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ABSTRACT 
 

Serpentinization, the water-rock reaction forming serpentine mineral assemblages 

from olivine and pyroxene-bearing protoliths, can co-occur with the production of 

hydrogen, methane, and diverse organic compounds. Serpentinization is regarded as a 

geologic process important to the sustainability of the deep biosphere and the origin of 

life.  Serpentinization has been found to support metabolisms involving anaerobic CO-

oxidation, acetogenesis, reduction of sulfur compounds, H2 oxidation, CO2 fixation, 

magnetite reduction, and fermentation. There is on-going research to develop a method 

that can visually depict mineral associations in serpentinites with serpentinization-related 

organics. In this report, we describe new findings, using µFTIR to map minerals and 

associated organics related to serpentinization. To do this, we identified, confirmed, and 

documented FTIR wavenumber regions linked to (I) serpentinization-associated minerals 

and embedded organics, (II) carbonate-associated minerals, and (III) a polysaccharide 

proxy for EPS. The findings of this study indicate that organic presence with a mineral 

background can be detected using reflection mode-µFTIR (R-FTIR) and transmission 

mode-µFTIR (T-FTIR). Implications of this study include increased prospects for use of 

FTIR in interrogating polished rock surfaces to determine the association of organics to 

mineral phases and boundaries in serpentinization-related lithologies.  
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INTRODUCTION 

Until recently, society believed the ocean floor to be flat, with little/no life at the 

water-sediment interface, and with a barren subsurface (Jorgensen 2012). With ever-

increasing interest in finding the limits of life on Earth, we have since discovered the 

immense deep biosphere adapted to extreme temperatures, pressures, pH and nutrient 

conditions (Jorgensen 2012; Colwell and D’Hondt 2013; Orcutt et al. 2013).  Although 

energy levels are about 10,000 times lower than surface ecosystems (Parkes et al. 2014), 

and about ~48% of the ocean floor is made up of low productivity sites, such as the 

subtropical gyres (D’Hondt et al. 2009), there still exists in the global sub-seafloor an 

estimated cell count between 2.9 X 1029 (Jorgensen 2012) and 5.39 X 1029 (Parkes et al. 

2014). Abiotic processes, such as the water-rock reaction of serpentinization, fuel and 

sustain microbial communities in sediments and rocks exposed at the seafloor and in the 

subsurface of the ocean crust (Kelley 2005). Other such abiotic drivers of life in the deep 

subsurface include radiolytic H2 production (Blair et al. 2007) and hydrocarbon 

‘cracking’ (Horsfield et al. 2006). Diverse chemosynthetic metabolisms are employed by 

the deep biosphere, taking advantage of these abiotic processes, including H2 oxidation, 

SO4
2- reduction, CH4 oxidation, methanogenesis, O2 reduction, organic carbon 

degradation, and Mn reduction (Orcutt et al. 2013). 

Serpentinization, the water-rock reaction forming serpentine mineral assemblages 

from olivine and pyroxene-bearing protoliths, can co-occur with the production of 

hydrogen, methane, and diverse organic compounds (McCollom and Seewald 2013). 

Natural waters impacted by serpentinization are often Ca2+- or Mg2+ - rich (Neal 1984; 

Paukert et al. 2012), thus appropriate for carbonate precipitation, including in ophiolite 
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groundwater flow systems and travertine-producing seeps/springs. Serpentinization is 

regarded as a geologic process important to the sustainability of the deep biosphere 

(Schrenk et al. 2013) and the origin of life (Russell et al. 2010; Sleep et al. 2011). 

Ongoing research identifies the following specific metabolic reactions as relevant to deep 

life in serpentinites: anaerobic CO-oxidation, acetogenesis, reduction of sulfur 

compounds, H2 oxidation, CO2 fixation, magnetite reduction, and fermentation (Crespo-

Medina et al. 2014; Miller et al. 2016; Rowe et al. 2017; Twing et al. 2017). 

Carbonate minerals result also from spring deposits fed by serpentinizing waters 

at continental sites; serpentinite-associated travertines are well known (Barnes and Oneil 

1971; Flinn and Pentecost 1995) with implications for Mars-related serpentinization 

(Szponar et al. 2013) and CO2 sequestration via travertine formation (Kelemen and 

Matter 2008; Paukert et al. 2012). These travertines have the potential to lock in organic 

material and preserve it over time, recording changing community characteristics. Co-

registered mineral and organic analytical data are needed to test for robust detection and 

discernment of closely associated mineral and organic phases: careful application of 

Fourier Transform Infrared (FTIR) Spectroscopy has potential to answer this need. 

µFTIR relies upon coupling classic petrographic microscopy with FTIR 

Spectroscopy. µFTIR is used in a wide range of environmental studies on microbial 

ecology (Wenning et al. 2002; Igisu et al. 2006, 2009), and in recent projects, µFTIR has 

been used to identify bacteria even down to strain level (Igisu et al. 2012) in pure 

cultures. Here, we describe the application of µFTIR to mapping minerals and related 

organics in polished rock/mineral samples of serpentinization-related lithologies.  

Specifically, we provide Attenuated Total Reflection FTIR (ATR-FTIR), reflection 
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mode-µFTIR (R-FTIR), and transmission mode-µFTIR (T-FTIR) profiles for phases 

important in (I) serpentinites and selected associated minerals (serpentinite, peridotite, 

pyroxenite; olivine, pyroxene, serpentine, magnetite, brucite) (ATR- and R-FTIR) and 

embedded organics (T-FTIR), (II) travertine and selected constituent minerals (carbonate 

crusts; calcite, dolomite) (ATR- and R-FTIR) and (III) a polysaccharide proxy for 

exopolysaccharides (EPS) (ATR- and R-FTIR). We also present the preliminary findings 

of a serpentinite incubation experiment; we incubated polished wafers of serpentinite 

collected from the Coast Range Ophiolite Microbial Observatory (CROMO) in well 

water, collected from a high pH (11.5) CROMO priority well in the Quarry Valley (QV) 

(well ID QV1,1). The QV 1,1 well hosts a chemosynthetically diverse microbial 

community due to the reducing conditions maintained by serpentinization (Cardace et al. 

