
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2017

Program Acceleration in a Heterogeneous Computing Program Acceleration in a Heterogeneous Computing

Environment Using OpenCL, FPGA, and CPU Environment Using OpenCL, FPGA, and CPU

Herman Noel Hoffman
University of Rhode Island, herman.hoffman1@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Hoffman, Herman Noel, "Program Acceleration in a Heterogeneous Computing Environment Using
OpenCL, FPGA, and CPU" (2017). Open Access Master's Theses. Paper 1015.
https://digitalcommons.uri.edu/theses/1015

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1015&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1015?utm_source=digitalcommons.uri.edu%2Ftheses%2F1015&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

PROGRAM ACCELERATION IN A HETEROGENEOUS

COMPUTING ENVIRONMENT USING OPENCL, FPGA,

AND CPU

BY

HERMAN NOEL HOFFMAN

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

UNIVERSITY OF RHODE ISLAND

2017

MASTER OF SCIENCE IN COMPUTER ENGINEERING THESIS

OF

HERMAN NOEL HOFFMAN

APPROVED:

Thesis Committee:

Major Professor Resit Sendag

 Jien-Chung Lo

 Lutz Hamel

 Nasser H. Zawia

 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2017

ABSTRACT

Reaching the so-called “performance wall” in 2004 inspired innovative

approaches to performance improvement. Parallel programming, distributive

computing, and System on a Chip (SOC) design drove change. Hardware acceleration

in mainstream computing systems brought significant improvement in the

performance of applications targeted directly to a specific hardware platform.

Targeting a single hardware platform, however, typically requires learning vendor and

hardware-specific languages that can be very complex. Additionally, Heterogeneous

Computing Environments (HCE) consist of multiple SOC hardware platforms, so why

not use them all instead of just one? How do we communicate with all platforms

while maximizing performance, decreasing memory latency, and conserving power

consumption? Enter the Open Computing Language (OpenCL) which has been

developed to harness the power and performance of multiple SOC devices in an HCE.

OpenCL offers an alternative to learning vendor and hardware-specific languages

while still being able to harness the power of each device. Thus far, OpenCL

programming has been directly mostly at CPU and GPU hardware devices.

The genesis of this thesis is to examine the connections between parallel computing in

a HCE using OpenCL with CPU and FPGA hardware devices. Underlining the

industry trends to favor FPGAs in both computationally intensive and embedded

systems, this research will also highlight the FPGA specifically demonstrating

comparable performance ratings as CPU and GPU at a fraction of the power

consumption. OpenCL benchmark suites run on a FPGA will show the importance of

performance per watt and how it can be measured. Running traditional parallel

programs will demonstrate the power and portability of the OpenCL language and

how it can maximize performance of FPGA, CPU, and GPU. Results will show that

OpenCL is a solid approach to exploiting all the computing power of a HCE and that

performance per watt matters in mainstream computing systems, making a strong case

for further research into using OpenCL with FPGAs in a HCE.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to give special thanks to my wife of 28 years who

has been supportive of me and understanding of the long nights spent doing research

after work. I also would like to give thanks to our beautiful children who inspire me

every day to push on and set a good example for them to follow. Finally, I would like

to acknowledge my major professor, Resit Sendag for all of his assistance during this

endeavor. He is an impeccable teacher with a passion for learning, teaching, and

inspiring his students to achieve. Without his ideas and countless discussions, I would

not have been able to achieve the level of analysis in computing hardware and

software that I have reached today.

v

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER 1 .. 1

INTRODUCTION ... 1

Motivation for Research.. 1

Chapter Overview ... 2

CHAPTER 2 .. 5

BACKGROUND ... 5

Parallel Programming .. 6

Speed and Performance .. 9

Heterogeneous Computing Environment ... 11

FPGA Programming and Design .. 16

CHAPTER 3 .. 18

METHODOLOGY ... 18

Research Setup ... 19

Altera SDK and DE1-SoC Development Board ... 20

OpenCL Architecture ... 22

OpenCL Runtime and FPGA Programming .. 26

Maximizing Speed, Performance, and Portability ... 33

Converting from C to OpenCL ... 33

CHAPTER 4 .. 36

FINDINGS ... 36

vi

Vector Addition Program .. 36

Black Sholes Program .. 41

Rodinia Benchmarks .. 44

CHAPTER 5 .. 49

CONCLUSION .. 49

APPENDIX A .. 52

APPENDIX B .. 57

APPENDIX C .. 63

APPENDIX D .. 66

APPENDIX E .. 68

BIBLIOGRAPHY .. 72

vii

LIST OF TABLES

TABLE PAGE

Table 4.1 Relative performance adjustments. ... 39

viii

LIST OF FIGURES

FIGURE PAGE

Figure 2.1 Processor performance growth .. 7

Figure 2.2 Amdahl’s law versus Gustafson’s law ... 8

Figure 2.3 Multiple cores and processors. .. 13

Figure 2.4 Heterogeneous concept. ... 15

Figure 3.1 OpenCL Heterogeneous platform. ... 20

Figure 3.2 DE1-SoC block diagram ... 22

Figure 3.3 OpenCL platform with devices ... 24

Figure 3.5 OpenCL memory model ... 26

Figure 3.6 Find platform and devices .. 28

Figure 3.7 Create the context ... 28

Figure 3.8 Create a command queue .. 28

Figure 3.9 Create memory objects ... 29

Figure 3.10 Transfer data to device .. 29

Figure 3.11 Create and compile from source ... 30

Figure 3.12 Kernel extraction .. 30

Figure 3.13 Kernel execution ... 31

Figure 3.14 Copy data back to host .. 31

Figure 3.15 Release resources .. 32

Figure 3.16 Gaussian Box-Muller function ... 34

Figure 3.17 Kernel target ... 35

ix

Figure 4.1 Vector addition pipeline ... 37

Figure 4.2 Change in data bandwidth .. 39

Figure 4.3 Relative performance .. 41

Figure 4.4 Gaussian Box-Muller function ... 42

Figure 4.5 Kernel target ... 42

Figure 4.6 Host arrays. .. 43

Figure 4.7 Black Sholes results. .. 44

Figure 4.8 K-Means FPGA optimization. ... 46

Figure 4.9 Merge sort. ... 47

Figure 4.10 Bucket sort. .. 48

1

CHAPTER 1

INTRODUCTION

Making computer hardware and software perform faster has been the overarching

goal of all development in the fields of computer engineering and computer

programming. After reaching the “performance wall” in 2004, there was a paradigm

shift from hardware to software development. New programming concepts emerged

such as instruction, data, and task level parallelism aimed at faster program execution,

or better performance. Hardware acceleration emerged thanks much in part to the

gaming industry’s need to have near to real graphics in their video games.

Program acceleration is the idea of achieving the best program performance by

utilizing all tools available, both hardware and software. Programmers create code

that is clean, efficient, and built to run as parallel as possible in any computing

environment. This idea is the motivation behind the Heterogenous Computing

Environment (HCE) concept and the creation of a language to maximize its

capabilities, OpenCL. This thesis will briefly discuss the connection between parallel

computing and heterogeneity in mainstream computing as a precursor to

understanding the need for OpenCL and why is somewhat revolutionary. This brief

background in parallel programming and heterogeneity will be followed by program

and data analysis using OpenCL in an HCE consisting of a CPU, GPU, and FPGA.

Motivation for Research

GPUs have cornered the lion’s share of developmental research due to their

ability to process large amounts of data as well as their physical presence in nearly

every mainstream computing system. Up until the release of OpenCL, developers

2

shied away from FPGAs due to the complexity of programming needed just to

perform simple functions. Within the past few years, some research has been

conducted using OpenCL and FPGA acceleration such as information filtering1,

fractional video compression2, finite impulse filters3. More research is warranted,

however, due to the increased utilization of FPGAs and since they are the best choice

in executing highly parallel programs while consuming the least amount of power

possible. Measuring program execution speed is one measure of performance, but the

amount of wattage consumed to achieve that speed is also critical and is referred to as

performance per watt. This research will demonstrate how it has never been easier to

program hardware thanks to OpenCL and demonstrate the performance enhancement

and power savings of FPGA over CPU and GPU in an OpenCL controlled

environment. OpenCL in a heterogeneous computing environment enables computer

programmers and engineers alike to maximize acceleration and performance across all

hardware platforms. This research will substantiate why OpenCL should be used for

program and hardware acceleration in a HCE.

Chapter Overview

Chapter 2 provides the background information and research as to the

significance of OpenCL as a computing language. It reviews the main literature used

in this thesis and research, reviews parallel programming and how it ties into OpenCL,

1 Doris Chen, Using OpenCL to Evaluate the Efficiency of CPUs, GPUs, and FPGAs for Information
Filtering. (Invited Paper, Altera Toronto Technology Center, 2013).
2 Doris Chen, Fractional Video Compression in OpenCL: An Evaluation of CPUs, GPUs, and FPGAs as
Acceleration Platforms. (Invited Paper, Altera Toronto Technology Center, 2013).
3 Desh Singh. Higher Level Programming Abstractions for FPGAs using OpenCL. (Workshop on Design
Methods and Tools for FPGA-Based Acceleration of Scientific Computing, 2011).

3

analyzes speed and performance gains as they apply to hardware, and highlights

FPGA as the de facto standard in power consumption savings in an HCE.

In Chapter 3, a detailed explanation of the methodology is brought forth. The

OpenCL architecture is introduced in detail and how it bonds the components of the

HCE. As supporting evidence for this research, existing OpenCL programs will be

altered to achieve maximum performance results and demonstrate the portability of

OpenCL programs and kernels. To illustrate the simplicity of hardware programming

using OpenCL, some existing OpenCL programs will be compiled and run on FPGA.

A feature program will demonstrate the speed and performance gains of using FPGA

as a hardware platform. The Software Development Kit (SDK) for Altera will also be

introduced since its understanding is crucial to visualize how the hardware and

software communicate in the OpenCL controlled HCE.

Chapter 4 will validate the benefits of using OpenCL and FPGA in an HCE.

First, comparisons will be made between the results of running a traditional C program

on CPU versus FPGA after conversion to OpenCL. The performance will be

measured in terms of performance per watt since FPGAs are the targeted hardware

device in this research. Additionally, the results of running OpenCL specific

benchmarks on the DE1-SoC board will be analyzed to show how FPGAs can thrive

in an HCE.

Finally, chapter 5 consists of conclusions and recommendations for further

research. Included in these discussions are the current developments of the FPGA and

increase in its application. Also discussed is the explosion of OpenCL in the

4

developmental community and progress up to the current version of 2.2. This research

aims to justify the importance of OpenCL, HCE, and ultimately FPGAs.

5

CHAPTER 2

BACKGROUND

 Literature Review

 Having no prior experience with the OpenCL language inspired be to purchase

the two books that I used for my research of the OpenCL language and how it works

in the HCE. Heterogeneous Computing with OpenCL 2.0 by David Kaeli et al is a

very well written and easy to follow approach to learning OpenCL. It explains the

structure of the OpenCL architecture, runtime execution and memory models. The

example code provided highlights some of the beneficial features of OpenCL and

serves as a shell that can be used to build more complex programs. The other OpenCL

textbook I purchased is OpenCL Programming by Example written by Banger and

Bhattacharyya. It takes a similar approach to teaching OpenCL along with example

code, diagrams, and explanations. Both books are highly recommended to gain a

basic understanding of OpenCL.

 Driving deeper into an understanding of OpenCL and how to use it also

requires an extensive review of vendor specific APIs, user manuals, and white papers

depending upon which type of hardware you are using. My research made use of an

FPGA board from Altera which required not only the download of a Software

Development Kit (SDK) from Altera but all of the reference materials that explains its

use. Since Khronos Group manages the OpenCL API specifications it is necessary to

download their reference material that aligns with the version of OpenCL being used.

