
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

1986

GUSIP: Graphical User Interface Genreator for Application GUSIP: Graphical User Interface Genreator for Application

Programs Programs

Mohamad A. Alda'Da'
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Alda'Da', Mohamad A., "GUSIP: Graphical User Interface Genreator for Application Programs" (1986). Open
Access Master's Theses. Paper 988.
https://digitalcommons.uri.edu/theses/988

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/988?utm_source=digitalcommons.uri.edu%2Ftheses%2F988&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

GUSIP: GRAPHICAL USER INTERFACE GENERATOR

FOR APPLICATION PROGRAMS

BY

MOHAMAD A. ALDA'DA'

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

1986

MASTER OF SCIENCE THESIS

Of

MOHAMAD AHMAD ALDA'DA'

Approved:

Thesis Committee

Major Professor
~ ~· ---r-=----- ---- -------------

- -~~ -~- - - ---------
--~-~~~~-

-~ ~~-----------
Dean or the Graduate School

UNIUERSITY Of RHODE ISLAND

1986

A C K N 0 W L E D G E M E N I

I acknowledge with thanks and gratitude the support

of Ur. Leonard Bass whose guidence, suggestions and

continuous followup were the main reasons behind the

success of this project. I also acknowledge the great

efforts of my wife, Amal, who has suffered with me through

sleeples nights, helped me in typing the draft and final

copies of the thesis and without whose encouragement and

enthusiasm this would not have been possible. To my

friends , the faculty, graduate students and staff of the

computer science department, at URI , and all tnose wno have

participated, one way or the other, in making this possible

I express my sincere thanks for their appreciated efforts.

However, any descrepencies or mistakes that might appear

are my own fault.

-ii -

ABSTRACT

Human computer interaction is in the early stages of

development as a science. Although the field contains

principles that are sometimes contradictory, a concensus is

emerging about the separation of the functionality of a

computer system Ci.e applications) from the user interface.

This separation frees the application programmer from low

level details, so as to be able to concentrate on higher

application specific aspects of the user interface.

GUSIP CGraphical User Interface Generator for

Application Programs) is an application support system

which deals with the generation of graphical user

interfaces .and allows the separation of an application from

its graphical user interface. The graphical user interface

can thus be designed independently of the main application.

GUSIP also facilitates the tailoring of the graphical user

interface of any application to its user needs by providing

a graphics editor which allows the interface designer to

design Cdraw) the screens using graphical editing

facilities (drawing of geometric shapes, free form

moving, copying, rotating, deleting, scaling

· · .etcJ, The drawn graphical user interface is linked to

-iii-

the application by means of a run time module which handles

the output of the editor and allows passing graphical data

oetween the application and the display system. The

comoination of these two modules allows the desiqn of

several graphical user interfaces for an application, and

the mooification of an existing graphical user interface.

The significance of GUSIP is that the above operations can

be done without involving the application program, and

hence the application programmers do not have to deal with

tasks that are irrelevant to the functionalities of their

application.

-iv-

TABLE OF CONTENTS

Acknowledgement .. ii

Abstract .. iii

Table of Contents ... v

Introduction .. 1

The User Interface 11

Terminology .. 16

GUSIP and the Graphics Data Structures 20

GUSIP: The Run Time Module 26

GUSIP and the Environment of the Graphical

User Interface ... 36

GUSIP: The Graphics Editor 48

Features and Significance 55

Conclusion, Limitations and Future Considerations 62

Appendix ... 6 5

References ... 76

-v-

INTRODUCTION

Computer hardware is becoming cheaper, and a

great deal of emphasis is being placed on making software

systems interact directly with human users. A major

stumbling block, however, is the high cost of producing a

quality user interface. This is because current

understanding of human-computer interaction is extremely

limited. After designing a user interface, one cannot

know how it will perform. Therefore, one must accept, at

the outset , the inevitable intertwining of specification,

design and implementation. The design of the user

interface then becomes an iterative process, with each

iteration consisting of the three phases of design,

implementation and evaluation. The introduction of

graphics has complicated matters even more, graphic

displays have become part of every computer system, which

made the graphical user interface an essential part of

any system intended to interact directly with users.

Traditionally, interactive graphical applications

have been written using conventional programming

languages, low level tools and often ad hoc techniques.

- 1 -

The cost of doing so has been time, frustration, and

quality of the end product. The motivation to develop

improved tools for designing a graphical user interface

can thus be seen as a desire to increase the number of

iterations one can afford to pass through the loop of

designing a graphical interface, and at the same time

decrease the time required for doing so.

It has been the goal of many research projects to

produce tools which will automate the production of

graphical user interfaces and thus make the production of

quality graphical interfaces more economical. The result

of those were systems that aim at making available to the

interface designer tools which allow the design of a

graphical user interface, that is, independent, at least

to some extent, from the application program. Many of

the tools developed, have been either too complicated for

an interface designer to use, or too simple and with

limited capabilities to be of any use in a sophisticated

application, and in general these are not well suited to

be used with different types of applications.

- 2 -

SYNGRAPH ·(Syntax Directed Graphics) [8, SJ, is a

user interface generator for interactive graphics

systems. The system applies the principles of syntax

analysis, parser generation and data abstraction to the

development of man machine interfaces. To provide the

semantics of interaction, the application supplies a set

of data types and a set of procedures that manipulate

these types. The data types define pictures to be

displayed as well as parameters to the procedures whi~h

are invoked as semantic actions of the interaction input

parser. The interaction generator produces PASCAL source

code for a table driven recursive descent parser, which

allows attributes to be implemented as parameters and

local variables to the nonterminal procedures. This

method also allows semantic actions to be .implemented as

PASCAL statements.

Using SYNGRAPH in interactive graphics programs

involves a lexical specification, a grammar

specification, and an underlying data abstraction which

is the semantics of the interaction. The lexical

specification defines the kinds of inputs that the user

interface will use. The grammatical specification

- 3 -

describes the sequence of inputs required to formulate

specific commands and the mapping of interactive commands

to semantic actions. Semantic actions inserted in the

grammar allow the user interface manager to invoke the

application specific processing provided by the

application procedures.

SYNGRAPH allows an interactive graphics

application to be designed and implemented independently

cf the particular configuration of interactive devices

that are available, it also allows the user interface to

be separable from the application semantic routines.

However the system can only be used by programmers, and

to use it to the fullest extent, they have to be skilled

in compiler construction, which is not true about most

programmers. Thus, although

separation of the graphical

application, designing that

SYNGRAPH allows

user interface from

interface remains

the

the

the

responsibility of the application programmer. Moreover,

modifying or changing an existing user interface for an

application is tedious, it has to involve the application

programmer, and it always requires recompilation of the

application programs.

- ~ -

UIMS CUser interface Management System) [~J is a

graphical user interface generator which is primarily

concerned with producing menus. The system consists of

two modules. The first, MENULAY, is a preprocessor which

enables the user interface designer, using interactive

graphics techniques, to design ~nd specify the graphical

layout and the functional relationships within and among

the displays making up a menu based system. It is with

this module that the application programmer establishes

the relationships between what the user sees, does and

hears, and the application-specific semantics underlying

the program being implemented. Specifications made using

this module CMENULAY) are converted into the c

programming language and compiled through the use of a

companion program, MAKEMENU. The resulting code can then

be linked with application specific routines. Where the

application designer specifies names of

application-specific functions, the programs generated by

MAKEMENU contain unresolved external references. By

writing functions with the required names and referencing

the appropriate file names when MAKEMENU is called, the

application programmer can add any amount of application

- 5 -

specific programming to the layout, and sequence

information specified by the designer.