2013; Crespo-Medina et al. 2014; Twing et al. 2017). Lastly, we evaluated the resolving 

power of µFTIR for the detection of mineral-encapsulated, residual organic compounds 

from biological activity by mixing increasing mass proportions of xanthan gum (x.g.) in a 

ground serpentinite matrix, obtained during drilling of CROMO. We describe new 

findings, using µFTIR to map minerals and associated organics related to 

serpentinization. 

 

METHOD 

We prepared specimens as polished solid wafers and/or homogenized powders. 

We identified, confirmed, and documented FTIR wavenumber (cm-1; aka IR frequency) 

regions linked to (I) serpentinization-associated minerals and embedded organics, (II) 

carbonate-associated minerals, and (III) a polysaccharide proxy for EPS. In all cases, we 
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referenced observed IR spectra to published findings (Hunt and Salisbury 1974; Lafuente 

et al. 2015), supported by X-ray diffraction results. ATR-FTIR is able to analyze 

powders, solids, and liquids with little sample preparation. The sample is placed on a 

crystal window (we use diamond), and an IR beam is directed onto the crystal, and 

attenuates through the crystal as an evanescent wave, which comes into contact with the 

sample at each bounce; the resulting wavelengths are read by the detector as an 

interferogram (Figure 1) (Thermo Scientific 2013). µFTIR involves a more strenuous 

solid sample preparation by needing a flat sample; to analyze rock samples, polishing is 

necessary. R-FTIR requires a flat, polished surface and works by emitting an IR beam on 

the surface of the sample and detecting the wavelengths that were reflected off of the 

surface (Figure 2) (Thermo Scientific 2013). T-FTIR requires a thin doubly polished 

sample and works by emitting an IR beam through a thin sample and detecting the 

transmitted wavelengths (Figure 3) (Thermo Scientific 2013).  

 

Sample preparation 

 For µFTIR (R- and T-FTIR), we polished peridotite, serpentinite, and carbonate 

samples from various locations (Table 1), with polishing protocol as described previously 

(Lowenstern and Pitcher 2013). In brief, wafers were ground to < 500 µm thickness for 

R-FTIR analysis and to <100 µm thickness for T-FTIR while fixed to a round glass slide, 

and polished using increasingly fine polishing papers and diamond paste suspensions. For 

ATR-FTIR and X-ray diffraction (XRD), we powdered splits of these samples, and 

passed through a 100-mesh (150 µm pore size) sieve to work with a standardized <150 

µm size fraction. More detail is provided below. 



 

5 

R-FTIR 

We used a Thermo Nicolet iS50 FTIR spectrometer coupled with a Continuum IR 

microscope to map minerals in R-FTIR (King and Larsen 2013), using a MCT-A 

(mercury cadmium telluride) detector and KBr beamsplitter, with 100x100 µm beam 

aperture, 64 scans, and 4 cm-1 resolution. Background data were collected on polished 

gold. We collected sample points on individual minerals on each polished wafer to 

provide representative spectra of each mineral.  We also mapped serpentinite and 

travertine wafers with autofocus at each sample point in R-FTIR using the Omnic Atlµs 

software, and produced frequency heat maps to differentiate regions with different bond 

characteristics. For maps, we used a 25x25 µm beam aperture, scanning sample points at 

25 µm intervals, with 128 scans and 4 cm-1 resolution at each sample point.  

 

T-FTIR 

 We used the same instrument, detector, beamsplitter, and mapping settings as R-

FTIR to map a CROMO serpentinite wafer (SRP-1) using T-FTIR.  

 

Attenuated total reflectance FTIR 

We analyzed powdered splits of rock/mineral samples via ATR-FTIR 

(Lowenstern and Pitcher 2013), using the same unit, same settings, and diamond window. 

Background data were collected on air. 
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XRD 

 We confirmed mineral identification of powdered splits via X-ray diffraction 

using Olympus Terra XRD unit (Blake et al. 2012) outfitted with a Co tube. Operating 

parameters for this instrument are set to 250 exposures. Peak identification was facilitated 

using the XPowder (http://www.xpowder.com/) peak-matching software. 

 

Incubation experiment 

Serpentinite-hosted well water was collected directly from the scientific 

monitoring well at the Coast Range Ophiolite Microbial Observatory (CROMO) Quarry 

Valley 1,1 well (Cardace et al. 2013) in January, 2016, by pumping water into a cleaned 

polypropylene slide staining jar, fitted with polished serpentinite samples attached to 

glass slides. The closed jar remained at ambient laboratory temperature (~21ºC) for 3 

weeks, followed by 4 weeks in a standard refrigerator to inhibit growth, prior to analysis.  

Incubated wafer surfaces were analyzed by R-FTIR with standard reflection mode 

settings as above, and re-analyzed after surface cleaning with isopropanol. 

 

Limit of detection assay for polysaccharides 

We mixed pulverized serpentinite matrix (<150 µm fraction) obtained during 

CROMO drilling (Cardace et al. 2013) with xanthan gum (xanthan gum obtained 

commercially) in increasing proportions: 0, 0.001, 0.005, 0.01, 0.05, 0.1, 1, 2, 5, 20, 50, 

80, 95, 98, 99, 99.9, and 100 wt. % x.g. to simulate trace biofilm EPS presence and dense 

EPS biofouling of mineral matrices. Mixtures were made gravimetrically, using an 

analytical balance, and homogenized by shaking prior to analytical work. Xanthan gum 
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mixtures were analyzed by ATR-FTIR, with 128 scans and 8 cm-1 resolution (inverse 

centimeters, also called wavenumbers, is equivalent to the infrared frequency).  

In addition, we made a homogenous 2 g/L solution of xanthan gum and DI water 

and applied drops onto a polished serpentinite wafer (CROMO surface serpentinite 

sample). After a film formed, the polysaccharide-coated wafer was analyzed on and off 

the xanthan gum film with R-FTIR using standard reflection mode settings with the 

background collected on polished gold. 

