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ABSTRACT 

The cross-shelf structure of fronts, which occur during the winter months along the 30 m 

and 50 m isobath, are examined using remote sensing observations of the southern New Jersey 

shelf region. Shipboard observations show that cooler, fresher, less dense water is located in­

shore of the front ; however, little is known of the velocity structure in the frontal zone. Surface 

current fields from high-frequency radar are analyzed along with surface thermal front obser­

vations to describe the cross-shelf spatial variability of surface flow with regard to the fronts. 

Cloud-cleared, Level 2 MODIS Thermal IR sea-surface temperature (SST) data from AQUA and 

TERRA from winters 2003 - 2007 are processed using an edge-detection algorithm to determine 

the frequency, location, strength and orientation of the fronts. The record and seasonal progres­

sions of the temperature and velocity fields are analyzed. No evidence is found to support the Ou 

Tidal Diffusivity theory that predicts that front location is a function of the spring-neap cycle. 

Cross-shelf locations of convergence due to the surface velocity appear to increase front occur­

rence, which is in agreement with Hoskins' frontogenesis theory. Shear/voriticity also seems to 

play a role in front occurrence and front orientation. Al so of note is that the location of mini­

mum cross-shelf velocity variance is coincident with 30 m isobath fronts , while the minimum in 

along-shelf velocity variance is at the 50 m isobath. Furthermore, the 30 m (50 m) is the location 

at which the cross-shelf (along-shelf) wind-driven surface velocity component becomes greater 

(less) than the residual surface velocity component. Additionally, the front strength, measured 

by SST gradient magnitude, is inversely related to heat flux in the 50 m isobath region and nearly 

unrelated to the heat flux in the 30 m isobath region. 
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Cross-Frontal Velocity and Temperature Structure in the New Jersey Midshelf Frontal 

Zone 

1 Introduction 

This work is part of a National Science Foundation research grant (OCE-0550770: Obser­

vations of the Structure and Dynamics of Midsheif Fronts) to study the midshelf front (MSF) 

along the continental shelf of southern New Jersey. The focus of the grant work is to charac­

terize the vertical structure of these fronts. The focus of this work is the analysis of the surface 

structure/ frontal signature using remote sensing. 

1.1 Background Definitions and Equations 

Fronts exist throughout the ocean and range in length from I to 1000 km (Federov, 1986). 

They can mark the boundary between two water masses and are identifiable by large horizontal 

gradients in physical, chemical, and/or biological properties. There are a variety of frontal types 

which have di stinct locations, vertical signatures, durations, intensities, and formation mecha-

nisms. 

Prominent frontogenesis mechanisms are tidal friction, river discharge, convergence, and/or 

wind. The most common types are tidal mixing fronts (TMF), buoyant outflow fronts (BOF), 

shelf break fronts (SBF), and MSFs. A schematic of where these fronts manifest on the New 

Jersey continental shelf is di splayed in figure I . Tidal mixing fronts form between stratified and 

unstratified regions. They develop as a result of solar heating dominating the stratified region and 

vertical mixing dominating in the unstratified region (Hill and Simpson, 1989). Buoyant outflow 

fronts arise as a result of significant freshwater discharge from coastal estuaries (Yankovsky and 

Chapman, 1997). In the case of the New Jersey MSF, the Hudson River outflow is considered to 

be a surface-advected BOF (Ou et al., 2003). However, Narayanan and Garvine (2002) found 

that a surface-advected BOF can become a bottom-advected BOF at large distances from the 



source. The isopycnals of a BOF are nearly vertical , sloping from the bottom to the surface 

(figure 2). Shelf break fronts have a similar vertical structure and mark the barrier between cool, 

fresh inshore waters and warm, salty slope waters. They occur year-round offshore of the 200 

m isobath and have an associated geostrophic jet. This jet is approximately 10 to 25 km wide 

and flows southwestward at 20 to 50 emfs according to Fratantoni et al. (200 I) and Oey ( 1986). 

Furthermore, the cross-front velocities are on the order of I emfs while along-front velocities are 

one order of magnitude larger ( 0 ( 10) emfs) ( Oey, 1986). 

Midshelf fronts have been observed in the shelf seas around the Briti sh Isles (Robinson, 

1985), the Gulf of Mexico (Huh et al., 1978), the East China Sea (Hickox et al., 2000) (Chang 

et al. , 2006), the South Atlantic Bight (Oe), 1986), and the Mid-Atlantic Bight (MAB) (Ullman 

and Cornillon , 2001). The MSF on the New Jersey coastline is a wintertime (January - March) 

feature that separates cooler, fresher, less dense inshore water from warmer, sa ltier outer shelf 

water and tends to be aligned with the local bathymetry (Ullman and Cornillon , 2001). Also, 

since it appears only in the winter, the significant decrease of solar heating and weak stratifi-

cation of the offshore waters suggests that this feature is not a tidal mixing front. Cross-shelf 

hydrographic sections (figure 2) show how the cross-shelf structure is similar to a type l front as 

defined by (Hill and Simpson, 1989), in which isopycnals extend from the bottom to the surface 

in the frontal zone. 

Like the SBF, the MSF is believed to have an associated geostrophic velocity jet. This jet 

would be smaller in magnitude, due to weaker density gradients in the midshelf region. The 

magnitude of such a jet is e ·ti mated using the thermal wind equation (equation I). 

avg 

az 
-g 8 p 

fpo 8 X 
(I) 

So as density (p) varies in the cross-shelf (x ) direction, the along-shelf geostrophic velocity (v9 ) 

varies in the vertical (z). The other variables are the coriolis parameter (f), average density (p0 ), 

and gravity (g). Using the winter 2007 research cruise data and assuming vg = 0 at the bottom, I 

calculated an approximate value of -5.71 cm/s for the v
9 

(g = 9.8 mis, f = 0.92* 10- 4 s- 1, p0 = 

1026.48 kg/m3
, ap = 0. 11 kg/m3, ax = 10 km, az = 50 m). 
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2 Front Theories t. 

A major hypothesis of MSF forcing mechanism is the Tidal Diffusivity (TD) theory de­

scribed by Ou et al. (2003). While this theory attempts to explain why fronts form , there is 

another theory to note by Hoskins ( 1982), which di scusses how an ex isting front can be affected. 

Of particular interest to this work is how Hoskins ( 1982) describes the temporal variation 

of a horizontal gradient as a functi on of the velocity gradient fi eld. It has been shown that 

fronts occur along isobaths, therefore my concern is primarily with the cross-shelf temperature 

gradient, 8T /ox . 

(2) 

In this equation, u and v are horizontal ve locities in the x (cross-shelf) and y (along-she lf) direc­

tions. F is the turbulent heat flux at the sea surface and S is the source term of radiative heating. 

For the purposes of this analys is, I will concentrate on the first two terms on the right hand side 

(RHS). The first term on the RHS is a measure of convergence by the horizontal velocity field 

upon a temperature gradient. If convergence (divergence) occurs, thi s term tends to strengthen 

(weaken) the total cross-shelf temperature gradient (on the LHS). And the second term on the 

RHS quantifies the effects of shear flow in the horizontal velocity upon a temperature gradi-

ent. Assuming 8T / 8y < 0, when positive (negative) shear occurs, this term tends to strengthen 

(weaken) the total cross-shelf temperature gradient (on the LHS). 