The second module of UIMS is a run-time support

package which handles interaction between the system and

the user. It handles things such as event and hit

detection, procedure invocation, and updating the

display; all according to the schema specified using the

preprocesso:. The module also provides facilities for

logging user interaction for later protocol analysis.

This recording of sequential data about end-user

interaction will be used to evaluate the interaction

techniques used in an application program. UIMS supports

two levels of users "novice" and "expert", but in both

cases the users have to be application programmers,

although at a later stage, a graphics artist can be

involved to sketch the screens. The system only reflects

one set of values at any one time, which makes the

display of a multiple set of values, the responsibility

of the application programmer. Hence, any user of UIMS

has to have a programming background Cexcept if the

intention is only to sketch a menu after the user

interface has been designed by the application

- 6 -

programmer), also a great deal of work is left for the

application programmers to handle, if the application

requires dealing with multiple sets of values and

multiple windows. Another drawback of the system is that

any change in the graphical user interface, except for

changes in the sketching of a menu, will always require

recompilation of the C language routines that comprise

the graphical user interface, which implies that these

will have to be linked again with the application

programs.

Dialog ElSJ is a menu based user interface

generator developed at Apollo computer Inc., which allows

appl~cation programmers to design menu driven interfaces

i.e. user interfaces which are based on choosing one of

many options. The application programmer designs a menu

by writing its description in a language which is similar

to programming languages. Then the application

programmer has to define and specify the relationship

between the specified menus and the application in the

same language after which both, the description of the

menues and the specification of its relationship to the

application have to be compiled by using the Dialog

- 7 -

compiler , and linked to the applications object code.

Dialog does not provide tools to design interactively the

graphical parts of the menus in a graphical user

i ntrface, rather it leaves that to the programmer who can

use available graphics packages on the Apollo system to

achieve that. Dialog suffers from many drawbacks.

First , although the language used for specifying the user

interface and its relationship to the application program

is simple and of limited vocabulary, in order to use

it, one must have a programming background. Second, the

fact that the graphical part of the user interface is

done using a different package, without allowing for

interactive graphics techniques makes the system

difficult to use in a grahical application, as the

graphical parts of the user interface will actually have

to be programmed by the application programmer, and hence

any change in the graphical interface will have to

involve the application programmer and the modification

of the application. Third, even when modifying non

graphical parts of the user interface, the interface

description will have to be recompiled and then relinked

to the application. In cases where the modifications are

extensive, it might be necessary to recompile the whole

- B -

thing to incorporate the modifications in the user

interface.

STARC9J, which was developed by XEROX on the

XEROX STAR computer, a machine intended to perform

applications related to office automation, is an example

of a decent and a very succesfull user interface. The

system utilizes a set of principles in its design, which

can be applied in the design of any user interface. The

design features of STAR are:

l)Use of a familiar user's conceptual model.

2)Seeing and pointing (everything is visible on the

screen and can be moved by pointing),

3)What you see is what you get Cthe display screen

portrays an accurate rendition of the printed page in an

office environment).

~)Universal Commands (Commands that can be used

throughout the system and perform the same way regardless

of the type of object selected).

S)Consistency which asserts that mechanisms should be

used in the same way whenever they occur, e.g the button

which selects a character will also be used to select a

- 9 -

graphic line.

6)Simplicity C"simple things are simple, complex things

are possible").

7)Modeless interaction: the interpretation of the keys

does not depend on the mode or state the system is in.

B)User t~ilorability: STAR allows designers to tailor the

appearance of the system according to user needs by

providing many facilities for that.

The above implemented features make STAR one of

the best user interfaces implemented, which probably

explains the amount of time spent on its development, as

STAR took about thirty man-years to be developed.

Reducing the amount of time required to develop a

graphical user interface is one of the main goals of

GUSIP, and GUSIP does that together with allowing for the

separation of the user interface from the application

programs, and the ability to develop user interfaces

without involving application programmers.

- 10 -

THE USER INTERFACE

A user interface can be defined as all the user

and machine behavior that is observable by an external

observer, and can be thought of as consisting of an input

language for the user, not necessary a textual language,

an output language for the machine, and a protocol for

interaction.

GUSIP, by itself, is actually a component of a

more general project that is intended to allow the

generation of general user interfaces for computerized

applications. The whole project consists of the

following components:

-A graphioal user interface generator.

-A menu based user interface generator.

-A Command language generator/interpreter.

-A help facility generator.

-A data validation and checking component.

The components are geared towards being as

general as possible, and when combined together, they

provide the user interface designer with powerful

facilities to design a user interface of any application

according to user needs and requirements. The user

- 11 -

interface can later be modified or changed altogether

according to the changes in the user requirements, system

operation or processing, or simply the level cf

sophistication cf the users. One cf the main project

goals is to allow the generation cf the user interface to

the system itself. This is achived and demonstrated by

the fact that the user interface to each component of the

system is designed using the facilities of that component

combined with those of the other components.

GUSIP is the component of the system which

handles the generation and manipulation of the graphical

aspects cf the user interface. It allows the design and

implementation of a graphical user interface of any

application, starting from the drafting of the screens

with graphical data values, and the screen sequence that

is to be followed.

The command language generator and interpreter

allows the user inte face designer to create a language

to be used by users for interaction with the system. The

commands can be generated by the system designer, then

changed later according to end user's feedback. Simple

- 12 -

as well as complex commands can be

component that allow performing

required by the interface designer.

generated

almost any

by this

action

The menu based user interface generator allows

for the design of user interfaces which do not require

memorization. The user sees commands as menus and

chooses the required action. Retrieval is also done

using menus, from which the user selects the sought items

of the stored data, in order to get more detailed

information. Pop-up menus aid in the production of help

facilities in the help facility generator.

The help facility generator is another very

important component of a user interface generator,

because the productivity of even the most advanced

computerized system is diminished, to a great extent, if

the user does not have the knowledge to use the available

resources efficiently. Improving the ease of use of an

application is the main goal of the help facility

generator. This component allows an application to have

help facilities which will tell the end user how to use

the system, what are applicable inputs to a certain

- 13 -

query, how can one move to another part

application ... etc .

of the

One component is the data validation

component allowing the interface designer to check the

input data before passing it to the application. It also

allows adding or deleting certain constraints on the data

which were not envisaged at the initial stages of the

design, thus relieving the processing part of the

application from the task of providing data validation

routines which check for the input data against

constraints that have been determined at the early stage

of the design, and if any of those constraints is changed

the data validation routines have to be modified, thus

the application programmer has to be involved. The data

validation component is used in the other components of

the system which require user input.

The components of

generator are intended to be

the whole user interface

being, thus, the

components could not

interface for GUSIP.

facilities

be used

independent for the

provided by the

for designing the

Actually, those facilities

- 1~ -

time

other

user

which

were needed for making the user interface for GUSIP, were

faked in such a way as to maintain the integrity and ease

of use of the system Cthe main reason was the fact that

the other components were not ready when GUSIP was

implemented).

The few menus that GUSIP uses are programmed and

not generated by the menu constructor component. They

were included just to facilitate the use of GUSIP itself.

Giving commands to GUSIP is done through using several

keystrokes or mouse movements, as a command language was

not generated for GUSIP using the command language

generator, however, the way commands

allows easy integration with a command

are implemented

language. Data

validation was very limited in the design of GUSIP'S user

interface, and in the graphical user interfaces which it

generates. Also GUSIP itself, and hence the interfaces

it generates did not have any help facilities as these

are to be done by the Help Facility generator.

