
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2017

Evaluating Self-Organizing Map Quality Measures as Convergence Evaluating Self-Organizing Map Quality Measures as Convergence

Criteria Criteria

Gregory T. Breard
University of Rhode Island, gtbreard@my.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Breard, Gregory T., "Evaluating Self-Organizing Map Quality Measures as Convergence Criteria" (2017).
Open Access Master's Theses. Paper 1033.
https://digitalcommons.uri.edu/theses/1033

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F1033&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/1033?utm_source=digitalcommons.uri.edu%2Ftheses%2F1033&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

EVALUATING SELF-ORGANIZING MAP QUALITY MEASURES AS

CONVERGENCE CRITERIA

BY

GREGORY T. BREARD

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

2017

MASTER OF SCIENCE THESIS

OF

GREGORY T. BREARD

APPROVED:

Thesis Committee:

Major Professor Lutz Hamel

Natallia Katenka

Nancy Eaton

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2017

ABSTRACT

The self-organizing map (SOM) is a type of artificial neural network that has

applications in a variety of fields and disciplines. The SOM algorithm uses unsu-

pervised learning to produce a low-dimensional representation of high-dimensional

data by “fitting” a grid of nodes to the data over a fixed number of iterations.

The low-dimensionality of the resulting map allows for a graphical presentation

of the data which can be easily interpreted by humans. To ensure that these

models are indeed representative of the underlying data, it is essential to evaluate

the quality of the maps. Various measures have been developed that quantify a

maps’ preservation of topology and neighborhoods. Little work, however, has been

done comparing these measures to one another. To that end, this research shows

that the quality measures used with SOM can be evaluated as convergence criteria.

This is achieved by examining the underlying structure of maps that are converged

under different measures. Specifically, the clusters that exist in the maps are com-

pared with the clusters that exist in the input data. For this research, popular real

world and synthetic data sets are used for training. The quality measures stud-

ied are quantization error, topographic error, topographic function, neighborhood

preservation, and population-based convergence.

ACKNOWLEDGMENTS

I would especially like to thank my advisor, Dr. Hamel, for his patience

and guidance throughout my academic career and particularly in this endeavor. I

would also like to thank my committee members: Dr. Katenka and Dr. Eaton for

their insights and suggestions; and Dr. Sendag for chairing my defense. A special

thanks to my closest family and friends—Mom, Ant, Billy, Christopher, Fe, Dave,

Monty—for their unending support and inspiration. And to all those in the CS

department who have helped make my time as a graduate student so rewarding

and memorable. Last, but certainly not least, I would like to thank Brenda; if it

were not for her constant love and encouragement this thesis would not have been

possible.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . iv

CHAPTER

1 Introduction . 1

1.1 Summary of Remaining Chapters 3

List of References . 4

2 Literature Review . 5

2.1 Self-Organizing Map . 5

2.1.1 Tuning Parameters . 7

2.2 Quality Measures . 9

2.2.1 Quantization Error . 10

2.2.2 Topographic Error . 10

2.2.3 Topographic Function . 11

2.2.4 Trustworthiness . 13

2.2.5 Population-based Convergence 15

List of References . 16

3 Methodology . 18

3.1 Experiment Design . 18

3.1.1 Training . 18

3.1.2 Evaluation . 19

iv

Page

v

3.2 Implementation . 21

3.3 Data Description . 22

3.3.1 Fundamental Clustering Problem Suite 23

3.3.2 Swiss Roll . 24

3.3.3 Ecoli . 25

3.3.4 Epil . 25

List of References . 26

4 Results . 28

4.1 FCPS Results . 28

4.1.1 Hepta . 28

4.1.2 Tetra . 30

4.1.3 Atom . 31

4.1.4 Chainlink . 33

4.2 Swiss Roll Results . 33

4.3 Ecoli Results . 35

4.4 Epil Results . 36

4.5 Discussion . 37

5 Conclusion . 41

5.1 Future Work . 42

List of References . 42

APPENDIX

Source Code . 43

A.1 quality-measures.R . 43

Page

vi

A.2 quality measures.cpp . 47

A.3 map-plotting.R . 56

BIBLIOGRAPHY . 66

LIST OF TABLES

Table Page

1 Ecoli Data Sample . 25

2 Ecoli Class Counts . 25

3 Epil Data Sample . 26

4 Epil Class Counts . 26

vii

LIST OF FIGURES

Figure Page

1 Illustration of SOM construction. 1

2 Starburst visualization for Ecoli data set. 2

3 Quality measures with ranges normalized for side-by-side com-
parison. 3

4 Basic SOM algorithm. 5

5 SOM Training. 7

6 SOM lattice topologies. 8

7 Hepta data visualization. 23

8 Tetra data visualization. 23

9 Atom data visualization. 24

10 Chainlink data visualization. 24

11 Swiss roll data visualization. 24

12 Hepta quality measures and BMU ratio. 29

13 Hepta clustering, labeling accuracy, and change between steps. . 29

14 Tetra quality measures and BMU ratio. 30

15 Tetra clustering, labeling accuracy, and change between steps. . 30

16 Atom quality measures and BMU ratio. 31

17 Atom clustering, labeling accuracy, and change between steps. . 32

18 Chainlink quality measures and BMU ratio. 32

19 Chainlink clustering, labeling accuracy, and change between steps. 33

20 Swiss Roll quality measures and BMU ratio. 34

viii

Figure Page

ix

21 Swiss Roll clustering, labeling accuracy, and change between
steps. 34

22 Ecoli quality measures and BMU ratio. 35

23 Ecoli clustering, labeling accuracy, and change between steps. . 36

24 Epil quality measures and BMU ratio. 36

25 Epil clustering, labeling accuracy, and change between steps. . . 37

CHAPTER 1

Introduction

The self-organizing map (SOM) is a type of artificial neural network that has

applications in a variety of fields and disciplines. The SOM algorithm uses unsu-

pervised learning to produce a low-dimensional representation of high-dimensional

data. This is done by “fitting” a grid of nodes to a data set over a fixed number

of iterations. Readjustments occur with every iteration, moving the nodes of the

map closer to the data points. This is illustrated in Figure 1, which shows how

the data points and map nodes would appear over time.

Figure 1. Illustration of SOM construction.

The low-dimensionality of the resulting map allows for a graphical presentation

of the data. This type of representation can be more readily interpreted by humans.

An example visualization of a SOM trained for the multivariate Ecoli data set

[1] is shown in Figure 2. Note that the clusters are easily identifiable in the two-

dimensional map even though the data has seven dimensions. Although this might

appear to be a “good” model, visual inspection in not sufficient to determine the

1

quality of the map. A variety of quality measures have been developed that attempt

to quantify how well the underlying data is represented by a map. Some work has

been done comparing these quality measures [2], however the focus has generally

been on the size of the map, not the amount of training.

Figure 2. Starburst visualization for Ecoli data set.

The following example demonstrates the influence that quality measure selec-

tion may have on the model. Figure 3 shows a comparison of quantization error,

topographic error, and population-based convergence for a map trained with the

Ecoli dataset (values are normalized, with lower values representing higher qual-

ity). Note how the values change with the number of iterations. Quantization

error clearly reports higher quality as the number of training iterations increases;

population-based convergence follows a similar pattern. Topographic error, on the

other hand, does not seem to produce reliable or predictable results given the num-

ber of iterations. In this example, a practitioner would not know whether to use 10

thousand, 100 thousand, or 1.5 million training iterations to achieve a high-quality

representation of the data.

2

Figure 3. Quality measures with ranges normalized for side-by-side comparison.

The purpose of this research is to compare these quality measures by evaluat-

ing them as convergence criteria. This will be done by examining the underlying

structure of maps that are converged under different measures. Specifically, the

clusters that exist in the maps will be compared to the clusters that exist in the

training data.

1.1 Summary of Remaining Chapters

The remaining chapters of this thesis are structured as follows:

• Chapter 2: Literature Review: A synopsis of the relevant literature on

self-organizing map background, training, and quality measures.

• Chapter 3: Methodology: Detailed explanation of the experiment de-

sign, implementation, and data used in evaluating the quality measures as

convergence criteria.

• Chapter 4: Results: Presentation and analysis of the convergence criteria

3

results. Both real world and synthetic datasets are examined using varying

map sizes and iterations.

• Chapter 5: Conclusion: Summary and suggestions for future work.

List of References

[1] M. Lichman, “Ecoli,” in UCI Machine Learning Repository. School Inform.
and Comput. Sci., Univ. California, Irvine, 2013, [Dataset].

[2] G. Pölzlbauer, “Survey and comparison of quality measures for self-organizing
maps,” in Proc. 5th Workshop Data Analysis, Slovakia, 2004, p. 6782.

4

CHAPTER 2

Literature Review

Following is a review of the literature pertaining to the self-organizing map

(SOM) algorithm and the quality measures examined in this research.

2.1 Self-Organizing Map

The SOM is an artificial neural network developed by Teuvo Kohonen [1]. The

algorithm uses an unsupervised1, iterative procedure to model an input space with

a fixed lattice of nodes. A high-level version of the algorithm is shown in Figure 1.

The algorithm is initialized with a grid of neurons (or map); each neuron having a

weight vector of the same dimensionality as the input space. The outer while loop

constitutes the training iterations, where the stopping criteria not done refers to

the number of iterations the algorithm should run. The inner for loop updates the

map using all the instances (observations) in the training data. There are several

primary steps for each of the data points in the input. First, the neuron (node) in

the map that is closest to the point, known as its “best-matching-unit” (BMU), is

found. Then the neuron is updated to be closer to the point. Finally, the neurons

“near” the BMU (its neighborhood) are also updated to be closer to the point. After

while not done do
foreach observation in training data do

Find node that best matches observation;
Make node look more like observation;
Smooth the immediate neighborhood of node;

end foreach

end while

Figure 4. Basic SOM algorithm.

1Unsupervised learning algorithms do not use labels for fitting a model, as opposed to super-
vised learning methods, which do.

5

all the data points have been used to update the map, the learning rate (that is,

the degree to which the updates change the neurons) and the neighborhood size

(the number of neighbors to a BMU included in the smoothing step) are decreased

(not shown if Figure 1). This process is then repeated in the next and subsequent

iterations. Following is a more rigorous explanation of the algorithm.

The SOM can also be described in terms more typical of artificial neural

networks [2]. Given X, a set of n k-dimensional input vectors xi ∈ Rk, i = 1, ..., n.

Let M be a 2-dimensional grid of m neurons with m = x · y, the dimensions of the

grid. Each neuron in M has a weight vector wl ∈ Rk with index l = 1, ...,m. The

proceeding steps are repeated for a given number of iterations. Select an input

xi ∈ X. Use (1) to determine the index of the BMU b in M for xi.

b = argminl(‖wl − xi‖) (1)

The point xi is used to update the BMU and its neighboring nodes using (2) for

all l = 1, ...,m, where α is the learning rate, h(b, l, r) is the loss function, and

∆i = wl − xi.

wl ← wl + αh(b, l, r)∆i (2)

The loss function h(b, l, r) is analogous to the neighborhood function. In the case

of the most simple neighborhood function Γ(b, r), which returns the set of neurons

within the radius r centered at index b, the loss function is defined as in (3).

h(b, l, r) =

1 if l ∈ Γ(b, r)

0 otherwise

(3)

Within each iteration, the steps represented by equations 1 and 2 are repeated for

all xi ∈ X. The radius is initialized as r =
√
x2 + y2, that is, it encompasses the

entire map, and shrinks until it reaches 1 (after each iteration the value is decreased

by

√
x2+y2

j
, with j the total number of iterations the algorithm is to run).

