
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

1999

Interactive Multireslution Curve Editing Using Interactive Multireslution Curve Editing Using

Stephen P. Alberg
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Alberg, Stephen P., "Interactive Multireslution Curve Editing Using" (1999). Open Access Master's Theses.
Paper 992.
https://digitalcommons.uri.edu/theses/992

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/992?utm_source=digitalcommons.uri.edu%2Ftheses%2F992&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

INTERACTIVE MULTIRESOLUTION

CURVE EDITING USING

WAVELETS

BY

STEPHEN P. ALBERG

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

UNIVERSITY OF RHODE ISLAND

1999

MASTER OF SCIENCE THESIS

OF

STEPHEN P. ALBERG

APPROVED:

Thesis Committee

Major Professor _ __,__~_...~_,,_~_·_.._bv=-'---------
~C, ~,

Gexi4M· \U4"? L o..L

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

1999

ABSTRACT

Precise curve fitting is an important feature of many computer applications, from

statistical analysis cools, co the editors used by font and graphic designers, co the

sophisticated computer-aided design/manufacturing environments developed for engineering

systems. B-splines are the most widely used curve forms in such applications; composed of

piecewise parametric cubic segments, they are notable for their compact representation,

computational efficiency and, in particular, the high degree of continuity they enforce

between successive curve segments. Such continuity, however, inhibits the freedom with

which local, finer resolution editing may be performed on these curves. Refinement is most

directly accomplished by inserting knots into the curve, subdividing the curve into a larger

number of segments.

Mulciresolution analysis, a form of data analysis based on the use of wavelets, offers a

means of determining a unique such subdivision of a given curve. The application of chis

process is also reversible so chat curve smooching or knot removal operations may be

performed with the same economy as refinement operations. Furthermore, the special

computational properties of wavelets guarantee chat such shifts of resolution may be

performed in time linear with the size of the curve, suggesting chat editing operations on a

curve, at a variety of resolutions, may be done at interactive speeds.

11

ACKNOWLEDGMENT

I would like co cake chis opporcunicy co chank che encire faculcy of che Deparcmenc of

Com purer Science and Scaciscics ac che U niversicy of Rhode Island, all of whom I have had

che honor and che privilege of working wich or learning from ac one rime or anocher over my

course of scudy. This has easily been che mosc challenging and, ac che same rime, che mosc

rewarding academic experience I have parcicipaced in, and I've parcicipaced in a few. In chis

regard, I would in parcicular like co honor Dr. Bala Ravikumar for providing scudencs like

myself wich a model example of pacienc incelleccual inquiry and a love for che grand

challenge.

Ill

PREFACE

Wavelets are mathematical tools, functions satisfying a specific set of properties, which are

used to encode information in a different, more practical form. The encoding takes the form

of abstracting from the input data set a coarser, average distribution of the data, which is

referred to in signal processing parlance as putting the data through a low-pass filter. At the

same time, a high-pass filter, the set of wavelet functions d1emselves, is applied to the same

input so that the high-contrast data lost from the averaging procedure may be preserved as a

sec of detail values. Such a procedure may be recursively reapplied to each successive coarser

data set until a desired resolution of the data is reached. The result is termed a wavelet

transform of the original data and it contains not only a coarse approximation to the original

data sec but the accumulated secs of detail coefficients that apply to that data set at different

scales of resolution. These accumulated details may be reapplied to the coarsened data plot

to retrieve the behavior of that data at finer scales of resolution.

Such a transformed image of an input data set provides views of that data at a variety of

scales, providing a form of "mathematical microscope" [Hubb96]. This tool has been of

practical benefit in a surprising variety of scientific disciplines. The term "wavelet" actually

arose in connection with geological analysis where seismic plots are analyzed to determine

the presence of substrata where regions of oil may occur. Signals and two-dimensional

imagery may be "denoised" by abstracting out the high-contrast values using wavelets. The

special properties satisfied by wavelets also allow them to be used in probability wave analysis

IV

in quantum mechanics where they complement more conventional Fourier analysis cools in

addressing the restrictions imposed by the uncertainty principle [Hubb96].

Researchers in computer graphics have recently found several practical uses for wavelets

in their work, including both theoretical and practical applications in areas such as image

compression, image editing and database querying, surface reconstruction from contour

plots, and physical simulation for global illumination and animation. (For an excellent

survey of chis material, see Scollnitz, et al. [Stol96].)