Ou's analytical model assumes a dominance of cross-shelf tidal motion . He assumes that 

buoyancy flux, Fx, is constant at across the shelf and equal to its value at the coast. He argues that 

Fx = h (k) px. such that (k) is tidal diffusivity, his depth, h (k) is total (vertically-integrated) 

diffusivity, and Px is the cross-shelf density gradient. Furthermore, Ou et al. (2003) assert that 

there is a total diffusivity minimum and consequently a density gradient maximum at midshelf. 

Most importantly, frontal depth is predicted to have a square-root dependence on tidal amplitude 

(Ou et al., 2003). They assert that a front should migrate inshore/offshore with the spring-neap 

tidal cycles (of 14 and 28 days). Also, In this case, the existence of a front has no effect on the 

rate of cross-shelf exchange of properties. 
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t.J Importance of Fronts 

If the MSF is a smaller version of the SBF, than there may be enriched biological activity 

in the vicinity of MSFs due to vertical advection of nutrients. For instance, on the Argentinean 

coast, a band of high phytoplankton concentration, due to nutrient upwelling, appears along 

the SBF (Romero et al., 2006). Also, large quantities of ti sh, scallops, and zooplankton are 

found along this SBF region (Brunetti et al., 1998). Another example of the influence of fronts 

on primary production is off the coast of California. Albacore tuna are located on the warm, 

offshore of an upwelling front, while salmon are on the colder, inshore side (Breaker et al., 

2005). 

Additionally, fronts can act as a barrier to cross-shelf exchange of chemical and geological 

constituents, and this cross-shelf variation can be traced via water mass characteristics (Blanton , 

1986). 

1.4 Previous Related Work 

Fronts 

The along-shelf coastal current in the MAB is influenced by the bathymetry, since the inner 

shelf is quite shallow and gently sloping (Whitney and Garvine, 2005). Ullman and Cornillon 

(2001) found that winter (January-March) MSFs along the northeastern U.S. coast predomi-

nantly occur in the vicinity of the 50 m isobath (figure 3), where bottom depth on the shelf 

changes most rapidly. A second region further inshore in the vicinity of the 30 m isobath, and 

with slightly lower frontal probabilities, is also noted by Ullman and Cornillon (200 1). The 50 

m isobath MSF appears to be approximately 5 km wide (Ullman and Cornillon, 200 I). This 

MSF was first noted in Ullman and Cornillon ( 1999), in which they used an edge-detection alo­

gorithm to perform a 12 year ( 1985 - 1996) time series analysis of sea surface temperature (SST) 

images to obtain frontal length, width, depth, and other coordinating information. The surface 

signature of these midshelf SST fronts appear and di sappear on a regular basis throughout the 

winter and take approximately 3 to 5 weeks to form or decay (Ullman and Cornillon, 2001). 

Not only have 50 m isobath fronts been found along the eastern U.S. coast, but they have 
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also been observed along the eastern coast of China. Hickox et al. (2000) found seasonally 

persistent cold surface thermal fronts that align along the 50 m isobath in the East China Sea 

(ECS). Just south of the ECS, in the Taiwan Strait, wintertime (December - February) 50 m 

fronts were detected (Chang et al., 2006). They noted a widening and shoreward movement of 

the frontal band over the winter period. 

The relationship between wind and SST front dynamics was another aspect of the work 

done by Ullman and Cornillon (2001). They concluded that offshore winds result in stronger 

fronts, and vice versa with regard to onshore winds. Also, offshore winds during the months of 

January to March are typically caused by Cold Air Outbreaks (CAO) and tend to induce rapid 

surface cooling, especially over the shallower, well-mixed waters (Ullman and Cornillon, 200 I). 

Csanady ( 1978) found that a coastal front is strengthened by down-shelf winds and is weakened 

by up-shelf winds. 

Surface Circulation and Wind Influence 

The high-frequency (HF), Coastal Ocean Dynamics Application Radar (CODAR) manu-

factored by CODAR Ocean Sensors has been used extensively along the MAB, particularly in 

the Block lsland and the New Jersey shelf region. Thi s equipment enables constant observation 

of coastal flow with high temporal resolution (hourly) and wide spatial coverage. The velocity 

vectors have a 6 km resolution out to approximately 200 km from the coast. 

According to Beardsley et al. ( 1976), the MAB sub-tidal shelf currents are predominately 

wind-driven. Furthermore, winds in this region are most frequently from the W and NW (Saun­

ders, 1977) and vary on time scales of 0(2 - I 0) days (Mooers et al., 1976). But currents not 

only are influenced by winds, but are also large scale free-waves from the far field that migrate 

along the coast and affect the current in this region (Ou et al., 1981 ). 

This area off the coast of New Jersey is very well-sampled. Kohut et al. (2004) noted two 

dominant regimes of hydrographic variability, which are summer stratified and winter mixed. 

They found that in the winter, the current response is less correlated with the wind and there 

is an influence of bottom topography on current variability. LaTTE (Lagrangian Transport and 
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Tranformation Experiment) was conducted during the spring of 2005, from which Gong et al. 

(Z006) discovered five major current pathways visible in the NJ shelf, which tended to flow 

along the SBF, the MSF, and inner shelf. Additionally, they concluded that the pathways were 

strongly wind driven and influenced by bottom topography. Surface currents, sea level and winds 

from August 2002 - January 2004 in this region were analyzed by Dzwonkowski et al. (2008a). 

They suggested that shelf wide cross-shelf surface flow is driven by cross-shelf winds. Further 

analysis of this data via an EOF analysis of the sub-inertial surface velocity structure identified 

flow patterns (Dzwonkowski et al., 2008b). They found shelf wide and point flow impact offshore 

transport. Also, Castelao et al. (2008) analyzed data from satellites, gliders, buoys, and the HF 

radar during the summer/spring of 2006 and found an offshore jet south of the Hudson shelf 

valley that was correlated to upwelling winds. These are just a g limpse of the abundant research 

conducted in thi s region. 
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2 Data and Methodology 

2.1 Study Area and Analysis Period 

The analysis region is the shelf off southern New Jersey in the MAB (figure 4). These waters 

were selected due to the continuous monitoring program carried out by Rutgers University ' s 

Coastal Ocean Observation Lab (COOL). This includes a five year record of surface currents 

measured via HF radar. Another reason for selection is that this region was found to exhibit 

a strong MSF signal in winter (Ullman and Cornillon , 1999). The general orientation of the 

coastline in this area is 38°T, defined as Bcoast · Preliminary analysis of SST imagery found that 

fronts were present along the 50 m isobath and, almost as frequently, along the 30 m isobath. 

Jn order to separately describe the fronts in the vicinity of each of these isobaths, two 30 km 

(cross-shelf width) by I 00 km (along-shelf length) boxes were drawn (one around the 30 m 

isobath and one around the 50 m isobath) . These boxes, referred to as Box 30 and Box 50, 

are shown in figure 4. Three cross-shelf transect lines denote the locations along which the HF 

radar derived surface ve locities were obtained. From north to south, each line is separated by 

50 km (in the along-shelf direction) and are labeled as line A, line B, and line C. Each transect 

originates approximately 30 km from the shoreline and has a length of 120 km. 