Their main website also maintains both deprecated and up to date versions of the

6

OpenCL languages along with header files, source code, and links to forums for

development assistance.

 The last major literature references used in this research were Computer

Organization and Design and Computer Architecture both by Patterson and

Hennessey. These books are the gold standard to understanding computer hardware

architecture, as well as the interface between hardware and software. I utilized them

mostly for the comprehension and application of parallel programming and how it

relates to OpenCL. Much of the inspiration for this research spawned from the

concepts and progressive thinking of these two authors.

Parallel Programming

The need to focus more on software versus hardware to accelerate program

execution and efficiency came to fruition after processor manufacturers reached the

“performance wall” around 2004. Figure 2.1 shows how the increase of performance

of single processors and memory configuration flatlined. Sequential programming

techniques such as the “divide and conquer” method, which divided a single program

into smaller subsets or groups of code executed separately, were precursors to the

many classes of parallelism and parallel architectures that exist today. Object oriented

computing languages such as Java and C++ also were designed initially to speed up

sequential program execution, but suffered from too many data dependencies between

function calls to exploit the essence of true parallelism. Instruction level parallelism

7

was used on superscalar and out of order execution uniprocessors, but it only

increased the execution speed of traditional sequential programs.4

Figure 2.1 Processor performance growth.

 Around 2006, chip developers began placing multiple processors or cores onto

one chip. Though the idea of having multiple computers work together on one

program was not a new concept, the era of multiple cores had begun. This opened the

door for parallel processing programs (running one job on multiple processors) and

job level parallelism (running multiple jobs on multiple processors).5 Within the

realm of the personal computer, however, these multi-core machines are typically

confined to sharing the same memory or physical address space. Clusters and grid

computing were also introduced which are commonplace among online databases,

4 David A. Patterson and John L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface (New York: Morgan Kaufmann, 2009), 633.
5 Ibid, 632.

8

email servers, and search engines. These approaches, however, only offer solutions

for large scale computing environments and not for your average consumer running

programs on the home computer.

Parallel programming is a form of computation in which many calculations are

carried out simultaneously, operating on the principle that large problems can often be

divided into smaller ones, which are then solved concurrently (i.e. in parallel). 6 Every

job or task that needs to be accomplished brings its own level of complexity based on

the algorithm, the programming language being used, and the hardware available.

Different classes of parallelism have emerged that are aimed at exploiting specific

hardware structures and software designs. Multithreading, for example, supports

multiple threads executing in an interleaving fashion on a single-issue processor. 7

With the rise of multi-core platforms, task level parallelism was developed to leverage

running sections of code or different tasks on separate processors. Yet another form

referred to as request level parallelism may be exploited by a single application

running on multiple processors, such as a database responding to queries, or multiple

applications running independently, often called multiprogramming.8

The question becomes, if we have different classes of parallel programming to

handle various types of applications, and multiple cores on which to run our programs,

then why would we need to create additional programming languages such as

OpenCL? To answer this question, we need to expand our aperture to view the entire

realm of hardware and software. One problem that has emerged from using multiple

cores draws a striking resemblance to the processor wall problem of 2004. There are

6 (Kaeli, et al. 2015)
7 (Patterson and Hennessy, Computer Architecture: A Quantatative Approach 2012) page 345
8 (Patterson and Hennessy, Computer Architecture: A Quantatative Approach 2012) page 345

9

physical limitations to how many cores can be placed on a board, and even though

cores designed today have their own data memory they still are competing with other

cores for the same physical address space which is controlled by the CPU.

Additionally, Single Program Multiple Data (SPMD) models work well to handle

running tasks in parallel but matters become much more complicated when data needs

to be shared and synchronized between the tasks. With the release of OpenCL 2.0,

shared virtual memory is used between program and device that also supports access

to data across tasks being executed on separate devices.

Speed and Performance

 Before we move on to discuss the significance of running OpenCL in an HCE,

we need to review some basic concepts revolving around speed and performance. In

the past decade, considerable strides have been made in increasing the overall speed

and performance of programs being executed on hardware accelerators such as the

GPU and FPGA boards. Where development based upon Amdahl’s law of speedup in

latency of task execution on a fixed workload stops, Gustafson’s law continues and

proves to be a more realistic formula for calculating parallel performance, especially

as it relates to the basis of this research.

10

Gustafson’s law is formulated as:

Slatency(s) = 1 – p + sp

Where:

• Slatency is the theoretical speedup in latency of the execution of the whole task

• S is the speedup in latency of the execution of the part of the task that benefits

from the improvement of the resources of the system

• P is the percentage of the execution workload of the whole task that benefits

from the improvement of the resources of the system before the improvement

Gustafson’s law shows that even within a constant time interval, the complexity of

programming can increase as long as the quantity or quality of resources being used to

compute the program increases, such as the number or performance capability of

processors for example. Figure 2.2 shows this along with a comparison between

Amdahl’s Law and Gustafson’s Law.

Figure 2.2 Amdahl’s law versus Gustafson’s law.

11

 Viewing Gustafson’s law from an HCE perspective, utilizing multiple devices

to execute a program would give you access to more processing power, resulting is a

somewhat linear speed-up curve.

 Accomplishing more in a constant interval of time relates well to speed, but

what about performance? As we can infer from previous discussion, the definition of

performance in the world of computers has changed over the years as well. Prior to

2004, performance was determined by the clock rate of the processor measured in

MHZ. The higher the clock rate, the faster the computer performed. This doesn’t

hold true today with the shift toward multi-core design, efficiency in software

development, and the ever-increasing use of embedded computers. Embedded

computing calls for the need of processing power in the most austere locations;

automotive industry, MP3 players, digital watches, traffic lights, etc. Many of these

systems run on batteries so the need to conserve power becomes top priority. Again,

this is where we tie the importance of this research in to what is most important in the

real world. Not only is maximizing processing power in a HCE important, but power

consumption must also be kept at a minimum as the tech industry designs more and

more applications of embedded computers that run off of battery power.

Heterogeneous Computing Environment

Now that we have reached the undeniable conclusion that more processing power

is better, let's discuss how that processing power can or should be arrayed.

Heterogeneous computing is the concept of using multiple “devices” with their own

processor and memory capability to execute programs, tasks, or functions

12

independently or concurrently with other devices. These devices include multi-core

CPUs, GPUs, FPGAs, and digital signal processors.9 As an example, GPUs have been

used for decades as independent processing units to enhance computer generated

graphics for gaming. Graphic generation and rendering require complicated floating

point calculations that continually place a high demand on computing resources.

Since GPUs are equipped with their own on-chip memory and processor, they opened

the door for speed ups in graphics processing during hardcore gaming, especially 3D

rendering. Modern GPUs have anywhere from 32 to 64 individual cores placed

directly on the chip. NVIDIA Corporation developed their own API called CUDA to

bind high-level computing languages such as C, C++, and FORTRAN with the

massively parallel computing power of their GPUs.

The need for heterogeneous computing has increased exponentially over the past

decade. Instead of relying on one processor to perform at the highest possible speed,

multiple processors are utilized to achieve faster program execution. Parallelism in

programming requires additional processors to gain a true advantage over traditional

sequential programming that has dominated software development for decades. As

shown in Figure 2.3, these additional processors can be found within the multiple

cores of all mainstream computing systems.

9 David Kaeli et al., Heterogeneous Computing with OpenCL 2.0 (New York: Morgan
Kaufmann, 2015), 1.

13

Figure 2.3 Multiple cores/processors.

Besides multiple cores, hardware components of computers today typically have

their own memory and processor(s) located directly on the circuit board. SoC design

takes advantage of spatial and temporal locality to reduce memory latency and achieve

maximal speed-up. As mentioned earlier, manufacturers such as NVIDIA offer GPU

cards for laptops and desktop computers that have their own CPU and memory on the

same die which greatly reduces memory latency, data dependencies, and data

conflicts. The DE1-SoC board used for this research has a dual-core ARM Cortex A9

MP Core processor coupled with a 1GB DDR3 SDRAM as part of the Hard Processor

System (HPS). All of these processors or cores located in the various hardware

components, along with any external boards that can be connect via PCIE or USB

14

UART connections, provide additional computational power that can be utilized to

support data and thread parallelism. These “self-contained” constructs of processor

and memory constitute the “devices” of a heterogeneous computing environment.

Each device in a heterogeneous environment handles the processing of complex

applications differently. Complex applications can be vaguely categorized based upon

the workload that they place on the device being used. Control intensive applications

include searching, parsing, and sorting operations; data intensive applications focus

more on image processing, simulation and modeling, and data mining; and compute

intensive applications involve iterative methods, numerical methods, and financial

modeling.10 The complexity of the task at hand will determine which device is best

suited for executing the task, as seen in Figure 2.4 which illustrates how a computer

may handle data parallel versus serial and task parallel workloads. CPUs are typically

best suited for control intensive applications while GPUs excel at processing imagery

due to the massively parallel design that handle processing large amounts of data.

FPGAs are also inherently parallel and handle complex parallelism with a lower

consumption of power than both CPU and GPU platforms. An example of this will be

examined exclusively in Chapter 4.

10 David Kaeli et al., Heterogeneous Computing with OpenCL 2.0 (New York: Morgan
Kaufmann, 2015), 1.

15

Figure 2.4 Heterogeneous concept.

Workload diversification has opened the door for improving performance and

lowering overall power consumption for applications such as HD video conferencing

and real-time language translation. Farming out the parallel processing chores to the

GPU while keeping the operating system requirements and serial tasks with the CPU

enables maximization of both devices, which is the essence of heterogeneous

computing.

Now that the layout of an HCE is clear, let’s look at an acceleration of the

hardware devices. In order to tap into the acceleration power of hardware such as the

multi-core CPUs, GPUs, or FPGA one must acquire an in-depth knowledge of high-

level (C, C++, etc.), hardware (VHDL for FPGA), or even vendor specific (CUDA)

languages which can be very complex and are only applicable to the one specific piece

of hardware. If only there was a way to accelerate any hardware device by utilizing

one programming language. This is precisely what OpenCL offers, which will be

illustrated in Chapter 3.

16

The use of a heterogeneous computing environment coupled with the OpenCL

language and FPGA, offers an alternative framework for maximizing performance,

decreased power consumption, and workarounds to the aforementioned challenges.

FPGA Programming and Design

 FPGA design has evolved significantly over the past few decades. In the past,

using an FPGA in your development environment required extensive programming

just to get your FPGA to perform some simple functions. As a result, FPGAs have

been by in large avoided by program developers.11 FPGAs were the forerunners of the

gaming industry, back when games such as Space Invaders and Pac-Man ruled the

arcade. Designed as simple two-dimensional arrays of logic gates connected in

parallel that are field programmable, they can perform complex computations at a

fraction of the performance cost of its hardware brethren. The large number of logic

elements typically found on an FPGA provide the means for the multi-threaded

parallelism. Modern FPGA design such as the DE1-Soc board from Altera used in

this research contains over a million logic elements and thousands of memory blocks

in a parallel design that enables multiple OpenCL workgroups to be processed

concurrently.

 Prior to OpenCL, programming an FPGA required learning complex hardware

languages such as HDL or VHDL along with using Electronic Design Automation

(EDA) tools in order to properly convert your design idea into a complex logic circuit

that programmed the FPGA board. With the advent of the OpenCL language which

11 (Moore 2014), Page 7

17

we will discuss in more detail in Chapter 4, FPGAs can now be programmed without

having to learn HDL or VHDL. The SDK supplied by the vendor of each OpenCL

compatible FPGA board handles the chore of creating the complex logic circuit

needed to program the FPGA board. The SDK utilizes a software program in the

background such as Quartus II for FPGA in order to create the hardware configuration

file.