6

Figure 5. SOM Training.

The result of the above training procedure is a projection of the input data

onto the map, visualized in Figure 5. This projection allows the topology of the

high-dimensional input to be preserved in the low-dimensional output space. It

is important to note that, as with any dimension reduction method, the SOM is

not capable of producing a perfect representation of every training set. Since the

SOM is effectively fitting a 2-D surface to the data manifold, there are higher-

dimensional structures that cannot be modeled in this way (a simple example of

this would be a 3-D sphere). Still, in practice, SOM does a very good job of

maintaining the underlying structure of an input space and is therefore a powerful

analytical and visualization tool.

2.1.1 Tuning Parameters

The SOM algorithm has several tuning parameters that are set prior to exe-

cution and affect the structure of the generated map and the training procedure.

The map’s basic structure, as previously described, is a 2-dimensional lattice, or

grid, of connected neurons2. These neurons are most commonly arranged in either

a rectangular or hexagonal pattern, as shown in Figure 6. The dimensions selected

2This is the most common dimensionality for SOM as it is most easily visualized. Note,
however, that the lattice can be generalized to any number of dimensions.

7

for the map are of critical importance since this determines the number of neurons

in the map. Unfortunately, there has been limited work on how to select an opti-

mal size for a map. One technique proposed by Kohonen is to use visual inspection

of the rough form of the density function that the SOM is approximating [1].

Figure 6. SOM lattice topologies.

Before the training process begins, the weight vectors of the neurons are ini-

tialized. This can be done randomly or using some other strategy (e.g. sampling

from the data, principal component analysis). As is the case with most iterative

data analysis algorithms, SOM utilizes a learning rate, denoted by α. The learn-

ing rate is used to determine how much a neuron and its neighbors’ weight vectors

are updated when new information is presented (i.e. the neuron is selected as a

BMU). The effect on the neighbors to a neuron are determined using the radius

and a neighborhood function. The two most common neighborhood functions are

“bubble” and Gaussian. With bubble the neighbors in the radius are updated

while all other neurons are unchanged (as with Γ(b, r) in the previous section).

The eponymous Gaussian neighborhood uses a “bell curve”-like weighting to up-

date all the neurons based on their relative distance from the BMU. Finally, the

number of iterations for which the algorithm is to run must be set. This is some-

times split into a short “pre-training” phase after which the neighborhood radius

and α are reinitialized and a longer training phase is executed. The traditional

SOM does not have any other stopping criteria. The quality of the map must be

determined after training has completed.

8

2.2 Quality Measures

For a self-organizing map to be an accurate model, it must preserve the topol-

ogy and neighborhoods of the input data while also “fitting” the data [3]. Topol-

ogy is the spatial relation between data points; neighborhoods are clusters of data

points that occur in the same region of the input space. A model that fits the data

will describe the underlying relationships without modeling noise.

The quality measures chosen for this analysis were selected based on their rel-

evance and popularity. The traditional method, proposed by Kohonen, is quanti-

zation error computed by summing the distances between the nodes and the data

points. Topographic error accounts for a SOMs preservation of local topological

features in a low dimensional output space. Topographic function attempts to

measure the topology preservation using “induced receptive fields” and reports a

function that quantifies the mismatch. Trustworthiness evaluates to what degree

the neighborhoods in the projection are present in the input space. Population

based convergence is a measure based on statistical analysis of the map. These

measures are detailed in the proceeding sections.

Note that there exist several other quality measures that will not be included

in this research. Topographic product is the sum of the distortions in the input

and output spaces for each neuron and is used to quantify the suitability of the

map size [4]. Distortion uses a cost function to compute an error value for a map,

however, does not apply to the general SOM algorithm [5]. A detailed survey of a

variety of other more obscure methods has been compiled by Polani [6].

2.2.1 Quantization Error

Based on the signaling processing concept of the same name, quantization

error (QE) is a measure of the average distance between the data points and the

map nodes to which they are mapped, with smaller values indicating a better fit.

9

Kohonen suggested QE as the basic quality measure for evaluating self-organizing

maps [1]. The value for a map is calculated using (4), where n is the number of

data points in the training data and φ : D 7→ M is the mapping from the input

space D to the SOM M .

QE(M) =
1

n

n∑
i=1

|| φ(xi)− xi || (4)

Note that the value reported is on the same scale as the input data and therefore

can only be used to compare maps to each other, not as a standalone assessment

of quality.

A well-studied limitation of QE is its convergence properties as the size of the

map or the number of training iterations increases. Yin and Allison have shown

that the error of a mapping will tend to zero as the map dimensions and/or itera-

tions are increased [7]. Furthermore, this method only accounts for the relationship

between the nodes and the neurons to which they are mapped, not how the neu-

rons are organized in relation to each other. This means that QE only evaluates

the local structure of the data, that is, it fails to detect problems with the map

manifold (i.e. twists, folds).

2.2.2 Topographic Error

One of the primary goals of the SOM algorithm is to preserve the topological

features of the input space in the low dimensional output space. Topographic error

(TE) is a measure of how well the structure of the input space is modeled by the

map. Specifically, it evaluates the local discontinuities in the mapping [3]. TE is

calculated by finding the best-matching and second-best-matching neuron in the

map for each input and then evaluating the positions. If the nodes are next to

each other, then we say topology has been preserved for this input. If not, then

this is counted as an error. The total number of errors divided by the total number

of data points gives the topographic error of the map. This is summarized in (5),

10

where µ(x) returns the best-matching unit for data point x and µ′(x) returns the

second-best-matching unit.

TE(M) =
1

n

n∑
i=1

t(xi) (5)

t(x) =

0 if µ(x) and µ′(x) are neighbors

1 otherwise

Note that this measure only evaluates how well individual data points are mapped

to the nodes and does not account for larger distortions in the manifold.

2.2.3 Topographic Function

As with TE, topographic function (TF) attempts to quantify the topology

preservation in the map. This approach developed by Villmann et al. uses “in-

duced receptive fields” (based on Voronoi polyhedra) for determining the degree

of topology preservation [8]. As the name suggests (and unlike the other quality

measures presented here) TF does not produce a single value, but instead returns

a function. The authors begin with a precise definition of topology preservation.

Let the result of the SOM algorithm be a mapping MA between the input

data manifold M and the neurons i ∈ A, given in (6)

MA =

ΨM→A : M → A; v ∈M 7→ i∗(v) ∈ A

ΨA→M : A→M ; i ∈ A 7→ wi ∈M
(6)

where wi is the weight vector of each neuron and i∗(v) is the neuron closest to wi∗(v)

(e.g. its best-matching-unit). ThenMA is topology preserving if both ΨM→A and

ΨA→M are neighborhood preserving. The mapping M → A is neighborhood

preserving if data points that are adjacent in M are mapped to neurons that

are neighbors in A. Inversely, the mapping A → M is neighborhood preserving

if neurons that are adjacent in A are mapped to neighboring data points in M .

11

Therefore, it is necessary to define neighborhood in terms of the reference vectors

in M and neurons in A.

The neighborhood of the reference vectors is based on masked Voronoi poly-

hedra, or receptive fields. A neuron’s receptive field is defined by Ri = Vi ∩M

where Vi is the Voronoi polyhedron, shown explicitly in (7).

Ri = {v ∈M | ‖v − wi‖ ≤ ‖v − wj‖ ∀j ∈ A} (7)

Then two reference vectors wi, wj are adjacent if and only if their receptive fields

are adjacent, that is, Ri ∩ Rj = ∅. The neighborhood of the neurons is simply

based on their adjacency in the lattice. Next, the topographic function is defined.

Analogous to the adjacent receptive fields described above is the induced De-

launay triangulation DM , which is the graph with vertices i ∈ A and edges rep-

resenting neurons with adjacent Voronoi polyhedra. Let dDM (i, j) be the distance

between neurons based on the Delaunay triangulation and defined as the short-

est path between vertices i, j in the graph DM . Then, considering the neighbor-

hood previously described, two reference vectors wi, wj are adjacent if and only

if dDM (i, j) = 1. Using this, the Euclidean norm ‖ · ‖E, and the maximum norm

‖ · ‖max, for each neuron i define fi in (8)

fi(k) = #{j|‖i− j‖max > k; dDM (i, j) = 1} (8)

fi(−k) = #{j|‖i− j‖E = 1; dDM (i, j) > k}

with k = 1, ..., n−1, where n is the number of neurons, and #{·} is the cardinality

of a set. For the neuron i, fi(k) and fi(−k) are measures of the neighborhood

preservation of ΨM→A and ΨA→M , respectively. Given this, the topographic func-

12

tion ΦM
A (k) for the mapping MA is defined in (9).

ΦM
A (k) =

1
n

∑
j∈A fj(k) k > 0

ΦM
A (1) + ΦM

A (−1) k = 0

1
n

∑
j∈A fj(k) k < 0

(9)

Per the authors, ΦM
A (k) = 0 if and only if the mapping preserves topology perfectly.

The values of ΦM
A (k) can be interpreted as the degree of dimensional conflict in

the map and reflects the folds in the map relative to the neighborhood size k.

Note that ΦM
A (k+) = 0 when the dimensionality of the map is greater than the

that of the input space and ΦM
A (k−) = 0 when the input space has the greater

dimensionality.

There are several issues with the results produced by TF [3]. The most obvious

drawback is that the measure returns a set of values, making comparison more

difficult. Furthermore, in order for the triangulation algorithm to converge, the

data set should have at least O(n2) input vectors. Finally, the measure fails to

account for the relative distance or density of adjacent receptive fields, which could

result in misleading results.

2.2.4 Trustworthiness

Trustworthiness and neighborhood preservation measure how well the neigh-

borhoods in the input space are represented by the map [9]. Neighborhood preser-

vation (NP) is like the other quality measures in that it evaluates to what degree

neighborhoods that are present in the input are also present in the projection.

Trustworthiness measures the reverse, that is, how much the neighborhoods in the

projection are present in the input. Errors of this type, the authors argue, are

more critical since they reduce the reliability of the neighborhood relationships in

the visualized map.

13

The basis of the calculation is finding the k-nearest neighbors of each data

point and comparing this to the k-nearest neighbors of the data points projection

(i.e. the weight vector of its best-matching-unit). If a nearest neighbor in the input

space is not a nearest neighbor in the output space, it is counted as an error.

More explicitly, let xi ∈ Rn, I = 1, , N be a data set used to train a SOM.

Define Uk(xi) as the set of data points that are in the k closest to xi in the input

space and not in the k closest to xi in the output space. Similarly, define Vk(xi)

as the set of data points that are in the k closest to xi in the output space and

not in the k closest to xi in the input space. Then Trustworthiness is defined in

(10) and NP is defined in (11)

M1(k) = 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
xj∈Uk(xi)

(r(xi,xj)− k) (10)

M2(k) = 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
xj∈Vk(xi)

(r̂(xi,xj)− k) (11)

where r(xi,xj), i 6= j is the rank of xj when the data points are ordered by distance

from xi in the input space and r̂(xi,xj), i 6= j is the rank of xj when ordered by

distance in the projection. The first term in both equations normalizes the values

to a 0 to 1 range.

