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Abstract 

In bridge design and evaluation , t he characteristics of t ruck traffic is part icularly impor­

tant . Truck weights and axle configurations are directly used in calculations of maximum 

load effects including posit ive bending moments and shear forces in simply-supported 

bridges as well as negative bending moments of cont inuous spans. The loading event 

that is likely to govern a bridge design is t he simultaneous occurrence of two or more 

heavily loaded t rucks- called Mult iple Presence. Consequently, the statistics of different 

loading patterns as well as the weight correlation among coincident t rucks are equally 

important to live load analysis. However , studies of Mult iple Presence events are either 

convolut ion models or models based on visual observation of the traffic, but very little 

research has been undertaken to analyze Weigh-in-Motion data. 

In this study, Weigh-in-Motion data collected on highways is analyzed in order to de­

termine the occurrence of Mult iple Presence events incorporating two t rucks and t heir 

weight correlation . Based on t he analysis, a prediction model is developed to estimate 

the frequency of t he Mult iple Presence events using known site parameters. Also, prob­

abilit ies for full weight correlations are found for t he Mult iple Presence loading cases. A 

special remark is given to the influence of the Gap distances between the t rucks involved 

into a Mult iple Presence event . It is found that t he Gaps do not have a threshold dis­

tance for t he influence of the lighter t ruck that could be ut ilized to reduce t he Mult iple 

Presence occurrence probabilit ies. 



Acknowledgements 

Firstly, I want to thank my major professor, Dr. Mayrai Cindy. She supported me with 

patience, encouragement and- most of all- deep knowledge of structural engineering 

and statistics. 

Also, I want to thank the other members of my committee, Dr. Liliana Gonzalez and 

Dr. George Tsiatas. 

Many thanks to my "editor", Wendy Costa, who spent so much of her precious time to 

assist me in phrasing and language issues. 

Furthermore, I want to mention the International Engineering Program (IEP) of the 

University of Rhode Island and the Technische Universitiit Braunschweig. In this context, 

I explicitly want to thank Dr. Manfred Krafczyk of TU Braunschweig for allowing the 

scholarship from the Deutsche Akademische Austauschdienst (DAAD). 

Finally, I want to thank my parents, my brother and all of my friends for their loving 

support and encouragement. 

Thank You! 

iii 



Contents 

Abstract 

Acknowledgements 

List of Tables 

List of Figures 

Abbreviations 

1 Introduction 
1.1 Methodology 

2 Statistical Methods 
2.1 General Linear Regression Models 

2.1.1 Independent Variables .. . 
2.2 Model Quality and Parameter Testing 

2.2.1 Coefficient of Correlation .. 
2.2.2 Coefficient of Determination . 
2.2.3 Parameter Test ( t-Test) . . . 
2.2.4 Analysis of Variance (F-Test) 

2.3 Prediction using Regression Models . 
2.4 Multiple Regression Methods 

2.4.1 Stepwise Regression 
2.4.2 Nested Models . 

3 Review of the Literature 
3.1 Multiple Presence Live-Load Models 

3.1.l Ghosn and Moses. 
3.1.2 Nowak ............ . 
3.1.3 Moses . . . . . . . . . . . . . 
3.1.4 Crespo-Minguill6n and Casas 
3.1.5 Caprani, O'Brien and McLachlan . 
3.1.6 Guzda, Bhattacharya and Mertz . 

iv 

ii 

iii 

vii 

viii 

x 

1 
2 

6 
7 

10 
11 
11 
12 
13 
15 
16 
18 
18 
20 

22 
24 
24 
26 
30 
33 
35 
36 



3.1.7 Gindy and Nassif . 
3.2 Summary and Discussion 

4 Weigh-in-Motion Systems 
4.1 W1M Sensors . . . . . . 

4.1.1 Bending Plate sensors 
4.1.2 Piezoelectric sensors 
4.1.3 Load Cell sensors . . . 
4. 1.4 Site Specifications . . 

4.2 Data Collected by WIM systems 
4.3 W1M Database . . . 
4.4 Data Filtering .......... . 

4.4. 1 Filter Results . ... .. . 
4.5 Weight Distribution of the NJ data . 

5 Multiple Presence Determination and Model Development 
5. 1 Mult iple Presence Loading Cases .... 
5.2 Multiple Presence Detection Algorithm . 
5.3 Results of the Analysis ....... . 
5.4 Development of a Prediction Model . 

5.4.1 Data Encoding .. .. ... . 
5.4.2 Simple Linear Regression . . 
5.4.3 Regression with Logarithmic Terms 
5.4.4 Residual Analysis . 

5.5 Conclusions . .... . .... . 

6 Influence of the Gap Distances 
6.1 Static Systems and Influence Lines 
6.2 Algorithm ..... . 
6.3 Analysis and Results 

6.3.1 Following 
6.3.2 Staggered 

6.4 Conclusions . . . 

7 Weight Correlation 
7 .1 Methodology 
7.2 Results . . . . . . 

8 Conclusions and Recommendations 

A A Practical Example 

v 

38 
40 

43 
44 
45 
45 
46 
47 
48 
49 
50 
52 
53 

55 
55 
56 
58 
69 
69 
70 
76 
78 
80 

84 
85 
86 
87 
87 
90 
92 

96 
97 
98 

101 

106 



A.1 Determination of Multiple P resence Probabilit ies ..... . 
A.2 Determination of the P robability of Full Weight Correlation 
A.3 Total Probabilit ies . . . . . . . . . . . . . . . . . . . . . . . 

B Source Code Listings 
B.1 Multiple Presence Detection Algorithm. 
B.2 Full Correlation Detection 
B.3 Gap Influences 

Bibliography 

Unit Conversion 

VI 

106 
107 
108 

109 
109 
116 
117 

119 

124 



List of Tables 

2.1 Exemplary Table for Stepwise Regression ...... . 

3.1 MP and Weight Correlation Probabilities after Nowak 
3.2 P5 ; 5 -values for various ADTTs . . . .. ....... . 
3.3 MP Occurrence Probabilities after Guzda et al. (2007) 
3.4 MP Occurrence Probabilties after Gindy and Nassif (2007) 

4.1 Overview of the NJ Database 
4.2 Results of the Data Filtering 

20 

30 
33 
37 
40 

50 
53 

5.1 Average Following MP Probabilities for three representative spans 63 
5.2 Average Side-by-Side MP Probabilities for three representative spans 63 
5.3 Average Staggered MP Probabilities for t hree representative spans 63 
5.4 Abbreviated Parameters . . . . . . . 70 
5.5 Stepwise Regression for Following . . 71 
5.6 Stepwise Regression for Side-by-Side 73 
5. 7 Stepwise Regression for Staggered 75 
5.8 R~-values from untransformed y compared to y* for transformed data 80 
5.9 Proposal for the Design of a MP Table for practical applications 83 

7.1 Probabilities of a Full Weight Correlation 100 

A.I Used Probabilities for the MP events . . . 107 
A.2 Used Probabilities of a Full Weight Correlation 107 
A.3 Total Probabilities of the MP events incorporating two fully correlated 

trucks . . ... .. ... . ........................ . .. 108 

vii 



List of Figures 

1.1 System Safety Modeling with Iormally Distributed Variables 

2.1 First-Order Model .. .. . . 
2.2 One-tailed Rejection Region for Ho 
2.3 Rejection Region for the F-test .. 
2.4 Mean and Prediction Intervals . . . 
2.5 Limited Accuracy of Predictions outside the range 

3 

8 
14 
16 
17 
19 

3.1 Possible Loading Patterns . . . . . . . . . . . . . . 23 
3.2 Slot Loading Patterns . . . . . . . . . . . . . . . . 25 
3.3 Headway Distributions for the MP events (after Ghosn and Moses, 1986) 25 
3.4 ormalized Moments vs. Span Lengths (after Nowak and Hong, 1991) . . 27 
3.5 ormalized Moments vs. Span Lengths for various degrees of correlation 

(after Nowak and Hong, 1991) . . . . . . . . . . . . . . . . . . 29 
3.6 Daily Maxima by Event Type (after Caprani et al. , 2007) . . 36 
3.7 Gap Distances for Following events (after Guzda et al. , 2007) 37 
3.8 MP Loading Cases (after Gindy and Nassif, 2007) . . . . . . 39 
3.9 The Probability of Occurrence plotted against the Truck Volume for a 

120ft Span (after Gindy and Nassif, 2007) 41 

4.1 The different types of WIM sensors .. .. 
4.2 Schematic sample setup of a Bending Plate WIM station . 
4.3 WIM Stations in New Jersey (after Gindy and Nassif, 2007) 
4.4 Histogram of the NJ GVW data . 

45 
46 
51 
54 

5.1 Definition of the Loading Patterns 57 
5.2 Flowchart of the MP Detection Algorithm 59 
5.3 Variation of the MP occurrences vs. Truck Volume (ADTT) for a 120ft-span 64 
5.4 Variation of the MP occurrence rate in Rural and Urban Areas vs. ADTT 65 
5.5 Variation of the MP occurrence rate for Major and Minor Roadways 

vs. ADTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
5.6 Variation of the MP occurrence rate for various Span Lengths . . . . 67 
5. 7 Variation of the MP occurrence rate for number of lanes vs. ADTT . 68 

viii 



5.8 Convergence Plots of a) R~ and b) Mean Square Error for Following events 72 
5.9 Convergence Plots of a) R~ and b) Mean Square Error for Side-by-Side 

events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 
5.10 Convergence Plots of a) R~ and b) Mean Square Error for Staggered events 76 
5.11 Residuals vs. ADTT for a) untransformed y and for b) y'y-transformed 

y* for the Following event. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

6.1 The two most common Static Systems for small to medium span Highway 
Bridges. a) simply supported beam , b) continuous beam with one support 85 

6.2 Influence Lines for the moments for a) simply supported beam and b) 
continuous beam with middle support . . . . . . . . . . . . . 86 

6.3 Superimposing Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 
6.4 Influence factor a for various spans for the bending moments . . . . . . . 89 
6.5 Influence factor a for various spans for the shear forces of a simply sup-

ported beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 
6.6 Influence factor a for various spans for the negative moments of a contin-

uous beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
6. 7 Influence factor a for various spans for the Staggered events . . . . . . . . 93 

7.1 Scatterplot of the GVW of the first truck against the GV\i\T of the second 
truck for the Following events on a 200ft span . 99 

8.1 The logistic curve . . . . . . . . . . . . . . . . . 104 
8.2 Flowchart of a site-specific bridge load evaluation 105 

IX 



--

AASHTO 
ADT 
ADTT 
AXS 
AXW 
CAL TRANS 
CDF 
CI 
DAF 
ECDF 
EVD 
FHWA 
FL 
GEV 
GVW 
LRFD 
Mom 
MP 
NJ DOT 
NM om 
SD 
SG 
Shr 
SN 
SSE 
WIM 

Abbreviations 

American Association of State Highway & Transportation Officials 
Average Daily Traffic 
Average Daily Truck Traffic 
Axle Spacing · 
Axle Weight 
California Department of Transportation 
Cumulative Distribution Function 
Confidence Interval 
Dynamic Amplification Factor 
Empirical Cumulative Distribut ion Function 
Extreme Value Distribution 
Federal Highway Administration 
Following Loading Event 
Generalized Extreme Value 
Gross Vehicle Weight 
Load and Resistance Factor Design 
Bending Moment 
Multiple Presence 
New Jersey Department of Transportation 
Negative Bending Moment 
Side-by-Side Loading Event 
Staggered Loading Event 
Shear Force 
Single Truck Loading Event 
Sum of Squares Error 
Weigh-in-Motion 

x 



Chapter 1 

Introduction 

In bridge design and evaluation, the characteristics of truck traffic is particularly impor­

tant. Truck weights and axle configurations are directly used in calculations of maximum 

load effects including positive bending moments and shear forces in simply-supported 

bridges as well as negative bending moments of continuous spans. For bridge design, 

these effects are determined based on short-duration truck traffic datasets that are fore­

cast to the 75-year economic design service life. 

The loading event that is likely to govern a bridge design, however, is the simultaneous 

occurrence of two or more heavily loaded trucks- called Multiple Truck Presence (MP). 

Consequently, the statistics of different loading patterns as well as the correlation among 

coincident trucks are equally important to live load analysis. 

Other studies of MP events have been based on either simulation of traffic or limited 

visual observations, but very little research has been undertaken to analyze Weigh-in­

Motion data. 

Weigh-in-Motion data is traffic data which is recorded by sensors that are directly in­

stalled on the roadway. The data is collected when the vehicles pass the devices without 
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requiring them to stop. The collected data contains various information about the vehi­

cles and data is widely available. 

The aim of the this study is to analyze Weigh-in-Motion data collected on highways 

to determine the occurrence of Multiple Presence events and their weight correlation. 

Based on the analysis, a prediction model will be developed to estimate the frequency 

of the Multiple Presence events using known site parameters. 

1.1 Methodology 

In the whole area of Civil Engineering and many other areas of expertise, models are 

based on probability methods with a certain level of conservativeness. Both sides, the 

Load side and the Resistance side of a model follow certain statistical distributions. The 

means of those distributions are mostly far apart, but the upper tail of the Load and 

the lower tail of the Resistance might overlap for extreme cases, as graphically shown 

in Figure 1.1 for normally distributed variables. In such an unusual case the Load is 

greater than the Resistance and that would inevitably lead into system failure. 

For the resistance side, extensive material tests have been performed and the results are 

implicated into the building codes. For any material the given values in the codes are, 

in fact, a certain quantile that provides a balanced proportion between sufficient safety 

and economical factors. 

For the load side, the accurate determination is far more complex. The variance of the 

loads is likely to be very large and cannot be found by simple tests. Current bridge load 

models are based on a range of assumptions that can be considered overly conservative. 
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Frequency(%) S=R-L 

Failure 

Figure 1.1: System Safety Modeling with Normally Distributed Variables 

owak (Nowak and Hong, 1991, i.a.) , for example, bases all his Multiple Presence Oc­

currence Probabilities and Full Weight Correlation Probabilities on assumptions after 

analyzing 10,000 heavy trucks from an Ontario Truck Survey (Agarwal and Wolkowicz, 

1976). 

The main objective of this study is to identify the probability of occurrence for Mul­

tiple Presence events on highway bridges and further the probability of trucks being 

fully correlated in weight, as this combination- Multiple Presence with fully correlated 

trucks- is most likely to induce the largest bridge responses. 

This work is divided into two main parts. The first part is of rather theoretical nature, as 

an introduction is given of the statistical methods, that have been used in the literature 

and throughout the development of the model. Also, an extensive literature review is 

done on the various existing life load models for highway bridges. This review introduces 

the different approaches to determine the controlling load and reveals that many models 
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use Multiple Presence probabilities and weight correlation probabilities that are either 

based on simulation, engineering assumptions or visual evaluation of recorded traffic. 

Additionally, an introduction to Weigh-in-Motion (WIM) systems and data collection is 

given. 

The second part deals with the analysis of Weigh-in-Motion data. This data contains 

detailed information about the vehicles that pass over the sensors, including a very 

accurate time-stamp and weight information. First, the data needs to be filtered as only 

trucks are relevant for inducing maximal bridge responses. Also, many errors in the 

entries have to be removed before analysis is performed. 

In a next step, the weight distribution of the NJ database is evaluated and an algorithm 

is implemented to determine/simulate the occurrence probabilities of Multiple Presence 

events for several span lengths from the filtered WIM data using the t imestamp of the 

trucks. Based on the outcomes, a prediction model for Multiple Presence occurrence 

probabilities is developed by utilizing the various site parameters available from the 

WIM data using regression analysis methods. 

A special remark is given to the influence of the gap lengths for maximum bridge re­

sponses. Gap lengths denote the distance from the rear bumper of the first truck to the 

front bumper f a following truck. 

Analysis is performed to identify the probabilities of a full weight correlation between the 

two trucks involved in a Multiple Presence event, as an event with two fully correlated 

trucks is likely to represent the most significant loading case. 
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The model is discussed in t he conclusions, and recommendations for furt her studies are 

made. Appendix A gives an example of the practical application of t he model developed 

for a usual lOOft highway bridge. 
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Chapter 2 

Statistical Methods 

The various live-load models that will be presented in Chapter 3 are all more or less 

based on statistical methods, and in order to analyze the Weigh-in-Motion data, many 

statistical methods have to be utilized. 

This Chapter describes some of the statistical methods, that have been used in the lit­

erature and that have been applied to the data. The general procedure for regression 

analysis is explained including the description of variable types and generalization for 

more complex models. It is also explained how the parameters can be tested for signifi­

cance and how the whole model is validated. A special remark is given to the Coefficient 

of Determination as an indicator for the model accuracy. 

Furthermore, it is described how to use the models found for actual prediction and how 

to detect lacks of fit using Residual Analysis. The last part deals with methods of how 

to carry out actual regression analysis and parameter testing describing the two main 

methods that have been utilized in this thesis. 
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2.1 General Linear Regression Models 

The idea of regression analysis is basically testing whether one variable is dependent on 

or can be expressed by using other variables. Hence, the variable that is to be predicted is 

called dependent or response variable, whereas the other variables are called independent 

or predictor variables. 

Expressing the above in terms of a formula, we get 

y = E(y) + E (2.1) 

where y is the dependent variable, E(y) is the deterministic component of the model 

and E stands for a random error that expresses random unexplained phenomena. It 

is assumed that the random error is normally distributed and independent for every 

observation. The deterministic component of the model is- for linear regression- the 

sum of the independent variables multiplied by a coefficient fk 

Expressed in a mathematical formula, we get 

(2.2) 
Deterministic Component Random Error 

where f3o denotes the y-intercept, when the function is plotted. For a First-Order 

(Straight-Line) Model, the coefficients have a geometrical meaning which is shown in 

Figure 2.1. 

7 



f(x) 

: f31 - (slope) 
I 

T 

(30 - (i ntercept) : 
I 

..L 

F igure 2.1: First-Order Model 

In order to find the best solution for the deterministic portion, we want to minimize the 

error component to get the most accurate fit, so we basically want to find 

(2.3) 

where the hat denotes, that the value is an estimation. For any given datapoint i, we 

can now calculate the difference between the prediction and the actual value. This value 

is called the residual of the ith given point: 

(2.4) 

The sum of squares of all the residuals can then be expressed 

SSE= t [Yi - (/30 + f31x1 + ... + f3kxk) r (2.5) 
i=l 
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and has to be minimized for the best fit. Hence, the method is called the Method of 

Least Squares. 

To solve the problem, (k + 1) equations1 have to be solved, which is very complex. 

Therefore, regression analysis is often carried out using a computer. To numerically 

solve the equation, matrix algebra is applied, using the following matrices: 

Yi 1 X11 X21 Xkl /30 

Y2 1 X12 X22 Xk2 S= /31 
Y= X= 

Yn 1 Xln X2n Xkn ;Jk 

Y is the matrix of all the given data points we want to fit the regression model for , 

X gives the matrix of the independent variables. The l s in the first column denote a 

variable xo , which represents a variable for the ,Bo-coefficient (intercept). 