 

RESULTS 

Confirmation of applicability of R-FTIR, ATR-FTIR and T-FTIR to serpentinites 

and travertines 

 Figures 3 through 8 (and appendix figures 1-9) show the bulk ATR-FTIR spectra 

and R-FTIR spectra of the minerals identified in each of the samples (Table 1); minerals 

identified by cross-referencing spectra are listed in parentheses.  

In general, we determined major components of the mineralogy using ATR-FTIR 

with reference to the RRUFF database (Lafuente et al. 2015). ATR-FTIR mode was able 

to resolve the minerals in highest concentration in the powder splits. For example, 

serpentinite from New Zealand was analyzed in ATR-FTIR and R-FTIR; for this sample, 

the ATR-FTIR spectrum (Figure 4) revealed the presence of only lizardite, whereas R-

FTIR data indicated the presence of pyroxene and magnetite also. Sometimes, there are 

peaks in the ATR-FTIR spectra that are very clearly different minerals. For example, the 

serpentinite from Jade Mountain Lodge (Figure 5) clearly shows the presence of both 

lizardite (3682 cm-1, 930 cm-1 and 600 cm-1) and carbonate (1383 cm-1, 870 cm-1, and 711 
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cm-1). Sometimes, however, when there are multiple minerals represented in the spectra, 

identifying all of the minerals can be difficult due to peak overlap. For example, the 

ATR-FTIR spectrum for olivine (OL-1; Figure 7) shows strong olivine (forsterite) peaks, 

however, there is a peak at 3680 cm-1, which may indicate the presence of serpentine. 

Given this peak, it is likely that the shoulder of the strongest forsterite peak at 930 cm-1 is 

due to serpentine as well; the presence of lizardite would also account for the constructive 

interference at 600 cm-1 since this peak occurs in both forsterite and lizardite.  

R-FTIR is useful in observing minerals individually on a polished surface, 

whereas ATR-FTIR identifies the minerals of highest concentration in the bulk powder. 

R-FTIR provides spectra with similar shape and relative peak height to the ATR-FTIR 

reference spectra (as in Lafuente et al., 2015). There is, however, common occurrences of 

peak shifts compared to ATR-FTIR as a result of the refractive indices changing the 

reflected light at each subsequent layer (medium) absorbing light (Spragg 2013); for 

example, the serpentine peaks of the serpentinite from CROMO are 930 cm-1 and 600 cm-

1 in ATR-FTIR mode and are 947 cm-1 and 642 cm-1 in R-FTIR. R-FTIR spectra were 

affected by the quality of the polish and the texture of the sample. When the IR aperture 

beam interacted with pores or if the sample was not completely perpendicular to the beam 

(as is the case for subtle roughness in imperfectly polished surfaces), the signal to noise 

ratio (S:N) decreased, and the top of spectral peaks were skewed in shape. For example, 

the peridotite from New Zealand (PER-1; Figure 6) shows forsterite (an olivine mineral) 

represented as the most abundant mineral in the sample by ATR-FTIR; with R-FTIR, 

olivine can be identified, but the top of the relevant peaks are rounded and skewed 

inwards. It may be that there is another mineral (e.g., pyroxene) just below the surface 
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that the beam is able to reach. A trace amount of an additional mineral (e.g., finely 

dispersed serpentine or iron oxyhydroxides) may be present on the surface, but not as a 

visually distinguishable grain at the scale of analysis, on the surface of the sample.   

Analyses of dolomite (Figure 8) provide an example of how R-FTIR can result in 

both peak shifting and altered peak shapes. Peaks in ATR-FTIR mode line up with 

reference dolomite (RRUFF, Lafuente et al., 2015) at 1413 cm-1, 873 cm-1, and 727 cm-1; 

in R-FTIR, these peaks shift to 1494 cm-1, 897 cm-1, and 727 cm-1.  XRD and visual 

inspection of the sample confirm dolomite. Despite differences in the ATR-FTIR and R-

FTIR spectra, the data represent dolomite. Another example of altered peak shape is 

evident in analyses of optical calcite (Figure 9), which is clearly identifiable in reference 

spectra (Lafuente et al. 2015), although the peaks were skewed as a result of how the 

light interacted with the sample, a classic characteristic of optical calcite (Valenzano et 

al. 2007).  

A principle component analysis (using JMP®) of ATR-FTIR spectra was 

conducted by including all wavenumber and intensity data (7000+ data points) from each 

sample (Figure 12). Principle component 1 (PC 1) appears to separate spectra based on 

overall intensity of the spectrum; for example, MAG-1 pointing left has a much higher 

spectrum than other samples (Appendix Figure 6). PC 2 seems to separate the spectra by 

peak location; therefore, the samples are separated by lithologic type: ultramafics are 

located in the top right and carbonates in bottom right. SRP-3 and TRAV-WS are located 

in between the extremes as a result of having both carbonate and Si-O bonds. 

 With R-FTIR frequency heat maps, we are able to parse FTIR data using peaks 

that are diagnostic for specific minerals (Figure 10 &11). Frequency heat maps of 
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serpentinite from CROMO (id SRP-1), based on the diagnostic peaks for serpentine at 

976 cm-1 (Si-O) and for magnetite at 680 cm-1 (Figure 10B and C, respectively), highlight 

areas of highest intensities (absorbance) at those wavenumber regions in bluer tones, and 

areas of lower intensities in redder tones. The heat map of 976 cm-1 effectively highlights 

the magnetite-rich region in red, which does not have a distinguishable peak or elevated 

absorbance at 976 cm-1 (that is, serpentine does not co-occur with magnetite at this scale) 

(Figure 10). Where there is serpentine, you can discern areas richer in the Si-O bond, 

such as the darkest blue vein, correlated with the light-colored, late-stage serpentine vein, 

seen in Figure 10A. In contrast, the heat map of 680 cm-1 highlights the serpentine-rich 

regions in red, which do not contain magnetite, and highlights the magnetite-rich regions 

in yellow, green, and blue tones.  