The key drawback to these measures is the use of ranking when many input

vectors are mapped to a single neuron in the map [10]. There is no obvious ideal

tie-breaking strategy when finding nearest neighbors in the projection. To remedy

this, the authors suggest treating every ordering as equally likely and using the

average of the errors. Additionally, as with TF, M1(k) and M2(k) are functions

based on the neighborhood size k and do not report a single value; this can make

comparing the quality between maps more difficult.

14

2.2.5 Population-based Convergence

Population-based convergence (PC) represents a relatively new approach to

the problem of evaluating how well the input data is modeled by a SOM. Instead

of examining the spatial or topological structure of the data and map, it relies

on statistical analysis. That is, it treats the neurons and the data points as two

populations and applies a statistical test to determine if they appear to be drawn

from the same probability distribution; if they do, the map is said to have converged

[11].

The basis for this measure is the observation that given enough neurons the

SOM attempts to recreate the training data. Hence, the authors suggest that if the

neurons and inputs appear to be sampled from the same distribution then the SOM

is converged. Assuming that each feature of the data has a normal distribution and

is independent from all other features3, they can be evaluated individually. Then

for each feature the means and variances of the neurons and inputs are compared

to determine if they share a distribution.

The (1 − α) · 100% confidence interval for the ratio of variances (
σ2
1

σ2
2
) of two

random samples (in this case, the neurons and training data) is given in (12)

s21
s22
· 1

fα
2
,n1−1,n2−1

<
σ2
1

σ2
2

<
s21
s22
· fα

2
,n1−1,n2−1 (12)

where s21 is the variance of the n1 inputs, s22 is the variance of the n2 neurons, and

f is the F distribution with degrees of freedom n1− 1 and n2− 1. If 1 is contained

in the confidence interval, the variance of the feature is said to be converged.

The (1− α) · 100% confidence interval for the difference of means (µ1− µ2) is

given in (13)

(x̄1 − x̄2)± zα
2
·

√
σ2
1

n1

+
σ2
1

n1

(13)

3This assumption may represent a limitation of this measure as normality and independence
of features do not hold true for most multidimensional data sets.

15

where x̄1 is the mean of the n1 inputs, x̄2 is the mean of the n2 neurons, σ2
1 and σ2

2

are the respective variances, and zα
2

is the Z-score. The difference of the feature’s

means is converged if 0 is contained in the interval.

A feature is said to have converged if and only if both the mean and variance

have converged. Given this, the overall convergence of the map is reported as the

percentage of converged features as in (14)

convergence =

∑N
i=1 ρi
N

(14)

ρi =

1 feature i is converged

0 otherwise

A convergence value of 1 indicates that all the features are converged and that

enough iterations have been used for training.

Unlike the other quality measures reviewed here, PC considers the fit of the

model; that is, it returns a maximal value when the variances in the data are

accurately represented by the map. One limitation is that a SOM that over-fits its

training data would not be penalized. Typically, however, the map has significantly

less neurons than data points so this should, in theory, not be an issue. Also, as

previously stated, this method does not factor the topological features of the data

or the map into its evaluation4.

List of References

[1] T. Kohonen, Self-organizing maps. Berlin, Germany: Springer, 2001.

[2] L. Hamel, “Som training: a modern view,” 10 2015, unpublished.

[3] K. Kiviluoto, “Topology preservation in self-organizing maps,” in Proc. Inter-
national Conf. Neural Networks, Washington, DC, 1996, pp. 294–299.

4Recent work has been done to combine population-based convergence and topographic error
into a single “convergence index” [12].

16

[4] H.-U. Bauer and K. Pawelzik, “Quantifying the neighborhood preservation of
self-organizing feature maps,” IEEE Trans. Neural Netw., vol. 3, no. 4, pp.
570–579, 7 1992.

[5] J. Lampinen and E. Oja, “Clustering properties of hierarchical self-organizing
maps,” in Mathematical Nonlinear Image Processing. Springer, 1993, pp.
165–176.

[6] D. Polani, “Measures for the organization of self-organizing maps,” in Self-
Organizing Neural Networks, 1st ed., U. Seiffert and L. Jain, Eds. Heidelberg,
Germany: Physica-Verlag, 2002, pp. 13–44.

[7] H. Yin and N. Allinson, “On the distribution and convergence of feature space
in self-organizing maps,” Neural Computation, vol. 7, no. 6, pp. 1178–1187,
1995.

[8] T. Villmann, R. Der, M. Herrmann, and T. Martinetz, “Topology preservation
in self-organizing feature maps: exact definition and measurement,” IEEE
Trans. Neural Netw., vol. 8, no. 2, pp. 256–266, 3 1997.

[9] J. Venna and S. Kaski, “Neighborhood preservation in nonlinear projection
methods: An experimental study,” Lecture Notes in Comput. Sci., vol. 2130,
p. 485491, 2001.

[10] G. Pölzlbauer, “Survey and comparison of quality measures for self-organizing
maps,” in Proc. 5th Workshop Data Analysis, Slovakia, 2004, p. 6782.

[11] B. Ott, “A convergence criterion for self-organizing maps,” Master’s thesis,
University of Rhode Island, Kingston, RI, 2012.

[12] R. Tatoian and L. Hamel, “Self-organizing map convergence,” in Proc. Inter-
national Conf. Data Mining, 2016, p. 92.

17

CHAPTER 3

Methodology

This research is a quantitative analysis and comparison of the quality measures

used with self-organizing maps. It follows an empirical procedure in which the

structure of SOMs trained with various data sets are evaluated. The following

sections describe the data, experiment design, and implementation to be used.

3.1 Experiment Design

The experimentation procedure for each data set has two high-level steps:

1. Train a large number of maps to determine when each quality measure con-

verges.

2. Evaluate the clustering and accuracy of converged maps and compare the

results to determine how well each convergence criteria performs.

3.1.1 Training

Training a SOM using the traditional algorithm requires that the number of

iterations must be known in advance. Determining the point of convergence is not

possible without modification of the algorithm because training will continue for

the set number of iterations regardless of the quality of the map. Rather than

altering the algorithm, many maps are trained at fixed iteration steps (i.e. powers

of two) to estimate the expected value of the quality measure at each step.

To determine when a quality measure has converged, we must have a concise

definition of convergence. Borrowing from conventional artificial neural network

training, a quality measure is converged when its rate of change between steps falls

below a set threshold. More specifically, when ∆Q(t, k) < ε with ∆Q defined in

18

(15).

∆Q(t, k) =
1

k

t∑
i=t−k

Qi −Qi−1

Qi−1
(15)

With t the iteration step, k the number of steps to include, and Qi the value of

the quality measure at step i. The average of several steps is used to prevent a

smaller than expected change between steps from causing premature convergence.

Thus, the overall training strategy is as follows. Select several map sizes for

each data set. At each iteration step a sufficiently large number of training runs

(i.e. 300) is used to determine the expected value. Within each run: the data set

is shuffled, the map is randomly initialized and trained, and the quality measure

is calculated. The resulting maps and values are stored for subsequent analysis.

Note that this research is meant to compare the quality measures and not to

determine the optimal parameters for SOM training. Beyond the iterations, map

size, and map initialization, the tuning parameters (i.e. learning rate, neighbor-

hood function, etc.) are kept static.

3.1.2 Evaluation

Although the SOM algorithm uses unsupervised learning (i.e. a target at-

tribute is not factored into the training), labeled data is used to assist in evaluating

the structure of the converged maps. For the purposes of this analysis, a SOM can

be interpreted in two ways: as a clustering for the input data and as a classifier

for the input data. Both approaches are used to evaluate how well a trained map

models the underlying structure of the data. In addition, the change in the maps

between iterations is analyzed.

Extraction of a clustering is accomplished by viewing the map as a planar

graph in which clusters are connected components [1]. The isolated clustering

can then be validated against the labels of the input data by examining cluster

homogeneity and completeness. Homogeneity means that only data points with

19

the same class are assigned to the same cluster; completeness means that all data

points with the same class are assigned to the same cluster. V-measure is an

entropy-based cluster evaluation measure that reports a single score combining

homogeneity and completeness [2], defined as follows.

Let N be the number of data points, C = {ci | i = 1, ..., n} the set of classes,

K = {ki | i = 1, ...,m} the set of clusters, and aij be the number of members of

class ci ∈ C that are elements of cluster kj ∈ K. The V-measure (16) is used to

evaluate the cluster quality of the maps.

Homogeneity

h =

1 , if | C |= 1

1− H(C|K)
H(C)

, otherwise

H(C | K) = −
|K|∑
j=1

|C|∑
i=1

aij
N

log
aij∑|C|
i=1 aij

H(C) = −
|C|∑
i=1

∑|K|
j=1 aij

n
log

∑|K|
j=1 aij

n

Completeness

c =

1 , if | K |= 1

1− H(K|C)
H(K)

, otherwise

H(K | C) = −
|C|∑
i=1

|K|∑
j=1

aij
N

log
aij∑|K|
j=1 aij

H(K) = −
|K|∑
j=1

∑|C|
i=1 aij
n

log

∑|C|
i=1 aij
n

V =
2 ∗ h ∗ c
h+ c

(16)

When the map is interpreted as a classifier, the label of an unknown input can

be predicted by finding its best matching neuron and assigning the majority label

of the data points mapped to that neuron. Generally, a data set is partitioned

into training and test sets to evaluate the accuracy of a model. However, since

the SOMs are trained and converged using complete data sets, there is no test set

that can be assessed. For this analysis, the ratio of dead-neurons (to which no

data points are mapped) will be used in determining when the maps structure has

ceased to change.

20

To determine the change in maps between iterations, the distance between

matching nodes in pairs of maps is evaluated. For each iteration step, a map from

the current and the previous iteration step are randomly selected; the distance

between each node in the map and the closest node in the other map is evaluated.

This process is repeated many times and the maximum distance found between

any pair of iteration steps represents the maximum difference between the expected

maps. For comparison purposes, the max expected distances are divided by the

mean distance between all points in the data set to return a value between 0 and 1.

These values are used to represent how much the maps are changing between iter-

ations and to determine when the underlying structure of the map has converged

(i.e. the point at which additional training would no longer change the map).

The maps converged under each quality measure will be compared using the

clustering, classifier, and change between iterations strategies. In addition, the

percentage of nodes in the map used as best-matching-units (that is, that are not

“dead neurons”) will be calculated. This best-matching-unit (BMU) ratio will be

used to gain additional insights into the structure of trained maps.

3.2 Implementation

The statistical computing environment R provides the framework used for

performing tests and analyzing the results [3]. Packages available through The

Comprehensive R Archive Network (CRAN) are used to supplement the built-in

graphical and analytical capabilities of R [4]. The main package to be included

for map construction, evaluation, and visualization is popsom (of which the author

is a contributor) [5]. Population-based convergence is the only quality measure

previously implemented in R.

R being an interpreted language, it lacks the benefits of optimization found

with using compiled languages. This results in poor performance for long running

21

loops (e.g. calculating a value for every data point in a large data set). The

creators of R incorporated functionality to interface with C/C++ and Fortran

to offset this limitation. This feature is applied to augment the existing popsom

package by developing the quality measures using a combination of R and C++.

The Rcpp package was incorporated to ease the integration between the two

languages. Rcpp contains several data structures and methods for passing values

between R and C++ [6]. Building the code into a package allows for much of the

development to be done in C++ with corresponding R functions automatically

generated at compile time. The marshaling/unmarshaling of data is completely

handled by Rcpp which results in significantly cleaner and more manageable code.