Using the matrices, the equation for the least squares reads 

(2.6) 

where the transpose of the matrix X is denoted XT. Solving for S using the matrix 

algebra, we can calculate the estimated coefficients {Ji: 

(2.7) 

1
That is k independent variables and ,80. 
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To determine the Sum of Squares Error and the variance of the random error of the 

sample data, following equations can be used: 

SSE 

SSE 
n - Number of f3 parameters in the model 

2.1.1 Independent Variables 

(2.8) 

(2.9) 

Independent variables for regression models can basically be divided into two categories, 

depending on the information they provide. 

Quantitative Variables are variables that describe a numerical value, i.e. Truck Vol­

ume, \Veight or other countable parameters or properties. 

Qualitative Variables are variables that express a property that is not countable. 

These variables mainly have different levels, with no values in between. Some 

examples are Gender (male, female), Area Type, Road Type etc. 

For numerical purposes, qualitative variables with two levels are recommended to be 

encoded as follows (for example Area Type): 

if Ur ban Area 
(2.10) 

if not Urban Area (Rural Area) 

The simple reason for this is, that only one {3-coefficient has to be calculated for the 

variable. Using different encoding is possible but would lead to two coefficients - one for 

each level. If one level is set to zero, the coefficient for this level can be omitted. For 
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more than two levels, an incremental encoding is recommended, with one coefficient for 

every level. 

2.2 Model Quality and Parameter Testing 

After the general methodology of regression analysis has been shown in the previous 

sections, we now want to determine whether our solutions are accurate and how to test 

for the significance of single parameters as well as for the whole model. 

2.2.l Coefficient of Correlation 

The term correlation expresses whether one variable is related or even linearly associated 

with another. The degree of of relation or association can be determined by calculating 

the Coefficient of Correlation which is often denoted r and is calculated 

SSxy 
r = ---r==::;;;::;;= 

JSSxxBSyy 
(2.11) 

where SSxx =I: (xi - x) 2
, SSyy =I: (Yi - fi) 2 and SSxy =I: (xi - x)(Yi - fi). 

The value of r always ranges from -1to1 , independent of the units of the variables. Values 

close to -1 or 1 denote a very strong linear relationship between the two variables, as all 

data points fall on the least square line. Values around 0 imply very little to no relation. 

Negative values of the Coefficient of Correlation express a decreasing value of x with an 

increasing value of y. In the literature, this is often referred to as Negative Correlation. 

The Coefficient of Correlation can only be utilized for linear relationships between two 
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variables. For more complex regression models or mult iple variables, t he Coefficient of 

Determination (Section 2.2.2) is used instead. 

2.2.2 Coefficient of D etermination 

To determine the overall accuracy of a regression model, the {multiple) coeffi cient of 

determination, R2 , gives a measure of t he fi t . Assuming t hat t he parameters Xi are not 

significant for the prediction of y, a good prediction for y would be just t he mean y. 

Hence, the sum of squares of t he deviations ( S Syy) for every Yi would be almost equal 

to t he sum of squares error (SSE) (see Section 2.1). 

The mult iple coefficient of determination is then defined 

R2 = 1 - SSE for 0 ~ R2 ~ 1 
SSyy 

(2.12) 

(2.13) 

The R2 values expresses the accuracy of fit , whereas 1 denotes a perfect 2 fi t and 0 implies 

a total lack of any fi t . For simple linear regression models with only two variables, t he 

Coefficient of Determination is equal to the square of t he Coefficient of Correlation 

(Section 2.2.1) R 2 = r2 . 

The disadvantage of t his coefficient is that the data has to have significantly more data 

points than parameters, otherwise t he R2-values is forced to 1 (perfect fit ) , only if t he 

number of data points equals the number of parameters. 

2
That would imply, t hat the regression line found would pass through every data point. 
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For t his reason, another measure for t he accuracy of fit of a regression model is int ro­

duced, which is based on t he R 2 value: the adjusted R~ -value, which is defined 

R2 = 1 - n - 1 (1 - R2) 
a n-(k+l) 

(2.14) 

where n denotes the number of data points and k the number of parameters used in the 

model. It should be noted that, because of the first t erm, the R~-value can not be forced 

to a perfect fi t, as it is penalized by t he number of variables that are used in t he model. 

Therefore, it provides a better measure, especially for smaller datasets. 

2.2.3 P arameter Test (t-Test) 

To test if a parameter has a significant contribut ion on the regression model, a so called 

t-Test is utilized. Wit h this test it is possible to test for the significance of t he parame-

ters. 

To set up the test, it is hypot hesized that a parameter Xi has no contribution of any 

significance to the regression model. 

Therefore, the Null Hypothesis 

Ho: (No significance of t he parameter) 

is tested against the Alternative Hypothesis 

(Significant influence on the model) 
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by calculating the t-value for the parameter and testing it against a a confidence interval 

of the t-Distribution. 

The t-value for the parameter can be calculated using the matrices introduced in Sec-

. 2 1 as information regarding the standard errors can be obtained from G = t10n . , 

Denoting the matrix values of G as aij, the standard errors of the ,8-coefficients calculate 

to s {Ji = s ,,;a:0. 

The t-value of the parameter can then be obtained calculating 

(2.15) 

So, if !ti >ta, the Null Hypothesis (not significant) has to be rejected and the parameter 

is assumed significant to the degree of the confidence level. 

+--==-~~~-1--~~~~~J_~~~~~~~~~~~~t 

ta 0 Rejection 

Region 

Figure 2.2: One-tailed Rejection Region for Ho 
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2.2.4 Analysis of Variance (F-Test) 

To test for the general acceptance of a model, one could assume that carrying out t-test 

for each parameters might be sufficient. Even if all parameters do not contribute to the 

model, one might still reject the ull Hypothesis (f3i = 0) incorrectly for a parameter. To 

avoid this phenomenon, a global test is found for the whole model, called the F-test. 

The Null Hypothesis 

Ho : f31 = f32 = ... = f3k = 0 

is tested against the Alternative Hypothesis 

Ha : At least one of the f3i is unequal to zero 

with the F-value which is calculated using 

F 
Mean Square for model 
Mean Square for error 

SS(Model)/k 

SSE/ [n - (k + 1)] 

R2/k 
(1 - R2)/[n - (k + 1)] 

(2.16) 

(2.17) 

and tested against an Fa-value with v1 = k and v2 = n - (k + 1) degrees of freedom that 

is obtained from the F-table or from statistical software. 

If F > Fa , the Null Hypothesis is rejected. This means that at least one of the parameters 

accounts for the model, making it legitimate. It should be noted that this outcome does 

not prove that the model is of any good accuracy-but only that it explains a significant 
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latl·on The parameters can be tested for in detail wit h the t-test according to corre · 

Section 2.2.3. 

0 Rejection 

Region 

Figure 2.3: Rejection Region for the F-test 

2.3 Prediction using Regression Models 

When having found an appropriate (legitimate) and sufficient regression model for t he 

data, we might want to use the model to estimate or predic~ dependent variables we only 

have the independent variables for . Generally, we have two different kinds of predictions 

we want to make: 

Estimating the Mean means that we want to predict the Mean (E(y)) within acer-

tain confidence level. For example, if we want to predict t he occurrence of a Mul-

tiple Truck Presence (MP) event and we have a model that uses the Average Daily 

Truck Traffic ( ADTT) as independent variable, we want t o estimate the average 

number of occurrences of MP events for a certain volume with a specified confi­

dence level. This would be used when we want to predict the mean MP occurrence 

frequencies for multiple bridges that have the same parameters. 
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Estimating a particular value means, that we want to predict the occurrences of 

MP events only for one particular bridge (that we want to estimate the loads for) 

within a confidence interval. It is obvious that for this prediction the confidence 

interval will be wider than for the mean. 

For the prediction model introduced in Section 5.4, the latter case will be used, as 

the model targets to evaluate site-specific MP occurrences. Both prediction cases are 

graphically shown in Figure 2.4. 

Actual Yp of particular bridge 

95% Prediction Interval for Mean 95% Prediction Interval for Predictor 

Mean E(y), f) 

Figure 2.4: Mean and Prediction Intervals 

For both kinds of estimation, we can find the prediction mean E(y) and the prediction 

value f), by utilizing our least squares model. Both of the points will be on the regression 

line, hence we can use the values for which we want to predict for Xi = xPi in the formula 

of the regression model: 

(2.18) 

For the confidence interval, we need the standard deviation of both values. As it is nearly 

impossible to find the actual standard deviation, we assume, that()= s (see Section 2.1) 

is sufficient. 
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Using the matrix notation int roduced in Section 2.1 ,the (1 - a) prediction interval for 

the mean E(y) is 

(2.19) 

and for a particular value f) 

(2.20) 

with 
1 

a= 

It should be noted that a prediction t hat is outside the range of the regression model is 

dangerous, as the outcomes might be erroneous and do not represent the actual data. 

For example, a term x2 might give an accurate curvature for the range of t he data. 

However- for a greater range, this term represents a parabola as shown in Figure 2.5. 

2.4 Multiple Regression Methods 

2.4.1 Stepwise Regression 

To find an appropriate model for the regression analysis, the t-Test (see Section 2.2.3) is 

applied to ea~h of the parameters to test for a significant association . When performing 

the t-Tests, a structured process is recommended . 
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f (x) 

-.......... .. .......... Actual Data Gradient 

Predicted Data Gradient 

Prediction Area Out of Range 

Figure 2.5: Limited Accuracy of Predictions outside the range 

One approach for a structured process is a stepwise regression, where multiple regression 

models are ·calculated with one parameter added each run. After each run, all the 

parameters are checked for significance utilizing the t-Test. Non-significant3 parameters 

are removed from the model. In a next step, a further parameter is added and the model 

is re-run and the parameters are checked for significance again. 

A good method of visualizing the steps is a table, that contains the parameters with 

which the models have been run and the coefficient of determination (R2-value, see 

Section 2.2.2) or other quality measures to track the convergence of the the accuracy of 

fit. An exemplary table is shown in Table 2.1. 

Addit ional to the table, convergence plots can be provided, plotting the measure of fit 

(R2
) or the mean square of the errors (MSE) against the iterations. 

3"N . .fi " h fi on-s1gm cant in t is context means, that the parameter is not signi cant to a 
certain level of significance that we chose prior to the calculations. This level might 
be 90%, 953 etc. 
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Table 2.1: Exemplary Table for Stepwise Regression 

Iteration Variables in the Model R2 
1 X1 .15 
2 X1, X2 .24 
3 X1, X2 , X3 .32 
4 X1, X2 , X3 , X4 .32 
5 X1 , X2 , X3, X5 .47 
6 

2.4.2 Nested Models 

When a good model with significant parameters is found, the question might arise 

whether second-order interaction terms play an important part in a regression model. 

These additional terms might, for example, describe a certain curvature in the data and 
1 

might be an exponent ({Jjxf ) , a root (f3jxf) or the logarithm (f3j logn Xi) of the data. 

Their significance can be tested for with the t-Test, but that would only be appropriate 

for the various parameters, but not for the whole model (see Section 2.2 .4) - hence, the 

F-Test is utilized. 

The model with added terms is called the complete or full model, whereas the model 

without the terms is call the reduced or nested model, as it is nested within the complete 

model. Hypothesizing that the complete model does not have a better or more accurate 

fit than the nested model, the Null Hypothesis 

Ho: {Jg+l = f3g+2 = ... = f3k = 0 (No contribution of added terms) 
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is tested against the Alternative Hypothesis, that the complete model provides better 

accuracy 

Ho : At least one of the added terms has significant impact. 

The F-value is calculated 

F 
(SSER - SSEc)/Number of added (J's 

MS Ee 
(SSER - SSEc)/(k - g) 

SSEc/[n - (k + 1)] 
(2.21) 

where SSER is the sum of squares error of the reduced and SS Ee is the sum of squares 

error of the complete model and MS Ee is the mean squares error of the complete model. 

(k-g) denotes the number of added (3 in the complete model, (k+ 1) is the total number 

of (J's in the complete model and n denotes the total sample size. 

The F-value calculated is tested against an Fa-value, which is retrieved from the F-table 

or software with 111 = k - g degrees of freedom for the numerator and 112 = n - ( k + 1) 

degrees of freedom for the denominator. 

This Fa-value represents the significance level that we want to test for. If F > Fa, the 

Null Hypothesis is rejected and at least one of the added parameters in the full model 

has significant impact and therefore makes the model valid. 
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Chapter 3 

Review of the Literature 

As bridges are costly structures with high maintenance costs, but also high significance 

for public life, designers try to optimize bridges in terms of cost-effectiveness and safety. 

For that reason, the assumptions of the live load are crucial to be most accurate, but 

still provide a high level of safety. The problem about bridge loading is that precise 

traffic modeling is a very complex task. The significant increase of traffic during the last 

decades and changes in the traffic pattern and composition make this task even more 

difficult. 

Hence, a lot of research has been done on the determination of bridge loading. ev­

ertheless, studies only dilatory deal with the most relevant loading case explicitly, the 

Multiple Truck Presence (MP) . 

Multiple Presence means the simultaneous presence of more than one truck on a bridge 

at the same time. For single lane bridges, the only MP loading case occurs, when one 

truck is followed by one or more other trucks with a gap distance smaller than the span 

length-so that all the trucks participate in the induction of structural response. For 

more than one lane, additional loading cases exist for multiple trucks being in adjacent 

lanes. One of the most influential loading cases is the Side-by-Side event, where two 
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ks are located next to each other on a bridge. If the trucks are no exactly next to 
true 

each other, the trucks can be considered Staggered (Gindy and Nassif, 2007). Figure 3.1 

gives an overview over MP events with two trucks. 

( Single J ( Following ) ( Leading ) ~ 

a) Single b) Following 

(Following) (Following J 

( Leading J ( Leading J ~ 
c) Side-by-Side d) Staggered 

Figure 3.1: Possible Loading Patterns involving two trucks (symetrical loading patterns 
are also possible) , a) Single, b) Following, c) Side-by-Side, d) Staggered. Adapted 
from Gindy and Nassif (2007) 

To determine t he Maximum Load, it is essential to look at the traffic that passes over 

a bridge. In general, the modeling of Traffic Flow can be divided into three main cate-

gories 

• Traffic Flow Simulation (i.a. Monte Carlo Simulation) 

• Traffic Flow based on a measured dataset 

• Traffic Flow represented by statistical methods (Convolution Models) 

This Chapter presents an overview of various existing Live-Load Models that consider 

Multiple Presence either explicit ly or implicitly. 
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Another crucial point is the extrapolation of the maximum response per unit time an­

alyzed to the life-span maximum response of the bridge. Several different methods will 

be introduced as they are an essential part of the models. 

3.1 Multiple Presence Live-Load Models 

3.1.l Ghosn and Moses 

In their study (Ghosn and Moses, 1986) , a load model for short to medium span bridges 

is proposed. For this purpose, a convolut ion model is found that randomly generates 

traffic data based on traffic data sets to predict the number of loading cases utilizing 

a truck slot model. Each lane of a short to medium span bridge is separated into two 

38ft slots, where a truck can be placed and a gap of 30ft which is observed to be the 

minimum gap between the trucks (Moses and Garson, 1973) . 

A loading event occurs, when at least one of the four slots is occupied by a truck. The 

different slot loading patterns are shown in Figure 3.2. Utilizing data from Ohio (0 DOT) 

from the studies from Moses and Ghosn in 1983 and 1985, a headway model was found, 

based on the findings shown in Figure 3.3. The probabilities whether or not a MP event 

occurs are determined from the headway model. The Figure (3.3) shows a histogram of 

the gap times between the trucks for each loading case. 

The trucks participating in a loading event are also based on probability methods con­

cerning the gross vehicle weight, assuming that 20% of all trucks are single unit trucks 

and 803 are semi trailer trucks. With this assumptions, the probability of maximum 

loading events and the correlated maximum moments (due to superposition of the influ­

ence lines for every truck) per day can be determined for average truck volume of 2000 
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Figure 3.2: Possible Slot Loading Patterns (after Ghosn and Moses, 1986) . Loading 
patterns which are symmetrical according to the lane are also possible. 
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Figure 3.3: Headway Distributions for the MP events (after Ghosn and Moses, 1986) 
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trucks per day (Moses and Ghosn, 1983). For higher volumes, the model is extrapolated. 

For low volume sites, the number of maximum loading events reduces. 

With an average of 2000 trucks per day, the maximum loading case for the life-span (in 

this case 50 years) of the bridge can be found by extrapolating the number of loading 

events to approximately N = 35 x 106
. Applying this value to the distribution of the 

maximum loading moment, they get 

Gmax(50years) = [Fx(x)]N (3.1) 

where Fx(x) denotes the cumulative distribution function for one event . With the as­

sumptions and the preliminary work described above, a formula is developed to calculate 

the median value of the maximum bending moment in 50 years. The formula reads 

11-1median = amW* H (3.2) 

where H is the variable of interest for MP events. It is a random variable that describes 

overloading and incorporates MP loading of vehicles. H depends on truck volume and 

span length. 

Based on these results , Ghosn and Moses develop a method to adjust the AASHTO 

Bridge Design Code with new safety factors and design loads. 

3.1.2 N owak 

A statistical method for the assumption of Bridge Live-Load was developed by Andrzej 

S. Nowak, who widely published on the topic of load modeling. Many publications by 
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For multiple presence loading, Nowak and Hong consider Following and Side-by-Side 

multiple truck occurrences. For both cases, assumptions (based on observations) of the 

frequency of occurrence and the weight correlation are made for the trucks involved. It is 

stated that every 10th truck is followed by another truck with a headway distance of 50ft 

or less. These trucks are uncorrelated with regard to weight and are assumed to be the 

7.5 year maximum truck and an average truck. Every 50th truck is involved in a following 

event and partially correlated to the other, where one is the maximum 1.5 year truck and 

the other on the maximum daily truck. Every lOOth truck is followed by another one 

with a full wight correlation, where both are the maximum nine-month trucks. Table 3.1 

gives a brief summary of the MP occurrence frequencies used by Nowak. 

Plotting the normalized moment against the span for a single truck and the correlation 

assumptions made for 15ft and 30ft headway distance, it is found that for shorter spans to 

about 120ft, a single truck triggers the largest reaction of the bridge, whereas - depending 

on the headway - for longer spans, two fully correlated trucks controlled (Nowak and 

Hong, 1991) , as shown in Figure 3.5. 

For Side-by-Side occurrences of trucks, two trucks travel in adjacent lanes with a reduced 

weight compared to one single truck. From observations it is concluded, that every 50th 

to lOOth truck is involved in a Side-by-Side event ( owak and Hong, 1991). Is is also 

noted that every 50th truck has no correlation (with regard to weight) to the truck in 

the adjacent lane, therefore one truck is assumed to have the maximum 1.5-year lane 

load and the other one the average load. Every 250th truck is partially correlated and 

the weights used for calculation are the maximum three month and the maximum daily 

truck. A full correlation occurs every 500th truck and the utilized truck weights are the 
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(after Nowak and Hong, 1991) 
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5 nth maxima for both trucks. An overview over the MP frequencies and full weight 
1. -mo 

1 tl·on probabilities can be found in Table 3.1. corre a 

Table 3.1: MP and Weight Correlation Probabilities after Nowak 

Following 
Side-by-Side 

MP Freq. 
103 

1- 23 

Weight Corr. 
103 
203 

Total 
13 

0.2- 0.43 

Calculating the corresponding moments for the load pattern, it is found out that the 

loading case of two fully correlated trucks controls. Nowak and Hong state that the 

maximal 1.5-month truck used for a fully correlated Side-by-Side occurrence induces a 

moment of about 853 compared to the maximal 75-year truck, which is used for the 

Single Truck load modeling. 

