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ABSTRACT 

Reaching the so-called “performance wall” in 2004 inspired innovative 

approaches to performance improvement.  Parallel programming, distributive 

computing, and System on a Chip (SOC) design drove change.  Hardware acceleration 

in mainstream computing systems brought significant improvement in the 

performance of applications targeted directly to a specific hardware platform.  

Targeting a single hardware platform, however, typically requires learning vendor and 

hardware-specific languages that can be very complex.  Additionally, Heterogeneous 

Computing Environments (HCE) consist of multiple SOC hardware platforms, so why 

not use them all instead of just one?  How do we communicate with all platforms 

while maximizing performance, decreasing memory latency, and conserving power 

consumption?  Enter the Open Computing Language (OpenCL) which has been 

developed to harness the power and performance of multiple SOC devices in an HCE.  

OpenCL offers an alternative to learning vendor and hardware-specific languages 

while still being able to harness the power of each device.  Thus far, OpenCL 

programming has been directly mostly at CPU and GPU hardware devices.  

The genesis of this thesis is to examine the connections between parallel computing in 

a HCE using OpenCL with CPU and FPGA hardware devices.  Underlining the 

industry trends to favor FPGAs in both computationally intensive and embedded 

systems, this research will also highlight the FPGA specifically demonstrating 

comparable performance ratings as CPU and GPU at a fraction of the power 

consumption.  OpenCL benchmark suites run on a FPGA will show the importance of 

performance per watt and how it can be measured.  Running traditional parallel 



 

 

 

programs will demonstrate the power and portability of the OpenCL language and 

how it can maximize performance of FPGA, CPU, and GPU.  Results will show that 

OpenCL is a solid approach to exploiting all the computing power of a HCE and that 

performance per watt matters in mainstream computing systems, making a strong case 

for further research into using OpenCL with FPGAs in a HCE.  
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CHAPTER 1 

INTRODUCTION 

Making computer hardware and software perform faster has been the overarching 

goal of all development in the fields of computer engineering and computer 

programming.  After reaching the “performance wall” in 2004, there was a paradigm 

shift from hardware to software development.  New programming concepts emerged 

such as instruction, data, and task level parallelism aimed at faster program execution, 

or better performance.  Hardware acceleration emerged thanks much in part to the 

gaming industry’s need to have near to real graphics in their video games.   

Program acceleration is the idea of achieving the best program performance by 

utilizing all tools available, both hardware and software.  Programmers create code 

that is clean, efficient, and built to run as parallel as possible in any computing 

environment.  This idea is the motivation behind the Heterogenous Computing 

Environment (HCE) concept and the creation of a language to maximize its 

capabilities, OpenCL.  This thesis will briefly discuss the connection between parallel 

computing and heterogeneity in mainstream computing as a precursor to 

understanding the need for OpenCL and why is somewhat revolutionary.  This brief 

background in parallel programming and heterogeneity will be followed by program 

and data analysis using OpenCL in an HCE consisting of a CPU, GPU, and FPGA.   

Motivation for Research  

GPUs have cornered the lion’s share of developmental research due to their 

ability to process large amounts of data as well as their physical presence in nearly 

every mainstream computing system.  Up until the release of OpenCL, developers 
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shied away from FPGAs due to the complexity of programming needed just to 

perform simple functions.  Within the past few years, some research has been 

conducted using OpenCL and FPGA acceleration such as information filtering1, 

fractional video compression2, finite impulse filters3.  More research is warranted, 

however, due to the increased utilization of FPGAs and since they are the best choice 

in executing highly parallel programs while consuming the least amount of power 

possible.  Measuring program execution speed is one measure of performance, but the 

amount of wattage consumed to achieve that speed is also critical and is referred to as 

performance per watt. This research will demonstrate how it has never been easier to 

program hardware thanks to OpenCL and demonstrate the performance enhancement 

and power savings of FPGA over CPU and GPU in an OpenCL controlled 

environment.  OpenCL in a heterogeneous computing environment enables computer 

programmers and engineers alike to maximize acceleration and performance across all 

hardware platforms.  This research will substantiate why OpenCL should be used for 

program and hardware acceleration in a HCE.   

Chapter Overview 

Chapter 2 provides the background information and research as to the 

significance of OpenCL as a computing language.  It reviews the main literature used 

in this thesis and research, reviews parallel programming and how it ties into OpenCL, 

                                                 
1 Doris Chen, Using OpenCL to Evaluate the Efficiency of CPUs, GPUs, and FPGAs for Information 
Filtering. (Invited Paper, Altera Toronto Technology Center, 2013). 
2 Doris Chen, Fractional Video Compression in OpenCL:  An Evaluation of CPUs, GPUs, and FPGAs as 
Acceleration Platforms. (Invited Paper, Altera Toronto Technology Center, 2013). 
3 Desh Singh. Higher Level Programming Abstractions for FPGAs using OpenCL. (Workshop on Design 
Methods and Tools for FPGA-Based Acceleration of Scientific Computing, 2011). 
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analyzes speed and performance gains as they apply to hardware, and highlights 

FPGA as the de facto standard in power consumption savings in an HCE.    

In Chapter 3, a detailed explanation of the methodology is brought forth.  The 

OpenCL architecture is introduced in detail and how it bonds the components of the 

HCE.  As supporting evidence for this research, existing OpenCL programs will be 

altered to achieve maximum performance results and demonstrate the portability of 

OpenCL programs and kernels.  To illustrate the simplicity of hardware programming 

using OpenCL, some existing OpenCL programs will be compiled and run on FPGA.  

A feature program will demonstrate the speed and performance gains of using FPGA 

as a hardware platform.   The Software Development Kit (SDK) for Altera will also be 

introduced since its understanding is crucial to visualize how the hardware and 

software communicate in the OpenCL controlled HCE. 

Chapter 4 will validate the benefits of using OpenCL and FPGA in an HCE.  

First, comparisons will be made between the results of running a traditional C program 

on CPU versus FPGA after conversion to OpenCL.  The performance will be 

measured in terms of performance per watt since FPGAs are the targeted hardware 

device in this research.  Additionally, the results of running OpenCL specific 

benchmarks on the DE1-SoC board will be analyzed to show how FPGAs can thrive 

in an HCE. 

Finally, chapter 5 consists of conclusions and recommendations for further 

research.  Included in these discussions are the current developments of the FPGA and 

increase in its application.  Also discussed is the explosion of OpenCL in the 
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developmental community and progress up to the current version of 2.2.  This research 

aims to justify the importance of OpenCL, HCE, and ultimately FPGAs.   
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CHAPTER 2 

BACKGROUND 

 Literature Review 

 Having no prior experience with the OpenCL language inspired be to purchase 

the two books that I used for my research of the OpenCL language and how it works 

in the HCE.  Heterogeneous Computing with OpenCL 2.0 by David Kaeli et al is a 

very well written and easy to follow approach to learning OpenCL.  It explains the 

structure of the OpenCL architecture, runtime execution and memory models.  The 

example code provided highlights some of the beneficial features of OpenCL and 

serves as a shell that can be used to build more complex programs.  The other OpenCL 

textbook I purchased is OpenCL Programming by Example written by Banger and 

Bhattacharyya.  It takes a similar approach to teaching OpenCL along with example 

code, diagrams, and explanations.  Both books are highly recommended to gain a 

basic understanding of OpenCL. 

 Driving deeper into an understanding of OpenCL and how to use it also 

requires an extensive review of vendor specific APIs, user manuals, and white papers 

depending upon which type of hardware you are using.  My research made use of an 

FPGA board from Altera which required not only the download of a Software 

Development Kit (SDK) from Altera but all of the reference materials that explains its 

use.  Since Khronos Group manages the OpenCL API specifications it is necessary to 

download their reference material that aligns with the version of OpenCL being used.  

Their main website also maintains both deprecated and up to date versions of the 
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OpenCL languages along with header files, source code, and links to forums for 

development assistance. 

 The last major literature references used in this research were Computer 

Organization and Design and Computer Architecture both by Patterson and 

Hennessey.  These books are the gold standard to understanding computer hardware 

architecture, as well as the interface between hardware and software.  I utilized them 

mostly for the comprehension and application of parallel programming and how it 

relates to OpenCL.  Much of the inspiration for this research spawned from the 

concepts and progressive thinking of these two authors. 

 

Parallel Programming 

The need to focus more on software versus hardware to accelerate program 

execution and efficiency came to fruition after processor manufacturers reached the 

“performance wall” around 2004.  Figure 2.1 shows how the increase of performance 

of single processors and memory configuration flatlined.  Sequential programming 

techniques such as the “divide and conquer” method, which divided a single program 

into smaller subsets or groups of code executed separately, were precursors to the 

many classes of parallelism and parallel architectures that exist today.  Object oriented 

computing languages such as Java and C++ also were designed initially to speed up 

sequential program execution, but suffered from too many data dependencies between 

function calls to exploit the essence of true parallelism.  Instruction level parallelism 
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was used on superscalar and out of order execution uniprocessors, but it only 

increased the execution speed of traditional sequential programs.4  

 

 

Figure 2.1 Processor performance growth. 

 

    Around 2006, chip developers began placing multiple processors or cores onto 

one chip.  Though the idea of having multiple computers work together on one 

program was not a new concept, the era of multiple cores had begun.  This opened the 

door for parallel processing programs (running one job on multiple processors) and 

job level parallelism (running multiple jobs on multiple processors).5  Within the 

realm of the personal computer, however, these multi-core machines are typically 

confined to sharing the same memory or physical address space.  Clusters and grid 

computing were also introduced which are commonplace among online databases, 

                                                 
4 David A. Patterson and John L. Hennessy, Computer Organization and Design:  The 
Hardware/Software Interface (New York:  Morgan Kaufmann, 2009), 633. 
5 Ibid, 632. 
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email servers, and search engines.  These approaches, however, only offer solutions 

for large scale computing environments and not for your average consumer running 

programs on the home computer.  

Parallel programming is a form of computation in which many calculations are 

carried out simultaneously, operating on the principle that large problems can often be 

divided into smaller ones, which are then solved concurrently (i.e. in parallel). 6 Every 

job or task that needs to be accomplished brings its own level of complexity based on 

the algorithm, the programming language being used, and the hardware available.   

Different classes of parallelism have emerged that are aimed at exploiting specific 

hardware structures and software designs.  Multithreading, for example, supports 

multiple threads executing in an interleaving fashion on a single-issue processor. 7  

With the rise of multi-core platforms, task level parallelism was developed to leverage 

running sections of code or different tasks on separate processors.  Yet another form 

referred to as request level parallelism may be exploited by a single application 

running on multiple processors, such as a database responding to queries, or multiple 

applications running independently, often called multiprogramming.8 

The question becomes, if we have different classes of parallel programming to 

handle various types of applications, and multiple cores on which to run our programs, 

then why would we need to create additional programming languages such as 

OpenCL?  To answer this question, we need to expand our aperture to view the entire 

realm of hardware and software.  One problem that has emerged from using multiple 

cores draws a striking resemblance to the processor wall problem of 2004.  There are 

                                                 
6  (Kaeli, et al. 2015) 
7  (Patterson and Hennessy, Computer Architecture: A Quantatative Approach 2012) page 345 
8  (Patterson and Hennessy, Computer Architecture: A Quantatative Approach 2012) page 345 
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physical limitations to how many cores can be placed on a board, and even though 

cores designed today have their own data memory they still are competing with other 

cores for the same physical address space which is controlled by the CPU. 

Additionally, Single Program Multiple Data (SPMD) models work well to handle 

running tasks in parallel but matters become much more complicated when data needs 

to be shared and synchronized between the tasks.  With the release of OpenCL 2.0, 

shared virtual memory is used between program and device that also supports access 

to data across tasks being executed on separate devices. 