- 15 -

Terminology

Before describing the facilities that are

provided by GUSIP and how they can be utilized. It is

essential to clarify some of the main terms that are used

in GUSIP . itself or in explaining GUSIP'S capabilities and

operation. The following explains some of the key terms

according to the context in which they will be used:

Figure:

A figure is any graphical shape. It consists of

one graphical element Ca circle, or a rectangle),

or of a collection of many graphical elements

Cmany circles,rectangles, lines, ... etc). Text

which consists of letters, numbers, and

punctuation is also considered as a figure and

actually treated as such, since the system is

mainly concerned with handling the graphical

aspects of a user interface. Figures are usually

constructed using the facilities of the graphics

editor.

Predefined figure:

This is analogous to an encoded predefined value

used in a textual context. A predefined figure is

- 16 -

constructed using the graphics editor and then

reproduced any time after that whenever needed,

by simply entering its number instead of drawing

it altogether again Ce.g in an application that

allows user to construct houses, many

figures might refer to a circular

predefined

window with

crossbars, a third might refer to a sliding door,

.. etc).

Interface Page:

This is a screen layout which represents a unit

of the graphical user interface. It is designed

by the user interface designer to show user input

and application output in specific location and

with certain constraints. It can be thought of

as a graphical template which is used as a

background for the input and output of the

application's graphical data, in analogy to

textual templates which are used as a background

for the input and output of the application's

textual data.

- 17 -

User Interface:

Within the context of GUSIP. This term will be

used to refer to the set of all interface pages

that comprise the graphical user interface for an

application program. Where the general meaning

of the term is intended, then it will be clear

from the context, or otherwise clearly specified.

Input Location:

This is a position on an interface page that the

interface designer specifies for the data entry

and display of values for a specific variable

that is used by the application program. This

can be a fixed position or within certain limits.

An interface screens can have as many input

locations as desired by the interface designer

Cof course limited by the number of variables in

a particular application).

Graphical Record:

This is the set of related graphical data values

Cof which some could be null), that can fill up

all input locations on all the interface pages of

- 18 -

a user interface. From the application's side,

one graphical record can be several logical or

physical application records, or one or more

graphical records can be combined to produce one

logical or physical record.

Segment:

A segment is a physical manifestation of a

figure, or a collection of figures. GUSIP stores

graphical data as segments, which can be

comprised of several segments.

- 19 -

GUSIP AND THE GRAPHICS DATA STRUCTURES

Introduction:

GUSIP aids in the design and implementation

phases of a graphical user interface. In its current

state, the system consists of two modules. The first is

the main module, called the run time module, which

handles all the run time aspects of the graphical user

interface. It establishes the relationship between what

the user sees and does, and the application specific

semantics underlying the program being implemented.

The second module, called the _graphics editor,

enables the interface designer to sketch · the layout of

the graphical user interface by providing sophisticated

interactive graphics facilities. It is with this module

that the interface designer specifies the scenario of

interaction between the end user and the application

program.

Underlying both modules is the graphics package,

which helps in the design of the data structure and in

providing many of the graphics capabilities of GUSIP.

- 20 -

The Graphics Package:

The graphics package used by GUSIP is the DOMAIN

20 GRAPHICS METAFILE RESOURCE Chereafter referred to as

GMR) which was developed by Apollo Computer Inc. for the

Apollo computers. The package provides a versatile

efficient tool for developing graphics application systems

that store and display picture data. It is a collection

of routines that provide the ability to create, display,

edit, and store device-independent files of picture data.

Following is a summary of the capabilities of the GMR

package.

A)Storage Capabilities:

1) It offers a graphics system with memory which

enables the integration of graphics data, textual

data, display characteristics, editing, file

storage, and hard copy output.

2)Virtual Storage of graphics files which

- 21 -

enables storing files of a very large size.

B)Modeling and Uiewing Capabilities:

l)Commands which describe the least visible

element of a picture.

2)5egmentation which enables grouping commands

that make up seperate items of a picture, name

the items and reuse them. Segmentation can be

nested to any level.

3)Instancing which allows using a ·

sequence of commands several times and

different attributes and transformations.

single

applying

~)Picture modification by scaling to a larger or

smaller size, or translation.

S)Multiple viewports which enable looking at

more than one part of the picture simultaneously.

6)Commands which draw several predefined figures

- 22 -

like circles and lines.

7)Attributes which establish drawing

characteristics such as line style and background

before and after display.

C)Editing and Input/Output Capabilities:

These allow the easy creation of interactive

graphics applications that change picture

details interactively, and to use input devices

such as a mouse or puck with easy interface, . as

well as transfer data to several

devices.

Data Structures:

hard-copy

The data structures used in GUSIP are affected by

the GMR package, as the system uses many of the

capabilities and characteristics of that package. The

standard form of data storage is a metafile. A metafile

is a device-independent collection of picture data

Cvector graphics and text) that can be displayed. The

created metafiles are stored and then they are available

- 23 -

for redisplay, revision and reuse. They are not static

copies of display bitmaps; rather, they contain lists of

commands used to build a graphic image. Within a

metafile commands are grouped into segments. Each

segment named entity consisting of a sequence of

commands. A segment can be referred to from another

segment, in a manner analogous to a subroutine call.

Individual commands within segments of a metafile descibe

the least divisible components of a picture. There can

be several types of commands:

-Primitive Commands describe a single least divisible,

displayable component of a figure e.g. a circle, a

line, a rectangle ... etc.

-Attribute commands contain values that specify the

manner in which components of a figure are to be drawn,

as the line style or text size.

-Instance commands cause references to be made to other

segments. Instancing allows multiple uses of a single

sequence of commands, with different transformations

applied.

- 2~ -

-Tag commands provide comments or other characteristics

within a file or segment which do not affect the figures.

Every command is part of some segment.

commands outside of all segments.

There are no .

As it will be seen later; the data structures

that GUSIP imposes on its graphical user interfaces,

attribute greatly to many of the desirable properties

exhibited by those interfaces.

- 25 -

GUSIP: THE RUN TIME MODULE

The run time module of GUSIP handles and controls all

interactions between the several components of an

application's graphical user interface. It establishes

the relationship between what the user sees and does and

the application specific semantics underlying the system

or program being implemented. Following is a description

of the main activities that are performed by the run time

module.

Screen Management:

Screen management is one of the basic and important

activities that the run time module performs,

particularly because GUSIP is intended to be used with

interactive applications, where the screen is the main

medium of interaction between the end user and the

application. GUSIP gets all the parameters of a

graphical user interface from the respective files, then

it performs all the necessary screen management functions

to display all the interface pages, each interface page

is displayed in a separate window, so as to provide the

end user with the capability of inspecting any of the

- 26 -

graphical templates of an application program at any time

during an interactive session. To do that the run time

module creates the necessary windows to display all the

interface graphical templates, then at the end -of the

interactive session, it deletes those windows. In the

process of displaying the graphical templates, the run

time module uses many of the routines that are provided

by the GMR package. The run time module makes sure that

the screen always contains the most up to date

information, by reflecting _all changes that are done to

any figure directly on the screen, and by passing these

changes immediately to all other templates that are

affected.