3.1.3 Moses 

In the NHCRP Report 454 (Moses, 2001) , Moses reviews the Live-Load Model developed 

by Nowak in a former HCRP Report (Nowak, 1999) and calibrates the live load factors 

for Highway Bridges based on the truck database by Nowak (Section 3.1.2). Also a model 

for the occurrence of Side-by-Side Multiple Truck Presence is developed. 

First, Moses introduces the proposed 3S2-design truck (AASHTO, 1994) and compares 

it to the Ontario Truck Database (Agarwal and Wolkowicz, 1976) , that owak utilized 

for his work (Section 3.1.2). Even though the truck data is not fully normally distributed 

and the trucks are not 3S2 vehicles, these assumptions can be made and Moses calculates 

the AASHTO 382 design truck weights for multiple span lengths and find a good fit with 

the average weight W = 68 kips and a standard deviation of ow = 18 kips, which is 
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't ·mi'lar to Towak's outcomes using the HS20 design truck times the average moment 
qui e s1 

response. 

For Multiple Truck Presence events, namely the Side-by-side events, he recapitulates 

the assumptions as introduced in Nowak and Hong (1991) (see Section 3.1.2), stating 

that no references were given in the paper , no studies have been made on truck weight 

correlation and that the Ontario data represents a very high average daily truck traffic 

(ADTT) , that makes Multiple Presence events more likely. 

Despite these objections, he incorporates the assumptions and finds the governing loading 

case to be Side-by-Side event with two fully correlated trucks. After Nowak and Hong 

(1991), every 15th truck is involved in a Side-by-Side events and every 30th Side-by-Side 

events incorporates two fully correlated truck, implying the probability of P = 1/450. 

Hence, the maximum weight in this case is represented by the weight of the maximum 

2-month weight for both trucks. 

The number of MP events can be calculated 

NMP = (ADDT/5) x 365days x years x Ps;s (3.3) 

where ADDT/5 represents the upper 203 of the trucks and P5 ; 5 the probability of MP 

events (1/15 after Nowak and Hong (1991)). The variate t of the probability (l/NMP) 

is found to be 4.09 in a normal distribution. 

With those values, the maximum weight for a 75-year Side-by-Side event for a 3S2 truck 

is calculated 

Wrmax = Wr + t X <7Wr = 260kips (3.4) 
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This is in a reasonable range, as the tot al load after Nowak (Nowak, 1999) is 286 kips. 

Compared t he AASHTO Bridge Design (AASHTO, 1998) - where no reduction factor 

is applied for mult iple presence loading - the t otal load is 384 kips. 

As stated above, owak's assumption for the frequency of mult iple t ruck presence events 

are based on engineering assumptions. Stating t hat every 15th heavy truck (upper 203 

of truck population) is involved in a Side-by-Side event would imply, that every t hird 

truck of the whole population is involved. This seems by far too high , as Moses (Moses 

and Ghosn, 1983) finds t hat only 13 to 23 of the trucks occur at the same time. For this 

reason, he int roduces a simple occurrence model which is dependent on the average daily 

truck traffic (ADTT). This model omits factors like traffic speed, road grade, platooning 

etc., but gives a numerical approach of calculating the number of multiple occurrences. 

Assuming that t rucks can move freely in the right two lanes of the traffic stream, that 

the average speed is 60 mph and that the length of an average truck is 60ft , the average 

spacing is 

Avg. Spacing (ft) = 88ft /sec x 108, 000/ ADTT (3.5) 

and the average number of slots between two t rucks is 

Number of Slots = [88ft /sec x 108, 000/ ADTT]/60ft = 158, 500/ ADTT (3.6) 

A further assumption is made, implying that for every t ruck in the right lane, 0.25 t rucks 

use the passing lane. Incorporating all t he above mentioned assumptions, the probability 

of Side-by-Side events can be calculated as 

0.25 x ADTT -6 
Ps/s = 

158 400 
= 1.578 x 10 x ADTT 

' 
(3 .7) 
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Table 3.2 shows the probabilit ies for Side-by-Side events for various ADTT-values. These 

values are very low compared to t he 0.33 assumed by Nowak (Nowak and Hong, 1991). 

Moses states that platooning of t ruck (average 5 t rucks per platoon) could increase t he 

values by a factor of five. Moses conservatively proposes the probabilities as shown in 

the third column of Table 3.2. It should be noticed t hat by doing so, he basically adapts 

the values from Nowak (Section 3.1.2) 

Table 3.2: P5 ; 5 -values for various ADTTs 

ADTT 
20000 

5000 
2500 
1000 
100 

Equation 3. 7 
0.0316 

0.008 
0.004 

0.0016 
0.0001578 

3.1.4 Crespo-Mingui116n and Casas 

Proposed 
N/A 
0.33 
N/A 
0.01 

0.001 

Crespo-Minguill6n and Cases present a model which is completely based on a simulation 

method of t raffic they developed (Crespo-Minguillon and Casas, 1997) . Their work 

can be subdivided into the actual simulation of t he t raffic and the ext rapolation of the 

extreme values to determine the maximum bridge responses . 

The authors give an overview over t he current t raffic simulation methods and generally 

classify into three categories: 

• Theoretical Models 

• Simulation of static traffic (mostly based on observed data) 

• Simulation of real traffic flow 
' 
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where the latter are assumed to be the most complete models-even though many models 

are not general models but are developed for a certain purpose such as the prediction of 

maximum load effects or the dynamic analysis of bridge structures. 

The authors develop a simulation model of real traffic which is suitable for a broad variety 

of applications, which is globally valid and adaptable to site-specific circumstances, but 

simple enough not to over-capacitate modern computers. For that purpose, they find the 

correlations for the most important parameters, like vehicles in one lane, vehicles' type, 

etc. For the site-specific adapt ion, the average daily traffic (ADT) and t he percentage 

of trucks are ut ilized, as they can be easily found in WIM datasets. As the overlapping 

of vehicles in a model is a commonly known source of error in t raffic simulation , the 

algorithm developed avoids t hose situations. The authors summarize all the requirements 

stated above into two basic t asks: 

• Estimation of the load effect s due to real traffic simulation and 

• Extrapolation of the maximum values found per reference t ime unit (one week) to 

the life-span of the structure (100 years). 

The model developed for the simulation of traffic accounts the mean daily t raffic flow 

(ADT) and calibrates it for daily and furthermore for hourly variation. For t he now 

hourly traffic, a binomial decision is made whether the highway is congested or not. This 

decision is influenced by t he previous (weekday and hour) and the intensity of traffic for 

each is derived from theoretical density curves. Further the types of vehicles are chosen 

randomly by a Markov-chain process which is merely influenced by the site parameter 

given (percentage of t rucks, determined from WIM data). For t he last step, headways, 

velocities, geometries and weights are assigned. Additionally t he authors implemented 
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an algorithm that allows overtaking and passing of vehicles, making the model even more 

realistic. 

3.1.5 Caprani, O'Brien and McLachlan 

Caprani, O'Brien and McLachlan (Caprani et al. , 2007) develop a statistical method to 

calculate accurate load extrapolations and to determine governing loading cases. 

Evaluating the conventional method of linearly extrapolating the cumulative distribu­

tion functions (CDF) of all bridge responses (as, for example, utilized by Nowak and 

Hong (1991)) , the authors identify that the assumption of independent and identically 

distributed (iid) loading events is violated, as, for example, loading events with multiple 

trucks (Multiple Presence events) are more complex than loading events with only one 

truck. The MP events incorporate distributions for the number of trucks, the geometric 

properties and the location of the trucks on the bridge. Therefore, the conventional 

methods might be inaccurate for extreme value extrapolations. 

Conventionally (as also described in Ghosn and Moses (1986)), the bridge span is par­

tioned into j slots on the bridge, with a maximum number of trucks nt. The probability 

of load event i being the maximum loading event for a time period, S is less than some 

values. For nd loading events per day, the probability equates to 

(3.8) 

where Fj(s) denotes the cumulative distribution function of s and fj is the probability 

of occurrence for event involving j trucks. Even though the number of loading events 

per day varies, the utilization of the average gives a sufficient accuracy. 
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1 ·ng their method for the evaluation of W1M data, they find that MP events in­
App y1 

1 
. g 4 trucks are not governing for maxima of shorter periods of time, but become vo vm 

more significant over the period of time, as shown in Figure 3.6- this is a very important 

finding that should be considered in the future calibration of Bridge Design Codes. 
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Figure 3.6: Daily Maxima by Event Type (after Caprani et al. , 2007) 

3.1.6 Guzda, Bhattacharya and Mertz 

Guzda, Bhattacharya and Mertz (Guzda et al ., 2007) propose a model to estimate the live 

load of bridges by visually counting trucks and estimating Multiple Presence occurrences. 

Their study is .based on a total of 2.5 hours of videotaped traffic on a highway near a 

bridge in Delaware. All gap distances are not exactly measured but estimated during 

the analysis of the videotapes. This might be source of inaccuracies. 

Stating that MP events with gap (rear bumper to front bumper) distances of more than 

two truck lengths do not have an impact on the maximum load, they found that 6.43 of 
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nted trucks are involved in a following event. Figure 3. 7 shows the gap distances 
the cou 

of the Following events from their study. 
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Figure 3.7: Gap Distances for Following events (after Guzda et al. , 2007) 

Defining Side-by-Side as two trucks in adjacent lanes with a headway (front bumper 

to front bumper) separation of maximal two truck length, it was found that 7.63 of 

all trucks were involved in a Side-by-Side event. For smaller headways they found the 

Side-by-Side events to involve 6.03 of all trucks when the maximum headway was 1.5 

truck lengths and 4.43 with a headway of one truck length, respectively. All the MP 

occurrence probabilities are summarized in Table 3.3. 

Table 3.3: MP Occurrence Probabilities after Guzda et al. (2007) 

Following 
Side-by-Side 

:::;; 2.0 Trucks 
6.43 
7.63 

Headway 
:::;; 1.5 Trucks 

N/A 
6.03 

:::;; 1.0 Trucks 
N/A 

43 

For a validation, their model is benchmarked against a simple Poisson based headway 

model. This model is a Poisson Pulse Model that generates truck traffic in each lane 
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based on a Poisson Distribution with a constant rate Ai and a random magnitude Xi . 

Even though it is stated that this Poisson model might not be accurate on multi-lane 

highway traffic, they find their outcomes to be in the same range as the analytical 

solution. 

3.1.7 G indy and Nassif 

In their paper, Gindy and Nassif (Gindy and assif, 2007) develop a method to de­

termine Multiple Truck Presence statistics from Weigh-in-Motion data. Their database 

contains of 48 directional WIM sites, geographically dispersed all over Iew Jersey. This 

is a previous version of the database used in this study and described in greater de­

tail in Section 4.3. The average daily truck traffic (ADTT) is derived from the WIM 

data and the sites are categorized into Light (ADTT<l ,000 truck per day), Average 

(1,000< ADDT<2,500) and Heavy (ADTT>2,500). 

For the multiple truck presence, Gindy and Nassif consider the four most common loading 

cases for bridges: Single, Following, Side-by-Side and Staggered shown in Figure 3.8 and 

also address, that parameters like truck volume, span length, area- and road type etc. 

have influence on the occurrence of multiple truck presence events. From their data 

analysis, a mean weight Wµ = 45 kips and a 95th percentile weight Wg 5 = 79 kips are 

determined, which is about the same range as other studies (i.e. Nowak and Hong, 1991; 

Moses, 2001) . 

To determine the probability for the Multiple Presence events, the truck traffic is simu­

lated for multiple span lengths of 20-200ft by using the timestamp, the length and the 

lane of travel of each truck. The timestamp is accurate to 1/lOOth of second for each 
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Figure 3.8: MP Loading Cases (after Cindy and Nassif, 2007) 

truck and therefore provides a high accuracy for the determination of entrance and exit 

times when simulating the traffic over a bridge. This accuracy is about 11.4 in for a 

truck with a speed of 65 mph. Rounded to the next full second, the accuracy would 

decrease to 95ft at the same speed and would not be suitable for the analysis. 

Events with more than two simultaneous trucks on the bridge are discarded as they are 

not part of the study. Figure 3.9 exemplary shows in influence of the Volume (ADTT) for 

a 120ft span. For higher volumes the probability of single trucks on the bridge decreases 

and consequently the probability of a Multiple Truck Presence increases at different 

slopes per loading case. Similar analysis is done to determine the influence of some of 

the parameters (in particular: area and road type and span length) stated above. It was 

found that the major parameters for the occurrence of MP events are the truck volume 

(ADTT) and the span-length, while area and road type only had a slight effect . The 

results of the MP analysis are summarized in Table 3.4. 
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Following 
Staggered 
Side-by-Side 

Truck Volume 
Light Average Heavy 

3% 6% 8% 
2% 4% 6% 
1% 1% 1% 

Table 3.4: MP Occurrence Probabilties after Gindy and Nassif (2007) 

For the weight correlation between two trucks involved in a Multiple Presence loading 

case, it was found out t hat average volume sites have a higher tendency of scattering 

than sites with lower or higher volumes. 

3.2 Summary and Discussion 

Many different methods have been introduced which present effective ways of calculating 

bridge live-loads. The methods represent a good cross-section of the different types of 

models available. All of the methods explicitly or implicitly show that the multiple pres-

ence of two or more trucks will trigger the maximum structural responses of bridges. 

Even though a variety of different models exist, many of them incorporate assumptions, 

which have not been validated but considered to represent the reality with a good accu­

racy. Nowak, for example, makes assumptions about the percentage of Multiple Presence 

events. He also assumes weight correlations between those trucks based on "Engineering 

Judgement". Moses identifies those assumptions as too conservative and introduces a 

simple model for the determination of multiple truck presence (MP) events- by apply­

ing similar assumptions (e.g. Number of Trucks traveling in the passing lane). When 

proposing MP occurrence probabilities for sites with a higher ADTT, he conservatively 

adapts Nowak's assumptions. 
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Figure 3.9: The Probability of Occurrence plotted against the Truck Volume for a 120ft 
Span (after Gindy and Nassif, 2007) 

Methods which simulate t he t raffic or the truck t raffic respectively, are mostly based on 

Monte Carlo Simulations. The parameters simulated are fi t ted distributions of measured 

or observed data. In many cases, ·w:rM data is ut ilized for that purpose. The model 

have the advantage t hat they accurately reflect the t raffic and therefore can be used 

not only for the load estimation but also, for example, for the design of signals or other 

traffic-related issues. Simulation models show increased accuracy for higher complexit ies. 

In that context, Crespo-Minguill6n and Casas present a very complex method, t hat 

considers many parameters like e.g. daily and hourly t raffic or congestion and free-fl.ow 

cases when simulating traffic fl.ow. 

A big disadvantage of this is, that due to t he need for high complexity for accurate re­

sults, the simulation requires many parameters which are not necessarily available. Also, 
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. 1 t i· on algorithms generate a very high processing load even on high-end computers, 
s1rnu a 

so that large-scale simulations can take weeks or longer and t herefore can become costly. 

MP events are implicit ly accounted for when the bridge responses are simulated. 

Hence, an approach to directly determine the probabilit ies of MP events, without the 

inaccuracy of major assumptions, that bypasses the utilization of complex traffic flow 

rnodeling would provide a fast , accurate and cost-efficient way of predicting site-specific 

expected live-loads. 

Guzda, Bhattacharya and Mertz present a method that is based on visual count ing of 

MP events from a videotape of a traffic camera. This method is limited to only 2.5 hours 

of traffic in one site, as the data analysis is very complex task with many possible sources 

of errors and additionally extremely t ime-consuming. Utilizing this method for longer 

periods of time and/or multiple sites is not practicable. 

The study of Gindy and assif also targets at the determination of MP probabilities. 

In their study, the t ime-stamp of WIM datasets is used to identify MP events. This 

method proves to be effective for larger amounts of data from multiple sites and over 

longer periods of t ime. Their methods and algorithms will be utilized for the analysis of 

WIM data further in this study. 

All of the above studies that identify MP occurrence probabilities deliver results in the 

range of around 8- 10% for Following events and around 1- 4% for the Side-by-Side events 

(compare Tables 3.1, 3.2, 3.3 and 3.4) , depending on the exact definition of the various 

MP loading cases and t he underlying data. 
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Chapter 4 

Weigh-in-Motion Systems 

To develop a Multiple Truck Presence Model, Weigh-in-Motion (WIM) data is used to 

assess the traffic volume and the associated trucks weights. WIM data is widely available 

nearly throughout all U.S. states and has been collected for more than two decades. 

The main advantage of ·w:rM systems for our purpose is, that they provide unbiased truck 

data. Heavy vehicles often avoided or bypassed the traditional weigh stations located 

at the highways. However, the WIM sensors are often times not even recognized by the 

drivers. Another advantage accompanying this is that the trucks do not have to stop, as 

the data is collected while the vehicles are in motion. This is beneficial as the processing 

rote increases (a sensor measures within a fraction of a second, while the clearance at 

weigh stations is a matter of minutes) and the vehicles can avoid unnecessary stops. 

WIM stations also require less personnel and therefore have lower maintenance costs 

than traditional weighing stations. 

A slight disadvantage of WIM stations is, that they are less accurate than the traditional 

scales. After initial calibration, the wheel load is accurate to about ± 13 , according to 

the National Bureau of Standards (ASTM, 2002). During the lifecycle of a system the 
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inaccuracy will increase to about ±2%, before maintainance and re-calibrat ion is required 

(McCall and Vodrazka, 1997; ASTM, 2002). 

Another disadvantage is the reduced informat ion that is collected at the WIM stations. 

Information about engine (fuel) type, year and model of the vehicle or origin and des­

tination are not available. As this information is neither required nor relevant for this 

study, they can be neglected. 

The following Sections describe the various WIM systems that are most commonly used 

and the site parameters necessary for inst allation. Also, an int roduction to t he 'NIM 

database will be given t hat has been used for t his study. 

4.1 WIM Sensors 

Even though many different methods of measuring traffic flow and hence various types 

of sensors exist, t he most commonly ut ilized sensors t hroughout t he U.S. are 

• Piezoelectric sensors 

• Bending Plate sensors and 

• Load Cell sensors. 

The American Society for Testing and Materials (ASTM) classifies WIM systems into 

four different categories from I to IV according to speed range, accuracy and capabili ty 

of the whole system (ASTM, 2002) . A photo of t he three types of WIM sensors is shown 

in Figure 4.1. 
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Figure 4.1: The different types of \i\TIM sensors 

4.1.l Bending Plate sensors 

Bending Plate sensors are scale systems that consist of a metal plate with strain sensors 

applied underneath . \Vhen vehicles run over those sensors, t he deflection is measured 

and the dynamic load is calculated from t he deflection . The actual static load is then 

calculated using calibration data, speed and other parameters. 

The usual setup of WIM stations with Bending Plate sensors consists of at least one 

scale and two inductive loops. Normally, one scale is placed into each wheelpath of a 

lane and two inductive loops are used. The upstream inductive loop detects approaching 

vehicles, while the downstream loop is used for speed measuring. Some stations have an 

optional sensor for t he axle spacing. A sample setup is shown in Figure 4.2. 