A frequency heat map of a travertine thin section from CROMO (id TRAV-

WS3G) was made to target the wavenumber region related to the Si-O bond (1020 cm-1; 

Figure 11). Microprobe data for elemental Si show bands of high Si throughout a 

manually polished companion sample (microprobe images in Appendix Figure 11; heat 

map images of companion sample in Appendix Figure 10); Si-O bonds are thus expected 

within the CaCO3–dominated matrix. The heat map highlights Si-O bond occurrence in 

blue, a representation of the optically clear area between the black and red areas (Figure 

11). The black mineral region has low intensity carbonate peaks at 1410 cm-1 and 884 cm-

1 with the strongest peak at 1538 cm-1, which is related to the ferrocyanide staining on 

this sample (C-N and/or H-N), used to flag ferrous iron-rich regions in this thin-section. 

The red-shaded mineral region has low intensity peaks representing Si-O and a strong 
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peak at 1556 cm-1.  The clear area to the left is a pore in the sample and has low intensity 

glue and glass peaks in this region.  

A frequency T-FTIR area map of a serpentinite (SRP-1) doubly polished wafer 

was created to assess the ability of T-FTIR to detect embedded organics with a strong 

mineral background. With this map, we found an increase in intensity in C-H bond 

wavenumber regions (~2900 cm-1) and in O-H, and amide (Amide 1: C=O, Amide 2: 

CNH) wavenumber regions (~1600 cm-1) (Figure 13D) near areas rich in magnetite. By 

conducting a PCA heat map, in the Omnic Atlµs software, we could select the peak area 

regions on which to base the PCA. Choosing the 2900 cm-1 (3000-2830 cm-1) and 1600 

cm-1 (1800-1500 cm-1) peak areas for PCA provided a first principle component (PC1) 

that controls 92% of the variance, and is based on regions that have higher peak areas at 

both the 2900 cm-1 and 1600 cm-1 wavenumber regions (Figure 13C); a PCA heat map 

of PC1 highlights all regions on and surrounding magnetite (Figure 13B). By extracting a 

line map from the area map (red line in Figure 13A extracted as a heat map in Figure 

13D), we observe an overall spectral elevation when the IR beam is overlying magnetite 

(the black area about half way up the line), which is a result of magnetite being opaque; 

and we can also see increases of the 2900 cm-1 and 1600 cm-1 regions at and near the 

magnetite and tapering off away from the magnetite vein. 

 

Assessment of FTIR-based resolution of organic films on serpentinites: Pilot 

Incubation Experiment 

R-FTIR data were collected on a transect of a CROMO serpentinite sample (SRP-

1) after incubation in naturally occurring groundwaters (from CROMO Quarry Valley 1,1 
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scientific monitoring well; Figure 14A) The line map was taken before (Figure 14B) and 

after (Figure 14C) cleaning with isopropyl alcohol; all sample points on the transect show 

very similar spectra before cleaning and again after cleaning; therefore, one 

representative spectrum was selected for before and after cleaning.  Before cleaning the 

surface, the spectra show a strong serpentine signal with a broad, low intensity 

background noise from 1200 cm-1 to 2500 cm-1. After cleaning the surface, the spectra 

show a strong serpentine signal with little background noise, likely as a result of the 

instrument warming up over time.  

 

Assessment of FTIR-based resolution of surface films/embedded organic loads 

related to serpentinites: Constraining the limit of detection for a representative 

polysaccharide 

Xanthan gum (exopolysaccharide of Xanthamonas campestris) serves in this 

study as a proxy for biologically produced exopolysaccharides, and data confirm that 

incipient biofilm formation can be tracked using FTIR. Xanthan gum represents several 

of the organic bonds that would be found if a biofilm developed on the surface of a rock 

(Figure 15), including O-H, C-H, C=O, Carboxylate groups, acetate groups and C-O 

(Osiro et al. 2011). We used R-FTIR to contrast relevant spectral regions on a 

serpentinite wafer with and without xanthan gum film (Figure 16). Data collected on the 

xanthan gum film show medium intensity peaks associated with xanthan gum and strong 

intensity peaks associated with serpentine in the underlying rock matrix (Figure 16C). 

When compared to data collected on serpentinite without the xanthan gum film, the 

intensity of the serpentine peaks was greater (higher) on the xanthan gum-free area; the 
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intensity of the serpentine peaks was lesser (damped) on the xanthan gum-coated area. A 

PCA of data points along a transect from on the xanthan gum film (Figure 16A point #1) 

to off the xanthan gum film (Figure 16A point #29) separate spectra that are on and off 

the xanthan gum film (Figure 16B). 

For the set of synthetic mixtures with increasing xanthan gum proportions in 

pulverized serpentinite, analyzed using ATR-FTIR, we used an O-H angular deformation 

peak at 1600 cm-1 to determine the presence of xanthan gum because 1) there are no 

overlapping mineral peaks in this region, and 2) the peak is narrower and higher in 

intensity when compared to other peaks free of overlapping mineral peaks. Thus, the 

1600 cm-1 peak can be detected most easily at low concentrations. When observing the 

entire spectra (Figure 17A), the 1600 cm-1 peak emerges at 5 wt. % xanthan gum; the 

pure serpentinite powder and low xanthan gum concentration mixtures have a peak at 

1630 cm-1 with a shoulder peak at 1555 cm-1, both of which may relate to 

organics/biomass intrinsic to the rock matrix itself (Figure 17B). Spectral data for 

mixtures with concentrations below 20 wt. % xanthan gum maintain a clear signal for 

serpentine in that region; however, at 0.1 wt. % xanthan gum, a change in peak shape is 

distinguishable from lower concentrations, where the baseline is smoother and the 1630 

cm-1 peak is shifted towards lower wavenumbers. Peak height, area and location were 

recorded for every mixture (Figure 18-20). There is constructive interference at this 

region by other bonds at 1630 cm-1; the peak height still increases as the peak shifts from 

1630 cm-1 to 1600 cm-1
 with increasing xanthan gum concentration at a constant rate (R2 

= 0.9947; Figure 18A). Even at low concentrations (at least by 1 wt %), there is a 

consistent increase in peak height in the 1630 cm-1 to 1600 cm-1 region (Figure 18B).  