Ullman and Cornillon ( 1999) found that fronts along the shelf were common during Jan­

uary - March. Preliminary analysis of SST imagery showed that front occurrence increased 

in December and decreased in March. In order to analyze the frontogenesis (front generation) 

and frontolysis (front dissipation), the winter period was defined to be from 0000 0 I December 

through 2359 31 March. All data and coordinating variables are in Universal Time (UTC), also 

known as Greenwich Mean Time (GMT). The year number of a given winter will be defined 

as the year within which that winter ends. For instance, the winter of 2003 includes December 

2002, January 2003, February 2003, and March 2003. Data from five winters (2003 - 2007) are 

used. 

Further mention of a record mean will be with regard to these years. The winter mean 

consists of d t · h. a a wit in the four months of that winter. The monthly mean consists of the average 
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of values found during the days within that month . And the daily mean will be defined as the 

ge Of the given property from 0000 to 2359 of that day. avera 

2•2 Sea Surface Temperli)ture Fronts 

Sea surface temperature (SST) imagery was obtained from NASA's Ocean Color Web 

(http://oceancolor. gsfc.nasa.gov/). Level 2, Thermal Infrared, I I µ m, day and night SST from 

Moderate Resolution Imaging Spectroradiometer (MOOTS) aboard AQUA and TERRA satellites 

were downloaded. These polar-orbiting satellites each capture 2 to 4 images of the MAB per day, 

resulting in approximately 725 images over the course of a winter (0 I December to 31 March). 

The swaths obtained had latitudinal bounds of 38°N to 42° N, a longitudinal bounds of 74°W 

and 68°W and a resolution of I km. 

The processing of SST data began with converting the files from hdf to netCDF. This is 

the format required by the histogram based edge-detection algorithm, which is explained in the 

next paragraph. [mages were cloud cleared using the inherent MODIS quality assurance variable 

known as quality flag. For each SST pixel within each image, there is a coordinating quality fl ag 

value ranging from 0 to 3. The most liberal quality fl ag value of 3 was used to mask the SST 

values at which there were clouds and swath edge errors. Examples of raw and cloud masked 

images are shown in figure 5. 

After cloud-masking, each SST image was processed by the edge-detection algorithm (EDA) 

developed by Cayuta and Cornillon ( 1995) to objectively detect front s. Thi s EDA was tirst 

developed by Cayula and Cornillon (1992) to detect surface thermal fronts in single AVHRR 

images and was later improved upon to include multi-image processing using a five day sliding 

temporal window and a 32 by 32 pixel sliding window ( Cayula and Cornillon, 1995). 

The EDA outputs two ascii files of front pixel locations, one with latitude and longitude, the 

other with pixel coordinates, for every input SST image. Figure Sb is an example cloud-masked 

SST image with fronts overlaid. Front locations, along with bathymetry data and the original 

SST images were used to make a front database. The database includes a range of information 

about each front pixel: satellite passage time, latitude, longitude, water depth, depth gradient 
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magnitude, depth gradient direction, SST gradient magnitude, and SST gradient direction. 

Given that this shelf region is cloud-free only 15% to 30% of the time over the months 

of my analysis, it is necessary to take into account the fact that a pixel cannot be detected as a 

front if the pixel is cloud covered. This is done using a quantity called percent front probability. 

Percent front probability over a given time period is calculated as the number of times a given 

pixel is identified as a front divided by the number of times that same pixel is identified as clear, 

in other words has a valid SST value. 

The cross-shelf temperature structure in this region is such that warm waters are generally 

found offshore of cold waters. Consequently, the analysis of front location and SST gradient 

magnitude will be limited to front pixels that meet thi s criterion, which have been referred to as 

cold fronts (Ullman and Cornillon, 1999). 

From the database information, a variety of variables were calculated and analyzed to de-

scribe the temporal variation in location and strength of the cold fronts. Using the front pixel 

latitudes and longitudes, the intersection location of line B and front segments within Box 30 

(figure 4) are averaged to make daily, monthly, yearly and record mean front cross-shelf loca-

tions. While for SST gradient magnitude and SST gradient direction all front pixels within Box 

30 were averaged into daily, monthly, yearly and record mean values. A similar methodology 

was used for Box 50. 

2.3 Surface Velocities 

Rutgers University maintains a HF radar array off the coast of New Jersey. The coverage 

array extends from Long lsland to a few nautical miles past Delaware Bay, and from a few 

kilometers offshore out to the shelf break. The 4.55 MHz, long-range HF radar characterizes 

the top 2.4 m of surface flow with 3 hour averages. There are four stations in New Jersey from 

which radials were collected. From north to south, they are Sandy Hook, Loveladies, Tuckerton, 

and Wildwood (figure 4). The Tuckerton site is believed to have produced erroneous radials 

(Donglai Gong, personal communication). Data from this site were not included in computing 

current vectors. From 2002 through 2004 these radials are output at 3 hour increments, whereas 
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2005 to 2007 they are output on hourly intervals. 
from 

Current vectors were estimated along each of the three cross-shelf lines every 5 km using 

the least squares method of Lipa and Barrick ( 1986), using an averaging radius of I 0 km. Points 

with > 10% temporal coverage and ::; 1.25 map error are used. Miss ing data were linearly 

interpolated. Each component, Ucodar (East) and Vcodar (North) was low-pass filtered using a 

4th order, 36-hour cutoff period, Butterworth filter. The velocity vector (resultant of Ucodar and 

) was resolved into cross-shelf (u), positive offshore, and along-shelf (v ), positive up-shelf 
Vcodar 

components towards () coas t (equations 3 and 4). 

u = Ucodar * cos( ()coast * 1T I 180) + Vcodar * sin( ()coast * 1T I 180) (3) 

v = - Ucodar * sin(Bcoast * 7T / 180) + Vcodar * cos( Bcoasl * 7T / 180) (4) 

The cross-shelf divergence and shear, defined as ou/ ox and ov /ox, were calculated from 

u, v and the distance between points. 

The spatial mean current is defined as the average current vector calculated from all 75 

points (on all three lines) . Due to reliability and consistency of surface velocity vectors, a portion 

of the analysis will be limited to line B. There are several lengthy temporal gaps in these data, 

which are due to one or more of the CODAR sites having no radials. Due to the geometric 

positioning of the sites, it is frequently the case that the inshore 4 to 5 km portion of line C does 

not have data. 

2.4 Buoy Data 

ln this study region, there are two buoys operated by the National Data Buoy Center 

(NDBC). The more northerly one is located south of Long Island (44025) and the other is off 

Delaware Bay (44009) (figure 4). The water depths at these locations are 36.3 m and 28 m 

respectively. Historical meterological data for each buoy were downloaded from the NDBC 

website (http://www.ndbc.noaa.gov/). From these files , air temperature (°C), surface water tem­

perature (°C), dewpoint temperature (°C), surface atmospheric pressure (mb), wind speed (m/s), 

and wind direction (in degrees clockwise from True North) were extracted. 
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It is assumed that winds are spatially uniform over the region of interest and are calculated 

d·inaly First winds were converted from meteorological convention, where wind direction 
accor o · 

is defined as the direction from which the wind is blowing, to the oceanographic convention, 

where wind direction is defi ned as towards which the wind is blowing. The wind speed and 

direction were converted into Uwincl and Vwincl components, with 90°T as the positive x-direction. 