 

Speed and Performance 

 Before we move on to discuss the significance of running OpenCL in an HCE, 

we need to review some basic concepts revolving around speed and performance.  In 

the past decade, considerable strides have been made in increasing the overall speed 

and performance of programs being executed on hardware accelerators such as the 

GPU and FPGA boards.  Where development based upon Amdahl’s law of speedup in 

latency of task execution on a fixed workload stops, Gustafson’s law continues and 

proves to be a more realistic formula for calculating parallel performance, especially 

as it relates to the basis of this research.   
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Gustafson’s law is formulated as: 

Slatency(s) = 1 – p + sp  

Where:  

• Slatency is the theoretical speedup in latency of the execution of the whole task 

• S is the speedup in latency of the execution of the part of the task that benefits 

from the improvement of the resources of the system 

• P is the percentage of the execution workload of the whole task that benefits 

from the improvement of the resources of the system before the improvement 

Gustafson’s law shows that even within a constant time interval, the complexity of 

programming can increase as long as the quantity or quality of resources being used to 

compute the program increases, such as the number or performance capability of 

processors for example.  Figure 2.2 shows this along with a comparison between 

Amdahl’s Law and Gustafson’s Law.  

 

Figure 2.2 Amdahl’s law versus Gustafson’s law. 
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 Viewing Gustafson’s law from an HCE perspective, utilizing multiple devices 

to execute a program would give you access to more processing power, resulting is a 

somewhat linear speed-up curve. 

 Accomplishing more in a constant interval of time relates well to speed, but 

what about performance?  As we can infer from previous discussion, the definition of 

performance in the world of computers has changed over the years as well.  Prior to 

2004, performance was determined by the clock rate of the processor measured in 

MHZ.  The higher the clock rate, the faster the computer performed.  This doesn’t 

hold true today with the shift toward multi-core design, efficiency in software 

development, and the ever-increasing use of embedded computers.  Embedded 

computing calls for the need of processing power in the most austere locations; 

automotive industry, MP3 players, digital watches, traffic lights, etc.  Many of these 

systems run on batteries so the need to conserve power becomes top priority.  Again, 

this is where we tie the importance of this research in to what is most important in the 

real world.  Not only is maximizing processing power in a HCE important, but power 

consumption must also be kept at a minimum as the tech industry designs more and 

more applications of embedded computers that run off of battery power.   

 

Heterogeneous Computing Environment 

Now that we have reached the undeniable conclusion that more processing power 

is better, let's discuss how that processing power can or should be arrayed.  

Heterogeneous computing is the concept of using multiple “devices” with their own 

processor and memory capability to execute programs, tasks, or functions 
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independently or concurrently with other devices.  These devices include multi-core 

CPUs, GPUs, FPGAs, and digital signal processors.9  As an example, GPUs have been 

used for decades as independent processing units to enhance computer generated 

graphics for gaming.  Graphic generation and rendering require complicated floating 

point calculations that continually place a high demand on computing resources.  

Since GPUs are equipped with their own on-chip memory and processor, they opened 

the door for speed ups in graphics processing during hardcore gaming, especially 3D 

rendering.  Modern GPUs have anywhere from 32 to 64 individual cores placed 

directly on the chip.  NVIDIA Corporation developed their own API called CUDA to 

bind high-level computing languages such as C, C++, and FORTRAN with the 

massively parallel computing power of their GPUs.    

The need for heterogeneous computing has increased exponentially over the past 

decade.  Instead of relying on one processor to perform at the highest possible speed, 

multiple processors are utilized to achieve faster program execution.  Parallelism in 

programming requires additional processors to gain a true advantage over traditional 

sequential programming that has dominated software development for decades. As 

shown in Figure 2.3, these additional processors can be found within the multiple 

cores of all mainstream computing systems.  

                                                 
9 David Kaeli et al., Heterogeneous Computing with OpenCL 2.0 (New York:  Morgan  
Kaufmann, 2015), 1. 
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Figure 2.3 Multiple cores/processors. 

 

Besides multiple cores, hardware components of computers today typically have 

their own memory and processor(s) located directly on the circuit board.  SoC design 

takes advantage of spatial and temporal locality to reduce memory latency and achieve 

maximal speed-up.  As mentioned earlier, manufacturers such as NVIDIA offer GPU 

cards for laptops and desktop computers that have their own CPU and memory on the 

same die which greatly reduces memory latency, data dependencies, and data 

conflicts.  The DE1-SoC board used for this research has a dual-core ARM Cortex A9 

MP Core processor coupled with a 1GB DDR3 SDRAM as part of the Hard Processor 

System (HPS).  All of these processors or cores located in the various hardware 

components, along with any external boards that can be connect via PCIE or USB 
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UART connections, provide additional computational power that can be utilized to 

support data and thread parallelism.  These “self-contained” constructs of processor 

and memory constitute the “devices” of a heterogeneous computing environment. 

Each device in a heterogeneous environment handles the processing of complex 

applications differently.  Complex applications can be vaguely categorized based upon 

the workload that they place on the device being used.  Control intensive applications 

include searching, parsing, and sorting operations; data intensive applications focus 

more on image processing, simulation and modeling, and data mining; and compute 

intensive applications involve iterative methods, numerical methods, and financial 

modeling.10  The complexity of the task at hand will determine which device is best 

suited for executing the task, as seen in Figure 2.4 which illustrates how a computer 

may handle data parallel versus serial and task parallel workloads.  CPUs are typically 

best suited for control intensive applications while GPUs excel at processing imagery 

due to the massively parallel design that handle processing large amounts of data.  

FPGAs are also inherently parallel and handle complex parallelism with a lower 

consumption of power than both CPU and GPU platforms.  An example of this will be 

examined exclusively in Chapter 4. 

                                                 
10 David Kaeli et al., Heterogeneous Computing with OpenCL 2.0 (New York:  Morgan  
Kaufmann, 2015), 1. 
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Figure 2.4 Heterogeneous concept. 

 

Workload diversification has opened the door for improving performance and 

lowering overall power consumption for applications such as HD video conferencing 

and real-time language translation.  Farming out the parallel processing chores to the 

GPU while keeping the operating system requirements and serial tasks with the CPU 

enables maximization of both devices, which is the essence of heterogeneous 

computing.  

Now that the layout of an HCE is clear, let’s look at an acceleration of the 

hardware devices.  In order to tap into the acceleration power of hardware such as the 

multi-core CPUs, GPUs, or FPGA one must acquire an in-depth knowledge of high-

level (C, C++, etc.), hardware (VHDL for FPGA), or even vendor specific (CUDA) 

languages which can be very complex and are only applicable to the one specific piece 

of hardware.  If only there was a way to accelerate any hardware device by utilizing 

one programming language.  This is precisely what OpenCL offers, which will be 

illustrated in Chapter 3. 
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The use of a heterogeneous computing environment coupled with the OpenCL 

language and FPGA, offers an alternative framework for maximizing performance, 

decreased power consumption, and workarounds to the aforementioned challenges. 

 

FPGA Programming and Design 

 FPGA design has evolved significantly over the past few decades.  In the past, 

using an FPGA in your development environment required extensive programming 

just to get your FPGA to perform some simple functions.  As a result, FPGAs have 

been by in large avoided by program developers.11 FPGAs were the forerunners of the 

gaming industry, back when games such as Space Invaders and Pac-Man ruled the 

arcade.  Designed as simple two-dimensional arrays of logic gates connected in 

parallel that are field programmable, they can perform complex computations at a 

fraction of the performance cost of its hardware brethren.  The large number of logic 

elements typically found on an FPGA provide the means for the multi-threaded 

parallelism.  Modern FPGA design such as the DE1-Soc board from Altera used in 

this research contains over a million logic elements and thousands of memory blocks 

in a parallel design that enables multiple OpenCL workgroups to be processed 

concurrently. 

 Prior to OpenCL, programming an FPGA required learning complex hardware 

languages such as HDL or VHDL along with using Electronic Design Automation 

(EDA) tools in order to properly convert your design idea into a complex logic circuit 

that programmed the FPGA board.  With the advent of the OpenCL language which 

                                                 
11  (Moore 2014), Page 7 
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we will discuss in more detail in Chapter 4, FPGAs can now be programmed without 

having to learn HDL or VHDL.  The SDK supplied by the vendor of each OpenCL 

compatible FPGA board handles the chore of creating the complex logic circuit 

needed to program the FPGA board.  The SDK utilizes a software program in the 

background such as Quartus II for FPGA in order to create the hardware configuration 

file. 

As mentioned earlier, the FPGA is becoming the hardware processor of choice 

in embedded applications where power is at a premium.  The FPGA has a fine-grain 

parallelism architecture, and by using OpenCL you can generate only the logic you 

need to deliver one fifth of the power of the hardware alternatives.12  It is clear that 

there is a solid connection between OpenCL and FPGA that may see a sharp increase 

in FPGA application in environments beyond the embedded market. 

 

                                                 
12  (Moore 2014), page 39. 
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CHAPTER 3 

METHODOLOGY 

 Program acceleration can be achieved in many ways.  No one way will work 

all of the time.  Sometimes data level parallelism is more critical than job level 

parallelism, or image processing enhancement is most crucial vice the speed at which 

linear algebra problems are calculated.  But it is possible that there are alternate ways 

to accelerate hardware in the interest of achieving maximum results with minimal 

power consumption.  The goal here is to shed light on a new paradigm that attempts to 

tackle complex programs in the most advantageous way possible instead of being 

constrained to one device.  This research is rooted in five key reasons to substantiate 

the argument for using OpenCL to program hardware, especially FPGA, in an HCE: 

1. Heterogeneity in program design provides access to more processing 

power 

2. OpenCL makes programming hardware easier 

3. OpenCL provides program portability along with speed and 

performance advantages 

4. FPGAs can perform just as fast as GPUs and CPUs at a fraction of the 

power consumption 

5. Parallel programming exploitation using OpenCL 

Reason one was covered with a basic explanation of a heterogeneous computing 

environment and how it correlates to OpenCL.  A “Hello World” example will be used 

to not only template the basic functions of the OpenCL API, but to also demonstrate 

just how simple it is to program hardware such as the FPGA.  Portability, speed, 
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performance, and power savings will be demonstrated using a vector addition program 

run in the HCE.  Wrapping up the supporting arguments will be a black sholes 

financial options pricing program converted from C to OpenCL to illustrate how 

parallelization of existing software and hardware can be exploited.  

 

Research Setup 

The components of my heterogeneous computing environment and the 

interconnectivity of the hardware and software components are diagramed in Figure 

3.1.  The hardware and software used consisted of the following:   

Hardware 

• CPU:  4 cores (Intel® Core i3 4010U @ 1.70 GHz operating on a 64-bit 

Windows 8 OS with 4 GB RAM) 

• GPU:  Intel R HD Graphics 4400 @ .2 GHz 

• FPGA:  DE1-SoC Development and Education Board from Altera, obtained 

through the Altera University Program (Altera Cyclone V FPGA with ~85K 

Logic Elements, .8GHz, Dual-Core Arm Cortex A9 MP Core Processor, with 

64MB SDRAM and 1GB of DDR3 Ram) 

  Software 

• Altera SDK for OpenCL version 15.1 

• Quartus II Prime 15.1 

• NIOS II EDS 11.0 

• Microsoft Visual Studio 2015  
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                          Figure 3.1 OpenCL heterogeneous platform. 