4.1.2 Piezoelectric sensors 

Piezoelectric sensors detect t he vehicle loads by a change in voltage that is induced when 

the sensor is pressurized by t he wheels. From the change in voltage the dynamic and 

static loads can be calculated using the calibration and speed data. 
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Inductive Loop 

T Traffic Flow Direction 

Figure 4.2: Schematic sample setup of a Bending Plate WIM station, adapted from 
McCall and Vodrazka (1997) 

A typical WIM station setup normally includes one or two Piezoelectric sensors for t he 

loads as well as one or two inductive loops for system initialization and speed detection. 

4.1.3 Load Cell sensors 

A single Load Cell sensor normally contains two scales next to each other, measuring axle 

weights simultaneously by summing up the values of the two scales. A normal system 

setup consists of a Load Cell sensor, an off-scale sensor to determine whether vehicles do 

not pass the Load Cell correctly and at least one inductive loop for speed measurement. 

A normal layout mostly also has an axle sensor and two inductive loops for the same 

reasons stated in Section 4.1.1. 
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4.1.4 Site Specifications 

When a particular location of interest is determined for setting up a WIM station, 

some site specifications are required for adequate and precise measurements. These 

specifications vary according to the WIM system type (I-IV) and include geometrical as 

well as geographical parameters. The most important parameters are listed below and 

the actual values for the types can be found in the Standard Specification for Highway 

Weigh-in-Motion (WIM) Systems with User Requirements and Test Methods (ASTM, 

2002). 

• Horizontal Curvature 

• Roadway Grade 

• Cross Slope 

• Lane Width and Marking 

• Pavement Design 

For a WIM station setup, it should also be considered that power and communication 

lines are needed as well as an adequate drainage. It should be noted that it is preferable 

to setup a WIM station in a spot where the traffic is uniform. That means, that slow 

traffic (congestion) and multiple lane changes (in areas near exits) is to be minimized 

for most accurate measurements. 
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4
.2 Data Collected by WIM systems 

After a WIM station is installed and calibrated, various traffic data can be collected. 

In this section, only the parameters relevant for this study is presented. Generally the 

information gained can be partitioned into two main components: 

Site Information is data that is not gained from the sensors. This data describes the 

WIM station and the site specifications. This information includes 

• Location of the WIM station, 

• Area type (Rural or Urban Area) , 

• Roadway type (Major or Minor Road) , 

• Local Speed Limits, 

• Number of Lanes and 

• FHWA (Federal Highway Administration) Functional Class. 

When developing a traffic prediction model, these factors may have a significant 

impact on a model found. 

Vehicle Information is data, that is collected by the sensors. The following list is an 

excerpt of the most relevant data that is collected by the sensors 

• Timestamp (with an accuracy to 1/lOOth of a second), 

• Speed, 

• Travel Lane, 

• Vehicle Class, 
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• Vehicle Length, 

• Gross Vehicle Weight (GVW) and 

• Axle Data (Number of Axles, Axle Loads, Axle Spacing). 

The data collected by the sensors is mostly logged into a continuous binary file. 

The data can be downloaded from the stations using a data modem and then be 

converted to a ASCII-standard comma separated file. 

4.3 WIM Database 

The Multiple Presence prediction model introduced in Section 5.4 is based on WIM data 

provided by the New Jersey Department of Transportation ( J DOT). The data was 

collected from 1993 to 2003 from 55 WIM stations geographically dispersed over the 

state as shown in Figure 4.3. 

For this analysis, only two consecutive months of truck data were utilized, as the process­

ing of the data is very time-consuming. Hence, seasonal trends are not eliminated from 

the data. The database for the two months includes a total of about 1.4 million trucks 

and includes WIM stations with a broad variety of parameters as shown in Table 4.1 and 

is therefore a good basis for the development of a prediction model. Some sites are at 

the same geographical location but are separated into directional sites. This was done 

to be able to identify directional trends in the weight distributions. 
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Table 4.1: Overview of the NJ Database 

No. of 
Lanes Area Type 

2 Rural 
Urban 

3 Rural 
Urban 
Unknown 

4 Rural 
Urban 

Major Roadway Minor Roadway 
Site Volume t 

Low Avg. High Low Avg. High 
8 4 12 
12 7 2 2 1 

1 
1 
1 

1 

2 

1 
t Low Volume: < 1000, Avg. Volume: >1000 and < 3000, High Volume: > 3000 

4.4 Data Filtering 

The logging systems collect data of all the vehicles that pass the sensors without in-depth 

consistency checks. Even though the systems work with a high accuracy, some of the 

collected data is subj ected to errors due to (for example) a sudden change of speed while 

passing the sensors, a change of lanes within the measuring section or slow traffic due a 

congested road. 

Furthermore, for this study, only truck data was analyzed so that a set of filters had to 

be applied to the raw data, as described below. 

Error Code = 0 The WIM systems are capable of diagnosing the sensors. If an error 

occurs, an error code is written into the collected dataset. An error code 0 means 

that no errors occurred. 

Speed <10 mph For very slow traffic, the WIM sensors tend to be inaccurate, so very 

slow traffic is filtered out. 
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Figure 4.3: WIM Stations in New Jersey (after Gindy and Nassif, 2007) 

Speed > 120 mph It is very unlikely for a truck to travel faster than 120 miles per 

hour and so it is assumed that this data is subjected to errors. 

Class > 13 Class 13 is the highest class of the FHWA classification system. So if a truck 

is classified higher than Class 13 it is likely to be an exceptional heavy vehicle that 

needs a special permit and is not relevant for common traffic or the dataset is 

subjected to errors. 
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GVW <15 kips If the Gross Vehicle Weight (GVW) is smaller than 15 kips the vehicle 

should not be considered a truck but a heavy panel truck and is not relevant for 

this study. 

AXW <2 kips If the weight of one axle (AXW) is less than 2 kips, the vehicle can be 

considered a car or a panel truck and again is not relevant. 

AXW >70 kips An axle weight of more than 70 kips is most likely an exceptional 

heavy vehicle with a special permit or the dataset is subjected to an error. 

Sum of AXS >LE If the sum of all axle inter-spaces (AXS) is greater than the total 

length of the vehicle (LE), the dataset is considered erroneous. 

The filtered data was then separated by direction as the original data was recorded in 

one file with a parameter for the direction. This filtering is interesting as directional 

differences in the traffic pattern occur (i.e. commuter traffic etc.). 

4.4.1 Filter Results 

Applying the filters to the raw WIM data from the NJ DOT, around 753 of all datasets 

were filtered out meeting one of the criteria stated above. About three percent of the 

data was filtered out because of errors detected by the WIM-system and an error-flag set 

to other than zero. The speed filters and the vehicle filter only filtered out a marginal 

share of far less than one percent each. Around 553 of all the WIM data was filtered 

out by the Gross Vehicle Weight (GVW) filter. This is due to light truck traffic that is 

usually lighter than 15 kips. For the axle-weight filters, less than one percent of the data 

was filtered out. With the filter of the axle-weight being higher than 70 kips, no entries 

were detected. 
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The consistency check for t he t ruck lengths filtered out about 15% of the data. For many 

k the overall length was not equal to the sum of the axle spacings. This might be true s, 

due to a change in speed while passing the measuring section or to lane changes, where 

the trucks did not pass the sensors properly. The remaining about 25% of the data 

can be considered clean truck data, that will be used for further analysis. Table 4.2 

summarizes the fil ter results of the New Jersey data. 

Table 4.2: Results of the Data Filtering 

Filter 
Err-=/= 0 
Speed < 10 mph 
Speed > 120 mph 
Class > 13 
GVVv < 15 kips 
AXW < 2 kips 
AXW > 70 kips 
AXS < 3 ft 
AXSl < 5 ft 
L:AXS > LE 
Total 

4.5 Weight Distribution of the NJ data 

% Filtered 
3.0883% 
0.0202% 
0.0006% 
0.0325% 

55.8205% 
0.3408% 
0.0000% 
0.5973% 
0.0241% 

15.3588% 
75.28313 

The weight distribut ion of t ruck traffic is important for estimating t he weight correlation 

among multiple trucks. A first visual impression of t he weight distribution is given in 

Figure 4.4. The data of the gross vehicle weight was partit ioned into 100 intervals. The 

relative frequency denotes the number of occurrences divided by the total number. 

Even though, the weight data of t rucks is not normally distributed , many models fit the 

weight data to a normal distribution with the parameters µ (mean) and <J (standard 

53 



0.06 

0.05 

0.04 

>-u 
c: 
QJ 0.03 ::l 
CT 
~ 

u.. 

0.02 

0.01 

0 

0 50 100 150 200 

GVW [kips] 

Figure 4.4: Histogram of the NJ GVW data 

deviation) for further analysis. When fitting the normal distribution to the NJ data, the 

mean is found to be µ = 46.4 kips and the standard deviation is CT = 24.5 kips. 
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Chapter 5 

Multiple Presence Determination and Model Development 

As discussed in the previous Chapters, a determination of loading cases that involve 

more than one truck (MP) from WIM data provides an accurate base for further loading 

evaluation. To determine the different loading patterns for short to medium span bridges, 

the timestamps of the trucks are utilized to check whether other trucks are in the vicinity, 

as described in Cindy and Nassif (2007) . The information of the travel lane is also 

considered to identify the MP event type. 

This Chapter defines various loading patterns and describes an algorithm to determine 

those events from the New Jersey WIM data. The outcomes are presented and discussed. 

This analysis considers MP events with only two trucks, as this is the most likely to be 

the governing loading case for short to medium span bridges (40-200ft). 

5.1 Multiple Presence Loading Cases 

To identify loading patterns involving multiple trucks, these loading patterns have to be 

clearly defined. In this study, the detection of five basic loading patterns is implemented. 

These are namely 
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Single Truck: A Single Truck event occurs, when only one truck at a time passes the 

bridge. Jo trucks in the vicinity are close enough to be on the bridge at the same 

time. 

Following: Two trucks pass the bridge at the same time. Both of the trucks travel in 

the same lane with a Gap1 distance, which is less than the bridge span. 

Side-by-Side: In a Side-by-Side event, two trucks pass the bridge at the same time but 

travel in different lanes with an overlap of at least half of the body length of the 

leading truck. These events are most likely to generate the maximum expected 

bridge responses. 

Staggered: A Staggered event is basically the same as the Side-by-Side event with the 

exception that the overlap is less than half of the body length of the leading truck. 

Other: Events that involve at least three or even more trucks are not considered in this 

study. For further studies t hese events are nevertheless detected and classified as 

"Other". 

An overview of all the loading cases considered can be found in Figure 5.1. 

5.2 Multiple Presence Detection Algorithm 

With the loading cases clearly defined in Section 5. 1, the algorithm from Gindy and 

Nassif (2007) was adapted to determine the Multiple Presence events from the various 

information of the WIM data (see Section 4.2). For this purpose, the t imestamp was 

1 
Gap denotes the distance from the rear bumper of the first truck to the front bumper 
of the following truck. Headway is the distance from the front bumper of the leading 
truck to the front bumper of the following truck. 
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Figure 5.1: Definition of the Loading Patterns (symetrical loading patterns are also 
possible and considered in the study), a) Single, b) Following, c) Side-by-Side, d) 
Staggered. Adapted from Gindy and assif (2007). 

utilized. The timestamp can be used to calculate the entrance and exit times for a 

simulated bridge as accurate as 11.4 in for a speed of 65 mph when it is exact to 1/lOOth 

of a second. A timestamp only being precise to the full second would produce an error 

of more than 90ft , which exceeds the smallest chosen span length by a factor of more 

than two. 

Assuming that the trucks maintain constant speed and stay in the travel lane in which 

they entered the bridge, the entrance and exit times of each truck can be calculated for 

various simulated span lengths. If one truck is still on the simulated bridge while another 

truck enters, a MP event is detected. 
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As the \;v!M data also contain information about the lane of travel, it can be determined 

whether an MP event is a Following event (trucks are in the same lane) or if it is a 

Side-by-Side or Staggered event. The latter two cases are detected by calculating and 

comparing the overlap distance between the two trucks to the length of the leading 

truck. If the overlap is greater than or equal t~ half the truck length, the loading case is 

considered a Side-by-Side event. For a gap distance smaller than half the truck length, 

the event is considered a Staggered event (cp. Section 5.1). 

Trucks that have been involved in one MP event are discarded by the algorithm and 

can not be involved in further MP events to avoid a numerical exaggeration. MP events 

where three or more trucks were detected to be on the simulated bridge at the same time 

were considered as "Other". These other events were not analyzed in this study. 

The algorithm was run for every truck and every WJM location in the database with 

span lengths from 40ft to 200ft with steps of 20ft, so that sufficient data is available 

for every location and for multiple span lengths. Figure 5.2 shows a flowchart of the 

algorithm implemented. 

5.3 Results of the Analysis 

The algorithm was run with all datasets available from the NJ DOT and therefore a 

representative number of Multiple Presence events was detected. As some parameters 

of the WIM station were known- namely the average daily truck traffic ( ADTT) , the 

number of lanes, the area in which the WIM station is located (rural or urban) and the 

importance of the road type (major or minor highway)- the next step was to identify 

their association with the occurrence of Multiple Truck presence events. As the outcomes 
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Figure 5.2: Flowchart of the MP Detection Algorithm 
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·te similar for all span lengths, a 120ft span was chosen for t he visualization of the are qui 

influence of the parameters. 

The most obvious parameter is t he truck volume t hat passes a bridge. As shown in Fig-

5 3 the occurrence of Single t rucks decreases with increasing t ruck volume, whereas ure · , 

the Multiple Presence events increase. This is logical as the space on a highway is limited 

and with increasing t ruck volume, t rucks are likely to be closer together and t he Gap 

distances decrease, respectively. 

Figure 5.4 shows the results of the analysis split by area type, namely urban (circles) or 

rural (squares). Lines showing t he trend using simple linear regression (see Section 2.1) 

were added to visualize similarit ies or differences between the parameters. Except for 

the Following events, the t rendlines seem to have the same parameters and therefore no 

significant influence of the area type is evident. A detailed analysis is done in the Model 

Development (Section 5.4) . 

The same was done for t he importance parameter (major or minor highway). In t his 

case, the trends vary significant ly except for the Staggered events. This denotes a sig­

nificant influence of t he highway type. Again, a more detailed analysis is performed 

in Section 5.4. It should be also noticed, that for higher t ruck volumes of more t han 

- 1,700, no data is available for minor highways. This is obvious as t he classification 

of highway importance highly depends on the traffic volume. Therefore, t he trend line 

for minor highway may not be accurate for volumes greater than - 1,700, as regression 

extrapolation by be erroneous (see Section 2.3). 

The influence of the span length is shown in Figure 5.6. For Single events the rate of 

occurrence decreases with longer spans, as expected, because the longer t he span, t he 
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P
robable is the occurrence of two or more t rucks, as the t rucks remain on the 

more 

bridge for longer t ime when assuming constant speed. For the Following and Side-by-

Side events, an increase of the MP probability is detected for longer spans for the same 

reason. oticeable is the slight decrease of t he occurrence probabilit ies for longer spans 

for Side-by-Side events. This phenomenon is due to t he fact that for longer spans, the 

arrangement of the t rucks on the bridge is more variable t han for shorter spans. Hence, 

the probability of overlapping by more than half the truck length becomes less likely, 

and more complex loading patterns occur as t he span lengths increase. 

Even though the number of lanes is another parameter that has to be considered in the 

development of a prediction model, no other study was found where analysis of Mult iple 

Presence events was performed for more t han two lanes (cp. Chapter 3). As only one 

site in the database had four lanes and six sites had three lanes, a graphical t rend is not 

noticeable, as seen in Figure 5.7. Nevertheless, the number of lanes will be included and 

tested for significance in Section 5.4. 

The algorithm introduced by Gindy and Nassif (2007) (Section 3.1.7), which ut ilizes the 

time-stamps to ident ify MP events was implemented and the New J ersey WIM database 

was evaluated for Mult iple Truck P resence events. The results show that the probabili ty 

of Multiple Presence events is far below the assumpt ions made be Nowak and Hong 

(1991) (Section 3.1.2) and vary according to the loading cases defined in Section 5. 1. 

The Side-by-Side event , which is commonly referred to as the governing loading event, is 

least probable according to the outcomes. This is due to the definit ion t hat t he overlap 

of the two trucks in adj acent lanes has to be more t han half of t he t ruck length of t he 

leading truck to be considered as Side-by-Side. The probabilit ies found maximize at 

around two percent . These values are also less than the values observed by Guzda et al. 
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(
2007

) (Section 3.1.6). In the latter case, this might be due to the different definit ion 

of Side-by-Side events in their study (Headway distance of maximal two t ruck lengths) . 

Tables 5.1 , 5.2 and 5.3 give an overview over the average MP occurrence probabilit ies 

found for each MP loading case for multiple spans and mult iple ADTT ranges2
. 

Also, some parameters and their influence were ident ified. As expected, truck volume, 

the highway importance and the span-length seem to have the most influences. The 

location of the WIM site seems less important . 

2
Truck Volume Ranges are Light (ADTT< lOOO) , Average (1000< ADTT< 3000) and 
High (ADTT> 3000) 
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Table 5.1: Average Following MP Probabilities for three representative spans 

Following 
Span Light Average High 
40 0.093 0.163 0.403 
120 1.643 2.793 4.693 
200 3.663 5.903 9.243 

Table 5.2: Average Side-by-Side MP Probabilities for three representative spans 

Span 
40 
120 
200 

Side-by-Side 
Light Average High 
0.203 0.633 1.393 
0.203 0.593 1.203 
0.183 0.543 0.993 

Table 5.3: Average Staggered MP Probabilities for three representative spans 

Staggered 
Span Light Average High 
40 0.453 1.423 3.533 
120 0.923 2.803 7.053 
200 1.223 3.723 9.083 
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The dashed line represents the trend. 
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S.4 Development of a Prediction Model 

When assessing the load for a bridge, the occurrence probabilities of Multiple Truck 

Presence events have significant impact on the maximum expected loading cases. The pa­

rameters like Span length, Area- and Roadtype or I umber of Lanes as discussed in Sec­

tion 5.3 are known to the designer. An accurate truck volume (ADTT) can be estimated 

via in-situ traffic counts or from WIM stations from the vicinity of the bridge. Weight 

Distributions can either be obtained from the literature or- even more accurately­

determined from WIM data. The latter gives more accurate results for the site-specific 

requirements. 

In the previous Section 5.3 , the probability of occurrence for Multiple Truck Presence 

loading cases was derived from WIM data. The underlying WIM database from the 

NJDOT has a great variety of sites, each with different parameters (see Section 4.3). 

Therefore, this WIM data will be used to develop a site-specific prediction model for 

Multiple Presence events based on regression methods in the following Sections. 

5.4.1 Data Encoding 

The parameters used in the regression models are described above. For better clarity, 

these parameters are abbreviated in the following Sections as shown in Table 5.4. 

