesis

is located. Then it will delve in depth into the two types of Windows drivers.

The first part of the architecture is the core part of the system which is known

as the kernel. There is a different kernel for each version of the operating system,

and it performs the most basic operations of the computer. It is the first code that

is loaded by the boot loader when the system is started and contains all of the

code required in order to interact with the CPU and the bios. It also handles all of

the memory management tasks for both the cache and the RAM. Outside of these

13

tasks it simply contains the required code in-order to run higher level programs

known as drivers.[16, 17]

The third level of the operating system is the application layer which exists

within an area known as user space. Anything running in user space is considered to

be untrusted, while the code in kernel space is trusted, which means that there are

a lot of restrictions on what an application can do. For many tasks this means that

the applications need to deal with either the Windows Application Programming

Interface(API) functions that are available in the kernel, or they need to deal with

the drivers. This is the level that most users deal with on a day to day basis

and is where all of the programs that contain user interaction are located. For

the Software RAID Virtual Disk, the Graphical User Interface(GUI) that allows a

user/investigator to find the RAID information and issue the command to mount

the drive exists completely in the application layer and uses an API in order to

pass the required information down to the next level in the discussion.

The second level of the operating system is the Windows device drivers, which

exists in both the user space and kernel space. These drivers are designed in order

to add functionality to the core kernel and allow the computer to interact with

hardware that could not have been programmed at the time the kernel was written.

These allow a user to install any new graphics card into a compatible system,

and after simply installing the driver, to utilise all of the new API functions and

hardware functions of the device.

1.3.5.1 Windows Driver Model

The first drivers were created for Windows 95 and allowed for developers

to extend the operability of the kernel. These initial drivers were built on the

Windows Driver Model(WDM) framework which has evolved over the years and is

present in every version of Windows after Windows 95[18]. Under this framework

14

the user could write bus, function or filter drivers, and Windows provided base

port and bus drivers that could be called from within another WDM driver.

While this framework is quite powerful and does allow for a wide variety of

device support, it also did not age well and needed to be replaced due to a large

number of issues[19]. The first problem that developers ran into was that the

WDM framework was designed to be very low level which led to a high level of

complexity that had to be dealt with. Over time as more functionality got added

to the framework, this complexity only got worse until it became quite tedious

to develop new drivers. For instance simply supporting plug and play as well as

power management could take over 2000 lines of code and support for hundreds

of states. This got even worse if your driver was supposed to be multifunctional,

making already complex drivers even more difficult to deal with.

The second major problem was that Microsoft had not anticipated third-party

driver development and as such all of the driver interfaces were being exported

directly from the kernel bypassing many of the security elements being integrated

into newer operating systems. Most importantly this led to many of the common

errors in the drivers to crash the system since they were not correctly separated

from the kernel. This also was the reason for a lack of version support which meant

that the developer had to create a different binary for every version of Windows

that the developer supported which made the debugging process far longer than it

needed to be.

The last big problem was the development of a number of different miniports

in an attempt to make driver development easier. These miniports shield some of

the operating system requirements, and while they are simpler to program then

the full WDM drivers, the number of choices make it difficult to know when one

should be used, and in many applications more than one is needed which means

15

needing to know how each of them works.

1.3.5.2 Windows Driver Foundation

After working with WDM for years Microsoft finally designed a new framework

when they came out with Windows 2000 which has persisted through Windows 7.

This foundation simplified much of the coding required, allowing more developers

to write faster and higher quality code. They also designed it so there was a clear

separation between what was running in user space and what is in kernel space,

which allows the developer to write certain drivers so that even were the driver to

fail, the system could continue. Furthermore the system was also designed to be

somewhat backwards compatible so that WDM drivers can still be developed and

will continue to run on a newer system when required, but there are now options

as to how the driver is programmed. Because of the number of features the new

foundation offers the Software RAID Virtual Disk was built upon WDF.

There are two different levels within WDF. The first exists in user space, while

the second exists within kernel space. The purpose of the user mode drivers is to

provide easy accessibility and support to applications for filter drivers that don’t

need to be at as low a level as a kernel mode driver. These drivers exist as Compo-

nent Object Model(COM) based Dynamic Link Libraries(DLLs) and are capable

of performing many of the functions required by applications. Furthermore, be-

cause these drivers exist in user space, they don’t have access to the kernel memory

space and as such when they fail, the system is easily able to recover versus the

kernel mode drivers, which will crash the system if an error is encountered. The

problem with user mode drivers is that they are restricted in the different devices

they can use. They are fine for USB drivers, display adaptors and other portable

devices; however, they are not capable of interacting with the actual hardware and

they don’t have the ability to handle interrupts.

16

Drivers that exist within kernel space have access to all of the kernel memory

as well as the kernel data structures. This allows them to create filter, function and

bus drivers just like the older WDM foundation drivers. These drivers can directly

interact with the hardware when necessary and have access to all of the underlying

kernel APIs, allowing for them to handle interrupts and create uninterruptable

sections of code. Because of this it is important that only trusted kernel drivers

are loaded onto the system. For the Software RAID Virtual Disk, a kernel mode

driver was required in order to interact with the Storport miniport as well as

handling access to the underlying disk.

1.3.5.3 Virtual Disk Service

There are several different methods in order to mount a disk and interact

with a disk within a KMDF driver. You can use the Virtual Disk Service(VDS),

the SCSI port or the Storport miniport. First to be discussed is VDS and then a

discussion on the Storport miniport.

When the Windows Driver Foundation first came out with Windows 2000

there was only one option. Hard drive vendors had to install and manage their

own applications and that meant the user also needed an application for every

different storage medium that was attached to the computer. This changed with

Windows 2003 when Microsoft introduced the Virtual Disk Service[20]. The VDS

has two different providers that allow for the required functionality. First there is

a hardware provider which is written by the vender of the hardware and exposes

the APIs required in order to get the expected functionality. Second there is a

software provider which allows the operating system and applications to utilize

the functionality without the need to know the underlying hardware. This sepa-

ration allows the operating system to manage a large number of different pieces of

hardware without the need for hardware vendors to write a complete driver and

17

application for management.

VDS also heavily integrates with tools such as the volume shadow service(VSS)

which keeps a copy of all of the important files on the system, so that a user can

roll back the system to a time when it was stable if there are any problems. It

also integrates with the logical disk manager(LDM)(the provider of dynamic disks

and volumes). This is the service that the Software RAID Virtual Disk is meant

to emulate.

1.3.5.4 Storport Miniport

When Windows Server 2003 came out the developers realized that they needed

to extend the existing SCSI port in order to get better performance in both

throughput and system resources used for high-performance buses and RAID

adaptors[21]. While the SCSI port was capable of handling all of the current

buses, Windows Server 2003 introduced newer high-performance buses that re-

quired better performance at every level. Furthermore the newer Storport miniport

is compatible with almost all of the original SCSI port drivers with only minimal

changes. The only exceptions are when the device is missing features such as plug

and play.

When Windows Vista SP1 and Windows Server 2008, came out Microsoft

extended the Storport miniport even further with the Virtual Miniport which al-

lows the drivers to implement disks that don’t have underlying hardware[22]. This

allowed for programs to begin using the same drivers and tools that existed for

physical disks in order to utilize other things such as mounting files as a disk. This

functionality is exactly what was needed for the Software RAID Virtual Disk, as

it will allow the user to create a virtual disk that will act exactly as a regular disk

acts, but it is not tied directly to the underlying hardware, allowing multiple disks

to be combined to create this virtual disk.

18

1.3.6 Programming Language Considerations

When it came to choosing a language for programming the Software RAID

Virtual disk, there were no real choices for the back end, but there were plenty of

choices to make on the front end of the program. The WDF not only defines a

group of specifications on how to write a driver and what functionality is available,

it also states that the drivers must be written in C or C++.

1.3.6.1 C++ Programming

The C++ language was designed in the early 80’s by AT&T Bell Laborato-

ries and Bjarne Stroustrup in order to add object oriented functionality to the C

language[23]. It was designed to supersede the C language and to continue all of the

original functionality by building upon the already established language. It took

almost 10 years before the first standard came out, but it has been very succesful

since then, showing up in almost every internet browser, many operating systems,

and many other popular applications. The language has a high performance, but

due to its complexity it can also be difficult in order to debug.

Most UMDF drivers are written in C++ utilizing the languages COM func-

tionality in order to accomplish its tasks. KMDF drivers on the other hand are

primarily written in C, but unlike most C programs they are still ended in .cpp be-

cause the C++ compiler of the Windows Driver Kit has much better error checking

then the C compiler.

The front end program had far more options on what languages to be designed

in and changed several times over the development of the program. The front

end began as a C++ program, as the example from OSR Online contained the

functions required to communicate with the driver already completed in C++.

This was also the language I had the most experience in so the program was

developed as a command line application. While this program worked throughout

19

the development phase, it was ill suited for the finished product as it could not

correctly handle a large number of disks or allow a user to manually enter in

information when the LDM database was corrupted.

1.3.6.2 Visual C# and .NET Programming

The C# language was designed by Microsoft starting in 1997 in response to

Sun Microsystems suing Microsoft over their use of the Java language in J++[24].

In the year 2000 Microsoft announced and released both the new C# language and

the new Visual.NET development studio[25]. These brought Microsoft back to the

forefront of programming languages and allowed it to compete with web languages

such as Java.

The .NET programming framework introduces several new features to the

visual languages to help them compete with the other solutions on the market[26].

The first is the use of a Common Intermediate Language(CIL) which is similar to

the way Java compiles into bytecode. This code is completely platform neutral and

will run the same on any computer that has the .NET platform installed, which

now starts installed on all Windows operating systems after Vista. Microsoft has

included installers for any other version of Windows that the user wishes to run a

.NET program on, but it is still only possible to run it on Windows computers at

this time; although, there is a Linux project called Mono trying to bring the .NET

platform to the Linux operating systems[27].

The other big features that the .NET programming framework introduces

are the Common Language Runtime(CLR) and the Common Type System(CTS),

which allows a developer to write portions of the code in different languages that

will all work together seamlessly to create the final project. This is because all

of the major types that are implemented as external functions are all compiled to

the same .NET system types regardless of language. They also are all compiled

20

into very similar CIL which allows for each of them at runtime to function almost

identically. There is no requirement for the internal functions of a class to con-

form to the standard, however, which means that certain languages are easier to

do certain functions then others. One example is F# which is a functional lan-

guage that compiles into .NET. While it has the ability to handle object-oriented

programming, it is also very bad at it.

It is for all of these reasons, along with the ease of programming a graphical

user interface(GUI), that motivated the switch from C++ to C# for the front-end

of the Software RAID Virtual Disk. The GUI code itself was written by Sean

Alvarez and was based heavily on the original C++ command line code. The

underlying code that reads the LDM database was simply converted from its C++

code to the corresponding C# equivalents without being modified in function.

List of References

[1] Wikipedia, “Raid — wikipedia, the free encyclopedia,” 2011, [Online;
accessed 13-December-2011]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=RAID&oldid=465701597

[2] Zero Assumption Recovery. “Ldm / dynamic disks basics.” [Online; accessed
13-December-2011]. 2011. [Online]. Available: http://www.z-a-recovery.com/
art-dynamic-disks.htm

[3] X-Ways. “Winhex.” [Online; accessed 13-December-2011]. Mar. 2010.
[Online]. Available: http://www.winhex.com/winhex/

[4] Runtime Software. “Raid recovery for windows v1.01.” [Online; accessed
13-December-2011]. 2011. [Online]. Available: http://www.runtime.org/
raid-recovery-windows.htm

[5] Wikipedia, “Disk image — wikipedia, the free encyclopedia,” 2011, [Online;
accessed 13-December-2011]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=Disk image&oldid=465613179

[6] K. Kato. “Virtual floppy drive 2.1.” [Online; accessed 13-December-2011].
Feb. 2008. [Online]. Available: http://chitchat.at.infoseek.co.jp/vmware/vfd.
html#top

21

http://en.wikipedia.org/w/index.php?title=RAID&oldid=465701597
http://en.wikipedia.org/w/index.php?title=RAID&oldid=465701597
http://www.z-a-recovery.com/art-dynamic-disks.htm
http://www.z-a-recovery.com/art-dynamic-disks.htm
http://www.winhex.com/winhex/
http://www.runtime.org/raid-recovery-windows.htm
http://www.runtime.org/raid-recovery-windows.htm
http://en.wikipedia.org/w/index.php?title=Disk_image&oldid=465613179
http://en.wikipedia.org/w/index.php?title=Disk_image&oldid=465613179
http://chitchat.at.infoseek.co.jp/vmware/vfd.html#top
http://chitchat.at.infoseek.co.jp/vmware/vfd.html#top

[7] K. Kato. “Virtual disk driver version 3.” [Online; accessed 13-December-
2011]. Apr. 2005. [Online]. Available: http://chitchat.at.infoseek.co.jp/
vmware/vdk.html#top

[8] OSR Online. “Writing a virtual storport miniport driver.” [Online;
accessed 13-December-2011]. Sept. 2009. [Online]. Available: http:
//www.osronline.com/article.cfm?article=538

[9] Kroll Ontrack. “Raid: History and information.” [Online; accessed 30-
September-2011]. [Online]. Available: http://www.ontrackdatarecovery.co.
uk/data-recovery-articles/raid-history-information/

[10] Microsoft. “What are dynamic disks and volumes?” [Online; accessed
13-December-2011]. Mar. 2003. [Online]. Available: http://technet.microsoft.
com/en-us/library/cc737048(v=ws.10).aspx

[11] EUSSO Technologies, Inc. “4-bay sata gigibit network terabank nas.” [Online;
accessed 30-September-2011]. [Online]. Available: http://www.eusso.com/
Models/NAS/USS4500-RS4/USS4500-RS4.htm

[12] Eindhoven University of Technology. “List of partition identifiers for
pcs.” [Online; accessed 1-October-2011]. [Online]. Available: http:
//www.win.tue.nl/∼aeb/partitions/partition types-1.html

[13] Wikipedia, “Guid partition table — wikipedia, the free encyclopedia,” 2011,
[Online; accessed 1-October-2011]. [Online]. Available: //en.wikipedia.org/
w/index.php?title=GUID Partition Table&oldid=452606816

[14] R. Russon, “Home - ldm documentation,” 2002.

[15] ForensicSoft. “Software write blockers.” [Online; accessed 1-October-2011].
2010. [Online]. Available: https://www.forensicsoft.com/sb features.php

[16] The Linux Information Project. “Kernel definition.” [Online; accessed
13-December-2011]. May 2005. [Online]. Available: http://www.linfo.org/
kernel.html

[17] P. Orwick, Developing Drivers with the Windows Driver Foundation. One
Microsoft Way, Redmond, Washington 98052-6399: Microsoft Press, 2007.

[18] Microsoft. “Windows driver model (wdm).” [Online; accessed 9-March-2012].
Apr. 2002. [Online]. Available: http://msdn.microsoft.com/en-us/windows/
hardware/gg463453

[19] Microsoft. “Introduction to the windows driver foundation.” [Online; accessed
9-March-2012]. Oct. 2003. [Online]. Available: http://msdn.microsoft.com/
en-us/windows/hardware/gg463316

22

http://chitchat.at.infoseek.co.jp/vmware/vdk.html#top
http://chitchat.at.infoseek.co.jp/vmware/vdk.html#top
http://www.osronline.com/article.cfm?article=538
http://www.osronline.com/article.cfm?article=538
http://www.ontrackdatarecovery.co.uk/data-recovery-articles/raid-history-information/
http://www.ontrackdatarecovery.co.uk/data-recovery-articles/raid-history-information/
http://technet.microsoft.com/en-us/library/cc737048(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc737048(v=ws.10).aspx
http://www.eusso.com/Models/NAS/USS4500-RS4/USS4500-RS4.htm
http://www.eusso.com/Models/NAS/USS4500-RS4/USS4500-RS4.htm
http://www.win.tue.nl/~aeb/partitions/partition_types-1.html
http://www.win.tue.nl/~aeb/partitions/partition_types-1.html
//en.wikipedia.org/w/index.php?title=GUID_Partition_Table&oldid=452606816
//en.wikipedia.org/w/index.php?title=GUID_Partition_Table&oldid=452606816
https://www.forensicsoft.com/sb_features.php
http://www.linfo.org/kernel.html
http://www.linfo.org/kernel.html
http://msdn.microsoft.com/en-us/windows/hardware/gg463453
http://msdn.microsoft.com/en-us/windows/hardware/gg463453
http://msdn.microsoft.com/en-us/windows/hardware/gg463316
http://msdn.microsoft.com/en-us/windows/hardware/gg463316

[20] Microsoft. “What is virtual disk service?” [Online; accessed 9-March-2012].
Mar. 2003. [Online]. Available: http://technet.microsoft.com/en-us/library/
cc778187(v=ws.10).aspx

[21] Microsoft. “Storport driver.” [Online; accessed 9-March-2012]. Feb. 2012.
[Online]. Available: http://msdn.microsoft.com/en-us/library/windows/
hardware/ff567541(v=vs.85).aspx

[22] Microsoft. “History of storport.” [Online; accessed 9-March-2012]. Feb. 2012.
[Online]. Available: http://msdn.microsoft.com/en-us/library/windows/
hardware/ff557249(v=vs.85).aspx

[23] cplusplus.com. “History of c++.” [Online; accessed 9-March-2012]. 2012.
[Online]. Available: www.cplusplus.com/info/history

[24] J. Kovacs. “C#/.net history lesson.” [Online; accessed 9-March-2012]. Sept.
2007. [Online]. Available: jameskovacs.com/2007/09/07/cnet-history-lesson/

[25] CSharp-Online.NET. “C# overview.” [Online; accessed 9-March-
2012]. [Online]. Available: en.csharp-online.net/CSharp Overview#
A Brief History of C.23

[26] A. Troelsen, Pro C# 2010 and the .NET 4 Platform, Fifth Edition. 233
Spring Street, New York, New York 10013: Apress, 2010.

[27] Novell. “Cross platform, open source .net development framework.”
[Online; accessed 9-March-2012]. [Online]. Available: www.mono-project.
com/Main Page

23

http://technet.microsoft.com/en-us/library/cc778187(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc778187(v=ws.10).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567541(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567541(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff557249(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff557249(v=vs.85).aspx
www.cplusplus.com/info/history
jameskovacs.com/2007/09/07/cnet-history-lesson/
en.csharp-online.net/CSharp_Overview#A_Brief_History_of_C.23
en.csharp-online.net/CSharp_Overview#A_Brief_History_of_C.23
www.mono-project.com/Main_Page
www.mono-project.com/Main_Page

CHAPTER 2

Review of Literature

In this chapter other potential solutions to the problem at hand will be anal-

ysed as well as the other work that was used. These tools all solve the problem at

least partially, but in each case there is some inadequacy that renders the problem

still unsolved.

2.1 EnCase

Of all of the software that can handle a dynamic disk, none handles it as well

as EnCase by Guidance Software[1]. EnCase Forensic v7 comes with a Physical

Disk Emulator that allows an investigator to mount the evidence file as a virtual

disk in the same way as the Software RAID Virtual Disk. It can natively handle

both hardware and software RAIDs including dynamic disks.[2]

In order to handle a RAID, the investigator must use EnCase to acquire the

evidence. EnCase will then write the disks to a built-in case file. Once the case

file has been created, EnCase will display the volume and allow the investigator to

process the evidence from within EnCase. In order to use tools outside of EnCase,

the investigator can simply right click on the drive under entries and select ”Mount

as Emulated Disk”, and it will mount the disk as a virtual drive.[3]

There are a few issues in the way that EnCase handles the drive. First, if the

investigator accidentally mounts a drive that is physically attached to the system,

Windows will crash. Second, EnCase only works from the case file, which means

that first the investigator must add the drives to EnCase and image them, at which

point it will create a case file greater than the size of the disks, since it also stores

the checksum and some metadata. Finally, EnCase caches and writes to the disk,

and then allows it to be saved to the case file. This process suffers because if an

24

investigator is not careful he/she can actually alter the evidence.

2.2 Linux NTFS

The second related application is an NTFS driver which was being developed

for Linux to support dynamic disks.[4, 5] The documentation for this project clearly

shows how the LDM database of the dynamic disk is formatted as well as the loca-

tions of the private header and the LDM database. This information is invaluable

as it outlines the amount of information stored in each of the LDM records that

the Software RAID Virtual Disk must parse out. The Linux driver itself is not

useful for a Windows platform nor was it designed to meet forensics requirements.

It implements both reading and writing to the disks as well as requiring that the

LDM database and MBR be in a consistent state. Thus, the driver itself is not

applicable for the Windows Software RAID Virtual Disk tool, but as a guide to

the LDM data structure, it is very valuable.