 

14 

Peak area of the 1775-1500 cm-1 region also increases at a constant rate (R2 = 0.99405; 

Figure 19A), and again, at low concentrations (at least by 1 wt %), there is a consistent 

increase in peak area (Figure 19B).  Peak location, as previously mentioned, shifts 

towards lower wavenumbers with increasing xanthan gum concentration in a logarithmic 

rate (R2 = 0.79656; Figure 20A). There are outliers, such as 0.05 and 0.1 wt %, that occur 

in all three measurements; the reason may be that this range of concentrations is at a 

threshold with increased xanthan gum so that it experiences constructive interference 

with nearby peaks, causing a baseline shift, and thereby shifting all of the measurements. 

It also may be the case that the aliquot of serpentinite for that sample started with fewer 

organics.  

 

DISCUSSION 

Suitability of FTIR for phase discrimination in serpentinites and travertines 

ATR-FTIR 

ATR-FTIR, a method that is widely available, provides a bulk reading of 

dominant minerals in powdered rock/mineral samples. ATR-FTIR is able to differentiate 

the serpentine (~980 cm-1 and 3700 cm-1), olivine (~860 cm-1), pyroxene (multiple sharp 

peaks between 1060 cm-1 and 620 cm-1), and magnetite (~660 cm-1) individually with 

ease based on relative peak shape and location (Table 2).  However, it is difficult to 

distinguish the subcategories of minerals (i.e., the serpentine minerals, antigorite and 

lizardite) because the bonds and their relative abundances (on which FTIR data are 

based) are very similar. ATR-FTIR is also able to distinguish between the carbonate 

(~1400, cm-1 870 cm-1 and 730 cm-1) and silicon-rich layers (1020 cm-1) in travertine 
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(Table 2; Figure 11), although, again, differentiating the carbonate minerals presents a 

challenge because the bonds and their relative abundances are similar.  

The main issue encountered with ATR-FTIR is the ability to distinguish peak 

overlap of different minerals in the bulk-powdered sample, in addition to its overall 

decreased sensitivity compared to µFTIR. One needs to be familiar with relative mineral 

peak location and shape to identify multiple minerals within the bulk, powdered reading.  

As a result of this pilot study, it is clear that we need to develop a standardized, 

robust statistical treatment of peak locations that can help us interpret complex samples. 

 

R-FTIR 

R-FTIR is capable of differentiating adjacent minerals and individual grains 

greater or equal to the aperture size of the IR beam (between 25x25 µm to 150x150 µm). 

The higher resolution afforded by R-FTIR data allows direct probing of sample 

characteristics.  However, there may be peak shifting issues with R-FTIR; one must 

consider the possibility of constructive interference of the presence of other minerals in 

the sample point region. The shape and relative peak locations will likely handle peak 

shifting; however, a correction (Kramer’s Kronig correction), may be very useful 

addressing minor peak shifts (Spragg 2013).  

Frequency heat maps are useful in highlighting specific aspects of rich spectral 

data sets, as when searching for a mineral that has a distinct spectral peak relative to 

adjacent minerals.  If spectra have a low S:N, low intensity trace mineral or organic peak 

variations may not be resolvable, even with this method. 
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For microbiology, R-FTIR is a useful tool in observing changing organic bonds 

across spatial boundaries with high resolution, specifically to analyse microbial biofilms 

grown on varying nutrient conditions (Chen et al. 2013). Other environmental studies 

have used R-FTIR to observe phases in rocks, such as coal and shale (Chen et al. 2015) 

  

T-FTIR as a tool for detecting embedded organics at mineral boundaries 

T-FTIR, although involving strenuous sample preparation, is a valuable tool in 

detecting naturally occurring organics embedded in rocks and observing mineral 

associations of organics. In this study, we found an increase of aliphatic C-H (~2900 cm-

1), O-H (~1630 cm-1), and potentially protein-related bonds (Amide I and II; 1550-1650 

cm-1) near magnetite-rich regions. It is difficult to determine using FTIR, whether there 

are whole cells embedded near magnetite, or if there are shreds of microbes (lipids, 

proteins, etc.) left over from being trapped during mineral formation. Pairing FTIR with 

other techniques, such as SEM and Raman would be helpful in determining the organic 

components. In other words, important discrimination between structurally similar phases 

(such as in the carbonates) must rely on complementary, co-registered chemical analyses 

at the same scale, and finer resolution of organic compound type (full identification and 

possibly compound-specific isotopic characteristics) will strengthen the interpretive 

power of this analytical approach. 

Microbiology studies that involve T-FTIR typically include stamping or drying a 

film of bacterial colonies on an IR transparent plate (Igisu et al. 2012; Faghihzadeh et al. 

2016). In other environmental studies, thin wafers of rocks are analyzed to observe 

volatile inclusions, such as H2O and CO2 in rocks (Lowenstern and Pitcher 2013). 
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Similarly to this study, another study has used T-FTIR to observe prokaryotic 

microfossils embedded in chert (Igisu et al. 2006). This study combines these T-FTIR 

utilities to observe naturally occurring biogenic organics, such as lipid and protein 

microbial debris in rocks related to serpentinization, a process that fuels life on Earth. 

 

FTIR spectroscopy as a tool for resolving organic loads on/in Earth materials 

It is unclear whether short duration incubations (~3 weeks’ duration) produce 

enough adhered biomass/organic materials to be well resolved by FTIR approaches. 

However, analyses of synthetic mixtures of serpentinite and xanthan gum do reflect 

changing intensity of the 1600 cm-1 peak, a peak related to polysaccharides (Osiro et al. 