Span-length, truck volume and number of lanes are quantitative parameters, while Area­

and Roadtype are qualitative parameters and hence have to be encoded into levels (ap­

propriately 0 or 1) for numerical analysis for the reasons stated in Section 2 .1.1. 
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Table 5.4: Abbreviated Parameters 

Abbr. 
s 
v 
L 
A 
R 

Parameter 
Span-length 
Volume (ADTT) 

umber of Lanes 
Area-Type (Rural, Urban) 
Road-Type (Major, Minor) 

Therefore, the encoding was chosen as follows for Areatype 

if Urban 

if not Urban (=if Rural) 

and for Roadtype 

if Major 

if not Major ( = if Minor) 

5.4.2 Simple Linear Regression 

(5.1) 

(5.2) 

To develop an appropriate prediction model for each of the three loading cases, regres-

sion analysis is utilized. To check for the significance of each parameter, the stepwise 

regression methods are used as described in Section 2.4.l. After each step, a t-test (Sec­

tion 2.2.3) is performed to test for the significance of the parameter added. The Null 

hypothesis, that the (Ji of the added parameter is equal to zero is tested against the alter­

native hypothesis f3i # 0. The percent values for "Significance" given in Tables 5.5, 5.6 

and 5.7 denote the probability that rejecting the Null Hypothesis was right , according 

to the t-test. 
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The significance threshold for added parameters is set to 95%, meaning t hat all added 

meters with a probability of the right decision to reject Ho of less than 953 will para 

be declared as "not significant" and omitted in the next step . This threshold value is 

commonly used and provides a sufficient level of accuracy. 

After a model has been found, the overall model is assessed with an F-test (see Sec­

tion 2.2.4) and the model quality is ident ified using the adjusted R~-value (see Sec­

tion 2.2.2). A residual analysis reveals unequal variances and hence the need for a 

stabilizing transformation . 

Following 

The first stepwise regression was performed for the Following events, as shown in Table 

5.5. In the first step, t he Span length is significant within a level of more than 993. 

Hence, this parameter is also included in the next st ep. In step four, the added parameter 

Areatype failed to reach the predefined 953 significance and is considered insignificant . 

This means that the contribution of this variable is negligible for the model accuracy. 

Therefore it is omit ted for further steps. 

Table 5.5: Stepwise Regression for Following 

lter. Model 1 - Pr(> ltl) R 2 
a 

1 y = f3o + f31S > 993 0.5231 
2 y = /30 + /318 + f32 V > 993 0.7262 
3 y = /30 + f31S + f32 V + (33 L > 993 0.732 
4 y = /30 + /318 + /32 V + (33 L + (34 A not significant 0.7315 
5 y = /30 + /318 + /32 V + (33L + (35 R > 993 0.7406 

Figure 5.8 shows the convergence of the adjusted R~-value and the Sum of Square Error 

for the Following events. It is evident that the most significant increase in the model 
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acy is gained by adding the parameter Traffic Volume parameter to t he model. accur 

This confirms the assumption from the graphical evaluation in Section 5.3. 

a) R~ b) Sum Square Error 
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Figure 5.8: Convergence Plots of a) R~ and b) Mean Square Error for Following events 

To validate the overall model legitimation, an F-Test was performed. The Null Hypoth­

esis that all f3i = 0 is tested against t he Alternative Hypothesis, that at least one f3i # 0. 

The F-value of the model found in interation 5 equates to 353.6 which is much higher 

than the value found from the F-Distribution, which is 2.39. Therefore the ull Hy-

pothesis is rejected and the overall model validity is confirmed. Replacing the f3is with 

the values from the regression model (rounded to three decimal places) , the equation 

becomes 

YFollow = -3.702 + 0.0318 + 0.001V+0.616£+0.505R (5.3) 

with a residual standard error of 1.139 and returns percentage values for the Following 

occurrence probabilities. 
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Figure 5.9: Convergence Plots of a) R~ and b) Mean Square Error for Side-by-Side 
events 

The legitimation of the model found in iteration 6 is confirmed by the calculated F­

value from the model being much higher than the value from the F-distribution, namely 

426.9 » 2.39. 

Replacing the f3is with the values found from the regression model (iteration 6), the 

complete model reads 

YSide = -0.0570 + -0.0006V + 0.00038 + 0.0931L + 0.1132R (5.4) 

The coefficients are rounded to four decimal places and the equation returns the percent­

age of trucks involved in a Side-by-Side event with a residual standard error of 0.185. 

Staggered 

Also, for the Staggered event, a linear regression model was found by adding variables 

step by step as shown in Table 5.7. This analysis shows, that for this loading case the 
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Truck Volume is the most important predictor again. The influence of the Span Length 

tends to be slightly smaller than for the Following case but considerably higher than 

for the Side-by-Side events. This behavior was expected after the discussions above and 

in Section 5.3. Again, the Areatype does not have a great contribution to the overall 

accuracy of the model and therefore can be omitted. 

Table 5. 7: Stepwise Regression for Staggered 

Iteration Model 1 - Pr( > ltl) R2 
a 

1 Y = f3o + f31S 99% 0.05439 
2 y = f3o + f31S + f32V >99% 0.7337 
3 y = f3o + f31S + f32V + {33L >99% 0.8014 
4 y = f3o + f31S + f32 V + {33L + {34A not significant 0.801 
5 y = f3o + f31S + f32 V + {33L + {35R >99% 0.8082 

The convergence plots in Figure 5.10 are a good indicator for the importance of the 

Volume as a model parameter. For this loading case it can also be seen, that the Number 

of Lanes have a greater contribution compared to the other loading cases. However, this 

influence can be questioned as only one site with four lanes and ten sites with three lanes 

exist in the database, while all other sites have two lanes. 

Validating the model found in iteration 5, significant evidence is found that at least one 

of the ,Bi-coefficients is unequal to zero, as the computed F-value of 521.5 exceeds the 

value from the F-distribution (2.39) by far. The model equation after substituting the 

,Bis with the values found (rounded to four decimal places) from the model becomes 

YStag = -5.1787 + 0.01078 + 0.00l3V + 2.0935£ + 0.4661R (5.5) 

with a residual standard error of 1.016 and returns the percentage of trucks involved in 

a Staggered event. 
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Figure 5.10: Convergence Plots of a) R~ and b) Mean Square Error for Staggered events 

5.4.3 Regression with Logarithmic Terms 

The occurrence probabilities of Multiple Presence events are not assumed to increase 

linearly over increasing Traffic Volume or Span Length, but are expected to converge 

against a maximum value. Hence, additional Logarithmic terms for these parameters 

were introduced into the regression model. The logarithmic terms are based on the nat-

ural logarithm based on e. The terms are added to the best model found in Section 5.4.2 

and tested for legitimation using the F-Test introduced in Section 2.2.4 with the methods 

for the nested models, introduced in Section 2.4.2. 

In the latter test, the Null-Hypothesis, that the added logarithmic terms do not con­

tribute to the model accuracy, is expressed by assuming that the ,Bi-coefficients for the 

added logarithmic terms are zero. This hypothesis is then tested against the Alternative 

Hypothesis, that at least one of the added logarithmic terms is legitimate and contributes 

to the model. That means, in mathematical terms that at least one ,Bi-coefficient is un-
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equal to zero. The hypotheses are tested by comparing the calculated F-Values against 

the Fa-values from the F-Distribution with a significance level of a= 0.05. 

Following 

Adding logarithmic terms to the Following event data shows a slight increase in the 

R2-value. The equation for t he regression model for the Following events becomes 
a 

(5.6) 

The R~-value increases from 0.8331 found in the linear model to 0.8493 when the loga­

rithmic terms are used. The Null Hypothesis is rejected, as the found F-value of 27.3 

is much greater than the a = 0.05 significance level of the F-Distribution, which is 3.0. 

This means that at least one of the two added logarithmic terms contributes to the 

accuracy of the model. 

Side-by-Side 

For the Side-by-Side events the same analysis is performed, adding logarithmic terms 

for span-length and volume. Again, a slight increase in the model accuracy is found, 

as the R~-value increases from 0. 7752 to 0. 7907 when the logarithmic terms are added. 

Performing the hypothesis testing, that the reduced model has the same accuracy as 

the complete model leads to a calulated F-value of 19.13 which is by far larger than 

the a= 0.05 significance level of the F-Distribution, which is 3.0. Therefore, the Null-
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Hypothesis is rejected and at least one of the two added logarithmic terms has significant 

contribution to the model. 

Staggered 

Also for the Staggered loading case, logarithmic terms were added and the overall model 

accuracy increased slightly from a R~-value of 0.8082 from the linear model to a R~-value 

of 0.8171 when adding logarithmic terms. The hypothesis testing is again performed on 

the Staggered data and the calculated F-value from the model was found to be 12.8. 

This is again greater than the a = 0.05 significance level from the F-Distribution, which 

is 3.0. Again, the run Hypothesis is rejected in support of the Alternative Hypothesis 

that at least one of the added logarithmic terms has a /3i-coeffi.cient unequal to zero. 

5.4.4 Residual Analysis 

One of the major assumptions of the validity for regression models is the so-called ho­

moscedasticity of the residuals. Homoscedasticity implies that the residuals E all have 

the same variance a 2 . Unequal residual variances are called heteroscedastic. 

As the WIM data is traffic data, it might follow a Poisson-Distribution. For the re­

gression model above this becomes obvious if the residual variance increases for higher 

Volumes, as exemplary shown for the Following events in Figure 5.11 a). Hence, a het­

eroscedasticity is evident and the Following data follows a Poisson-Distribution. How­

ever, this phenomenon could not be observed for the Side-by-Side and Staggered loading 

patterns. 
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Figure 5.11: Residuals vs. ADTT for a) untransformed y and for b) JY-transformed 
y* for the Following event. 

To regain homoscedasticity, the dependent variable has to be transformed to stabilize 

the variance. A common transformation for Poisson data is a square-root transformation 

to achieve a approximately constant variance (Mendenhall and Sincich, 1996, p. 394) . 

So, the transformed dependent variable becomes 

y* = JY (5.7) 

and hence the overall model becomes 

(5.8) 

A plot of the residuals after transformation to stabilize the variance are shown in Fig­

ure 5.11 b). The variance of the residuals for the Following event now appears constant. 
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Utilizing the model for prediction, the values y* found have to be transformed back into 

the original units by using the reverse of the transformation, which is the square of y* 

for the Poisson data, so 

y = (y*)2 = .;;y2 (5 .9) 

The R~-values for the best models found in the Sections 5.4.2- 5.4.2 are compared to the 

results for the transformed data in Table 5.8. As stated above, only the Following event 

data seemed to profit from the transformation to stabilize the variance. 

Table 5.8: R~-values from untransformed y compared toy* for transformed data 

Loading Case Ri with y Ri with y* 
Following 0.7406 0.8331 
Side-by-Side 0.7752 0.6111 
Staggered 0.8082 0.6952 

The variances of the Side-by-Side and the Staggered events seemed already constant and 

therefore a transformation had no reasonable advantage for the overall model accuracy-

actually, a slight decrease in the model accuracy is detected when the dependent variable 

was transformed. 

5.5 Conclusions 

The regression models found for the three different Multiple Truck Presence loading 

cases are developed, tested for legitimacy and provide a good base for predicting the MP 

occurrences when certain parameters are known. 
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The /3i coefficients found and the known parameters can now be inserted into the equation 

as described in Section 2.3 to compute the occurrences of the Multiple Presence events 

within the intervals also described that Section. 

Adding logarithmic terms to the regression models increases the accuracy of all three 

models slightly but about 1- 2%. As a traffic model for practical application should not be 

overly complex, the logarithmic terms should be omitted, as the extra work to incorporate 

these terms is disproportionate to the gains in accuracy which are negligible. 

An extrapolation for Average Daily Truck Traffic Volumes higher than 5,000 should 

be executed with extreme caution and skepticism with regard to the results, as this is 

common pitfall in regression analysis: as the underlying regression model is a linear 

model, the MP probabilities could rise over 100% with a certain extemely high volume 

that is far out of range. 

A logarithmic model approaches a maximal value asymtotically, which might be below 

100%-but again: as this value is far out of range of the orginal regression region, it is 

most likely to be erroneous. 

Looking at the residuals in the regression model, values of up to ±2% occur. The regres­

sion model found will graphically result in a line which is representative for the data, 

with the actual datapoints scattered around that line, as it can be observed similarly in 

the plots in Section 5.3. Considering this effect, a rather complex equation will lead to 

reasonable results but is not very practical as the ,Bi-coefficients found have numerous 

decimal places. 

A good approach to solve this problem is implicitly given by Moses (see Section 3.1.3 

and Moses, 2001), as he categorizes the Side-by-Side event probabilities according to 
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ADTT intervals (cp . Table 3.2). This can be done for arbitrary intervals and levels of 

conservativeness with respect to the MP probabilties. 

An idea of the outline of a table for Multiple Presence occurrence probabilities is shown 

in Table 5.9. To use the Table, the ADTT interval is chosen and gives a base probability 

of the loading case, as the Volume was identified to be the most important parameter. 

The other parameters are found on the right and give additional probabilities, which are 

to be added to the base probability. 

No actual values are given in the table as it is just a suggestion how a table for practical 

engineers could be designed . For this study and the sake of consistency, the best linear 

models found for each loading case will be used for the further work and the applied 

example in Appendix A. 
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Table 5.9: Proposal for the Design of a MP Table for practical applications 

ADTT 1 o-500 500- 1,000 1,000- 2 ,000 

Base Probability I a% b% c% 

No. of Lanes 1 +d% +e% + f% 
2 +g% +h% +i% 

... . . 
00 

Span Length 0- 50ft +j% +k% +1% c....:> 

50- lOOft 

ma~~~ I ~~~% . . . . .. 
Road type +n% +0% 

minor 

Result Interval min I x% 
y% max 



Chapter 6 

Influence of the Gap Distances 

Another phenomenon that has not been subject to research in the literature reviewed is 

the influence of the gap or headway distances. For a Side-by-Side event, the maximum 

headway distance is defined to be one half of the length of the leading truck, so the 

influence is very obvious. 

For the other types of MP events (Following and Staggered), the gap or headway dis­

tances are more variable and might play an important role for the maximum bridge 

response. The two trucks produce higher responses when being closer together or fur­

ther apart depending on the loads of the trucks and the static system. In this Chapter, 

the influence of the gaps and headways for the most common static systems that are 

used for small to medium span highway bridges- namely a simple supported beam and 

a continuous beam with one support- is analyzed. 

The gaps or headways are normalized to the bridge span length to identify whether a 

threshold gap to span exists for the MP events to become irrelevant for the maximum re­

sponses. The analysis is performed for both Moments and Shear forces, and the outcomes 

are discussed. 
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6.1 Static Systems and Influence Lines 

The most common static systems for short to medium span highway bridges are either 

simply supported beams or continuous beams with one support at around midspan. This 

support is oftentimes the column between the directional lanes when one highway crosses 

another. These static systems are very simple to calculate and to design for. Figure 6.1 

shows the two static systems as models. 

a) Simply Supported Beam 

b) Continuous Beam 

Figure 6.1: The two most common Static Systems for small to medium span Highway 
Bridges. a) simply supported beam, b) continuous beam with one support 

The gap or headway distances are-within their definitions-variable over the span 

length. Therefore, the influence lines of the moments and the shear forces can be utilized 

for evaluation. Influence lines represent the variation of the effects or responses ( deflec­

tions, moments, shear forces) at a certain point when a load is moved over the structure. 

Multiple loads can simply be superimposed in linear systems. 

The placement of the load on the structure that induces the greatest responses can 

easily be determined from the influence lines. Figure 6.2 shows the influence lines of a 

concentrated load at midspan for a simply supported beam and a continuous beam with 

one support at midspan. 
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Figure 6.2: Influence Lines for the moments for a) simply supported beam and b) 
continuous beam with middle support 

6.2 Algorithm 

When a truck runs over the bridge, the resulting influence line can be superimposed with 

the influence line of the other truck that is involved in a Multiple Presence, as shown 

in Figure 6.3. To determine whether a MP event produces greater responses than one 

of the trucks on its own, the influence of the heavier truck is utilized and the influence 

of the lighter truck is added with a multiplication factor so that the total Response (R) 

becomes 

Rtotat = Rmax + a · R,nin (6 .1) 

This has the advantage that it is now easy to determine the influence of the lighter truck, 

as it is expressed by the factor a. For a equal zero, the influence of the lighter truck is 

negligible and the maximum response is merely produced by the heavier truck (i.e. at 
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midspan for the simply supported beam). For a greater than zero, both trucks induce 

the greatest response together. 

Figure 6.3: Superimposing Loads: The influence lines of each concentrated load can be 
added up to get the influence line of the whole system 

To determine the influence of the positions on the bridge or the headway distances, re­

spectively, the headways are normalized by division through the span length. A threshold 

gap or headway distance can now be found when a is plotted against the normalized span 

length. The point where all a-factors converge against zero is the threshold point . 

The concentrated loads shown in Figure 6.2 and 6.3 were used for illustration of the the­

oretical background. For the algorithm, the actual truck configurations of the database 

were normalized to the HS20 and HL93 loads and utilized for the calculations. 

6.3 Analysis and Results 

6.3.1 Following 

The analysis described above was executed for every Following event in the database for 

the maximum moment and maximum shear for a simply supported beam and for the 

maximum negative moment over the column for a continuous beam with one support . 
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Figure 6.4 shows the outcomes for the maximum moment for a simply supported bridge 

separated by span length for span lengths of 40ft, 80ft, 120ft and 200ft. It becomes quite 

obvious that the a-factor declines with greater gap over span ratio and converges to zero 

at 0.5 gap to span. For greater span lengths of more than 120ft, it is inevitable for 

small gaps (up to about 0.1 gap to span) that both trucks contribute to the maximum 

moments. For even greater span lengths, this value increases to about 0.2 . 

It should be noticed that in Figure 6.4 that only a-values are plotted that vary from zero 

due to clarity reasons. This represents only about 5- 73 of all a-values found- 93- 953 

of the a-values calculated are, in fact, equal to zero. 

For the maximum moments of a simply supported beam this means that the threshold 

of the second truck being influential is when the gap is less than 0.5 of the span length of 

the bridge. This is comprehensible when looking at the influence lines in Figure 6.3. 

For maximum shear for the simply supported beam, the threshold is voided again, as 

influences of the lighter truck occur for gap to span ratios longer than 0.5. This is also 

logical as it follows the influence line. Figure 6.5 shows a plot of a vs. gap to span for 

40ft and 200ft for the shear. Again a-values equal to zero were omitted in the plot to 

retain clarity. 

The influence of the lighter truck for maximum negative moments over a support of a 

continuous beam is also not limited to a certain threshold. This again is explainable with 

the shape of the influence line. Maximum negative moments are generated when each 

truck is at midspan of a field. Being closer together, the maximum moment becomes 

smaller. Hence, a wave-shape observed as shown in Figure 6.6 with the greatest influence 

of the lighter truck at around 0.5 to 0.8 gap to span. 
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Figure 6.4: Influence factor a for various spans (a) 40ft, b) 80ft, c) 120ft and d) 200ft) 
for the bending moments of a simply supported beam. It should be noted that for 
80ft, only every fifth , for 120ft, only every tenth point was plotted and for 200ft, 
only every twentieth point was plotted for clarity reasons. Values with a being zero 
were not plotted at all. 
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Figure 6.5: Influence factor a for various spans (a) 80ft and b) 200ft) for the shear 
forces of a simply supported beam. It should be noted that for 80ft, only every fifth 
point was plotted and for 200ft, only every twenty-fifth point was plotted for clarity 
reasons. Values with a being zero were not plotted at all. 

It should be noted, that for this loading case, no a-values were omitted in the plot, 

because of being zero. Hence for this loading case, the lighter truck is always influential. 