As mentioned earlier, the FPGA is becoming the hardware processor of choice

in embedded applications where power is at a premium. The FPGA has a fine-grain

parallelism architecture, and by using OpenCL you can generate only the logic you

need to deliver one fifth of the power of the hardware alternatives.12 It is clear that

there is a solid connection between OpenCL and FPGA that may see a sharp increase

in FPGA application in environments beyond the embedded market.

12 (Moore 2014), page 39.

18

CHAPTER 3

METHODOLOGY

 Program acceleration can be achieved in many ways. No one way will work

all of the time. Sometimes data level parallelism is more critical than job level

parallelism, or image processing enhancement is most crucial vice the speed at which

linear algebra problems are calculated. But it is possible that there are alternate ways

to accelerate hardware in the interest of achieving maximum results with minimal

power consumption. The goal here is to shed light on a new paradigm that attempts to

tackle complex programs in the most advantageous way possible instead of being

constrained to one device. This research is rooted in five key reasons to substantiate

the argument for using OpenCL to program hardware, especially FPGA, in an HCE:

1. Heterogeneity in program design provides access to more processing

power

2. OpenCL makes programming hardware easier

3. OpenCL provides program portability along with speed and

performance advantages

4. FPGAs can perform just as fast as GPUs and CPUs at a fraction of the

power consumption

5. Parallel programming exploitation using OpenCL

Reason one was covered with a basic explanation of a heterogeneous computing

environment and how it correlates to OpenCL. A “Hello World” example will be used

to not only template the basic functions of the OpenCL API, but to also demonstrate

just how simple it is to program hardware such as the FPGA. Portability, speed,

19

performance, and power savings will be demonstrated using a vector addition program

run in the HCE. Wrapping up the supporting arguments will be a black sholes

financial options pricing program converted from C to OpenCL to illustrate how

parallelization of existing software and hardware can be exploited.

Research Setup

The components of my heterogeneous computing environment and the

interconnectivity of the hardware and software components are diagramed in Figure

3.1. The hardware and software used consisted of the following:

Hardware

• CPU: 4 cores (Intel® Core i3 4010U @ 1.70 GHz operating on a 64-bit

Windows 8 OS with 4 GB RAM)

• GPU: Intel R HD Graphics 4400 @ .2 GHz

• FPGA: DE1-SoC Development and Education Board from Altera, obtained

through the Altera University Program (Altera Cyclone V FPGA with ~85K

Logic Elements, .8GHz, Dual-Core Arm Cortex A9 MP Core Processor, with

64MB SDRAM and 1GB of DDR3 Ram)

 Software

• Altera SDK for OpenCL version 15.1

• Quartus II Prime 15.1

• NIOS II EDS 11.0

• Microsoft Visual Studio 2015

20

 Figure 3.1 OpenCL heterogeneous platform.

Altera SDK and DE1-SoC Development Board

 In order to build and run programs within an OpenCL environment, you need

to install a SDK that is vendor specific to the type of hardware in your HCE. Since the

DE1-SoC board from Altera is used in this research, it was necessary to install the

Altera SDK for OpenCL to build and run kernels on that board. The Altera SDK

provides the logic components, drivers, and AOCL-specific libraries and files. The

logic components include the Altera Offline Compiler (AOC), the AOCL utility, and

the host runtime. The AOC creates the hardware configuration file that programs the

FPGA, the AOCL utility contains the high-level commands that perform tasks such as

21

diagnostic tests, and the host runtime consists of libraries that provide OpenCL APIs

and helper libraries.13

 As mentioned earlier, the DE1-SoC board has an Altera Cyclone V FPGA with

a 800MHz Dual-Core Arm Cortex A9 Processor directly on the board. To run

OpenCL kernels on the board, they are loaded directly to the FPGA as a hardware

configuration file (.aocx) via the USB port along with a version of the host binary

suitable for FPGA. The execution of the kernel can either be controlled by the source

program (main) or by using a Putty terminal connection between the host computer

and the FPGA. The Putty connection enables direct access to the memory and process

embedded on the FPGA board via a bootable Linux image running off of a micro-SD

card. Figure 3.2 shows the full block diagram of the DE1-SoC board.

13 Altera Corporation. Altera SDK for OpenCL: Getting Started Guide. Instruction

Manual, San Jose, 2015, page 1-3.

22

Figure 3.2 DE1-SoC block diagram.

OpenCL Architecture

Open Computing Language (OpenCL) is not only designed to communicate with

all devices in a heterogeneous computing environment, but also direct the execution of

programs by assigning programming tasks to the best device available.14 It bridges the

gap between the computing power of multiple devices and serving as one computing

language that software programmers can learn fairly quickly to interact directly with

hardware. Created by Apple, it is an open source language that was first released in

14 David Kaeli et al., Heterogeneous Computing with OpenCL 2.0 (New York: Morgan
Kaufmann, 2015), 1.

23

2008 by the Khronos Group who still manages the libraries and releases. Khronos

developed the OpenCL standard so that an application can offload parallel

computation to accelerators in a common way, regardless of their underlying

architecture or programming model.15 Not only is it designed to support the

heterogeneous computing environment, it also affords cross-platform portability. A

program written in OpenCL can be run on virtually any machine that has an OpenCL

SDK and applicable libraries installed.

The OpenCL C language is a restricted version of the C99 language, but it also

has wrappings that support C++, Java, Python, and NET.16 The specification of

OpenCL is divided into four parts: the platform model, the execution model, the

kernel programming model, and the memory model.

The OpenCL platform consists of the host computer and all devices that are

connected to it. To recap, for OpenCL purposes a device is a piece of hardware that is

capable of processing a kernel independently of or concurrently with other devices.

Each device is divided into compute units that are further divided into processing

elements as shown in Figure 3.3.17

15 (Guillon 2015), page 2.
16 (Kaeli, et al. 2015), page 42.
17 Ibid.

24

Figure 3.3 OpenCL platform with devices.

Within the execution model, the host configures the OpenCL environment and a

context is established around the platform and the devices through which coordination

and memory management are handled for kernel execution. It also establishes

command-queues that handle communications between the host and the device as well

as events that specify dependencies between commands. 18

 The kernel programming model construct builds kernels using items such as

work-items and work-groups to obtain maximum parallelization based upon the

targeted device. The host is responsible for compilation of the main source code using

a standard C compiler and loading the host binaries into memory. The main source

code contains the OpenCL commands and function calls, contains any constant data,

and controls the execution of a kernel on a device. Runtime compilation prepares the

kernel to be run on the best device based on computational workload which maximizes

both concurrency and parallelism.19 After the kernels are created, they are compiled by

an offline compiler to create the hardware configuration files (.aoco and .aocx). The

18 Ibid, page 48.
19 Ibid, 1.

25

.aocx file is used to program the FPGA enabling it to run the kernel. It takes the place

of the complicated VHDL programs of the past that were need to program an FPGA.

Figure 3.4 shows a typical flow of both the host code and the kernels through the

programming process assuming a PCIE mounted FPGA.

Figure 3.4 AOCL FPGA programming flow.

The memory model consists of buffers, images, and pipes that handle memory

allocation, temporary storage of data, and prioritization of how data items are stored.

OpenCL defines memory regions as either host or device specific. Global memory

(DDR and QDR) is visible to all work items executing a kernel, constant memory

stores data that remains constant, local memory (on-chip memory) shares data

between work-items, and private memory (on-chip registers) is unique to an individual

26

work-item.20 Figure 3.5 shows the layout of host and device memory regions within

OpenCL.

Figure 3.5 OpenCL memory model.

OpenCL Runtime and FPGA Programming

When learning a new computer language, most authors and instructors start off

with a “Hello World” version of the code that shows a few basic commands, function

calls, include files, and the like. OpenCL is no exception. In this case, the hello world

program is used to demonstrate how the OpenCL architecture interacts with the

associated hardware in your HCE. A full listing of the “Hello World” code is

provided in Appendix A. We will examine this program by breaking it down into

smaller sections of OpenCL code that align with the application steps that all OpenCL

20 Ibid, page 60.

27

programs follow. The final step will be to convert it to run on the DE1-SoC FPGA,

demonstrating just how easy it is to program hardware with OpenCL.

 Since OpenCL is basically a derivative from the C language if follows the

same principles of utilizing source and headers files. In the source file, there is one

main function that controls the order of program execution along with the program-

specific function definitions and declarations. It also provides space to declare host-

side memory functions and operations, variables, and constants. The bulk of the

standard OpenCL function definitions and declarations are located in a cluster of

headers files that are continually updated as newer versions of OpenCL are released.

All OpenCL header files are available for download from the Kronos Group website

as well as popular developer websites such as GitHub.

As stated earlier, all OpenCL programs follow ten main steps that setup the

OpenCL environment and run kernels on existing devices.21 Below is a detailed

breakdown of each step along with the associated code.

1. Discovering the platform and devices. In order for a kernel to run on a device, the

host must first determine if an OpenCL platform is present and how many devices are

associated with it. Figure 3.6 shows the standard function calls for finding the

OpenCL platform and devices.

21 (Kaeli, et al. 2015), page 63-66.

28

 // Get the OpenCL platform.
 platform = findPlatform("Altera");
 if(platform == NULL) {
 printf("ERROR: Unable to find Altera OpenCL platform.\n");
 return false;
 }

// Query the available OpenCL devices.
 scoped_array<cl_device_id> devices;
 cl_uint num_devices;

 devices.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices));

Figure 3.6 Find platform and devices.

2. Creating a context. After the platform and devices have been discovered, the host

program creates a context that includes all devices. Figure 3.7 shows the standard

function call for context creation along with error checking.

 // Create the context.
 context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
 checkError(status, "Failed to create context");

Figure 3.7 Create the context.

3. Creating a command-queue per device. Each device needs a command queue to

handle most of the work for the device. The host submits commands to the command

queue for execution on the device. Figure 3.8 shows the standard function call for

command queue creation along with error checking.

// Create the command queue.
 queue = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE,
&status);
 checkError(status, "Failed to create command queue");

Figure 3.8 Create a command queue.

29

4. Creating memory objects (buffers) to hold data. Memory objects enable the transfer

of data between the host and the device. The buffer is associated with the context on

the host side, making it accessible to all devices in that context. Flags can also be used

here to specify if data is read-only, write-only, or read-write. The hello world program

has no need to hold data in memory, so Figure 3.9 is a code snippet from a vector

addition program to show the creation of buffer objects.

// Input buffers.
 input_a_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,
 n_per_device[i] * sizeof(float), NULL, &status);
 checkError(status, "Failed to create buffer for input A");

 input_b_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,
 n_per_device[i] * sizeof(float), NULL, &status);
 checkError(status, "Failed to create buffer for input B");

 // Output buffer.
 output_buf[i] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 n_per_device[i] * sizeof(float), NULL, &status);
 checkError(status, "Failed to create buffer for output");

Figure 3.9 Create host-side memory objects.

5. Copying the input data onto the device. Data is copied from a host pointer to a

buffer which is ultimately transferred to the device when needed. Figure 3.10 shows

the standard function call from the vector addition program.

status = clEnqueueWriteBuffer(queue[i], input_a_buf[i], CL_FALSE,
 0, n_per_device[i] * sizeof(float), input_a[i], 0, NULL,
&write_event[0]);
 checkError(status, "Failed to transfer input A");

 status = clEnqueueWriteBuffer(queue[i], input_b_buf[i], CL_FALSE,
 0, n_per_device[i] * sizeof(float), input_b[i], 0, NULL,
&write_event[1]);
 checkError(status, "Failed to transfer input B");

Figure 3.10 Transfer data to the device.