2011) in a wavenumber region unhindered by mineral peak interferences. We show that 

xanthan gum is detectable in the range of expected organic load in serpentinites (total 

carbon @ 0.001 to 0.1 %, equivalent to 10 to 1000 ppm total carbon, respectively) (Alt et 

al. 2012). FTIR thus has the capability to detect low, geologically relevant concentrations 

of organic material in natural serpentinites.  Diagnostic FTIR peaks for organics as 

carbohydrates, DNA, lipids, and proteins (Maquelin et al. 2002; Osiro et al. 2011; Igisu et 

al. 2012) should be used in regions where mineral peaks do not overlap: the strongest 

minerals peaks are typically in the 1400-500 cm-1 range – identifying the minerals first 

and then searching for lower-intensity biomarker peaks in other wavenumber regions 

allows for best accuracy. Statistical treatment of xanthan gum mixtures’ peak locations 

and intensities can help us interpret natural serpentinites.   
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CONCLUSIONS  

The findings of this study indicate that organic presence with a mineral 

background can be detected using FTIR. Implications for this study include the ability to 

detect and map polished rock surfaces to determine the association of organics to mineral 

phases and boundaries in serpentinization-related lithologies. Future directions include 

analyzing polished rock and mineral wafers before and after incubation in serpentinite-

hosted natural waters in situ, differentiating signatures of surface biofilms (via R-FTIR) 

from embedded/preserved organics (via T-FTIR), and cross-referencing organic-rich 

regions in natural samples with other analytical techniques (e.g., Raman spectroscopy). 

As a result of this study, we confirm the applicability of FTIR-based techniques in micro-

scale investigations of organics in ultramafic and carbonate rocks, and we establish the 

need for an integrated database covering mineral and organic compounds. 
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LIST OF FIGURE CAPTIONS 

Table 1. Listed are the ultramafic and carbonate samples that were prepared for R-FTIR, 

ATR-FTIR, and supporting XRD data. 

Table 2. Listed are the descriptions of the RRUFF mineral peaks we used to identify our 

samples via ATR-FTIR and R-FTIR. Bond assignments are not included, as most peaks 

present are in the fingerprint region of the infrared spectrum, where bonds represent the 

complex molecules rather than by single bonds.  

Figure 1. Multi-bounce and single bounce beams through a sample occurring via ATR-

FTIR as an evanescent wave passes through an ATR-FTIR crystal (Thermo Scientific 

2013). 

Figure 2. The principle of R-FTIR is presented visually, showing the IR beam bouncing 

off the only the surface of a sample at an angle based on the material’s refractive index 

(true specular reflectance) and an instance where some of the energy of the beam passes 

through the surface of the sample and reflects off the underlying substrate (reflection-

absorption) (Thermo Scientific 2013). 
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Figure 3. T-FTIR involves the transmission of the IR beam through a flat sample surface 

and the transmitted light is measured by the detector, as shown in the figure (Thermo 

Scientific 2013). 

Figure 4. ATR-FTIR and R-FTIR spectra of serpentinite from Poon Bato, Philippines 

(SRP-2). 

Figure 5. ATR-FTIR and R-FTIR spectra of serpentinite from Jade Mountain Lodge, 

Crescent City, CA (SRP-3). 

Figure 6. ATR-FTIR and R-FTIR spectra of peridotite from Lake Ronald, New Zealand 

(PER-1). 

Figure 7. ATR-FTIR and R-FTIR spectra of olivine (OL-1). 

Figure 8. ATR-FTIR and R-FTIR spectra of dolomite from Sussex County, NJ (DOL-1). 

Figure 9. ATR-FTIR and R-FTIR spectra of optical calcite from Iceland (CAL-1). 

Figure 10. A) An R-FTIR area map of serpentinite (SRP-1) includes a magnetite grain 

(red star) surrounded by lizardite (blue star). B) A frequency heat map of 976 cm-1, a 

wavenumber indicative of serpentine, shows higher intensity in blue and green tones 

where serpentine is present. C) A frequency heat map of 680 cm-1, a wavenumber 

indicative of magnetite, shows higher intensity in blue and green tones where magnetite 

is present. D and E) Spectra of representative serpentine (blue star) and magnetite (red 

star) are presented with a solid vertical line notating the location of the 976 cm-1 region 

and a dashed vertical line notating the location of the 680 cm-1 region.  

Notes: Bluer tones represent higher intensity and redder tones represent lower intensity 

for R-FTIR heat maps; the heat maps represent the boxed region in photo A.  

Figure 11.  
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A) An R-FTIR area map of travertine (TRAV-WS3G) includes black-colored carbonate- 

and ferrous iron-rich regions (red star), white, transparent Si-O-rich regions (blue star), 

and red-colored carbonate- and ferrous iron-rich regions (yellow star). B) A frequency 

heat map of 1020 cm-1, a wavenumber indicative of Si-O bonds, shows higher intensity in 

blue and green tones where that bond is in highest abundance. C, D and E) Spectra of 

representative black-colored carbonate- and ferrous iron-rich regions (red star), white, 

transparent Si-O-rich regions (blue star), and red-colored carbonate- and ferrous iron-rich 

regions (yellow star) are presented with a solid vertical line notating the location of the 

976 cm-1 region and a dashed line notating the location of the 680 cm-1 region. Notes: 

Bluer tones represent higher intensity and redder tones represent lower intensity for R-

FTIR heat maps; the heat map represents the boxed region in photo A.  

Figure 12. A PCA of ATR-FTIR spectra of all samples separates the samples by 

lithologic types: ultramafics are located in the top right and carbonates in bottom right. 

Note: MAG-1 separated from rest by component 1 as a result of overall higher intensity 

of the spectrum compared to others. 

Figure 13. A) A T-FTIR area map of serpentinite (SRP-1) includes serpentine-rich 

regions with veins and grains of magnetite spread throughout. B) A PCA heat map, 

conducted in OMNIC Atlµs based on the 2900 cm-1 (3000-2830 cm-1) and 1600 cm-1 

(1800-1500 cm-1) peak areas, highlights regions of the first principle component (PC1) 

that have greater peak areas at the 2900 cm-1 and 1600 cm-1 wavenumber regions in red, 

yellow, and green tones. C) The value of PC1 indicates statistically significant presences 

of the 2900 cm-1 and 1600 cm-1 regions that correspond with mineralogically distinct 

regions. D) A heat map of an extracted line map (as indicated by the red vertical solid 
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line in photo A) shows an overall increase in intensity of the spectra where magnetite is 

abundant and a relative increase at the 2900 cm-1 and 1600 cm-1 regions.  

Note: Redder tones represent are higher intensity and bluer tones are lower intensity for 

T-FTIR heat maps. 