 

Altera SDK and DE1-SoC Development Board 

 In order to build and run programs within an OpenCL environment, you need 

to install a SDK that is vendor specific to the type of hardware in your HCE.  Since the 

DE1-SoC board from Altera is used in this research, it was necessary to install the 

Altera SDK for OpenCL to build and run kernels on that board.  The Altera SDK 

provides the logic components, drivers, and AOCL-specific libraries and files.  The 

logic components include the Altera Offline Compiler (AOC), the AOCL utility, and 

the host runtime.  The AOC creates the hardware configuration file that programs the 

FPGA, the AOCL utility contains the high-level commands that perform tasks such as 
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diagnostic tests, and the host runtime consists of libraries that provide OpenCL APIs 

and helper libraries.13 

 As mentioned earlier, the DE1-SoC board has an Altera Cyclone V FPGA with 

a 800MHz Dual-Core Arm Cortex A9 Processor directly on the board.  To run 

OpenCL kernels on the board, they are loaded directly to the FPGA as a hardware 

configuration file (.aocx) via the USB port along with a version of the host binary 

suitable for FPGA.  The execution of the kernel can either be controlled by the source 

program (main) or by using a Putty terminal connection between the host computer 

and the FPGA.  The Putty connection enables direct access to the memory and process 

embedded on the FPGA board via a bootable Linux image running off of a micro-SD 

card.   Figure 3.2 shows the full block diagram of the DE1-SoC board. 

                                                 
13  Altera Corporation. Altera SDK for OpenCL: Getting Started Guide. Instruction 

Manual, San Jose, 2015, page 1-3. 
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Figure 3.2 DE1-SoC block diagram. 

 

OpenCL Architecture      

Open Computing Language (OpenCL) is not only designed to communicate with 

all devices in a heterogeneous computing environment, but also direct the execution of 

programs by assigning programming tasks to the best device available.14  It bridges the 

gap between the computing power of multiple devices and serving as one computing 

language that software programmers can learn fairly quickly to interact directly with 

hardware.  Created by Apple, it is an open source language that was first released in 

                                                 
14 David Kaeli et al., Heterogeneous Computing with OpenCL 2.0 (New York:  Morgan  
Kaufmann, 2015), 1. 
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2008 by the Khronos Group who still manages the libraries and releases.  Khronos 

developed the OpenCL standard so that an application can offload parallel 

computation to accelerators in a common way, regardless of their underlying 

architecture or programming model.15  Not only is it designed to support the 

heterogeneous computing environment, it also affords cross-platform portability.  A 

program written in OpenCL can be run on virtually any machine that has an OpenCL 

SDK and applicable libraries installed.   

The OpenCL C language is a restricted version of the C99 language, but it also 

has wrappings that support C++, Java, Python, and NET.16  The specification of 

OpenCL is divided into four parts:  the platform model, the execution model, the 

kernel programming model, and the memory model. 

The OpenCL platform consists of the host computer and all devices that are 

connected to it.  To recap, for OpenCL purposes a device is a piece of hardware that is 

capable of processing a kernel independently of or concurrently with other devices.  

Each device is divided into compute units that are further divided into processing 

elements as shown in Figure 3.3.17   

                                                 
15  (Guillon 2015), page 2. 
16  (Kaeli, et al. 2015), page 42. 
17 Ibid. 
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Figure 3.3 OpenCL platform with devices. 

 

Within the execution model, the host configures the OpenCL environment and a 

context is established around the platform and the devices through which coordination 

and memory management are handled for kernel execution.  It also establishes 

command-queues that handle communications between the host and the device as well 

as events that specify dependencies between commands. 18 

 The kernel programming model construct builds kernels using items such as 

work-items and work-groups to obtain maximum parallelization based upon the 

targeted device.  The host is responsible for compilation of the main source code using 

a standard C compiler and loading the host binaries into memory.  The main source 

code contains the OpenCL commands and function calls, contains any constant data, 

and controls the execution of a kernel on a device.  Runtime compilation prepares the 

kernel to be run on the best device based on computational workload which maximizes 

both concurrency and parallelism.19 After the kernels are created, they are compiled by 

an offline compiler to create the hardware configuration files (.aoco and .aocx).  The 

                                                 
18 Ibid, page 48. 
19 Ibid, 1. 
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.aocx file is used to program the FPGA enabling it to run the kernel.  It takes the place 

of the complicated VHDL programs of the past that were need to program an FPGA.  

Figure 3.4 shows a typical flow of both the host code and the kernels through the 

programming process assuming a PCIE mounted FPGA. 

  

 

Figure 3.4 AOCL FPGA programming flow. 

 

The memory model consists of buffers, images, and pipes that handle memory 

allocation, temporary storage of data, and prioritization of how data items are stored.  

OpenCL defines memory regions as either host or device specific.  Global memory 

(DDR and QDR) is visible to all work items executing a kernel, constant memory 

stores data that remains constant, local memory (on-chip memory) shares data 

between work-items, and private memory (on-chip registers) is unique to an individual 
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work-item.20 Figure 3.5 shows the layout of host and device memory regions within 

OpenCL.   

 

Figure 3.5 OpenCL memory model. 

 

OpenCL Runtime and FPGA Programming 

When learning a new computer language, most authors and instructors start off 

with a “Hello World” version of the code that shows a few basic commands, function 

calls, include files, and the like.  OpenCL is no exception.  In this case, the hello world 

program is used to demonstrate how the OpenCL architecture interacts with the 

associated hardware in your HCE.  A full listing of the “Hello World” code is 

provided in Appendix A.  We will examine this program by breaking it down into 

smaller sections of OpenCL code that align with the application steps that all OpenCL 

                                                 
20 Ibid, page 60. 
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programs follow.  The final step will be to convert it to run on the DE1-SoC FPGA, 

demonstrating just how easy it is to program hardware with OpenCL. 

 Since OpenCL is basically a derivative from the C language if follows the 

same principles of utilizing source and headers files.  In the source file, there is one 

main function that controls the order of program execution along with the program-

specific function definitions and declarations.  It also provides space to declare host-

side memory functions and operations, variables, and constants.  The bulk of the 

standard OpenCL function definitions and declarations are located in a cluster of 

headers files that are continually updated as newer versions of OpenCL are released.  

All OpenCL header files are available for download from the Kronos Group website 

as well as popular developer websites such as GitHub.   

As stated earlier, all OpenCL programs follow ten main steps that setup the 

OpenCL environment and run kernels on existing devices.21  Below is a detailed 

breakdown of each step along with the associated code. 

 

1.  Discovering the platform and devices.  In order for a kernel to run on a device, the 

host must first determine if an OpenCL platform is present and how many devices are 

associated with it.  Figure 3.6 shows the standard function calls for finding the 

OpenCL platform and devices. 

 

 

 

 

                                                 
21 (Kaeli, et al. 2015), page 63-66. 
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 // Get the OpenCL platform. 
  platform = findPlatform("Altera"); 
  if(platform == NULL) { 
    printf("ERROR: Unable to find Altera OpenCL platform.\n"); 
    return false; 
  } 

// Query the available OpenCL devices. 
  scoped_array<cl_device_id> devices; 
  cl_uint num_devices; 
 
  devices.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices)); 

Figure 3.6 Find platform and devices. 

  

2. Creating a context. After the platform and devices have been discovered, the host 

program creates a context that includes all devices.  Figure 3.7 shows the standard 

function call for context creation along with error checking. 

 

   // Create the context. 
  context = clCreateContext(NULL, 1, &device, NULL, NULL, &status); 
  checkError(status, "Failed to create context"); 

Figure 3.7 Create the context. 

 

3. Creating a command-queue per device.   Each device needs a command queue to 

handle most of the work for the device.  The host submits commands to the command 

queue for execution on the device.  Figure 3.8 shows the standard function call for 

command queue creation along with error checking. 

 

// Create the command queue. 
  queue = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, 
&status); 
  checkError(status, "Failed to create command queue"); 
 

Figure 3.8 Create a command queue. 
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4. Creating memory objects (buffers) to hold data.  Memory objects enable the transfer 

of data between the host and the device.  The buffer is associated with the context on 

the host side, making it accessible to all devices in that context.  Flags can also be used 

here to specify if data is read-only, write-only, or read-write.  The hello world program 

has no need to hold data in memory, so Figure 3.9 is a code snippet from a vector 

addition program to show the creation of buffer objects. 

 

// Input buffers. 
    input_a_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,  
        n_per_device[i] * sizeof(float), NULL, &status); 
    checkError(status, "Failed to create buffer for input A"); 
 
    input_b_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,  
        n_per_device[i] * sizeof(float), NULL, &status); 
    checkError(status, "Failed to create buffer for input B"); 
 
    // Output buffer. 
    output_buf[i] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,  
        n_per_device[i] * sizeof(float), NULL, &status); 
    checkError(status, "Failed to create buffer for output"); 

Figure 3.9 Create host-side memory objects. 

 

5. Copying the input data onto the device.  Data is copied from a host pointer to a 

buffer which is ultimately transferred to the device when needed.  Figure 3.10 shows 

the standard function call from the vector addition program. 

 

status = clEnqueueWriteBuffer(queue[i], input_a_buf[i], CL_FALSE, 
        0, n_per_device[i] * sizeof(float), input_a[i], 0, NULL, 
&write_event[0]); 
    checkError(status, "Failed to transfer input A"); 
 
    status = clEnqueueWriteBuffer(queue[i], input_b_buf[i], CL_FALSE, 
        0, n_per_device[i] * sizeof(float), input_b[i], 0, NULL, 
&write_event[1]); 
    checkError(status, "Failed to transfer input B"); 

Figure 3.10 Transfer data to the device. 
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6. Creating and compiling a program from OpenCL C source code.   The hello world 

kernel is stored in a character array named “helloWorld” which is used to create a 

program object that is compiled.  During compilation, the information for each 

targeted device is provided as needed.  Figure 3.11 show the create program and build 

program function calls. 

 

// Create a program with source code 
  cl_program program = clCreateProgramWithSource(context, 1, (const 
char**)&helloWorld, NULL, &status); 
 
  // Build (compile) the program for the device 
  status = clBuildProgram(program, numDevices, devices, NULL, NULL, NULL); 
 

Figure 3.11 Create and compile from source. 

 

 

7. Extracting the kernel from the program.   Since the hello world kernel is embedded 

in main.cpp as a character array “HelloWorld”, it must be extracted in order to be 

executed independently on a device.  Figure 3.12 shows the standard function call for 

kernel extraction.   

 

// Create the hello world kernel 
  kernel = clCreateKernel(program, “helloWorld”, &status); 
  checkError(status, "Failed to create kernel"); 
 

Figure 3.12 Kernel extraction. 

 

 

8. Executing the kernel.  Once the kernel has been created and data has been 

initialized, arguments can be set for the kernel.  A command to execute the kernel can 

now be enqueued into the command-queue.  Along with the kernel, the command 

requires specification of the ND-Range configuration, as well as the work-group sizes, 
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are set.  Figure 3.13 depicts the standard function calls for setting kernel arguments 

and kernel execution. 

 

// Set the kernel argument (argument 0) 
  status = clSetKernelArg(kernel, 0, sizeof(cl_int), 
(void*)&thread_id_to_output); 
  checkError(status, "Failed to set kernel arg 0"); 
 
  printf("\nKernel initialization is complete.\n"); 
  printf("Launching the kernel...\n\n"); 
 
  // Configure work set over which the kernel will execute 
  size_t wgSize[3] = {work_group_size, 1, 1}; 
  size_t gSize[3] = {work_group_size, 1, 1}; 
 
  // Launch the kernel 
  status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, gSize, wgSize, 0, 
NULL, NULL); 

  checkError(status, "Failed to launch kernel");unsigned argi = 0; 

 

Figure 3.13 Kernel execution. 

 

 

9. Copying output data back to the host.  This step reads data back to a pointer on the 

host.  Since the hello world program does not use buffer objects, Figure 3.14 is a code 

snippet from the vector addition program that copies output data back to the host. 