2.3 ProDiscover

Another forensic tool capable of handling dynamic disks is ProDiscover Foren-

sics by Technology Pathways. It can handle all of the Windows dynamic disks and,

unlike EnCase, does not force a case file to be created. The biggest problem with

ProDiscover is that the RAID can only be analyzed within the program. How-

ever, it can create an image file that can be used by other programs that handle

those.[6, 7]

2.4 RAID Recovery for Windows

RAID Recovery for Windows is a new tool by Runtime Software (the creators

of RAID Reconstructor) with the sole purpose of recovering NTFS-formatted hard-

ware and Windows-software RAIDs. It is capable of handling RAID 0 and RAID 5

and can take either the physical disks or image files as input. As output it provides

25

an image file of the logical RAID, which can then be analyzed with other tools.

The problem with this program is similar to ProDiscover: the only programs that

can utilize the RAID after it is reconstructed are programs capable of handling

image files.[8]

2.5 SMART Linux

SMART Linux is a Linux boot disk that is capable of imaging a software

RAID or rebuilding a RAID from image files. It is one of the few programs that is

capable of handling RAID 4 and is capable of figuring out what the RAID header

information is even if the LDM is corrupted. Its biggest problem is, like Linux

NTFS, it is built on Linux and most investigators are more comfortable working

with Windows. Another problem is that, like many of the other programs described

above, the only programs that can utilize the RAID after it is reconstructed are

programs capable of handling image files.[9, 10]

2.6 X-Ways Forensics

X-Ways Forensics and WinHex, both by X-Ways Software Technology AG, can

handle virtually mounting RAIDs in RAM, allowing instant access to the RAID.

This makes WinHex much faster than any of the other programs reviewed. It can

handle the RAID in image files or physical disks and can either be used to do the

full analysis or to create an image file. If a disk is missing from the RAID 5, WinHex

is also capable of reconstructing the RAID from the parity information. However,

like ProDiscover, it is better at handling the RAID within the program.[11, 12]

26

Features SRVD EnCase Linux ProDiscover
NTFS

Works in Windows Y Y N Y
Reads Physical Disks Y Y Y Y
Forced to make a
disk image N Y N N
Mounts the disk Y Y Y N
Allows the use of
third party tools Y Y N N
Simple Dynamic
Disk Y Y Y Y
Spanned RAID Y Y Y Y
Striped RAID Y Y Y Y
Mirrored RAID Y Y Y Y
RAID 5 N Y Y Y
Protects from
writes Y N N Y

Features SRVD RAID SMART X-Ways
Recovery Linux Forensics

Works in Windows Y Y N Y
Reads Physical Disks Y Y Y Y
Forced to make a
disk image N Y N N
Mounts the disk Y N Y N
Allows the use of
third party tools Y N N N
Simple Dynamic
Disk Y N Y Y
Spanned RAID Y N Y Y
Striped RAID Y Y Y Y
Mirrored RAID Y N Y N
RAID 5 N Y Y Y
Protects from
writes Y Y N N

Table 1. Feature Comparison

2.7 Linux-NTFS Project

The Linux NTFS project was designed to bring the Windows dynamic disks

to Linux in order for them to enjoy the same functionality and to allow for users to

27

run both operating systems on the same system and still have access to the same

data[4]. This project was implemented in a Linux driver which was useless for this

program, but they also heavily documented their research which was pivotal in

being able to parse the very complicated data structure of the LDM database.

2.8 Virtual Storport Miniport Driver

The final program that Software RAID Virtual Disk builds on is the exam-

ple virtual Storport miniport driver by OSR Online. Their driver is designed to

mount a file as a disk and provides for both read and write operations. With a

few modifications it became capable of mounting a physical drive although more

changes were required in order to properly mount the RAID. This sample driver

was designed with all of the generic functions and communication methods already

defined so that only the important functions that operate differently on a RAID

from a file needed to be modified.[13]

List of References

[1] Digital Intelligence. “Encase forensic v7.” [Online; accessed 13-December-
2011]. 2011. [Online]. Available: http://www.digitalintelligence.com/
software/guidancesoftware/encase7/

[2] GuidenceSoftware. “Encase forensic.” [Online; accessed 1-October-2011].
2011. [Online]. Available: http://www.guidancesoftware.com/forensic.htm

[3] “Encase version 6.12 modules manual,” Guidance Software.

[4] R. Russon, “Home - ldm documentation,” 2002.

[5] Linux-NTFS. “Linux-ntfs.” [Online; accessed 1-October-2011]. Feb. 2009.
[Online]. Available: http://www.linux-ntfs.org/doku.php

[6] “Prodiscover forensics,” pdf, Technology Pathways, Aug. 2009.

[7] Technology Pathways. “Prodiscover forensics.” [Online; accessed 13-
December-2011]. 2010. [Online]. Available: http://www.techpathways.com/
prodiscoverdft.htm

28

http://www.digitalintelligence.com/software/guidancesoftware/encase7/
http://www.digitalintelligence.com/software/guidancesoftware/encase7/
http://www.guidancesoftware.com/forensic.htm
http://www.linux-ntfs.org/doku.php
http://www.techpathways.com/prodiscoverdft.htm
http://www.techpathways.com/prodiscoverdft.htm

[8] Runtime Software. “Raid recovery for windows v1.01.” [Online; accessed
13-December-2011]. 2011. [Online]. Available: http://www.runtime.org/
raid-recovery-windows.htm

[9] S. D. Dickerman, “Raid rebuilding,” pdf, 2007.

[10] ASR Data. “Smart linux.” [Online; accessed 13-December-2011]. 2011.
[Online]. Available: http://www.asrdata.com/forensic-software/smart-linux/

[11] “X-ways forensics/winhex,” pdf, X-Ways, 2011.

[12] X-Ways. “Winhex.” [Online; accessed 13-December-2011]. Mar. 2010.
[Online]. Available: http://www.winhex.com/winhex/

[13] OSR Online. “Writing a virtual storport miniport driver.” [Online;
accessed 13-December-2011]. Sept. 2009. [Online]. Available: http:
//www.osronline.com/article.cfm?article=538

29

http://www.runtime.org/raid-recovery-windows.htm
http://www.runtime.org/raid-recovery-windows.htm
http://www.asrdata.com/forensic-software/smart-linux/
http://www.winhex.com/winhex/
http://www.osronline.com/article.cfm?article=538
http://www.osronline.com/article.cfm?article=538

CHAPTER 3

Methodology

3.1 Computer Setup

There are several phases of testing that were done on different machines. All

of the tests, outside of the speed testing and hashing of the spanned and striped

RAIDs, were done in a virtual machine running in VMWare Workstation[1] version

8.0.2 build-591240 running on an ASUS N61J-XV1[2] laptop with 8 GB of ram and

an i7 processor. The speed testing was done on a Dell OptiPlex 760[3] with an

Intel Core 2 Duo E7300[4] running Windows 7 Enterprise SP1[5]. The disks for

the RAID were setup through an Adaptec AHA-2940U/W SCSI-3 Controller[6]

and the 2 disks were 36.7 GB Quantum Atlas10k2-TY367L[7] SCSI drives.

3.1.1 Hardware Configuration

Hardware setup on the physical system was quick and simple, first install the

Adaptec SCSI card and attach the 2 Quantum Atlas SCSI drives. Next go to

Adaptec’s Driver Download page1and download AIC78xx and AIC78U2 Driver for

Windows 7 x86 and Server 2008R2 x86. Once that is done, restart the computer

and then go to Start, right click on Computer, and select Manage. Select Device

Manager, expand Disk drives, and ensure that the two Quantum Atlas drives are

in the list.

3.1.2 Disk Configuration

There are several different configurations of disks that can be accomplished.

Most of them are very similar, and as such, I will walk through how to configure a

Striped software RAID on an MBR disk and will just mention the other options.

1The download can be found at http://www.adaptec.com/en-
us/downloads/ms/ms win 7/productid=aha-2940uw&dn=aha-2940uw.html

30

All of these options assume that you are running on any version of Windows 7

though they are similar in other versions of Windows. First, regardless of what

options you are going to be selecting, all of the options begin the same, click on

Start and then Right click on Computer and select Manage.

Figure 7. Disk Configuration Start Menu

This will open the Computer Management dialog box where the Disk Man-

agement tool under Storage should be selected.

31

Figure 8. Disk Configuration Computer Manager

Since you should have just added 2 new disks that have not yet been config-

ured, a pop-up box as seen in the next figure should show up. If this does not show

up, don’t worry, it just means that the disks are already initialized. For most of

the tests, the defaults will be used and you can just hit OK. If, on the other hand,

you wish to replicate the GPT test, then ensure that the GPT radial is selected.

If you wish to test the GPT functionality later, then you can convert it so don’t

worry. When you are satisfied, just press OK and move onto the next step.

32

Figure 9. Disk Configuration Initialize Disk

Once the disks have been initialized, right click on one of the new disks, and

you will get the choices shown in the figure below. This is where you need to decide

what type of RAID you are going to be testing. For the purposes of this setup

the New Striped Volume will be chosen, however, the next steps will be identical

with any of the choices; only the underlying RAID will be different as well as the

eventual hard drive size.

Figure 10. Disk Configuration Disk Selection

33

After making your selection, you will be shown the following screen. Just

press next to begin setting up the dynamic disk.

Figure 11. Disk Configuration Striped Volume Main Menu

The next screen will show you any disks that have free space available and

that can be converted to a dynamic disk. For the purposes of testing, the only 3

disks were the main disk with the operating system and the two test disks, so the

only options available will be the two test disks. In any case select any disks you

want to be in the RAID, and click add to ensure they are in the right pane. Make

sure there are at least 2 disks in right pane, and select how much space you want

to use on each disk; for this testing we simply selected the entire disk. Once you

are satisfied, click next.

Figure 12. Disk Configuration Striped Volume Main Disk Selection

34

The options on the next screen don’t really matter, we can just leave the

defaults selected. Just remember where you mount it if you change it, in order to

put any files onto the disk. When you are satisfied, just hit next.

Figure 13. Disk Configuration Striped Volume Mount Point

Just leave the defaults alone on this page. While this will work with any file

system that Windows will understand, we can simply leave it as NTFS for testing

as the driver does not deal with file systems. Just click on Next to move on.

Figure 14. Disk Configuration Striped Volume Formatting Options

Finally, double check to make sure that all of the options you selected are

correct, then click finish.

35

Figure 15. Disk Configuration Striped Volume Confirmation

A warning should pop up warning you that the disk will be converted to a

dynamic disk. This is expected and is just warning you that you should not be

doing this on the operating system disk or the system will be unable to function.

Just press Yes, and it will finish the setup.

Figure 16. Disk Configuration Striped Volume Main Menu

To confirm that the disk was setup, just open up Computer, and check that

there is a new volume on the system mounted to the letter you specified. As long

as you can open it up, then this setup is complete, and you can move on.

36

3.1.3 Software Installation

There are two separate programs that need to be installed in order for the

Software RAID Virtual Disk to work.

There is no automated installer for the driver installation, and as such it needs

to be done manually. This process is slightly different for each version of Windows

so the instructions will be included for each, though it will begin with the Windows

7 x86 instructions. Please note that this driver will only run on Windows Vista

and Windows 7 as it requires the Storport service introduced in Vista.

3.1.3.1 Driver Installation on Windows 7 x86

First open the start menu, type in run, and select the executable at the top

called Run.

Figure 17. Windows 7 x86 Start Menu

This will open the Run dialog box where you need to type in hdwwiz as shown

37

in the figure below in order to start the hardware wizard.

Figure 18. Windows 7 x86 Run Dialog

When the wizard starts, you will be presented with the screen seen in the

following figure. Just click Next to move on to the next screen

Figure 19. Windows 7 x86 Hardware Wizard Starting Screen

On the next screen, make sure you select the second radial in order to choose

the installation file since no real hardware was added to the system.

38

Figure 20. Windows 7 x86 Hardware Wizard Select Advanced

Because the driver we are installing is not for actual hardware but is instead

a virtual storage controller, we simply select to Show All Devices because we are

going to supply the location of the driver anyway.

Figure 21. Windows 7 x86 Hardware Wizard Select Show All Devices

On the next page, just click the Have Disk... button which will allow you to

specify the location of the inf file.

39

Figure 22. Windows 7 x86 Hardware Wizard Select the Devices

Browse to the location you have stored the inf file and installation files (uriS-

RVDstor.sys), and select the inf file. Note the inf file should be just outside of the

i386 folder as seen in the figure below.

Figure 23. Windows 7 x86 Hardware Wizard Select uriSRVDinipt.inf

Just make sure that the path is correct, then select OK.

40

Figure 24. Windows 7 x86 Hardware Wizard Confirm the Path

The next screen should look exactly like the figure below, as long as it does,

simply click Next. Otherwise make sure you are selecting the correct inf file and

that the i386 folder is at the same location.

Figure 25. Windows 7 x86 Hardware Wizard Ensure the Correct Model

Finally it will just confirm the device you want to install, just click next, and

the install will commence.

41

Figure 26. Windows 7 x86 Hardware Wizard Confirm the Install

After you confirm the install, you will get a Windows Security message seen

in the figure below. This is because the driver is not signed by Microsoft which

is expensive and difficult to pass. Because of this just select to Install this driver

software anyway, and the installation will continue.

Figure 27. Windows 7 x64 Windows Security Warning

The install should not take too long, and once it is complete, you will get the

figure below. If the dialog says anything other than what is shown below, then the

installation was not successful.

42

Figure 28. Windows 7 x86 Hardware Wizard Install Complete

To confirm that the install worked, open up the control panel, and select

Device Manager. Expand the Storage Controllers section, and ensure that URI

Software Raid Virtual Disk is in the list2.

Figure 29. Windows 7 x86 Device Manager

3.1.3.2 Driver Installation on Windows 7 x64

The installation on a 64 bit system is almost identical to the 32 bit one with

only a few exceptions. Because of the increased driver security on a 64-bit system,

2Note: Your list may look different from the one shown depending on other hardware and
software installed on the system.

43

the hardware wizard completion will warn you that the file is incorrectly signed

and may not work correctly. As long as it looks like the figure below, continue to

the next step.

Figure 30. Windows 7 x64 Hardware Wizard Install Complete

You may also receive a program compatibility assistant warning letting you

know that the installed driver is not signed and will not function correctly. You

can safely ignore this warning, and just hit Close.

44

Figure 31. Windows 7 x64 Program Compatibility Assistant Warning

There are additional steps required in order to allow Windows to load the

driver since it is unsigned. The first thing that needs to be done is to open an

elevated command prompt. In order to do this, open up Start, and type cmd. On

the only file that comes up, right click, and select Run as Administrator as seen

in the figure below.

45

Figure 32. Windows 7 x64 Elevated Command Prompt

Once you have the elevated command prompt, you must type in the follow-

ing command (without the quotes) in order to put the system into test mode:

”bcdedit.exe /set TESTSIGNING ON”. Then press the enter key, and you should

see the confirmation as in the figure below. Once that is done, simply restart the

computer, and you will see the test mode information in the bottom right of the

desktop.

Figure 33. Windows 7 x64 Test Mode Command

46

3.1.3.3 Driver Installation on Windows Server 2003 x86

There are a few differences to earlier instructions, first to get to add hardware,

simply go to the Control Panel, and select Add Hardware. Next it will search for

your hardware then display the screen in the figure below. Make sure you select

the radial that says Yes, I have already attached this hardware.

Figure 34. Windows 2003 x86 Hardware Wizard Hardware Attached

On the next screen, scroll all the way to the bottom, and select to Add a new

hardware device.

47

Figure 35. Windows 2003 x86 Hardware Wizard New Hardware Device

After that it follows the same instructions as Windows 7 x86, until at the end

you get the conformation screen seen in the figure below.

Figure 36. Windows 2003 x86 Hardware Wizard Install Complete

48

3.1.3.4 Driver Installation on Windows Server 2003 x64

There is no difference between the 32 and 64 bit installations in Windows

Server 2003 so just view the instructions above.

3.1.3.5 Driver Installation on Windows Vista x86

There is no difference from the Windows 7 x86 installation so just view the

instructions above.

3.1.3.6 Driver Installation on Windows Vista x64

There is no difference from the Windows 7 x64 installation so just view the

instructions above.

3.1.3.7 Driver Installation on Windows Server 2008 x86

There is no difference from the Windows 7 x86 installation so just view the

instructions above.

3.1.3.8 Driver Installation on Windows Server 2008 x64

There is no difference from the Windows 7 x64 installation so just view the

instructions above.

3.1.3.9 Front-End Installation

First ensure that you have the newest version of .NET 4.0 installed on your

system. To do that go to the Microsoft Download Center, and search for the .NET

Framework 4.0 (Web Installer)3. Once that is installed, you must also ensure that

the Visual Studio C++ 2010 redistributable (x86) is installed on the system, which

can also be found in the Microsoft Download Center4. Follow the instructions on

the website in order to download and install the framework. Once that is installed,

all you need to do is copy SoftwareRAIDMount.exe and call.dll of the front-end

onto the target computer; no installation is needed. To ensure everything is all

49

set, just run the executable and ensure you get the same screen as in the following

figure.

Figure 37. Software RAID Mount

3.2 Software RAID Testing

The Software RAID virtual disk was tested in several different phases. The

first test is the speed testing which was done on a physical machine first using

spanned disks and then striped. Once the speed testing finished the hash testing

was done to ensure that the contents of the volume were tested to ensure accuracy.

Once that was tested, the next test was to show that the Software RAID Virtual

Disk was tested on a variety operating systems, ensuring that it can be used on

different systems. Then each configuration of the software RAID were tested along

with testing if the driver can handle a small level of corruption. Finally, the last

test showed that the Software RAID Virtual Disk can handle opening files and

makes no modifications to the system. These tests were done using VMWare

Workstation as the underlying hardware was not important.

3The link as of the writing is http://www.microsoft.com/download/en/details.aspx?id=17851
4The link as of the writing is http://www.microsoft.com/download/en/details.aspx?id=5555

50

3.2.1 Speed Testing

The purposes of the speed testing is to verify that the implementation of the

driver is not significantly slower than the Windows implementation. It is also

to test and ensure that the slowdown expected from attaching any write blocker

is consistent with the base drive slowdown. For this reason several tools were

considered and tested, however, only three tools were able to get speed values

from the RAID.

The first tool that was tested and was unable to be used was FutureMark’s

PCMark[8] which failed to run correctly even on Windows implementation of the

RAID. The error simply stated Init Error and after contacting FutureMark and

supplying all requested information they stopped all communications, and as such

the program was never able to run.

The next tool tried was Crystal Disk Mark[9] which performed flawlessly on

Windows implementation. When run on the Software RAID Virtual Disk, however,

you simply get the error Failed Create File, which is believed to be caused by the

software attempting to store a known file on the drive and read that file back for

speed testing.

After that the next tool to try was eXibition Software’s Drive Speed

Checker[10] which again performed great on Windows implementation. Again it

failed on the Software RAID Virtual Disk, this time with Permission Denied even

when run as an administrator. Again it is believed that the program requires write

permission to the disk in order to store a test file.

The last tool that was tried and failed to perform was Open Source Devel-

opment Lab’s Iometer[11] (formerly developed by Intel) which I only tested on

the Software RAID Virtual Disk in order to see if it would even be useful. After

configuring it to only do read tests, it hung for over 30 minutes on initializing disks

51

and as such was not used.

After all of the testing, there are three different tools that were used for testing

the speed. The first of these only checks the speed of the physical disks and allowed

for a baseline with which to compare the speed degradation of write-blocking the

disks. The other two tools were run on the logical volume and were able to get

good results.

The first tool is EFD Software’s HD Tune Pro 5.00[12] which is able to do

a variety of tests on the physical disks themselves. The test that was run is the

Benchmark tool which had the Read radial selected and the Transfer rate checkbox

checked along with the Access time and Burst rate checkboxes. For these tests, a

screenshot is provided in the results section.

The second tool that was used was steel byte’s HD Speed[13]. For each con-

figuration the tool was run for 120 minutes with a block size of auto, in read mode,

and with results logged to file. After each test a screenshot of the final results was

taken and provided in the results section along with the data that was logged.

The next tool that was used was simplisoftware’s HD Tach[14] which was

setup with the long test option. A screenshot of the completed test is provided in

the results section below.

The final tool that was used was a commercially available software write

blocker marketed by ForensicSoft, called SafeBlock[15]. This software has been

tested to be forensically sound with a minimum of impact on the system.