Among chis work is the research presented by Finkelstein and Salesin [Fink94]

concerning the application of multiresolution analysis, a set of techniques chat use wavelets co

obtain information about a signal at a multitude of scales, to the problem of curve and, by

extension, surface representation. In particular, they observe chat the recursively defined

structure of multiresolution analysis has an advantageous correspondence with the recursive

procedure for subdividing curves (and surfaces) generated by the set of basis functions known

as B-splines. The authors claim chat the resulting representation, a multiresolution curve, is

a unified framework capable of supporting a variety of editing operations including changing

the "sweep" of a curve while maintaining its "character" or detail or, alternately, changing its

"character" while maintaining its "sweep", or applying continuous levels of smooching or

being able to edit a curve at a continuous level of detail. Furthermore, since a

multiresolution decomposition can be obtained in time chat is linear in the size of the input

data, in chis case the set of control points for a given curve, the manipulations described

above may be performed in real time.

The goal of chis thesis is to construct a working component capable of modeling

multiresolution curves and the above operations in an interactive environment. Such a

component, written in an object-oriented language, may be placed in a simple application

v

for editing such curves directly; or it may be readily integrated within a more complex

editing environment, such as a CAD/CAM system, where it would offer a subset of a more

general set of precise editing tools. We shall place this component within a simple GUI

based application frame in order to verify the claims of the original research that such curve

operations may be performed at interactive speeds. Although this thesis does nor extend the

theoretical basis of this work, it does enhance its practical utility by realizing the application

as a set ofJava class files, making it available to any platform supporting a Java Virtual

Machine and, at the same time, making this application available for use as a component in a

larger Java-based graphical editing environment.

The presentation of the research supporting this implementation will involve four major

sections: first, a discussion of the issues of curve representation in a computational

environment, with some focus on the B-spline representation; second, a more derailed

presentation of wavelets, featuring the prototypical example of the Haar wavelet, as well as an

introduction to the concepts of mulriresolution analysis; third, a presentation of the theory

of mulriresolution curve representation, featuring some discussion of the practical

mathematical issues involved in this representation; and fourth, a derailed discussion of the

design and implementation of the Java-based application, focusing in particular on how the

demands of the mathematics involved are met by this application.

VI

TABLE OF CONTENTS

I. CURVE REPRESENTATIONS · I

I. I Functions, Parametric Curves and Piecewise Polynomial Segments 2

I.2 Piecewise Parametric Cubic Curves 5

1.21 Hermite Forms 5

1.22 Bezier Curves 8

1.23 B-splines 10

1.24 Types of B-splines 14

I.3 Curve refinement 15

2. WAVELETS AND MULTIRESOLUTION ANALYSIS 18

2. I What are Wavelets? 18

2.11 Scaling fanctions and Wavelets 18

2.12 Example: the Haar Wavelet 20

2.13 Properties ofWavelets 22

2.14 Some Applications 24

2.2 Multiresolution Analysis 26

3. MULTIRESOLUTION CURVES 30

3.1 B-splines and Spline Wavelets 30

3.2 Integral and Fractional levels of Resolution .. 33

3.3 Implications of Multiresolution Curve Theory 41

Vil

4. IMPLEMENTATION DESIGN AND RESULTS 42

4.1 Overall Scruccure of Applicacion43

4.2 Descripcion of Major Componencs .. 44

4.21 Multiresolution Engine 44

4.22 The Application Frame 55

4.23 The Application Canvas : 60

4.3 Evaluacion and Resulcs .. 69

5. CONCLUSIONS 74

APPENDIX A: Endpoinc-incerpolacing cubic B-spline macrices 78

APPENDIX B: MATLAB code for B-spline wavelecs 80

APPENDIX C: CurvEdicor code listing 85

BIBLIOGRAPHY 147

Vlll

LIST OF FIGURES

Afu • d II fu • II 2 Figure 1: ncnon an a non- ncnon

Figure 2: The parametric equation x = sin(t), y = cos(t), 0 < t < 1 On: 3

Figure 3: A Hermite curve representation 6

Figure 4: Two adjacent Hermite curves 7

Figure 5: A Bezier curve 8

Figure 6: Blending polynomials for Bezier curve 10

Figure 7: AB-spline segment (a) and the same segment with two neighboring segments on

each side (b) 11

Figure 8: B-spline blending functions 12

Figure 9: The four basis functions chat define segment i 13

Figure 10: Editing a B-spline at a lower and higher resolution 15

Figure 11: The Haar basis for\!, V 1and \/ 22

Figure 12: The Haar wavelets for W, W 1and W 23

Figure 13: A multiresolucion filter bank 27

Figure 14: The B-spline scaling functions and the first four wavelets at level 3. [Fink94] ... 32