 

// Read the result. This the final operation. 
    status = clEnqueueReadBuffer(queue[i], output_buf[i], CL_FALSE, 
        0, n_per_device[i] * sizeof(float), output[i], 1, &kernel_event[i], 

&finish_event[i]); 

Figure 3.14 Copy data back to host. 

 

10. Releasing the OpenCL resources.  The OpenCL resources that were allocated for 

kernel execution are released.  This is similar to C or C++ programs where memory 

allocations (for example) are freed at the end of program execution.  Figure 3.15 

shows the standard function calls to release resources. 
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// Release local events. 
    clReleaseEvent(write_event[0]); 
    clReleaseEvent(write_event[1]); 

// Release all events. 
  for(unsigned i = 0; i < num_devices; ++i) { 
    clReleaseEvent(kernel_event[i]); 
    clReleaseEvent(finish_event[i]); 
  } 

clReleaseKernel(kernel); 
clReleaseProgram(program); 
clReleaseCommandQueue(cmdQueue); 
clReleaseContext(context); 
 
 

Figure 3.15 Release resources. 

 

The hello world program is a good shell to start with when attempting to create 

OpenCL programs.  The OpenCL reference guides from Kronos Group provide a 

comprehensive listing of all functions calls and their parameters for each version of 

OpenCL.  At the writing of this research paper, the OpenCL API is on revision 2.2.   

Converting the hello world program (or any program for that matter) to run on 

the DE1-SoC FPGA is as easy as creating a hardware configuration file (.aocx) and an 

executable file for the Linux-based environment used on the DE1-SoC board.  As 

shown in Figure 3.1, the SOC EDS Cross-compiler is used to “make” a Linux 

executable file that runs the host code on the FPGA using the onboard processor.  This 

executable file is built using the main.cpp file and includes linkages to any libraries 

and additional source code as needed.  The hardware configuration file is built from 

the kernel.cl file using the Altera Offline Compiler (AOC) which communicates with 

the Quartus II software.  This creates a VHDL-like version of the kernel that can be 

run directly on the FPGA.  It is only necessary to have Quartus II installed for the 

AOC to use, no need to understand how to use this IDE or even understand VHDL 
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programming.  The SDK does all the heavy lifting of a hardware configuration for 

you.  

 

Maximizing Speed, Performance, and Portability 

 The advantages of using OpenCL can be best highlighted with example code 

that is straight forward and easy to manipulate in order to achieve easily recognizable 

results.  It should be obvious to all software developers and hardware users that there 

is no one stop shop solution to solving computational problems.  Some programs are 

designed to maximize the advantages offered by a specific hardware and vice versa.  

But OpenCL differs in that the program is created to be used across multiple hardware 

configurations.  This opens up the possibility of the giving the OpenCL runtime the 

flexibility to choose the hardware device that is best suited for the task at hand.  To 

emphasize the favorable attributes of OpenCL, I used a vector addition program that 

can be quickly altered to illustrate different results.  The complete code listing for 

vector addition is listed in Appendix B. 

 

Converting from C to OpenCL 

 To best demonstrate the effects of converting an existing program into 

OpenCL, I selected an existing code example that could be optimized to reap the 

benefits of running in an HCE using OpenCL.  The financial market uses what is 

referred to as vanilla option pricing to determine call and put options for assets.  The 

European vanilla option pricing method a uses random number generation to arrive at 

call and put options.  A C-based example of this calculation provided the perfect test 
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subject for analyzing existing code, determining how it could be optimized to run on 

existing hardware, and how the speed of program execution could be optimized.  I 

utilized Michael Halls-Moore’s version published on the QuantStart website which is 

a variation of the Black-Sholes Analytic Pricing Formula.22 A complete listing of the 

original C-based program is provided in Appendix C, and I will refer to it as the black 

sholes program for reference.  This C-based program uses the Box-Muller algorithm 

for determining random numbers used as input into a Monte Carlo function that 

calculates a call and put price options.  Constant input values are entered for an option 

price, strike price, risk-free rate, volatility rate, and time.   

 The approach was to build and run the C version of this program, determine 

overall CPU execution time, and highlight which parts of the program are consuming 

the bulk of that time.  Running performance profiler from Microsoft Visual Studio 

2015 revealed that the gaussian_box_muller function was consuming 81% of the 

CPU’s usage time as shown in Figure 3.16. 

 

 

Figure 3.16 Gaussian Box-Muller Function. 

 

                                                 
22 https://www.quantstart.com/articles/european-vanilla-option-pricing-with-c-via-monte-carlo-
methods 
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As shown in Figure 3.17, the randomization of x and y within the do…while loop, 

which in itself only runs a few times to arrive at the final value for x, was consuming 

the bulk of effort from the CPU.   

 

 

Figure 3.17 Kernel target   

 

The challenge becomes how to convert this C-based program into OpenCL while 

optimizing program execution.  The OpenCL approach is to look for functions or 

blocks of code as in Figure 3.17 that can be converted to a kernel for faster execution 

on a specific or multiple devices.  This is akin to data and thread-level parallelization, 

but with the caveat of having more flexibility to tweak the number of work-items in a 

work-group and achieve even greater effects on the target hardware.  The results and 

analysis gathered from this program conversion are discussed under the Black-Sholes 

sub-heading in chapter 4. 
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CHAPTER 4 

FINDINGS 

 In order to quantify the results and analysis of using OpenCL in a HCE on 

multiple devices, this research focuses on three overarching use cases.  The first use 

case focuses on a commonly used vector addition algorithm compare and contrast 

results across different hardware devices.  The second use case involves converting an 

existing program from a tradition high level language such as C to OpenCL to 

demonstrate the benefits of such a conversion.  The third use case focuses on running 

benchmarks that currently exist for GPU platform on the FPGA.  The third use case 

also involves converting code, but demonstrates the portability of the OpenCL 

language.  Common to all cases is the demonstration that programming hardware such 

as the FPGA has never been easier. 

 

Vector Addition Program 

 The vector addition program takes two vectors and adds them together creating 

a third resultant vector.  This particular OpenCL rendition of the program is a good 

example of how pipeline parallelism can be exploited on an FPGA to achieve results 

that are similar to a GPU.  Figure 4.1 depicts a representation of the load and store 

operations that occur within each logic element of the FPGA.  The DE1-SoC board 

has 84,000 logic elements that can be utilized simultaneously by segregating the input 

vectors into work groups.  The FPGA handles each work group as if it was a thread 

during parallel execution.  When loads of thread ID 0, for example, are passed to the 
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ALU for addition, the next two thread IDs are fetched from the host side memory 

buffer. 

 

Figure 4.1 Vector addition pipeline 

 

 The program is setup to run on all devices that are available so it is an 

excellent example of why multiple devices with an HCE are important and how 

OpenCL can best leverage those devices.  It can be adjusted to run the entire kernel on 

one device only, mirrored vector addition on multiple devices simultaneously, or 

dividing the vector workload across the devices.  Buffer objects are created for each 

device to facilitate the transfer of data between the host and device memory.  For my 

setup, the DE1-SoC has its own memory and processor so running the main program 

and kernel directly on the board eliminates memory latency due to the spatial locality 

that would be present when running the source program from the computer. 
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Here is the method used to conduct a comparative analysis of the vector 

addition kernel run on 3 different devices:   

Devices: 

• CPU  (4x compute units* at  1.7 GHZ) (Intel Core:  8 SP 

GFLOPS/cycle) 

• GPU  (20x compute units* at  .2 GHZ) 

• FPGA  (1x compute unit* at  .8 GHZ) (ARM Cortex A-9:  4 SP 

GFLOPS/cycle) 

* Depicts the number of compute units that the vector program detects 

per device. 

Program alteration:  altered the data bandwidth by changing the total elements 

to be processed: 

• N = 500,000 

• N = 1,000,000 

• N = 10,000,000 

Captured system clock time average over 5 runs for each value of N  

Results: 

• Results in Figure 4.2:  straight system clock time for kernel execution 

• Results 4-6:  adjusted times to account for core advantage (FPGA 

baseline with 1 CU) 

• Results 7-9:  adjusted times for clock rate advantage (CPU baseline @ 

1.7 GHZ)  
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 Due to the construct of a one-dimensional vector array, there are limited 

options for manipulation of this program to achieve remarkable results in CPU type 

processing time.  I chose to manipulate the data bandwidth of program execution by 

changing the number of elements in the array and produced results shown in Figure 

4.2.  The vector addition program captures performance internally by saving system 

clock time at the beginning and end of kernel execution.  Changing the data bandwidth 

by increasing the number of elements in the vectors increased the overall execution 

time, which is to be expected and is shown in Figure 4.2.   

 

 

Figure 4.2 Change in data bandwidth 

 

To realize the true measure of hardware performance between devices, 

however, adjustments need to be made to the results to compensate for advantages that 

individual devices have over other devices.  As seen on the previous page in the 

device specifications, there is a considerable difference in the processor clock rate and 

a number of compute units for each device recognized by the program.  The CPU has 

the advantage of clock rate at 1.7 GHz, followed by the FPGA at .8 GHz, and the GPU 
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at .2 GHz.  Also, OpenCL recognizes the GPU as having the most compute units at 20, 

followed by the CPU with 4, followed by the FPGA with 1. 

 To calculate CPU performance relative to each devices advantage, I used the 

standard calculation for determining relative performance.  The formula for 

calculating relative performance is as simple as dividing device A by device B to 

arrive at a ratio:23   

CPU Performance A     = Execution Time B 

CPU Performance B     = Execution Time A 

 

Applying the same theory of relative performance to the vector addition results, I 

calculated the following adjustments to the results from Figure 4.2: 

 

 

 # of Compute Units Processor Speed Up 

CPU @ 1.7 GHz on 4 CU Execution time x 4 Execution time / 1 

GPU @ .2 GHz on 20 CU Execution time x 20 Execution time / 8.5 

FPGA @ .8 GHz on 1 CU Execution time x 1 Execution time / 2.125 

 

Table 4.1 Relative Performance Adjustments 

 

With a level playing field for each processor (excluding any data conflicts caused by 

the shared memory between the CPU and GPU), the adjustments listed in Table 4.1 

yield the results in Figure 4.3.  This is a prime example of how the advantage of an 

FPGA versus CPU or GPU can be overlooked.  Given the same clock rate and equal 

program workload distribution, the FPGA outperforms the CPU, is very close to the 

GPU and consumes multitudes less power than both.   

                                                 
23 Patterson, David, and John L. Hennessy. Computer Organization and Design: The 

Hardware/Software Interface. New York: Morgan Kaufmann, 2009, 34. 
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Figure 4.3 Relative performance. 

 

Black Sholes Program 

The black sholes program served as an entry level program that offered all the 

challenges of converting a standard C-based program into OpenCL along with all the 

benefits of doing so.  Achieving program optimization without just creating redundant 

code is the goal of any developer.  The best method is to work from the inside out, 

looking for functions and blocks of code that could benefit from parallelization.  As 

mentioned earlier, the gaussian_box_muller function shown in Figure 4.4 consumes 

81% of the CPU’s resources during program execution.   
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double gaussian_box_muller() { 
 double x = 0.0; 
 double y = 0.0; 
 double euclid_sq = 0.0; 
  
 // Continue generating two uniform random variables 
 // until the square of their "euclidean distance"  
 // is less than unity 
 do { 
  x = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1; 
  y = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1; 
  euclid_sq = x*x + y*y; 
 } while (euclid_sq >= 1.0); 
 return x*sqrt(-2 * log(euclid_sq) / euclid_sq); 
} 

Figure 4.4 Gaussian Box Muller Function in C. 