Each of the tools was used on the following configurations for spanned and

then for striped:

1. Windows Mounted, Software RAID Virtual Disk Unmounted, No Write

Blocker

2. Windows Mounted, Software RAID Virtual Disk Mounted, No Write Blocker

52

3. Windows Unmounted, Software RAID Virtual Disk Mounted, No Write

Blocker

4. Windows Unmounted, Software RAID Virtual Disk Mounted, SafeBlock

Write Blocking

3.2.2 Hash Testing

In order to ensure that the logical volume of both the Windows version and

Software RAID Virtual Disk are identical, the hash of each should be identical. In

order to test this WinHex[16] was used in order to hash the drives. To do this first

click on Tools, then Open Disk.

Figure 38. WinHex Open Disk

Next select the volume you wish to hash. For this example I am using a 2 GB

thumb drive that is mounted to G.

53

Figure 39. WinHex Disk Choice

Once the disk has opened, you need to start the hashing by again going to

the tools dropdown and selecting Compute Hash.

Figure 40. WinHex Compute Hash

There is a choice of hashes; for the test the MD5 hash was used as that is a

hash still used extensively by law enforcement.

54

Figure 41. WinHex Hash Choice

Once you have selected the hash and pressed OK, the hashing will begin, and

you will see the screen in the figure below. Please allow this to run as it can take

over 1 hour depending on the speed and size of the disks.

Figure 42. WinHex Hash Computing

Once it has finished, the hash of the drive will be shown as in the following

figure. For the purposes of testing, a screenshot of the hash along with the Com-

puter dialog box showing what drive was hashed is provided in the results section.

Make sure you do both hashes immediately one after another because Windows

will change time stamps if you continue to work or reboot the computer between

hashes.

55

Figure 43. WinHex Hash

3.2.3 Operating System Compatibility Testing

In order to test if the driver worked on each operating system it was only

necessary to mount a single spanned RAID to show that the driver functioned.

This was done in a virtual environment where two 1 GB virtual SCSI disks were

added and configured into a spanned RAID using the earlier instructions. In each

case this was done on a clean install of the operating system with fresh installs

of .NET 4.0 and the Visual Studio 2010 C++ Redistributable. A screen shot is

provided of the SoftwareRAIDMount.exe finding all of the parameters successfully

then of Computer showing both the Windows mounted version and the Software

RAID Virtual Disk mounted version.

3.2.4 Configuration Compatibility Testing

There are several different configurations that needed to be tested. The easiest

to test was the ability to mount each type of RAID; for that one of each type of

RAID was added to a Windows Server 2008 x86 clean installation. For proof

screenshots of the Disk Manager setup, each SoftwareRAIDMount.exe parameter

set, and finally Computer showing all of the mounted drives are in the results

section.

The next configuration that needed to be tested was the ability for the program

to mount a disk that has had its LDM database and MBR information erased.

56

This was accomplished by using WinHex and editing the hex of the spanned disk

drives to 00 across the partition table (screenshot will be provided). Now that the

partition table is blank SoftwareRAIDMount.exe was used to automatically mount

the disks and a screenshot will be provided. After that the LDM database, which

is the last 1 MB of the disk, was also be overwritten with 00 to remove all traces

of the software RAID (screenshot will be provided). Once that has been done the

SoftwareRAIDMount.exe will attempt to automatically mount the disks and after

that fails the information was hand entered and a screenshot was provided of the

mounted disk.

After proving that a corrupted disk can be mounted as long as the underlying

file system is intact, a GPT disk spanned RAID was created and WinHex was used

to find the start of the file system and other pertinent information. Once that was

found, it was plugged into the SoftwareRAIDMount.exe and a screenshot of both

the Disk Configuration and Computer are provided below.

The last configuration to test was the ability to even mount an NTFS partition

from inside of a Linux software RAID. The software RAID was setup using Ubuntu

12.04 LTS x64 server install CD[17]. Before starting ensure that you have 2 blank

drives attacked to the system for the RAID. Boot into the CD and then select to

Install Ubuntu to the hard disk, as seen in the next figure.

57

Figure 44. Ubuntu Starting Screen

At each step through the partition screen simply accept the default options.

You can choose anything for a hostname, user name and password. Once the

partition screen comes up choose to manually partition the disks.

Figure 45. Ubuntu Manually Partition Disks

Next scroll down to the first of the unpartitioned drives added for the RAID

and select it.

58

Figure 46. Ubuntu First RAID Drive

It will ask if you want to create a new empty partition table on this device,

select yes.

Figure 47. Ubuntu Create Partition Table

Next there will be a new line under the drive labeled as FREE SPACE, select

the line to partition the drive.

Figure 48. Ubuntu Partition Free Space

In the next message box just select to Create a new partition.

59

Figure 49. Ubuntu Create Partition

Choose the max space which is the default option, so just hit enter.

Figure 50. Ubuntu Partition Size

This is the basis of the software RAID so at this point just chose to make this

a primary partition.

Figure 51. Ubuntu Partition Type

By default the partition begins as an Ext4 partition, this needs to be changed

in order to use this as a software RAID so select the Use as line to change the

formatting.

60

Figure 52. Ubuntu Partition Use Type

Now select physical volume for RAID in order to make this an empty partition

we can use.

Figure 53. Ubuntu Physical Volume for RAID Partition

Finally select Done setting up the partition in order to finish setting up the

first drive.

Figure 54. Ubuntu Finish Drive Setup

61

Now repeat those same steps on the second drive so that they are both for-

matted for the RAID. Once they are both done go up to Configure software RAID

to begin setting up the RAID.

Figure 55. Ubuntu Configure Software RAID

It will ask to write all the changes that have been made so far to the disks,

select yes to continue on to configure the RAID.

Figure 56. Ubuntu Write Changes

To start creating the software RAID select Create MD device to create a new

multiple disk or RAID device.

62

Figure 57. Ubuntu Create MD ”RAID” Device

For this test we used RAID0 in order to fully test the capabilities, so simply

select RAID0 and continue on.

Figure 58. Ubuntu RAID Type

Next the disks in the RAID need to be selected, so scroll to each of the RAID

disks and hit the spacebar to select the disks. Once both disks are selected hit

enter to continue.

Figure 59. Ubuntu RAID Disk Select

Now select Finish in order to go on and format the RAID.

63

Figure 60. Ubuntu Finish RAID Setup

Now at the top of the disk list there should be a new RAID0 device with 1

unpartitioned space and some unusable space. Select the unpartitioned space to

create and format the postition.

Figure 61. Ubuntu Partition RAID

The partition is currently set as do not use, select the Use as line in order to

change that.

Figure 62. Ubuntu RAID Use Type

64

Since there is no choice for NTFS, choose FAT32 so that the RAID is formatted

with a partition that Windows will be capable of mounting.

Figure 63. Ubuntu FAT32 RAID Partition

At this point the partition is all set so select Done setting up the partition to

finish up.

Figure 64. Ubuntu Finish RAID Partition

Because we are not actually installing Ubuntu onto the system we cannot

select finish partitioning or it will just keep sending us back here. Because of this

select Configure Software RAID as above and then select yes to write the changes

to the disk. At this point stop the system either by powering off the VM or by

holding the power button on a physical machine and then boot into Windows.

Once booted into Windows a tool such as WinHex will need to be used in-

order to find the RAID information such as the starting sector, size, and stripe

size.

65

3.2.5 Content Testing

In order to test that content works correctly on the Software RAID Virtual

Disk, several files were stored on a striped disk, on a clean install of Windows 7

x86, all of which were large enough to span several stripes. These files include

an image, a text file, a pdf, a md4 movie and a MPEG-4 song. After those files

were placed on the drive, the Windows implementation was unmounted, and the

drive was mounted with Software RAID Virtual Disk. A starting hash of the drive

was taken immediately in order to ensure that nothing that would be tested would

change any data.

First in order to test that attempting to write to the drive will not change

anything, the files that are stored on the drive are attempted to be copied onto

the drive again. This should fail and an error will show up on the Windows tool

bar. After this the hash will be taken to ensure that the attempt did not change

anything.

Next each of the files will be opened and run, for each of them a screenshot

will be provided showing that the file opened correctly and that the Windows

implementation was offline. Once all of the files have been opened, the hash will

be checked again to ensure that none of the time stamps were modified.

Finally the text file will be opened, and the text inside will be changed. The

file will attempt to be saved which again should fail, and a final hash was taken to

ensure that nothing had been modified.

List of References

[1] VMware, Inc. “Vmware workstation 8.” [Online; accessed 9-March-2012].
2012. [Online]. Available: http://www.vmware.com/products/workstation/

[2] ASUS. “N61jq.” [Online; accessed 9-March-2012]. 2012. [Online]. Available:
www.asus.com/Notebooks/Multimedia Entertainment/N61Jq/

66

http://www.vmware.com/products/workstation/
www.asus.com/Notebooks/Multimedia_Entertainment/N61Jq/

[3] Dell. “Optiplex 760 desktop.” [Online; accessed 9-March-2012]. 2012.
[Online]. Available: www.dell.com/us/dfb/p/optiplex-760/pd

[4] intel. “Intel R©coreTM2 duo processor e7300.”

[5] Microsoft. “Windows enterprise.” [Online; accessed 9-March-2012]. 2012.
[Online]. Available: http://www.microsoft.com/en-us/windows/enterprise/
products-and-technologies/windows-7/default.aspx

[6] adaptec. “Aha-2940uw.” [Online; accessed 9-March-2012]. 2012. [Online].
Available: http://www.adaptec.com/en-us/support/scsi/2940/aha-2940uw/

[7] Seagate. “Quantum R©atlas 10k ii.” [Online; accessed 9-March-2012].
2000. [Online]. Available: http://www.seagate.com/staticfiles/maxtor/en us/
documentation/data sheets/atlas 10k ii datasheet.pdf

[8] Futuremark. “Pcmark pc performance testing.” [Online; accessed 13-
December-2011]. 2011. [Online]. Available: http://www.pcmark.com/

[9] Crystal Dew World. “Crystaldiskmark.” [Online; accessed 13-December-
2011]. 2011. [Online]. Available: http://crystalmark.info/software/
CrystalDiskMark/index-e.html

[10] eXibition Software. “Drive speed checker.” [Online; accessed 13-
December-2011]. 2004. [Online]. Available: http://www.exibitionsoftware.
com/products/drivespeedchecker/details.asp

[11] Open Source Development Lab. “Iometer.” [Online; accessed 13-December-
2011]. July 2006. [Online]. Available: www.iometer.org

[12] EFD Software. “Hd tune.” [Online; accessed 13-December-2011]. Aug. 2010.
[Online]. Available: http://www.hdtune.com/

[13] steel bytes. “Hd speed.” Jan. [Online]. Available: http://www.steelbytes.
com/?mid=20

[14] simplisoftware. “Hd tach.” [Online; accessed 13-December-2011]. [On-
line]. Available: http://www.simplisoftware.com/Public/index.php?request=
HdTach

[15] ForensicSoft. “Safe block.” [Online; accessed 1-October-2011]. 2010. [Online].
Available: https://www.forensicsoft.com/safeblock.php

[16] “X-ways forensics/winhex,” pdf, X-Ways, 2011.

[17] Ubuntu. “Download ubuntu.” [Online; accessed 2-May-2012]. 2012. [Online].
Available: http://www.ubuntu.com/download/server

67

www.dell.com/us/dfb/p/optiplex-760/pd
http://www.microsoft.com/en-us/windows/enterprise/products-and-technologies/windows-7/default.aspx
http://www.microsoft.com/en-us/windows/enterprise/products-and-technologies/windows-7/default.aspx
http://www.adaptec.com/en-us/support/scsi/2940/aha-2940uw/
http://www.seagate.com/staticfiles/maxtor/en_us/documentation/data_sheets/atlas_10k_ii_datasheet.pdf
http://www.seagate.com/staticfiles/maxtor/en_us/documentation/data_sheets/atlas_10k_ii_datasheet.pdf
http://www.pcmark.com/
http://crystalmark.info/software/CrystalDiskMark/index-e.html
http://crystalmark.info/software/CrystalDiskMark/index-e.html
http://www.exibitionsoftware.com/products/drivespeedchecker/details.asp
http://www.exibitionsoftware.com/products/drivespeedchecker/details.asp
www.iometer.org
http://www.hdtune.com/
http://www.steelbytes.com/?mid=20
http://www.steelbytes.com/?mid=20
http://www.simplisoftware.com/Public/index.php?request=HdTach
http://www.simplisoftware.com/Public/index.php?request=HdTach
https://www.forensicsoft.com/safeblock.php
http://www.ubuntu.com/download/server

CHAPTER 4

Findings

4.1 Speed Testing
4.1.1 HD Pro Results

The first results generated were from HDTune Pro in order to establish a

baseline of what the maximum disk speed for each setting should be for each disk.

Here are the screenshots of the initial tests done: first is the results when only

Windows is mounted, then the results of when both Windows and the Software

RAID Virtual Disk is mounted. Next is when just the Software RAID Virtual Disk

is mounted and finally when the disks are write blocked and the Software RAID

Virtual Disk is mounted.

4.1.1.1 Windows Mounted

Figure 65. HD Tune Windows Disk 1 Baseline

68

Figure 66. HD Tune Windows Disk 2 Baseline

4.1.1.2 Windows and Software RAID Virtual Disk Mounted

Figure 67. HD Tune Online Disk 1 Baseline

69

Figure 68. HD Tune Online Disk 2 Baseline

4.1.1.3 Software RAID Virtual Disk Mounted

Figure 69. HD Tune Offline Disk 1 Baseline

70

Figure 70. HD Tune Offline Disk 2 Baseline

4.1.1.4 Write Blocked

Figure 71. HD Tune SafeBlock Disk 1 Baseline

71

Figure 72. HD Tune SafeBlock Disk 2 Baseline

4.1.2 HD Speed Results

Here are the screenshots of the final result for HD Speed on each of the tests

after running for 120 minutes.

4.1.2.1 Windows Mounted

Figure 73. HD Speed Windows Spanned Results

72

Figure 74. HD Speed Windows Striped Results

4.1.2.2 Windows and Software RAID Virtual Disk Mounted

Figure 75. HD Speed Online Spanned Results

Figure 76. HD Speed Online Striped Results

73

4.1.2.3 Software RAID Virtual Disk Mounted

Figure 77. HD Speed Offline Spanned Results

Figure 78. HD Speed Offline Striped Results

4.1.2.4 Write Blocked

Figure 79. HD Speed SafeBlock Spanned Results

74

Figure 80. HD Speed SafeBlock Striped Results

4.1.3 HD Tach Results

Here are the screenshots of the results for HD Tach on each of the tests. There

are no results for the Windows implementation because as it is programmed HD

Tach can only speed test drives, however, because of the way the Software RAID

Virtual Disk is presented to the system it was able to be utilized.

4.1.3.1 Windows and Software RAID Virtual Disk Mounted

Figure 81. HD Tach Online Spanned Results

75

Figure 82. HD Tach Online Striped Results

4.1.3.2 Software RAID Virtual Disk Mounted

Figure 83. HD Tach Offline Spanned Results

76

Figure 84. HD Tach Offline Striped Results

4.1.3.3 Write Blocked

Figure 85. HD Tach SafeBlock Spanned Results

77

Figure 86. HD Tach SafeBlock Striped Results

4.1.4 Charted Results

Charting the above data to put the Maximum, Minimum and Average speed

of each of the disks as well as from the RAIDs gives the following chart. Please

note that these averages result from calculating the average from the underlying

data supplied by HD Speed and not from the average displayed on the image.

78

Windows Online Offline Write Blocked

Disk 1 Minimum 22.6 22.6 22.5 22.7
Disk 2 Minimum 22.2 22.3 22.3 22.3

Spanned Minimum 10 12 22 12
Striped Minimum 10 24.3 24.25 24
Disk 1 Maximum 33.5 33.5 33.5 33.5
Disk 2 Maximum 33.5 33.5 33.5 33.5

Spanned Maximum 35 33 33 33
HDTach Spanned Burst 33.3 33.3 32.3

Striped Maximum 35 32.25 32.25 31
HDTach Striped Burst 29.3 30.5 30.5

Disk 1 Average 30.8 30.8 30.8 30.8
Disk 2 Average 30.6 30.6 30.7 30.7

Spanned Average 30.6 29.4 29.4 29.5
HDTach Spanned Average 30.9 31 30.9

Striped Average 33.2 30.1 30.2 28.4
HDTach Striped Average 29.6 29.7 29.8

Table 2. Chart of Data of Disk Speed with RAID Speeds

The next graph shows all of that charted data graphed. As you can see it is

a little busy so it will be broken down further in the following graphs.

79

Figure 87. Graph of Data of Disk Speed with RAID Speeds

First the maximum speeds achieved were plotted. As seen in the following

graph the Windows implementation outperformed every other implementation,

including the disk baselines which are overlapped. Furthermore, it should be noted

the HD Tach is not really showing the maximum speed as the others are but instead

the burst speed which is why it is lower then the other results.

80

Figure 88. Graph of Data of Maximum Disk Speed with RAID Speeds

Strangely, while Windows had the highest maximum, it also has the lowest

minimum which means that it had the largest standard deviation of the tested

methods. Spanned was effected the most on the low end which was expected as

striped is the option chosen for performance.

81

Figure 89. Graph of Data of Minimum Disk Speed with RAID Speeds

Finally the average is the most telling graph of them all, while Windows may

have had the lowest minimum, on average it does outperform the Software RAID

Virtual Disk implementation.

82

Figure 90. Graph of Data of Average Disk Speed with RAID Speeds

4.2 Hash Testing
4.2.1 Spanned RAID

Both implementations of the RAID arrived at the hash

BBF1E92B007D8B536FCED844649B1C18.

83

Figure 91. Windows Spanned Raid Hash

Figure 92. Software RAID Virtual Disk Spanned Raid Hash

84

4.2.2 Striped RAID

Both implementations of the RAID arrived at the hash

F0CCB75A695EA870BDA3AA1B39727425.

Figure 93. Windows Striped Raid Hash

Figure 94. Software RAID Virtual Disk Striped Raid Hash

85

4.3 Operating System Compatibility Testing
4.3.1 Windows Server 2003 x86

While trying to test this configuration, it was quickly discovered that the

automated parameter finding does not work on this operating system. For this

reason the values you see in the figure below were hand entered in order to test if

the driver itself works.

Figure 95. Windows Server 2003 x86 SoftwareRAIDMount.exe

After clicking on Mount Disks, nothing happened: no error and no mounted

disk. This was tried three times but never managed to function.

4.3.2 Windows Server 2003 x64

While trying to test this configuration, it was quickly discovered that the

automated parameter finding does not work on this operating system. For this

reason the values you see in the figure below were hand entered in order to test if

the driver itself works.

86

Figure 96. Windows Server 2003 x64 SoftwareRAIDMount.exe

After clicking on Mount Disks, nothing happened: no error and no mounted

disk. This was tried three times but never managed to function.

4.3.3 Windows Vista x86

After completing setup and placing some test files onto the disk to ensure

they were properly mounted, SoftwareRAIDMount.exe was ran. After pressing

Find Parameters immediately the volume information was found as seen in the

figure below.

87

Figure 97. Windows Vista x86 SoftwareRAIDMount.exe

After clicking Mount Disk, there was no error message or confirmation as

expected. To verify that the disk was properly mounted, Computer was opened,

and as you can see in the next figure, there is now a F: disk under removable disks

with the same Volume Name as the Windows RAID.

Figure 98. Windows Vista x86 Computer Drives

88

Finally here are two screenshots showing that all of the files from the Windows

implementation of the RAID are also present on the Software RAID Virtual Disk

implementation.

Figure 99. Windows Vista x86 Windows Files

Figure 100. Windows Vista x86 Software RAID Virtual Disk Files

89

4.3.4 Windows Vista x64

After completing setup and placing some test files onto the disk to ensure they

were properly mounted, SoftwareRAIDMount.exe was ran and after pressing Find

Parameters immediately found the volume information as seen in the figure below.

Figure 101. Windows Vista x64 SoftwareRAIDMount.exe

When Mount Disk was pressed, however, nothing happened as the system was

not in test mode. After switching into test mode, SoftwareRAIDMount.exe was

rerun and it still did not function.

4.3.5 Windows Server 2008 x86

After completing setup and placing some test files onto the disk to ensure they

were properly mounted, SoftwareRAIDMount.exe was ran and after pressing Find

Parameters immediately found the volume information as seen in the figure below.

90

Figure 102. Windows Server 2008 x86 SoftwareRAIDMount.exe

After clicking Mount Disk, there was no error message or confirmation as

expected. To verify that the disk was properly mounted, Computer was opened,

and as you can see in the next figure, there is now a E: disk under removable disks

with the same Volume Name as the Windows RAID.