Figure 14. A) An R-FTIR line map was taken on a CROMO serpentinite (SRP-1) wafer 

incubated in the CROMO QV 1,1 well. Representative R-FTIR spectra before (B) and 

after (C) cleaning surface of the wafer with isopropyl alcohol are provided 

Figure 15. ATR-FTIR of xanthan gum powder with peak assignments (Osiro et al. 2011) 

is shown. 

Figure 16. A) An R-FTIR area map was taken at the boundary of a dried film of xanthan 

gum on SRP-1; points 1 and 8 overlay xanthan gum, point 15 overlies a thinner region of 

xanthan gum, and points 22 and 29 overlay serpentine without a xanthan gum film. B) A 

PCA comparing the full spectra of the marked sample points separates points 1, 8, and 15 

(on xanthan gum film) from points 22 and 29 (off xanthan gum). 

Figure 17. A) Spectra of xanthan gum experiment are shown with increasing xanthan 

gum concentration in serpentinite powder, in order from lowest (0 wt. % x.g.) to highest 

(100 wt. % x.g.). B) The same set of spectra are shown zoomed in to the 1600 cm-1 

region. Peaks are labeled with potential bond assignments.  

Figure 18. A) Peak height of the 1600 cm-1 region from 0 - 100 wt. % x.g. in powdered 

serpentinite matrix is presented. The best-fit line provides an R2 of 0.9947. B) Peak 

height of the 1600 cm-1 region from 0 - 5 wt. % x.g in powdered serpentinite matrix is 

presented as a log function. 
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Figure 19. A) Peak area of the 1600 cm-1 region (1775-1500 cm-1) from 0 - 100 wt. % 

x.g. in powdered serpentinite matrix is presented. The best-fit line provides an R2 of 

0.99405. B) Peak area of the 1600 cm-1 region (1775-1500 cm-1) from 0 - 5 wt. % x.g in 

powdered serpentinite matrix is presented as a log function. 

Figure 20. Peak location of the larger peak in the 1600 cm-1 region (1775-1500 cm-1) 

from 0 - 100 wt. % x.g. in powdered serpentinite matrix is presented. The best-fit 

logarithmic curve provides an R2 of 0.79656. B) Peak location of the larger peak in the 

1600 cm-1 region (1775-1500 cm-1) from 0 - 5 wt. % x.g in powdered serpentinite matrix 

is presented as a log function. 
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APPENDIX 

Appendix Table 1. Xanthan gum and ground serpentinite proportions made in lab for 

xanthan gum experiment range from 0 - 100 wt% x.g. 

Total mass (g) Mass of 
serpentinite (g) 

Mass of x.g. 
(g) 

Concentration 
of x.g. (wt. %) 

10.0000 9.9999 0.0001 0.001 
10.0000 9.9990 0.0010 0.010 
1.0000 0.9990 0.0010 0.10 
1.0000 0.9900 0.0100 1.00 
1.0000 0.9800 0.0200 2.00 
1.0000 0.9500 0.0500 5.00 
1.0000 0.8000 0.2000 20.00 
1.0000 0.5000 0.5000 50.00 
1.0000 0.2000 0.8000 80.00 
1.0000 0.0000 1.0000 100.00 
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Appendix Figure 1. ATR-FTIR and R-FTIR spectra of serpentinite from Coast Range 

Ophiolite (SRP-1).  
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 Appendix Figure 2. ATR-FTIR and R-FTIR spectra of peridotite from Yellow Dog, MI 

(PER-2). 
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Appendix Figure 3. ATR-FTIR and R-FTIR spectra of olivine from Twin Sister’s Range, 

WA (OL-2). 
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Appendix Figure 4. ATR-FTIR and R-FTIR spectra of dunite from Taskesti, Turkey (PX-
1). 
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Appendix Figure 5. ATR-FTIR and R-FTIR spectra of diopside from ON, Canada (PX-

2). 
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Appendix Figure 6. ATR-FTIR and R-FTIR spectra of magnetite from Ishpeming, MI 

(MAG-1).  
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Appendix Figure 7. ATR-FTIR and R-FTIR spectra of brucite from Belkis Minerals in 

AZ (BRC-1). 
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Appendix Figure 8. ATR-FTIR and R-FTIR spectra of Augite (AGT-1). 
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Appendix Figure 9. ATR-FTIR and R-FTIR spectra of Travertine from CROMO (TRAV-

WS3G). 
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Appendix Figure 10. A) Sample points of an area map are plotted on polished TRAV-

WS3G. B) R-FTIR frequency heat map of 1006 cm-1(Si-O) from the same area map. C) 

Travertine mini-core “WS 3” in 10C.  Note cm scale along horizontal edge of image. 

Increasing intensity 

A B 

C 
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Prominent features can be observed at 7-9 cm and 20 cm. Darker phases (clay rich and/or 

containing serpentinite fragments) occur at 18-23 cm and ~27 cm.   
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Appendix Figure 11. Microprobe element maps (A) calcium, B) magnesium, and C) 

silicon) of an intact section of the CROMO travertine mini-core TRAV-WS3G was 

collected on the microprobe at Brown University. We observe the interwoven texture of 

Si (in lower concentration) and Mg around Ca. Note: lighter grey represents high 

concentration, darker is low.  