 

If the number of sims for the black sholes program is set at 100,000 for example, the 

function is called 100,000 times by both the put and call functions respectively (see 

Figure 4.5), with each call using multiple executions of a do-while loop to output a 

random number.   

do { 
  x = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1; 
  y = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1; 
  euclid_sq = x*x + y*y; 
 } while (euclid_sq >= 1.0); 
 return x*sqrt(-2 * log(euclid_sq) / euclid_sq); 
} 
 
// Pricing a European vanilla call option with a Monte Carlo method 
double monte_carlo_call_price(const int& num_sims, const double& S, const 
double& K, const double& r, const double& v, const double& T) { 
 double S_adjust = S * exp(T*(r - 0.5*v*v)); 
 double S_cur = 0.0; 
 double payoff_sum = 0.0; 
 
 for (int i = 0; i<num_sims; i++) { 
  double gauss_bm = gaussian_box_muller(); 
  S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm); 
  payoff_sum += std::max(S_cur - K, 0.0); 
 } 
 
 return (payoff_sum / static_cast<double>(num_sims)) * exp(-r*T); 

} 

Figure 4.5 Original call function 
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Since OpenCL does not support the rand() function, I wasn’t able to run the 

entire gaussian_box_muller function as a kernel.  I used local host memory to create 

the random values of both x and y, copying them into arrays A and B as shown in 

Figure 4.6. 

double *A = (double*)malloc(datasize); 
 double *B = (double*)malloc(datasize); 
 double *C = (double*)malloc(datasize); 
 
 //Loads the random x & y values into arrays A and B in host memory 
 int i; 
 for (i = 0; i < elements; i++) { 
  A[i] = (2.0 * rand() / static_cast<double>(RAND_MAX) - 1); 
  B[i] = (2.0 * rand() / static_cast<double>(RAND_MAX) - 1); 

 } 

Figure 4.6 Host arrays. 

Having established that the performance bottleneck was related to the 

Gaussian_box_muller function and how the put and call functions interact with it, I 

focused on utilizing a kernel to speed up the process of generating random numbers 

and utilizing them in the put and call functions being handled by the host.  Using input 

and output buffers, I transferred the random number arrays A and B into the kernel, 

continued the rest of the Gaussian_box_muller calculations within the kernel on the 

targeted device, loaded the results into the output buffer C, and transferred that data 

back into the put and call functions.  The results shown in Figure 4.7 are indicative of 

the affects that vectorization of data transfers and processing can have on program 

performance.  The original C version of the program was compared to the OpenCL 

version as run on the CPU, and both of those results were compared to FPGA.  The 

performance of the program on CPU improved due to a decrease in program 

instructions and function calls.  By selecting the appropriate portion of the code to be 

farmed out to the FPGA through a kernel, I achieved the best overall run time.  
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Effective resource and memory management enables the best balance between CPU 

and FPGA for overall program execution.   

 

 

Figure 4.7 Black Sholes Results 

Rodinia Benchmarks 

 The Rodinia Benchmark Suite, version 3.1 offers a wide range of benchmarks 

that are targeted for CUDA, OMP, and OCL applications on GPU hardware.  Since no 

OpenCL benchmarks exist for FPGAs, the Rodinia benchmarks were chosen since 

they contained OpenCL coding and would serve as an opportunity to maximize on the 

benefits of running OpenCL in a HCE.  Since the benchmarks were designed for 

optimal performance on GPU, not all of them are good candidates for conversion and 

execution on FPGA.  The benchmarks chosen for research were algorithms that could 

benefit from vectorization, were heavy in data transfer between local, global, and host 

memory, and utilized multiple kernels. 
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 The first benchmark chosen was the K-Means data-mining algorithm which is 

heavy in data parallelization.  The algorithm is designed to take an initial set of input 

data and sort it into clusters based upon the data’s unique features.   Within each of 

these clusters, one item is determined to be the centroid for that particular cluster.  The 

program uses the Euclidean Distance metric to calculate distances between data 

elements.  The Rodinia version of the K-Means program maintains all the data points, 

features, cluster centers, and data/cluster integrity stored in separate arrays.  Pointers 

are used to reference all of these arrays while performing the I/O, clustering, centroid 

computation, and cluster reassigning based upon proximity of the data elements to the 

centroids.  The program is divided into separate .c files with the main execution 

residing within the kmeans.cpp file.   

 As mentioned earlier, the Rodinia Benchmarks are optimized to run on GPU.  

The K-Means algorithm provides for multiple points of manipulation to achieve 

different results which benefit experiments with both software and hardware.  Running 

the K-Means benchmark as downloaded showed results that favored the GPU over the 

FPGA.  The OpenCL kernels with this benchmark are quite simple and don’t provide 

an opportunity for FPGA optimization.  By thorough examination of the code, I 

decided to manipulate the constant number of clusters while adjusting the work-group 

size to best match the FPGA’s capabilities.  The best combination of cluster groups to 

work-group size produced the worst performance for the GPU.  Figure 4.8 shows the 

optimal results obtained when working on a 100,000-element data set with 10 clusters 

and a work-group size of 1024. 

 



 

46 

 

 

 

Figure 4.8 K-Means FPGA optimization. 

 

 The next Rodinia Benchmark selected for analysis was the hybrid sort program 

which is a combination of two popular sorting algorithms, bucket sort and merge sort.  

The program is designed to take list of floats in random order and run a bucket sort 

algorithm to separate the input data into groups, or, buckets.  This step of the sorting 

process can be configured to run across all devices in the HCE, tracking the CPU 

execution time of each device.  Next, the buckets are stored in a vector that is fed into 

the merge sort portion of the program.  The merge sort can also be configured to run 

on all devices and the CPU execution time is tracked.  As is a common theme with 

OpenCL optimization, examining the code execution and determining the proper 

work-group size to match the targeted hardware device can often be all that is required 

to achieved best results.  Figure 4.9 shows the result of the merge sort and how the 



 

47 

 

DE1-SoC board achieved a slight advantage over GPU when the work-group size was 

set at 1024.   

 

 

 

Figure 4.9 Merge sort. 

 

This result demonstrates how vectors run well on FPGAs and can maximize the effect 

of their inherent pipeline parallelism.  Figure 4.10 shows a more typical result for an 

FPGA board when running kernels that are not vectorized.   
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Figure 4.10 Bucket sort. 

 

Also, the hierarchy of program execution between the ND-Range, work-group, and 

work-items underlines one of the major benefits of OpenCL in its portability and 

scalability.   
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CHAPTER 5 

CONCLUSION 

 

This research was dedicated to determining if program acceleration with OpenCL 

in a Heterogeneous Computing Environment consisting of FPGA, CPU, and GPU is a 

credible approach to increasing speed, performance, and ultimately minimizing power 

consumption.  Today’s computing industry has a higher demand than ever before on 

maximal computation performance with minimal power consumption.  We have 

moved well beyond the era of processor overclocking and moved on to multi-tentacle 

approaches to enhancing CPU performance such as multi-cores, distributive 

computing, and now OpenCL.  Being able to maximize the performance of all 

hardware platforms simultaneously, independently, or sequentially is what OpenCL is 

all about.   

Learning a new computer language can always be a challenge.  Time and 

repetition are paramount as well as tapping into the best resources available.  

Compared to other high-level languages such as Java, OpenCL may be somewhat 

intimidating for developers without C or C++ experience.  I found the language to be 

straightforward to learn the basics, and there are multiple online training sessions 

offered at no cost from Intel which will get even the novice programmer up and 

running in relatively short order.  The more detailed and in-depth programming 

lessons will cost money, however.  Since the Kronos Group is the manager of the 

official OpenCL API, their website is naturally an excellent repository of source code 
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and libraries.  GitHub can also be used but be cautious not to mix up header files for 

different versions of OpenCL.   

The software development kit used was provided by Altera Corporation which 

required me to obtain a student license.  Altera has since been acquired by Intel, so all 

software downloads can be obtained through their website as well.  Intel will direct 

you to use Microsoft Visual Studio 2010 for compiling your host code for use with 

their SDK.  Learning the API of the SDK also takes some time, but the instructions are 

very well written and come with simple code examples to help understand the 

interoperability between all devices in your environment. 

The results gathered from the vector addition and black sholes programs 

definitely underline how quickly one can begin to code in OpenCL and obtain 

immediate performance improvements that are manageable and scalable. 

Experimenting with work item quantities and work-group sizes gives you the power to 

parallelize your applications ever further than normal thread and data level 

parallelization techniques.  Utilizing the multiple NDRanges (3 in total) offered by the 

OpenCL platform gives you additional scalability options that increase the need for 

synchronization between work-items, groups, multiple kernels (if used), and host and 

device-side memory.  All of which is controllable by either host or device. 

Programming hardware has never been easier.  OpenCL eliminates the need to 

learn complex hardware programming languages such as Verilog or VHDL to 

program FPGA.  Kernels can be built to run on multiple devices or be tailored to 

maximize the efficiency of a specific hardware platform. 
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Having device-side and host-side memory models that are scalable gives 

additional programming flexibility for larger and more data-intensive applications.  

Shared memory was introduced with the release of OpenCL version 2.0 which 

provides and advantage similar to having multiple devices on the same motherboard 

sharing the same address space.  Partitioning and programming specific device to host 

memory transfers generated significant performance improvements with the black 

sholes program.  

Future research projects could include using OpenGL which focuses primarily on 

GPU or, WebCL which is used to optimize the performance of web applications such 

as web browsers and cloud servers.  There are additional vendors that offer SDKs for 

OpenCL as well, and true OpenCL benchmarks for FPGA should be plentiful within 

the next few years.  The possibilities for use of OpenCL are endless.  Wherever there 

is code to be optimized, OpenCL should be considered. It may not provide the perfect 

solution for every application, but can reap immediate results and is most definitely a 

vehicle for future progress. 
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APPENDIX A 

Hello World OpenCL Code 

/*Copyright (C) 2013-2014 Altera Corporation, San Jose, California, USA. All 
rights reserved. Permission is hereby granted, free of charge, to any person 
obtaining a copy of this software and associated documentation files (the 
"Software"), to deal in the Software without restriction, including without 
limitation the rights to use, copy, modify, merge, publish, distribute, 
sublicense, and/or sell copies of the Software, and to permit persons to whom 
the Software is furnished to do so, subject to the following conditions:  
The above copyright notice and this permission notice shall be included in all 
copies or substantial portions of the Software.*/ 

 
#include <assert.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <cstring> 
#include "CL/opencl.h" 
#include "AOCL_Utils.h" 
 
using namespace aocl_utils; 
 
#define STRING_BUFFER_LEN 1024 
 
// Runtime constants 
// Used to define the work set over which this kernel will execute. 
static const size_t work_group_size = 8;  // 8 threads in the demo workgroup 
// Defines kernel argument value, which is the workitem ID that will 
// execute a printf call 
static const int thread_id_to_output = 2; 
 
// OpenCL runtime configuration 
static cl_platform_id platform = NULL; 
static cl_device_id device = NULL; 
static cl_context context = NULL; 
static cl_command_queue queue = NULL; 
static cl_kernel kernel = NULL; 
static cl_program program = NULL; 
 
// Function prototypes 
bool init(); 
void cleanup(); 
static void device_info_ulong( cl_device_id device, cl_device_info param, const 
char* name); 
static void device_info_uint( cl_device_id device, cl_device_info param, const 
char* name); 
static void device_info_bool( cl_device_id device, cl_device_info param, const 
char* name); 
static void device_info_string( cl_device_id device, cl_device_info param, 
const char* name); 
static void display_device_info( cl_device_id device ); 
 
// Entry point. 
int main() { 
  cl_int status; 
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  if(!init()) { 
    return -1; 
  } 
 