Figure 103. Windows Server 2008 x86 Computer Drives

Finally here are two screenshots showing that all of the files from the Windows

91

implementation of the RAID are also present on the Software RAID Virtual Disk

implementation.

Figure 104. Windows Server 2008 x86 Windows Files

Figure 105. Windows Server 2008 x86 Software RAID Virtual Disk Files

92

4.3.6 Windows Server 2008 x64

After completing setup and placing some test files onto the disk to ensure they

were properly mounted, SoftwareRAIDMount.exe was ran and after pressing Find

Parameters immediately found the volume information as seen in the figure below.

Figure 106. Windows Server 2008 x64 SoftwareRAIDMount.exe

When Mount Disk was pressed, however, nothing happened as the system was

not in test mode. After switching into test mode, SoftwareRAIDMount.exe was

rerun and it still did not function.

4.3.7 Windows 7 x86

After completing setup and placing some test files onto the disk to ensure they

were properly mounted, SoftwareRAIDMount.exe was ran and after pressing Find

Parameters immediately found the volume information as seen in the figure below.

93

Figure 107. Windows 7 x86 SoftwareRAIDMount.exe

After clicking Mount Disk, there was no error message or confirmation as

expected. To verify that the disk was properly mounted, Computer was opened,

and as you can see in the next figure, there is now a E: disk under removable disks

with the same Volume Name as the Windows RAID.

Figure 108. Windows 7 x86 Computer Drives

Finally here are two screenshots showing that all of the files from the Windows

implementation of the RAID are also present on the Software RAID Virtual Disk

94

implementation.

Figure 109. Windows 7 x86 Windows Files

Figure 110. Windows 7 x86 Software RAID Virtual Disk Files

4.3.8 Windows 7 x64

After completing setup and placing some test files onto the disk to ensure they

were properly mounted, SoftwareRAIDMount.exe was ran and after pressing Find

Parameters immediately found the volume information as seen in the figure below.

95

Figure 111. Windows 7 x64 SoftwareRAIDMount.exe

When Mount Disk was pressed, however, nothing happened as the system was

not in test mode. After switching into test mode, SoftwareRAIDMount.exe was

rerun, and there was no error message or confirmation as expected. To verify that

the disk was properly mounted, Computer was opened, and as you can see in the

next figure, there is now a G: disk under removable disks with the same Volume

Name as the Windows RAID.

Figure 112. Windows 7 x64 Computer Drives

96

Finally here are two screenshots showing that all of the files from the Windows

implementation of the RAID are also present on the Software RAID Virtual Disk

implementation.

Figure 113. Windows 7 x64 Windows Files

Figure 114. Windows 7 x64 Software RAID Virtual Disk Files

97

4.4 Configuration Compatibility Testing
4.4.1 Spanned RAID

The first RAID to test was the Spanned RAID which has been mounted

numerous times in other tests. To set the RAID up, 2 disks were added and

configured as a Spanned RAID as seen in the next figure.

Figure 115. Spanned Disk Setup

Once it was setup, the SoftwareRAIDMount.exe was run and found all of the

information.

98

Figure 116. Spanned Disk Mount Information

After running the SoftwareRAIDMount.exe, Computer was opened in order

to ensure that the drive had mounted.

Figure 117. Spanned Disk Mounted in Computer

4.4.2 Corrupted Spanned RAID

Next in order to see what corruption the RAID can endure and still mount,

the MBR partition table was removed from both disks while the LDM was left

99

intact.

Figure 118. Corrupted MBR Setup

The system was then restarted in order to cause the disks to fail. The Soft-

wareRAIDMount.exe was still able to find the information as seen in the next

figure.

Figure 119. Corrupted MBR Disk Mount Information

100

After running the mounting program, the volume showed up under Computer.

Figure 120. Corrupted MBR Disk Mounted in Computer

The next corruption to test is the removal of the LDM database. This was

done by removing the information from the TOCBLOCK and the PRIVHEAD as

seen in the next 2 figures.

101

Figure 121. Corrupted Disk TOCBLOCK Removed

Figure 122. Corrupted Disk PRIVHEAD Removed

Since the LDM database was no longer present, the mounting information was

entered into the SoftwareRAIDMount.exe as shown in the next figure.

102

Figure 123. Corrupted LDM Disk Mount Information

After running the mounting program, the volume showed up under Computer.

Figure 124. Corrupted LDM Disk Mounted in Computer

4.4.3 GPT Spanned RAID

After the corrupted RAID the next test was to see if the driver could handle

a GPT disk. To set the RAID up, first 2 disks were added and the disks were

converted to GPT disks by right clicking on them and selecting Convert to GPT.

103

Then the disks were configured as a Spanned RAID as seen in the next figure.

Figure 125. GPT Spanned Disk Setup

Once the GPT partitions were configured it was necessary to find the manual

parameters as the SoftwareRAIDMount.exe is currently incapable of parsing the

data structures. In order to do this WinHex was used to view the raw bytes as well

as to apply templates quickly parsing the data. The first piece of information that

was needed was the start sector, this was easy to find by searching the disk for

NTFS. As you can see in the below figure, the start sector of the NTFS volumes

on these GPT disks was 65664, which can be seen in the bottom left hand corner.

104

Figure 126. GPT Spanned Disk Start Sector

Once we have found the boot sector of the NTFS volume as well as the start

sector, then we can apply the Boot Sector NTFS Template from WinHex to quickly

parse all of the NTFS boot sector data. One of the fields, seen in the next figure,

is labelled Total Sectors which is the field needed to calculate the sizes. Because

the field is 0 indexed the value of 4055039 needs to be increased to 4055040, then

it is divided by two to give the 2027520 that is the number of sectors used on each

disk.

105

Figure 127. GPT Spanned Disk Size

Once the information was gathered, the SoftwareRAIDMount.exe was run and

all of the information was entered.

Figure 128. GPT Spanned Disk Mount Information

106

After running the SoftwareRAIDMount.exe, Computer was opened in order

to ensure that the drive had mounted.

Figure 129. GPT Spanned Disk Mounted in Computer

4.4.4 Striped RAID

The next RAID to test was the Striped RAID which again has been mounted

numerous times in other tests. To set the RAID up, 2 disks were added and

configured as a Striped RAID as seen in the next figure.

107

Figure 130. Striped Disk Setup

Once it was setup, the SoftwareRAIDMount.exe was run and found all of the

information.

Figure 131. Striped Disk Mount Information

After running the SoftwareRAIDMount.exe, Computer was opened in order

to ensure that the drive had mounted.

108

Figure 132. Striped Disk Mounted in Computer

4.4.5 Simple RAID

Next tested was the Simple RAID which is just a volume on a single dynamic

disk. To set the RAID up, 1 disk was added and configured as a Simple RAID as

seen in the next figure.

Figure 133. Simple Disk Setup

Once it was setup, the SoftwareRAIDMount.exe was run and found all of the

information although it is currently incorrectly labelling it as a spanned RAID.

This is not a problem as you will only ever pass in that disk.

109

Figure 134. Simple Disk Mount Information

After running the SoftwareRAIDMount.exe, Computer was opened in order

to ensure that the drive had mounted.

Figure 135. Simple Disk Mounted in Computer

4.4.6 Mirrored RAID

Next tested was the Mirrored RAID. To set the RAID up, 2 disks were added

and configured as a Mirrored RAID as seen in the next figure.

110

Figure 136. Mirrored Disk Setup

Once it was setup, the SoftwareRAIDMount.exe was run and found all of the

information although it is currently incorrectly labelling it as a spanned RAID.

This is not a problem as long as you only mount either 1 of the disks but will be

an issue if you incorrectly pass in both disks.

Figure 137. Mirrored Disk Mount Information

After running the SoftwareRAIDMount.exe, Computer was opened in order

to ensure that the drive had mounted.

111

Figure 138. Mirrored Disk Mounted in Computer

4.4.7 Multiple Disk Striped RAID

The next RAID to test was the Striped RAID on more than 2 disks. To set

the RAID up, 3 disks were added and configured as a Striped RAID as seen in the

next figure.

Figure 139. Multidisk Striped Disk Setup

112

Once it was setup, the SoftwareRAIDMount.exe was run and found all of the

information.

Figure 140. Multidisk Striped Disk Mount Information

After running the SoftwareRAIDMount.exe, Computer was opened in order

to ensure that the drive had mounted.

Figure 141. Multidisk Striped Disk Mounted in Computer

113

4.4.8 Linux RAID

When we first booted into Windows Server Manager was checked to ensure

that the two partitions that were created in the Ubuntu install were present as

seen in the next figure.

Figure 142. Linux Disk Setup

Because these are Linux partitions it was necessary to find the manual pa-

rameters as the SoftwareRAIDMount.exe is currently incapable of parsing the data

structures. In order to do this WinHex was used to view the raw bytes as well as

to apply templates quickly parsing the data. The first piece of information that

was needed was the start sector, this was easy to find by searching the disk for

FAT which was found twice. As you can see in the below figure, the start sector

of the FAT32 volumes on these disks was 4096, which can be seen in the bottom

left hand corner.

114

Figure 143. Linux Disk Start Sector

Once we have found the boot sector of the FAT32 volume as well as the

start sector, then we can apply the Boot Sector FAT32 Template from WinHex to

quickly parse all of the FAT32 boot sector data. One of the fields, seen in the next

figure, is labelled Sectors (on large volumes) which is the field needed to calculate

the sizes. Because the field is 0 indexed the value of 4182015 needs to be increased

to 4182016, then it is divided by two to give the 2091008 that is the number of

sectors used on each disk.

Figure 144. Linux Disk Size

115

Once the information was gathered, the SoftwareRAIDMount.exe was run

with the default stripe size of 128 and all of the other information entered. This

stripe size can only be powers of 32 (32, 64, 128, 256, 512, etc.) and as such can

be found through trial and error. A quick google search found that as of 2011 the

default stripe size on Ubuntu RAID0 was 128 so that should be what we try first.

[1]

Figure 145. Linux Disk Mount Information

After running the SoftwareRAIDMount.exe, Computer was opened in order

to ensure that the drive had mounted.

116

Figure 146. Linux Disk Mounted in Computer

Because there is no volume naming to show that the drive came over correctly

the empty drive was also opened to ensure it was properly formatted.

Figure 147. Linux Removable Drive Explorer

117

4.5 Content Testing

After setting up the striped RAID and copying over all of the files, the

Windows RAID was taken offline. The RAID was mounted with SoftwareRAID-

Mount.exe, then WinHex was started and an initial MD5 hash was taken of the

volume.

Figure 148. Volume Starting Hash

After the hash was finished, the files that were stored on the driver were copied

back to the drive again. This failed as expected with the error shown in the figure

below.

Figure 149. Copy Error

118

A hash was again computed to make sure that nothing was changed even

though the copy failed, and the hash was the same as the initial hash.

Figure 150. Volume Hash After Copying

Next each of the files was opened in order to ensure that they were being

correctly read from the RAID. The first file that was opened was the mpeg which

was listened to completely and sounded exactly as expected.

Figure 151. Music Successfully Playing

After the music finished playing, the mp4 movie was opened, and 5 minutes

were viewed to ensure that there were no problems. This worked flawlessly again,

and both the video and audio played without a hitch.

119

Figure 152. Video Successfully Playing

The next file to be tested was a pdf which again opened with no problem.

Scrolling through the file, there were no pages that I viewed which contained any

corruption.

Figure 153. PDF Successfully Opened

Next the jpeg was opened to ensure that there was no problem with images.

The image was complete, and there were no problems as the figure below shows.

120

Figure 154. Image Successfully Opened

Finally the text file was opened which worked as expected.

Figure 155. Text Successfully Opened

In order to ensure that no time-stamps had been changed in the opening of

the files, the hash was again taken and compared to the initial hash. As expected

there is no difference showing that none of the time-stamps were modified.

121

Figure 156. Volume Hash After Files Opened

Finally the text file was modified and then attempted to be saved. Again

there was an error message as seen in the next figure.

Figure 157. Text Save Fails

Then a final hash of the volume was taken and compared to the initial hash,

and as expected there is still no change proving that the driver will not modify the

underlying volume even when no write blocker is attached.

122

Figure 158. Volume Ending Hash

List of References

[1] Linux Tutorial. “Configure and install ubuntu on raid 0.” [Online;
accessed 2-May-2012]. July 2011. [Online]. Available: www.numango.com/
5078 install-ubuntu-on-raid.html

123

www.numango.com/5078_install-ubuntu-on-raid.html
www.numango.com/5078_install-ubuntu-on-raid.html

CHAPTER 5

Conclusion

5.1 Speed Testing

The speed testing is one of the most subjective of the tests that were performed

on the Software RAID Virtual Disk. Overall the driver functioned as expected. In

every situation the drivers worst case speeds exceeded that of Windows worst case

speed. Windows is obviously doing something interesting because its maximum

speed is faster then the maximum speed of the disk which leads me to believe

Windows may use an algorithm to prefetch data in order to increase speed. On

average the Software RAID Virtual Disk dropped 1 MB/s with the spanned disks

and 3 MB/s for the striped disks. This represents between a 4% decrease in speed

to 15% decrease in the worst case. It should be noted, however, that the 15%

decrease was only while attached to a write blocker, otherwise the worst case was

only a 10% decrease. Overall I feel that these results are acceptable although

future work should definitely be done in order to optimize the reading algorithms.

5.2 Hash Testing

There is not much to say about these tests, as long as the hashes were done

back to back, as explained in the Methodology section, then the two hashes

matched every time. Any attempt to bring Windows offline or a reboot of the

computer would change the hashes, however, but as this test was more designed

to show that the Software RAID Virtual Disk was providing a bit-identical copy

of the logical volume, this test was a success.

5.3 Operating System Compatibility Testing

There were a few surprises in the results although for the most part it did

work as expected. It was not too surprising when it did not work on Windows

124

Server 2003 as the Storport miniport used by the driver was still new and all of

its functionality had not yet been implemented. Thus while it would have been

nice, it was not unexpected. What was surprising is that even in test mode it

still failed to work on both Windows Vista x64 and Server 2008 x64, while it was

able to work on Windows 7 x64. I postulate that in the newer operating system

they may have lowered some of the security on drivers due to complaints, or the

64-bit version of Vista and Server 2008 does not have all of the functionality on

its implementation of the Storport miniport. In either case it worked fine on the

other tested operating systems as expected so the driver supports: Windows Vista

x86, Windows Server 2008 x86, and Windows 7 x86 and x64.

5.4 Configuration Compatibility Testing

The results were as expected. The driver was able to handle any correct input

from the front-end program including the ability to mount corrupted, GPT, and

Linux RAIDs as long as the investigator is able to figure out the correct information

and the underlying file system has not been corrupted.

5.5 Content Testing

There were no surprises with the content testing seeing as how there is no

write function implemented. It is great that all of the files played, but seeing as

how the hash was identical with the Windows mounted volume, it had already

been shown that the information was the same.

5.6 Final Conclusion and Future Work

Overall the tests went exactly as expected. While it would have been nice to

work on more systems, the driver does rely on several new innovations added to

the latest operating systems, and as such, was not expected to run on everything.

The speed achieved was acceptable, although not as good as Windows, but that is

125

again acceptable due to the amount of time using this driver over the competitors

solutions will save. Finally the hashes confirmed that the driver was supplying a

bit-perfect copy of the volume, and when the volumes contents were tested, the

files correctly opened and the hash was preserved.

There are some features that could still be added, however, to make this

product far more useful. The first would be to have it correctly parse the LDM on

a GPT database instead of relying on hand calculations. Next would be to handle

a variety of Linux formats for the same reason. At this point it can handle all of

the RAIDs except for RAID-5 which includes parity information. There is a place

holder in the driver for that to be mounted, but there was no time to implement

it. Finally the addition of the ability for the front end to choose from a variety of

RAIDs when there are multiple RAIDs on one disk is needed as it would currently

only grabs the last RAID.

126

APPENDIX A

Important Front-End Code

A.1 Bytes Per Sector

pub l i c ErrorCodes GetDiskInfo ()

{

t ry

{

WqlObjectQuery wqlQuery = new WqlObjectQuery (”SELECT ∗ FROM

Win32 DiskDrive”) ;

ManagementObjectSearcher s ea r che r = new ManagementObjectSearcher (

wqlQuery) ;

f o r each (ManagementObject d i sk in s ea r che r . Get ())

{

i f (d i sk . GetPropertyValue (”Name”) . ToString () == diskPath)

{

bytesPerSector = Int32 . Parse (d i sk . GetPropertyValue (”

BytesPerSector ”) . ToString ()) ;

break ;

}

}

}

catch { re turn ErrorCodes .SRVD COM FAILURE;}

re turn ErrorCodes .SRVD OK;

}

Code/BytesPerSector.cs

A.2 Master Boot Record

pub l i c ErrorCodes GetMBR()

{

127

MBR = new byte [bytesPerSector] ;

byte [] tempPart i t ion = new byte [1 6] ;

ErrorCodes r e s u l t ;

d i s k P a r t i t i o n s = new List<Part i t i on >() ;

t ry

{

bool s u c c e s s = setHandle () ;

i f (! s u c c e s s)

{

re turn ErrorCodes .SRVD BAD DISK;

}

diskHandle . Po s i t i on = 0 ;

diskHandle . Read (MBR, 0 , bytesPerSector) ;

f o r (i n t j = 0 ; j < 4 ; j++)

{

f o r (i n t i = 0 ; i < 16 ; i++)

{

tempPart i t ion [i] = MBR[i + 446 + (j ∗16)] ;

}

GCHandle pinnedPart = GCHandle . A l loc (tempPart it ion ,

GCHandleType . Pinned) ;

PARTITION newPart i t ion = (PARTITION) Marshal . PtrToStructure (

pinnedPart . AddrOfPinnedObject () ,

typeo f (PARTITION)) ;

d i s k P a r t i t i o n s . Add(new P a r t i t i o n (newPart i t ion)) ;

pinnedPart . Free () ;

}

BootRecordSignature = new byte [2] ;

f o r (i n t i = 0 ; i < 2 ; i++)

128

BootRecordSignature [i] = MBR[i + 5 1 0] ;

i f (BootRecordSignature [0] == 0x55 && BootRecordSignature [1] == 0

xaa)

{

r e s u l t = ErrorCodes .SRVD OK;

}

e l s e

r e s u l t = ErrorCodes . SRVD NO DISKS ;

}

catch { re turn ErrorCodes .SRVD COM FAILURE; }

f i n a l l y

{

diskHandle . Sa feF i l eHandle . Close () ;

diskHandle . Close () ;

}

f o r (i n t i = 0 ; i < 4 ; i++)

{

i f (d i s k P a r t i t i o n s [i] . GetDynamic ())

{

DynamicPresent = true ;

}

}

re turn r e s u l t ;

}

Code/MBR.cs

A.3 Logical Disk Manager

pub l i c ErrorCodes GetLDM()

{

i n t LDMSize = 1048576;

129

Int64 S i z e = 0 ;

Int64 Tota lS i z e = 0 ;

u int output = 0 ;

byte [] pr ivheader = new byte [5 1 2] ;

t ry

{

bool s u c c e s s = setHandle () ;

i f (! s u c c e s s)

{

re turn ErrorCodes .SRVD BAD DISK;

}

bool r e s u l t = DeviceIoContro l (diskHandle . SafeFi leHandle ,

FSConstants . IOCTL DISK GET LENGTH INFO,

IntPtr . Zero , 0 ,

out Tota lS ize , (u int) (Marshal . S izeOf (Tota lS i z e)) ,

out output , IntPtr . Zero) ;

i f (! r e s u l t)

r e turn ErrorCodes .SRVD COM FAILURE;

S i z e = Tota lS i ze ;

S i z e −= 512 ;

diskHandle . Seek (Size , SeekOrig in . Begin) ;

Int64 phead = 512 ;

S i z e += 512 ;

S i z e −= LDMSize ;

diskHandle . Seek (Size , SeekOrig in . Begin) ;

130

byte [] LDM = new byte [LDMSize] ;

diskHandle . Read (LDM, 0 , LDMSize) ;

Array . ConstrainedCopy (LDM, LDMSize−512 , pr ivheader , 0 , (i n t) phead

) ;

pr ivateHeader = new PRIVHEAD(pr ivheader) ;

//Find s t a r t o f TOCBLOCK

i n t DatabaseStart = 0 ;

char t e s t = ’T ’ ;

whi l e (LDM[DatabaseStart] != t e s t)

{

DatabaseStart++;

i f (DatabaseStart >= LDMSize)

{

re turn ErrorCodes .SRVD LDM FAIL ;

}

}

byte [] tocBlock = new byte [5 1 2] ;

f o r (i n t i = 0 ; i < 512 ; i++)

tocBlock [i] = LDM[DatabaseStart+i] ;

TOCblock = new TOCBLOCK(tocBlock) ;

ulong Conf igStar t = TOCblock . GetConf igStart () ∗ 512 ;

byte [] Vmdb = new byte [5 1 2] ;

f o r (i n t i = 0 ; i < 512 ; i++)

Vmdb[i] = LDM[Conf igStar t + (ulong) i] ;

MyVMDB = new VMDB(Vmdb) ;

r e s u l t = MyVMDB. GetFai l () ;

i f (r e s u l t)

r e turn ErrorCodes .SRVD VMDB FAILURE;

131

St r ing PrivHeadGUID = (pr ivateHeader . PrivateHeader . DiskGroupGUID .