30

6. Creating and compiling a program from OpenCL C source code. The hello world

kernel is stored in a character array named “helloWorld” which is used to create a

program object that is compiled. During compilation, the information for each

targeted device is provided as needed. Figure 3.11 show the create program and build

program function calls.

// Create a program with source code
 cl_program program = clCreateProgramWithSource(context, 1, (const
char**)&helloWorld, NULL, &status);

 // Build (compile) the program for the device
 status = clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);

Figure 3.11 Create and compile from source.

7. Extracting the kernel from the program. Since the hello world kernel is embedded

in main.cpp as a character array “HelloWorld”, it must be extracted in order to be

executed independently on a device. Figure 3.12 shows the standard function call for

kernel extraction.

// Create the hello world kernel
 kernel = clCreateKernel(program, “helloWorld”, &status);
 checkError(status, "Failed to create kernel");

Figure 3.12 Kernel extraction.

8. Executing the kernel. Once the kernel has been created and data has been

initialized, arguments can be set for the kernel. A command to execute the kernel can

now be enqueued into the command-queue. Along with the kernel, the command

requires specification of the ND-Range configuration, as well as the work-group sizes,

31

are set. Figure 3.13 depicts the standard function calls for setting kernel arguments

and kernel execution.

// Set the kernel argument (argument 0)
 status = clSetKernelArg(kernel, 0, sizeof(cl_int),
(void*)&thread_id_to_output);
 checkError(status, "Failed to set kernel arg 0");

 printf("\nKernel initialization is complete.\n");
 printf("Launching the kernel...\n\n");

 // Configure work set over which the kernel will execute
 size_t wgSize[3] = {work_group_size, 1, 1};
 size_t gSize[3] = {work_group_size, 1, 1};

 // Launch the kernel
 status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, gSize, wgSize, 0,
NULL, NULL);

 checkError(status, "Failed to launch kernel");unsigned argi = 0;

Figure 3.13 Kernel execution.

9. Copying output data back to the host. This step reads data back to a pointer on the

host. Since the hello world program does not use buffer objects, Figure 3.14 is a code

snippet from the vector addition program that copies output data back to the host.

// Read the result. This the final operation.
 status = clEnqueueReadBuffer(queue[i], output_buf[i], CL_FALSE,
 0, n_per_device[i] * sizeof(float), output[i], 1, &kernel_event[i],

&finish_event[i]);

Figure 3.14 Copy data back to host.

10. Releasing the OpenCL resources. The OpenCL resources that were allocated for

kernel execution are released. This is similar to C or C++ programs where memory

allocations (for example) are freed at the end of program execution. Figure 3.15

shows the standard function calls to release resources.

32

// Release local events.
 clReleaseEvent(write_event[0]);
 clReleaseEvent(write_event[1]);

// Release all events.
 for(unsigned i = 0; i < num_devices; ++i) {
 clReleaseEvent(kernel_event[i]);
 clReleaseEvent(finish_event[i]);
 }

clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseCommandQueue(cmdQueue);
clReleaseContext(context);

Figure 3.15 Release resources.

The hello world program is a good shell to start with when attempting to create

OpenCL programs. The OpenCL reference guides from Kronos Group provide a

comprehensive listing of all functions calls and their parameters for each version of

OpenCL. At the writing of this research paper, the OpenCL API is on revision 2.2.

Converting the hello world program (or any program for that matter) to run on

the DE1-SoC FPGA is as easy as creating a hardware configuration file (.aocx) and an

executable file for the Linux-based environment used on the DE1-SoC board. As

shown in Figure 3.1, the SOC EDS Cross-compiler is used to “make” a Linux

executable file that runs the host code on the FPGA using the onboard processor. This

executable file is built using the main.cpp file and includes linkages to any libraries

and additional source code as needed. The hardware configuration file is built from

the kernel.cl file using the Altera Offline Compiler (AOC) which communicates with

the Quartus II software. This creates a VHDL-like version of the kernel that can be

run directly on the FPGA. It is only necessary to have Quartus II installed for the

AOC to use, no need to understand how to use this IDE or even understand VHDL

33

programming. The SDK does all the heavy lifting of a hardware configuration for

you.

Maximizing Speed, Performance, and Portability

 The advantages of using OpenCL can be best highlighted with example code

that is straight forward and easy to manipulate in order to achieve easily recognizable

results. It should be obvious to all software developers and hardware users that there

is no one stop shop solution to solving computational problems. Some programs are

designed to maximize the advantages offered by a specific hardware and vice versa.

But OpenCL differs in that the program is created to be used across multiple hardware

configurations. This opens up the possibility of the giving the OpenCL runtime the

flexibility to choose the hardware device that is best suited for the task at hand. To

emphasize the favorable attributes of OpenCL, I used a vector addition program that

can be quickly altered to illustrate different results. The complete code listing for

vector addition is listed in Appendix B.

Converting from C to OpenCL

 To best demonstrate the effects of converting an existing program into

OpenCL, I selected an existing code example that could be optimized to reap the

benefits of running in an HCE using OpenCL. The financial market uses what is

referred to as vanilla option pricing to determine call and put options for assets. The

European vanilla option pricing method a uses random number generation to arrive at

call and put options. A C-based example of this calculation provided the perfect test

34

subject for analyzing existing code, determining how it could be optimized to run on

existing hardware, and how the speed of program execution could be optimized. I

utilized Michael Halls-Moore’s version published on the QuantStart website which is

a variation of the Black-Sholes Analytic Pricing Formula.22 A complete listing of the

original C-based program is provided in Appendix C, and I will refer to it as the black

sholes program for reference. This C-based program uses the Box-Muller algorithm

for determining random numbers used as input into a Monte Carlo function that

calculates a call and put price options. Constant input values are entered for an option

price, strike price, risk-free rate, volatility rate, and time.

 The approach was to build and run the C version of this program, determine

overall CPU execution time, and highlight which parts of the program are consuming

the bulk of that time. Running performance profiler from Microsoft Visual Studio

2015 revealed that the gaussian_box_muller function was consuming 81% of the

CPU’s usage time as shown in Figure 3.16.

Figure 3.16 Gaussian Box-Muller Function.

22 https://www.quantstart.com/articles/european-vanilla-option-pricing-with-c-via-monte-carlo-
methods

35

As shown in Figure 3.17, the randomization of x and y within the do…while loop,

which in itself only runs a few times to arrive at the final value for x, was consuming

the bulk of effort from the CPU.

Figure 3.17 Kernel target

The challenge becomes how to convert this C-based program into OpenCL while

optimizing program execution. The OpenCL approach is to look for functions or

blocks of code as in Figure 3.17 that can be converted to a kernel for faster execution

on a specific or multiple devices. This is akin to data and thread-level parallelization,

but with the caveat of having more flexibility to tweak the number of work-items in a

work-group and achieve even greater effects on the target hardware. The results and

analysis gathered from this program conversion are discussed under the Black-Sholes

sub-heading in chapter 4.

36

CHAPTER 4

FINDINGS

 In order to quantify the results and analysis of using OpenCL in a HCE on

multiple devices, this research focuses on three overarching use cases. The first use

case focuses on a commonly used vector addition algorithm compare and contrast

results across different hardware devices. The second use case involves converting an

existing program from a tradition high level language such as C to OpenCL to

demonstrate the benefits of such a conversion. The third use case focuses on running

benchmarks that currently exist for GPU platform on the FPGA. The third use case

also involves converting code, but demonstrates the portability of the OpenCL

language. Common to all cases is the demonstration that programming hardware such

as the FPGA has never been easier.

Vector Addition Program

 The vector addition program takes two vectors and adds them together creating

a third resultant vector. This particular OpenCL rendition of the program is a good

example of how pipeline parallelism can be exploited on an FPGA to achieve results

that are similar to a GPU. Figure 4.1 depicts a representation of the load and store

operations that occur within each logic element of the FPGA. The DE1-SoC board

has 84,000 logic elements that can be utilized simultaneously by segregating the input

vectors into work groups. The FPGA handles each work group as if it was a thread

during parallel execution. When loads of thread ID 0, for example, are passed to the

37

ALU for addition, the next two thread IDs are fetched from the host side memory

buffer.

Figure 4.1 Vector addition pipeline

 The program is setup to run on all devices that are available so it is an

excellent example of why multiple devices with an HCE are important and how

OpenCL can best leverage those devices. It can be adjusted to run the entire kernel on

one device only, mirrored vector addition on multiple devices simultaneously, or

dividing the vector workload across the devices. Buffer objects are created for each

device to facilitate the transfer of data between the host and device memory. For my

setup, the DE1-SoC has its own memory and processor so running the main program

and kernel directly on the board eliminates memory latency due to the spatial locality

that would be present when running the source program from the computer.

38

Here is the method used to conduct a comparative analysis of the vector

addition kernel run on 3 different devices:

Devices:

• CPU (4x compute units* at 1.7 GHZ) (Intel Core: 8 SP

GFLOPS/cycle)

• GPU (20x compute units* at .2 GHZ)

• FPGA (1x compute unit* at .8 GHZ) (ARM Cortex A-9: 4 SP

GFLOPS/cycle)

* Depicts the number of compute units that the vector program detects

per device.

Program alteration: altered the data bandwidth by changing the total elements

to be processed:

• N = 500,000

• N = 1,000,000

• N = 10,000,000

Captured system clock time average over 5 runs for each value of N

Results:

• Results in Figure 4.2: straight system clock time for kernel execution

• Results 4-6: adjusted times to account for core advantage (FPGA

baseline with 1 CU)

• Results 7-9: adjusted times for clock rate advantage (CPU baseline @

1.7 GHZ)

39

 Due to the construct of a one-dimensional vector array, there are limited

options for manipulation of this program to achieve remarkable results in CPU type

processing time. I chose to manipulate the data bandwidth of program execution by

changing the number of elements in the array and produced results shown in Figure

4.2. The vector addition program captures performance internally by saving system

clock time at the beginning and end of kernel execution. Changing the data bandwidth

by increasing the number of elements in the vectors increased the overall execution

time, which is to be expected and is shown in Figure 4.2.

Figure 4.2 Change in data bandwidth

To realize the true measure of hardware performance between devices,

however, adjustments need to be made to the results to compensate for advantages that

individual devices have over other devices. As seen on the previous page in the

device specifications, there is a considerable difference in the processor clock rate and

a number of compute units for each device recognized by the program. The CPU has

the advantage of clock rate at 1.7 GHz, followed by the FPGA at .8 GHz, and the GPU

40

at .2 GHz. Also, OpenCL recognizes the GPU as having the most compute units at 20,

followed by the CPU with 4, followed by the FPGA with 1.

 To calculate CPU performance relative to each devices advantage, I used the

standard calculation for determining relative performance. The formula for

calculating relative performance is as simple as dividing device A by device B to

arrive at a ratio:23

CPU Performance A = Execution Time B

CPU Performance B = Execution Time A

Applying the same theory of relative performance to the vector addition results, I

calculated the following adjustments to the results from Figure 4.2:

 # of Compute Units Processor Speed Up

CPU @ 1.7 GHz on 4 CU Execution time x 4 Execution time / 1

GPU @ .2 GHz on 20 CU Execution time x 20 Execution time / 8.5

FPGA @ .8 GHz on 1 CU Execution time x 1 Execution time / 2.125

Table 4.1 Relative Performance Adjustments

With a level playing field for each processor (excluding any data conflicts caused by

the shared memory between the CPU and GPU), the adjustments listed in Table 4.1

yield the results in Figure 4.3. This is a prime example of how the advantage of an

FPGA versus CPU or GPU can be overlooked. Given the same clock rate and equal

program workload distribution, the FPGA outperforms the CPU, is very close to the

GPU and consumes multitudes less power than both.