  // Set the kernel argument (argument 0) 
  status = clSetKernelArg(kernel, 0, sizeof(cl_int), 
(void*)&thread_id_to_output); 
  checkError(status, "Failed to set kernel arg 0"); 
 
  printf("\nKernel initialization is complete.\n"); 
  printf("Launching the kernel...\n\n"); 
 
  // Configure work set over which the kernel will execute 
  size_t wgSize[3] = {work_group_size, 1, 1}; 
  size_t gSize[3] = {work_group_size, 1, 1}; 
 
  // Launch the kernel 
  status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, gSize, wgSize, 0, 
NULL, NULL); 
  checkError(status, "Failed to launch kernel"); 
 
  // Wait for command queue to complete pending events 
  status = clFinish(queue); 
  checkError(status, "Failed to finish"); 
 
  printf("\nKernel execution is complete.\n"); 
 
  // Free the resources allocated 
  cleanup(); 
 
  return 0; 
} 
 
/////// HELPER FUNCTIONS /////// 
 
bool init() { 
  cl_int status; 
 
  if(!setCwdToExeDir()) { 
    return false; 
  } 
 
  // Get the OpenCL platform. 
  platform = findPlatform("Altera"); 
  if(platform == NULL) { 
    printf("ERROR: Unable to find Altera OpenCL platform.\n"); 
    return false; 
  } 
 
  // User-visible output - Platform information 
  { 
    char char_buffer[STRING_BUFFER_LEN];  
    printf("Querying platform for info:\n"); 
    printf("==========================\n"); 
    clGetPlatformInfo(platform, CL_PLATFORM_NAME, STRING_BUFFER_LEN, 
char_buffer, NULL); 
    printf("%-40s = %s\n", "CL_PLATFORM_NAME", char_buffer); 
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    clGetPlatformInfo(platform, CL_PLATFORM_VENDOR, STRING_BUFFER_LEN, 
char_buffer, NULL); 
    printf("%-40s = %s\n", "CL_PLATFORM_VENDOR ", char_buffer); 
    clGetPlatformInfo(platform, CL_PLATFORM_VERSION, STRING_BUFFER_LEN, 
char_buffer, NULL); 
    printf("%-40s = %s\n\n", "CL_PLATFORM_VERSION ", char_buffer); 
  } 
 
  // Query the available OpenCL devices. 
  scoped_array<cl_device_id> devices; 
  cl_uint num_devices; 
 
  devices.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices)); 
 
  // We'll just use the first device. 
  device = devices[0]; 
 
  // Display some device information. 
  display_device_info(device); 
 
  // Create the context. 
  context = clCreateContext(NULL, 1, &device, NULL, NULL, &status); 
  checkError(status, "Failed to create context"); 
 
  // Create the command queue. 
  queue = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, 
&status); 
  checkError(status, "Failed to create command queue"); 
 
  // Create the program. 
  std::string binary_file = getBoardBinaryFile("hello_world", device); 
  printf("Using AOCX: %s\n", binary_file.c_str()); 
  program = createProgramFromBinary(context, binary_file.c_str(), &device, 1); 
 
  // Build the program that was just created. 
  status = clBuildProgram(program, 0, NULL, "", NULL, NULL); 
  checkError(status, "Failed to build program"); 
 
  // Create the kernel - name passed in here must match kernel name in the 
  // original CL file, that was compiled into an AOCX file using the AOC tool 
  const char *kernel_name = "hello_world";  // Kernel name, as defined in the 
CL file 
  kernel = clCreateKernel(program, kernel_name, &status); 
  checkError(status, "Failed to create kernel"); 
 
  return true; 
} 
 
// Free the resources allocated during initialization 
void cleanup() { 
  if(kernel) { 
    clReleaseKernel(kernel);   
  } 
  if(program) { 
    clReleaseProgram(program); 
  } 
  if(queue) { 
    clReleaseCommandQueue(queue); 
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  } 
  if(context) { 
    clReleaseContext(context); 
  } 
} 
 
// Helper functions to display parameters returned by OpenCL queries 
static void device_info_ulong( cl_device_id device, cl_device_info param, const 
char* name) { 
   cl_ulong a; 
   clGetDeviceInfo(device, param, sizeof(cl_ulong), &a, NULL); 
   printf("%-40s = %lu\n", name, a); 
} 
static void device_info_uint( cl_device_id device, cl_device_info param, const 
char* name) { 
   cl_uint a; 
   clGetDeviceInfo(device, param, sizeof(cl_uint), &a, NULL); 
   printf("%-40s = %u\n", name, a); 
} 
static void device_info_bool( cl_device_id device, cl_device_info param, const 
char* name) { 
   cl_bool a; 
   clGetDeviceInfo(device, param, sizeof(cl_bool), &a, NULL); 
   printf("%-40s = %s\n", name, (a?"true":"false")); 
} 
static void device_info_string( cl_device_id device, cl_device_info param, 
const char* name) { 
   char a[STRING_BUFFER_LEN];  
   clGetDeviceInfo(device, param, STRING_BUFFER_LEN, &a, NULL); 
   printf("%-40s = %s\n", name, a); 
} 
 
// Query and display OpenCL information on device and runtime environment 
static void display_device_info( cl_device_id device ) { 
 
   printf("Querying device for info:\n"); 
   printf("========================\n"); 
   device_info_string(device, CL_DEVICE_NAME, "CL_DEVICE_NAME"); 
   device_info_string(device, CL_DEVICE_VENDOR, "CL_DEVICE_VENDOR"); 
   device_info_uint(device, CL_DEVICE_VENDOR_ID, "CL_DEVICE_VENDOR_ID"); 
   device_info_string(device, CL_DEVICE_VERSION, "CL_DEVICE_VERSION"); 
   device_info_string(device, CL_DRIVER_VERSION, "CL_DRIVER_VERSION"); 
   device_info_uint(device, CL_DEVICE_ADDRESS_BITS, "CL_DEVICE_ADDRESS_BITS"); 
   device_info_bool(device, CL_DEVICE_AVAILABLE, "CL_DEVICE_AVAILABLE"); 
   device_info_bool(device, CL_DEVICE_ENDIAN_LITTLE, 
"CL_DEVICE_ENDIAN_LITTLE"); 
   device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, 
"CL_DEVICE_GLOBAL_MEM_CACHE_SIZE"); 
   device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE, 
"CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE"); 
   device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_SIZE, 
"CL_DEVICE_GLOBAL_MEM_SIZE"); 
   device_info_bool(device, CL_DEVICE_IMAGE_SUPPORT, 
"CL_DEVICE_IMAGE_SUPPORT"); 
   device_info_ulong(device, CL_DEVICE_LOCAL_MEM_SIZE, 
"CL_DEVICE_LOCAL_MEM_SIZE"); 
   device_info_ulong(device, CL_DEVICE_MAX_CLOCK_FREQUENCY, 
"CL_DEVICE_MAX_CLOCK_FREQUENCY"); 
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   device_info_ulong(device, CL_DEVICE_MAX_COMPUTE_UNITS, 
"CL_DEVICE_MAX_COMPUTE_UNITS"); 
   device_info_ulong(device, CL_DEVICE_MAX_CONSTANT_ARGS, 
"CL_DEVICE_MAX_CONSTANT_ARGS"); 
   device_info_ulong(device, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE, 
"CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE"); 
   device_info_uint(device, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, 
"CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS"); 
   device_info_uint(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, 
"CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS"); 
   device_info_uint(device, CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE, 
"CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE"); 
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR, 
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR"); 
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT, 
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT"); 
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT, 
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT"); 
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG, 
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG"); 
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT, 
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT"); 
   device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE, 
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE"); 
 
   { 
      cl_command_queue_properties ccp; 
      clGetDeviceInfo(device, CL_DEVICE_QUEUE_PROPERTIES, 
sizeof(cl_command_queue_properties), &ccp, NULL); 
      printf("%-40s = %s\n", "Command queue out of order? ", ((ccp & 
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE)?"true":"false")); 
      printf("%-40s = %s\n", "Command queue profiling enabled? ", ((ccp & 
CL_QUEUE_PROFILING_ENABLE)?"true":"false")); 
   } 
} 
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APPENDIX B 

Vector Addition OpenCL Code 

/* Copyright (C) 2013-2014 Altera Corporation, San Jose, California, USA. All 
rights reserved. Permission is hereby granted, free of charge, to any person 
obtaining a copy of this software and associated documentation files (the 
"Software"), to deal in the Software without restriction, including without 
limitation the rights to use, copy, modify, merge, publish, distribute, 
sublicense, and/or sell copies of the Software, and to permit persons to whom 
the Software is furnished to do so, subject to the following conditions:  
The above copyright notice and this permission notice shall be included in all 
copies or substantial portions of the Software. */ 
 
/* This host program executes a vector addition kernel to perform:  C = A + B 
where A, B and C are vectors with N elements.  This host program supports 
partitioning the problem across multiple OpenCL devices if available. If there 
are M available devices, the problem is divided so that each device operates on 
N/M points. The host program assumes that all devices are of the same type 
(that is, the same binary can be used), but the code can be generalized to 
support different device types easily. Verification is performed against the 
same computation on the host CPU. */ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "opencl.h" 
//#include "c:\hld\host\include\CL\opencl.h" 
#include 
"c:\altera\15v1\hld\board\terasic\de1soc\examples\common\inc\AOCL_Utils.h" 
 
using namespace aocl_utils; 
//using namespace AOCL_Utils; 
 
// OpenCL runtime configuration 
cl_platform_id platform = NULL; 
unsigned num_devices = 0; 
scoped_array<cl_device_id> device; // num_devices elements 
cl_context context = NULL; 
scoped_array<cl_command_queue> queue; // num_devices elements 
cl_program program = NULL; 
scoped_array<cl_kernel> kernel; // num_devices elements 
scoped_array<cl_mem> input_a_buf; // num_devices elements 
scoped_array<cl_mem> input_b_buf; // num_devices elements 
scoped_array<cl_mem> output_buf; // num_devices elements 
 
// Problem data. 
const unsigned N = 1000000; // problem size 
scoped_array<scoped_aligned_ptr<float> > input_a, input_b; // num_devices 
elements 
scoped_array<scoped_aligned_ptr<float> > output; // num_devices elements 
scoped_array<scoped_array<float> > ref_output; // num_devices elements 
scoped_array<unsigned> n_per_device; // num_devices elements 
 
// Function prototypes 
float rand_float(); 
bool init_opencl(); 
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void init_problem(); 
void run(); 
void cleanup(); 
 
// Entry point. 
int main() { 
  // Initialize OpenCL. 
  if(!init_opencl()) { 
    return -1; 
  } 
 
  // Initialize the problem data. 
  // Requires the number of devices to be known. 
  init_problem(); 
 
  // Run the kernel. 
  run(); 
 
  // Free the resources allocated 
  cleanup(); 
 
  return 0; 
} 
 
/////// HELPER FUNCTIONS /////// 
 
// Randomly generate a floating-point number between -10 and 10. 
float rand_float() { 
  return float(rand()) / float(RAND_MAX) * 20.0f - 10.0f; 
} 
 
// Initializes the OpenCL objects. 
bool init_opencl() { 
  cl_int status; 
 
  printf("Initializing OpenCL\n"); 
 
  if(!setCwdToExeDir()) { 
    return false; 
  } 
 
  // Get the OpenCL platform. 
  platform = findPlatform("Intel(R) OpenCL"); 
  if(platform == NULL) { 
    printf("ERROR: Unable to find Altera OpenCL platform.\n"); 
    return false; 
  } 
 
  // Query the available OpenCL device. 
  device.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices)); 
  printf("Platform: %s\n", getPlatformName(platform).c_str()); 
  printf("Using %d device(s)\n", num_devices); 
  for(unsigned i = 0; i < num_devices; ++i) { 
    printf("  %s\n", getDeviceName(device[i]).c_str()); 
  } 
 