Replace (”−” , ””)) . ToLower () ;

S t r ing VMDBGUID = (MyVMDB.myVMDB. DiskGroupGUID . Replace (”−” , ””)) .

ToLower () ;

r e s u l t = St r ing . Equals (PrivHeadGUID , VMDBGUID, StringComparison .

Ordinal IgnoreCase) ;

i f (! r e s u l t)

r e turn ErrorCodes .SRVD VMDB FAILURE;

MyVBLK = new VBLK[MyVMDB. VBLKCount() + 1] ;

ulong k = 4 ;

f o r (i n t i = 4 ; k < MyVMDB. VBLKCount() +4; i++)

{

byte [] vblk = new byte [1 2 8] ;

f o r (i n t j = 0 ; j < 128 ; j++)

vblk [j] = LDM[Conf igStar t + (ulong) (i ∗128) + (ulong) j] ;

MyVBLK[k − 4] = new VBLK() ;

i f (!MyVBLK[k−4] . Parse (vblk))

re turn ErrorCodes .SRVD VBLK FAILURE;

i f (MyVBLK[k−4] .GetEmpty ())

{

MyVBLK[k−4] . I n i t i a l i z e () ;

cont inue ;

}

k++;

}

}

catch { re turn ErrorCodes .SRVD BAD DISK; }

f i n a l l y

132

{

i f (! diskHandle . Sa feF i l eHandle . I sC lo sed)

diskHandle . Close () ;

}

re turn ErrorCodes .SRVD OK;

}

Code/LDM.cs

A.3.1 Private Header

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t PrivHead

{

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 8)]

pub l i c S t r ing s i g n a t u r e ;

[MarshalAs (UnmanagedType . I4)]

pub l i c i n t seq ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 2)]

pub l i c S t r ing majvers ion ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 2)]

pub l i c S t r ing minvers ion ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong timestamp ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong number ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong s i z e 1 ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong s i z e 2 ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 64)]

pub l i c S t r ing DiskGUID ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 64)]

133

pub l i c S t r ing HostGUID ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 64)]

pub l i c S t r ing DiskGroupGUID ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 32)]

pub l i c S t r ing DiskGroupName ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 11)]

pub l i c S t r ing t ra sh ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong Log i ca lD i skSta r t ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong Log i ca lD i skS i z e ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong Con f i gu ra t i onSta r t ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong Con f i gu ra t i onS i z e ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong NumberofTOCs ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong TOCSize ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int NumberOfConfigs ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int NumberOfLogs ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong SizeOfConf ig ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong SizeOfLog ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 4)]

pub l i c S t r ing DiskS ignature ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 16)]

pub l i c S t r ing DiskSetGUID ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 16)]

134

pub l i c S t r ing DiskSetGUID2 ;

// pub l i c PrivHead (i n t num = 0)

//{

// s i g n a t u r e = new char [8] ;

// seq = 0 ;

// majvers ion = new char [2] ;

// minvers ion = new char [2] ;

// timestamp = 0L ;

// number = 0L ;

// s i z e 1 = 0L ;

// s i z e 2 = 0L ;

// DiskGUID = new char [6 4] ;

// HostGUID = new char [6 4] ;

// DiskGroupGUID = new char [6 4] ;

// DiskGroupName = new char [3 2] ;

// t ra sh = new char [1 1] ;

// Log i ca lD i skSta r t = 0L ;

// Log i ca lD i skS i z e = 0L ;

// Con f i gu ra t i onSta r t = 0L ;

// Con f i gu ra t i onS i z e = 0L ;

// NumberofTOCs = 0L ;

// TOCSize = 0L ;

// NumberOfConfigs = 0 ;

// NumberOfLogs = 0 ;

// SizeOfConf ig = 0L ;

// SizeOfLog = 0L ;

// DiskS ignature = new char [4] ;

// DiskSetGUID = new char [1 6] ;

// DiskSetGUID2 = new char [1 6] ;

//}

135

} ;

Code/PrivHead.cs

A.3.2 Table Of Contents Block

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t TOCBlock

{

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 8)]

pub l i c S t r ing S ignature ;

[MarshalAs (UnmanagedType . I4)]

pub l i c i n t Sequence ;

[MarshalAs (UnmanagedType . I4)]

pub l i c i n t Zero1 ;

[MarshalAs (UnmanagedType . I4)]

pub l i c i n t Sequence1 ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 16)]

pub l i c S t r ing Zero2 ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 8)]

pub l i c S t r ing BitmapName0 ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 2)]

pub l i c S t r ing BitmapFlags00 ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong BitmapStart0 ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong BitmapSize0 ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 8)]

pub l i c S t r ing BitmapFlags01 ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 8)]

pub l i c S t r ing BitmapName1 ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 2)]

pub l i c S t r ing BitmapFlags10 ;

[MarshalAs (UnmanagedType . U8)]

136

pub l i c ulong BitmapStart1 ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong BitmapSize1 ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 8)]

pub l i c S t r ing BitmapFlags11 ;

// pub l i c TOCBlock(i n t num = 0)

//{

// S ignature = new char [8] ;

// Sequence = 0 ;

// Zero1 = 0 ;

// Sequence1 = 0 ;

// Zero2 = new char [1 6] ;

// BitmapName0 = new char [8] ;

// BitmapFlags00 = new char [2] ;

// BitmapStart0 = 0L ;

// BitmapSize0 = 0L ;

// BitmapFlags01 = new char [8] ;

// BitmapName1 = new char [8] ;

// BitmapFlags10 = new char [2] ;

// BitmapStart1 = 0L ;

// BitmapSize1 = 0L ;

// BitmapFlags11 = new char [8] ;

//}

} ;

Code/TOCBlock.cs

A.3.3 Volume Master DataBase

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t vmdb

{

137

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 4)]

pub l i c S t r ing S ignature ;

[MarshalAs (UnmanagedType . I4)]

pub l i c i n t Sequence ;

[MarshalAs (UnmanagedType . I4)]

pub l i c i n t S i z e ;

[MarshalAs (UnmanagedType . I4)]

pub l i c i n t O f f s e t ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 2)]

pub l i c S t r ing UpdateStatus ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 2)]

pub l i c S t r ing MajorVersion ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 2)]

pub l i c S t r ing MinorVersion ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 31)]

pub l i c S t r ing DiskGroupName ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 64)]

pub l i c S t r ing DiskGroupGUID ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong CommittedSequence ;

[MarshalAs (UnmanagedType . U8)]

pub l i c ulong PendingSequence ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int NumberofCommittedVolumes ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int NumberofCommittedComponents ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int NumberofCommittedPartitions ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int NumberofCommittedDisks ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 12)]

pub l i c S t r ing unused ;

138

[MarshalAs (UnmanagedType . U4)]

pub l i c u int NumberofPendingVolumes ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int NumberofPendingComponents ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int NumberofPendingPart it ions ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int NumberofPendingDisks ;

[MarshalAs (UnmanagedType . ByValTStr , S izeConst = 12)]

pub l i c S t r ing unused1 ;

[MarshalAs (UnmanagedType . I4)]

pub l i c i n t lastAccessedTime ;

// pub l i c vmdb(i n t none = 0)

//{

// S ignature = new char [4] ;

// Sequence = 0 ;

// S i z e = 0 ;

// O f f s e t = 0 ;

// UpdateStatus = new char [2] ;

// MajorVersion = new char [2] ;

// MinorVersion = new char [2] ;

// DiskGroupName = new char [3 1] ;

// DiskGroupGUID = new char [6 4] ;

// CommittedSequence = 0L ;

// PendingSequence = 0L ;

// NumberofCommittedVolumes = 0 ;

// NumberofCommittedComponents = 0 ;

// NumberofCommittedPartitions = 0 ;

// NumberofCommittedDisks = 0 ;

// unused = new char [1 2] ;

// NumberofPendingVolumes = 0 ;

139

// NumberofPendingComponents = 0 ;

// NumberofPendingPartit ions = 0 ;

// NumberofPendingDisks = 0 ;

// unused1 = new char [1 2] ;

// lastAccessedTime = 0 ;

//}

} ;

Code/VMDB.cs

A.3.4 Volume BLocK

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t VBLKHeader

{

[MarshalAs (UnmanagedType . U4)]

pub l i c u int S ignature ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int Sequence ;

[MarshalAs (UnmanagedType . U4)]

pub l i c u int GroupNumber ;

[MarshalAs (UnmanagedType . U2)]

pub l i c ushort RecordNumber ;

[MarshalAs (UnmanagedType . U2)]

pub l i c ushort NumberofRecords ;

[MarshalAs (UnmanagedType . U2)]

pub l i c ushort UpdateStatus ;

[MarshalAs (UnmanagedType . U2)]

pub l i c ushort RecordType ;

[MarshalAs (UnmanagedType . I4)]

pub l i c i n t DataLength ;

// pub l i c VBLKHeader(i n t none = 0)

//{

140

// S ignature = new char [4] ;

// Sequence = 0 ;

// GroupNumber = 0 ;

// RecordNumber = 0 ;

// NumberofRecords = 0 ;

// UpdateStatus = new char [2] ;

// RecordType = new char [2] ;

// DataLength = 0 ;

//}

} ;

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t VBLKComponent{

pub l i c ulong ObjectID ;

pub l i c S t r ing Name ;

pub l i c ushort Name length ;

pub l i c S t r ing VolumeState ;

pub l i c ushort VolumeState length ;

pub l i c byte ComponentType ;

pub l i c ulong NumberofChildren ;

pub l i c ulong LogCommitId ;

pub l i c ulong ParentID ;

pub l i c ulong S t r i p e S i z e ;

pub l i c ulong NumberofColumns ;

} ;

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t VBLKPartition{

pub l i c ulong ObjectID ;

pub l i c S t r ing Name ;

pub l i c ushort Name length ;

pub l i c ulong LogCommitId ;

141

pub l i c ulong Star t ;

pub l i c ulong VolumeOffset ;

pub l i c ulong S i z e ;

pub l i c ulong ParentsObjectID ;

pub l i c ulong DisksObjectID ;

pub l i c ulong ComponentPartIndex ;

} ;

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t VBLKDisk1{

pub l i c ulong ObjectID ;

pub l i c S t r ing Name ;

pub l i c ushort Name length ;

pub l i c S t r ing DiskID ;

pub l i c ushort DiskID length ;

pub l i c S t r ing AlternateName ;

pub l i c ushort AlternateName length ;

pub l i c ulong LogCommitId ;

} ;

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t VBLKDisk2{

pub l i c ulong ObjectID ;

pub l i c S t r ing Name ;

pub l i c ushort Name length ;

pub l i c S t r ing DiskID1 ;

pub l i c S t r ing DiskID2 ;

pub l i c ushort ID ;

pub l i c ulong LogCommitId ;

pub l i c VBLKDisk2(i n t none = 0)

{

142

ObjectID = 0L ;

Name = ”” ;

Name length = 0 ;

DiskID1 = ”” ;

DiskID2 = ”” ;

ID = 0 ;

LogCommitId = 0L ;

}

} ;

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t VBLKDiskGroup1{

pub l i c ulong ObjectID ;

pub l i c S t r ing Name ;

pub l i c ushort Name length ;

pub l i c S t r ing DiskGroupID ;

pub l i c ushort DiskGroupID length ;

pub l i c ulong LogCommitId ;

} ;

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t VBLKDiskGroup2{

pub l i c ulong ObjectID ;

pub l i c S t r ing Name ;

pub l i c ushort Name length ;

pub l i c byte [] DiskGroupID ;

pub l i c byte [] DiskSetID ;

pub l i c ulong LogCommitId ;

pub l i c VBLKDiskGroup2(i n t none = 0)

{

ObjectID = 0L ;

143

Name = ”” ;

Name length = 0 ;

DiskGroupID = new byte [1 6] ;

DiskSetID = new byte [1 6] ;

LogCommitId = 0L ;

}

} ;

[StructLayout (LayoutKind . Sequent ia l , Pack = 1)]

pub l i c s t r u c t VBLKVolume

{

pub l i c ulong ObjectID ;

pub l i c S t r ing Name ;

pub l i c ushort Name length ;

pub l i c S t r ing VolumeType ;

pub l i c ushort VolumeType length ;

pub l i c byte [] VolumeState ;

pub l i c char VolumeType1 ;

pub l i c char VolumeNumber ;

pub l i c char Flag ;

pub l i c ulong NumberofChildren ;

pub l i c ulong LogCommitId ;

pub l i c byte [] Id ;

pub l i c ulong S i z e ;

pub l i c char Part i t ionType ;

pub l i c byte [] VolumeID ;

pub l i c S t r ing Id1 ;

pub l i c ushort Id1 l eng th ;

pub l i c S t r ing Id2 ;

pub l i c ushort Id2 l eng th ;

pub l i c ulong OptSize ;

pub l i c S t r ing DriveHint ;

144

pub l i c ushort Dr iveHint l ength ;

pub l i c VBLKVolume(i n t none = 0)

{

ObjectID = 0L ;

Name = ”” ;

Name length = 0 ;

VolumeType = ”” ;

VolumeType length = 0 ;

VolumeState = new byte [1 4] ;

VolumeType1 =’ ’ ;

VolumeNumber = ’ ’ ;

Flag = ’ ’ ;

NumberofChildren = 0L ;

LogCommitId = 0L ;

Id = new byte [8] ;

S i z e = 0L ;

Part i t ionType = ’ ’ ;

VolumeID = new byte [1 6] ;

Id1 = ”” ;

Id1 l eng th = 0 ;

Id2 = ”” ;

Id2 l eng th = 0 ;

OptSize = 0L ;

DriveHint = ”” ;

Dr iveHint l ength = 0 ;

}

} ;

pub l i c c l a s s VBLK

{

pub l i c VBLKHeader myVBLKHeader ;

145

pub l i c VBLKComponent myVBLKComponent ;

pub l i c VBLKPartition myVBLKPartition ;

pub l i c VBLKDisk1 myVBLKDisk1 ;

pub l i c VBLKDisk2 myVBLKDisk2 ;

pub l i c VBLKDiskGroup1 myVBLKDiskGroup1 ;

pub l i c VBLKDiskGroup2 myVBLKDiskGroup2 ;

pub l i c VBLKVolume myVBLKVolume ;

pub l i c bool f a i l ;

pub l i c bool empty ;

pub l i c bool Volume ;

pub l i c bool Component ;

pub l i c bool P a r t i t i o n ;

pub l i c bool Disk1 ;

pub l i c bool Disk2 ;

pub l i c bool DiskGroup1 ;

pub l i c bool DiskGroup2 ;

pub l i c i n t Chi ldren ;

pub l i c i n t Ch i ld r en l eng th ;

pub l i c i n t Parent ;

pub l i c VBLK()

{

I n i t i a l i z e () ;

}

pub l i c void I n i t i a l i z e ()

{

f a i l = f a l s e ;

empty = f a l s e ;

Volume = f a l s e ;

Component = f a l s e ;

P a r t i t i o n = f a l s e ;

146

Disk1 = f a l s e ;

Disk2 = f a l s e ;

DiskGroup1 = f a l s e ;

DiskGroup2 = f a l s e ;

Ch i ld r en l eng th = 0 ;

}

pub l i c bool Parse (byte [] rawarray)

{

i n t i = 0 ;

shor t l ength = 0 ;

bool even = f a l s e ;

byte Length ;

I n i t i a l i z e () ;

GCHandle pinnedHeader = GCHandle . A l loc (rawarray , GCHandleType .

Pinned) ;

VBLKHeader tempHeader = (VBLKHeader) Marshal . PtrToStructure (

pinnedHeader . AddrOfPinnedObject () ,

typeo f (VBLKHeader)) ;

myVBLKHeader = tempHeader ;

pinnedHeader . Free () ;

i n t count = Marshal . S izeOf (myVBLKHeader) ;

i f (BitConverter . I s L i t t l e E n d i a n)

{

myVBLKHeader . Sequence = (u int) IPAddress . HostToNetworkOrder ((i n t

)myVBLKHeader . Sequence) ;

myVBLKHeader . GroupNumber = (u int) IPAddress . HostToNetworkOrder ((

i n t)myVBLKHeader . GroupNumber) ;

myVBLKHeader . RecordNumber = (ushort) IPAddress .

HostToNetworkOrder ((shor t)myVBLKHeader . RecordNumber) ;

147

myVBLKHeader . NumberofRecords = (ushort) IPAddress .

HostToNetworkOrder ((shor t)myVBLKHeader . NumberofRecords) ;

myVBLKHeader . DataLength = IPAddress . HostToNetworkOrder (

myVBLKHeader . DataLength) ;

}

i f (myVBLKHeader . UpdateStatus%2 != 0)

f a i l = true ;

//RecordType

{

byte [] recordType = BitConverter . GetBytes (myVBLKHeader .

RecordType) ;

i f (recordType . Length < 2)

re turn f a l s e ;

i f (recordType [1] == 0x32)

{

Component = true ;

myVBLKComponent = new VBLKComponent () ;

}

e l s e i f (recordType [1] == 0x33)

{

P a r t i t i o n = true ;

myVBLKPartition = new VBLKPartition () ;

}

e l s e i f (recordType [1] == 0x34)

{

Disk1 = true ;

myVBLKDisk1 = new VBLKDisk1 () ;

}

148

e l s e i f (recordType [1] == 0x35)

{

DiskGroup1 = true ;

myVBLKDiskGroup1 = new VBLKDiskGroup1 () ;

}

e l s e i f (recordType [1] == 0x44)

{

Disk2 = true ;

myVBLKDisk2 = new VBLKDisk2 (0) ;

}

e l s e i f (recordType [1] == 0x45)

{

DiskGroup2 = true ;

myVBLKDiskGroup2 = new VBLKDiskGroup2 (0) ;

}

e l s e i f (recordType [1] == 0x51)

{

Volume = true ;

myVBLKVolume = new VBLKVolume(0) ;

}

}

i f (Component)

{

// ObjectID

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

149

byte [] ObjectID ;

i f (even)

{

ObjectID = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i] = rawarray [count + i] ;

}

e l s e

{

ObjectID = new byte [l ength + 1] ;

ObjectID [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i +1] = rawarray [count + i] ;

}

myVBLKComponent . ObjectID = convertValue (ObjectID , l ength) ;

count += length ;

}

//Name

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempName = new char [l ength] ;

myVBLKComponent . Name length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempName [i] = (char) rawarray [count + i] ;

myVBLKComponent .Name = new St r ing (tempName) ;

count += length ;

}

// VolumeState

150

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempVolState = new char [l ength] ;

myVBLKComponent . VolumeState length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempVolState [i] = (char) rawarray [count + i] ;

myVBLKComponent . VolumeState = new St r ing (tempVolState) ;

count += length ;

}

myVBLKComponent . ComponentType = rawarray [count] ;

count += 1 ;

// Zero

count += 4 ;

// NumberofChildren

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] NumberofChildren ;

i f (even)

{

NumberofChildren = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

NumberofChildren [i] = rawarray [count + i] ;

}

151

e l s e

{

NumberofChildren = new byte [l ength + 1] ;

NumberofChildren [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

NumberofChildren [i +1] = rawarray [count + i] ;

}

myVBLKComponent . NumberofChildren = convertValue (

NumberofChildren , l ength) ;

count += length ;

}

myVBLKComponent . LogCommitId = (ulong) BitConverter . ToInt64 (

rawarray , count) ;

count += 8 ;

// Zero

count += 8 ;

// ParentID

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] ParentID ;

i f (even)

{

ParentID = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

ParentID [i] = rawarray [count + i] ;

152

}

e l s e

{

ParentID = new byte [l ength + 1] ;

ParentID [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

ParentID [i +1] = rawarray [count + i] ;

}

myVBLKComponent . ParentID = convertValue (ParentID , l ength) ;

count += length ;

}

// Zero

count += 1 ;

byte [] recordType = BitConverter . GetBytes (myVBLKHeader .