Each of the components from each buoy were low-pass filtered using the same filter as the surface 

velocities. The Uwincl from buoy 44009 and Uwincl from buoy 44025 were averaged. Thi s was 

also done with Vwincl to obtain a single hourly wind vector for the entire region . The resultant 

hourly wind vector (made by 'l.Lwincl and VwincL) was resolved into cross-shelf and along-shelf 

components just as surface velocity had been in equations (3) and ( 4 ). 

The sensible heat flux (W/m 2) and latent heat flux (W/m2 ) were calculated using the Air-Sea 

MatLAB Toolbox (http://ecco2.jpl.nasa.gov/datal/matlab/air_seal) using the buoy variables: 

wind speed, air temperature, dew point temperature, and air pressure. The Air-Sea toolbox 

calculations are based on Fairall et al. ( l 996)'s formulations for surface fluxes. Fluxes from 

the ocean to the atmosphere, which dominate during the winter, are marked by negative values. 

Further references to heat flux are the sum of sensible and latent heat fluxes. 

2.S Tidal Amplitude 

Sea level data were obtained from Atlantic City, NJ (figure 4), Station ID 8534720, from 

NOAA's website (http://www.co-ops.nos.noaa.gov/) . Historic, verified, hourly water levels in 

meters with a MLLW datum were downloaded. They were then complex demodulated at the M2 

tidal frequency to get the tidal amplitude (m). Complex demodulation uses a least squares algo­

rithm to determine the amplitude change at a specific frequency over the course of a particular 

time series. 
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3 Results 

1 Sea Surface Temperature 3. 

In this section, I will describe the temporal variability of fronts using averaged statistics. 

The four variables, which are derived solely from the SST images, are percent front probability, 

front location, SST gradient magnitude, and SST gradient direction. They will be described in 

terms of their record, annual , and monthly variability. 

Front Probability 

Examination of front probability maps (figure 6) shows that there is significant variability in 

position, width, and occurrence of frontal zones over the five winters. The record mean percent 

probability (figure 6f) shows that along the 30 m isobath, the highest percent probabilities occur 

directly on that isobath, whereas, for the 50 m isobath, the highest probabilities occur 5 km to I 0 

km offshore of that isobath. It is important to note that high front probabilities are not observed 

in the vicinity of the SBF (offshore of the 200 m isobath) due to the method of cloud-clearing 

used. By using a mask value of 3, pixels with strong temperature gradients , on the order of 

1°C/km, are masked. I verified that this was not occuring in the middle and inner shelf, since 

SST gradients are smaller in magnitude than the SBF. Just south of 39°N there is a bend in the 50 

m isobath. South of this location, the magnitude of front percent probability of fronts along the 

50 m isobath decreases while the width of the frontal band increases. Similarly, south of 39.3°N 

there is a bend in the 30 m isobath, south of which the frontal band widens and front probability 

decreases. Also note that the 30 m isobath appears to have an additional, less frequent band 

about 20 km inshore of it. This feature is more apparent in front probability for each winter 

(figure 6a-e), and is the next focus of my analysis. 

In the record mean front probability map, fronts are on both the 30 m and 50 m isobath, 

however, the front probability images for each of the five winters show that this is not the case 

during every year. In 2003 , fronts are well defined on the 30 m and 50 m isobath south of the 

bend in each · · respective 1sobath. North of these points, there appears to be an increased number 
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of fronts in between these isobaths. In 2004 the frontal bands are most distinguishable along the 

30 
m and 50 m isobaths north of their bends. South of that point, the 50 m isobath frontal band 

appears to be oriented north-south until it reaches the 200 m isobath. The most anomalous year 

for front probability is 2005 , during which there appear to be few fronts along the 50 m isobath. 

And in 2006, there appears to be a less frequent front along the 30 m isobath. Also during this 

ar the 50 m frontal band is its widest and most consistently along the entire 50 m isobath. ln 
ye ' 

2001, the 30 m isobath front is more frequent south and inshore of its bend. The 50 m isobath 

during this year is most coherent from the Hudson Canyon to its bend, south of which frontal 

bands are more patchy and di splaced offshore. 

A goal is to find out when these fronts develop or diss ipate over the winter months. A 

five year record monthly average of percent front probability was calcul ated for each of the 

four calendar months (fi gure 7). In December, there is a more narrow region of high probability, 

which for the 50 m isobath is positioned north of the bend. ln January, the high probability frontal 

band widens, and along the 50 m isobath it disconnects just north of the bend. ln February, the 

30 m isobath frontal band has its highest percent probability, particularly on and inshore of the 

isobath. Also, the 50 m frontal band is almost twice as wide as it was during January. This is 

due to high variability over that month of each given year, rather than the variability between 

years. This was confirmed by examining the individual monthly percent front probabilities (not 

shown). In March, the front probabilities decrease and the frontal bands narrow. Note that 

between 39.2°N and 39.3° N there is a high probability of fronts in between the 30 m and 50 m 

isobaths. 

Front Location 

In attempts to more accurately quantify the cross-shelf movement of each frontal band, the 

mean front location was calculated for each day, month, and winter. From this I am able to see 

that, in Box 30, fronts have a seasonal perturbation of less than +5 km offshore of the isobath and 

have a record mean front locati on of 47 km offshore (figure 8) . On the other hand, fronts in Box 

SO have a seasonal perturbation of less than +IO km offshore of the isobath and a record mean 
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of 
98 

km offshore. lt is important to note that in 2005, the 30 isobath front was farthest offshore 

during that year, while the 50 m isobath front is farthest inshore during that year. However, thi s 

I 
·s biased given that there are no fronts observed in Box 50 along line B during the month 

va ue 1 

ofFebruary, which is the month with the greatest offshore di.stance over the record (figure 9b). 

In the front probability plots, there appears to be no consistent pattern of front location for 

a specific calendar month (figure 7). Also, the record mean change in distance offshore over the 

winter season is less than 5 km (figure 9). Note that between February 2004 and March 2004 

that the front location in Box 30 increases by almost 12 km. From the front probability (not 

shown) this is not the 50 m front moving inshore. Coincidently, there is a dramatic decrease in 

percent front probability and frontal band width in Box 50 during thi s month as well. March is 

also noteworthy due to the fact that in Box 50 (figure 9b) between February and March, every 

year, the monthly mean decreases by 5 km. 

In the study area, the water depth generally increases with distance offshore (figure I 0). 

The Ou theory argues that front location (depth) will be a function of tidal amplitude and this 

should vary over the spring-neap cycle ( 14 and 28 day periods). Time series of daily mean front 

location (figure 11 ) do not exhibit visual periodicity, but the gapiness of the data does not allow 

definitive conclusions to be drawn. For this reason, a spectral analysis was performed. The 

spectral analysis of the daily mean front location over the entire record was performed using the 

Lomb method (Press et al. , 1992). The tomb normalized periodogram is ideal for time series 

with long gaps. The benefit of using this over a fast fourier transform (FFT), is that the FFT 

spectrum of an interpolated time series can result in false low-frequency bands of high power. 

Given the uneven temporal spacing and long gaps between seasons, the Lomb method was used. 