Interaction between the End User and the Application

Program:

When GUSIP is used with an application programCs)

for the generation and management of a graphical user

interface, it becomes the main communication link between

the end user and that program. The run time module

supports this by providing facilities for entering,

modifying and displaying graphical records that are used

- 27 -

by a particular application. In

operations, the run time module

information to that application.

each

passes

of these

necessary

Entering data of a new graphical record involves

starting with blank graphical templates, then the user

will fill graphical Cor textual)

locations in these templates.

data

Data

values at input

values for a

particular component of a template are usually entered in

a particular location of the template which has been

previously specified by the interface designer, these

correspond to values of variables in the application.

The run time module makes this correspondence by

collecting the values of all components of the templates

in the respective variables and passing them to the

application program for processing. Displaying an

existing graphical record is similar, although the source

of data is different. The run time module receives

values of the variables that comprise a graphical record

for display, then it passes those as data values for the

respective components of the templates, where the whole

thing is displayed.

- 28 -

Modifying an existing graphical record involves

the operations of display and data entry. First the run

time module receives the value of the record to be

modified, displays that record, then it allows the user

to change data values for any desired template

componentCs), after which it has to collect the values

again Cafter modification) in the respective variables

and pass them back to the application program.

Throughout any of the above operations the run

time module performs many screen management functions .

These include displaying the templates of the interface

Cblank or filled with values), creating and deleting

windows, and updating the screens properly according to

the actions performed by the end user. Also it handles

the interaction with the user by detecting actions and

translating them to changes Cadditions, deletions,

modifications, .. etc.) on the screen, thus giving the

user a direct feedback about the status of the data that

results from a particular event.

- 29 -

Interaction With the Graphics Package:

The GMR graphics package stores figures in

graphics files as segments, where each segment can

consist of other segments and/or graphics commands. The

run time module accepts data from the end user of the

application program, and handles the creation, retrieval

and update of the segments in their respective graphics

files. It also handles all data communication between

the graphics package and the application

passing the characteristics of the figures

application programs in terms of meaningful

GUSIP also translates user input commands,

program by

to the

parameters.

which are

performed through menus, function keys or the mouse, to

procedure calls in the graphics package which results in

certain operations being performed on the graphics files

or the displayed templates. The run time modules also

manages the storage and retrieval of predefined figures

when the user requests them for a particular location in

a template. In this case the parameters of that figure

are fetched from the application's graphics file, then

the figure is displayed on the screen and its parametres

are passed to the application program for processing.

- 30 -

To facilitate the processing of graphical data,

the run time module provides the application program with

a facility to inquire about the structure and display

characteristics of any figure. In this case the figure

is analyzed and its hierarchical structure and

characteristics are passed to the application program.

The structure includes the relative positions of segment

to each other and any transformations that are applied to

these segments. The display characteristics include the

line style to be used when drawing the figure Cdotted,

dashed, solid, ... etc), whether some elements are filled

or not, and the location on which a specific figure is to

be _displayed. Besides the above, data on a graphics

figure can include tag commands that are similar to

comments in programs, these commands are also passed as

part of the structure of a figure, to aid the application

programmer in the classifications of certain figures and

what they refer to, particularly because figures or

segments can later be searched for using the values of

the tag commands.

- 31 -

Drafting and Graphical Editing:

To facilitate the task of the application

programmer and to allow easier interaction with graphical

applications, GUSIP provides some elementary drafting and

graphical editing capabilities for end users at run time.

These capabilities allow the generation of new figures

and the modification of existing ones. They include

allowing the user to draw some elementary shapes, as

circles, rectangles, ... , then using these shapes to draw

more complex figures. They also provide scaling,

rotation, translation and transformation operations to be

applied to existing figures to modify them and change

their appearance, characteri~tics and location on the

display screen.

User Interface Management:

The run time module manages the user interface

and makes it accessible to the end user for data entry,

modification or retrieval. Depending on the way the

graphical user · interface was designed, entering data or

modifying existing data is always started on the first

- 32 -

template. However, other templates are still accessible

to the end user for inspection or modification, unless

this accessibilty has been inhibited by the interface

designer. Any restrictions or flow of control specified

by the interface designer are taken into consideration

and applied at run time, thus allowing the interface

designer maximum control over the user interface.

Interfacing to components of the whole user interface:

The design of GUSIP, particularly the run time

module takes into consideration any interfacing that

needs to be done with the other components of the user

interface. The run time module can interact with the

data validation component of the user interface by

passing to it data that

depending on the result; if

passed to the application

is to be validated, then

the data is valid it is

program, otherwise, the run

time module can communicate with the data validation

module to take a certain action depending on the type of

error that results from the invalid data.

GUSIP can accomodate the existance of help

- 33 -

facilities in the user interface, mainly because all

displayed figures are stored on graphics files so they

can be erased and redisplayed any time the need arises.

Also because. the graph~cs package allows drawing fiQures

on a screen which are not related to something else that

is displayed, besides the ability to manipulate windows

as these can be used for processing help requests.

Menus can be easily incorporated in GUSIP's

design, since the commands that it uses can always be

picked by using menu structures. The menu construction

component can thus translate the picked locations on the

screen to command codes, or function key codes of the

particular commands that are being displayed on the

screen. Also the fact that the end user can pick any

element on the screen and inquire about its

characteristics facilitates tremendously the task of menu

construction and handling.

The command language generator can make use of

the powerful graphics handling capabilities in the design

and interpretation of commands. Moreover, GUSIP lends

itself to a command language since the commands can

- 3~ -

be translated to GUSIP's command codes or Function key

codes as they are used and processed by the run time

module.

- 35 -

Introduction:

GUSIP AND THE ENUIRDNMENT OF
THE GRAPHICAL USER ~NTERFACE

The environment in which any system exists and

with which it interacts, affects to a large extent the

behavior of that system. That's why GUSIP's relation

with the environment of a graphical user interface helps

to illustrate its generality, flexibility, user

friendliness, and ease of use with virtually any

application that requires the input, output, and

processing of graphics data. It also explains why a huge

amount of time can be saved in the design and

implementation of a graphical user interface by using the

facilities and tools provided by the system.

In general, the environment of a graphical user

interface consists of the application program, the

application programmer(s), and the end user. In addition

to that, the internal data structure of the graphical

user interface plays an important role in determining its

efficiency, and can be the factor which enhances or

limits the flexibility and generality of the user

interface generator. The way in which GUSIP interacts

- 36 -

with its environment is thus an important element which

determines its success or failure.

GUSIP and the application program:

Applications whose graphical user interfaces are

implemented using GUSIP's facilities interact only with

the run time module, though the interface itself is

constructed by the graphics editor. In these

applications GUSIP handles all interactions with the end

user and performs all the communications necessary

between the user and the application. Therefore, the

application can concentrate on the processing aspects

that are pertinent to its objectives. Data entry,

modification and display are handled by GUSIP, and these

are done according to the layout of the interface that

was specified by the interface designer, the display

always reflects the current status of the data and at the

same time the application is always kept aware of any

changes that occur to the data and any processing on that

data that is requested to be done by the end user.

Hence, GUSIP acts as a communication tool between

- 37 -

the end user and the application. It allows making the

design and implementation of the graphical user interface

independent of the des~gn and implementation of the

application, - except for some data specifications that are

essential for proper running of the application and that

should be taken into consideration by the interface

designer while designing the user interface. Also the

application program does not have to worry about where

the data comes from and which devices were used for data

entry, this is all handled by GUSIP which allows several

input and output devices to be used in conjunction with a

graphics applications, and hence the application can be

device independent.