RecordType) ;

i f (recordType . Length < 2)

re turn f a l s e ;

i f (recordType [0] == 0x10)

{

// S t r i p e S i z e

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] S t r i p e S i z e ;

i f (even)

{

153

S t r i p e S i z e = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

S t r i p e S i z e [i] = rawarray [count + i] ;

}

e l s e

{

S t r i p e S i z e = new byte [l ength + 1] ;

S t r i p e S i z e [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

S t r i p e S i z e [i +1] = rawarray [count + i] ;

}

myVBLKComponent . S t r i p e S i z e = convertValue (S t r i p e S i z e ,

l ength) ;

count += length ;

}

//NumberofColumns

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] NumberofColumns ;

i f (even)

{

NumberofColumns = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

NumberofColumns [i] = rawarray [count + i] ;

}

e l s e

{

154

NumberofColumns = new byte [l ength + 1] ;

NumberofColumns [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

NumberofColumns [i +1] = rawarray [count + i] ;

}

myVBLKComponent . NumberofColumns = convertValue (

NumberofColumns , l ength) ;

count += length ;

}

}

i f (BitConverter . I s L i t t l e E n d i a n)

{

myVBLKComponent . LogCommitId = (ulong) IPAddress .

HostToNetworkOrder ((long)myVBLKComponent . LogCommitId) ;

}

}

e l s e i f (P a r t i t i o n)

{

// ObjectID

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] ObjectID ;

i f (even)

{

ObjectID = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i] = rawarray [count + i] ;

155

}

e l s e

{

ObjectID = new byte [l ength + 1] ;

ObjectID [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i +1] = rawarray [count + i] ;

}

myVBLKPartition . ObjectID = convertValue (ObjectID , l ength) ;

count += length ;

}

//Name

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr = new char [l ength] ;

myVBLKPartition . Name length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKPartition .Name = new St r ing (tempStr) ;

count += length ;

}

// Zero

count += 4 ;

byte [] temp = new byte [8] ;

Array . ConstrainedCopy (rawarray , count , temp , 0 , 8) ;

myVBLKPartition . LogCommitId = (ulong) BitConverter . ToInt64 (temp ,

0) ;

156

count += 8 ;

Array . ConstrainedCopy (rawarray , count , temp , 0 , 8) ;

myVBLKPartition . S ta r t = (ulong) BitConverter . ToInt64 (temp , 0) ;

count += 8 ;

Array . ConstrainedCopy (rawarray , count , temp , 0 , 8) ;

myVBLKPartition . VolumeOffset = (ulong) BitConverter . ToInt64 (temp

, 0) ;

count += 8 ;

// S i z e

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] s i z e ;

i f (even)

{

s i z e = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

s i z e [i] = rawarray [count + i] ;

}

e l s e

{

s i z e = new byte [l ength + 1] ;

s i z e [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

s i z e [i +1] = rawarray [count + i] ;

}

myVBLKPartition . S i z e = convertValue (s i z e , l ength) ;

count += length ;

157

}

// ParentsObjectID

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] ParentsObjectID ;

i f (even)

{

ParentsObjectID = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

ParentsObjectID [i] = rawarray [count + i] ;

}

e l s e

{

ParentsObjectID = new byte [l ength + 1] ;

ParentsObjectID [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

ParentsObjectID [i +1] = rawarray [count + i] ;

}

myVBLKPartition . ParentsObjectID = convertValue (

ParentsObjectID , l ength) ;

count += length ;

}

// DisksObjectID

{

Length = rawarray [count] ;

count++;

158

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] DisksObjectID ;

i f (even)

{

DisksObjectID = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

DisksObjectID [i] = rawarray [count + i] ;

}

e l s e

{

DisksObjectID = new byte [l ength + 1] ;

DisksObjectID [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

DisksObjectID [i +1] = rawarray [count + i] ;

}

myVBLKPartition . DisksObjectID = convertValue (DisksObjectID ,

l ength) ;

count += length ;

}

//ComponentPartIndex

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] ComponentPartIndex ;

i f (even)

{

159

ComponentPartIndex = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

ComponentPartIndex [i] = rawarray [count + i] ;

}

e l s e

{

ComponentPartIndex = new byte [l ength + 1] ;

ComponentPartIndex [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

ComponentPartIndex [i +1] = rawarray [count + i] ;

}

myVBLKPartition . ComponentPartIndex = convertValue (

ComponentPartIndex , l ength) ;

count += length ;

}

i f (BitConverter . I s L i t t l e E n d i a n)

{

myVBLKPartition . LogCommitId = (ulong) IPAddress .

HostToNetworkOrder ((long) myVBLKPartition . LogCommitId) ;

myVBLKPartition . S ta r t = (ulong) IPAddress . HostToNetworkOrder ((

long) myVBLKPartition . S ta r t) ;

myVBLKPartition . VolumeOffset = (ulong) IPAddress .

HostToNetworkOrder ((long) myVBLKPartition . VolumeOffset) ;

}

}

e l s e i f (Disk1)

{

// ObjectID

{

Length = rawarray [count] ;

count++;

160

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] ObjectID ;

i f (even)

{

ObjectID = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i] = rawarray [count + i] ;

}

e l s e

{

ObjectID = new byte [l ength + 1] ;

ObjectID [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i +1] = rawarray [count + i] ;

}

myVBLKDisk1 . ObjectID = convertValue (ObjectID , l ength) ;

count += length ;

}

//Name

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr = new char [l ength] ;

myVBLKDisk1 . Name length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKDisk1 .Name = new St r ing (tempStr) ;

count += length ;

161

}

// DiskID

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr = new char [l ength] ;

myVBLKDisk1 . DiskID length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKDisk1 . DiskID = new St r ing (tempStr) ;

count += length ;

}

// AlternateName

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr = new char [l ength] ;

myVBLKDisk1 . AlternateName length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKDisk1 . AlternateName = new St r ing (tempStr) ;

count += length ;

}

// Zero

count += 4 ;

myVBLKDisk1 . LogCommitId = (ulong) (rawarray [count]) ;

162

count += 8 ;

i f (BitConverter . I s L i t t l e E n d i a n)

{

myVBLKDisk1 . LogCommitId = (ulong) IPAddress . HostToNetworkOrder

((long)myVBLKDisk1 . LogCommitId) ;

}

}

e l s e i f (Disk2)

{

// ObjectID

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] ObjectID ;

i f (even)

{

ObjectID = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i] = rawarray [count + i] ;

}

e l s e

{

ObjectID = new byte [l ength + 1] ;

ObjectID [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i +1] = rawarray [count + i] ;

}

myVBLKDisk2 . ObjectID = convertValue (ObjectID , l ength) ;

163

count += length ;

}

//Name

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr = new char [l ength] ;

myVBLKDisk2 . Name length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKDisk2 .Name = new St r ing (tempStr) ;

count += length ;

}

// DiskID1

{

l ength = 16 ;

char [] tempStr = new char [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKDisk2 . DiskID1 = new St r ing (tempStr) ;

}

count += 16 ;

// DiskID2

{

l ength = 16 ;

char [] tempStr = new char [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

164

myVBLKDisk2 . DiskID2 = new St r ing (tempStr) ;

}

count += 16 ;

// Zero

count += 3 ;

myVBLKDisk2 . ID = (ushort) (rawarray [count]) ;

count += 2 ;

myVBLKDisk2 . LogCommitId = (ulong) (rawarray [count]) ;

count += 8 ;

i f (BitConverter . I s L i t t l e E n d i a n)

{

myVBLKDisk2 . ID = (ushort) IPAddress . HostToNetworkOrder (

myVBLKDisk2 . ID) ;

myVBLKDisk2 . LogCommitId = (ulong) ((long)myVBLKDisk2 .

LogCommitId) ;

}

}

e l s e i f (DiskGroup1)

{

// ObjectID

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] ObjectID ;

i f (even)

165

{

ObjectID = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i] = rawarray [count + i] ;

}

e l s e

{

ObjectID = new byte [l ength + 1] ;

ObjectID [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i +1] = rawarray [count + i] ;

}

myVBLKDiskGroup1 . ObjectID = convertValue (ObjectID , l ength) ;

count += length ;

}

//Name

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr = new char [l ength] ;

myVBLKDiskGroup1 . Name length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKDiskGroup1 .Name = new St r ing (tempStr) ;

count += length ;

}

//DiskGroupID

{

Length = rawarray [count] ;

166

count++;

l ength = (shor t) Length ;

char [] tempStr = new char [l ength] ;

myVBLKDiskGroup1 . DiskGroupID length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKDiskGroup1 . DiskGroupID = new St r ing (tempStr) ;

count += length ;

}

// Zero

count += 4 ;

myVBLKDiskGroup1 . LogCommitId = (ulong) (rawarray [count]) ;

count += 8 ;

i f (BitConverter . I s L i t t l e E n d i a n)

{

myVBLKDiskGroup1 . LogCommitId = (ulong) IPAddress .

HostToNetworkOrder ((long)myVBLKDiskGroup1 . LogCommitId) ;

}

}

e l s e i f (DiskGroup2)

{

// ObjectID

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] ObjectID ;

167

i f (even)

{

ObjectID = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i] = rawarray [count + i] ;

}

e l s e

{

ObjectID = new byte [l ength + 1] ;

ObjectID [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i +1] = rawarray [count + i] ;

}

myVBLKDiskGroup2 . ObjectID = convertValue (ObjectID , l ength) ;

count += length ;

}

//Name

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr = new char [l ength] ;

myVBLKDiskGroup2 . Name length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKDiskGroup2 .Name = new St r ing (tempStr) ;

count += length ;

}

Array . ConstrainedCopy (rawarray , count , myVBLKDiskGroup2 .

DiskGroupID , 0 , 16) ;

168

count += 16 ;

Array . ConstrainedCopy (rawarray , count , myVBLKDiskGroup2 .

DiskGroupID , 0 , 16) ;

count += 16 ;

// Zero

count += 4 ;

myVBLKDiskGroup2 . LogCommitId = (ulong) (rawarray [count]) ;

i f (BitConverter . I s L i t t l e E n d i a n)

{

myVBLKDiskGroup2 . LogCommitId = (ulong) IPAddress .

HostToNetworkOrder ((long)myVBLKDiskGroup2 . LogCommitId) ;

}

}

e l s e i f (Volume)

{

// ObjectID

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] ObjectID ;

i f (even)

{

ObjectID = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i] = rawarray [count + i] ;

169

}

e l s e

{

ObjectID = new byte [l ength + 1] ;

ObjectID [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

ObjectID [i +1] = rawarray [count + i] ;

}

myVBLKVolume . ObjectID = convertValue (ObjectID , l ength) ;

count += length ;

}

//Name

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr = new char [l ength] ;

myVBLKVolume . Name length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume .Name = new St r ing (tempStr) ;

count += length ;

}

//VolumeType

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr = new char [l ength] ;

tempStr = new char [l ength] ;

170

myVBLKVolume . VolumeType length = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . VolumeType = new St r ing (tempStr) ;

count += length ;

}

// Zero

count += 1 ;

Array . ConstrainedCopy (rawarray , count , myVBLKVolume . VolumeState

, 0 , 14) ;

count += 14 ;

myVBLKVolume . VolumeType1 = (char) (rawarray [count]) ;

count += 1 ;

//One

count += 1 ;

myVBLKVolume . VolumeNumber = (char) (rawarray [count]) ;

count += 1 ;

// Zero

count += 3 ;

myVBLKVolume . Flag = (char) (rawarray [count]) ;

count += 1 ;

// NumberofChildren

{

Length = rawarray [count] ;

171

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] NumberofChildren ;

i f (even)

{

NumberofChildren = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

NumberofChildren [i] = rawarray [count + i] ;

}

e l s e

{

NumberofChildren = new byte [l ength + 1] ;

NumberofChildren [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

NumberofChildren [i +1] = rawarray [count + i] ;

}

myVBLKVolume . NumberofChildren = convertValue (NumberofChildren

, l ength) ;

count += length ;

}

myVBLKVolume . LogCommitId = (ulong) (rawarray [count]) ;

count += 8 ;

Array . ConstrainedCopy (rawarray , count , myVBLKVolume . Id , 0 , 8) ;

count += 8 ;

// S i z e

{

Length = rawarray [count] ;

172

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] s i z e ;

i f (even)

{

s i z e = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

s i z e [i] = rawarray [count + i] ;

}

e l s e

{

s i z e = new byte [l ength + 1] ;

s i z e [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

s i z e [i +1] = rawarray [count + i] ;

}

myVBLKVolume . S i z e = convertValue (s i z e , l ength) ;

count += length ;

}

// Zero

count += 4 ;

myVBLKVolume . Part i t ionType = (char) (rawarray [count]) ;

count += 1 ;

Array . ConstrainedCopy (rawarray , count , myVBLKVolume . VolumeID ,

0 , 16) ;

count += 16 ;

173

byte [] recordType = BitConverter . GetBytes (myVBLKHeader .

RecordType) ;

i f (recordType . Length < 2)

re turn f a l s e ;

// Optional In format ion Based on RecordType f l a g

i f (recordType [0] == 0x08)

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr ;

tempStr = new char [l ength] ;

myVBLKVolume . Id1 l eng th = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . Id1 = new St r ing (tempStr) ;

count += length ;

}

e l s e i f (recordType [0] == 0x20)

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr ;

tempStr = new char [l ength] ;

myVBLKVolume . Id2 l eng th = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . Id2 = new St r ing (tempStr) ;

count += length ;

}

174

e l s e i f (recordType [0] == 0x80)

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] OptSize ;

i f (even)

{

OptSize = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i] = rawarray [count + i] ;

}

e l s e

{

OptSize = new byte [l ength + 1] ;

OptSize [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i +1] = rawarray [count + i] ;

}

myVBLKVolume . OptSize = convertValue (OptSize , l ength) ;

count += length ;

}

e l s e i f (recordType [0] == 0x02)

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr ;

tempStr = new char [l ength] ;

myVBLKVolume . Dr iveHint l ength = (ushort) l ength ;

175

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . DriveHint = new St r ing (tempStr) ;

count += length ;

}

e l s e i f (recordType [0] == 0x88)

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr ;

tempStr = new char [l ength] ;

myVBLKVolume . Id1 l eng th = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . Id1 = new St r ing (tempStr) ;

count += length ;

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] OptSize ;

i f (even)

{

OptSize = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i] = rawarray [count + i] ;

}

e l s e

{

176

OptSize = new byte [l ength + 1] ;

OptSize [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i +1] = rawarray [count + i] ;

}

myVBLKVolume . OptSize = convertValue (OptSize , l ength) ;

count += length ;

}

e l s e i f (recordType [0] == 0x0A)

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr ;

tempStr = new char [l ength] ;

myVBLKVolume . Id1 l eng th = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . Id1 = new St r ing (tempStr) ;

count += length ;

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

tempStr = new char [l ength] ;

myVBLKVolume . Dr iveHint l ength = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . DriveHint = new St r ing (tempStr) ;

count += length ;

}

e l s e i f (recordType [0] == 0x8A)

177

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr ;

tempStr = new char [l ength] ;

myVBLKVolume . Id1 l eng th = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . Id1 = new St r ing (tempStr) ;

count += length ;

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] OptSize ;

i f (even)

{

OptSize = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i] = rawarray [count + i] ;

}

e l s e

{

OptSize = new byte [l ength + 1] ;

OptSize [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i +1] = rawarray [count + i] ;

}

myVBLKVolume . OptSize = convertValue (OptSize , l ength) ;

178

count += length ;

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

tempStr = new char [l ength] ;

myVBLKVolume . Dr iveHint l ength = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . DriveHint = new St r ing (tempStr) ;

count += length ;

}

e l s e i f (recordType [0] == 0xA0)

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr ;

tempStr = new char [l ength] ;

myVBLKVolume . Id2 l eng th = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . Id2 = new St r ing (tempStr) ;

count += length ;

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] OptSize ;

i f (even)

179

{

OptSize = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i] = rawarray [count + i] ;

}

e l s e

{

OptSize = new byte [l ength + 1] ;

OptSize [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i +1] = rawarray [count + i] ;

}

myVBLKVolume . OptSize = convertValue (OptSize , l ength) ;

count += length ;

}

e l s e i f (recordType [0] == 0x22)

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr ;

tempStr = new char [l ength] ;

myVBLKVolume . Id2 l eng th = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . Id2 = new St r ing (tempStr) ;

count += length ;

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

tempStr = new char [l ength] ;

180

myVBLKVolume . Dr iveHint l ength = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . DriveHint = new St r ing (tempStr) ;

count += length ;

}

e l s e i f (recordType [0] == 0xA2)

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr ;

tempStr = new char [l ength] ;

myVBLKVolume . Id2 l eng th = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . Id2 = new St r ing (tempStr) ;

count += length ;

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] OptSize ;

i f (even)

{

OptSize = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i] = rawarray [count + i] ;

}

e l s e

181

{

OptSize = new byte [l ength + 1] ;

OptSize [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i +1] = rawarray [count + i] ;

}

myVBLKVolume . OptSize = convertValue (OptSize , l ength) ;

count += length ;

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

tempStr = new char [l ength] ;

myVBLKVolume . Dr iveHint l ength = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . DriveHint = new St r ing (tempStr) ;

count += length ;

}

e l s e i f (recordType [0] == 0x82)

{

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

even = true ;

i f (l ength%2 != 0) even = f a l s e ;

byte [] OptSize ;

i f (even)

{

OptSize = new byte [l ength] ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i] = rawarray [count + i] ;

182

}

e l s e

{

OptSize = new byte [l ength + 1] ;

OptSize [0] = 0x00 ;

f o r (i = 0 ; i < l ength ; i++)

OptSize [i +1] = rawarray [count + i] ;

}

myVBLKVolume . OptSize = convertValue (OptSize , l ength) ;

count += length ;

Length = rawarray [count] ;

count++;

l ength = (shor t) Length ;

char [] tempStr ;

tempStr = new char [l ength] ;

myVBLKVolume . Dr iveHint l ength = (ushort) l ength ;

f o r (i = 0 ; i < l ength ; i++)

tempStr [i] = (char) rawarray [count + i] ;

myVBLKVolume . DriveHint = new St r ing (tempStr) ;

count += length ;

}

i f (BitConverter . I s L i t t l e E n d i a n)

{

myVBLKVolume . LogCommitId = (ulong) IPAddress .

HostToNetworkOrder ((long)myVBLKVolume . LogCommitId) ;

}

}

i f (myVBLKHeader . NumberofRecords == 0)

empty = true ;

183

re turn ! f a i l ;

}

p r i v a t e ulong convertValue (byte [] rawarray , shor t l ength)

{

ulong returnVal = 0L ;

i f (l ength == 0)

return 0 ;

i f (l ength <= 2)

{

shor t in t e rmed ia t e = 0 ;

in t e rmed ia t e = BitConverter . ToInt16 (rawarray , 0) ;

i f (BitConverter . I s L i t t l e E n d i a n)

returnVal = (ulong) IPAddress . HostToNetworkOrder (in t e rmed ia t e)

;

}

e l s e i f (l ength <= 4)

{

i n t in t e rmed ia t e = 0 ;

in t e rmed ia t e = BitConverter . ToInt32 (rawarray , 0) ;

i f (BitConverter . I s L i t t l e E n d i a n)

returnVal = (ulong) IPAddress . HostToNetworkOrder (in t e rmed ia t e)

;

}

e l s e i f (l ength <= 8)

{

returnVal = (ulong) BitConverter . ToInt64 (rawarray , 0) ;

i f (BitConverter . I s L i t t l e E n d i a n)

returnVal = (ulong) IPAddress . HostToNetworkOrder ((long)

returnVal) ;

}

re turn returnVal ;

184

}

}

Code/VBLK.cs

185

APPENDIX B

Important Driver Code

B.1 RAID Configuration Storing

//

///

//

// CreateConnection

//

// Creates a connect ion to the s p e c i f i e d volume , i f i t does not

a l r eady

// e x i s t s .

//

// INPUTS:

//

// PGInfo − Pointer to the Global In format ion BLock .

//

// PConnectInfo − Pointer to the connect ion in fo rmat ion to c r e a t e

//

// OUTPUTS:

//

// None .

//

// RETURNS:

//

// STATUS SUCCESS i f okay , an e r r o r o therw i se .

//

// IRQL :

//

// This r ou t in e i s c a l l e d at any IRQL PASSIVE LEVEL .