  // Create the context. 
  context = clCreateContext(NULL, num_devices, device, NULL, NULL, &status); 
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  checkError(status, "Failed to create context"); 
 
  // Create the program for all device. Use the first device as the 
  // representative device (assuming all device are of the same type). 
 
  std::string binary_file = getBoardBinaryFile("vectorAdd", device[0]); 
  printf("Using AOCX: %s\n", binary_file.c_str()); 
  program = createProgramFromBinary(context, binary_file.c_str(), device, 
num_devices); 
 
  // Build the program that was just created. 
  status = clBuildProgram(program, 0, NULL, "", NULL, NULL); 
  checkError(status, "Failed to build program"); 
 
  // Create per-device objects. 
  queue.reset(num_devices); 
  kernel.reset(num_devices); 
  n_per_device.reset(num_devices); 
  input_a_buf.reset(num_devices); 
  input_b_buf.reset(num_devices); 
  output_buf.reset(num_devices); 
 
  for(unsigned i = 0; i < num_devices; ++i) { 
    // Command queue. 
    queue[i] = clCreateCommandQueue(context, device[i], 
CL_QUEUE_PROFILING_ENABLE, &status); 
    checkError(status, "Failed to create command queue"); 
 
    // Kernel. 
    const char *kernel_name = "vectorAdd"; 
    kernel[i] = clCreateKernel(program, kernel_name, &status); 
    checkError(status, "Failed to create kernel"); 
 
    // Determine the number of elements processed by this device. 
    n_per_device[i] = N / num_devices; // number of elements handled by this 
device 
 
    // Spread out the remainder of the elements over the first 
    // N % num_devices. 
    if(i < (N % num_devices)) { 
      n_per_device[i]++; 
    } 
 
    // Input buffers. 
    input_a_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,  
        n_per_device[i] * sizeof(float), NULL, &status); 
    checkError(status, "Failed to create buffer for input A"); 
 
    input_b_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,  
        n_per_device[i] * sizeof(float), NULL, &status); 
    checkError(status, "Failed to create buffer for input B"); 
 
    // Output buffer. 
    output_buf[i] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,  
        n_per_device[i] * sizeof(float), NULL, &status); 
    checkError(status, "Failed to create buffer for output"); 
  } 
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  return true; 
} 
 
// Initialize the data for the problem. Requires num_devices to be known. 
void init_problem() { 
  if(num_devices == 0) { 
    checkError(-1, "No devices"); 
  } 
 
  input_a.reset(num_devices); 
  input_b.reset(num_devices); 
  output.reset(num_devices); 
  ref_output.reset(num_devices); 
 
  // Generate input vectors A and B and the reference output consisting 
  // of a total of N elements. 
  // We create separate arrays for each device so that each device has an 
  // aligned buffer.  
  for(unsigned i = 0; i < num_devices; ++i) { 
    input_a[i].reset(n_per_device[i]); 
    input_b[i].reset(n_per_device[i]); 
    output[i].reset(n_per_device[i]); 
    ref_output[i].reset(n_per_device[i]); 
 
    for(unsigned j = 0; j < n_per_device[i]; ++j) { 
      input_a[i][j] = rand_float(); 
      input_b[i][j] = rand_float(); 
      ref_output[i][j] = input_a[i][j] + input_b[i][j]; 
    } 
  } 
} 
 
void run() { 
  cl_int status; 
 
  const double start_time = getCurrentTimestamp(); 
 
  // Launch the problem for each device. 
  scoped_array<cl_event> kernel_event(num_devices); 
  scoped_array<cl_event> finish_event(num_devices); 
 
  for(unsigned i = 0; i < num_devices; ++i) { 
 
    // Transfer inputs to each device. Each of the host buffers supplied to 
    // clEnqueueWriteBuffer here is already aligned to ensure that DMA is used 
    // for the host-to-device transfer. 
    cl_event write_event[2]; 
    status = clEnqueueWriteBuffer(queue[i], input_a_buf[i], CL_FALSE, 
        0, n_per_device[i] * sizeof(float), input_a[i], 0, NULL, 
&write_event[0]); 
    checkError(status, "Failed to transfer input A"); 
 
    status = clEnqueueWriteBuffer(queue[i], input_b_buf[i], CL_FALSE, 
        0, n_per_device[i] * sizeof(float), input_b[i], 0, NULL, 
&write_event[1]); 
    checkError(status, "Failed to transfer input B"); 
 
    // Set kernel arguments. 
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    unsigned argi = 0; 
 
    status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem), 
&input_a_buf[i]); 
    checkError(status, "Failed to set argument %d", argi - 1); 
 
    status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem), 
&input_b_buf[i]); 
    checkError(status, "Failed to set argument %d", argi - 1); 
 
    status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem), &output_buf[i]); 
    checkError(status, "Failed to set argument %d", argi - 1); 
 
    // Enqueue kernel. 
    // Use a global work size corresponding to the number of elements to add 
    // for this device. 
    //  
    // We don't specify a local work size and let the runtime choose 
    // (it'll choose to use one work-group with the same size as the global 
    // work-size). 
    // 
    // Events are used to ensure that the kernel is not launched until 
    // the writes to the input buffers have completed. 
    const size_t global_work_size = n_per_device[i]; 
    printf("Launching for device %d (%zd elements)\n", i, global_work_size); 
 
    status = clEnqueueNDRangeKernel(queue[i], kernel[i], 1, NULL, 
        &global_work_size, NULL, 2, write_event, &kernel_event[i]); 
    checkError(status, "Failed to launch kernel"); 
 
    // Read the result. This the final operation. 
    status = clEnqueueReadBuffer(queue[i], output_buf[i], CL_FALSE, 
        0, n_per_device[i] * sizeof(float), output[i], 1, &kernel_event[i], 
&finish_event[i]); 
 
    // Release local events. 
    clReleaseEvent(write_event[0]); 
    clReleaseEvent(write_event[1]); 
  } 
 
  // Wait for all devices to finish. 
  clWaitForEvents(num_devices, finish_event); 
 
  const double end_time = getCurrentTimestamp(); 
 
  // Wall-clock time taken. 
  printf("\nTime: %0.3f ms\n", (end_time - start_time) * 1e3); 
 
  // Get kernel times using the OpenCL event profiling API. 
  for(unsigned i = 0; i < num_devices; ++i) { 
    cl_ulong time_ns = getStartEndTime(kernel_event[i]); 
    printf("Kernel time (device %d): %0.3f ms\n", i, double(time_ns) * 1e-6); 
  } 
 
  // Release all events. 
  for(unsigned i = 0; i < num_devices; ++i) { 
    clReleaseEvent(kernel_event[i]); 
    clReleaseEvent(finish_event[i]); 
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  } 
 
  // Verify results. 
  bool pass = true; 
  for(unsigned i = 0; i < num_devices && pass; ++i) { 
    for(unsigned j = 0; j < n_per_device[i] && pass; ++j) { 
      if(fabsf(output[i][j] - ref_output[i][j]) > 1.0e-5f) { 
        printf("Failed verification @ device %d, index %d\nOutput: 
%f\nReference: %f\n", 
            i, j, output[i][j], ref_output[i][j]); 
        pass = false; 
      } 
    } 
  } 
 
  printf("\nVerification: %s\n", pass ? "PASS" : "FAIL"); 
} 
 
// Free the resources allocated during initialization 
void cleanup() { 
  for(unsigned i = 0; i < num_devices; ++i) { 
    if(kernel && kernel[i]) { 
      clReleaseKernel(kernel[i]); 
    } 
    if(queue && queue[i]) { 
      clReleaseCommandQueue(queue[i]); 
    } 
    if(input_a_buf && input_a_buf[i]) { 
      clReleaseMemObject(input_a_buf[i]); 
    } 
    if(input_b_buf && input_b_buf[i]) { 
      clReleaseMemObject(input_b_buf[i]); 
    } 
    if(output_buf && output_buf[i]) { 
      clReleaseMemObject(output_buf[i]); 
    } 
  } 
 
  if(program) { 
    clReleaseProgram(program); 
  } 
  if(context) { 
    clReleaseContext(context); 
  } 
} 
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APPENDIX C 

OpenCL Histogram Program 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
/* OpenCL includes */ 
#include <CL/cl.h> 
 
/* Utility functions */ 
#include "utils.h" 
#include "bmp-utils.h" 
#include "gold.h" 
 
static const int HIST_BINS = 256;  
 
int main(int argc, char **argv)  
{ 
   /* Host data */ 
   int *hInputImage = NULL;  
   int *hOutputHistogram = NULL; 
 
   /* Allocate space for the input image and read the 
    * data from disk */ 
   int imageRows; 
   int imageCols; 
   hInputImage = readBmp("../../Images/cat.bmp", &imageRows, &imageCols); 
   const int imageElements = imageRows*imageCols; 
   const size_t imageSize = imageElements*sizeof(int); 
 
   /* Allocate space for the histogram on the host */ 
   const int histogramSize = HIST_BINS*sizeof(int); 
   hOutputHistogram = (int*)malloc(histogramSize); 
   if (!hOutputHistogram) { exit(-1); } 
 
   /* Use this to check the output of each API call */ 
   cl_int status; 
 
   /* Get the first platform */ 
   cl_platform_id platform; 
   status = clGetPlatformIDs(1, &platform, NULL); 
   check(status); 
 
   /* Get the first device */ 
   cl_device_id device; 
   status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL); 
   check(status); 
 
   /* Create a context and associate it with the device */ 
   cl_context context; 
   context = clCreateContext(NULL, 1, &device, NULL, NULL, &status); 
   check(status); 
 
   /* Create a command queue and associate it with the device */ 
   cl_command_queue cmdQueue; 
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   cmdQueue = clCreateCommandQueueWithProperties(context, device, 0, &status); 
   check(status); 
 
   /* Create a buffer object for the input image */ 
   cl_mem bufInputImage; 
   bufInputImage = clCreateBuffer(context, CL_MEM_READ_ONLY, imageSize, NULL,  
         &status); 
   check(status); 
 
   /* Create a buffer object for the output histogram */ 
   cl_mem bufOutputHistogram; 
   bufOutputHistogram = clCreateBuffer(context, CL_MEM_WRITE_ONLY,  
      histogramSize, NULL, &status); 
   check(status); 
 
   /* Write the input image to the device */ 
   status = clEnqueueWriteBuffer(cmdQueue, bufInputImage, CL_TRUE, 0, 
imageSize, 
         hInputImage, 0, NULL, NULL); 
   check(status); 
 
   /* Initialize the output histogram with zeros */ 
   int zero = 0; 
   status = clEnqueueFillBuffer(cmdQueue, bufOutputHistogram, &zero,  
         sizeof(int), 0, histogramSize, 0, NULL, NULL); 
   check(status); 
 
   /* Create a program with source code */ 
   char *programSource = readFile("histogram.cl"); 
   size_t programSourceLen = strlen(programSource); 
   cl_program program = clCreateProgramWithSource(context, 1, 
      (const char**)&programSource, &programSourceLen, &status); 
   check(status); 
 
   /* Build (compile) the program for the device */ 
   status = clBuildProgram(program, 1, &device, NULL, NULL, NULL); 
   if (status != CL_SUCCESS) { 
      printCompilerError(program, device); 
      exit(-1); 
   } 
 
   /* Create the kernel */ 
   cl_kernel kernel; 
   kernel = clCreateKernel(program, "histogram", &status); 
   check(status); 
 
   /* Set the kernel arguments */ 
   status  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &bufInputImage); 
   status |= clSetKernelArg(kernel, 1, sizeof(int), &imageElements); 
   status |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &bufOutputHistogram); 
   check(status); 
 