Thus, the application program can thus have

several graphical user interfaces which can be utilized

by a wide range of end user accoroding to their levels,

experience, requirments and needs.

GUSIP and the Application Programmer:

The task of designing and implementing a suitable

user interface for an application program has been

- 38 -

considered, until now, one of the trickiest and most

cumbersome part of application development. This is due

to the fact that user needs and requirments change

depending on the particular users, even the same user

might have different requirments and preferrence as

he / she gains experience with a certain application. This

has necessitated that application developers

change the user interface of an application several times

before a final acceptable version is obtained. 'Illis was of'ten

not an easy task to do since the user interface was

scattered throughout the application, and any changes

that need to be done to the user interface, might involve

major changes in the application programCs).

GUSIP relieves the application programmer of

graphics applications from the tedious task of designing

Cand redesigning or modifying) the user interface for

their applications and incorporating that in the

applications by providing the necessary tools and

facilities for the generation and implementation of those

user interfaces. The application programmer

and develop the application independently

can design

of the user

interface and safely assume that the required data will

- 39 -

be available at the time it is needed, without having to

take into consideration the means of receiving input from

the users and relaying output to them, or even which

devices will be used for input and output to that

application.

not have

Also, the graphics application program does

to take into account the graphical

characteristics of data or the structure under which this

data is being stored and/or displayed as all of this is

handled by GUSIP.

The graphical user interface is drafted and drawn

using the graphics editor which provides the interface

designer with very powerful tools for the design of

almost any graphical layout. This is associated with the

application without the need to involve the application

programmer. This interface can be modified or replaced

in the future, without the involvement of the application

programmer as this will not have any implication on the

program's design, programming or performance.

As for the structure under which data is stored

GUSIP uses the facilities provided by the GMR graphics

package to store the graphics data in files with

- '±0 -

hierarchic segment structure, then it uses routines

available in GMR to retrieve, display, or modify these

files. By utilizing the GMR graphics package which

stores data in a metafile that is device independent, the

application programmer can develop the application

without worrying about the devices used for interaction

with users.

The application programmer includes only the run

time module in the application as an available library of

programs and/or procedures, which handle all aspects of

the graphical user interface, and can use some of these

procedures in the application to perform certain required

tasks, or to do some processing on the graphics data.

When the application programmer integrates GUSIP in the

application, the user interface looks as if it were part

of the application itself, and at the same time this

application can be run using many different graphical

user interfaces without the application programmer having

to change a single statement in the programs.

- ~1 -

GUSIP and The End User:

Users of computer application have always wanted

to interact with those applications in the way that suits

them best, and wished that the user interfaces used for

the interaction are tailored according to their needs and

requirements .. Also, many times a user interface

requires modification whenever users preferences, needs,

requirements or environment undergo any

requirements by users have been taken into

change. These

consideration

by many system developers, as user acceptability of any

system depends on how suitable it is to user

requirements. However, not many have succeded in

satisfying these requirements mostly because the current

understanding of human-computer interaction is very

limited. One cannot sit down and design an interface and

know, apriori, how well it will perform. Therefore, one

must accept at the outset the inevitable intertwining of

specification, design and implementation. Design then

becomes an iterative process, each iteration consisting

of three phases: design, implementation and evaluation.

The motivation to develop improved tools can therefore be

seen as a desire to increase the number of iteratives that

- Lf2 -

one can afford to pass through in this loop.

GUSIP is one system which provides these tools,

and a consequence of using it is an improvement in the

quality of the user interface that is produced. To the

end user the presence of GUSIP is transparent, and the

impression is that the graphical interface is part of the

application program. Any modification to that interface

that is introduced at a later stage makes the users think

that the whole application has been modified to suit

their needs. This enhances their acceptability of the

application and their willingness to use it. Also by

introducing this flexibility in the design and

implementation of the user interface of a graphics

application, the number of times that one can afford to

pass through in the above mentioned loop of specification

design and implementation is increased, this makes users

feel at ease knowing that no interface has to be lived

with for life and that the user interface can accomodate

any changes that might be required in the future and

these changes can be incorporated without the prohibitive

and frustrating factors of difficult and elaborate

procedures, too much time and high cost.

- ~3 -

The user interface designer acts as an end user

for GUSIP itself, and by using the system can have

greater flexibility in the design and redesign process of

the user interface for graphical applications. This is

mainly due to two factors: one is the availability of

very powerful graphical tools for generating the

graphical interface, and two because the designer can

produce one interface, use it for a while then modify it

according to user's feedback then repeat the whole

process until a final version is produced which suits

most Cif not all) users. Besides, that any changes in

user requirements that might arise in the future can be

taken into consideration, and incorporated in the

interface easily, without the need to involve the

application programmer, and with no changes that need to

be done to the application, as the interface and the

application are very loosely coupled using GUSIP, whereas

they used to be very closely coupled in the past.

Actually, GUSIP'S ease of use and extremely

understandable concepts enable many users to utilize it,

with some training, for designing user interfaces for

graphics applications that they want to use according to

their preferences, convenience, and taste.

GUSIP and the Internal Structure of Data:

The internal structure of data that is exhibited

by a user interface can enhance or limit the flexibility

and power of any system. This has affected the design of

the data structure that is exhibited by user interfaces

which are generated by GUSIP. For each application's

graphics data, a graphics file is maintained which has a

dynamic structure and size that allows it to store all

the graphics data for that particular application. This

file contains all the predefined figures as well as all

the figures and shapes that are constructed by the ·end

users of the application. It is randomly accessed by

GUSIP, hence serving as a graphics

the application besides being the

file.

data dictionary for

main graphics data

Each user interface that is generated for an

application has associated with it a graphics file which

contains all the figures and shapes that comprise the

layout of the graphical user interface. Thus each

- ~5 -

application will have associated with it as many such

files as there are user interfaces that have been

generated for it. This structure allows the graphical

user interface to be accessed and manipulated

independently of the data and the application, in

addition to that, any modifications or changes that are

applied to it do not affect neither the application's

data nor the application's programs.

Having one main graphics file for each

application and several ones for the user interfaces

enables GUSIP to utilize several user interfaces at the

same time, since the data exists independently of the

user interface layout, and displaying it is handled

properly according to the graphical user interface that

is being used at that time. This does not mean however

that that there is any limit on the number of files that

an application can have, but rather is meant for

efficiency purposes in terms of storage and processing of

graphics data. Also, this enables the application that

uses other files which are intended to store references

to the graphics data Car the data itself) to store in

those files only the segment numbers of the figures under

- ~6 -

consideration. These will then be more compact, and can

be treated as regular textual data files since all the

graphical properties of the data are handled by GUSIP in

the respective files.

This structure that is imposed on the graphical

user interface enhances tremendously the generality and

ease of use

generated by

that

GUSIP,

are attributed to

also it helps to

the interfaces

relieve the

programmers from worrying about the complex issues of

handling and manipulating graphical data.

Thus GUSIP'S inter-faces interact dir-ectly,

easily, and successfully with all the components of their­

environment to pr-educe to end user-s a quality user­

interface that fits perfectly their needs and

r-equirements.

- "±7 -

GUSIP: THE GRAPHICS EDITOR

One of the most important goals of GUSIP is to

allow the end user to have control over the user

inreface; by providing that user w~th powerful and

comfortable facilities that do no require sophisticated

computer knowledge to manipulate. This is achieved by

the facilities provided by the graphics editor component

of the system which is used for the design of the

interface layout, the specification of control tasks, and

the design of predefined figures. The output of the

editor is a _set of files which contain a description of

all the information necessary to define the display,

these files are used by the run time module while an

application is being run. A description of the main

functions performed by the graphics editor explains the

flexibility and power that it gives to the designer of a

graphical user interace.