186

//

// NOTES:

//

//

///

NTSTATUS CreateConnection (PUSER GLOBAL INFORMATION PGInfo ,

PCONNECT IN PConnectInfo)

{

NTSTATUS s t a t u s = STATUS UNSUCCESSFUL;

IO STATUS BLOCK ioSta tu s ;

BOOLEAN bInse r t ed = FALSE;

OBJECT ATTRIBUTES o b j e c t A t t r i b u t e s ;

UNICODE STRING uStr ing ;

KIRQL o l d I r q l ;

GUID tmpGuid ;

ULONG bytesReturned ;

OsrTracePrint (TRACE LEVEL VERBOSE,OSRVMINIPT DEBUG FUNCTRACE, (

FUNCTION ” : Enter\n”)) ;

//

// See i f we a l r eady have a connect ion that matches t h i s .

//

i f (FindConnectionMatch (PGInfo , PConnectInfo ,NULL)) {

re turn STATUS OBJECT NAME COLLISION;

}

RtlZeroMemory(&tmpGuid , s i z e o f (GUID)) ;

//

// Add the connect ion to the l i s t .

187

//

PCONNECTION LIST ENTRY pEntry = (PCONNECTION LIST ENTRY)

ExAllocatePoolWithTag (NonPagedPool , s i z e o f (CONNECTION LIST ENTRY) ,

’pCLE ’) ;

i f (! pEntry) {

re turn STATUS INSUFFICIENT RESOURCES;

}

RtlZeroMemory (pEntry , s i z e o f (CONNECTION LIST ENTRY)) ;

OsrAcquireSpinLock(&PGInfo−>ConnectionListLock ,& o l d I r q l) ;

I n s e r t T a i l L i s t (&PGInfo−>Connect ionList ,&pEntry−>ListEntry) ;

OsrReleaseSpinLock(&PGInfo−>ConnectionListLock , o l d I r q l) ;

b Inse r t ed = TRUE;

// I get a warning i f I don ’ t use wcscpy s which should be de f ined

in <wchar . h> but even i n c l u d i n g that

// I get a l i n k e r e r r o r so I have j u s t commented i t out f o r now

StringCchCopyW (pEntry−>VolumeID , s i z e o f (pEntry−>VolumeID) / s i z e o f (

WCHAR) , PConnectInfo−>VolumeID) ;

// wcscpy (pEntry−>VolumeID , PConnectInfo−>VolumeID) ;

KdPrint ((”VolumeID : %s ” , pEntry−>VolumeID)) ;

pEntry−>Tota lDi skS ize = 0 ;

pEntry−>NumOfDisks = PConnectInfo−>NumOfDisks ;

KdPrint ((”NumOfDisks : %d” , pEntry−>NumOfDisks)) ;

pEntry−>Raid = PConnectInfo−>Raid ;

KdPrint ((”Raid : %d” , pEntry−>Raid)) ;

pEntry−>S t r i p e S i z e = PConnectInfo−>S t r i p e S i z e ;

188

KdPrint ((” S t r i p e S i z e : %d” , pEntry−>S t r i p e S i z e)) ;

pEntry−>S e c t o r S i z e = PConnectInfo−>S e c t o r S i z e ;

KdPrint ((” S e c t o r S i z e : %d” , pEntry−>S e c t o r S i z e)) ;

f o r (unsigned i n t i = 0 ; i < pEntry−>NumOfDisks ; i++)

{

pEntry−>Tota lDiskS ize += PConnectInfo−>DiskS ize [i] ;

}

KdPrint ((” Tota lDi skS ize : %d” , pEntry−>Tota lDi skS ize)) ;

f o r (unsigned i n t i = 0 ; i < pEntry−>NumOfDisks ; i++)

{

pEntry−>DiskStart [i] = PConnectInfo−>DiskStart [i] ;

pEntry−>DiskS ize [i] = PConnectInfo−>DiskS ize [i] ;

KdPrint ((” DiskStart : %d” , pEntry−>DiskStart [i])) ;

KdPrint ((” DiskS ize : %d” , pEntry−>DiskS ize [i])) ;

}

f o r (unsigned i n t i = 0 ; i < pEntry−>NumOfDisks ; i++)

{

StringCchCopyW (pEntry−>DiskPath [i] , s i z e o f (pEntry−>DiskPath [i]) /

s i z e o f (WCHAR) , PConnectInfo−>DiskPath [i]) ;

KdPrint ((”DiskPath : %s ” , pEntry−>DiskPath [i])) ;

}

//

// For our Vi r tua l Disks , i t comes from the Disk Header .

//

s t a t u s = ExUuidCreate(&tmpGuid) ;

i f (! NT SUCCESS(s t a t u s)) {

189

goto c l eanupAfterError ;

}

//

// We now have the in fo rmat ion about the f i l e that t h i s disk , which

we are about to

// create , r e p r e s e n t s . We need to bu i ld some SCSI inqu i ry

in fo rmat ion about the

// disk , so that the Disk Class Driver knows about us .

//

#pragma p r e f a s t (suppres s : 28197 , ” This memory i s not l eaked ”)

PINQUIRYDATA pInquiryData = (PINQUIRYDATA) ExAllocatePoolWithTag (

NonPagedPool ,

s i z e o f (INQUIRYDATA) ,

’ diSO ’) ;

i f (pInquiryData) {

// typede f s t r u c t INQUIRYDATA {

// UCHAR DeviceType : 5 ;

// UCHAR DeviceTypeQual i f i e r : 3 ;

// UCHAR DeviceTypeModif ier : 7 ;

// UCHAR RemovableMedia : 1 ;

// UCHAR Vers ions ;

// UCHAR ResponseDataFormat : 4 ;

// UCHAR HiSupport : 1 ;

// UCHAR NormACA : 1 ;

// UCHAR ReservedBit : 1 ;

// UCHAR AERC : 1 ;

// UCHAR Addit ionalLength ;

// UCHAR Reserved [2] ;

// UCHAR SoftReset : 1 ;

190

// UCHAR CommandQueue : 1 ;

// UCHAR Reserved2 : 1 ;

// UCHAR LinkedCommands : 1 ;

// UCHAR Synchronous : 1 ;

// UCHAR Wide16Bit : 1 ;

// UCHAR Wide32Bit : 1 ;

// UCHAR Relat iveAddres s ing : 1 ;

// UCHAR VendorId [8] ;

// UCHAR ProductId [1 6] ;

// UCHAR ProductRevis ionLeve l [4] ;

// UCHAR VendorSpec i f i c [2 0] ;

// UCHAR Reserved3 [4 0] ;

// } INQUIRYDATA, ∗PINQUIRYDATA;

RtlZeroMemory (pInquiryData , s i z e o f (INQUIRYDATA)) ;

//

// The media i s now e i t h e r an OSR Disk or a r e g u l a r disk , e i t h e r

way

// we return the same in fo rmat ion .

//

pInquiryData−>DeviceType = DIRECT ACCESS DEVICE;

pInquiryData−>DeviceTypeQual i f i e r = DEVICE CONNECTED;

pInquiryData−>DeviceTypeModif ier = 0 ;

pInquiryData−>RemovableMedia = TRUE;

pInquiryData−>Vers ions = 2 ; // SCSI−2 support

pInquiryData−>ResponseDataFormat = 2 ; // Same as Vers ion ??

accord ing to SCSI book

pInquiryData−>Wide32Bit = TRUE; // 32 b i t wide t r a n s f e r s

pInquiryData−>Synchronous = TRUE; // Synchronous commands

pInquiryData−>CommandQueue = FALSE; // Does not support tagged

commands

191

pInquiryData−>Addit ionalLength = INQUIRYDATABUFFERSIZE−5; //

Amount o f data we are r e tu rn ing

pInquiryData−>LinkedCommands = FALSE; // No Linked Commands

RtlCopyMemory ((PUCHAR) &pInquiryData−>VendorId [0] ,

OSR INQUIRY VENDOR ID,

s t r l e n (OSR INQUIRY VENDOR ID)) ;

RtlCopyMemory ((PUCHAR) &pInquiryData−>ProductId [0] ,

OSR INQUIRY PRODUCT ID,

s t r l e n (OSR INQUIRY PRODUCT ID)) ;

RtlCopyMemory ((PUCHAR) &pInquiryData−>ProductRevis ionLeve l [0] ,

OSR INQUIRY PRODUCT REVISION,

s t r l e n (OSR INQUIRY PRODUCT REVISION)) ;

RtlCopyMemory ((PUCHAR) &pInquiryData−>VendorSpec i f i c [0] ,

OSR INQUIRY VENDOR SPECIFIC,

s t r l e n (OSR INQUIRY VENDOR SPECIFIC)) ;

ULONG bitNumber = RtlFindClearBitsAndSet(&ScsiBitMapHeader , 1 , 0) ;

i f (bitNumber == 0xFFFFFFFF) {

s t a t u s = STATUS INSUFFICIENT RESOURCES;

DoClose (PGInfo , pEntry) ;

goto c l eanupAfterError ;

}

ULONG t a r g e t I d = bitNumber % SCSI MAXIMUM TARGETS PER BUS;

ULONG BusId = bitNumber / SCSI MAXIMUM BUSES;

#pragma p r e f a s t (suppres s : 28197 , ” This memory i s not l eaked ”)

PUSER INSTANCE INFORMATION pLoca l In fo = (

PUSER INSTANCE INFORMATION)

ExAllocatePoolWithTag (NonPagedPool ,

192

s i z e o f (USER INSTANCE INFORMATION) ,

’DLUp ’) ;

i f (! pLoca l In fo) {

s t a t u s = STATUS INSUFFICIENT RESOURCES;

DoClose (PGInfo , pEntry) ;

goto c l eanupAfterError ;

}

RtlZeroMemory (pLocal Info , s i z e o f (USER INSTANCE INFORMATION)) ;

pLocal Info−>MagicNumber = USER INSTANCE INFORMATION MAGIC NUMBER;

pLocal Info−>PInquiryData = pInquiryData ;

//

// Create a PDO f o r t h i s new d i sk .

//

pLocal Info−>OsrSPLocalHandle = OsrSPCreateScsiDevice (PGInfo−>

OsrSPHandle ,

BusId /∗IN ULONG BusIndex∗/ ,

t a r g e t I d /∗IN ULONG TargetIndex ∗/ ,

LunId /∗IN ULONG LunIndex∗/ ,

pLocal Info , /∗ Our l o c a l Data f o r Device ∗/

FALSE,

pInquiryData ,

1) ;

//

// Okay , we ’ ve got a PDO, we can now i n v a l i d a t e r e l a t i o n s and see

what happens .

//

193

i f (pLoca l In fo) {

s t a t i c ULONG indexNumber = 0x08051958 ;

pLocal Info−>PGInfo = PGInfo ;

//

// Get the i n f o r f o r the unique ID .

//

GUID∗ pUniqueId = &tmpGuid ;

RtlCopyMemory(&pLocal Info−>UniqueID . UniqueID , pUniqueId , s i z e o f (

GUID)) ;

pLocal Info−>UniqueID . F i l e I d = (ULONGLONG) Inte r l ockedIncrement

((v o l a t i l e LONG∗) &indexNumber) ;

//

// Store away some other u s e f u l in fo rmat ion .

//

pLocal Info−>Connect ionInformation = pEntry ;

pLocal Info−>TargetIndex = t a r g e t I d ;

pLocal Info−>BusIndex = BusId ;

pLocal Info−>LunIndex = LunId ;

i f (STATUS SUCCESS != RtlStr ingCbPrintfA(&pLocal Info−>

A s c i i S i g n a t u r e [0] ,

s i z e o f (pLocal Info−>A s c i i S i g n a t u r e) ,

”%08x%04x%04x%2x%2x%02x%02x%02x%02x%02x%02x%0I64x ” ,

pUniqueId−>Data1 , pUniqueId−>Data2 , pUniqueId−>Data3 ,

pUniqueId−>Data4 [0] , pUniqueId−>Data4 [1] , pUniqueId−>Data4 [2] ,

pUniqueId−>Data4 [3] ,

pUniqueId−>Data4 [5] , pUniqueId−>Data4 [5] , pUniqueId−>Data4 [6] ,

pUniqueId−>Data4 [7] ,

194

pLocal Info−>UniqueID . F i l e I d)) {

s t a t u s = STATUS INSUFFICIENT RESOURCES;

DoClose (PGInfo , pEntry) ;

goto c l eanupAfterError ;

}

pEntry−>PIInfo = pLoca l In fo ;

pEntry−>BusIndex = BusId ;

pEntry−>TargetIndex = t a r g e t I d ;

pEntry−>LunIndex = LunId ;

Inte r l ockedIncrement (&PGInfo−>ConnectionCount) ;

t a r g e t I d++;

//

// Te l l the OSR SP that our bus has changed .

//

OsrSPAnnounceArrival (PGInfo−>OsrSPHandle) ;

pEntry−>Connected = TRUE;

s t a t u s = STATUS SUCCESS;

}

OsrTracePrint (TRACE LEVEL VERBOSE,OSRVMINIPT DEBUG FUNCTRACE, (

FUNCTION ” : Exit \n”)) ;

r e turn s t a t u s ;

} e l s e {

s t a t u s = STATUS INSUFFICIENT RESOURCES;

195

}

c l eanupAfterError :

i f (b Inse r t ed) {

DeleteConnect ionEntry (PGInfo , pEntry , PConnectInfo) ;

}

i f (pEntry) {

ExFreePool (pEntry) ;

}

OsrTracePrint (TRACE LEVEL ERROR,OSRVMINIPT DEBUG FUNCTRACE, (

FUNCTION ” : Exit \n”)) ;

r e turn s t a t u s ;

}

Code/RaidConfig.cpp

B.2 Mirrored Read Method

i f (pConnectionInformation−>Raid == None) //SIMPLE OR MIRRORED

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (” Simple

: Enter ”)) ;

i f (ReadLbn + readLength > pConnectionInformation−>DiskS ize [0]) {

readLength0 = (ULONG) (pConnectionInformation−>DiskS ize [0] −

ReadLbn) ;

196

Read . QuadPart += pConnectionInformation−>DiskStart [0] ;

s t a t u s = ReadDisk (0 , Read , readLength0 , pBuffer ,

pConnect ionInformation) ;

i f (s t a t u s != STATUS SUCCESS)

{

goto c l eanupAfterError ;

}

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

Simple : Exit Success ”)) ;

PSrb−>SrbStatus = SRB STATUS SUCCESS ;

PSrb−>DataTransferLength = readLength0 ;

goto c l eanupAfterError ;

}

e l s e

{

//

// O f f s e t f o r d i sk 0 ’ s s t a r t p o s i t i o n

//

Read . QuadPart += pConnectionInformation−>DiskStart [0] ;

s t a t u s = ReadDisk (0 , Read , readLength , pBuffer ,

pConnect ionInformation) ;

i f (s t a t u s != STATUS SUCCESS)

{

goto c l eanupAfterError ;

}

}

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (” Simple

: Exit Success ”)) ;

197

}

Code/MirroredRead.cpp

B.3 Striped Read Method

e l s e i f (pConnectionInformation−>Raid == Str iped) //STRIPED

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

St r iped : Enter ”)) ;

// F i r s t we f i n d what d i sk the read should be on

currentDisk = ((ReadLbn / pConnectionInformation−>S t r i p e S i z e) %

pConnectionInformation−>NumOfDisks) ;

//Next we f i n d what s t r i p e the read i s on on that d i sk

str ipeCount = s t a t i c c a s t <unsigned int >(((ReadLbn /

pConnectionInformation−>S t r i p e S i z e) / pConnectionInformation−>

NumOfDisks)) ;

// readLength0 s t o r e s how much has been read s u c c e s s f u l l y

readLength0 = 0 ;

// readLength1 i s s e t as the amount o f space l e f t to read in t h i s

s t r i p e

readLength1 = s t a t i c c a s t <ULONG>(pConnectionInformation−>S t r i p e S i z e

− (ReadLbn % pConnectionInformation−>S t r i p e S i z e)) ;

// readLengthHold i s s e t as the amount l e f t to read a f t e r read ing

the r e s t o f t h i s s t r i p e

readLengthHold = readLength − readLength1 ;

// I f the hold i s negat ive then we only need to read t h i s s t r i p e

i f (readLengthHold < 0)

{

readLength1 = readLength ;

readLengthHold = 0 ;

}

198

//We r e s e t the read to be the proper amount in to the c o r r e c t s t r i p e

Read . QuadPart = pConnectionInformation−>DiskStart [currentDisk] + (

pConnectionInformation−>S t r i p e S i z e ∗ s t r ipeCount) + (ReadLbn %

pConnectionInformation−>S t r i p e S i z e) ;

//As long as we havn ’ t read o f f o f the end o f a l l the d i s k s we can

cont inue u n t i l we are done

whi l e (! f i n i shedRead ing && s t a t i c c a s t <ULONGLONG>(Read . QuadPart +

readLength1) < pConnectionInformation−>Tota lDiskS ize)

{

s t a t u s = ReadDisk (currentDisk , Read , readLength1 , &(((char ∗)

pBuf fer) [readLength0]) , pConnect ionInformation) ;

i f (s t a t u s != STATUS SUCCESS)

{

goto c l eanupAfterError ;

}

readLength0 += readLength1 ;

readLength1 = readLengthHold ;

currentDisk++;

// I f i t i s the NumOfDisks then we need to wrap to the next s t r i p e

i f (currentDisk == pConnectionInformation−>NumOfDisks)

{

currentDisk = 0 ;

st r ipeCount++;

}

//We r e s e t the read po in t e r to the beg inning o f the next s t r i p e

Read . QuadPart = pConnectionInformation−>DiskStart [currentDisk] +

(pConnectionInformation−>S t r i p e S i z e ∗ s t r ipeCount) ;

199

readLengthHold = 0 ;

i f (readLength1 > pConnectionInformation−>S t r i p e S i z e)

{

readLengthHold = s t a t i c c a s t <LONG>(readLength1 −

pConnectionInformation−>S t r i p e S i z e) ;

readLength1 = s t a t i c c a s t <LONG>(pConnectionInformation−>

S t r i p e S i z e) ;

}

//Once i t i s 0 we are done read ing

i f (readLength1 == 0)

{

f i n i shedRead ing = true ;

}

}

//

// I f not f i n i s h e d read ing then we have run out o f d i sk

//

i f (! f i n i shedRead ing && s t a t i c c a s t <ULONGLONG>(Read . QuadPart) <

pConnectionInformation−>Tota lDi skS ize)

{

readLength1 = s t a t i c c a s t <LONG>(pConnectionInformation−>

Tota lDiskS ize − Read . QuadPart) ;

s t a t u s = ReadDisk (currentDisk , Read , readLength1 , &(((char ∗)

pBuf fer) [readLength0]) , pConnect ionInformation) ;

i f (s t a t u s != STATUS SUCCESS)

{

goto c l eanupAfterError ;

}

200

readLength0 += readLength1 ;

PSrb−>SrbStatus = SRB STATUS SUCCESS ;

PSrb−>DataTransferLength = readLength0 ;

goto c l eanupAfterError ;

}

e l s e i f (! f i n i shedRead ing)

{

PSrb−>SrbStatus = SRB STATUS SUCCESS ;

PSrb−>DataTransferLength = readLength0 ;

goto c l eanupAfterError ;

}

}

Code/StripedRead.cpp

B.4 Spanned Read Method

e l s e i f (pConnectionInformation−>Raid == Spanned) //SPANNED

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

Spanned : Enter\n”)) ;

// F i r s t we f i n d out what d i sk the read s t a r t s on

currentDisk = 0 ;

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

I n i t i a l ReadLbn : %l l u \n” , ReadLbn)) ;

whi l e (ReadLbn > pConnectionInformation−>DiskS ize [currentDisk])

{

ReadLbn −= pConnectionInformation−>DiskS ize [currentDisk] ;

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

Middle ReadLbn : %l l u \n” , ReadLbn)) ;

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

DiskS ize : %l l u \n” , pConnectionInformation−>DiskS ize [

currentDisk])) ;

201

currentDisk++;

}

Read . QuadPart = ReadLbn ;

//

// Does the read wrap from one d i sk the next

//

i f ((currentDisk + 1) < pConnectionInformation−>NumOfDisks && (

ReadLbn + readLength) > pConnectionInformation−>DiskS ize [

currentDisk])

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”We

wrapped because :\n”)) ;

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”\

tNext Disk : %d < NumOfDisks : %d\n” , currentDisk + 1 ,

pConnectionInformation−>NumOfDisks)) ;

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”\

tRead : %d > DiskS ize : %d\n” , ReadLbn + readLength ,

pConnectionInformation−>DiskS ize [currentDisk])) ;

//

// Read to the end o f the f i r s t d i sk and then read the r e s t from

the beg inning o f the next d i sk

//

readLength0 = (ULONG) (pConnectionInformation−>DiskS ize [

currentDisk] − ReadLbn) ;

readLength1 = readLength − readLength0 ;