6.3.2 Staggered 

For the Staggered events, the same analysis was performed as was used for the Following 

events in Section 6.3.1. The outcomes are quite similar, as the Staggered loading case 

induces nearly the same responses of longitudinal to a bridge. Torsional bridge or beam 

responses are not part of this study. 

The only difference between Following and Staggered loading cases is that the trucks 

travel in adjacent lanes rather than in the same lane. In a Staggered event, trucks are 

allowed to overlap up to half of the truck length of the first truck. A greater overlap is 

considered a Side-by-Side event. 
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Figure 6.6: Influence factor a for 200ft for the negative moments of a continuous beam 
at a support . It should be noted that only every fiftieth point was plotted for clarity 
reasons. 

Figure 6. 7 shows the results of the analysis for a 200ft span for the three effects, Moment, 

Shear (for a simply supported beam) and Negative Moment (for a continuous beam 

with one support). Obviously, the results are very similar to the results found for the 

Following event for the reasons above. The only difference between the loading cases 

can be observed in a shift of the thresholds or the wave-shape, respectively, to the right. 

This shift can be most certainly traced back to the allowance of the overlap. For obvious 

reasons, Following trucks in one lane can not overlap but have a headway additionally to 
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the no-overlap criterion. The Staggered event can have an overlap which is per definition 

less than half of the length of the first truck. 

A threshold found is that the smallest gap to span ratio is 0.2 . Gap distances less than 

0.2 gap to span can be considered as Side-by-Side events. Figure 6.7 also shows, that 

the influence threshold of the Moments is shifted to the right by about 0.2 gap to span 

compared to the Following event . The same shift occurs for the Negative Moments, as 

the wave-shape peaks at about 0.2 gap to span to the right . The 0.2 gap to span shift 

would also theoretically apply to the Shear as seen in Figure 6.7 b). As a gap to span 

ratio of greater than 1.0 is not possible, no actual threshold can be found. 

6.4 Conclusions 

The influence of the gap distance between two trucks in a Following Multiple Presence 

event (with two trucks) did have an influence on the maximum bridge response for the 

moments of a simply supported beam. A threshold could be found that denoted the 

maximum gap distance between two trucks to be influential. A greater distance means 

that the heavier truck has a greater effect on the moment response when at midspan­

regardless of the other truck. For this loading case, the approach would have been very 

promising, as the analysis shows that for a 200ft span only around 30% of the Following 

loading cases have a gap distance smaller than 0.5 gap to span, while 70% of the gap 

distances were found to be between 0.5 and 1.0 gap to span. For smaller spans, these 

values obviously tend to be even less for <0.5 gap to span and larger for >0.5 gap to 

span, respectively. 
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Figure 6. 7: Influence factor a for a 200ft span for the Staggered event for a) Moments 
of a simply supported beam, b) Shear for a simply supported beam and c) Negative 
Moment for a continuous beam. It should be noted that only every tenth point was 
plotted for clarity reasons. 
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This apparent advantage is voided again, when looking at the shear forces of the following 

events for a simply supported span bridge. Here, the influence of the second (lighter) 

truck is evident up to a threshold at about 0.9 gap to span. Analysis shows that for a 

200ft span, around 90% of the gap distances are smaller than 0.9 gap to span, so that 

one can say that the threshold found is of rather theoretical nature and should not be 

included into a life-load model. 

For the continuous beam with one middle-support, no threshold value can be found , 

as the lighter truck always contributes to the the maximum bridge moment responses. 

The wave-shape of the plot in Figure 6.6 is obviously connected to the influence line in 

Figure 6.2. 

As the Staggered events are very similar to the Following event when looking at the 

longitudinal load effects, the outcomes resemble the results of the Following events anal­

ysis. A slight difference is found in the threshold and the wave-form of the Negative 

Moments, respectively. The thresholds or peaks seem to be offset by about 0.2 gap to 

span compared to the Following events. This can be most certainly explained with the 

different definitions of the loading cases, as the Staggered event allows overlapping of 

the trucks, while the Following event does not for obvious reasons. 

Recapitulatory, the analysis of the influence of the gap distances educed that the proba­

bilities of Multiple Presence Occurrences can not be narrowed down, as no threshold gap 

distance between the trucks exists that is applicable for all load effects (namely Moments 

and Shear). Even though many Multiple Presence events occur, where the heavier truck 

at the most adverse position on the bridge induces greater structural responses than 

two trucks with a certain gap distance, no distinctive threshold gap distance for all load 

effects can be determined. 
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For further analysis in this study, the full probabilit ies for MP occurrences will be used. 

The theoretical threshold for simply supported beams at about 0.9 gap to span is omitted 

on the conservative side. 
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Chapter 7 

Weight Correlation 

As stated in Section 3.2, not only the probability of occurrence of Multiple Truck Presence 

events are critical, but also the weight correlation between the two trucks involved, for 

determination of the maximum lifetime response. Nowak (Section 3.1.2 and Nowak 

and Hong (1991); Nowak (1993)) uses correlations that are assumed from the biased 

Ontario truck data (Agarwal and Wolkowicz, 1976) and therefore appear to be very 

conservative, as remarked by Moses (Section 3.1.3 and Moses (2001). Other models, 

based on simulation, treat the MP events entirely through the structural responses, 

without correlating the truck weights. 

For models that explicitly incorporate the Multiple Presence occurrence probabilities, 

the correlation between the truck weight is a crucial factor for precise maximum load 

prediction. Therefore, the weight correlation between the two trucks involved is deter­

mined throughout this Chapter. To determine whether the weight correlations depend 

on the event type, the analysis is performed separately for each of the three event types 

with the two truck weights involved into the MP event. 
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7.1 Methodology 

To find the correlation between the truck weights, a rather simple algorithm is utilized. 

The loads (GVW) of the two trucks involved in the MP event will be divided to find a 

ratio between the truck weights. For a full correlation between the truck weights, this 

ratio will be exactly one. 

Testing for the ratio to be exactly one would omit correlated weights that vary only 

marginally from the ratio to be exactly one, and the result will not re:(iect the real 

situation. Therefore, a threshold interval around one was implemented to also consider 

insignificant differences. 

An orientation for the threshold was given by the values that were found by Nowak 

(Section 3.1.2 and Nowak and Hong (1991) ). After a few tests, the most reasonable 

threshold was found to be around one percent difference. These values provide results 

that are in the same range as those found by Nowak. Weight differences from up to 

0.5 kips for 50 kips trucks seems acceptable, as a like event will definitely induce a 

great structural response, even though the weights are not fully correlated by theoretical 

means. 

To determine the percentage of fully correlated trucks, the weights of each loading case 

were divided and the ratio was checked against the interval. If the ratio is within the 

interval, a counter for fully correlated events is increased. After all occurrences of the 

particular MP event were checked, the ratio between the fully correlated events and the 

total number of events is calculated. 
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7.2 Results 

Analysis of correlation was performed for all MP events in t he database separated by the 

loading cases. To determine whether the span length also has an influence on the weight 

correlation, t he analysis was run again for two representative span lengths for each MP 

loading case. 

For the Following MP event, t he percentage of fully correlated t rucks according to t he 

definit ion above was found to be 2.4955%, which is about a quarter of the findings of 

owak, who found t hat every tenth t ruck in a Following event is fully correlated. The 

difference might occur because the Following event, according to Nowak, is defined by a 

maximum gap distance of 50ft (see Section 3.1.2) , while in this study the maximum gap 

distance for a Following event is the bridge span (see Section 5.1). Trucks of equal weight 

might not be able to pass each other and remain behind each other in close distance. 

This might explain why Nowak found the correlation to be as high as 10%. It should 

also be noted t hat owak only examined the upper heavy 20% of the t ruck population 

and based his assumptions on this data and visual observat ion. Figure 7.1 shows a plot 

of the gross vehicle weight (GVW) of the first t ruck against the GVW of the second 

truck for t he Follwoing events on a 200ft span. 

In this analysis, the correlation is found to be vice versa: for smaller spans, the correlation 

was found to be less t han for longer spans. A 60ft span showed a full weight correlation in 

2.043 of the cases, while a 200ft span showed to have 2.537% of full weight correlation. 

For the Side-by-Side events, a full weight correlation was found to occur in 1.58% of t he 

Side-by-Side loading cases. This is about in the same range as in owak's work, who 

finds a full correlation in 3- 5% of the Side-by-Side cases. The difference again might be 

98 



220 

200 

180 

160 
VI 
a. 140 6 

N 120 
.Y. 
u 
::J 

100 ~ 
~ 80 > • • • l.? 

60 

40 
) • • • • • • 

20 •• • 
0 

0 20 40 60 80 100 120 140 160 180 200 220 

GVW Truck 1 [kips] 

Figure 7.1: Scatterplot of the GVW of the first truck against the GVW of the second 
truck for the Following events on a 200ft span. For clarity reasons, only every fiftieth 
data point is plotted. The lines denote the interval that was defined to represent a 
full correlation. Points within the envelope are considered fully correlated in weight. 
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explicable with different definitions of a Side-by-Side event and the use of biased data of 

heavy trucks in Nowak's work. Again, t he correlation seems to increase marginally for 

longer spans, as the full correlation for a 60ft span occurs in 1.573 of all events and in 

1.6% of all the events for a 200ft span. 

The Staggered event shows a full weight correlation in 1.38293 of all Staggered loading 

cases. This could be explained, as in a Staggered event, the truck in the left lane is 

likely to be in the process of passing the assumed heavier truck in the right lane. As the 

process of passing tends to happen faster when the passing truck is lighter, the chance 

of being detected as Staggered event is more likely than to be detected as Side-by-Side 

event. Therefore, a full correlation in weight might be less likely. 

The difference in weight correlation only varies marginally with the span length. For a 

60ft span, a full correlation probability was found to be 1.373 and for a 200ft span, this 

probability increased slight ly to 1.403. 

All the probabilit ies for a full weight correlation for the two trucks involved for each 

loading event are given in Table 7.1. 

Table 7.1: P robabilities of a Full Weight Correlation 

Following 
Side-by-Side 
Staggered 

60ft 
2.03923 
1.57063 
1.37073 

200ft 
2.53693 
1.60043 
1.39983 

100 

total 
2.49553 
1.58253 
1.38293 

Nowak 
103 

3-53 
N/A 



Chapter 8 

Conclusions and Recommendations 

An extensive review of the literature revealed that basically three different approaches 

of live-load modeling for bridges exist, namely methods based on statistical methods 

(also referred to as "Convolution Models"), models based on simulation (i.a. Monte 

Carlo simulations) and methods that are based on sets of actual traffic data. The first 

two modeling methods normally involve deep knowledge of the statistical backgrounds 

(i.a. Moses and Ghosn, Section 3.1.1) or require a decent amount of numerical complexity 

(i.a. Crespo-Minguill6n and Casas, Section 3.1.4) to be applied for practical use. Methods 

based on traffic datasets (i.a. owak, Section 3.1.2) are found to be comparably easy to 

apply, but incorporate a lot of assumptions concerning the occurrence probabilities and 

the probabilities of a total weight correlation between the trucks involved in a Multiple 

Presence event . Other studies (i.a. Guzda et al., Section 3.1.6) develop methods to 

determine those probabilities from visual evaluation of videos of recorded traffic- which 

proves to be very time-consuming. Gindy and Nassif (Section 3.1.7) develop a method to 

determine the Multiple Presence probabilities from WIM data, which is widely available 

throughout the U.S. 
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Based on the findings of the latter study, a database was set up for ew Jersey WIM 

data. As only truck data is relevant for maximum live loads, the data was filtered to 

dispose of car data and faulty entries. The weight distribution was determined, and 

an algorithm based on the findings of Gindy and Nassif was implemented to detect 

the probabilities of Multiple Presence events in the NJ data. Based on the outcomes, 

a regression model was developed to estimate the MP occurrence probabilities based 

known parameters, such as traffic volume (ADTT), span length, number of lanes, area 

and road type (Section 5.4). Also, the probabilities of full weight correlation between 

the two trucks involved in a MP event were identified and found to vary slightly among 

the MP event types (Chapter 7). 

A closer look was taken at the gap distances between the two trucks in a MP event 

to determine whether a certain gap to span ratio denotes a threshold where the heavier 

truck induces a greater response on its own than when considered in an MP event. This is 

done by comparison of the maximum values derived from influence lines of the MP events 

with both trucks and the heavier truck by itself. The outcomes showed the threshold 

for the moments of a simply supported beam to be at a gap to span ratio of 0.5. The 

advantage of the the eventually lesser probability of "true" Following events is voided 

when looking at the shear forces for the same static system. For continuous beams with 

one support, no threshold could be detected. However, it was identified, that for this 

static system, the lighter truck is always influential. Similar results were found for the 

Staggered loading case (Chapter 6). 

The overall findings in this study proved that the assumptions made by Nowak (Sec­

tion 3.1.2) are overly conservative. The MP probabilities as well as the probabilities of 

full weight correlations were widely overestimated on the conservative side. Compared 

102 



to the outcomes of the simple model developed by Moses (Section 3.1.3) for Side-by-Side 

events, the resulting MP probabilities found in this study are in about the same range 

but even tend to be slightly less. Compared to the findings of Guzda et al. (Section 3.1.6) 

the MP probabilities for Side-by-Side events found in this study are again in the same 

range but slightly less. This slight variation may be due to the different definitions of a 

Side-by-Side event. 

Based on the findings in this study, a live load model was developed that only requires 

a few parameters to accurately predict the MP occurrence probabilities and full weight 

correlation probabilities. The regression model found can be replaced with a table for 

practical application, as proposed in Table 5.9. The probabilities of full weight correlation 

could be tabulated in a similar way for easy application. 

The two components- MP and full weight correlation probabilities- are a crucial base 

to evaluate site-specific bridge loading and are of major importance for the accuracy of 

the overall results . Figure 8.2 gives an overview over the work flow for the evaluation of 

MP bridge loading. The components of this study are highlighted. 

For further research, it is recommended to evaluate the loading cases that have been 

refered to as "Other" in the detection algorithm. These are loading cases with three 

or more trucks involved. Even though these loading cases are likely to have a small 

probability of occurrence, they might become relevant as maximum live-load for the life 

span of the bridge as identified by Caprani et al. (Section 3.1.5). 

For the analysis, two consecutive months of data from New Jersey were used, so seasonal 

and regional trends are not eliminated from the data. To validate the results found, 

other WIM data can be used to check for those trends. 
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As for the regression analysis, a closer look is to be taken whether the linear regression 

models can be replaced with Logistic Regression methods. Logistic Regression is a special 

model that is used to estimate or predict the probability of occurrence of an event by 

fitting data to a logistic curve. A logistic curve or function is a sigmoid curve. That 

means, an S-curve is modeled with some set of P. It equates 

1 
P (t ) =l +e-t (8.1) 

First, the growth is exponent ial and t han slows down and stops at maturi ty as shown in 

Figure 8. 1. 
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Figure 8.1: The logistic curve 

These methods are extensively used in medical and social sciences to predict probabili t ies 

of events and therefore seem suitable for the estimation of MP occurrence probabilit ies. 

The most apparent advantage of this method is that the probability values cannot exceed 

a 1003 or become less than 03 due to appropriate t ransformation of the dependent 

variable P (Yi = 1). 
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Figure 8.2: Flowchart of a site-specific bridge load evaluation. This study covers the 
first three steps highlighted. The accuracy of these steps is one of the most crucial 
parts for an accurate bridge live-load evaluation. 
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Appendix A 

A Practical Example 

In this Chapter, the outcomes of this study will be applied to evaluate the total probabil­

ities for an exemplary bridge to show a practical application of the work. This example 

is not supposed to deliver accurate design values but is to exemplary show how the work 

from the previous Chapters can be applied to a practical problem. 

In this example, a bridge is assumed that has that same weight distribution as the New 

Jersey data. The Average Daily Truck Volume (ADTT) is assumed to be 4,000 trucks 

per day. The highway is a major route, and the bridge is located in a rural area and 

has two lanes in each direction. The span length of the simply supported bridge will be 

lOOft. 

A.1 Determination of Multiple Presence Probabilities 

In a first step, the regression model found in Section 5.4 is utilized to determine the 

probability of the Multiple Presence events. With the parameters from above inserted 

in the Regression Model, following MP probabilities are found and shown in Table A.I. 
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Table A.1: Used P robabilit ies for the MP events 

Following 
Side-by-Side 
Staggered 
Single Trucks 

Exact 
3.3307463 
1.2658783 
5.137633 
90.26573 

Assumed 
3.53 
1.43 
5.33 

89.83 

A.2 Determination of the Probability of Full Weight Correlation 

After Iowak (see Section 3.1.2) and Moses (see Section 3.1.3) , the loading cases with t he 

largest bridge responses are those which incorporate two t rucks t hat are fully correlated 

in weight . Therefore, t he probability of full weight correlations was subject to evaluation 

in Chapter 7. The probabilities for full weight correlation for the three MP loading cases 

are determined from Table 7.1 in Section 7.2. To be slight ly conservative-and thus on 

the safer side-the probabili t ies are assumed as shown in Table A.2. 

Table A.2: Used Probabilities of a Full Weight Correlation 

Following 
Side-by-Side 
Staggered 

Table 7.1 
2.49553 
1.58253 
1.38293 

Assumed 
33 
23 

1.753 

These assumptions are not supposed to be a recommendation for general use, but are 

merely used for this example to ret ain clarity throughout t his example. 
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A.3 Total Probabilities 

The found probabilities from the last two Sections are now simply multiplied to determine 

the total probabilities of the Multiple Presence events with two fully correlated trucks. 

Table A.3 shows the results of this simple step. 

Table A.3: Total Probabilities of the MP events incorporating two fully correlated 
trucks 

Following 
Side-by-Side 
Staggered 

% Occ. 
3.5% 
1.4% 
5.3% 

% Corr. 
3% 
2% 

1.75% 

% Total Prob. 
0.1050% 
0.0280% 
0.0927% 

The total probabilities found denote the probability of a truck being involved in one of 

the three MP events and being fully correlated in weight to the second truck involved in 

the MP event. With these total probabilities, the number of MP events with two fully 

correlated trucks can be determined by multiplication with the total number of trucks 

expected for the lifetime of the bridge. With an Extreme Value Distribution fitted to 

the ECDF of the weight distribution, the GVW for the maximal trucks involved in such 

a MP event can be determined and the bridge can be designed according to the findings. 

The extrapolation of the inverse ECDF of truck weight distributions and/or fitting of 

extreme value distributions to weight distributions is a wide field of research in bride 

design and covered by many of the literature introduced on Chapter 3. 
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Appendix B 

Source Code Listings 

The following Source Code Listings are written in Matlab (v7.0.l.24704 (R14) Service 

Pack 1) and are designed for WIM files that have been converted to ASCII and are 

filtered , or the output-files of the Mult iple Presence Detection Algorit hm, respectively. 