23 Patterson, David, and John L. Hennessy. Computer Organization and Design: The

Hardware/Software Interface. New York: Morgan Kaufmann, 2009, 34.

41

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N = 500,000

M
ill

i S
ec

o
n

d
s

Calculated Equal CU & Clock Rate

CPU

GPU

FPGA

Figure 4.3 Relative performance.

Black Sholes Program

The black sholes program served as an entry level program that offered all the

challenges of converting a standard C-based program into OpenCL along with all the

benefits of doing so. Achieving program optimization without just creating redundant

code is the goal of any developer. The best method is to work from the inside out,

looking for functions and blocks of code that could benefit from parallelization. As

mentioned earlier, the gaussian_box_muller function shown in Figure 4.4 consumes

81% of the CPU’s resources during program execution.

42

double gaussian_box_muller() {
 double x = 0.0;
 double y = 0.0;
 double euclid_sq = 0.0;

 // Continue generating two uniform random variables
 // until the square of their "euclidean distance"
 // is less than unity
 do {
 x = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1;
 y = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1;
 euclid_sq = x*x + y*y;
 } while (euclid_sq >= 1.0);
 return x*sqrt(-2 * log(euclid_sq) / euclid_sq);
}

Figure 4.4 Gaussian Box Muller Function in C.

If the number of sims for the black sholes program is set at 100,000 for example, the

function is called 100,000 times by both the put and call functions respectively (see

Figure 4.5), with each call using multiple executions of a do-while loop to output a

random number.

do {
 x = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1;
 y = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1;
 euclid_sq = x*x + y*y;
 } while (euclid_sq >= 1.0);
 return x*sqrt(-2 * log(euclid_sq) / euclid_sq);
}

// Pricing a European vanilla call option with a Monte Carlo method
double monte_carlo_call_price(const int& num_sims, const double& S, const
double& K, const double& r, const double& v, const double& T) {
 double S_adjust = S * exp(T*(r - 0.5*v*v));
 double S_cur = 0.0;
 double payoff_sum = 0.0;

 for (int i = 0; i<num_sims; i++) {
 double gauss_bm = gaussian_box_muller();
 S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm);
 payoff_sum += std::max(S_cur - K, 0.0);
 }

 return (payoff_sum / static_cast<double>(num_sims)) * exp(-r*T);

}

Figure 4.5 Original call function

43

Since OpenCL does not support the rand() function, I wasn’t able to run the

entire gaussian_box_muller function as a kernel. I used local host memory to create

the random values of both x and y, copying them into arrays A and B as shown in

Figure 4.6.

double *A = (double*)malloc(datasize);
 double *B = (double*)malloc(datasize);
 double *C = (double*)malloc(datasize);

 //Loads the random x & y values into arrays A and B in host memory
 int i;
 for (i = 0; i < elements; i++) {
 A[i] = (2.0 * rand() / static_cast<double>(RAND_MAX) - 1);
 B[i] = (2.0 * rand() / static_cast<double>(RAND_MAX) - 1);

 }

Figure 4.6 Host arrays.

Having established that the performance bottleneck was related to the

Gaussian_box_muller function and how the put and call functions interact with it, I

focused on utilizing a kernel to speed up the process of generating random numbers

and utilizing them in the put and call functions being handled by the host. Using input

and output buffers, I transferred the random number arrays A and B into the kernel,

continued the rest of the Gaussian_box_muller calculations within the kernel on the

targeted device, loaded the results into the output buffer C, and transferred that data

back into the put and call functions. The results shown in Figure 4.7 are indicative of

the affects that vectorization of data transfers and processing can have on program

performance. The original C version of the program was compared to the OpenCL

version as run on the CPU, and both of those results were compared to FPGA. The

performance of the program on CPU improved due to a decrease in program

instructions and function calls. By selecting the appropriate portion of the code to be

farmed out to the FPGA through a kernel, I achieved the best overall run time.

44

Effective resource and memory management enables the best balance between CPU

and FPGA for overall program execution.

Figure 4.7 Black Sholes Results

Rodinia Benchmarks

 The Rodinia Benchmark Suite, version 3.1 offers a wide range of benchmarks

that are targeted for CUDA, OMP, and OCL applications on GPU hardware. Since no

OpenCL benchmarks exist for FPGAs, the Rodinia benchmarks were chosen since

they contained OpenCL coding and would serve as an opportunity to maximize on the

benefits of running OpenCL in a HCE. Since the benchmarks were designed for

optimal performance on GPU, not all of them are good candidates for conversion and

execution on FPGA. The benchmarks chosen for research were algorithms that could

benefit from vectorization, were heavy in data transfer between local, global, and host

memory, and utilized multiple kernels.

45

 The first benchmark chosen was the K-Means data-mining algorithm which is

heavy in data parallelization. The algorithm is designed to take an initial set of input

data and sort it into clusters based upon the data’s unique features. Within each of

these clusters, one item is determined to be the centroid for that particular cluster. The

program uses the Euclidean Distance metric to calculate distances between data

elements. The Rodinia version of the K-Means program maintains all the data points,

features, cluster centers, and data/cluster integrity stored in separate arrays. Pointers

are used to reference all of these arrays while performing the I/O, clustering, centroid

computation, and cluster reassigning based upon proximity of the data elements to the

centroids. The program is divided into separate .c files with the main execution

residing within the kmeans.cpp file.

 As mentioned earlier, the Rodinia Benchmarks are optimized to run on GPU.

The K-Means algorithm provides for multiple points of manipulation to achieve

different results which benefit experiments with both software and hardware. Running

the K-Means benchmark as downloaded showed results that favored the GPU over the

FPGA. The OpenCL kernels with this benchmark are quite simple and don’t provide

an opportunity for FPGA optimization. By thorough examination of the code, I

decided to manipulate the constant number of clusters while adjusting the work-group

size to best match the FPGA’s capabilities. The best combination of cluster groups to

work-group size produced the worst performance for the GPU. Figure 4.8 shows the

optimal results obtained when working on a 100,000-element data set with 10 clusters

and a work-group size of 1024.

46

Figure 4.8 K-Means FPGA optimization.

 The next Rodinia Benchmark selected for analysis was the hybrid sort program

which is a combination of two popular sorting algorithms, bucket sort and merge sort.

The program is designed to take list of floats in random order and run a bucket sort

algorithm to separate the input data into groups, or, buckets. This step of the sorting

process can be configured to run across all devices in the HCE, tracking the CPU

execution time of each device. Next, the buckets are stored in a vector that is fed into

the merge sort portion of the program. The merge sort can also be configured to run

on all devices and the CPU execution time is tracked. As is a common theme with

OpenCL optimization, examining the code execution and determining the proper

work-group size to match the targeted hardware device can often be all that is required

to achieved best results. Figure 4.9 shows the result of the merge sort and how the

47

DE1-SoC board achieved a slight advantage over GPU when the work-group size was

set at 1024.

Figure 4.9 Merge sort.

This result demonstrates how vectors run well on FPGAs and can maximize the effect

of their inherent pipeline parallelism. Figure 4.10 shows a more typical result for an

FPGA board when running kernels that are not vectorized.

48

Figure 4.10 Bucket sort.

Also, the hierarchy of program execution between the ND-Range, work-group, and

work-items underlines one of the major benefits of OpenCL in its portability and

scalability.

49

CHAPTER 5

CONCLUSION

This research was dedicated to determining if program acceleration with OpenCL

in a Heterogeneous Computing Environment consisting of FPGA, CPU, and GPU is a

credible approach to increasing speed, performance, and ultimately minimizing power

consumption. Today’s computing industry has a higher demand than ever before on

maximal computation performance with minimal power consumption. We have

moved well beyond the era of processor overclocking and moved on to multi-tentacle

approaches to enhancing CPU performance such as multi-cores, distributive

computing, and now OpenCL. Being able to maximize the performance of all

hardware platforms simultaneously, independently, or sequentially is what OpenCL is

all about.

Learning a new computer language can always be a challenge. Time and

repetition are paramount as well as tapping into the best resources available.

Compared to other high-level languages such as Java, OpenCL may be somewhat

intimidating for developers without C or C++ experience. I found the language to be

straightforward to learn the basics, and there are multiple online training sessions

offered at no cost from Intel which will get even the novice programmer up and

running in relatively short order. The more detailed and in-depth programming

lessons will cost money, however. Since the Kronos Group is the manager of the

official OpenCL API, their website is naturally an excellent repository of source code

50

and libraries. GitHub can also be used but be cautious not to mix up header files for

different versions of OpenCL.

The software development kit used was provided by Altera Corporation which

required me to obtain a student license. Altera has since been acquired by Intel, so all

software downloads can be obtained through their website as well. Intel will direct

you to use Microsoft Visual Studio 2010 for compiling your host code for use with

their SDK. Learning the API of the SDK also takes some time, but the instructions are

very well written and come with simple code examples to help understand the

interoperability between all devices in your environment.

The results gathered from the vector addition and black sholes programs

definitely underline how quickly one can begin to code in OpenCL and obtain

immediate performance improvements that are manageable and scalable.

Experimenting with work item quantities and work-group sizes gives you the power to

parallelize your applications ever further than normal thread and data level

parallelization techniques. Utilizing the multiple NDRanges (3 in total) offered by the

OpenCL platform gives you additional scalability options that increase the need for

synchronization between work-items, groups, multiple kernels (if used), and host and

device-side memory. All of which is controllable by either host or device.

Programming hardware has never been easier. OpenCL eliminates the need to

learn complex hardware programming languages such as Verilog or VHDL to

program FPGA. Kernels can be built to run on multiple devices or be tailored to

maximize the efficiency of a specific hardware platform.

51

Having device-side and host-side memory models that are scalable gives

additional programming flexibility for larger and more data-intensive applications.

Shared memory was introduced with the release of OpenCL version 2.0 which

provides and advantage similar to having multiple devices on the same motherboard

sharing the same address space. Partitioning and programming specific device to host

memory transfers generated significant performance improvements with the black

sholes program.

Future research projects could include using OpenGL which focuses primarily on

GPU or, WebCL which is used to optimize the performance of web applications such

as web browsers and cloud servers. There are additional vendors that offer SDKs for

OpenCL as well, and true OpenCL benchmarks for FPGA should be plentiful within

the next few years. The possibilities for use of OpenCL are endless. Wherever there

is code to be optimized, OpenCL should be considered. It may not provide the perfect

solution for every application, but can reap immediate results and is most definitely a

vehicle for future progress.