In Box 30 the only spectral estimate greater than the significance level is at 90 days, which 

is the seasonal/winter cycle (figure I 2a). Although there are bands of increased significance near 

the !4 days and 28 days, there is not conclusive evidence of spring-neap frontal movement that 

would support Ou's theory. Con-elation coefficients were calculated for the 30 m front location 

and tidal amplitude, the 50 m front location and tidal amplitude, and the 30 m front location and 

the SO m front location. They are 0.06, -0.07, and -0.08 respectively, which are not significantly 
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« t from zero Thus, the front location time series do not indicate significant movement 
di11eren · 

over the spring-neap cycle. 

Sea Surface Temperature Gradient Magnitude 

The SST gradient magnitude is used as a measure of front strength. The annual mean 

SST gradient magnitude of front pixels in Box 30 seems to vary inversely with mean gradient 

magnitude in Box 50 (figure 13). Over the five year period, SST gradient magnitude in Box 

30 is larger than those in Box 50 every year except 2007. The likely causes of this anomaly are 

discussed in later sections. Also of note is the large difference between SST gradient magnitudes 

in each box during 2005. The small magnitude in Box 50 is due to below average magnitudes 

during February 2005 and March 2005 (figure 14), which are also the months were there are 

decreased front probabilities in that region. The variability of the record monthly mean is greatest 

in Box 50. The record mean gradient magnitude decreases between December and March in Box 

50, while in Box 30 it increases over this period. Note the minimum in Box 30 in January 2007, 

which is believed to be due to warmer than average December and January during that winter 

(visible in the monthly mean SST, not shown). 

Sea Surface Temperature Gradient Direction 

The gradient direction is defined as the direction towards warmer water. The winter mean 

SST gradient direction ranges between 99°T and 110°T (figure 15), which are in agreement with 

the values found by Ullman and Cornillon (200 I). Given that the cross-shelf direction is I 28°T 

(8coast+90°), this means the gradient direction is slightly upshelf, such that ~;; > 0. Therefore 

in order for ~~ to increase (decrease), the shear at that cross-shelf location must be negative 

(positive). Also, SST gradient direction in Box 30 is typically more in the along-shelf direction 

than the SST gradient direction in Box 50, every year except for 2005. 

Over the winter months, there is not much greater than a I 0° change in orientation (figure 

16), except for in Box 50 during February 2005 and March 2004. The February 2005 direction 

is likely extremely biased given that there are only 20 front segments in that month, while during 
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O
nths number of front segments are 0( I 00) per month. In March of 2004, there is a 

other m 

. "ficanl decrease in the number of front segments, by far the largest decrease of any month 
s1gni 

(down by 500 segments from February 2004). 

3•2 Surface Velocities 

This section describes how the current components, cross-shelf and along-shelf velocity, 

vary in magnitude, direction, and their gradient magnitudes vary with distance offshore (along 

the 3 cross-shelf lines) over the winter months of the record. The majority of the analysis focuses 

on the cross-shelf and along-shelf surface velocities individually, and towards the latter part 

of this section just line B is discussed. The relationship between wind and surface current, 

particularly the variation of wind influence with distance offshore is also described. 

Annual Variations Surface Velocity 

The winter record mean surface flow is predominately downshelf and offshore, and there is 

significant cross-shelf variation in current magnitude and direction (figure 17). Lines B and C 

are most similar over the entire record. The current magnitude typically increases offshore of the 

50 m isobath. ln 2003, 2004, and 2005, there is little cross-shelf variability in current direction, 

particularly offshore of the 30 m isobath. Data from 2006 and 2007 show the current inshore of 

50 m and along lines B and C is strongly aligned with or to the left of the wind. 

It may seem as though there is a jet in the winter mean velocity vectors during 2007 (figure 

17e). There is anomalous event, hereafter referenced as "Upshelf lncident," during this winter 

from February 2nd - 18th (figure I 8c). With the velocities during this time period taken out 

(figure I 8d), the 2007 winter mean velocity field appears to be more similar to the 2006 winter 

mean velocity field (figure l 7d). Along lines A and B there does appear to be a 30 km wide 

band, offshore of the 50 m isobath, of increased current velocity. 

The record spatial mean cross-shelf velocity is 4.12 emfs while the record spatial mean 

along-shelf velocity is -4.37 emfs (figure 19). The standard deviations of each are 1.67 cm/s 

and 2·90 emfs, respectively. The strongest cross-shelf velocities are in 2006 and 2007 and the 
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weakest in 2003 and 2005. 

There is much more variation in the along-shelf velocities, which typically range from -

40 emfs to 40 emfs. Cross-shelf velocities generally range between -20 emfs and 20 cm/s. The 

strongest negative along-shelf velocity is in 2005 and the weakest is in 2007. Another measure of 

temporal velocity variability is velocity variance. Variance is a measure of energy in the current 

fluctuati ons over all timescales. For each point along line 8 , variance of the low-passed u and v 

for each given winter was calculated and the results are plotted versus offshore distance (figure 

20). A notable finding is that for both velocity components, there tends to be a midshelf location 

of minimum variance. For cross-shelf velocity variance (fi gure 20a), the minimum is located 

45 km offshore (at the 30 m isobath). And, for along-shelf velocity variance (figure 20b), the 

minimum is located 90 km offshore (at the 50 m isobath). Also, important to note is that the 

velocity variance in the along-shelf direction is typically 3 to 4 times greater than the cross-shelf 

direction. 

Monthly Variations in Surface Velocity 

The record monthly spatial mean (averaged over all times and all locations) cross-shelf 

velocity decreases by approximately 1 emfs each month of the winter (figure 2 1 ). A noteworthy 

feature in the individual years is a 7 emfs difference between cross-shelf velocity during February 

2005 and February 2006. The highest magnitude in along-shelf velocity occurs during January 

2005, which is -11 .7 cm/s. The along-shelf winter mean for 2005 is heavily influenced by the 

January 2005 along-shelf velocity, given that it is nearly three times the record mean for that 

month. In all the other years, the weakest along-shelf velocity is during January, and increases 

thereafter. Additionally, the along-shelf velocity during 2007 is the smallest regardless of month. 

The spatial variation by month is best represented in figure 22. Lines B and C are typical 

monthly mean flow patterns. The pattern marked by line B is best described as "veering." This 

is when the mean current velocity is strongly in the posi tive cross-shelf direction over the inner 

half to three-quarters of the line, and then it begins to turn clockwise. This may be indicative of a 

convergence in cross-shelf velocity. The pattern in line C is best described as "twisting." Inshore 
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of 40 m the current direction is in the positive along-shelf direction, between 40 m and 70 m the 

velocity is a minimum, and offshore of 70 km the current magnitude continues to increase as 

the current direction continues to turn clockwise. This may be indicative of a shear flow in the 

cross-shelf direction. 

Daily/ Hourly Variations in the Surface Velocity 

Figures 23 and 24 are a visual of the periodicity of current variations, which have been 

found via spectral analysis to be most energetic at periods of 3 to 4 days. Plotted as such, the 

cross-shelf variations in velocity components u (cross-shelf) and v (along-shelf) are not easily 

distinguishable. 

To quantify the horizontal velocity variability in 'I.£ and v, a cross-shelf anomaly was cal­

culated at each time. This was done by calculating the line mean (average of all 25 points on 

line B) 'I.£ and v at each hour during which there are surface velocities. Then at each hour, at all 

the points along that line, the line mean is subtracted from the instantaneous 'I.£ and v of every 

individual point. However, when the line mean velocity (figure 25) is subtracted out, cross-shelf 

regions and time periods of convergence and divergence (fi gure 26) as well as shear flow (figure 

27) stand out. Periods of convergence are identifiable by currents on the outer portion of the line 

moving inshore while currents on the inner portion of the line move offshore. Periods of shear 

are identifiable by opposite magnitudes of along-shelf current. These will be used in further 

analysis later in this work. 