   /* Define the index space and work-group size */ 
   size_t globalWorkSize[1]; 
   globalWorkSize[0] = 1024; 
 
   size_t localWorkSize[1]; 
   localWorkSize[0] = 64; 
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   /* Enqueue the kernel for execution */ 
   status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, 
      globalWorkSize, localWorkSize, 0, NULL, NULL); 
   check(status); 
 
   /* Read the output histogram buffer to the host */ 
   status = clEnqueueReadBuffer(cmdQueue, bufOutputHistogram, CL_TRUE, 0, 
         histogramSize, hOutputHistogram, 0, NULL, NULL); 
   check(status); 
 
   /* Verify the output */ 
   int *refHistogram; 
   refHistogram = histogramGold(hInputImage, imageRows*imageCols, HIST_BINS); 
   int passed = 1; 
   int i; 
   for (i = 0; i < HIST_BINS; i++) { 
      if (hOutputHistogram[i] != refHistogram[i]) { 
         passed = 0; 
      } 
   } 
   if (passed) { 
      printf("Passed!\n"); 
   } 
   else { 
      printf("Failed.\n"); 
   } 
   free(refHistogram); 
 
   /* Free OpenCL resources */ 
   clReleaseKernel(kernel); 
   clReleaseProgram(program); 
   clReleaseCommandQueue(cmdQueue); 
   clReleaseMemObject(bufInputImage); 
   clReleaseMemObject(bufOutputHistogram); 
   clReleaseContext(context); 
 
   /* Free host resources */ 
   free(hInputImage); 
   free(hOutputHistogram); 
   free(programSource); 
 
   return 0; 
} 
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APPENDIX D 

Black Sholes Original C Code 

#include <algorithm>    // Needed for the "max" function 
#include <cmath> 
#include <iostream> 
 
 
// A simple implementation of the Box-Muller algorithm, used to generate 
// gaussian random numbers - necessary for the Monte Carlo method below 
// Note that C++11 actually provides std::normal_distribution<> in  
// the <random> library, which can be used instead of this function 
double gaussian_box_muller() { 
 double x = 0.0; 
 double y = 0.0; 
 double euclid_sq = 0.0; 
  
 // Continue generating two uniform random variables 
 // until the square of their "euclidean distance"  
 // is less than unity 
 do { 
  x = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1; 
  y = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1; 
  euclid_sq = x*x + y*y; 
 } while (euclid_sq >= 1.0); 
 return x*sqrt(-2 * log(euclid_sq) / euclid_sq); 
} 
 
// Pricing a European vanilla call option with a Monte Carlo method 
double monte_carlo_call_price(const int& num_sims, const double& S, const 
double& K, const double& r, const double& v, const double& T) { 
 double S_adjust = S * exp(T*(r - 0.5*v*v)); 
 double S_cur = 0.0; 
 double payoff_sum = 0.0; 
 
 for (int i = 0; i<num_sims; i++) { 
  double gauss_bm = gaussian_box_muller(); 
  S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm); 
  payoff_sum += std::max(S_cur - K, 0.0); 
 } 
 
 return (payoff_sum / static_cast<double>(num_sims)) * exp(-r*T); 
} 
 
// Pricing a European vanilla put option with a Monte Carlo method 
double monte_carlo_put_price(const int& num_sims, const double& S, const 
double& K, const double& r, const double& v, const double& T) { 
 double S_adjust = S * exp(T*(r - 0.5*v*v)); 
 double S_cur = 0.0; 
 double payoff_sum = 0.0; 
 
 for (int i = 0; i<num_sims; i++) { 
  double gauss_bm = gaussian_box_muller(); 
  S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm); 
  payoff_sum += std::max(K - S_cur, 0.0); 
 } 



 

67 

 

 
 return (payoff_sum / static_cast<double>(num_sims)) * exp(-r*T); 
} 
 
int main(int argc, char **argv) { 
 
 
 // First we create the parameter list                                                                                
 int num_sims = 100000;   // Number of simulated asset paths                                                        
 double S = 100.0;  // Option price                                                                                   
 double K = 100.0;  // Strike price                                                                                   
 double r = 0.05;   // Risk-free rate (5%)                                                                            
 double v = 0.2;    // Volatility of the underlying (20%)                                                             
 double T = 1.0;    // One year until expiry                                                                          
 
        // Then we calculate the call/put values 
via Monte Carlo                                                                           
 double call = monte_carlo_call_price(num_sims, S, K, r, v, T); 
 double put = monte_carlo_put_price(num_sims, S, K, r, v, T); 
 
 // Finally we output the parameters and prices                                                                       
 std::cout << "Number of Paths: " << num_sims << std::endl; 
 std::cout << "Underlying:      " << S << std::endl; 
 std::cout << "Strike:          " << K << std::endl; 
 std::cout << "Risk-Free Rate:  " << r << std::endl; 
 std::cout << "Volatility:      " << v << std::endl; 
 std::cout << "Maturity:        " << T << std::endl; 
 
 std::cout << "Call Price:      " << call << std::endl; 
 std::cout << "Put Price:       " << put << std::endl; 
 
 return 0; 

} 
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APPENDIX E 

Black Sholes OpenCL Code 

#include <stdio.h> 
#include <stdlib.h> 
#include <CL/cl.h> 
#include <CL_2_0\cl.h> 
#include <c:/altera/15.1/aclrte-windows64/host/include/CL/opencl.h> 
#include <iostream> 
#include <algorithm>    // Needed for the "max" function 
#include <cmath> 
#include "c:/altera/15.1/aclrte-
windows64/board/de1soc/examples/common/inc/aocl_utils.h" 
 
 
 
//Kernel  
const char* programSource = 
"__kernel        \n" 
"void vecadd(__int num_elements,                         \n" 
"    __global double *A,   \n" 
"              __global double *B,     \n" 
"              __global double *C)     \n" 
"{         \n" 
"         \n" 
"int idx = get_global_id(0);     \n" 
"double euclidSq = 0.0;      \n" 
"double x_select = 0.0;                                  \n" 
"for (int i = 0; i<num_elements; ++i){                   \n" 
"do {         \n" 
"      euclidSq = A[i]*A[i] + B[i]*B[i];               \n" 
"      x_select = A[i];                                  \n" 
"   } while (euclidSq >= 1.0);     \n" 
"   C[i] = x_select*sqrt(-2 * log(euclidSq) / euclidSq); \n" 
"}                                                       \n" 
"}                                                       \n" 
; 
using namespace aocl_utils; 
 
int main() { 
 
 //**********Problem Data*********************** 
 const int elements = 100000; 
 double S = 100.0;  // Option price                                                                                   
 double K = 100.0;  // Strike price                                                                                   
 double r = 0.05;   // Risk-free rate (5%)                                                                            
 double v = 0.2;    // Volatility of the underlying (20%)                                                             
 double T = 1.0;    // One year until expiry            
 double call, put; 
  
 
 size_t datasize = sizeof(double)*elements; 
 
 double *A = (double*)malloc(datasize); 
 double *B = (double*)malloc(datasize); 
 double *C = (double*)malloc(datasize); 
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 //Loads the random x & y values into arrays A and B in host memory 
 int i; 
 for (i = 0; i < elements; i++) { 
  A[i] = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1; 
  B[i] = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1; 
 } 
 
 cl_int status; 
 
 //Find the OpenCL Platform 
 cl_platform_id platform; 
 status = clGetPlatformIDs(1, &platform, NULL); 
 
  
 //Get the Devices 
 cl_device_id device; 
 status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, NULL); 
 
 //Create the Context 

cl_context context = clCreateContext(NULL, 1, &device, NULL, NULL, 
&status);  

  
 //Create the command queue for the device chosen 

cl_command_queue cmdQueue = clCreateCommandQueue(context, device, 0, 
&status);  

  
 //Create the buffers for memory transfers between host and device 
 cl_mem bufA = clCreateBuffer(context, CL_MEM_READ_ONLY, datasize, 
  NULL, &status); 
 cl_mem bufB = clCreateBuffer(context, CL_MEM_READ_ONLY, datasize, 
  NULL, &status); 
 cl_mem bufC = clCreateBuffer(context, CL_MEM_WRITE_ONLY, datasize, 
  NULL, &status); 
  
 //Write the data from host memory to the kernel buffers 
 status = clEnqueueWriteBuffer(cmdQueue, bufA, CL_FALSE, 0, 
  datasize, A, 0, NULL, NULL); 
 status = clEnqueueWriteBuffer(cmdQueue, bufB, CL_FALSE, 0, 
  datasize, B, 0, NULL, NULL); 
 
 //Create the program by extracting the kernel 
 cl_program program = clCreateProgramWithSource(context, 1, 
  (const char**)&programSource, NULL, &status); 
 
 //Build the program for the device 
 status = clBuildProgram(program, 1, &device, NULL, NULL, NULL); 
 
 //Create the kernel object 
 cl_kernel kernel = clCreateKernel(program, "vecadd", &status); 
 
 //Set the arguments for the kernel 
 status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &bufA); 
 status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &bufB); 
 status = clSetKernelArg(kernel, 2, sizeof(cl_mem), &bufC); 
 
 //Define an index space of wor-items for execution 
 size_t indexSpaceSize[1], workGroupSize[1]; 
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 //These are 'elements' wor-items 
 indexSpaceSize[0] = elements; 
 workGroupSize[0] = elements; 
 
 //Execute the kernel 

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, 
indexSpaceSize, 

  workGroupSize, 0, NULL, NULL); 
 
 //Read the device output buffer to the host output array 
 status = clEnqueueReadBuffer(cmdQueue, bufC, CL_TRUE, 0, 
  datasize, C, 0, NULL, NULL); 
 
 //******************call function********************************** 
 double S_adjust = S * exp(T*(r - 0.5*v*v)); 
 double S_cur = 0.0; 
 double payoff_sum = 0.0; 
 
 for (int j = 0; j < elements; j++) { 
  double gauss_bm = C[j]; //pulls the values returned by the kernel 
  //printf("%d", gauss_bm); 
  S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm); 
  payoff_sum += std::max(S_cur - K, 0.0); 
 } 
 
 call = (payoff_sum / static_cast<double>(elements)) * exp(-r*T); 
 //**************************************************************** 
 
 //****************put function************************************ 
 S_adjust = S * exp(T*(r - 0.5*v*v)); 
 S_cur = 0.0; 
 payoff_sum = 0.0; 
 
 for (int j = 0; j < elements; j++) { 
  double gauss_bm = C[j]; //pulls the values returned by the kernel 
  //printf("%d", gauss_bm); 
  S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm); 
  payoff_sum += std::max(K - S_cur, 0.0); 
 } 
 
 put = (payoff_sum / static_cast<double>(elements)) * exp(-r*T); 
 //**************************************************************** 
 
 
 // Finally we output the parameters and prices**********                                                                       
 std::cout << "Number of Paths: " << elements << std::endl; 
 std::cout << "Underlying:      " << S << std::endl; 
 std::cout << "Strike:          " << K << std::endl; 
 std::cout << "Risk-Free Rate:  " << r << std::endl; 
 std::cout << "Volatility:      " << v << std::endl; 
 std::cout << "Maturity:        " << T << std::endl; 
 
 std::cout << "Call Price:      " << call << std::endl; 
 std::cout << "Put Price:       " << put << std::endl; 
 //****************************************************** 
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 //Free OpenCL resources 
 clReleaseKernel(kernel); 
 clReleaseProgram(program); 
 clReleaseCommandQueue(cmdQueue); 
 clReleaseMemObject(bufA); 
 clReleaseMemObject(bufB); 
 clReleaseMemObject(bufC); 
 clReleaseContext(context); 
 
 //Free host resources 
 free(A); 
 free(B); 
 free(C); 
 
 return 0; 
} 
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