The main functions developed are for quantization error, topographic error,

topographic function, neighborhood preservation, and trustworthiness. To improve

the efficiency of these algorithms, a precomputed distance matrix is used for com-

putations wherever possible. This enables the distance matrix calculation to take

advantage of high-performance functions that already exist in R while leaving the

iterative processing to happen within the C++ functions. In addition to the qual-

ity measures, several methods are implemented for visualizing SOMs in two- and

three-dimensions. See appendices for more details and actual source code.

3.3 Data Description

Although the SOM algorithm uses unsupervised learning (i.e. a target at-

tribute is not factored into the training), labeled data will be used for comparing

the structures of the input data and mapped data. Both real world and synthetic

data sets were selected to represent a variety of scenarios under which the quality

measures could be compared. Descriptions of the data sets can be found in the

following sections.

22

3.3.1 Fundamental Clustering Problem Suite

The Fundamental Clustering Problem Suite is a collection of synthetic data

sets that present various problems for clustering algorithms (e.g. overlapping clus-

ters, linearly non-separable clusters, etc.) [7]. All the data sets have class labels

and are in three dimensions which makes them ideal for both evaluating the accu-

racy of a clustering and visualization. The data sets selected for experimentation:

Hepta, Tetra, Atom, Chainlink, are described below.

Two of the data sets were selected based on the assumption that a well-

trained SOM would model the clusterings well. The Hepta data set has well-defined

clusters and represents the simplest case; it has 212 instances and seven classes.

The Tetra data set has clusters that are touching; it has 400 instances and four

classes. The data sets are visualized in Figures 7 and 8, respectively.

Figure 7. Hepta data visualization. Figure 8. Tetra data visualization.

The other two data sets were selected knowing that a SOM could not model

them completely. The Atom data set has clusters with different variances that

are non-linearly separable; it has 800 instances and two classes. The Chainlink

data set has clusters that are non-linearly separable; it has 1000 instances and two

classes. The data sets are visualized in Figures 9 and 8, respectively.

23

Figure 9. Atom data visualization. Figure 10. Chainlink data visualization.

3.3.2 Swiss Roll

The Swiss Roll data set is a synthetic data set designed specifically for evaluat-

ing how well a dimension reduction algorithm is able to learn a nonlinear manifold

[8]. The three-dimensional data is visualized in Figure 11a. The data also has

an intrinsic two-dimensional representation. This can be seen by ”unrolling” the

manifold, as shown in Figure 11b. Note that the original data has no class labels.

As previously mentioned, labels will ease comparing the input and outputs of the

mapping. Hence, the manifold is split into 8 even width slices and sequentially

labeled.

(a) 3-dimensional (b) Unrolled plane

Figure 11. Swiss roll data visualization.

24

Also, note that the original data set has 20000 points. Due to several of the

quality measures requiring the distance matrix of the input data, this has been

sampled down to 2000 instances to make calculations more practical.

3.3.3 Ecoli

The Ecoli data set is a real-world data set consisting of attributes for classi-

fying the localization site of E. coli proteins [9]. The data has seven real-valued,

predictor attributes and one label attribute with eight classes. The data has 336

instances. An example of the data is shown in Table 1. Unlike the synthetic data

sets previously described, the label counts are not evenly distributed, as shown in

Table 2.

mcg gvh lip chg aac alm1 alm2 site
0.90 0.46 -0.11 0.02 1.28 -1.05 -1.49 om

-1.06 0.92 -0.07 0.43 -1.31 -0.32 1.42 im
1.52 0.97 -0.21 -0.03 0.06 -1.21 -1.12 pp

-0.01 1.32 0.57 0.74 -0.18 -1.67 -0.76 cp
0.24 -0.83 -0.91 -0.75 -0.45 1.23 1.46 imS

Table 1. Ecoli Data Sample

cp im pp imU om omL imL imS
143 77 52 35 20 5 2 2

Table 2. Ecoli Class Counts

3.3.4 Epil

The Epil data set is a real-world data set comprised of seizure counts for

epileptic patients in two treatment groups [10]. The data has six integer-valued

predictor attributes and one label attribute with two classes. The data has 236

instances. An example of the data is shown in Table 3. The label counts are near

evenly distributed, as shown in Table 4.

25

y base age V4 subject period trt
4 12 29 1 21 4 placebo
4 22 32 1 50 4 progabide
2 12 31 1 7 4 placebo
0 11 25 1 48 4 progabide
7 20 21 1 20 4 placebo

Table 3. Epil Data Sample

progabide placebo
124 112

Table 4. Epil Class Counts

List of References

[1] L. Hamel and C. Brown, “Improved interpretability of the unified distance
matrix with connected components,” in Proc. International Conf. Data Min-
ing, Las Vegas, NV, 2011, pp. 338–343.

[2] J. Hirschberg and A. Rosenberg, “V-measure: A conditional entropy-based
external cluster evaluation measure,” in EMNLP-CoNLL, vol. 7, 2007, pp.
410–420.

[3] The R Foundation for Statistical Computing. “R: A language and
environment for statistical computing.” Vienna, Austria. 2011. [Online].
Available: http://www.r-project.org/

[4] Cran.r-project.org. “The comprehensive r archive network.” 2014. [Online].
Available: https://cran.r-project.org/

[5] L. Hamel, B. Ott, and G. Breard. CRAN. “popsom: Functions for
constructing and evaluating self-organizing maps.” 2016. [Online]. Available:
https://cran.r-project.org/web/packages/popsom

[6] D. Eddelbuettel and R. François, “Rcpp: Seamless R and C++ integration,”
Journal of Statistical Software, vol. 40, no. 8, pp. 1–18, 2011. [Online].
Available: http://www.jstatsoft.org/v40/i08/

[7] A. Ultsch, “Clustering with som: U*c,” in Proc. Workshop on Self-Organizing
Maps, Paris, France, 2012, pp. 75–82, [Dataset].

[8] J. Tenenbaum, “Swiss roll,” in Data Sets for Nonlinear Dimensionality Re-
duction. Stanford Univ., 2000, [Dataset].

26

http://www.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/web/packages/popsom
http://www.jstatsoft.org/v40/i08/

[9] M. Lichman, “Ecoli,” in UCI Machine Learning Repository. School Inform.
and Comput. Sci., Univ. California, Irvine, 2013, [Dataset].

[10] P. F. Thall and S. C. Vail, “Some covariance models for longitudinal count
data with overdispersion,” Biometrics, vol. 46, no. 3, pp. 657–671, 1990,
[Dataset].

27

CHAPTER 4

Results

In this chapter the results of analyzing the quality measures as set forward in

the experimental procedure are presented. The quality measures used are quan-

tization error, topographic error, neighborhood preservation, trustworthiness, and

population-based convergence1. In addition, the best-matching-unit (BMU) ratio

is included to assist in interpreting the results. For each data set, the convergence

of the quality measures is visualized and the clustering, label accuracy, and map

change between iteration steps are graphed. For the convergence, the mean and

range of the quality measures at each iteration level are shown. The clustering,

label accuracy, and map change have points indicating at what number of itera-

tions each quality measure converged (determined using ∆Q(t, k)). The chapter

is concluded with a brief discussion of the interpretation and significance of the

results.

4.1 FCPS Results

The following sections contain the convergence information for the synthetic

Fundamental Clustering Problem Suite data sets Hepta, Tetra, Atom, and Chain-

link.

4.1.1 Hepta

The Hepta data set is made up of 212 points; a map size of 10 by 15 was used

for experimentation. Shown in Figure 12 are graphs with the value of each quality

measure as the number of iterations increases. Note that after approximately

16,000 iterations, all of the quality measures begin to converge, with topographic

1Topographic function was not used due to limitations to be detailed in the discussion.

28

Figure 12. Hepta quality measures and BMU ratio.

error converging much earlier. The BMU ratio also plateaus after about 32000

iterations. The clustering, label accuracy, and map change between steps are shown

in Figure 13. The labeling accuracy and clustering both reach 100 percent after

about 4,000 iterations. This an indication of why the topology-based measures

(i.e. topographic error) return a value indicating high quality after only a small

number of iterations. It appears, however, that the map still needs additional

training at this point. The BMU ratio indicates that only 30 percent of the nodes

are mapped to and the map difference is around 20 percent. Population-based

Figure 13. Hepta clustering, labeling accuracy, and change between steps.

29

convergence demonstrates the necessity for additional training as it shows that the

distributions of the features are not captured until around 32000 iterations.

4.1.2 Tetra

Figure 14. Tetra quality measures and BMU ratio.

The Tetra data set is made up of 400 points; a map size of 15 by 20 was used

for experimentation. Figure 14 shows graphs of quality measures vs. iterations.

Most of the measures appear to follow a similar pattern, with population-based

convergence being the exception; it takes significantly more iterations to converge.

Figure 15. Tetra clustering, labeling accuracy, and change between steps.

30

The BMU ratio corresponds to this and does not reach a maximum until after

250,000 iterations. The clustering, label accuracy, and map change between steps

are shown in Figure 15. Here we see that the clustering quality peaks early before

declining, but remaining relatively high (above 0.8). The label accuracy reaches

100 percent after just a small number of iterations. This data results in a more

gradually shrinking map difference, compared to the Hepta data set, but also

reaches about 10 percent.

4.1.3 Atom

Figure 16. Atom quality measures and BMU ratio.

The Atom data set is made up of 800 points; a map size of 22 by 27 was used

for experimentation. Figure 16 shows graphs of quality measures vs. iterations.

This is the first of the two synthetic data sets with clusters that not linearly

separable, meaning that it cannot be modeled perfectly by a 2-dimensional SOM.

This is reflected by the quantization error being orders of magnitude worse than

that found for the Hepta and Tetra maps. Similarly, the mean population-based

31

Figure 17. Atom clustering, labeling accuracy, and change between steps.

convergence does not surpass 0.7, indicating that one of the features does not

converge. The other measures, however, seem to indicate near perfect quality after

about 16,000 iterations. The BMU ratio appears to increase near linearly with

number of iterations. The clustering, label accuracy, and map change between

steps are shown in Figure 17. As with the previous data sets, the label accuracy

peaks after only a small number of iterations. The clustering quality peaks after

about 8,000 iterations. Note also that the values are significantly lower than the

previous data sets (e.g. 0.35 vs. 0.80). Unlike the previous data sets, the map

Figure 18. Chainlink quality measures and BMU ratio.

32

difference decreases gradually but continues to be significant (about 15 percent)

even as the number of iterations becomes large.

4.1.4 Chainlink

The Chainlink data set is made up of 1,000 points; a map size of 25 by

30 was used for experimentation. The Chainlink data set is made up of two

interlocking rings that are not linearly separable. Therefore, like the Atom data

set, the structure cannot be completely modeled by the SOM. This is illustrated by

the convergence behavior of the quality measures shown in Figure 18, which is very

similar to that of the Atom data. Also similar are the clustering and label accuracy,

shown in Figure 19. The clustering quality does not exceed 0.45, still relatively

low compared to the Hepta and Tetra data sets. The map change between steps,

also shown in Figure 19, appear to be unique. Between iteration steps more than

around 65,000 there are no significant changes to the map.

Figure 19. Chainlink clustering, labeling accuracy, and change between steps.