Surface Velocity and Wind 

Since surface currents in this region are predominately wind-driven (Ou et al., 1981) , the 

next portion of my analysis focused on the cross-shelf variability of wind influence upon surface 

currents. 

A cross-correlation analysis was performed on the spatial mean current and the wind to 

find that the current lags the wind by one hour. This is in agreement with Dzwonkowski et al. 

(2008a)'s value of 0 - 3 hours for what they define as the mixed period (December - March) . 
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However, the correlation coefficients change by less than 0.0 1 for a 0 - 3 hour lag range. With 

these results , in addition to the fact that the velocities are low-pass filtered which makes a one 

hour lag rather irrelevant, instantaneous wind and current vectors are compared. 

First, for each winter, for each point along line B, a complex correlation was performed 

between the demeaned wind and demeaned surface velocity. From this, a magnitude and phase 

of correlation, for each point, for each winter was obtained. 

The degree to which the cross-shelf variability of the surface velocity is due to wind is 

visible in figure 28. The wind/current correlation magnitude has a maximum just offshore of 

80 km at 0.69 and decreases to approximately 0.49 at 150 km offshore. This is a proxy for the 

portion of the low-pass filtered current that can be attributed to winds. In these calculations, a 

positive phase angle is defined as the current being to the left of the wind. Also, the wind/current 

correlation phase ranges from -60°T to I 0°T. It decreases (becomes more to the right of the wind) 

as depth increases. In the record mean phase there is a plateau around midshelf. Furthermore, the 

greatest variation in phase between the years is offshore of 90 km. It is important to acknowledge 

that the flow in this region is not in Ekman dynamical balance, such that the surface velocity 

would be 45° to the right of the wind. However this is due to the fact that shallower depths are 

more affected by bottom friction, hence the larger (more negative) phase angle with distance 

offshore and the current is more Ekman-like. 

Then the instantaneous wind-driven velocities at each point for each surface velocity com­

ponent, u and v were computed. At each point, a linear regress ion was performed between u 

and the cross-shelf and along-shelf components of the wind. The same was done for v . From 

this, coefficients a and b, for u and v respectively, describe the winter mean influence of the 

wind components at that point. With these coefficients equations (5) and (6) were then used to 

calculate the instantaneous wind-driven velocity at each point. 

Uwfad- driven = a1 * Uwind + a2 * Vwind + a3 

Vwind - driven = b1 * Uwind + b2 * Vwi nd + b3 

(5) 

(6) 

The residual velocity was calculated by taking the original , low pass filtered u and v and sub­

tracting out the wind-driven velocity, for each point, at each time. The residual is assumed to be 
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influenced by non-tidal and non-wind forcings, of which include the far-field dynamics. 

Figure 29 shows velocity variance, separated into wind-driven and residual components, as 

function of cross-shelf distance. In subfigures 29a,c,e, g,i and k, it is evident that the wind-driven 

portion of cross-shelf velocity generally increases with distance offshore. On the other hand, 

in subfigures 29b,d,f,j and I, it is evident that the wind-driven portion of along-shelf velocity 

generally decreases with distance offshore. Note the cross-shelf location at which the wind­

driven velocity variance is equal to the residual velocity variance. For the cross-shelf velocity 

variance, the wind-driven portion is at a minimum at 30 km and overtakes the residual portion 

at 45 km. From that point on, the wind-driven portion tracks with the observed current. For 

the along-shelf velocity variance, the wind-driven portion has peaks in the inshore regions and 

linearly decreases as a function of distance offshore. It is around 90 km that the wind-driven 

portion is less than the residual portion. Note that in 2003 and 2004 there is not a minimum in 

along-shelf velocity variance (noted by the blue line). This can be attributed to the lower residual 

(green line) offshore of 120 km. 

Regardless of year, winds are most frequently in the positive cross-shelf direction, particu­

larly between 90°T and 140°T (fi gure 30). Not only are winds from this direction more frequent , 

but they are 3 mis stronger wind speed on average. A second band for more frequent winds is 

towards the NNE, between 10°T and 40°T. Note that distribution of wind direction in 2006 and 

2007 is most similar and in agreement with Saunders ( 1977) assessment of typical wind direc­

tion. Also note that 2003 - 2005 have higher occurrences of winds to SE (200°T and 230°T). 
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3.3 Comparisons 

This section analyzes the temporal and spatial relationships between front location, surface 

velocities, wind and heat flux. It will discuss the features found using the aforementioned data, 

in the vicinity of the 30 m and 50 m isobaths, and how they seem to relate to one another. 

Cross-shelf Convergence 

Along line B, there appears to be a positive correlation between surface velocity gradients 

and front probability. The seasonal mean divergence was calculated at each point along line B. 

The offshore distance at which the winter mean velocity is convergent (negatively divergent) 

is coincident with the offshore distance at which there are increased front probabilities (figure 

31 ). Generally there is a band of convergence along the 30 isobath and offshore of the 50 m 

isobath. However, this does not entirely hold for all years, in particular, 2003. From equation 2 

it is evident that when there is convergent flow, horizontal gradients (i n this case ~~) increase. 

Because front data is rather intermittent, an approximation of the effect of convergence on an 

instantaneous space and time is difficult. However, over the course of the season, the effect of 

convergence can be estimated from the record SST gradient magnitude (figure 14b), which is 

0.25°C/km and mean SST gradient direction (fi gure 15), which is I 05°T. From thi s ~~ and ~; 

are calculated to be 0.23°C/km and 0.098°C/km respectively. ln the vicinity of the 30 m and 

50 m isobath, the seasonal divergence (figure 31), g~, is approximately -l*I0- 6 s-1 and the 

seasonal vorticity (not shown), g~ is approximately - I* I o-6 s- 1 . Assuming 

d (aT) au aT - - ~---dt ax ax ax (7) 

then the rate of change in cross-shelf temperature gradient due to convergence is 2.3* Io- 7 

°Clkrn!s. And in one day, the convergence could change the temperature gradient by +0.20°C/km. 

Assuming 

.:!__ (aT) ~ _ avaT 
dt ax ax ay (8) 

then the rate of change in cross-shelf temperature gradient due to shear is 9.8* I o-8 °C/krn/s. 

And in one day, the negative shear/vorticity could change the temperature gradient by +8 .5 * I 0- 3 
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ocfkm. Given these values for ft ( ~) , convergence is more influential than shear. Futhermore, 

a sustained convergence can double the existing gradient (0.25°C/km) in approximately 1.25 

days. However, it takes about 30 days of shear/vorticity to cause the existing gradient to double. 

Composite Analysis 

The determination of changes in front location and strength are rather limited, due to cloudi­

ness. Discussed below are three one to two month periods during which fronts were observed 

along the 30 m and 50 m isobaths. Shown in these fi gures are wind speed and direction, cross­

shelf velocity anomaly, along-shelf velocity anomaly, front location, percent clear in Box 30 and 

Box 50. The example periods are January 28 - March 18 2003, December I - December 31 2005, 

and February I - February 28 2007. 