//

// O f f s e t f o r the d i sk ’ s s t a r t p o s i t i o n and then read to the end

//

Read . QuadPart += pConnectionInformation−>DiskStart [currentDisk] ;

s t a t u s = ReadDisk (currentDisk , Read , readLength0 , pBuffer ,

pConnect ionInformation) ;

202

i f (s t a t u s != STATUS SUCCESS)

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

CLEANUP AFTER ERROR\n”)) ;

goto c l eanupAfterError ;

}

//

// O f f s e t f o r the next d i sk ’ s s t a r t p o s i t i o n and then read the

r e s t o f the l ength

//

Read . QuadPart = pConnectionInformation−>DiskStart [currentDisk +1] ;

s t a t u s = ReadDisk (currentDisk +1, Read , readLength1 , &(((char ∗)

pBuf fer) [readLength0]) , pConnect ionInformation) ;

i f (s t a t u s != STATUS SUCCESS)

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

CLEANUP AFTER ERROR\n”)) ;

goto c l eanupAfterError ;

}

}

e l s e i f ((ReadLbn + readLength) > pConnectionInformation−>DiskS ize [

currentDisk])

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”We

wrapped because :\n”)) ;

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”\

tNext Disk : %d >= NumOfDisks : %d\n” , currentDisk + 1 ,

pConnectionInformation−>NumOfDisks)) ;

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”\

tRead : %d > DiskS ize : %d\n” , ReadLbn + readLength ,

pConnectionInformation−>DiskS ize [currentDisk])) ;

readLength0 = (ULONG) (pConnectionInformation−>DiskS ize [

203

currentDisk] − ReadLbn) ;

Read . QuadPart += pConnectionInformation−>DiskStart [currentDisk] ;

s t a t u s = ReadDisk (currentDisk , Read , readLength0 , pBuffer ,

pConnect ionInformation) ;

i f (s t a t u s != STATUS SUCCESS)

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

CLEANUP AFTER ERROR\n”)) ;

goto c l eanupAfterError ;

}

PSrb−>SrbStatus = SRB STATUS SUCCESS ;

PSrb−>DataTransferLength = readLength0 ;

goto c l eanupAfterError ;

}

e l s e i f (currentDisk < pConnectionInformation−>NumOfDisks)

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”We

didn ’ t wrap because :\n”)) ;

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”\

tCurrent Disk : %d < NumOfDisks : %d\n” , currentDisk ,

pConnectionInformation−>NumOfDisks)) ;

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”\

tRead : %d <= DiskS ize : %d\n” , ReadLbn + readLength ,

pConnectionInformation−>DiskS ize [currentDisk])) ;

//

// O f f s e t f o r the cur rent d i sk ’ s s t a r t p o s i t i o n

//

Read . QuadPart += pConnectionInformation−>DiskStart [currentDisk] ;

s t a t u s = ReadDisk (currentDisk , Read , readLength , pBuffer ,

pConnect ionInformation) ;

204

i f (s t a t u s != STATUS SUCCESS)

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

CLEANUP AFTER ERROR\n”)) ;

goto c l eanupAfterError ;

}

}

e l s e

{

OsrTracePrint (TRACE LEVEL INFORMATION,OSRVMINIPT DEBUG ALL, (”

CLEANUP AFTER ERROR\n”)) ;

goto c l eanupAfterError ;

}

}

Code/SpannedRead.cpp

205

BIBLIOGRAPHY

adaptec. “Aha-2940uw.” [Online; accessed 9-March-2012]. 2012. [Online].
Available: http://www.adaptec.com/en-us/support/scsi/2940/aha-2940uw/

ASR Data. “Smart linux.” [Online; accessed 13-December-2011]. 2011. [Online].
Available: http://www.asrdata.com/forensic-software/smart-linux/

ASUS. “N61jq.” [Online; accessed 9-March-2012]. 2012. [Online]. Available:
www.asus.com/Notebooks/Multimedia Entertainment/N61Jq/

cplusplus.com. “History of c++.” [Online; accessed 9-March-2012]. 2012. [Online].
Available: www.cplusplus.com/info/history

Crystal Dew World. “Crystaldiskmark.” [Online; accessed 13-December-
2011]. 2011. [Online]. Available: http://crystalmark.info/software/
CrystalDiskMark/index-e.html

CSharp-Online.NET. “C# overview.” [Online; accessed 9-March-2012]. [Online].
Available: en.csharp-online.net/CSharp Overview#A Brief History of C.23

Dell. “Optiplex 760 desktop.” [Online; accessed 9-March-2012]. 2012. [Online].
Available: www.dell.com/us/dfb/p/optiplex-760/pd

Dickerman, S. D., “Raid rebuilding,” pdf, 2007.

Digital Intelligence. “Encase forensic v7.” [Online; accessed 13-December-2011].
2011. [Online]. Available: http://www.digitalintelligence.com/software/
guidancesoftware/encase7/

EFD Software. “Hd tune.” [Online; accessed 13-December-2011]. Aug. 2010.
[Online]. Available: http://www.hdtune.com/

Eindhoven University of Technology. “List of partition identifiers for pcs.” [Online;
accessed 1-October-2011]. [Online]. Available: http://www.win.tue.nl/∼aeb/
partitions/partition types-1.html

EUSSO Technologies, Inc. “4-bay sata gigibit network terabank nas.” [Online;
accessed 30-September-2011]. [Online]. Available: http://www.eusso.com/
Models/NAS/USS4500-RS4/USS4500-RS4.htm

eXibition Software. “Drive speed checker.” [Online; accessed 13-December-2011].
2004. [Online]. Available: http://www.exibitionsoftware.com/products/
drivespeedchecker/details.asp

206

http://www.adaptec.com/en-us/support/scsi/2940/aha-2940uw/
http://www.asrdata.com/forensic-software/smart-linux/
www.asus.com/Notebooks/Multimedia_Entertainment/N61Jq/
www.cplusplus.com/info/history
http://crystalmark.info/software/CrystalDiskMark/index-e.html
http://crystalmark.info/software/CrystalDiskMark/index-e.html
en.csharp-online.net/CSharp_Overview#A_Brief_History_of_C.23
www.dell.com/us/dfb/p/optiplex-760/pd
http://www.digitalintelligence.com/software/guidancesoftware/encase7/
http://www.digitalintelligence.com/software/guidancesoftware/encase7/
http://www.hdtune.com/
http://www.win.tue.nl/~aeb/partitions/partition_types-1.html
http://www.win.tue.nl/~aeb/partitions/partition_types-1.html
http://www.eusso.com/Models/NAS/USS4500-RS4/USS4500-RS4.htm
http://www.eusso.com/Models/NAS/USS4500-RS4/USS4500-RS4.htm
http://www.exibitionsoftware.com/products/drivespeedchecker/details.asp
http://www.exibitionsoftware.com/products/drivespeedchecker/details.asp

ForensicSoft. “Safe block.” [Online; accessed 1-October-2011]. 2010. [Online].
Available: https://www.forensicsoft.com/safeblock.php

ForensicSoft. “Software write blockers.” [Online; accessed 1-October-2011]. 2010.
[Online]. Available: https://www.forensicsoft.com/sb features.php

Futuremark. “Pcmark pc performance testing.” [Online; accessed 13-December-
2011]. 2011. [Online]. Available: http://www.pcmark.com/

“Encase version 6.12 modules manual,” Guidance Software.

GuidenceSoftware. “Encase forensic.” [Online; accessed 1-October-2011]. 2011.
[Online]. Available: http://www.guidancesoftware.com/forensic.htm

Icon Archive. “Computer icon.” [Online; accessed 30-September-
2011]. [Online]. Available: http://www.iconarchive.com/show/
vista-hardware-devices-icons-by-icons-land/Computer-icon.html

intel. “Intel R©coreTM2 duo processor e7300.”

Kato, K. “Virtual disk driver version 3.” [Online; accessed 13-December-2011].
Apr. 2005. [Online]. Available: http://chitchat.at.infoseek.co.jp/vmware/
vdk.html#top

Kato, K. “Virtual floppy drive 2.1.” [Online; accessed 13-December-2011].
Feb. 2008. [Online]. Available: http://chitchat.at.infoseek.co.jp/vmware/vfd.
html#top

Kovacs, J. “C#/.net history lesson.” [Online; accessed 9-March-2012]. Sept. 2007.
[Online]. Available: jameskovacs.com/2007/09/07/cnet-history-lesson/

Kroll Ontrack. “Raid: History and information.” [Online; accessed 30-
September-2011]. [Online]. Available: http://www.ontrackdatarecovery.co.
uk/data-recovery-articles/raid-history-information/

The Linux Information Project. “Kernel definition.” [Online; accessed 13-
December-2011]. May 2005. [Online]. Available: http://www.linfo.org/kernel.
html

Linux-NTFS. “Linux-ntfs.” [Online; accessed 1-October-2011]. Feb. 2009. [Online].
Available: http://www.linux-ntfs.org/doku.php

Linux Tutorial. “Configure and install ubuntu on raid 0.” [Online; accessed
2-May-2012]. July 2011. [Online]. Available: www.numango.com/5078
install-ubuntu-on-raid.html

Microsoft. “Windows driver model (wdm).” [Online; accessed 9-March-2012].
Apr. 2002. [Online]. Available: http://msdn.microsoft.com/en-us/windows/
hardware/gg463453

207

https://www.forensicsoft.com/safeblock.php
https://www.forensicsoft.com/sb_features.php
http://www.pcmark.com/
http://www.guidancesoftware.com/forensic.htm
http://www.iconarchive.com/show/vista-hardware-devices-icons-by-icons-land/Computer-icon.html
http://www.iconarchive.com/show/vista-hardware-devices-icons-by-icons-land/Computer-icon.html
http://chitchat.at.infoseek.co.jp/vmware/vdk.html#top
http://chitchat.at.infoseek.co.jp/vmware/vdk.html#top
http://chitchat.at.infoseek.co.jp/vmware/vfd.html#top
http://chitchat.at.infoseek.co.jp/vmware/vfd.html#top
jameskovacs.com/2007/09/07/cnet-history-lesson/
http://www.ontrackdatarecovery.co.uk/data-recovery-articles/raid-history-information/
http://www.ontrackdatarecovery.co.uk/data-recovery-articles/raid-history-information/
http://www.linfo.org/kernel.html
http://www.linfo.org/kernel.html
http://www.linux-ntfs.org/doku.php
www.numango.com/5078_install-ubuntu-on-raid.html
www.numango.com/5078_install-ubuntu-on-raid.html
http://msdn.microsoft.com/en-us/windows/hardware/gg463453
http://msdn.microsoft.com/en-us/windows/hardware/gg463453

Microsoft. “Introduction to the windows driver foundation.” [Online; accessed
9-March-2012]. Oct. 2003. [Online]. Available: http://msdn.microsoft.com/
en-us/windows/hardware/gg463316

Microsoft. “What are dynamic disks and volumes?” [Online; accessed
13-December-2011]. Mar. 2003. [Online]. Available: http://technet.microsoft.
com/en-us/library/cc737048(v=ws.10).aspx

Microsoft. “What is virtual disk service?” [Online; accessed 9-March-2012].
Mar. 2003. [Online]. Available: http://technet.microsoft.com/en-us/library/
cc778187(v=ws.10).aspx

Microsoft. “History of storport.” [Online; accessed 9-March-2012]. Feb. 2012.
[Online]. Available: http://msdn.microsoft.com/en-us/library/windows/
hardware/ff557249(v=vs.85).aspx

Microsoft. “Storport driver.” [Online; accessed 9-March-2012]. Feb. 2012.
[Online]. Available: http://msdn.microsoft.com/en-us/library/windows/
hardware/ff567541(v=vs.85).aspx

Microsoft. “Windows enterprise.” [Online; accessed 9-March-2012]. 2012.
[Online]. Available: http://www.microsoft.com/en-us/windows/enterprise/
products-and-technologies/windows-7/default.aspx

Novell. “Cross platform, open source .net development framework.” [Online;
accessed 9-March-2012]. [Online]. Available: www.mono-project.com/
Main Page

Open Source Development Lab. “Iometer.” [Online; accessed 13-December-2011].
July 2006. [Online]. Available: www.iometer.org

Orwick, P., Developing Drivers with the Windows Driver Foundation. One Mi-
crosoft Way, Redmond, Washington 98052-6399: Microsoft Press, 2007.

OSR Online. “Writing a virtual storport miniport driver.” [Online; accessed
13-December-2011]. Sept. 2009. [Online]. Available: http://www.osronline.
com/article.cfm?article=538

Petri IT Knowledgebase. “Difference between basic and dynamic disks in windows
xp/2000/2003.” [Online; accessed 30-September-2011]. [Online]. Avail-
able: http://www.petri.co.il/difference between basic and dynamic disks in
windows xp 2000 2003.htm

Runtime Software. “Raid recovery for windows v1.01.” [Online; accessed
13-December-2011]. 2011. [Online]. Available: http://www.runtime.org/
raid-recovery-windows.htm

Russon, R., “Home - ldm documentation,” 2002.

208

http://msdn.microsoft.com/en-us/windows/hardware/gg463316
http://msdn.microsoft.com/en-us/windows/hardware/gg463316
http://technet.microsoft.com/en-us/library/cc737048(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc737048(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc778187(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc778187(v=ws.10).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff557249(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff557249(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567541(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567541(v=vs.85).aspx
http://www.microsoft.com/en-us/windows/enterprise/products-and-technologies/windows-7/default.aspx
http://www.microsoft.com/en-us/windows/enterprise/products-and-technologies/windows-7/default.aspx
www.mono-project.com/Main_Page
www.mono-project.com/Main_Page
www.iometer.org
http://www.osronline.com/article.cfm?article=538
http://www.osronline.com/article.cfm?article=538
http://www.petri.co.il/difference_between_basic_and_dynamic_disks_in_windows_xp_2000_2003.htm
http://www.petri.co.il/difference_between_basic_and_dynamic_disks_in_windows_xp_2000_2003.htm
http://www.runtime.org/raid-recovery-windows.htm
http://www.runtime.org/raid-recovery-windows.htm

Seagate. “Quantum R©atlas 10k ii.” [Online; accessed 9-March-2012]. 2000.
[Online]. Available: http://www.seagate.com/staticfiles/maxtor/en us/
documentation/data sheets/atlas 10k ii datasheet.pdf

simplisoftware. “Hd tach.” [Online; accessed 13-December-2011]. [Online]. Avail-
able: http://www.simplisoftware.com/Public/index.php?request=HdTach

steel bytes. “Hd speed.” Jan. [Online]. Available: http://www.steelbytes.com/
?mid=20

“Prodiscover forensics,” pdf, Technology Pathways, Aug. 2009.

Technology Pathways. “Prodiscover forensics.” [Online; accessed 13-
December-2011]. 2010. [Online]. Available: http://www.techpathways.
com/prodiscoverdft.htm

Troelsen, A., Pro C# 2010 and the .NET 4 Platform, Fifth Edition. 233 Spring
Street, New York, New York 10013: Apress, 2010.

Ubuntu. “Download ubuntu.” [Online; accessed 2-May-2012]. 2012. [Online].
Available: http://www.ubuntu.com/download/server

VMware, Inc. “Vmware workstation 8.” [Online; accessed 9-March-2012]. 2012.
[Online]. Available: http://www.vmware.com/products/workstation/

Wikipedia, “Disk image — wikipedia, the free encyclopedia,” 2011, [Online;
accessed 13-December-2011]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=Disk image&oldid=465613179

Wikipedia, “Guid partition table — wikipedia, the free encyclopedia,” 2011,
[Online; accessed 1-October-2011]. [Online]. Available: //en.wikipedia.org/
w/index.php?title=GUID Partition Table&oldid=452606816

Wikipedia, “Raid — wikipedia, the free encyclopedia,” 2011, [Online; accessed
13-December-2011]. [Online]. Available: http://en.wikipedia.org/w/index.
php?title=RAID&oldid=465701597

X-Ways. “Winhex.” [Online; accessed 13-December-2011]. Mar. 2010. [Online].
Available: http://www.winhex.com/winhex/

“X-ways forensics/winhex,” pdf, X-Ways, 2011.

Zero Assumption Recovery. “Ldm / dynamic disks basics.” [Online; accessed
13-December-2011]. 2011. [Online]. Available: http://www.z-a-recovery.com/
art-dynamic-disks.htm

209

http://www.seagate.com/staticfiles/maxtor/en_us/documentation/data_sheets/atlas_10k_ii_datasheet.pdf
http://www.seagate.com/staticfiles/maxtor/en_us/documentation/data_sheets/atlas_10k_ii_datasheet.pdf
http://www.simplisoftware.com/Public/index.php?request=HdTach
http://www.steelbytes.com/?mid=20
http://www.steelbytes.com/?mid=20
http://www.techpathways.com/prodiscoverdft.htm
http://www.techpathways.com/prodiscoverdft.htm
http://www.ubuntu.com/download/server
http://www.vmware.com/products/workstation/
http://en.wikipedia.org/w/index.php?title=Disk_image&oldid=465613179
http://en.wikipedia.org/w/index.php?title=Disk_image&oldid=465613179
//en.wikipedia.org/w/index.php?title=GUID_Partition_Table&oldid=452606816
//en.wikipedia.org/w/index.php?title=GUID_Partition_Table&oldid=452606816
http://en.wikipedia.org/w/index.php?title=RAID&oldid=465701597
http://en.wikipedia.org/w/index.php?title=RAID&oldid=465701597
http://www.winhex.com/winhex/
http://www.z-a-recovery.com/art-dynamic-disks.htm
http://www.z-a-recovery.com/art-dynamic-disks.htm

	Mounting a Windows Software Raid as a Virtual Disk
	Terms of Use
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	Introduction
	Problem
	Goals
	Background
	A Review of RAIDs and Windows Dynamic Disks
	Spanned Volumes
	Striped Volumes
	Mirrored Volumes
	RAID-5 Volumes

	Master Boot Records and GUID Partition Tables
	Logical Disk Manager
	Law Enforcement
	Windows Device Drivers
	Windows Driver Model
	Windows Driver Foundation
	Virtual Disk Service
	Storport Miniport

	Programming Language Considerations
	C++ Programming
	Visual C# and .NET Programming

	List of References

	Review of Literature
	EnCase
	Linux NTFS
	ProDiscover
	RAID Recovery for Windows
	SMART Linux
	X-Ways Forensics
	Linux-NTFS Project
	Virtual Storport Miniport Driver
	List of References

	Methodology
	Computer Setup
	Hardware Configuration
	Disk Configuration
	Software Installation
	Driver Installation on Windows 7 x86
	Driver Installation on Windows 7 x64
	Driver Installation on Windows Server 2003 x86
	Driver Installation on Windows Server 2003 x64
	Driver Installation on Windows Vista x86
	Driver Installation on Windows Vista x64
	Driver Installation on Windows Server 2008 x86
	Driver Installation on Windows Server 2008 x64
	Front-End Installation

	Software RAID Testing
	Speed Testing
	Hash Testing
	Operating System Compatibility Testing
	Configuration Compatibility Testing
	Content Testing

	List of References

	Findings
	Speed Testing
	HD Pro Results
	Windows Mounted
	Windows and Software RAID Virtual Disk Mounted
	Software RAID Virtual Disk Mounted
	Write Blocked

	HD Speed Results
	Windows Mounted
	Windows and Software RAID Virtual Disk Mounted
	Software RAID Virtual Disk Mounted
	Write Blocked

	HD Tach Results
	Windows and Software RAID Virtual Disk Mounted
	Software RAID Virtual Disk Mounted
	Write Blocked

	Charted Results

	Hash Testing
	Spanned RAID
	Striped RAID

	Operating System Compatibility Testing
	Windows Server 2003 x86
	Windows Server 2003 x64
	Windows Vista x86
	Windows Vista x64
	Windows Server 2008 x86
	Windows Server 2008 x64
	Windows 7 x86
	Windows 7 x64

	Configuration Compatibility Testing
	Spanned RAID
	Corrupted Spanned RAID
	GPT Spanned RAID
	Striped RAID
	Simple RAID
	Mirrored RAID
	Multiple Disk Striped RAID
	Linux RAID

	Content Testing
	List of References

	Conclusion
	Speed Testing
	Hash Testing
	Operating System Compatibility Testing
	Configuration Compatibility Testing
	Content Testing
	Final Conclusion and Future Work

	Important Front-End Code
	Bytes Per Sector
	Master Boot Record
	Logical Disk Manager
	Private Header
	Table Of Contents Block
	Volume Master DataBase
	Volume BLocK

	Important Driver Code
	RAID Configuration Storing
	Mirrored Read Method
	Striped Read Method
	Spanned Read Method

	BIBLIOGRAPHY