4.2 Swiss Roll Results

In this section the convergence information for the synthetic Swiss Roll data

set is presented. The data set contains 2,000 points; a map size of 36 by 41 was

used for experimentation. This data set is the most complex of the synthetic data

sets used. Although the 3-dimensional data has an obvious 2-dimensional repre-

sentation (as seen in the Data Description), it is difficult for the SOM to capture

33

Figure 20. Swiss Roll quality measures and BMU ratio.

it due to the rolled structure. Figure 20 shows graphs of quality measures vs. iter-

ations. Only the trustworthiness measures converged for the maps. Quantization

error and topographic error approach zero, while population-based convergence

does not do better than 60 percent (on average). Interestingly, the BMU ratio

reaches its maximum at around 32,000 iterations before starting to decline. This

is unique behavior in all the data sets, though its cause is not immediately clear.

The clustering, label accuracy, and map change between steps are shown in Figure

21. This is the first of the data sets for which the label accuracy does not reach

Figure 21. Swiss Roll clustering, labeling accuracy, and change between steps.

34

100 percent. The clustering quality increases smoothly but does not surpass about

0.4. The map difference between steps is negligible after about 32,000 iterations.

4.3 Ecoli Results

Figure 22. Ecoli quality measures and BMU ratio.

This section presents the convergence information for the real world Ecoli data

set. The data set is made up of 336 points; a map size of 14 by 18 was used for

experimentation. This is the first of the two data sets that have higher than three

dimensions which can therefore not be visualized in their raw format. Figure 22

shows graphs of quality measures vs. iterations. All the measures indicate “good”

quality after about 250,000 iterations. Based on the topographic error, the model

is perfect after only about 32,000 iterations. The population-based convergence

only reaches about 90 percent, which is reasonable since it is likely not possible

for the 2-dimensional SOM to perfectly represent the 7-dimensional data. The

clustering, label accuracy, and map change between steps are shown in Figure 23.

The labeling accuracy does not surpass about 90 percent, while the cluster quality

35

Figure 23. Ecoli clustering, labeling accuracy, and change between steps.

maxes out at about 0.5, however, this may be due to inconsistencies found in real

world data. After about 32,000 iterations, the map difference between steps is less

than 15 percent.

4.4 Epil Results

Figure 24. Epil quality measures and BMU ratio.

This section contains the convergence information for the real world Epil data

set. The data set is made up of 236 points; a map size of 11 by 16 was used for

experimentation. Like the Ecoli data set, Epil has more than three dimensions

36

(having five). Interestingly, however, the maps trained using it have comparatively

better quality as seen in Figure 24. Most of the measures have converged by about

65,000 iterations. The exceptions being quantization error and population based

convergence. Examining the BMU ratio, only about half of the neurons are mapped

to training data points this may be an indication that there are dense clusters in

the data. The clustering, label accuracy, and map change between steps are shown

in Figure 25. The label accuracy is nearly 100 percent after about 32,000 iterations,

while the clustering peaks around 0.5 after just a few hundred iterations before

dropping to below one third. Examining the map difference, after about 4,000

iterations the maps only change by about 10 percent between steps.

Figure 25. Epil clustering, labeling accuracy, and change between steps.

4.5 Discussion

In this section the limitations and interpretations of this analysis are discussed.

The first important note regarding the presented results is that all the graphs are

logarithmic in the number of iterations. This means that while the graphs appear

as smooth curves, the amount of training in between iterations steps has doubled.

This illustrates the diminishing returns achieved by additional training, as most

of the quality measures see only slight improvements in the later steps when the

iterations are increased by hundreds of thousands.

Secondly, there was some deviation from the original proposed methodology.

37

Initially, it had suggested to use multiple map sizes for each data set. However,

the decision was made to include the analysis for only one map size (the number of

neurons equal to about 75% the number of data points) each after experimentation

with different map dimensions did not produce significantly different results. It

was also not possible to use the topographic function to evaluate the maps, and so

it has not been included in the results.

Although the topographic function was researched and implemented, its lim-

itations made in inapplicable to this study. This is because for the triangulation

algorithm to converge, it requires there to be N2 number of data points, where

N is the number of neurons in the map (as described in the literature review).

Since all the data sets used were relatively small and the map sizes selected were

a percentage of the number of instances, the triangulation failed to converge for

any of the data sets. Furthermore, even had the algorithm converged, since the

function does not produce a single value it would have been difficult to interpret

and compare these results between maps.

A similar issue arose from the trustworthiness measure (which also returns a

value based on the selected neighborhood size). This was overcome by selecting a

size to use in the comparison. A value of 3 was chosen since in the original paper,

most of the variation appears to happen when the neighborhood size is small.

Another issue with the trustworthiness measure is its small range of values. For all

data sets the minimum value for trustworthiness and neighborhood preservation

was 90 percent and in most cases, was greater than 95 percent. This suggests that

after only about 250 iterations, the neighborhoods are almost perfectly preserved.

While the SOM does begin to represent the data in only a few iterations, this seems

overly optimistic when compared to the other measures. This is especially evident

when considering that trustworthiness reported perfect quality for data sets that

38

are known to not have planar representations (i.e. Atom and Chainlink).

Another interesting result is observed in the range of the other measures.

While quantization error and the trustworthiness measures have relatively tight

ranges, topographic error and population-based convergence have much more vari-

ance. This may be an indication that these measures are more influenced by the

initialization of the map. Topographic error also seems to converge, in most cases

to zero, relatively quickly. This reinforces the notion that SOM effectively mod-

els the topology of a data set but the measure may be failing to account for an

under-fitting model.

A noteworthy deficiency is witnessed in the cluster quality results. It was

expected that the clustering quality would improve monotonically with the number

training iterations, however it is clear that this is not the case. Another issue is

seen in the range of values produced by the V-measure calculation. This seems to

indicate that there was not much change in the clusters between a few hundred

iterations and several hundred thousand iterations. The first possible explanation

is that the SOM captures most of the cluster structure in the data after only a small

number of iterations and larger numbers of iterations represent fine tuning that

does not significantly change the clusters in the map. Alternatively, it could be due

to the use of data labels as cluster labels, instead of an external clustering algorithm

(it is likely that the labels would not coincide with the clustering, especially in real

world data).

Deficiencies notwithstanding, these results give us valuable insight into the

behavior of the quality measures. The primary takeaway is that the quality mea-

sures have consistent convergence behavior even when comparing very different

data sets. In every case, trustworthiness and topographic error converge relatively

quickly to near perfect values (one and zero, respectively) and hence appear overly

39

optimistic. Quantization error continue to decrease as iterations increase and thus

cannot indicate an ideal number of training iterations. Population-based conver-

gence approaches or reaches a perfect value (i.e. one) for the simple data sets while

converging to much lower values for the more complex data sets. This is the only

measure that suggests that there were imperfections in the trained SOMs. This is

surprising given that the structure of several of the data sets were known not to

be representable by a 2-dimensional map. Thus, of the measures examined, the

aptly named population-based convergence represents the best potential stopping

criteria for SOM training.

40

CHAPTER 5

Conclusion

The purpose of this research was not to determine the “best” quality measure

for self-organizing maps, but rather to compare how these quality measures per-

form under various conditions. Specifically, how well would the maps that have

converged under different quality measures capture the structure (i.e. clustering)

found in the input space. This presents a few problems, primarily: how to deter-

mine when a quality measure has converged and how to evaluate the clustering in

the resulting map. This thesis proposes methods to address both issues. Further-

more, the methodology is designed to evaluate several popular quality measures,

using both synthetic and real world data.

Ultimately, the key result of treating the quality measures as convergence cri-

teria was gaining insight into how to determine the ideal number of iterations for

training. Due to the nature of the algorithm, the map structure is inherently af-

fected by the number of training iterations. Despite its importance, this parameter

has not been explored much in the existing literature. It is evident through the

rigorous experimental approach used in this research that there is no singular “rule

of thumb.” Instead, the amount of training necessary for the map to converge is

largely dependent on the data set and the quality measure used for evaluation.

Moreover, the quality measures converge with different amounts of training, so it

is important to understand the strengths and weaknesses of a measure before it is

used.

Beyond the analysis of the quality measures, the other major contribution

of this work is the code developed to become part of the popsom R package (see

appendices). The availability of this code will ensure the reproducibility of the

41

results presented and improve future work related specifically to quality measures

and SOMs in general.

5.1 Future Work

There are two areas that could be addressed in future work: how to best

determine the clustering and how to evaluate the quality of maps during training

rather than after.

First, a better approach to clustering analysis has the potential to improve

the quality of the presented results. For this research, the clustering found with

the SOM was compared to the labeling in the data. While this is acceptable for

synthetic data, it represents an assumption about the structure when applied to

real world data. One way that this could be addressed would be to use a differ-

ent clustering algorithm (e.g. hierarchical, k-means, etc.) to create a “baseline”

clustering and use this for comparison instead of the labels. Since the SOM uses

unsupervised learning, this may be a more appropriate strategy.

Secondly, another approach to the problem of SOM convergence could be to

modify the SOM algorithm to use the various quality measures as stopping criteria.

This would be a significant deviation from the traditional SOM algorithm and so

was not explored in this study. There are several issues that would need to be

addressed, most notably, how to handle the decaying radius and learning rate with

an open-ended number of iterations. Some work has been done regarding this idea

and its inherit problems, but additional research is required to validate the concept

[1].

List of References

[1] G. Breard, “A continuous learning strategy for self-organizing maps based on
convergence windows,” in Senior Honors Project Conference, Kingston, RI,
2014. [Online]. Available: http://digitalcommons.uri.edu/srhonorsprog/352/

42

http://digitalcommons.uri.edu/srhonorsprog/352/

APPENDIX

Source Code

A.1 quality-measures.R

quality -measures.R
version 0.1
(c) 2016 Gregory Breard , University of Rhode Island
#
This file contains a set of functions used for
evaluating the quality of self -organizing maps (SOMs).
License
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General
Public License as published by the Free Software
Foundation.
#
This program is distributed in the hope that it will be
useful , but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License
for more details.
#
A copy of the GNU General Public License is available
at: http://www.r-project.org/Licenses/
###

get.distances - returns the distances between the
data , neurons , and across both.
#
parameters:
- map is an object returned by map.build
return
- list containing three distance matrices:
dist.data - distance between all data points
dist.neurons - distance between all map neurons
dist.cross - distance between the data points and the
map neurons
dist.proj - distance between the projected data points
#
get.distances <- function(map) {

if (class(map) != "map")
stop("get.distances: not a map object")

Get the data set

43

data.df <- data.frame(map$data)

Get the neurons
neurons.df <- data.frame(map$neurons)

Merge the data
colnames(neurons.df) <- colnames(data.df)
all <- rbind(data.df , neurons.df)

Calculate the distances
d <- as.matrix(dist(all))

Pull out the distances between data and neurons
n <- dim(data.df)[1]
m <- dim(neurons.df)[1]
dist.data <- d[1:n, 1:n]
dist.neurons <- d[(n + 1):(n + m), (n + 1):(n + m)]
dist.cross <- d[1:n, (n + 1):(n + m)]

Get the projected points and distances
projection <- map$neurons[map$visual ,]
dist.proj <- as.matrix(dist(projection))

Return distances
list(dist.data = dist.data ,

dist.neurons = dist.neurons ,
dist.cross = dist.cross ,
dist.proj = dist.proj)