Construction of The Interface Layout:

The graphics editor allows the interface designer

to specify the geometry of the graphical user interface

by allowing unlimited access to all parts of the screen,

- ~8 -

and hence the interface designer has full screen graphics

editing capabilities under his/her disposal, to perform

any geometrical operation necessary on the pages of the

user interface. The pages of the user interface are

constructed one by one, however, at any time all these

the pages are available for review and inspection by

designer. This is easily done by switching between the

windows in which the interface pages are displayed. The

designer need not know any programming, and basic

knowledge of how to use input/output devices is all that

is needed for this construction to be done. Besides

having very powerful

specify the layout

graphical construction

of the interface, the

tools to

interface

designer can use graphical editing facilities of the

graphics editor to modify, alter, or redesign any number

of interface pages. Elements of geometry that are

specified at the construction stage are the location of

each variable on the particular screen displaying the

variable's interface page, the restrictions and/or

limitations that are to be applied to values of that

variable Cas length, width, specific shape, ...) and the

relationship, if any, that values for this variable might

have with values of other variables.

- ~9 -

Specification of Control Tasks:

There are other aspects of generating a user

interface than specifying the geometry, these are

interface control tasks and are also handled by the

graphics editor. A very important task of a user

interface generator is to associate a user interface with

an application. Although the actual association is done

at run time, the parameters of this association have to

be specified at the design stage of the graphical

interface. The interface designer determines those

parameters and relays them to the editor. There can be

several graphical interfaces to an application, but at

any one time only one interface has to be associated to

be chosen by default when that application is executed,

the editor maintains this information in a specific file

where it records all the available interfaces to an

application, and the file name of the interface that is

to be used by default with that application. This

association can be changed at any time by the interface

designer; either by modifying the graphical interface

associated to the application, or by associating with

- 50 -

that application a different user interface altogether.

Another parameter of associating a user interface

with an application is the correspondence between th~­

values that will be input (output) at specified locations

on each interface page and the variables used within the

application. This correspondence is established, in

GUSIP through the use of an array that holds the segment

numbers of graphical figures and each element of the

array corresponds to a variable of the application.

Thus, the correspondence is determined by specifying at

each input (output) location the subscript of the

variable which will hold the value displayed at that

location.

These facilities, provided by the graphics

editor, allow the application programmer to write the

application programs assuming certain information in a

certain format from the graphical user interface. Then

the interface designer Cor end user) can modify the

interface layout, the geometry of the screens, or

actually exchange two user interfaces, and as long as the

user does not modify any aspect of the user interface

- 51 -

that affects the semantics of the underlying application,

then that application program need not be changed. The

format in which the information is communicated to the

application is under the control of GUSIP, not the user.

Thus for any graphics application, the interface designer

Cor end user) has control over the user interface without

modification of the underlying program.

Construction of Predefined Figures:

The construction or drawing of predefined figures

requires the same graphical drafting and editing

capabilities that are needed when specifying . the layout

of the graphical ·user interface, hence this task was

associated with the graphics editor to make use of its

powerful capabilities.

A predefined figure is treated by the graphics

editor similar to the layout of an interface page. Thus,

the end users or the interface designers can

capabilities of specifying the layout of an

page to draft and edit their predefined

However, there is one difference between

- 52 -

use the

interface

figures.

predefined

figures and interface pages, namely that an interface

page ' s graphical layout is stored in the graphics file of

the interface, whereas the graphical layout of a

predefined figure is stored in the graphics file of the

application itself. This is a very important and

essential aspect of handling predefined figures because

it allows predefined figures to be used within the

application, no matter what user interface is associated

with the application at that time.

Graphical Capabilities:

The graphical handling capabilities that were

embeded in the graphics editor allow the user full

control over the layout of the graphical interface or the

drawing of predefined figures. By using the mouse and

some other keyboard keys GUSIP's user can draw almost any

figure, and by combining some predefined shapes, Cas

circles, rectangles, arcs, lines, polygons, ...), spline

curve fitting, text or freeform drawing with the ability

to graphically edit any drawn part at any time by using

the graphical editing facilities of the editor, namely

moving and copying figures and/or shapes, applying

- 53 -

certain transformations on any thing on the screen

(translation, rotation or scaling) and the ability to

erase any part of the screen to redraw it altogether.

- s~ -

FEATURES AND SIGNIFICANCE

Portability:

It is important that a uer interface generator

be portable in a number of senses. GUSIP satisfies

several portability criteria in theory and practice.

Input Device independence:

The user interface generator must be able

to support alternative input techniques. The

primary input devices used in GUSIP are the mouse

and the terminal's keyboard. Other devices are

now available and can be supported by the GMR

package, a graphics tablet can be used in place

of the mouse, and actually any input device , that

can be supported by the graphics package,can be

used with the system. The run time module ,

however, can be driven by virtually any event

generating device that is supported by GMR .

- 55 -

Output Device Independence:

The user interface generator must also be

able to support a number of different output

devices with different characteristics. In the

case of GUSIP the device independence is achieved

by using the GMR graphics package which can

support varied output devices as a high

resolution monochrome display, a high

color display and several types

printers.

Language Independence:

resolution

of laser

As a further level of portability, the

user interface generator should be structured to

allow programs written in many programming

languages to use it. Using the capabilities of

the APOLLO Domain operating system

written in C or FORTRAN can still use

programs

GUSIP to

generate their graphical user

way to include the needed

interfaces. The

routines, however,

should be modified slightly, so that it is first

- 56 -

compiled then the object code is linked to the

object code of the application.

Machine Independence:

The system, as it is now, can not be

transported to other than APOLLO machines.

Meanwhile, the graphics package, the langauge

APOLLO compilers and the operating system on the

machines are written in PASCAL. This might

later on, in providing a means for making

help,

the

system, together with the GMR package, run on

several machines.

A Recursive System:

A very important feature of GUSIP is that

it treats itself as an

hence its graphical

application program

user interface can

and

be

designed using its own facilities. This provides

the system with tremendous power because of the

recursiveness involved, since any specified

features can be used in a later stage to develop

- 57 -

more complex and elaborate features, and because

of this recursiveness the system's facilities and

capabilities can be improved upon almost

indefinitely .
. ~

Comparison with Other Systems:

GUSIP is not the only and probably not the best

graphical user interface generator available, however, a

comparison with other existing systems might emphasize

its distinctive advantages. The mpst distinguishing

feature of GUSIP is its natural way of integrating the

designed graphical specifications with the application

programs. By way of comparison, three systems will be

reviewed: SYNGRAPH CB, SJ, UIMS C~J, and DIALOG ClSJ.

SYNGRAPH:

SYNGRAPH uses PASCAL procedure

definitions for the utilization of interactive

commands in the application program. GUSIP, is a

significant improvement over this idea, in that

- 58 -

the user interface and the interaction

relationships are specified in the very way in

which the end user will interact with the

application, i.e by using the mouse and the

keyboard. Also, SYNGRAPH is meant to be used

only by application programmers, whereas GUSIP

does not have that restriction and can actually

be used by the end users themselves, with little

training.