B.1 Multiple Presence Detection Algorithm 

1 % co mput e M P. m 
2 % 
3 %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
4 % Th is pro gram cla ss ify l o ading eve nts as S i ngl e, F o ll o w , Sid e- by - Sid e, Stagg e r e d o r Mult i pl e 

(3 o r m o r e tru e k s ) 
5 % f o r !RD- f o rmat WTM data f o r d i ff e r e nt s pan l e ngth s . Th e pro gram: 
6 % (1 ) I gn o r e s th e last tru c k i n e a c h day (b ec au se t h e Tim eStamp r e s e ts e a c h day) 

% ( 2) C o unts th e t•·u c k that e nt e r s s eco nd and l e av e s f irst ONCE (as part o f th e multipl e 
occ urr e n ce ) 

% (3) I gn o r e s F o llowing tru c k s wilh a He adway <= 0 {- f irst tru c k c hang e d lan es aft e r 
e nt eri ng all o w i ng seco nd tru c k t o e nt e r sam e Lan e b e f o r e full l e ngth of Tru c k I pa sse d ) 

9 % ( 4 ) A cce pts o nly DlRECT IONAl WIM data 
10 % (5) Co nsid e rs u.p t o 6 l a n e s in eac h dir ec ti o n 
11 % 
12 % 
13 % Input = Dir ec ti o nal ! RD-format WIM Data (i. e . W IMD! - 05080 / TR.116} 
14 % Output = MP Statisti c s: Numb er o f loading eve nts (STATE . .. ) and P e r ce nt o f l o ading eve nts 

(STATP . . . ) 
15 % 
16 % Fun c t io n pr o grams u se d ar e : 
17 % ( 1 ) T i m e s tamp 
18 % (2) Fa s t Tru c k 
19 % (3 ) /, an e Valu e 
20 % ( 4) R e fin e_ Sid e 
21 % (5 ) R e fin e_Stag 
22 %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
23 %c l e ar ; 
24 %c l c; 
25 %se t ( 0 , ' D e faultAx es F o ntSiz e ' , 1 2 ) ; 
26 
27 fun c ti o n compute MP( fil e n am e) 
28 
29 
30 % l oad ASCII fi l e 
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31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

49 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 

IOI 

wim= d l m r ead ( fi Je na m e); 
N=size {wim,l ) 
y r =v.•im { : 1 1 ) ; 
mo=wim ( : , 2 ) i 
dy=wim { : , 3 ) ; 
h r=v.•im { : , 4 ) ; 
mn= wim ( : , 5 ) ; 
se c =wim(: , 6 ) i 
h sec=wim ( : 1 7 ); 
e rr=wim {: , 8); 
r c d=wim(: , 9) ; 
ln =wi m (: , 10 ); 
sp=wim ( : , 11 ) ; 
c l =wim { : , 1 2 ) ; 
l e =wim ( : , 1 3 ); 
gvw=wim(: , 1 4) ; 
es a l =wi m (: , 1 5} i 
axw l =wim (: ,16 } ; axw2=wim (: , 1 8) ; a xw3=wim (: , 20) ; ax w4=v.•im (: , 22) ; 

wim (: , 26 ) ; axw7=wim {: ,28) ; ax w 8=wim(: ,30 ); axw9=wim (: , 32 ); 
axw ll=wim ( : ,36 }; axwl 2=wim(: , 38); axw l 3=wim (: , 40 ); 

ax s l=wim(: , 1 7 }; axs2=wim ( : , 1 9 ) ; axs3=wim( : , 21) i axs4=wim (: , 23 ) ; 
wim ( : , 27) ; axs7=w im ( : ,29) ; a x s8=wim ( : ,3 1 ) i axs9=wim (: ,33 ) ; 
axs ll =w im (: ,3 7 ); axs 12=wim (: , 39); axsl3=wim{: , 41 ) ; 

% F or e a c h s pan l e ngth : 
fo r LL =2:2 20 % LL =2 :2:2 0 

% Z e r o o ut variabl e s 
c l ea r L T Stamp Tin Tout om i t. LN 
cl ea r d du ml dum2 He adway 
clea r Sing l e F o llow Side Stag fv1.ult.ipl e mu l tip l e T ota l i 

MPS=!]; MPF = I]; MPSD= II ; 

L=LL•lO; % Span l e ngth ( ft ) 

% Cal c ulat e Tim e stamp 
TStamp = Times tamp ( wim,L ); 
Tin = TSlamp( : , 1 ); 
T o ut = TStamp (: , 2) ; 

MPSG=IJ ; MPM=I]; 

% I d e ntify tru c k s t h at e nt e r se cond and l e av e f irs t 
om it = F astT ru c k ( wim , T o u t) ; 

% A ss ign Lan e Valu e 
LN = L ane V a lu e {wim ) ; 

% Start Multipl e Pr e s e n ce Statisti cs 
i =Oi % Tru c k numbe r co unt e r = 0 
i s=l i % Singl e e v e nt co unt e r = J 
ifo = l ; % Foll o w eve nt co unt e r 1 
i sd= l ; % Sid e e v e nt co unt e r = J 
i sg = l ; % Stagg e r e d eve nt c ount e r = 
im=l i % Multipl e eve nt co unt e r= 1 
mpe= l ; % L o ad i ng e v e nt co unt e r = _J 

d = LN ( l ); % Dummy/ lan e co unt e r f o r multipl e pre s e nc e 
s rn =O; % Tru c k numb e r f o r th e start o f multipl e pr e s e n ce 0 
k =Oi % Numb er o f o th e r tru c ks part o f multipl e pr e sen ce 0 

t-.4P= 0; % MP = Total lan e v alu e f o r e a c h mu l tip l e e v e nt 
jj = l ; % jj = co unt e r f o r th e o mit v ec t o r 
T e nd = 11 ; % T end = Tru c k numb ers in a l o ading e v e nt 

fo r l = l:N-1; % FOR LOOP #1 / /, o ops thr o ugh a ll tru c ks 
i = i+ l ; % Tru c k numb er i 

i f i==Ni % Ch ec ks i f l ast tru c k in th e f il e 
b r eak % Y es = br e aks ou t o f FOR LOOP # 1 

end % No =g oe s on. 

axw5=wim(: , 24) ; axw6= 
axwlO=wim(: , 34) ; 

axw l 4=wim ( : , 42) i 
ax s 5=wim(: , 25 ) i ax s 6 = 
axs ! O=wim (: , 35) ; 

i f i=omit (j j , l ); % C h ec ks if tru c k is part o f v ec t o r 0 1nit 
if jj = size (om it , 1 ); % Y es = skip tru c k and go t o n e x t o n e (C o ntinu e FOR 

LOOP # I} 
ii = ii; % No = g oe s on. 
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102 
!03 
!04 
J05 
106 
107 
J08 
!09 
!10 
JJI 
!12 
!13 
!14 
JJ 5 
!16 
!17 
!18 
!19 
120 

121 
122 
123 
124 
125 

126 

127 

128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 

140 

141 
142 
143 
144 
145 
146 

147 

148 
149 
150 
151 
152 

153 

154 
155 
156 
157 
158 
159 
160 
161 

else 

e nd 
e nd 

d=LN ( i +1 ); 
c ontinu e 

ii=ii+l ; 
d=LN( i +1) ; 
co n t inu e 

if d y( i + l )=dy ( i ) ; % C h ec ks i f tru c ks occ ur on th e same day 
% No = skip tru c k and g o t o n e xt o n e (C o ntinu e FOR LOOP #1) 

if T in ( i +l )< T out( i ) ; % Y e s = C h ec ks i f tru. c k.s o v e rlap in t i m e 
% No g oe s on t o • B e gin Singl e • 

sm= i i % }'e s = s tarts th e multipl e pr e s e n ce co unt e r s 
k=k+l ; 
d=d+LN( i + 1); 

for id = 1'10; % FOR LOOP # 2 / For th e n e xt 10 tru c ks 
for j = Ook ; % FOR LOOP #3 / F or a ll th e tru c ks that are part o f 

multipl e pr e s e n ce 
if dy ( i +k + l )==dy(sm+j ) ; % C h ec ks i f day ove rlaps 
% No = g o to End o f FOR LOOP # 3 (g o t o P o int I} 

if Tin ( i+k + J )<T o ut (sm+j ) ; % Y e s = C h ec k s i f tim e o ve rl aps 
% No = go e s on to F o ll o w / S i d e o r Multipl e 

e l se 

if j = k ; % Y es = Ch ec k i f thi s is th e la s t tru c k t o be 
c h ec k e d 

break % Y e s = g o to End o f FOR LOOP #3 (g o t o P o int 
l } 

e l se % No c h eck with t h e n ex t tru c k ( Co nt i nu e FOR 
LOOP # 3) 
co n t in u e 

end 

MP(mpe)=d; 
mpe=rnpe+l ; 

if k == l; % = === === F o ll o w / Sid e 

dum2=0 ; 
for a = Ook; % FOR LOOP #4 / F o r a ll tru c ks that are 

part o f this multipl e pr ese n ce 
duml= find ((i+a )-Te nd ); % Ch ec k i f th e y ar e all 

part o f th e pr evio us mul tipl e pr ese n ce 
occ urr e nc e 

if duml>O 
dum2=dum2+1i 

e nd 
end 
dum2 ; 
If dum2<( k + l ) % No =New v ec t or f or tru c k numb e rs 

that are part o f mu lt i pl e o cc urr e nc e 
classi f y 

T e nd = [ i' i + k J; % Y e s = g o to End o f FOR /,OOP # 3 
(go t o Point I } 

e l se 
break 

e nd 

if (MP(mpe- 1)==2) I (MP( mpe-1 )= =20) I ( MP(mpe- 1) ==200) 
I ( MP(mpe-1)==2000) I (MP(m pe- 1) ==20000 ) I (lv!P( mpe 
- 1)==200000) % Follow 

He ad way=( Tin ( i + 1 )-Tin ( i)) • ( sp ( i , 1 ) • 5280 / 360 0 ) -
1 e ( i , 1 ); 

if He adway > 0 

end 
e l se 

MPF( i fo ,o)=[wim(i ,o) wim(i+l ,o) He adway] ; 
He adway = O; 
ifo= ifo+ l i 

% It ' s e ith e r a Sid e o r Stagg e r e d 
Gap =( Tin ( i +l)-Tin ( i ))•(sp( i ,1 ) •5280 / 3600) 
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162 

163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 

177 

178 
179 
180 
181 
182 
183 
184 

185 

186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 

206 

207 
208 
209 
210 

211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 

222 

223 
224 
225 

e l se 

e nd 
else 

e l se 

end 

end 

Ove rlap = l e ( i, l )-Gap % Overlap b e tw ee n th e tw o 
t ru c ks ( ft ) 

if Ov e rl a p >=0.5• l e( i , 1 ); 
isd = isd+I; % Sid e- by -Side 

MPSD ( i sd , :)=!wim (i , :) w im ( i+I , :) Gap! ; 
e l se i 

isg =isg+ l ; 
MPSG ( i sg ,: )=!wim (i ,. wim ( i+I, :) Gap!; 

e nd i 

% Multipl e 
dum2 = 0; 
fo r a = O: k ; % FOR LOOP #5 / For all tru c k s t h at ar e 

part of t. h is mult i pl e pr e s e n ce 

end 

duml= find (( i+a)= T e nd ); % C h ec k if th e y ar e all 
p art o f th e pr evio us multiple pr ese n ce 

o cc urr e n ce 
if duml >O 

du m 2=dum2+ I ; 
e nd 

dum2i 
if dum2<(k+l ) % No New vec t o r f o r tru c k numb ers 

that are part o f multipl e occurrence 
c lassify 

T e nd = ! i : i + k I ; % Y es = go to End o f FOR LOOP #3 
(go t o P oin t 1 ) 

else 
break 

end 

for imm =O: k i 
lv!PM( im+imm ,:) =wim ( i + imm , :) 

e nd 
im= im+ k + l ; 

break % Brea k ou t o f FOR LOOP #3 (go t o P oint J ) 

break % Bre ak ou t o f FOR LOOP # 3 (go t o P oi nt J ) 
e nd 

e nd % End o f FOR LOOP # 3 

% PO INT 1 
1 f j = k % If ' next ' tru c k c h ed:e d out with a ll tru c ks that ar e part 

o f th e multipl e occurr e n ce 

e l se 

end 

cl= d+LN ( i+k+ l ); % i t becomes a part o f that mu lt ip l e and c h ec k 
th e n e xt tru c k (Continu e FOR LOOP #2) 

k= k +I; 
co n t inu e 

d =LN( i + 1 ); % Ot h e rwi se, throw ba c k lo th e main l o op ( br e ak ou t 
o f FOR LOOP #Ii ; go t o P oint I!) 

k = O; 
sm=O; 
break 

e nd % End o f FOR LOOP #Ii 

% POINT 2 

% ====== S INGLE ====== 
dum2=0; 
for a = O: k ; % FOR LOOP #6 / For a ll tru c ks th at ar e part o f th is 

multip l e pr ese n ce 
duml= find (( i +a) T e nd ); % C h ec k i f th e y ar e all part o f t h e 

pr ev ious multiple presenc e occ urr e n ce 
if duml>O 

dum2=dum2 + 1 ; 
e nd 
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226 
227 
228 
229 

230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 

249 
250 
251 
252 
253 
254 
255 
256 
257 

258 
259 
260 
261 
262 
263 
264 
265 

266 

267 
268 
269 

270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 

e nd 

dum2i 
if dum2<(k+l} % No = New v ec tor f or tru c k numb ers that are part o f 

m1dtiple occurrence c lass;fy 
T e nd=! i ' i +k J; % Y es = go l o n e xt lru.ck (C o ntinu e FOR LOOP #1) 

e l se 

e l se 

e nd 
e nd 

e nd 

d=LN( i +1}; 
co ntinu e 

e nd 

MP(mpe}=d; 
mpe:=mpe+ l ; 
d=LN( i + 1}; 
MPS( is ,,}=wim( i ,,} 
is = is+ l i 

conti n u e % Continue FOR LOOP #1 {next truck) 

% Refine SideStag Matrix: S IDE is when two tru.cks over lap by more than 
1/2 the bo dy l e ngth o f the first truck ot h e rwis e STAG 

'YoMPSD= R e fin e_Side (MPSS); 
'YoMPSG= R e fin e_Stag (MPSS); 

% Calculate MP Slats 
S i ng l e =s iz e ( MPS , 1 }; 
Fo ll ow = s iz e (MPF, 1); 

% Numb er 
% Numb er 

of Singl e eve nts 
o f Follow events 

Side =s ize (MPSD , 1 }; % Numb er of Side eve nts 
Stag = s iz e (MPSG, 1 ); % Numb er o f Stag even ts 
Multipl e=s iz e (MPM, 1} ; % Number of TRUCKS 

multipl e l oa ding o f 3 tru c ks o r more 

if Si n g l e==Oi MPS= I OJ; e nd i 
if Fo ll ow==O; MPF=IOJ; e nd ; 
i f Side== O; MPSD =IOJ; e nd ; 
if Stag==O; MPSG=IOJ; e nd ; 
if M ul ti p l e==O; MPM= [OJ; e nd ; 

= fix ( Mu l tip ie/3); mu l tiple 
l oa ding 

Tota l 
even ts f o r ,Multipl e ev e nt assuming 3 tru c k s 

=Si ngi e+ Fo ii ow+Sid e +Stag+m u I ti pi e; 
l oa d ing even ts 

x=LL/2; 
StatEvenls(x,,} =!Sing l e Fo ll ow Side Stag mu l tiple] ; 

that take part in a 

% approximate numb er o f 
p e r even t 

% t o tal number o f 

StatPerce nt(x,,} = l(S i ng l e/ Tota l }•lOO (Fo ll ow/ T ota l }• l OO (S i d e/ T o ta l } • l OO (Stag/ 
Tota l }• l OO (mu l tip le/ Tota l } •100] ; 

MPresence( l ,x}={MPS} ; 
MP resence(2 , x}={MPF}; 
MP rese n ce(3 , x }={MPSD} ; 
MPrese n ce ( 4 , x )= {MPSG}; 
MPresence(5 ,x}= {MPM}; 

% Save MP fil es f o r eac h span l e ngth 
if L==20; 

end i 

dat e i = s printf ( ' MPS020-SN-o/oS', fi l e n ame) 
sav e (datei, 'MPS ', '-asc ii ') 

dat e i = s pri n tf ( 'MPS020-FL-%s' , fi l e nam e) 
sav e (datei 1 'MPF ', '-asc i i ') 

datei = s printf ( 'MPS020-SD-%s', f il e n ame) 
s ave (dat.ei 1 'MPSD ', '-asc i i ') 

date i = s printf ( 'MPS020-SG-%s', fi l e nam e) 
sav e (dat.ei, 'MPSG', '-as c ii ') 

dat e i = s printf ( ' MPS020-MT-%s', fi l e nam e) 
sav e (datei, 'MPM', '-ascii ') 

if L==40; 
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296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
3!1 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 

e nd ; 

d a t e i = s printf ( ' MPS040-SN-%s', fi l e n a m e) 
sav e ( d a t. e i , 'MPS ', '-asc i i ') 

d a t e i = s printf ( ' MPS040-FL--%s ' , f i l e n a m e) 
sav e ( dat e i , 'MPF ', '-asc ii ') 

d ate i = s printf ( ' MPS040-SD-%s', fi l e n a m e) 
sav e { d a t. e i , 'tvfPSO ', '- asc i i 1

) 

dat e i = s printf ( ' MPS040-SG-%s', fi l e nam e) 
sav e ( dat e i , 'MPSG ', '-asc ii ') 

d ate i = s printf { ' MPS040-MT-%s', f i l e nam e) 
sav e {da t e i 1 'MPM ', '-asc ii ') 

if L == 60; 

e nd ; 

d ate i = s prin t f ( ' MPS060-SN-%s', f i l e n ame) 
sav e ( d a t e i , 'MPS ', '-asc i i ') 

d a t e i = s printf ( ' MPS060-FL--%s' , fi l e nam e) 
sav e ( d a t e i , 'MPF ' , '-a s c ii ') 

d a t e i = s printf ( ' MPS060-SD-%s', fi l e n a m e) 
sav e ( d a t e i , 'MPSD ', '- a sc ii ' ) 

d a t e i = s printf ( ' MPS060-SG-%s' , fi l e nam e) 
sav e ( da te i , '1'1PSG' , '-asc ii ') 

d a t e i = s pr i ntf ( ' MPS060-MT-%s' , fi Je n a m e) 
sav e ( d at.e i , 'lv1PM' , '-asc ii ' ) 

if L==BO; 

e nd i 

d a t e i = s printf ( ' MPS080-SN-%s', fil e n a m e) 
sav e ( d ate i , 'MPS', '-asc i i ') 

d a t e i = s printf ( ' MPS080- FL--%s', f il e n a m e) 
sav e ( d a t. e i , 'MPF ', '-asc ii ' ) 

d ate i = s prin t f ( 'MP SOBO-SD-o/os', fi l e n a m e) 
sav e ( d ate i , 'M.PSD ', '-asc ii ') 

d a t e i = s printf ( ' MPS080-SG-%s ' , fil e n a m e) 
sav e ( d a t. e i , 'MPSG ', ' -asc ii ') 

d a t e i = s printf ( ' MPSOBO-MT-o/os', f i l e n a m e) 
sav e ( d ate i , 'l'v1Ptv1', '-asci i ') 

if L == l OO ; 

e nd i 

d a t e i = s printf ( ' MPS0100-SN-%s', fi l e nam e) 
sav e ( d a t. e i , 'MPS ' 1 '- asc i i ') 

d a t e i = s printf ( ' MPSOIOO- FL--o/os', fi l e nam e) 
sav e ( d a t e i , 11\WF ', '-asc ii ') 

d a t e i = s pr int f ( 'MPSOlOO-SD-o/os', fi l e n a m e) 
sav e ( d a t e i , 'MPSD ', '-asc ii 1