} # end get.distances

get.distances - returns the ratio of neurons that
are best matching units for a data point.
#
parameters:
- dist.cross is the distance matrix between the data
points and the map neurons
return
- list containing a value and a vector:
ratio - the ratio of neurons that are a BMU for a
data point.
neurons - number of data points mapped to each neuron
#
get.bmu.ratio <- function(dist.cross) {

Initialize
n <- dim(dist.cross)[1]
m <- dim(dist.cross)[2]

44

neurons <- rep(0, m)

Check each data point
for (i in 1:n) {

between <- dist.cross[i,]
bmu.idx = which.min(between)
neurons[bmu.idx] = neurons[bmu.idx] + 1;

} # end for

Calculate the error
bmus <- 0;
for (i in 1:m)

if (neurons[i] > 0)
bmus <- bmus + 1

ratio <- bmus / m

Return list
list(ratio = ratio , neurons = neurons)

} # end get.bmu.ratio

get.map.diff - returns the difference between two
maps , i.e. the average distance between
the closest pairs of neurons.
#
parameters:
- map1 first map
- map2 second map
return
- list containing a value:
map.diff - the difference in the maps
#
get.map.diff <- function(map1 , map2) {

Make sure the maps have the same dimensions
if (map1$xdim != map2$xdim || map1$ydim != map2$ydim)

stop("maps have different dimesions")

Get the neurons from the maps
neurons .1.df <- data.frame(map1$neurons)
neurons .2.df <- data.frame(map2$neurons)

Make sure the neurons have the same number of dims
if (dim(neurons .1.df)[2] != dim(neurons .2.df)[2])

stop("map neurons have different dimesions")

Get the number of neurons (for extracting dist)

45

n <- dim(neurons .1.df)[1]

Merge the data
colnames(neurons .1.df) <- colnames(neurons .2.df)
all <- rbind(neurons .1.df, neurons .2.df)

Calculate the distances
d <- as.matrix(dist(all))

Pull out the distances between neurons in two maps
dist.cross <- d[1:n, (n + 1):(n + n)]

Use quantization error to find the distance
between the nodes in the two maps
m.diff <- get.quant.err(dist.cross)$val

Return list
list(val = m.diff)

} # end get.map.diff

46

A.2 quality measures.cpp

/*** quality_measures.cpp
* version 0.1
* (c) 2016 Gregory Breard , University of Rhode Island
*
* This file contains a set of functions used for
* evaluating the quality of self -organizing maps (SOMs).
*** License
* This program is free software; you can redistribute it
* and/or modify it under the terms of the GNU General
* Public License as published by the Free Software
* Foundation.
*
* This program is distributed in the hope that it will
* be useful , but WITHOUT ANY WARRANTY; without even the
* implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* A copy of the GNU General Public License is available
* at: http :// www.r-project.org/Licenses/
***/

#include <Rcpp.h>

using namespace Rcpp;

// Reference:
// T. Kohonen , Self -organizing maps , Berlin: Springer ,
// 2001.
// [[Rcpp:: export(name = "get.quant.err ")]]
List GetQuantizationError(NumericMatrix dist_cross) {

// Initialize
int n = dist_cross.nrow ();
double total_dist = 0;

// Check each data point
for (int i = 0; i < n; i++) {

NumericVector between = dist_cross.row(i);
double bmu_dist = min(between);
total_dist += bmu_dist;

} // end for (i)

// Calculate the error
double err = total_dist / n;

47

// Return list
List out = List:: create(Named("val") = err);

return out;
} // end GetQuantizationError

// Reference:
// G. Polzlbauer , Survey and comparison of quality
// measures for self -organizing maps , in Proc. 5th
// Workshop Data Analysis , pg 67 8 2 , 2004.
// [[Rcpp:: export(name = "get.top.err ")]]
List GetTopographicError(NumericMatrix dist_cross ,

int xdim) {
// Initialize
int n = dist_cross.nrow ();
int errors = 0;

// Check each data point
for (int i = 0; i < n; i++) {

// Intialize variables
NumericVector between = dist_cross.row(i);

// Initialize the unsorted index vectors
std::vector <int > idx(between.size ());
std::iota(idx.begin(), idx.end(), 0);

// Sort the indices by the distance
std::sort(idx.begin(), idx.end(),

[between](double i1 , double i2) {
return between[i1] < between[i2];

});

// Get the best (and second best) matching units
int bmu_index = idx [0];
int sbmu_index = idx [1];

// Considering the neighborhood:
// n-xdim -1 n-xdim n-xdim+1
// n-1 n n+1
// n+xdim+1 n+xdim n+xdim+1

// Find index difference
int dif = abs(bmu_index - sbmu_index);

// Check for error
if (!(dif == 1 || dif == xdim - 1

48

|| dif == xdim
|| dif == xdim + 1))

errors ++;
} // end for (i)

// Calculate the error
double err = (double)errors / n;

// Return list
List out = List:: create(Named("val") = err);

return out;
} // end GetTopographicError

// Reference:
// T. Villmann , R. Der , M. Herrmann , and T. Martinetz ,
// Topology preservation in self -organizing feature maps:
// exact definition and measurement , IEEE Trans. Neural
// Netw., vol. 8 no. 2, pg 256 - 266, 1997.
// [[Rcpp:: export(name = "get.top.func ")]]
List GetTopographicFunction(NumericMatrix dist_cross ,

int xdim) {
// Initialize
int n = dist_cross.nrow ();
int m = dist_cross.ncol ();

// Initialize the connectivity and Delaunay
// Triangulation matrices
NumericMatrix C(m, m);

// Build the connectivity matrix
for (int i = 0; i < n; i++) {

// Intialize variables
NumericVector between = dist_cross.row(i);

// Initialize the unsorted index vectors
std::vector <int > idx(between.size ());
std::iota(idx.begin(), idx.end(), 0);

// Sort the indices by the distance
std::sort(idx.begin(), idx.end(),

[between](double i1 , double i2) {
return between[i1] < between[i2];

});

// Get the best (and second best) matching units

49

int bmu_index = idx [0];
int sbmu_index = idx [1];

// Add an edge between the best and second
// best matching units
C(bmu_index , sbmu_index) = 1;
C(sbmu_index , bmu_index) = 1;

} // end for (i)

// Build the Delaunay Triangulation matrix (shortest
// paths) using F l o y d W a r s h a l l algorithm
// initialize paths
NumericMatrix Dm(clone(C));
for (int i = 0; i < m; i++)

for (int j = 0; j < m; j++)
if (i == j)

Dm(i, j) = 0;
else if (Dm(i, j) != 1)

Dm(i, j) = std:: numeric_limits <double >:: infinity ();
// find shortest paths
for (int k = 0; k < m; k++)

for (int i = 0; i < m; i++)
for (int j = 0; j < m; j++)

if (Dm(i, k) + Dm(k, j) < Dm(i, j))
Dm(i, j) = Dm(i, k) + Dm(k, j);

// Initialize function results
NumericVector ks = NumericVector (2 * m - 1);
NumericVector phi = NumericVector (2 * m - 1);

// Check that we have a valid triangulation
if (max(Dm) == std:: numeric_limits <double >:: infinity ()) {

// Can’t calculate
for (int i = 0; i < 2 * m - 1; i++) {

ks(i) = i - m + 1;
phi(i) = nan("");

} // end for (i)
} else {

// Calculates all function values
for (int i = 0; i < 2 * m - 1; i++) {

int k = i - m + 1;
double p = 0.0;

// Calculate phi(k)
for (int j = 0; j < m; j++) {

for (int l = 0; l < m; l++) {

50

int f = 0;
NumericVector i_idx (2);
NumericVector j_idx (2);
i_idx (0) = j % xdim;
i_idx (1) = floor(j / xdim);
j_idx (0) = l % xdim;
j_idx (1) = floor(l / xdim);

// Calculate f(k)
double dist_Dm = Dm(j, l);

if (k > 0) {
double dist = max(abs(i_idx - j_idx));
if (dist > k && dist_Dm == 1)

f++;
} else if (k < 0) {

double dist = sum(abs(i_idx - j_idx));
if (dist == 1 && dist_Dm > abs(k))

f++;
} // end if

p = p + f;
} // end for (l)

} // end for (j)

ks(i) = k;
phi(i) = p / m;

} // end for (i)

// Set phi (0)
phi(m) = phi(m + 1) + phi(m - 1);

} // end if

// Return list
List out = List:: create(Named("k") = ks,

Named("phi") = phi);

return out;
} // end GetTopographicFunction

// Reference:
// J. Venna and S. Kaski , "Neighborhood preservation in
// nonlinear projection methods: An experimental study",
// Lecture Notes in Comput. Sci., vol. 2130, pg 485-491,
// 2001.
// [[Rcpp:: export(name = "get.hood.pres ")]]
List GetNeighborhoodPreservation(NumericMatrix dist_data ,

51

NumericMatrix dist_proj ,
int k) {

// Initialize
int n = dist_data.nrow ();
double M_1 = 0.0;
double M_2 = 0.0;

// Check each data point
for (int i = 0; i < n; i++) {

// Get the distances for x_i
NumericVector dist = dist_data.row(i);
NumericVector pdist = dist_proj.row(i);

// Initialize the unsorted index vectors
std::vector <int > idx(dist.size ());
std::vector <int > pidx(pdist.size ());
std::iota(idx.begin(), idx.end(), 0);
std::iota(pidx.begin(), pidx.end(), 0);

// Sort the indices by the distance
std::sort(idx.begin(), idx.end(),

[dist](double i1, double i2) {
return dist[i1] < dist[i2];

});
std::sort(pidx.begin(), pidx.end(),

[pdist](double i1, double i2) {
return pdist[i1] < pdist[i2];

});

// Get all x_j in (and not in) C_k(x_i)
std::vector <int > Ck(idx.begin(), idx.begin () + k);
std::vector <int > not_Ck(idx.begin () + k, idx.end ());

// Get all x_j in (and not in) C^_k(x_i)
std::vector <int > hat_Ck(pidx.begin(),

pidx.begin() + k);
std::vector <int > not_hat_Ck(pidx.begin() + k,

pidx.end ());

// Get U_k(x_i), e.g. the intersection of x_j
// not in C_k(x_i) and x_j in C^_k(x_i)
std::vector <int > Uk(k);
std::sort(not_Ck.begin(), not_Ck.end ());
std::sort(hat_Ck.begin(), hat_Ck.end ());
std::vector <int >:: iterator it

= std:: set_intersection(not_Ck.begin(),

52

not_Ck.end(),
hat_Ck.begin(),
hat_Ck.end(),
Uk.begin ());

Uk.resize(it - Uk.begin ());

// Get V_k(x_i), e.g. the intersection of x_j in
// C_k(x_i) and x_j not in C^_k(x_i)
std::vector <int > Vk(k);
std::sort(Ck.begin(), Ck.end ());
std::sort(not_hat_Ck.begin(), not_hat_Ck.end ());
it = std:: set_intersection(Ck.begin(), Ck.end(),

not_hat_Ck.begin(),
not_hat_Ck.end(),
Vk.begin ());

Vk.resize(it - Vk.begin ());

// Calculate the inner sums
for (int j = 0; j < std::max(Uk.size(),

Vk.size ()); j++) {
if (j < Uk.size ()) {

int x_j = Uk[j];
if (x_j != i) {

int r = find(idx.begin(), idx.end(), x_j)
- idx.begin () + 1;

M_1 = M_1 + r - k;
} // end if (x_j)