UIMS:

UIMS also suffers from the fact that the

application programmers have to be involved, at

least at one stage, in the design of the user

interface. Besides, the system cannot deal with

multiple values or multiple windows and any

change in the user interface usually requires a

recompilation of the application program. GUSIP

overcomes these drawbacks by allowing end users

to design their own user interfaces, providing a

window management component for the generation

and handling of windows, and since the interface

- SS -

is stored in a non-program file then it does not

require any recompilation of the application

program if it undergoes any changes.

DIALOG:

DIALOG adopts a common approach for the

specification of a user interface, namely it uses

a formal language for the specification of the

geometry and logic of menu based user interfaces.

This approach is very limited for the geometric

specifications, as the user must learn the

language, which involves learning keywords and

syntax that really contribute nothing to the user

interface [3J. This also necessates that the

application be recompiled any time the user

interface is modified, no matte~ how small or

insignificant that modification was. From the

mentioned characteristics of GUSIP, it is evident

how it overcomes these drawbacks of DIALOG,

namely by allowing the specification of the user

interface to be done using the same interaction

techniques, and by making the interface

- 60 -

independent of the application program and the

application programmer.

- 61 -

CONCLUSION, LIMITATIONS
AND FUTURE CONSIDERATIONS

Using GUSIP allows application programmers to

design and write their ~pplication programs without

worrying about the user interface aspects of those

applications. Instead they can concentrate on the

processing part of the application, plus some interfacing

with GUSIP. GUSIP provides both the application

programmer and the user interface designer with many

facilities specially graphics handling capabilities, but

it should be kept in mind that GUSIP is only one

component of a group of projects that are intended to

manage generalized user interfaces, and as such will

never be complete until all parts have been implemented

and integrated into one product. The user interface to

each of the components is built by using the facilities

of the other components as well as its own facilities.

The above explains why GUSIP ' s interface is not as fancy

as expected, and why GUSIP lacks some of the desirable

features of interactive graphics and help facilities like

menus.

However GUSIP is not a perfect system and

actually has many limitations which if resolved can help

- 62 -

in enhancing the tools that will be available for

application programmers and interface designers for the

development and management of flexible user friendly, and

sophisticated user interfaces. These limitations

i nclude:

a)Machine Dependence:

Although GUSIP can use several input and

output devices, it is bound to be used only on

the Apollo machines. This limits its usage by a

wide range of users and applications that might

require the system to be used on other machines.

b)Colored Graphics:

The GMR graphics package supports colored

graphics, but this facility was not use in the

current implementation of GUSIP which cannot

support applications that require handling of

colored graphics, a desirable feature to have in

modern graphical applications .

- 63 -

c) Two Dimensional Graphics:

Using the recursive feature of the

system, facilities can be developed to handle and

manipulate successfully three dimensional

graphics, but the present version supports only

two dimensional graphics.

d)Graphics Package Dependence:

GUSIP is dependent on the

package which is not the industry

GMR graphics

standard in

computer graphics, and a very important

enhancemen~ to its usage and portability can be

attained by resolving this dependence and

allowing the system to utilize other available

graphics packages; like CORE and GKS.

The above issues provide a basis for work on

improvements on the system or for general experimentation

and research in this field.

- 6~ -

APPENDIX

USER MANUAL FOR GUSIP

There are several types of tentative users to

GUSIP and each user needs to use a specific part of the

system, thus requiring a different user manual. The

application programmer who wants the graphical user

interface for a program to be handled by GUSIP should be

able to communicate with the run time module of GUSIP. A

user interface designer needs to be able to use the

graphics editor and relate input locations with variables

in the application itself. End users need to be able to

use the facilities of GUSIP to enter data to certain

applications.

Following is a brief description of how different

types of users can achieve their aims of using GUSIP's

facilities. This is preceded by an explanation of the

terminology used.

- 65 -

SYMBOL or TERM MEANING

'A' Capital letter ' A'

'a' Small letter 'a'

a Capital or small 'a'

The above three are the same for any letter.

Fn Function key number n Ce.g Fl)

sFn

[Action]

Ml

M2

M3

Locator

Shifted function key n

Predefined function key

on keyboard Ce.g. [help])

Left button on mouse

Middle button on mouse

Right button on mouse

The type of input which

occurs when the mouse is moved

- 66 -

GUSIP For the Application Progr.ammer:

a) Insert File:

The application programmer should

include the file CGUSIP.ins.runtime) in the

application which is intended to use GUSIP for

implementing its interface. This is done as

follows:

% Include "GUSIP.INS.RUNTIME";

b) Passing values:

Passing values between GUSIP and the

application is done by an array of Components,

each component is a PASCAL record structure which

contains two fields.

1) Type of input: integer which

specifies the type of the input or output data as

follows:

- 67 -

0 no input

1 predefined figure

2 text

3 user drawn figure

This is defined as:

TYPE-OF-INPUT:0 .. 3;

2) Segment number: the segment

identification number of the segment which was

constructed as a result of a user input or the

display of the record. This field is of type

GM-$SEGMENT-ID-T. IN case the input type is zero

then the segment number is undefined. This field

is defined as:

SEG-NO: GM-$SEGMENT-ID-T;

c) Procedures Needed:

The application program basically needs

two procedures to interact with GUSIP. The first

gets input values for a graphics record, besides

being used to display graphical records. The

- 68 -

procedure call is:

GUSIP-$SEGMENTSCoperation, N, recordsegarray);

Where »operation» is the operation that the

application intends to be performed on the

records passed to GUSIP. This is coded as

follows:

1: Input values for the record.

2: Display the record with

modification.

3: Display the record.

N is the number of figures

"recordsegarray"is an array

components as described above.

being

of

possible

passed and

graphical

The second GUSIP procedure, needed by

the application, inquires about the structure of

a segment. The procedure call is:

GUSIP-$INQ-SEGCSEG-ID, figpointer);

Where "SEG-ID" is the identification number of

the segment to be examined; this is of type

GM-$SEGMENT-ID-T, and "figpointer» is a pointer

- 69 -

to the first element of a linked list of elements

that represents the structure of the figure , and

each element of that list represents the drawing

of a graphical element . "Figpointer" is of type

GUSIP-$POINTER.

The interface designer mainly uses the graphics

editor of GUSIP, the basic operations used are:

The following the basic

facilities and a description of how they can be used .

point on the screen and press Ml, then locate

second point on the screen and press Ml.

2. Draw a line parallel to X-axis: press

X then proceed as in 1 above.

- 70 -

3. Draw a line parallel to Y-axis: press

y and proceed as in 1 above.

~. Draw a rectangle: press f2 then

locate the positions of two diagonally opposite

corners by pressing Ml after locating each point.

S. Draw a circle: if the center and a

point on the circumference are known then press

f3 and locate these two points by pressing Ml as

above, otherwise if it is desired to fit the

circle between two points; press f~ then proceed

.in the same way to ·1ocate the two points.

6. Draw an arc: Press FS then locate

three points on the circumference of the arc by

pressing Ml after locating each point.

7. Fit a spline through a set of points:

press f6 and locate the set of points to be fit

by pressing Ml after each and pressing M2 when

the set of points is exhausted.

- 71 -

8. Draw a polygon: Press p then locate

the set of vertices of the polygon by pressing Ml

after each point and pressing M2 when the set of

points is exhausted.

9. Draw a free form: Press FB then press

Ml to start drawing, move the locator around the

screen as desired, when finished press Ml again.

10. Press F7 then locate where to enter

tne text by pressing Ml, enter the text then

press Ml again when the text to be entered is

exhausted.