52

APPENDIX A

Hello World OpenCL Code

/*Copyright (C) 2013-2014 Altera Corporation, San Jose, California, USA. All
rights reserved. Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.*/

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cstring>
#include "CL/opencl.h"
#include "AOCL_Utils.h"

using namespace aocl_utils;

#define STRING_BUFFER_LEN 1024

// Runtime constants
// Used to define the work set over which this kernel will execute.
static const size_t work_group_size = 8; // 8 threads in the demo workgroup
// Defines kernel argument value, which is the workitem ID that will
// execute a printf call
static const int thread_id_to_output = 2;

// OpenCL runtime configuration
static cl_platform_id platform = NULL;
static cl_device_id device = NULL;
static cl_context context = NULL;
static cl_command_queue queue = NULL;
static cl_kernel kernel = NULL;
static cl_program program = NULL;

// Function prototypes
bool init();
void cleanup();
static void device_info_ulong(cl_device_id device, cl_device_info param, const
char* name);
static void device_info_uint(cl_device_id device, cl_device_info param, const
char* name);
static void device_info_bool(cl_device_id device, cl_device_info param, const
char* name);
static void device_info_string(cl_device_id device, cl_device_info param,
const char* name);
static void display_device_info(cl_device_id device);

// Entry point.
int main() {
 cl_int status;

53

 if(!init()) {
 return -1;
 }

 // Set the kernel argument (argument 0)
 status = clSetKernelArg(kernel, 0, sizeof(cl_int),
(void*)&thread_id_to_output);
 checkError(status, "Failed to set kernel arg 0");

 printf("\nKernel initialization is complete.\n");
 printf("Launching the kernel...\n\n");

 // Configure work set over which the kernel will execute
 size_t wgSize[3] = {work_group_size, 1, 1};
 size_t gSize[3] = {work_group_size, 1, 1};

 // Launch the kernel
 status = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, gSize, wgSize, 0,
NULL, NULL);
 checkError(status, "Failed to launch kernel");

 // Wait for command queue to complete pending events
 status = clFinish(queue);
 checkError(status, "Failed to finish");

 printf("\nKernel execution is complete.\n");

 // Free the resources allocated
 cleanup();

 return 0;
}

/////// HELPER FUNCTIONS ///////

bool init() {
 cl_int status;

 if(!setCwdToExeDir()) {
 return false;
 }

 // Get the OpenCL platform.
 platform = findPlatform("Altera");
 if(platform == NULL) {
 printf("ERROR: Unable to find Altera OpenCL platform.\n");
 return false;
 }

 // User-visible output - Platform information
 {
 char char_buffer[STRING_BUFFER_LEN];
 printf("Querying platform for info:\n");
 printf("==========================\n");
 clGetPlatformInfo(platform, CL_PLATFORM_NAME, STRING_BUFFER_LEN,
char_buffer, NULL);
 printf("%-40s = %s\n", "CL_PLATFORM_NAME", char_buffer);

54

 clGetPlatformInfo(platform, CL_PLATFORM_VENDOR, STRING_BUFFER_LEN,
char_buffer, NULL);
 printf("%-40s = %s\n", "CL_PLATFORM_VENDOR ", char_buffer);
 clGetPlatformInfo(platform, CL_PLATFORM_VERSION, STRING_BUFFER_LEN,
char_buffer, NULL);
 printf("%-40s = %s\n\n", "CL_PLATFORM_VERSION ", char_buffer);
 }

 // Query the available OpenCL devices.
 scoped_array<cl_device_id> devices;
 cl_uint num_devices;

 devices.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices));

 // We'll just use the first device.
 device = devices[0];

 // Display some device information.
 display_device_info(device);

 // Create the context.
 context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
 checkError(status, "Failed to create context");

 // Create the command queue.
 queue = clCreateCommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE,
&status);
 checkError(status, "Failed to create command queue");

 // Create the program.
 std::string binary_file = getBoardBinaryFile("hello_world", device);
 printf("Using AOCX: %s\n", binary_file.c_str());
 program = createProgramFromBinary(context, binary_file.c_str(), &device, 1);

 // Build the program that was just created.
 status = clBuildProgram(program, 0, NULL, "", NULL, NULL);
 checkError(status, "Failed to build program");

 // Create the kernel - name passed in here must match kernel name in the
 // original CL file, that was compiled into an AOCX file using the AOC tool
 const char *kernel_name = "hello_world"; // Kernel name, as defined in the
CL file
 kernel = clCreateKernel(program, kernel_name, &status);
 checkError(status, "Failed to create kernel");

 return true;
}

// Free the resources allocated during initialization
void cleanup() {
 if(kernel) {
 clReleaseKernel(kernel);
 }
 if(program) {
 clReleaseProgram(program);
 }
 if(queue) {
 clReleaseCommandQueue(queue);

55

 }
 if(context) {
 clReleaseContext(context);
 }
}

// Helper functions to display parameters returned by OpenCL queries
static void device_info_ulong(cl_device_id device, cl_device_info param, const
char* name) {
 cl_ulong a;
 clGetDeviceInfo(device, param, sizeof(cl_ulong), &a, NULL);
 printf("%-40s = %lu\n", name, a);
}
static void device_info_uint(cl_device_id device, cl_device_info param, const
char* name) {
 cl_uint a;
 clGetDeviceInfo(device, param, sizeof(cl_uint), &a, NULL);
 printf("%-40s = %u\n", name, a);
}
static void device_info_bool(cl_device_id device, cl_device_info param, const
char* name) {
 cl_bool a;
 clGetDeviceInfo(device, param, sizeof(cl_bool), &a, NULL);
 printf("%-40s = %s\n", name, (a?"true":"false"));
}
static void device_info_string(cl_device_id device, cl_device_info param,
const char* name) {
 char a[STRING_BUFFER_LEN];
 clGetDeviceInfo(device, param, STRING_BUFFER_LEN, &a, NULL);
 printf("%-40s = %s\n", name, a);
}

// Query and display OpenCL information on device and runtime environment
static void display_device_info(cl_device_id device) {

 printf("Querying device for info:\n");
 printf("========================\n");
 device_info_string(device, CL_DEVICE_NAME, "CL_DEVICE_NAME");
 device_info_string(device, CL_DEVICE_VENDOR, "CL_DEVICE_VENDOR");
 device_info_uint(device, CL_DEVICE_VENDOR_ID, "CL_DEVICE_VENDOR_ID");
 device_info_string(device, CL_DEVICE_VERSION, "CL_DEVICE_VERSION");
 device_info_string(device, CL_DRIVER_VERSION, "CL_DRIVER_VERSION");
 device_info_uint(device, CL_DEVICE_ADDRESS_BITS, "CL_DEVICE_ADDRESS_BITS");
 device_info_bool(device, CL_DEVICE_AVAILABLE, "CL_DEVICE_AVAILABLE");
 device_info_bool(device, CL_DEVICE_ENDIAN_LITTLE,
"CL_DEVICE_ENDIAN_LITTLE");
 device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_CACHE_SIZE,
"CL_DEVICE_GLOBAL_MEM_CACHE_SIZE");
 device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE,
"CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE");
 device_info_ulong(device, CL_DEVICE_GLOBAL_MEM_SIZE,
"CL_DEVICE_GLOBAL_MEM_SIZE");
 device_info_bool(device, CL_DEVICE_IMAGE_SUPPORT,
"CL_DEVICE_IMAGE_SUPPORT");
 device_info_ulong(device, CL_DEVICE_LOCAL_MEM_SIZE,
"CL_DEVICE_LOCAL_MEM_SIZE");
 device_info_ulong(device, CL_DEVICE_MAX_CLOCK_FREQUENCY,
"CL_DEVICE_MAX_CLOCK_FREQUENCY");

56

 device_info_ulong(device, CL_DEVICE_MAX_COMPUTE_UNITS,
"CL_DEVICE_MAX_COMPUTE_UNITS");
 device_info_ulong(device, CL_DEVICE_MAX_CONSTANT_ARGS,
"CL_DEVICE_MAX_CONSTANT_ARGS");
 device_info_ulong(device, CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE,
"CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE");
 device_info_uint(device, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS,
"CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS");
 device_info_uint(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN,
"CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS");
 device_info_uint(device, CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE,
"CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE");
 device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR,
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_CHAR");
 device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT,
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_SHORT");
 device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT,
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_INT");
 device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG,
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_LONG");
 device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT,
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_FLOAT");
 device_info_uint(device, CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE,
"CL_DEVICE_PREFERRED_VECTOR_WIDTH_DOUBLE");

 {
 cl_command_queue_properties ccp;
 clGetDeviceInfo(device, CL_DEVICE_QUEUE_PROPERTIES,
sizeof(cl_command_queue_properties), &ccp, NULL);
 printf("%-40s = %s\n", "Command queue out of order? ", ((ccp &
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE)?"true":"false"));
 printf("%-40s = %s\n", "Command queue profiling enabled? ", ((ccp &
CL_QUEUE_PROFILING_ENABLE)?"true":"false"));
 }
}

57

APPENDIX B

Vector Addition OpenCL Code

/* Copyright (C) 2013-2014 Altera Corporation, San Jose, California, USA. All
rights reserved. Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software. */

/* This host program executes a vector addition kernel to perform: C = A + B
where A, B and C are vectors with N elements. This host program supports
partitioning the problem across multiple OpenCL devices if available. If there
are M available devices, the problem is divided so that each device operates on
N/M points. The host program assumes that all devices are of the same type
(that is, the same binary can be used), but the code can be generalized to
support different device types easily. Verification is performed against the
same computation on the host CPU. */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "opencl.h"
//#include "c:\hld\host\include\CL\opencl.h"
#include
"c:\altera\15v1\hld\board\terasic\de1soc\examples\common\inc\AOCL_Utils.h"

using namespace aocl_utils;
//using namespace AOCL_Utils;

// OpenCL runtime configuration
cl_platform_id platform = NULL;
unsigned num_devices = 0;
scoped_array<cl_device_id> device; // num_devices elements
cl_context context = NULL;
scoped_array<cl_command_queue> queue; // num_devices elements
cl_program program = NULL;
scoped_array<cl_kernel> kernel; // num_devices elements
scoped_array<cl_mem> input_a_buf; // num_devices elements
scoped_array<cl_mem> input_b_buf; // num_devices elements
scoped_array<cl_mem> output_buf; // num_devices elements

// Problem data.
const unsigned N = 1000000; // problem size
scoped_array<scoped_aligned_ptr<float> > input_a, input_b; // num_devices
elements
scoped_array<scoped_aligned_ptr<float> > output; // num_devices elements
scoped_array<scoped_array<float> > ref_output; // num_devices elements
scoped_array<unsigned> n_per_device; // num_devices elements

// Function prototypes
float rand_float();
bool init_opencl();

58

void init_problem();
void run();
void cleanup();

// Entry point.
int main() {
 // Initialize OpenCL.
 if(!init_opencl()) {
 return -1;
 }

 // Initialize the problem data.
 // Requires the number of devices to be known.
 init_problem();

 // Run the kernel.
 run();

 // Free the resources allocated
 cleanup();

 return 0;
}

/////// HELPER FUNCTIONS ///////

// Randomly generate a floating-point number between -10 and 10.
float rand_float() {
 return float(rand()) / float(RAND_MAX) * 20.0f - 10.0f;
}

// Initializes the OpenCL objects.
bool init_opencl() {
 cl_int status;

 printf("Initializing OpenCL\n");

 if(!setCwdToExeDir()) {
 return false;
 }

 // Get the OpenCL platform.
 platform = findPlatform("Intel(R) OpenCL");
 if(platform == NULL) {
 printf("ERROR: Unable to find Altera OpenCL platform.\n");
 return false;
 }

 // Query the available OpenCL device.
 device.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices));
 printf("Platform: %s\n", getPlatformName(platform).c_str());
 printf("Using %d device(s)\n", num_devices);
 for(unsigned i = 0; i < num_devices; ++i) {
 printf(" %s\n", getDeviceName(device[i]).c_str());
 }

 // Create the context.
 context = clCreateContext(NULL, num_devices, device, NULL, NULL, &status);

59

 checkError(status, "Failed to create context");

 // Create the program for all device. Use the first device as the
 // representative device (assuming all device are of the same type).

 std::string binary_file = getBoardBinaryFile("vectorAdd", device[0]);
 printf("Using AOCX: %s\n", binary_file.c_str());
 program = createProgramFromBinary(context, binary_file.c_str(), device,
num_devices);