} // end if (j)
if (j < Vk.size ()) {

int x_j = Vk[j];
if (x_j != i) {

int r_hat = find(pidx.begin(), pidx.end(), x_j)
- pidx.begin() + 1;

M_2 = M_2 + r_hat - k;
} // end if (x_j)

} // end if (j)
} // end for (j)

} // end for (i)

// Convert the sum
M_1 = 1 - (2 * M_1 / (n * k * (2 * n - 3 * k - 1)));
M_2 = 1 - (2 * M_2 / (n * k * (2 * n - 3 * k - 1)));

// Return list
List out = List:: create(Named("k") = k,

Named("trustworthiness") = M_1 ,

53

Named("neighborhood.preservation") = M_2);

return out;
} // end GetNeighborhoodPreservation

// Reference:
// J. Hirschberg and A. Rosenberg , V-Measure: A
// conditional entropy -based external cluster evaluation ,
// Columbia University Academic Commons , 2007,
// http ://hdl.handle.net /10022/ AC:P:21139
// [[Rcpp:: export(name = "get.v.measure ")]]
List GetVMeasure(IntegerVector labels ,

IntegerVector clusters ,
double beta = 1.0) {

// Check the sizes
if (labels.size() != clusters.size ())

stop("get.v.measure: vectors sizes don’t match.");

// Get the level sizes
int N = labels.size ();
int n = sort_unique(labels).size ();
int m = sort_unique(clusters).size ();

// Generate the contingency table
NumericMatrix A(n, m);
for (int i = 0; i < N; i++) {

int l = labels[i] - 1;
int c = clusters[i] - 1;
A(l, c) = A(l, c) + 1;

}
// convert to probabilities for entropy (H)
A = A / N;

// Initialize values
double H_CK = 0.0;
double H_C = 0.0;
double H_KC = 0.0;
double H_K = 0.0;
double homo = 0.0;
double comp = 0.0;

// Calculate H(C|K)
for (int k = 0; k < m; k++)

for (int c = 0; c < n; c++)
if (A(c, k) > 0)

H_CK = H_CK + A(c, k) * (log(A(c, k))

54

- log(sum(A(_, k))));
H_CK = - H_CK;

// Calculate H(C)
for (int c = 0; c < n; c++)

H_C = H_C + sum(A(c, _)) * log(sum(A(c, _)));
H_C = - H_C;
if (std::isnan(H_C))

H_C = 0;

// Calculate H(K|C)
for (int c = 0; c < n; c++)

for (int k = 0; k < m; k++)
if (A(c, k) > 0)

H_KC = H_KC + A(c, k) * (log(A(c, k))
- log(sum(A(c, _))));

H_KC = - H_KC;

// Calculate H(K)
for (int k = 0; k < m; k++)

H_K = H_K + sum(A(_, k)) * log(sum(A(_, k)));
H_K = - H_K;
if (std::isnan(H_K)) H_K = 0;

// Calculate homogeneity
if (H_C == 0) homo = 1;
else homo = 1 - H_CK / H_C;

// Calculate completeness
if (H_K == 0) comp = 1;
else comp = 1 - H_KC / H_K;

// Calculate the weighted harmonic mean of
// homogeneity and completeness
double v = ((1 + beta) * homo * comp) /

((beta * homo) + comp);

// Return list
List out = List:: create(Named("beta") = beta ,

Named("homogeneity") = homo ,
Named("completeness") = comp ,
Named("v.measure") = v);

return out;
} // end GetVMeasure

55

A.3 map-plotting.R

map -plotting.R
version 0.1
(c) 2016 Gregory Breard , University of Rhode Island
#
This file contains a set of functions used for
plottiing self -organizing maps (SOMs).
License
This program is free software; you can redistribute it
and/or modify it under the terms of the GNU General
Public License as published by the Free Software
Foundation.
#
This program is distributed in the hope that it will be
useful , but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License
for more details.
#
A copy of the GNU General Public License is available
at: http://www.r-project.org/Licenses/
###

load packages
library(scatterplot3d)
library(rgl)
library(RColorBrewer)

map.plot2d - plots the map in 2-dimensions with data
point and neurons colored by label
#
parameters:
- map is an object returned by map.build
- x.idx the index of the column to use as x-axis
- y.idx the index of the column to use as y-axis
- show.dead logical , if true dead nodes are highlighted.
- highlight a list of indices of nodes to highlight
(overrides show.dead)
- use.rgl logical , true if the visualization should use
the rgl package.
return:
- nothing
#
map.plot2d <- function(map , x.idx = 1, y.idx = 2,

show.dead = F, highlight = NULL ,
use.rgl = F) {

56

n <- dim(map$data)[1]

need to check if the data has labels
if (is.null(map$labels)) {

get the node labels
node.labels <- rep(1, dim(map$neurons)[1])
pal = "white"

plot data points
if (use.rgl)

plot3d(map$data[, x.idx], map$data[, y.idx],
rep(0, n),
col = c("grey"), pch = rep(20, n),
cex = rep(0.5, n))

else
plot(map$data[, x.idx], map$data[, y.idx],

col = c("grey"), pch = 20, cex = 0.5)
} else {

get the node labels
node.labels <- as.numeric(as.factor(

map.label.accuracy(map)$neurons))
if (max(node.labels , na.rm = T) < 10)

pal = c(brewer.pal(max(node.labels , na.rm = T),
"Set1"), "white")

else
pal = c(rainbow(max(node.labels , na.rm = T)),

"white")
na.lab <- max(node.labels , na.rm = T) + 1
node.labels[which(is.na(node.labels))] = na.lab

plot data points
if (use.rgl)

plot3d(map$data[, x.idx], map$data[, y.idx],
rep(0, n),
col = pal[as.factor(

as.data.frame(map$labels)[,1])],
pch = rep(20, n), cex = rep(0.5, n))

else
plot(map$data[, x.idx], map$data[, y.idx],

col = pal[as.factor(
as.data.frame(map$labels)[,1])],

pch = 20, cex = 0.5)
} # end if

plot edges before nodeso we can see the colors
for (i in 1:dim(map$neurons)[1]) {

57

get the position in the map
coord <- get.map.coord(i, map$xdim , map$ydim)

get the neighboring nodes
hood <- get.hood(coord$x, coord$y, map$xdim , map$ydim)

add segments between the nodes
for (j in 1: length(hood)) {

convert back to index
point <- hood[[j]]
l <- get.map.idx(point[1], point[2], map$xdim)
if (use.rgl)

segments3d(c(map$neurons[i, x.idx],
map$neurons[l, x.idx]),

c(map$neurons[i, y.idx],
map$neurons[l, y.idx]), c(0,0))

else
segments(map$neurons[i, x.idx],

map$neurons[i, y.idx],
map$neurons[l, x.idx],
map$neurons[l, y.idx])

} # end for (j)
} # end for (i)

check if we should highlight dead nodes
if (is.null(highlight) && show.dead)

highlight <- which(!(1:(map$xdim * map$ydim)
%in% unique(map$visual)))

plot map nodes
if (is.null(highlight)) {

if (use.rgl)
points3d(map$neurons[, x.idx], map$neurons[, y.idx],

rep(0, n), col = "black",
bg = pal[node.labels],
pch = rep(21, n), cex = rep(20, n))

else
points(map$neurons[, x.idx], map$neurons[, y.idx],

col = "black", bg = pal[node.labels], pch = 21)
} else {

all.n <- 1:dim(map$neurons)[1]
h <- all.n %in% highlight
not.h <- !h
if (use.rgl) {

points3d(map$neurons[not.h, x.idx],
map$neurons[not.h, y.idx],

58

rep(0, n), col = "black",
bg = pal[node.labels[not.h]],
pch = rep(21, n))

points3d(map$neurons[h, x.idx],
map$neurons[h, y.idx], rep(0, n),
col = "darkgoldenrod1",
bg = pal[node.labels[h]], pch = rep(23, n))

} else {
points(map$neurons[not.h, x.idx],

map$neurons[not.h, y.idx],
col = "black",
bg = pal[node.labels[not.h]],
pch = rep(21, n))

points(map$neurons[h, x.idx],
map$neurons[h, y.idx],
col = "darkgoldenrod1",
bg = pal[node.labels[h]], pch = rep(23, n))

} # end if
} # end if

} # end map.plot2d

map.plot3d - plots the map in 3-dimensions with data
point and neurons colored by label
#
parameters:
- map is an object returned by map.build
- x.idx the index of the column to use as x-axis
- y.idx the index of the column to use as y-axis
- z.idx the index of the column to use as z-axis
- show.dead logical , if true dead nodes are highlighted.
- highlight a list of indices of nodes to highlight
(overrides show.dead)
- use.rgl logical , true if the visualization should use
the rgl package.
return:
- nothing
#
map.plot3d <- function(map , x.idx = 1, y.idx = 2,

z.idx = 3, show.data = T,
show.map = T, show.dead = F,
highlight = NULL , use.rgl = F) {

reset the device before drawing
if (use.rgl)

clear3d ()

need to check if the data has labels

59

if (is.null(map$labels)) {
get the node labels
node.labels <- rep(1, dim(map$neurons)[1])
pal = "white"

check if we should draw the data points
if (show.data) {

plot data points
if (use.rgl)

plot3d(map$data[, x.idx], map$data[, y.idx],
map$data[, z.idx], col = c("grey"))

else
s <- scatterplot3d(map$data[, x.idx],

map$data[, y.idx],
map$data[, z.idx],
color = "grey",
pch = 20, cex.symbols = 0.5)

} # end if
} else {

get the node labels
node.labels <- as.numeric(

as.factor(map.label.accuracy(map)$neurons))
if (max(node.labels , na.rm = T) < 10)

pal = c(brewer.pal(max(node.labels , na.rm = T),
"Set1"), "white") # get max with NAs

else
pal = c(rainbow(max(node.labels , na.rm = T)),

"white")
node.labels[which(is.na(node.labels))] =

max(node.labels , na.rm = T) + 1

check if we should draw the data points
if (show.data) {

plot data points
if (use.rgl) {

plot3d(map$data[, x.idx], map$data[, y.idx],
map$data[, z.idx],
col = pal[as.factor(

as.data.frame(map$labels)[,1])])
} else

s <- scatterplot3d(map$data[, x.idx],
map$data[, y.idx],
map$data[, z.idx],
color = pal[as.factor(

as.data.frame(map$labels)[,1])],
pch = 20, cex.symbols = 0.5)

60

} # end if
} # end if

check if we should draw the map
if (show.map) {

use grey instead of white for unlabeled with rgl
if (use.rgl) pal[length(pal)] = "grey"

plot edges before nodeso we can see the colors
for (i in 1:dim(map$neurons)[1]) {

get the position in the map
coord <- get.map.coord(i, map$xdim , map$ydim)

get the neighboring nodes
hood <- get.hood(coord$x, coord$y, map$xdim ,

map$ydim)

add segments between the nodes
for (j in 1: length(hood)) {

convert back to index
point <- hood[[j]]
l <- get.map.idx(point[1], point[2], map$xdim)
if (use.rgl)

segments3d(c(map$neurons[i, x.idx],
map$neurons[l, x.idx]),

c(map$neurons[i, y.idx],
map$neurons[l, y.idx]),

c(map$neurons[i, z.idx],
map$neurons[l, z.idx]))

else {
p1 <- s$xyz.convert(map$neurons[i, x.idx],

map$neurons[i, y.idx],
map$neurons[i, z.idx])

p2 <- s$xyz.convert(map$neurons[l, x.idx],
map$neurons[l, y.idx],
map$neurons[l, z.idx])

segments(p1$x, p1$y, p2$x, p2$y)
} # end if

} # end for (j)
} # end for (i)

check if we should highlight dead nodes
if (is.null(highlight) && show.dead)

highlight <- which(!(1:(map$xdim * map$ydim)
%in% unique(map$visual)))