In winter 2003, it is evident that winds to the S to SW results in strong convergence in the 

cross-shelf velocity anomaly, at midshelf (figure 32b). This is most distinguishable from January 

29th to February 2nd, from February 15th to February 19th, and from February 26th to March 

2nd. Note that it is frequently cloudy during these periods. But, once the percent clear increases 

after these incidents, fronts become apparent. There are times when the cross-shelf location of 

maximum convergence (blue offshore and red inshore) is coincident with the cross-shelf location 

of maximum shear. 

In December 2005, periods of sustained cross-shelf convergence are less frequent and more 

inshore (figure 33) than in the previous example. But there is a consistent shear in the along-shelf 

velocity, particularly during the latter one third of the month that is coincident with fronts along 

the 50 m isobath. 

The last example (figure 34) includes the "Upshelf Incident," which takes place between 

February 2 - 18th 2007. This example is the most distinct in showing 50 m isobath fronts in the 

vicinity of shear in the along-shelf anomaly. Cross-shelf variations in cross-shelf anomaly in thi s 

example are coincident with 30 m and 50 m isobath fronts. 
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Heat flux, Wind, and Fronts 

Another factor affecting SST gradient magnitude, which we will discuss briefly, is heat flux 

(sum of latent and sensible heat fluxes) . The winter mean heat flux during 2005 and 2006 are 

above average/record mean, which translates to less heat flux out of the ocean surface (figure 

35a). Tn figure 35b it is evident that the relatively more positive monthly mean heat flux of 

January 2006 results in the higher winter mean. As for the 2005 winter mean, all four winter 

months tend to be approximately greater than or equal to the record mean monthly heat flux . 

On a month to month basis, over the record, heat flux in Box 50 is inversely related to SST 

gradient magnitude in Box 50 (figure 36). However, there appears to be no relationship between 

these two variables in Box 30. Since shallower depths cool more quickly, it would have been 

expected that SST and heat flux in Box 30 would be correlated. 

For SST gradient magnitude the anomalous year is 2007 (figure 13) during which the winter 

mean in Box 30 is less than the winter mean in Box 50. This is likely due to an extended period 

of strong winds towards the ESE which cooled the entire shelf. 

During March wind strength typically decreases and winds to the W to NW become more 

common (not shown). This is believed to be influential in 50 m isobath fronts moving inshore. 

Extended periods of winds to the S (as was the case during February 2005) lead to an increased 

region and period of convergence along the 30 m isobath. lt is unclear whether this wind regime 

either dissipated fronts along the 50 m isobath or forced them inshore. I have more confidence in 

the former suggestion, given that the SST gradient magnitude of fronts in Box 50 are the lowest 

magnitude in 2005, with respect to all years and both boxes (figure 13). 

23 



4 Discussion and Conclusions 

It is difficult to distinguish the exact time, movement, and consequently the cause of the 

fronts due to the short periods with which they form or decay largely due to cloudiness. There is 

significant variability from year to year. Though varying in time, space, orientation, and strength 

over a season , as well as over the five year record, winter fronts are located just offshore of the 30 

m and 50 m isobaths. lt is still unclear as to the entire dynamical picture, but l believe the surface 

currents are a major forcing function in front positioning and strength. lt was theorized that a 

geostrophic surface jet is co-located with fronts, but there is no evidence of that. lf a jet does 

occur, either it is narrower than the 6 km CODAR resolution can distinguish or it is subsurface. 

There does seem to be a wider region of strong down-shelf flow, 0(20 km) wide offshore of the 

50 m isobath, just at the conclusion of the "Upshelf incident." 

Also, the record mean change in front location offshore over the four winter months is 

less than 5 km. Though it was found by Ullman and Cornillon (200 I) that midshelf fronts 

progress offshore over the winter months , the data here are incongruent with that finding. This 

discrepancy may be due to the difference in the geographical extent of my analysis compared to 

Ullman and Cornillon (200 I). Their region covered the entire shelf width and a further extent in 

the along-shelf direction, rather than 25 km by 200 km boxes around specific isobaths. 

Furthermore, the bathymetry in this region is gently sloping and upon cursory analysis it 

does not appear that fronts are coincident with high bathymetry gradients. There is a great deal 

of noise in the daily mean front location data (figure 11) displaying the fronts have significant 

variability in position. l am not convinced that relatively high bathymetry gradient regions of the 

shelf are where fronts occur, as claimed by Ullman and Cornillon (200 I) and Gong et al. (2006). 

Similarly, there is no evidence of fortnightly or monthly movement of front location, as is 

evident by the spectral analysis results, that would support Ou 's theory. Furthermore, Ou argued 

that a minimium in tidal diffusivity times depth would result in a maximum in density gradient 

at midshelf. There are minima found in the plots of velocity variance as a function of cross-shelf 

distance. However, since the surface velocities were low-pass filtered it is unlikely that this is 

related to tidal diffusivity. Despite this fact, it should not be neglected that this could be another 
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form of diffusivity. 

It is also important to note that the range of SST gradient magnitudes (0.23 °C/km to 0.32 

oc/km) found in thi s work are comparable to those found for winter fronts in Taiwan Strait 

(Chang et al. , 2006). 

In terms of forcing in the cross-shelf, offshore (positive cross-shelf) winds seem to be cor­

related with stronger fronts, expressed as higher SST gradient magnitudes. In the case of 2007, 

when the fronts are stronger in the 50 m isobath region, this is likely due to the relatively longer 

period of sustained winds to the SE that cooled the shelf more rapidly and farther out than in the 

previous four years. Also Oey ( 1986) asserts that the number of COA outbreaks within a given 

season determine the presence of a midshelf front. The daily mean heat flux time series during 

2006 (not included) leads us to believe that there were fewer periods of increased negative heat 

flux , and that is a factor in the fewer fronts at the 30 m isobath. By the same token, fewer fronts 

on the 50 m isobath during 2005 are likely a result of the weaker (more positive) winter mean 

heat flux , in addition to other factors. 

Another factor I think resulted in fewer fronts on the 50 m isobath during 2005 is strong 

negative along-shelf surface velocity. Csanady ( 1978) asserts that fronts are strengthened by 

down-shelf surface flow. However, strong along-shelf velocities seem coincident with either 

weakened or migrated (towards inshore) 50 m fronts in February and March 2005 as well as in 

March 2004. 

Winds to the SW lead to cross-shelf convergence at the 30 m isobath, whi le winds to the SE 

lead to convergence at the 50 m isobath. Shear appears to be a contributing factor to front location 

and orientation. [n all, Hoskins ( 1982) theory appears to be the prominent mechanism behind 

why fronts are sharpened along the 30 m and 50 m isobaths. It appears as though a sustained 

convergence can solely generate a typical MSF SST gradient (0.25°C/km) in 30 hours. And a 

sustained negative shear/vorticity can solely generate a typical MSF SST gradient (0.25°C/km) 

in 30 days. 

If these two fronts are type I as described by Ou et al. ( 1981 ), then there is not simply 

a single causation that determines their formation. There is much more in terms of coastal 
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dynamics and mesoscale processes that come into play, particularly the vertical structure and the 

influence of the far field, that make it difficult to state with certainty the relationship between 

surface fronts and surface currents. 