C B A 



 

42 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Appendix Figure 12. µCT scans of a travertine mini-core from the White Seep (WS) at 

CROMO (obtained with a hand-held ASC Scientific Electric Core Drill Model DE-T3) 

were collected in 15-µm-thick slices by a SCANCO Medical µCT 40 scanning unit at the 

McCulloch µCT imaging facility at Rhode Island Hospital. Included here are 

 White Seep 3_C White Seep 3_D White Seep 3 _F 
Top 

Image 0 Image 100 Image 100 
Top-
Middle 

Image 50 Image 250 Image 425 
Middle 

Image 100 Image 400 Image 750 
Middle-
Bottom 

Image 150 Image 550 Image 1075 
Bottom 

Image 200 Image 700 Image 1400 
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representative slices from top to bottom of sections C, D, and F, which denote mini-core 

intact sections, with A as the near-surface section. Section C (left column) is from ~5-6 

cm, Section D (mid) is from ~7-9.5 cm, and Section F (right) is from ~11.5-14 cm in the 

photo provided in Appendix Figure 10C. Variable density with depth is observed, due to 

shifting carbonate mineralogy/intercalated clay minerals/encapsulated fragments of 

country rock. Note: dark areas are less dense than light areas.  
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TABLES 
Table 1 

Sample 
ID Lithology Location XRD Mineral ID 

Ultramafics 

SRP-1 Serpentinite CROMO’s quarry valley 
surface serpentinite 

Lizardite, Antigorite, 
Magnetite  

SRP-2 Serpentinite Poon Bato, Philippines 
Lizardite, Antigorite, 
Magnetite, 
Clinopyroxene, Smectite  

SRP-3 Serpentinite Jade Mtn Lodge, Crescent 
City, CA 

Lizardite, Antigorite, 
Magnetite, Calcite  

PER-1 Peridotite Lake Ronald, New 
Zealand Forsterite, Enstatite 

PER-2 Peridotite Yellow Dog, MI  
Hedenburgite, Enstatite, 
Forsterite, Lizardite, 
Antigorite, Magnetite  

OL-1 Olivine Fisher Scientific Forsterite, Antigorite, 
Magnetite 

OL-2 Olivine Twin Sisters Range, WA Forsterite, Antigorite, 
Magnetite 

PX-1 Pyroxenite Taskesti, Turkey Pyroxene, Smectite 

PX-2 Diopside Bird CK, Herschel, ON, 
Canada  

Diopside, Hedenbergite, 
Tremolite 

MAG-1 Magnetite Ishpeming MI  Magnetite, Columbite 
BRC-1 Brucite Arizona  Brucite 
AGT-1 Augite     

Carbonates 

TRAV-
WS3G Travertine CROMO white seep 

Carbonates (Ankerite, 
Calcite, Dolomite, 
Kutnohorite,  Magnesite, 
Siderite), Lizardite, 
Smectite 

DOL-1 Dolomite Sussex County, NJ  Dolomite , Magnetite 

CAL-1 Optical 
Calcite Iceland  Calcite 
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Table 2. 

Mineral Peak 
Frequency 

Peak 
Height 

Peak Shape 

Serpentine 
Antigorite 3670 Medium Sharp 
 980 Strongest Sharp with short shoulder at 1047 

 609 Strong 
Sharp with slight shoulder at 603 and 
blended shoulders at 690 and 780 (broad) 

 545 Strong Sharp 
Lizardite 3680 Strong Sharp 

 930 Strongest 
Sharp with blended shoulder at base at 
1050 

 601 Medium Sharp with a shoulder at 534 
Pyroxene 

Augite 1060 Medium  
 854 Strongest Sharp with sharp shoulder at 916 
 640 Weakest Sharp  
 625 Weak Sharp 
Diopside 1060 Strong Sharp 
 956 Strong Sharp 

 852 Strongest 
Sharp with blended shoulder at base at 
894 

 640 Weakest Sharp 
 630 Weak Sharp 

Enstatite 919 Strongest 
Medium with shoulders at 1030, 983, 917, 
and 863 

 709 Weakest Sharp 
 701 Very weak Sharp 
 680 Weak Sharp 
 646 Weak Sharp 
 640 Weak Sharp 
Hedenbergite 1045 Strong Sharp 
 950 Strong Sharp 
 850 Strongest Sharp with blended shoulder at 894 
 665 Weakest Sharp 
 620 Weak Sharp 

Olivine 

Fayalite 858 Strongest 
Sharp with sharp, strong shoulders at 906 
and 823 

Forsterite 875 Strongest 
Sharp with sharp, medium shoulders at 
931 and 835 

 601 Medium Sharp 
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Carbonate 
Ankerite 1401 Strongest Sharp with broad base 
 867 Medium Sharp 
 723 Weak Sharp 
Aragonite 1440 Strongest Sharp with broad base 
 1083 Weak Sharp 
 854 Medium Sharp 
 711 Weak Sharp 
 700 Weakest Sharp 
Calcite 1390 Strongest Sharp with broad base 
 871 Medium Sharp 
 711 Weak Sharp 
Dolomite 1417 Strongest Sharp with broad base 
 875 Medium Sharp 
 728 Weak Sharp 
Magnesite 1428 Strongest Sharp with broad base 
 877 Medium Sharp 
 748 Weak Sharp 
Siderite 1400 Strongest Sharp with broad base 
 862 Medium Sharp 
 738 Weak Sharp 

Related Minerals 
Brucite 3689 Strongest Sharp 
 1400 Weakest Broad 

 592 Weak 
Broad shoulder to a peak below 
frequencies of interest 

Clinochlore  3540 Medium Medium 
 3578 Medium Medium 
 1411 Weak Medium 
 952 Strongest Sharp with weak sharp shoulder at 830 
 642 Strong Sharp with broad blended shoulder at 701 
Magnetite All Strong One broad peak  
Nontronite 3780 Strong Broad 
 3564 Strong Sharp 
Spinel 655 Strongest Sharp 

 555 Weak  
Shoulder to a peak below frequencies of 
interest 

Talc 3675 Weak Sharp and very narrow 
 995 Strongest Sharp 

 663 Medium 

Sharp with broad blended shoulder at 750 
and 690, and 636, and a sharp shoulder at 
595 
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FIGURES 
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Figure 2 
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Figure 3  
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Figure 5 

 

 

 

 

 

 

 

 

 

 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

A
bs

or
ba

nc
e 

ATR-FTIR SRP-3  
(Lizardite and Carbonate) 

0 

20 

40 

60 

80 

100 

120 

500 1000 1500 2000 2500 3000 3500 4000 

%
 R

ef
le

ct
an

ce
 

Wavenumbers (cm-1) 

R-FTIR SRP-3 
(Lizardite with peak at 1043 cm-1) 



 

52 

 

 
Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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 Figure 11 
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Figure 12 
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Figure 13  
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Figure 14 
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Figure 15 
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Figure 16  
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Figure 17 
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Figure 18 
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Figure 19 
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Figure 20 
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