61

plot map nodes
if (is.null(highlight)) {

if (use.rgl)
points3d(map$neurons[, x.idx],

map$neurons[, y.idx],
map$neurons[, z.idx],
col = pal[node.labels], size = 10)

else {
nodes.2d <- s$xyz.convert(map$neurons[, x.idx],

map$neurons[, y.idx],
map$neurons[, z.idx])

points(nodes.2d$x, nodes .2d$y, col = "black",
bg = pal[node.labels], pch = 21)

}
} else {

all.n <- 1:dim(map$neurons)[1]
h <- all.n %in% highlight
not.h <- !h
if (use.rgl) {

points3d(map$neurons[not.h, x.idx],
map$neurons[not.h, y.idx],
map$neurons[not.h, z.idx],
col = pal[node.labels[not.h]], size = 2)

points3d(map$neurons[h, x.idx],
map$neurons[h, y.idx],
map$neurons[not.h, z.idx],
col = "darkgoldenrod1", size = 2)

} else {
nodes.2d <- s$xyz.convert(

map$neurons[not.h, x.idx],
map$neurons[not.h, y.idx],
map$neurons[not.h, z.idx])

nodes.h.2d <- s$xyz.convert(
map$neurons[h, x.idx],
map$neurons[h, y.idx],
map$neurons[h, z.idx])

points(nodes.2d$x, nodes .2d$y, col = "black",
bg = pal[node.labels[not.h]], pch = 21)

points(nodes.h.2d$x, nodes.h.2d$y,
col = "darkgoldenrod1",
bg = pal[node.labels[h]], pch = 23)

} # end if
} # end if

} #end if
} # end map.plot3d

62

map.label.accuracy - returns the labeling of the
neurons and other measures
#
parameters:
- map is an object returned by map.build
return:
- list containing:
neurons - majority label mapped to each neuron
acc - labeling accuracy of the map
bmu - ratio of BMUs
fit - combined accuracy and ratio value
#
map.label.accuracy <- function(map) {

get the neuron labels
neuron.l <- rep(NA , dim(map$neurons)[1])
proj <- map$visual
labels <- as.vector(as.data.frame(map$labels)[,1])

assign majority labels to neurons
for (i in 1: length(neuron.l)) {

if (length(which(proj == i)) > 0) {
labels.n <- labels[which(proj == i)]
neuron.l[i] <- names(which.max(table(labels.n)))

} # end if
} # end forlength(unique(proj)) / length(neuron.l)

check how many of the labels of the neurons match
the input and how many neurons are mapped to
acc <- (length(which(neuron.l[proj] == labels))

/ length(proj))
bmu <- length(unique(proj)) / length(neuron.l)
list(neurons = neuron.l, acc = acc , bmu = bmu ,

fit = (acc * bmu))
} # end map.label.accuracy

----------------- Helper Functions -----------------

get.hood - get the indices of the neighboring nodes
#
parameters:
- x is the x index
- y is the y index
- xdim is the width of the map
- ydim is the height of the map
return:
- list containing:

63

t - top neighbor coordinates
r - right neighbor coordinates
b - bottom neighbor coordinates
l - left neighbor coordinates
#
get.hood <- function(x, y, xdim , ydim) {

hood <- list()

get the neighbors
t <- c(x, y + 1)
r <- c(x + 1, y)
b <- c(x, y - 1)
l <- c(x - 1, y)

check if they are valid
if (t[2] <= ydim) {

hood[["t"]] = t
}
if (r[1] <= xdim) {

hood[["r"]] = r
}
if (b[2] > 0) {

hood[["b"]] = b
}
if (l[1] > 0) {

hood[["l"]] = l
}

hood
} # end get.hood

get.map.coord - gets the x, y position in the map
#
parameters:
- i is the index of the neuron
- xdim is the width of the map
- ydim is the height of the map
return:
- list containing:
x - the x index
y - the y index
#
get.map.coord <- function(i, xdim , ydim) {

get the position in the map
x <- i %% xdim
if (x == 0) x <- xdim

64

y <- ceiling(i / xdim)
list(x = x, y = y)

} # end get.map.coord

get.map.idx - gets the index in the map
#
parameters:
- x is the x index
- xdim is the width of the map
- ydim is the height of the map
return:
- the index
#
get.map.idx <- function(x, y, xdim) {

get the index in the map
((y - 1) * xdim) + x

} # end get.map.idx

65

BIBLIOGRAPHY

Bauer, H.-U. and Pawelzik, K., “Quantifying the neighborhood preservation of
self-organizing feature maps,” IEEE Trans. Neural Netw., vol. 3, no. 4, pp.
570–579, 7 1992.

Beaton, D., MacLean, D., and Valova, I., “Cqoco: A measure for comparative qual-
ity of coverage and organization for self-organizing maps,” Neurocomputing,
vol. 73, pp. 2147–2159, 2 2010.

Breard, G., “A continuous learning strategy for self-organizing maps based on
convergence windows,” in Senior Honors Project Conference, Kingston, RI,
2014. [Online]. Available: http://digitalcommons.uri.edu/srhonorsprog/352/

Cran.r-project.org. “The comprehensive r archive network.” 2014. [Online].
Available: https://cran.r-project.org/

Eddelbuettel, D. and François, R., “Rcpp: Seamless R and C++ integration,”
Journal of Statistical Software, vol. 40, no. 8, pp. 1–18, 2011. [Online].
Available: http://www.jstatsoft.org/v40/i08/

Epina GmbH. “Kohonen network.” Pressbaum, Austria. 2012. [Online]. Available:
http://www.lohninger.com/helpcsuite/img/kohonen1.gif

Hamel, L., “Som training: a modern view,” 10 2015, unpublished.

Hamel, L., “Som quality measures: an efficient statistical approach,” in Advances
in Self-Organizing Maps and Learning Vector Quantization, Proc. 11th Inter-
national Workshop WSOM 2016, Houston, TX, 2016, pp. 49–59.

Hamel, L. and Brown, C., “Improved interpretability of the unified distance matrix
with connected components,” in Proc. International Conf. Data Mining, Las
Vegas, NV, 2011, pp. 338–343.

Hamel, L. and Ott, B., “Population based convergence criterion for self-organizing
maps,” in Proc. International Conf. Data Mining, Las Vegas, NV, 2012, pp.
98–104.

Hamel, L., Ott, B., and Breard, G. CRAN. “popsom: Functions for
constructing and evaluating self-organizing maps.” 2016. [Online]. Available:
https://cran.r-project.org/web/packages/popsom

Hirschberg, J. and Rosenberg, A., “V-measure: A conditional entropy-based exter-
nal cluster evaluation measure,” in EMNLP-CoNLL, vol. 7, 2007, pp. 410–420.

66

http://digitalcommons.uri.edu/srhonorsprog/352/
https://cran.r-project.org/
http://www.jstatsoft.org/v40/i08/
http://www.lohninger.com/helpcsuite/img/kohonen1.gif
https://cran.r-project.org/web/packages/popsom

Kiviluoto, K., “Topology preservation in self-organizing maps,” in Proc. Interna-
tional Conf. Neural Networks, Washington, DC, 1996, pp. 294–299.

Kohonen, T., Self-organizing maps. Berlin, Germany: Springer, 2001.

Lampinen, J. and Oja, E., “Clustering properties of hierarchical self-organizing
maps,” in Mathematical Nonlinear Image Processing. Springer, 1993, pp.
165–176.

Lichman, M., “Ecoli,” in UCI Machine Learning Repository. School Inform. and
Comput. Sci., Univ. California, Irvine, 2013, [Dataset].

Ott, B., “A convergence criterion for self-organizing maps,” Master’s thesis, Uni-
versity of Rhode Island, Kingston, RI, 2012.

Polani, D., “Measures for the organization of self-organizing maps,” in Self-
Organizing Neural Networks, 1st ed., Seiffert, U. and Jain, L., Eds. Hei-
delberg, Germany: Physica-Verlag, 2002, pp. 13–44.

Pölzlbauer, G., “Survey and comparison of quality measures for self-organizing
maps,” in Proc. 5th Workshop Data Analysis, Slovakia, 2004, p. 6782.

The R Foundation for Statistical Computing. “R: A language and environment
for statistical computing.” Vienna, Austria. 2011. [Online]. Available:
http://www.r-project.org/

Ritter, H. and Schulten, K., “Convergence properties of kohonen’s topology con-
serving maps: fluctuations, stability, and dimension selection,” Biol. Cybern.,
vol. 60, no. 1, pp. 59–71, 11 1988.

Tatoian, R. and Hamel, L., “Self-organizing map convergence,” in Proc. Interna-
tional Conf. Data Mining, 2016, p. 92.

Tenenbaum, J., “Swiss roll,” in Data Sets for Nonlinear Dimensionality Reduction.
Stanford Univ., 2000, [Dataset].

Thall, P. F. and Vail, S. C., “Some covariance models for longitudinal count data
with overdispersion,” Biometrics, vol. 46, no. 3, pp. 657–671, 1990, [Dataset].

Ultsch, A., “Clustering with som: U*c,” in Proc. Workshop on Self-Organizing
Maps, Paris, France, 2012, pp. 75–82, [Dataset].

Venna, J. and Kaski, S., “Neighborhood preservation in nonlinear projection meth-
ods: An experimental study,” Lecture Notes in Comput. Sci., vol. 2130, p.
485491, 2001.

Villmann, T., Der, R., Herrmann, M., and Martinetz, T., “Topology preservation
in self-organizing feature maps: exact definition and measurement,” IEEE
Trans. Neural Netw., vol. 8, no. 2, pp. 256–266, 3 1997.

67

http://www.r-project.org/

Yin, H. and Allinson, N., “On the distribution and convergence of feature space
in self-organizing maps,” Neural Computation, vol. 7, no. 6, pp. 1178–1187,
1995.

Zhang, L. and Merényi, E., “Weighted differential topographic function: A re-
finement of topographic function,” in Proc. 14th European Symposium on
Artificial Neural Networks, Bruges, Belgium, 2006, pp. 7–12.

68

	Evaluating Self-Organizing Map Quality Measures as Convergence Criteria
	Terms of Use
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	Introduction
	Summary of Remaining Chapters
	List of References

	Literature Review
	Self-Organizing Map
	Tuning Parameters

	Quality Measures
	Quantization Error
	Topographic Error
	Topographic Function
	Trustworthiness
	Population-based Convergence

	List of References

	Methodology
	Experiment Design
	Training
	Evaluation

	Implementation
	Data Description
	Fundamental Clustering Problem Suite
	Swiss Roll
	Ecoli
	Epil

	List of References

	Results
	FCPS Results
	Hepta
	Tetra
	Atom
	Chainlink

	Swiss Roll Results
	Ecoli Results
	Epil Results
	Discussion

	Conclusion
	Future Work
	List of References

	Source Code
	quality-measures.R
	quality_measures.cpp
	map-plotting.R

	BIBLIOGRAPHY