) 

d a t e i = sprintf ( ' MPSOIOO-SG-%s', f il e n a m e) 
sav e ( d a t. e i 1 'MPSG 1

,
1-asc ii ') 

d a t e i = s prin t f ( ' MPS0100-MT-%s', fi l e n a m e) 
sav e ( d a t. e i , 'MPM ', ' - asci i ' ) 

if L == l20 ; 
d a t e i = s pr i ntf ( ' MPS0120-SN-%s' , fil e n a m e) 
sav e ( d a t. e i , ' MPS', '-asci i ') 

d a t e i = s prlntf ( 'MPS0120- FL--%s', f i l e nam e) 
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372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
41 8 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 

e nd i 

save ( dat. e i , 1MPF' , 1-a s c ii ' ) 

da te i = s printf ( ' MPS0120-SD-o/oS', fil e n a m e) 
save ( dat e i , ' tvlPSD ' , '-asc ii ') 

dat e i = s printf ( ' MPS0120- SG-o/oS', fil e n a m e) 
sav e { dat e i , 'MPSG ', '- a sc ii ') 

da te i = sp rintf ( ' MPS0120-MT-o/oS', fil e n a m e) 
sav e ( d a t e i , 'f\1PM ', '-a sc i i ') 

if L == l40 ; 

end ; 

d ate i = sp rintf ( ' MPS0140- SN-o/oS', fi l e nam e) 
save { dat e i , ':MPS ' , '-asc ii ') 

da te i = sprin tf ( ' MPS0140- FL--o/oS' , fil e n a m e) 
save { da te i , 'MPF ' , '-asc ii ') 

dat e i = s printf ( ' MPS0140- SD-o/oS ', fil e n a m e ) 
sa v e { da t.e i , 'MPSD ', '- a sc ii ') 

dat e i = sprintf ( ' MPS0140-SG-o/oS' , fil e n a m e) 
sav e ( d a t e i, 1 :rvtPSG 1

, 
1- a sc ii ') 

dat e i = s printf { ' MPS0!40- MT-o/oS ' , fil e na me) 
save ( dat e i , 'lVIPM ', ' - a sc ii ') 

if L == l60; 

e nd ; 

dat e i = s printf ( ' MPSO!GO-SN-o/oS', fil e nam e) 
save ( d at.e i , ' :tvfPS ', '-a s c ii ' ) 

d a t e i = s printf ( ' MPS0160- FL--o/oS', fil e n a m e) 
save ( d ate i , 'tv1PF ' , '-asc i i ' ) 

dat e i = s printf ( ' MPS0160- SD-o/oS', fi l e n a m e) 
sav e ( d a t e i , 'MPSD', '- a sc ii ' ) 

dat e i = s printf ( ' MPS0!60-SG-%s' , fil e n a m e) 
save { d a t e i , 'rvlPSG' , '- a sc ii ' ) 

d a t e i = s printf ( ' MPS0160-MT-o/oS' , fil e n a m e) 
save { d a t. e i, 'f\1PM ', '-asc ii ') 

if L== l 8 0 ; 

end ; 

dat e i = s printf ( ' MPS0180- SN-o/oS' , f il e nam e) 
save { d a t. e i , ' MPS ', '-asc ii ') 

d a t e i = sp rintf ( ' MPS01 80-FL--o/oS', fil e na me) 
save ( d a t e i , 'MPF ' , '-asc ii ' ) 

dat e i = s printf ( 'MPS01 80 - SD-o/oS', fil e nam e) 
save ( dat e i, 'MPSD' , '- a sc ii ' ) 

d a t e i = sprintf { 'MPS018 0- SG-o/oS ' , fil e n a m e) 
sav e ( dat. e i , ':MPSG ', '-asc ii ') 

dat e i = s printf ( 'MPS01 80 - MT-o/oS ' , fil e n a m e) 
sav e ( d a t e i , 'MPM ', '-asc ii ') 

if L==200 ; 
d a t e i = sp rintf ( 'MPS0200- SN-o/oS', fil e n a m e ) 
sav e (da t e i , 'MPS ', '-asc ii ') 

dat e i = sp rintf ( ' MPS0200- FL--o/oS', fil e n a m e) 
save ( d a t e i , ' tl.4PF 1

, '-asc i i ' ) 

d a t e i = sp rintf ( ' MPS0200- SD-o/oS', fil e n a m e) 
save { d a t e i , ' tvCPSD ' , '-asc ii ') 
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44 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

dat e i = s printf ( 'MPS0200-SG-%s ', fi l e nam e) 
sav e ( dat. e i , ' tvlPSG ' , '-asc ii ') 

dat e i = s printf ( ' MPS0200--MT-o/os', fil e nam e) 
sav e ( dat. e i , ' tvWM.', '-asc ii ') 

e nd ; 

e nd ; 

% Save MP Statis t ics Fil es 
dat e i = s printf ( ' MPEve nt.-3s', fi l e n a m e) 
sav e ( datei , 'Stat.Events' , '- a sc i i ') 

date i = s printf { 'M PPe rct-3s', fil e nam e) 
sav e (da t. e i , 'S t. at. P e r cent.' 1

1-asc ii ' ) 

B .2 Full C orrelation D etect ion 

% W ei ght Cor r e l ation 
% corre l ation .m 
% 
% This program ana ly ses th e co rr e l a t io n 
% Outpu t s. Rang e i s va r iab l e but pr ese t 
% 
% Cornelius Albre c ht @ Jun e 2008 

% C l ea r 
c lea r 
cl c 
% I np ut 
%L = 120 
input = dir ( '•200-FL-• ') 

% R ea d Fil es and Ext r act GVWs 
GVWl=O; 
GVW2= 0 ; 
for i = l : s lz e ( input ) 

wim=d lmread ( input ( i ) . na m e) ; 
N= s iz e ( w im , 1 ) i 

% C h ec k i f empty J i l e 
if ( N > l } 

if GVWl =O 

e nd 
e n d 

GVWl wim ( : , 14 ) ; 
e l se 

GVWl IGVWl; wim (: , 14 ) J; 
e nd 

if GVW2 =0 
GVW2 = wim (: ,56); 

e l se 
GVW2 = IGVW2 ; wim (: ,56) I ; 

end 

% Coun t f or Corre la tio n 
% Cou nt e r se t t o 0 
in = O; 
o u t = Oi 

betw ee n tru c k weig ht s f or th e MP 
to -+- 1% 

45 % Diffe r e n ce t o c h ec k f or co rrelati o n 
46 d i ff = GVWl . / GVW2 ; 
47 
48 % Chec k f or Corre l ation 
49 for i = 1 : s iz e ( d i ff ) 
50 % Full Cor r e lat io n 
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51 if ( diff(i )<= l.01 && diff ( i )>=0.99) 
52 in = in + l i 
53 e l se 
54 % No corre lat io n 
55 out = out+ l i 
56 end 
57 end 
58 
59 % D e t ermin e P e rcentag e 
60 al l = in +out ; 
61 % Print In/ All Rati o 
62 ( in / a 11 ) • 100 

B.3 Gap Influences 

I % Analy sis o f Following l oading eve nts 
2 
3 % Imp ort f i l ena m es f o r span l e ngth. ED IT HERE 
4 L = 160 
5 input = dir ( '• 160• ') 
6 
7 

% Conver t f i l ena m e s t o c hara c t e r s 
9 'YoNF=size (filenames , 1 ) 

10 
11 for i = l:size ( input ) 
12 %/il e=cha r ( fil e n a m es( f , 1}} 
13 wim= dlrnread ( input ( i ). name); 
14 N=s ize ( wim , 1 ); 
15 
16 % C h eck if em pty J i l e 
17 if N = 1 
18 Output{i , l} = IOJ ; 
19 co ntinu e 
20 end 
21 
22 % Parameter d e f ini ti on 
23 YR =l wim (: ,1) wim (: , 43) J 
24 MO =lwim(: , 2) wim (: , 44 )] 
25 DY =lwim C ,3) wim (: , 45 ) J 
26 HR =l wim (: , 4 ) wim (: , 46) J 
27 MN =l wim ( : ,5) wim (: , 47 )] 
28 SEC =l wim(: , 6 ) wim (: ,48) J 
29 HSEC=lwim C ,7) wim C , 49 ) J 
30 ERR = lwim C ,8) wim (: , 50) J 
31 RCD = lwim (: ,9) wim( : ,51)] 
32 LN = lwim C , 10 ) wim (: ,5 2 ) 
33 SP = lwim C ,11) wim (: , 53) 
34 CL = lwim C , 12 ) wim (: ,5 4 ) 
35 LE = lwim C ,13 ) wim (: ,55) 
36 <:NW = lwimC , 14 ) wim (: ,5 6) J 
37 ESAL= lwim C , 1 5) wim (: , 57)] 
38 
39 Head =wim (: ,85); 
40 Mo mHS20 = lwim (: ,86:88)]; 
41 MomHL93 =lwim (: , 9:9 1 ) ] ; 
42 S hrH S20 =lwim (: ,92:94) J ; 
43 Shr HL93 =l wim (: ,95:9 7 ) ] ; 
44 NMomHL93=lwim ( : ,98: 100 ) ] ; 
45 
46 % F o ll owing = Max(Tru.c k ) + A•Min(Truc k } 
47 HeadR=Head / L; 
48 MaxTruc k=nax ( Mom HS20 (: , 1 ) , Mo mHS20 (: , 2) ) ; 
49 MinTru c k = rnin ( MomHS20 (:, 1 ) , Mo mHS20 (: ,2)); 
50 A=(MomHS20 (: ,3 )-M a xTru c k ). / MinTru c k; 
51 
52 % Perc entag e Sp l it o f He adway Ratio @ 0.50 
53 BinH eadR = I0:0 .5: 1] '; 
54 Count = hi s t c( HeadR , BinHead R ); 
55 C lose = C o unt ( 1, l ) / N ; 
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56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

end 

Apart =Cou nt (2 , l )/N ; 

% Ou tput 
OutHead{ i , l} = IH ead HeadR AJ ; 
OutPe r c {i ,l } = IC lose ApartJ; 

% C l e ar ou t v ariabl es 
clear fil e wim 
c le ar YR MO DY HR MN SEC HSEC ERR RCD LN SP CL LE GVW ESAL 
cl ea r Head MomHS20 MomHL93 S hrHS20 Shr HL93 NMomHL93 
clear HeadR MaxTruc k MinTru c k A 
clear Bi nHeadR Count C l ose Apart 

% •••••••••••••••••••••••••••••• ••••••••••••••••••••••••••• •••••• 
% Histog r am by Distan ce 
% •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••• 

% Combine Ou ll-l ea d fil es 
OUTHead=ve r tcat( OuLHead{ ' ,, } ); 

% Co mbine Out P ere Jil es 
for f = Lsize ( input ) 

end 

Flag= isempty (O ut P e r e ( f, 1) ) ; 
if Fl ag==l 

OutPe r c{f ,, } = IO OJ; 
e nd 

OUTPerc= v e r t c at(OuLP e r c { ' , ,} ); 

% Sav e f il es 
p e r c n a m e = sprintf ( 'PERC_ FO- J nf -So/od' , L ) 
h ea dnam e = s printf ( ' HEAD_FO- l nf -So/od', L ) 
dlmwrite ( pe rc n a m e , OUTPerc) 
dlrnwrite ( he ad n a m e, OUTHead) 

clc ; 

118 



Bibliography 

This Bibliography includes all references that have been used for preparation of this 

Master Thesis and also includes references that have not explicitly been cited in the text. 

The following list is sorted in alphabetical order of the surnames of the authors/names 

of institutions and does not represent the order of citation. 

Weigh-in-Motion of Road Vehicles for Europe (WAVE) - A Data Quality Assurance 

System for the European WIM-Database, 2000a. 

Weigh-in-Motion of Road Vehicles for Europe (WAVE) - Calibration of WIM Systems, 

2000b. 

AASHTO. Bridge design standard specifications. Technical report, AASHTO, Washing­

ton D.C., 1989. 

AASHTO. Aashto lrfd bridge design specifications. Technical report, AASHTO , Wash­

ington, D.C., 1994. 

AASHTO. Lrfd bridge design specifications. Technical report, AASHTO, Washington 

D.C., 1998. 

119 



A.C. Agarwal and M. \ i\Tolkowicz. Interim report on ontario commercial vehicle survey. 

Technical report, Research and Development Branch, Ontario Ministry of Transpora­

tion and Communication, Downsview Ontario, 1976. 

ASTM. E1318-02 standard specification for highway weigh-in-motion (wim) systems 

with user requirements and test methods. Technical report, 2002. 

S. Bailey and R. Bez. A parametric study of traffic load effects in medium span bridges, 

1994. URL ci teseer. ist. psu. edu/bailey94parametric. html. 

S. Bailey and R. Bez. Site specific traffic load models for bridge evaluation, 1995. URL 

citeseer.ist.psu.edu/bailey95site.html. 

Battelle. Traffic data quality management. Technical report, U.S . Department of Trans­

portation, 2004. 

Colin C. Caprani. Probabilistic Analysis of Highway Bridge Traffic Loading. PhD thesis, 

National University of Ireland, 2005. 

Colin C. Caprani, Eugene J. OBrien, and Geoff J. McLachlan. Characteristic traffic load 

effects from a mixture of loading events on short to medium span bridges. Structural 

Safety, 11.006:1- 11, 2007. 

E . Castillo. Extreme Value Theory in Engineering. Academic Press, London, 1991. 

Anil K. Chopra. Dynamics of Structures (3rd Edition). Prentice Hall, 2006. 

Cesar Crespo-Minguillon and Juan R. Casas. A comprehensive traffic load model for 

bridge safety checking. Structural Safety, 19(4):339- 359, 1997. 

120 



Dr. Iathan Gartner , Dr. Carroll J. Messer, and Dr. Ajay K. Rathi. Revised monograph 

on traffic flow theory. Online. URL http ://www.tfhrc .gov/it s/tft/tft . htm. 

Michael Ghosn and Fred Moses. Reliability calibrat ion of bridge design code. Journal 

of Structural Engineering, 112:745- 763 , 1986. 

Mayrai Gindy and Hani H. Nassif. Multiple presence statistics for bridge live-load based 

on weigh-in-motion data. Transporation Research Board, 2028:125- 135, 2007. Pub­

lished 02/2008. 

E.J . Gumbel. Statistics of Extremes. Columbia University Press, ew York, 1958. 

Mark Guzda, Baidurya Bhattacharya, and Dennis R. Mertz. Probabilistic characteri­

zation of live load using visual counts and in-service strain monitoring. Journal of 

Bridge Engineering, 12:130- 134, 2007. 

Mark Hallenbeck. Ltpp: Traffic data collection equipment calibration. Technical report , 

Long Term Pavement Performance Program, 1998. 

C. Han, W. Boyd, and M. Marti. Quality control of weigh-in-motion-systems. Transpo­

ration Research Record, 1501:72- 79, 1995. 

R.J. Heywood and A.S. Nowak. Bridge live load models. In International Conference 

on Structural Safety and Reliability, San Francisco, pages 2147- 2154, 1989. 

Abryan J . Katz and Hesham A. Rakha. Final report of its center project: Weigh-in­

motion evaluation. Technical report , Virginia Tech Transportation Institute, 2002. 

A. May. Traffic Flow Fundamentals. Prentice Hall, 1990. 

121 



Bill McCall and Walter C. Vodrazka. States successful practices weigh-in-motion hand­

book. Technical report , U.S. Department of Transportation, Federal Highway Admin­

istration, 1997. 

William Mendenhall and Terry Sincich. A second course in Statistics: Regression Anal­

ysis. Prentice Hall, 1996. 

F. Moses and R. C. Garson. Probability theory of highway bridge fatigue stresses. 

Technical report, Ohio Department of Transportation, 1973. 

F. Moses and M. Ghosn. Instrumentation for weighing trucks-in-motion for highway 

bridge loads. Technical report, FHWA/OH-81/008, 1983. 

F. Moses and M. Ghosn. A comprehensive study of bridge loads and reliability, final 

report to odot . Technical report, Case Western Reservce University, Cleveland, OH, 

1985. 

Fred Moses. Calibration of load factors for lrfr bridge evaluation. Technical report , 

CHRP Rep. No. 454, National Academy Press, Washington, 2001. 

Charles R. Nelson. Applied Time Series Forecasting. Holden-Day, 1973. 

Andrew Nichols and Darcy Bullock. Quality control procedures for weigh-in-motion 

data. Technical report , School of Civil Engineering Purdue University, 2004. 

Andrew P. Nichols and Darcy M. Bullock. Automatic speed calibration methodology for 

traffic monitoring sites. Journal of Transportation Engineering, 132:30- 39, 2006. 

Andrezj S. owak and Young-Kyun Hong. Bridge live-load models. Journal of Structural 

Engineering, 117:2757- 2767, 1991. 

122 



A.S. Nowak. Live load model for highway bridges. Structural Safety, 13:36- 49, 1993. 

A.S. owak. Load model for bridge design code. Canadian Journal of Civil Engineering, 

21:36- 49, 1994. 

A.S. Nowak. Calibration of lrfd bridge design code. Technical report, NCHRP Report 

368, Transportation Research Board, National Research Council, Washington, D.C. , 

1999. 

A. O 'Connor and E.M. Eichinger. Site-specific traffic load modelling for bridge assess­

ment. Bridge Engineering 160, BE4:185- 194, 2007. 

New York State Department of Transportation. Traffic data report for new york state. 

Technical report , Tew York State Department of Transportation, 2004. 

US Department of Transportation. Traffic monitoring guide. Technical report, US De­

partment of Transportation, 2001. 

W. C. Ottl and A. T. Papagiannakisl. Weigh-in-motion data quality assurance based on 

3-s2 steering axle load. Transporation Research Board, 1356:12- 18, 1996. 

Robert S. Pindyck and Daniel L. Rubinfeld. Econometric Models f3 Economic Forecasts. 

McGraw-Hill, 1991. 

R. Snyder, G. Likins, and F. Moses . Loading spectra expe- rienced by bridges in the 

united states. Technical report, Federal Highway Administration, FHWA/RD-85/012, 

Washington, D.C. , 1985. 

X. Zhi , A. Shalaby, D. Middleton, and A. Clayton. Evaluation of weigh-in-motion­

systems. Canadian Journal of Civil Engineering, 26:655- 666, 1999. 

123 



To convert 

from empirical 

Length 

inch (in.) 

foot (ft) 

yard (yd) 

Force 

kip 

pound (lb) 

Stress 

Unit Conversion 

to SI 

meter (m) 

meter (m) 

meter (m) 

newton (N) 

newton (N) 

pounds/square inch (psi) kilopascal (kPA) 

Mass (Weight per Length) 

pound/linear foot (klf) newton/meter (N /m) 

Bending Moment or Torque 

inch-pound (in.-lb) newton-meter ( m) 

foot-pound (ft-lb) newton-meter (Nm) 
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multiply by 

0.0254 

0.3048 

0.9144 

4448.0 

4.448 

6.895 

14.593 

0.1130 

1.356 



"Statistical thinking will one day be as necessary for 
efficient citizenship as the ability to read or write." 

- H.G. Wells 

© Cornelius Albrecht , 2008 
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