 // Build the program that was just created.
 status = clBuildProgram(program, 0, NULL, "", NULL, NULL);
 checkError(status, "Failed to build program");

 // Create per-device objects.
 queue.reset(num_devices);
 kernel.reset(num_devices);
 n_per_device.reset(num_devices);
 input_a_buf.reset(num_devices);
 input_b_buf.reset(num_devices);
 output_buf.reset(num_devices);

 for(unsigned i = 0; i < num_devices; ++i) {
 // Command queue.
 queue[i] = clCreateCommandQueue(context, device[i],
CL_QUEUE_PROFILING_ENABLE, &status);
 checkError(status, "Failed to create command queue");

 // Kernel.
 const char *kernel_name = "vectorAdd";
 kernel[i] = clCreateKernel(program, kernel_name, &status);
 checkError(status, "Failed to create kernel");

 // Determine the number of elements processed by this device.
 n_per_device[i] = N / num_devices; // number of elements handled by this
device

 // Spread out the remainder of the elements over the first
 // N % num_devices.
 if(i < (N % num_devices)) {
 n_per_device[i]++;
 }

 // Input buffers.
 input_a_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,
 n_per_device[i] * sizeof(float), NULL, &status);
 checkError(status, "Failed to create buffer for input A");

 input_b_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,
 n_per_device[i] * sizeof(float), NULL, &status);
 checkError(status, "Failed to create buffer for input B");

 // Output buffer.
 output_buf[i] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 n_per_device[i] * sizeof(float), NULL, &status);
 checkError(status, "Failed to create buffer for output");
 }

60

 return true;
}

// Initialize the data for the problem. Requires num_devices to be known.
void init_problem() {
 if(num_devices == 0) {
 checkError(-1, "No devices");
 }

 input_a.reset(num_devices);
 input_b.reset(num_devices);
 output.reset(num_devices);
 ref_output.reset(num_devices);

 // Generate input vectors A and B and the reference output consisting
 // of a total of N elements.
 // We create separate arrays for each device so that each device has an
 // aligned buffer.
 for(unsigned i = 0; i < num_devices; ++i) {
 input_a[i].reset(n_per_device[i]);
 input_b[i].reset(n_per_device[i]);
 output[i].reset(n_per_device[i]);
 ref_output[i].reset(n_per_device[i]);

 for(unsigned j = 0; j < n_per_device[i]; ++j) {
 input_a[i][j] = rand_float();
 input_b[i][j] = rand_float();
 ref_output[i][j] = input_a[i][j] + input_b[i][j];
 }
 }
}

void run() {
 cl_int status;

 const double start_time = getCurrentTimestamp();

 // Launch the problem for each device.
 scoped_array<cl_event> kernel_event(num_devices);
 scoped_array<cl_event> finish_event(num_devices);

 for(unsigned i = 0; i < num_devices; ++i) {

 // Transfer inputs to each device. Each of the host buffers supplied to
 // clEnqueueWriteBuffer here is already aligned to ensure that DMA is used
 // for the host-to-device transfer.
 cl_event write_event[2];
 status = clEnqueueWriteBuffer(queue[i], input_a_buf[i], CL_FALSE,
 0, n_per_device[i] * sizeof(float), input_a[i], 0, NULL,
&write_event[0]);
 checkError(status, "Failed to transfer input A");

 status = clEnqueueWriteBuffer(queue[i], input_b_buf[i], CL_FALSE,
 0, n_per_device[i] * sizeof(float), input_b[i], 0, NULL,
&write_event[1]);
 checkError(status, "Failed to transfer input B");

 // Set kernel arguments.

61

 unsigned argi = 0;

 status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem),
&input_a_buf[i]);
 checkError(status, "Failed to set argument %d", argi - 1);

 status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem),
&input_b_buf[i]);
 checkError(status, "Failed to set argument %d", argi - 1);

 status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem), &output_buf[i]);
 checkError(status, "Failed to set argument %d", argi - 1);

 // Enqueue kernel.
 // Use a global work size corresponding to the number of elements to add
 // for this device.
 //
 // We don't specify a local work size and let the runtime choose
 // (it'll choose to use one work-group with the same size as the global
 // work-size).
 //
 // Events are used to ensure that the kernel is not launched until
 // the writes to the input buffers have completed.
 const size_t global_work_size = n_per_device[i];
 printf("Launching for device %d (%zd elements)\n", i, global_work_size);

 status = clEnqueueNDRangeKernel(queue[i], kernel[i], 1, NULL,
 &global_work_size, NULL, 2, write_event, &kernel_event[i]);
 checkError(status, "Failed to launch kernel");

 // Read the result. This the final operation.
 status = clEnqueueReadBuffer(queue[i], output_buf[i], CL_FALSE,
 0, n_per_device[i] * sizeof(float), output[i], 1, &kernel_event[i],
&finish_event[i]);

 // Release local events.
 clReleaseEvent(write_event[0]);
 clReleaseEvent(write_event[1]);
 }

 // Wait for all devices to finish.
 clWaitForEvents(num_devices, finish_event);

 const double end_time = getCurrentTimestamp();

 // Wall-clock time taken.
 printf("\nTime: %0.3f ms\n", (end_time - start_time) * 1e3);

 // Get kernel times using the OpenCL event profiling API.
 for(unsigned i = 0; i < num_devices; ++i) {
 cl_ulong time_ns = getStartEndTime(kernel_event[i]);
 printf("Kernel time (device %d): %0.3f ms\n", i, double(time_ns) * 1e-6);
 }

 // Release all events.
 for(unsigned i = 0; i < num_devices; ++i) {
 clReleaseEvent(kernel_event[i]);
 clReleaseEvent(finish_event[i]);

62

 }

 // Verify results.
 bool pass = true;
 for(unsigned i = 0; i < num_devices && pass; ++i) {
 for(unsigned j = 0; j < n_per_device[i] && pass; ++j) {
 if(fabsf(output[i][j] - ref_output[i][j]) > 1.0e-5f) {
 printf("Failed verification @ device %d, index %d\nOutput:
%f\nReference: %f\n",
 i, j, output[i][j], ref_output[i][j]);
 pass = false;
 }
 }
 }

 printf("\nVerification: %s\n", pass ? "PASS" : "FAIL");
}

// Free the resources allocated during initialization
void cleanup() {
 for(unsigned i = 0; i < num_devices; ++i) {
 if(kernel && kernel[i]) {
 clReleaseKernel(kernel[i]);
 }
 if(queue && queue[i]) {
 clReleaseCommandQueue(queue[i]);
 }
 if(input_a_buf && input_a_buf[i]) {
 clReleaseMemObject(input_a_buf[i]);
 }
 if(input_b_buf && input_b_buf[i]) {
 clReleaseMemObject(input_b_buf[i]);
 }
 if(output_buf && output_buf[i]) {
 clReleaseMemObject(output_buf[i]);
 }
 }

 if(program) {
 clReleaseProgram(program);
 }
 if(context) {
 clReleaseContext(context);
 }
}

63

APPENDIX C

OpenCL Histogram Program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* OpenCL includes */
#include <CL/cl.h>

/* Utility functions */
#include "utils.h"
#include "bmp-utils.h"
#include "gold.h"

static const int HIST_BINS = 256;

int main(int argc, char **argv)
{
 /* Host data */
 int *hInputImage = NULL;
 int *hOutputHistogram = NULL;

 /* Allocate space for the input image and read the
 * data from disk */
 int imageRows;
 int imageCols;
 hInputImage = readBmp("../../Images/cat.bmp", &imageRows, &imageCols);
 const int imageElements = imageRows*imageCols;
 const size_t imageSize = imageElements*sizeof(int);

 /* Allocate space for the histogram on the host */
 const int histogramSize = HIST_BINS*sizeof(int);
 hOutputHistogram = (int*)malloc(histogramSize);
 if (!hOutputHistogram) { exit(-1); }

 /* Use this to check the output of each API call */
 cl_int status;

 /* Get the first platform */
 cl_platform_id platform;
 status = clGetPlatformIDs(1, &platform, NULL);
 check(status);

 /* Get the first device */
 cl_device_id device;
 status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);
 check(status);

 /* Create a context and associate it with the device */
 cl_context context;
 context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
 check(status);

 /* Create a command queue and associate it with the device */
 cl_command_queue cmdQueue;

64

 cmdQueue = clCreateCommandQueueWithProperties(context, device, 0, &status);
 check(status);

 /* Create a buffer object for the input image */
 cl_mem bufInputImage;
 bufInputImage = clCreateBuffer(context, CL_MEM_READ_ONLY, imageSize, NULL,
 &status);
 check(status);

 /* Create a buffer object for the output histogram */
 cl_mem bufOutputHistogram;
 bufOutputHistogram = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 histogramSize, NULL, &status);
 check(status);

 /* Write the input image to the device */
 status = clEnqueueWriteBuffer(cmdQueue, bufInputImage, CL_TRUE, 0,
imageSize,
 hInputImage, 0, NULL, NULL);
 check(status);

 /* Initialize the output histogram with zeros */
 int zero = 0;
 status = clEnqueueFillBuffer(cmdQueue, bufOutputHistogram, &zero,
 sizeof(int), 0, histogramSize, 0, NULL, NULL);
 check(status);

 /* Create a program with source code */
 char *programSource = readFile("histogram.cl");
 size_t programSourceLen = strlen(programSource);
 cl_program program = clCreateProgramWithSource(context, 1,
 (const char**)&programSource, &programSourceLen, &status);
 check(status);

 /* Build (compile) the program for the device */
 status = clBuildProgram(program, 1, &device, NULL, NULL, NULL);
 if (status != CL_SUCCESS) {
 printCompilerError(program, device);
 exit(-1);
 }

 /* Create the kernel */
 cl_kernel kernel;
 kernel = clCreateKernel(program, "histogram", &status);
 check(status);

 /* Set the kernel arguments */
 status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &bufInputImage);
 status |= clSetKernelArg(kernel, 1, sizeof(int), &imageElements);
 status |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &bufOutputHistogram);
 check(status);

 /* Define the index space and work-group size */
 size_t globalWorkSize[1];
 globalWorkSize[0] = 1024;

 size_t localWorkSize[1];
 localWorkSize[0] = 64;

65

 /* Enqueue the kernel for execution */
 status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL,
 globalWorkSize, localWorkSize, 0, NULL, NULL);
 check(status);

 /* Read the output histogram buffer to the host */
 status = clEnqueueReadBuffer(cmdQueue, bufOutputHistogram, CL_TRUE, 0,
 histogramSize, hOutputHistogram, 0, NULL, NULL);
 check(status);

 /* Verify the output */
 int *refHistogram;
 refHistogram = histogramGold(hInputImage, imageRows*imageCols, HIST_BINS);
 int passed = 1;
 int i;
 for (i = 0; i < HIST_BINS; i++) {
 if (hOutputHistogram[i] != refHistogram[i]) {
 passed = 0;
 }
 }
 if (passed) {
 printf("Passed!\n");
 }
 else {
 printf("Failed.\n");
 }
 free(refHistogram);

 /* Free OpenCL resources */
 clReleaseKernel(kernel);
 clReleaseProgram(program);
 clReleaseCommandQueue(cmdQueue);
 clReleaseMemObject(bufInputImage);
 clReleaseMemObject(bufOutputHistogram);
 clReleaseContext(context);

 /* Free host resources */
 free(hInputImage);
 free(hOutputHistogram);
 free(programSource);

 return 0;
}

66

APPENDIX D

Black Sholes Original C Code

#include <algorithm> // Needed for the "max" function
#include <cmath>
#include <iostream>