In addition to the above, to start

constructing a figure which might consists of

many shapes, press 'f' and at the end of drawing

that figure press 'sFl'.

Editing Figures:

To edit a figure press 'e' when the cursor is at

- 72 -

that figure. The figure will be outlined for a short

time, after that all drawing or editing operations will

be considered to affect shapes only in that figure. If

no figure is selected with edit operations Ci.e. no

figure is being constructed or edited)

operations apply to complete figures.

The edit operations are:

then edit

1. Move: Press 'm' with cursor at the

shape to be moved, the shape is outlined for a

short time, move the locator until the shape is

at the desired position on screen then press Ml.

2. Copy: Press 'c' with the cursor at the

shape to be copied, it will be outlined for a

short time, move the locator until the shape is

at the desired location and press Ml.

3. Scale: Pres 's' with the cursor at the

shape to be scaled, it will be outlined for a

short time, move the locator to the right to grow

the shape and to the left to shrink until it

reaches the required size, then press Ml.

- 73 -

~. Rotate: press 'r' with the cursor at

the shape to be rotated, it will be outlined for

a short period, then move the locator to rotate

it until the desired orientation is achieved,

then press Ml.

S. Delete: press 'd' with the cursor at

the shape to be deleted, it will be outlined for

a short period, press Ml and the shape will be

deleted. When the screen is crowded with figures;

it is advisable to move the shape or figure to be

deleted, so as to isolate it from other and avoid

any mix up.

Input Location:

To determine input locations and

associated variables; position the cursor at the

location where data is intended to be entered and

press I • I
1 I then enter the subscript of the

variable in which the value entered at this input

location will be stored.

- 7~ -

GUSIP and The End User:

The end user only interacts with the run time

module of GUSIP when using an application, and this

offers the user basic graphics drawing and editing

facilities as mentioned earlier. This interaction is done

through the underlying application, although the

semantics of the interaction are determined by the

interface designer.

- 75 -

REFERENCES

1. L. J. Bass and R . E. Bunker "A Generalized User
Interface for Application Programs". CACM vol. 2~

no. 12 pp 796-800, Dec 1981.

2. L. J. Bass "A Generalized User Interface for
Application Programs CIIJ". CACM vol 28 no. 6
pp 617-627, June 1985.

3. L. J. Bass "An Approach to User Specification of
Interactive Display Systems". IEEE Transactions on
Software Engineering vol. 11 no. 8 pp 686-698,
Aug 1985.

~. W. Buxton, M. Lamb, D. Sherman and K. C. Smith
"Towards a Comprehensive User Interface Management
System''. Computer Graphics vol. 17 no. 3 pp 35-~2,
July 1983.

5. Lili Chi "Formal Specifications of User Interfaces:
A Comparison and Evaluation of Four Axiomatic
Approaches". IEEE Transactions on Software
Engineering vol. 11 no. 8 pp 671-685, Aug 1985.

6. P. Feiler, G. Kaiser "Display Oriented Structure
Manipulation in a Multipurpose System". Proc. IEEE
COMPSAC 83, pp ~0-~8.

7. J. Foley and A. Uan Dam "Fundamentals Of Interactive
Computer Graphics". Chap. 6 pp 217-2~3. Addison
Wesley Publishing Co. 1982.

8. D. Olsen Jr., E. Dempsey "Syntax Directed Graphical
Interaction". Proc. Symp. Prag. Lang. Issues, ACM
San Francisco CA pp 112-117, June 1983.

9. D. Olsen Jr., E. Dempsey "SYNGRAPH: A Graphical User
Interface Generator". Computer Graphics vol. 17
no. 3 pp ~3-50, July 1983.

10. D. C. Smith, C. Irby, R. Kimball and B. Uerplank
"Designing the STAR User Interface". BYTE vol. 7
no. ~ pp 2~2-282, Apr. 1982.

-76-

11. H. Strubbe "Kernel for a Responsive and Graphical
User Interface". Software Practice and Experience
vol. 13 pp 1033-10~2, 1983.

12. T. Takala "User Interface Management System With
Geometric Modeling Capability: A CAD System's
Framework". Proc. Computer Graphics, Tokyo 198~.

13. Programming with DOMAIN 2D Graphics Metafile
Resource. Apollo Computer Inc. Release 9.0,
July 1985.

1~. DOMAIN System Call Reference, vol. 1 & 2. Apollo
Computer Inc. Release 9.0, July 1985.

15. DOMAIN DIALOG User's Guide. Apollo Computer Inc.
Revision 0.0 July 1985.

-77-

	GUSIP: Graphical User Interface Genreator for Application Programs
	Terms of Use
	Recommended Citation

	thesis_aldada_1986_001
	thesis_aldada_1986_002
	thesis_aldada_1986_003
	thesis_aldada_1986_004
	thesis_aldada_1986_005
	thesis_aldada_1986_006
	thesis_aldada_1986_007
	thesis_aldada_1986_008
	thesis_aldada_1986_009
	thesis_aldada_1986_010
	thesis_aldada_1986_011
	thesis_aldada_1986_012
	thesis_aldada_1986_013
	thesis_aldada_1986_014
	thesis_aldada_1986_015
	thesis_aldada_1986_016
	thesis_aldada_1986_017
	thesis_aldada_1986_018
	thesis_aldada_1986_019
	thesis_aldada_1986_020
	thesis_aldada_1986_021
	thesis_aldada_1986_022
	thesis_aldada_1986_023
	thesis_aldada_1986_024
	thesis_aldada_1986_025
	thesis_aldada_1986_026
	thesis_aldada_1986_027
	thesis_aldada_1986_028
	thesis_aldada_1986_029
	thesis_aldada_1986_030
	thesis_aldada_1986_031
	thesis_aldada_1986_032
	thesis_aldada_1986_033
	thesis_aldada_1986_034
	thesis_aldada_1986_035
	thesis_aldada_1986_036
	thesis_aldada_1986_037
	thesis_aldada_1986_038
	thesis_aldada_1986_039
	thesis_aldada_1986_040
	thesis_aldada_1986_041
	thesis_aldada_1986_042
	thesis_aldada_1986_043
	thesis_aldada_1986_044
	thesis_aldada_1986_045
	thesis_aldada_1986_046
	thesis_aldada_1986_047
	thesis_aldada_1986_048
	thesis_aldada_1986_049
	thesis_aldada_1986_050
	thesis_aldada_1986_051
	thesis_aldada_1986_052
	thesis_aldada_1986_053
	thesis_aldada_1986_054
	thesis_aldada_1986_055
	thesis_aldada_1986_056
	thesis_aldada_1986_057
	thesis_aldada_1986_058
	thesis_aldada_1986_059
	thesis_aldada_1986_060
	thesis_aldada_1986_061
	thesis_aldada_1986_062
	thesis_aldada_1986_063
	thesis_aldada_1986_064
	thesis_aldada_1986_065
	thesis_aldada_1986_066
	thesis_aldada_1986_067
	thesis_aldada_1986_068
	thesis_aldada_1986_069
	thesis_aldada_1986_070
	thesis_aldada_1986_071
	thesis_aldada_1986_072
	thesis_aldada_1986_073
	thesis_aldada_1986_074
	thesis_aldada_1986_075
	thesis_aldada_1986_076
	thesis_aldada_1986_077
	thesis_aldada_1986_078
	thesis_aldada_1986_079
	thesis_aldada_1986_080
	thesis_aldada_1986_081
	thesis_aldada_1986_082
	thesis_aldada_1986_083