4.1 Ongoing Research 

Researchers at Rutgers University and the University of Rhode Island have a wealth of in­

formation in this region at their disposal. They are able to capture a more complete spatial and 

temporal resolution of these fronts from moored and shipboard Acoustic Doppler Current Profi 1-

ers (ADCPs), Autonomous Underwater Vehicles (AUYs), thermi stors, as well as from satellites 

and CODAR. Further studies should incorporate as many of these data sets, and particularly 

those that are able to characterize front location on a timescale on the order of several days. 

There is further work being done by two graduate students, who are analyzing this region 

over shorter timescales. Both students, in fact, examine the beginning of January through the 

beginning of April in 2007. One is looking at the hydrological variations in 30 field, while the 

other is tracking Radium isotopes as a measure of cross-shelf flux. 
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Figure I . Geog<aphic LocaHon of Various Types of Fronts that occur on the New JerseY Shelf 
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EN429, Long Line 2, 02/27/2007, Temperature 
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Figure 2. Midshelf Front Hydrography: Example from towed CTD transect on February 27, 2007 a) 
Temperature (0 C) b) Salinity c) Density (kg/m3 ) 
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p l'Q l 

Figure 3. Previous Detection of Fronts in Middle Atlantic Bight: Percent Front Probability using 
AVHRR SST imagery and an edge-detection algorithm. Composite of winters (January-March) 1985-
1996, taken from Ullman and Cornillon (2001) 
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Figure 4. Shelf region of southern New Jersey: The 30 m, 50 m, and 200 m isobaths are shown in 
cyan. CODAR Stations are shown as red squares: Sandy Hook (SH), Loveladies (LL), Tuckerton (TU), 
and Wildwood (WW). The Atlantic City (AC) tide-guage is marked as a green diamond. NDBC buoys 
are marked by magenta circles. The 120 km Cross-shelf lines A, B, and C are noted in dark blue The 
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a) Sea Surface Temperature Image 
at 1540 on February 3rd 2007 

39.6 

39.4 

b) Oouds Removed and Fronts Overlaid 
at 1540 on February 3rd 2007 
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Figure 5. Sea Surface Temperature Image Processing: Example image captured by TERRA satellite 
on 1540 at February 3rd, 2007 a) Sea Surface Temperature b) Same image with clouds removed and fronts 
found by edge-detection algorithm overlayed. 
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a) Front Cross-shelf Location : Line B : Box 30 
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Figure 8. Annual Variation in Front Cross-shelf Location on Line B: Winters (December-March) 
2003-2007 and Five year Record Mean a) Box 30 b) Box 50. The solid black lines at 45 km and 90 km 
denote the 30 m and 50 m isobaths. 
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Figure 9. Monthly Variation in Front Cross-shelf Location on Line B: Winters (December-March) 
2003-2007 and five year record mean. a) Box 30 b) Box 50. The solid black lines at 45 km and 90 km 
denote the 30 m and 50 m isobaths. 
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a) Depth Along Cross-shelf Line B 
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Figure 10. Cross-shelf Bathymetry of Line B : a) Depth versus Distance Offshore : Line B b) Same 
bathymetry, but inshore of 90 m isobath. 

36 



a) Daily Mean Front Cross-shelf Location : Line B : Box 30 : 2003 
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e) Daily Mean Front Cross-shett Location : Line B : Box 30 : 2005 
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g) Daily Mean Front Cross-shett Location : Line B : Box 30 : 2006 
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i) Daily Mean Front Cross-..hett Location : Line B : Box 30 : 2007 
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Figure 11. Daily Variation in Front Cross-shelf Location: Winters (December-March) 2003-2007. 
a),c),e),g) and i) Box 30 b),d),t),h), and j) Box 50. The solid black lines at 45 km and 90 km denote the 
30 m and 50 m isobaths. 
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a) Lomb Periodogram of Daily Mean Front Location : Line B : Box 30 
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Figure 12. Lomb Periodogram of Front Cross-shelf Location: Spectral analysis performed on five 
year record to test Ou 's theory of front location as a function of tidal amplitude a) Box 30 b) Box 50. The 
red horizontal dashed lines are the estimated significance level for spectral estimates. 
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Figure 19. Winter Spatial Mean Current Components: Winters (December-March) 2003-2007 in­
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Figure 21. Monthly Spatial Mean Current Components: Winters (December-March) 2003-2007 and 
Record Mean and includes Lines A, B, and C a) Cross-shelf Velocity b) Along-shelf Velocity 
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Figure 24. Temporal Variability of Along-shelf Velocity along Line B: Winters (December-March) a) 
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Figure 26. Temporal Variability of Line B Cross-shelf Velocity Anomaly: Winters (December-March) 
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Figure 27. Temporal Variability of Line B Along-shelf Velocity Anomaly: Winters (December­
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Figure 28. Correlation between Wind and Current as a function of Offshore Distance: For each year 
the a) phase (0

) and b) magnitude between the wind and current were calculated via complex correlation. 
A negative phase angle indicates the current is to the right (clockwise) of the wind. The vertical, dashed, 
black lines denote the approximate location of the 30 m, 50 m and 200 m isobaths. 
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a) Cross-shelf Velocity Variance : Record b) Along-shelf Velocity Variance : Record 
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Figure 29. Transient, Wind-driven, and Residual Velocity Variance with Line B Distance Offshore: 
Winters (December-March) 2003-2007 and Five-year Record Mean a),c),e),g) and i) Cross-shelf Velocity 
Variance b ),d),f),h), and j) Along-shelf Velocity Variance 
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a) Wind Direction : 2003 b) Wind Direction : 2004 
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Figure 30 . Annual Variation of Wind Direction Distribution: Towards which the wind is blowing in 
0 T. a) 2003 b) 2004 c) 2005 d) 2006 e) 2007 f) Record Mean. The vertical, dashed, black lines denote the 
along-shelf direction, the vertical dashed, red lines denote the cross-shelf directions 
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Figure 31. Divergence and Front Probability as a function of Distance Offshore: Winters (December-March) 2003-2007 a),c),e),g), and i) Box 30 
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Figure 32. Composite Analysis of January 28 - March 18 2003: a) Wind b) Line B : Cross-shelf 
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a) Wind : December 1 - December 31 2005 
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Figure 33. Composite Analysis of December 1 - December 31 2005: a) Wind b) Line B: Cross-shelf 
Velocity Anomaly and Intersecting Fronts c) Line B : Along-shelf Velocity Anomaly and Intersecting 
Fronts d) Percent Clear in Box 30 and Box 50. The thin, dotted black lines at 45 km, 90 km and 145 km 
denote the 30 m, 50 m and 200 m isobaths. 
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a) Wind · February 1 - February 28 2007 
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Figure 34. Composite Analysis of February 1 - February 28 2007: a) Wind b) Line B : Cross-shelf 
Velocity Anomaly and Intersecting Fronts c) Line B : Along-shelf Velocity Anomaly and Intersecting 
Fronts d) Percent Clear in Box 30 and Box 50. The thin, dotted black lines at 45 km, 90 km and 145 km 
denote the 30 m, 50 m and 200 m isobaths. 
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a) Winter Mean Heat Flux 
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Figure 35. Winter and Monthly Variation of Heat Flux: Equals the sum of Sensible and Latent Heat 
a) Annual Variation of Heat Flux b) Monthly Variation of Heat Flux. 
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