// A simple implementation of the Box-Muller algorithm, used to generate
// gaussian random numbers - necessary for the Monte Carlo method below
// Note that C++11 actually provides std::normal_distribution<> in
// the <random> library, which can be used instead of this function
double gaussian_box_muller() {
 double x = 0.0;
 double y = 0.0;
 double euclid_sq = 0.0;

 // Continue generating two uniform random variables
 // until the square of their "euclidean distance"
 // is less than unity
 do {
 x = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1;
 y = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1;
 euclid_sq = x*x + y*y;
 } while (euclid_sq >= 1.0);
 return x*sqrt(-2 * log(euclid_sq) / euclid_sq);
}

// Pricing a European vanilla call option with a Monte Carlo method
double monte_carlo_call_price(const int& num_sims, const double& S, const
double& K, const double& r, const double& v, const double& T) {
 double S_adjust = S * exp(T*(r - 0.5*v*v));
 double S_cur = 0.0;
 double payoff_sum = 0.0;

 for (int i = 0; i<num_sims; i++) {
 double gauss_bm = gaussian_box_muller();
 S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm);
 payoff_sum += std::max(S_cur - K, 0.0);
 }

 return (payoff_sum / static_cast<double>(num_sims)) * exp(-r*T);
}

// Pricing a European vanilla put option with a Monte Carlo method
double monte_carlo_put_price(const int& num_sims, const double& S, const
double& K, const double& r, const double& v, const double& T) {
 double S_adjust = S * exp(T*(r - 0.5*v*v));
 double S_cur = 0.0;
 double payoff_sum = 0.0;

 for (int i = 0; i<num_sims; i++) {
 double gauss_bm = gaussian_box_muller();
 S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm);
 payoff_sum += std::max(K - S_cur, 0.0);
 }

67

 return (payoff_sum / static_cast<double>(num_sims)) * exp(-r*T);
}

int main(int argc, char **argv) {

 // First we create the parameter list
 int num_sims = 100000; // Number of simulated asset paths
 double S = 100.0; // Option price
 double K = 100.0; // Strike price
 double r = 0.05; // Risk-free rate (5%)
 double v = 0.2; // Volatility of the underlying (20%)
 double T = 1.0; // One year until expiry

 // Then we calculate the call/put values
via Monte Carlo
 double call = monte_carlo_call_price(num_sims, S, K, r, v, T);
 double put = monte_carlo_put_price(num_sims, S, K, r, v, T);

 // Finally we output the parameters and prices
 std::cout << "Number of Paths: " << num_sims << std::endl;
 std::cout << "Underlying: " << S << std::endl;
 std::cout << "Strike: " << K << std::endl;
 std::cout << "Risk-Free Rate: " << r << std::endl;
 std::cout << "Volatility: " << v << std::endl;
 std::cout << "Maturity: " << T << std::endl;

 std::cout << "Call Price: " << call << std::endl;
 std::cout << "Put Price: " << put << std::endl;

 return 0;

}

68

APPENDIX E

Black Sholes OpenCL Code

#include <stdio.h>
#include <stdlib.h>
#include <CL/cl.h>
#include <CL_2_0\cl.h>
#include <c:/altera/15.1/aclrte-windows64/host/include/CL/opencl.h>
#include <iostream>
#include <algorithm> // Needed for the "max" function
#include <cmath>
#include "c:/altera/15.1/aclrte-
windows64/board/de1soc/examples/common/inc/aocl_utils.h"

//Kernel
const char* programSource =
"__kernel \n"
"void vecadd(__int num_elements, \n"
" __global double *A, \n"
" __global double *B, \n"
" __global double *C) \n"
"{ \n"
" \n"
"int idx = get_global_id(0); \n"
"double euclidSq = 0.0; \n"
"double x_select = 0.0; \n"
"for (int i = 0; i<num_elements; ++i){ \n"
"do { \n"
" euclidSq = A[i]*A[i] + B[i]*B[i]; \n"
" x_select = A[i]; \n"
" } while (euclidSq >= 1.0); \n"
" C[i] = x_select*sqrt(-2 * log(euclidSq) / euclidSq); \n"
"} \n"
"} \n"
;
using namespace aocl_utils;

int main() {

 //**********Problem Data***********************
 const int elements = 100000;
 double S = 100.0; // Option price
 double K = 100.0; // Strike price
 double r = 0.05; // Risk-free rate (5%)
 double v = 0.2; // Volatility of the underlying (20%)
 double T = 1.0; // One year until expiry
 double call, put;

 size_t datasize = sizeof(double)*elements;

 double *A = (double*)malloc(datasize);
 double *B = (double*)malloc(datasize);
 double *C = (double*)malloc(datasize);

69

 //Loads the random x & y values into arrays A and B in host memory
 int i;
 for (i = 0; i < elements; i++) {
 A[i] = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1;
 B[i] = 2.0 * rand() / static_cast<double>(RAND_MAX) - 1;
 }

 cl_int status;

 //Find the OpenCL Platform
 cl_platform_id platform;
 status = clGetPlatformIDs(1, &platform, NULL);

 //Get the Devices
 cl_device_id device;
 status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, NULL);

 //Create the Context

cl_context context = clCreateContext(NULL, 1, &device, NULL, NULL,
&status);

 //Create the command queue for the device chosen

cl_command_queue cmdQueue = clCreateCommandQueue(context, device, 0,
&status);

 //Create the buffers for memory transfers between host and device
 cl_mem bufA = clCreateBuffer(context, CL_MEM_READ_ONLY, datasize,
 NULL, &status);
 cl_mem bufB = clCreateBuffer(context, CL_MEM_READ_ONLY, datasize,
 NULL, &status);
 cl_mem bufC = clCreateBuffer(context, CL_MEM_WRITE_ONLY, datasize,
 NULL, &status);

 //Write the data from host memory to the kernel buffers
 status = clEnqueueWriteBuffer(cmdQueue, bufA, CL_FALSE, 0,
 datasize, A, 0, NULL, NULL);
 status = clEnqueueWriteBuffer(cmdQueue, bufB, CL_FALSE, 0,
 datasize, B, 0, NULL, NULL);

 //Create the program by extracting the kernel
 cl_program program = clCreateProgramWithSource(context, 1,
 (const char**)&programSource, NULL, &status);

 //Build the program for the device
 status = clBuildProgram(program, 1, &device, NULL, NULL, NULL);

 //Create the kernel object
 cl_kernel kernel = clCreateKernel(program, "vecadd", &status);

 //Set the arguments for the kernel
 status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &bufA);
 status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &bufB);
 status = clSetKernelArg(kernel, 2, sizeof(cl_mem), &bufC);

 //Define an index space of wor-items for execution
 size_t indexSpaceSize[1], workGroupSize[1];

70

 //These are 'elements' wor-items
 indexSpaceSize[0] = elements;
 workGroupSize[0] = elements;

 //Execute the kernel

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL,
indexSpaceSize,

 workGroupSize, 0, NULL, NULL);

 //Read the device output buffer to the host output array
 status = clEnqueueReadBuffer(cmdQueue, bufC, CL_TRUE, 0,
 datasize, C, 0, NULL, NULL);

 //******************call function**********************************
 double S_adjust = S * exp(T*(r - 0.5*v*v));
 double S_cur = 0.0;
 double payoff_sum = 0.0;

 for (int j = 0; j < elements; j++) {
 double gauss_bm = C[j]; //pulls the values returned by the kernel
 //printf("%d", gauss_bm);
 S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm);
 payoff_sum += std::max(S_cur - K, 0.0);
 }

 call = (payoff_sum / static_cast<double>(elements)) * exp(-r*T);
 //**

 //****************put function************************************
 S_adjust = S * exp(T*(r - 0.5*v*v));
 S_cur = 0.0;
 payoff_sum = 0.0;

 for (int j = 0; j < elements; j++) {
 double gauss_bm = C[j]; //pulls the values returned by the kernel
 //printf("%d", gauss_bm);
 S_cur = S_adjust * exp(sqrt(v*v*T)*gauss_bm);
 payoff_sum += std::max(K - S_cur, 0.0);
 }

 put = (payoff_sum / static_cast<double>(elements)) * exp(-r*T);
 //**

 // Finally we output the parameters and prices**********
 std::cout << "Number of Paths: " << elements << std::endl;
 std::cout << "Underlying: " << S << std::endl;
 std::cout << "Strike: " << K << std::endl;
 std::cout << "Risk-Free Rate: " << r << std::endl;
 std::cout << "Volatility: " << v << std::endl;
 std::cout << "Maturity: " << T << std::endl;

 std::cout << "Call Price: " << call << std::endl;
 std::cout << "Put Price: " << put << std::endl;
 //**

71

 //Free OpenCL resources
 clReleaseKernel(kernel);
 clReleaseProgram(program);
 clReleaseCommandQueue(cmdQueue);
 clReleaseMemObject(bufA);
 clReleaseMemObject(bufB);
 clReleaseMemObject(bufC);
 clReleaseContext(context);

 //Free host resources
 free(A);
 free(B);
 free(C);

 return 0;
}

72

BIBLIOGRAPHY

Altera Corporation. “Running OpenCL on Altera FPGAs.” Altera online training.

https://www.altera.com/customertraining/webex/OpenCLRun/launcher.html

(accessed December 25, 2016).

AMD & ATI Stream Technology, 2010 Training Guide: Introduction to OpenCL

Programming.

AMD. “What is Heterogeneous System Architecture (HAS)?. AMD Developer

Central. http://developer.amd.com/resources/heterogeneous-computing/what-

is-heterogeneous-system-architecture-hsa/ (accessed December 29, 2016).

Banger Ravishekhar, and Koushik Bhattacharyya. OpenCL Programming by

Example: Birmingham, UK: Packt Publishing, 2013.

Chen Doris, Deshanand Singh. Using OpenCL to Evaluate the Efficiency of CPUs,

GPUs, and FPGAs for Information Filtering. Invited Paper, Altera Toronto

Technology Center, 2013.

Chen Doris. Fractional Video Compression in OpenCL: An Evaluation of CPUs,

GPUs, and FPGAs as Acceleration Platforms. Invited Paper, Altera Toronto

Technology Center, 2013.

Guillon, AJ. An Introduction to OpenCL C++. The Khronos Group Inc., 2015.

Kaeli David, Perhaad Mistry, Dana Schaa, and Dong Ping Zhang. Heterogeneous

Computing with OpenCL 2.0: New York: Morgan Kaufmann, 2015.

Moore, Andrew. FPGAs for Dummies: Altera Special Addition. Hoboken: John

Wiley & Sons Inc., 2014.

https://www.altera.com/customertraining/webex/OpenCLRun/launcher.html
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/

73

Ndu Geoffrey, Mikel Lujan, and Javier Navaridas. CHO: A Benchmark Suite for

OpenCL-based FPGA Accelerators. University of Manchester, 2014.

Patterson David, and John L. Hennessy. Computer Organization and Design: The

Hardware/Software Interface: New York: Morgan Kaufmann, 2009.

Patterson David, and John L. Hennessy. Computer Architecture: A Quantitative

Approach: New York: Morgan Kaufmann, 2012.

Singh Desh. Higher Level Programming Abstractions for FPGAs using OpenCL:

Toronto Technology Center, Altera Corporation, 2011.

Singh, Desh, and Supervising Principal Engineer. Higher Level Programming

Abstractions for FPGAs using OpenCL. Workshop on Design Methods and

Tools for FPGA-Based Acceleration of Scientific Computing. 2011.

	Program Acceleration in a Heterogeneous Computing Environment Using OpenCL, FPGA, and CPU
	Terms of Use
	Recommended Citation

	FULL TITLE HERE IN ALL CAPS IN A FORMAT