Figure 15: Fractional-level curves: (a) level 8.0; (b) level 5.4; (c) level 3.1. [Fink94] 34

Figure 16: Changing the sweep of a curve without affecting its character. [Fink94] 35

Figure 17: Changing the character of a curve without affecting its sweep. [Fink94] 39

Figure 18: Orientation of detail in an edited curve. [Fink94]40

IX

Figure 19: Block matrix diagram of synthesis filters P and Q46

Figure 20: Revised block matrix after interleaving 4 7

Figure 21: Optimized banded diagonal form for block matrix PQ 48

Figure 22: The CurvEdicor interface 56

Figure 23: CurvEdicor menu selection options 58

Figure 24: A sample multi-segment curve showing the control points, polygon and knots. 63

Figure 25: Interpolation between a high-resolution curve (left) and a low-resolucion curve

(right) 67

Figure 26: Sample comparison of curves produced by (a) CurvEdicor and (b) MATLAB .. 70

Figure 27: Average execution time of (a) refine and (b) coarsen methods per resolution level

(in milliseconds)' 71

x

I. CURVE REPRESENTATIONS

A curve is essencially a sec of poincs. More precisely, in a cwo-dimensional environmenc,

we may refer co a curve as a sec of ordered pairs. Mathematically, this gives us a very precise

description of a curve. Bue the enumeration of such a sec, typically drawn from the domain

of the real numbers, will be unbounded and of little use in a finite compucacional

environmenc. Furthermore, since such a sec is unbounded, ic cannot be exhaustive and a

simple enumeration of a sequence of poincs will have no prediccive value for those poincs

omined from the lisc. These observations provide the rationale for the procedure of curve

fitting which anempcs co find a relation becween an independenc variable and a sec of poincs

forming the closest approximation co the given sequence of poincs. This found relation is

referred co as a curve representation and provides a more economical means for scoring and

describing the behavior of a given curve. In this seccion, we will presenc several forms of

curve represencacions, evaluating their respective merits and defects with regard co the range

of curves they are capable of modeling.

Before discussing these more economical represencacions, however, ic should be

mencioned that a finite sec of points frequently serves as the direct represencacion of a curve

in the form of a polygonal line or, in the three-dimensional case, as a polygon mesh [Fole96].

Such modeling is used when the individual daca poincs are themselves subject co direct

editing and often where determining an accurate represencacion of the curve or surface may

be compucacionally incractable. (We shall see, in face, that the accual rendering procedure

used in our application basically draws jusc such a polygonal line connecting a sequence of

poims.) The procedures for determining a mulciresolution curve cannot make use of such

direct represemacions, however, so we will noc discuss them further.

I

0

. , ..

-5'--~~~--"~~~~--'

-5 0 5

Figure 1: A function and a "non-function"

1.1 Functions, Parameuic Curves and Piecewise Polynomial Segments

Since, by definicion, a fancti.on is considered co be a sec of ordered pairs (again, in a cwo-

dimensional environmenc), chis would seem ac firsc glance co sacisfy our basic requiremencs

for an economical curve represencacion. A function describes a sec of poincs of che form

(x, f (x)) , where x is an independenc variable and f (x) is che oucpuc of che relacion

generating che curve. Funccions are capable of generacing a wide variecy of curves, an

example of which is che ploc off (x) = x 2 shown in che lefc pare of Figure 1. However,

funccions are rescricced forms of relacions in char for any single inpuc x chere muse be a

unique value f(x). This makes che represencacion of curves such as che one shown in che

righc pare of Figure I impossible, shore of breaking che curve inco independenc segmencs.

Functions are also nor rocacionally invarianc (implied somewhac by Figure I) and che

descripcion of curves wich vercical cangencs is hampered due co che face char a slope of infinicy

is difficulc co represenc [Fole96].

Funccions are somecimes referred co as explicit representati.ons, as opposed co equacions of

che form f (x, y) = 0 which are known as implicit representati.ons [Ange97]. An example of

2

such an equation is the formula x 2 + y 2
- r 2 = 0 which describes the sec of points forming

a circle around the origin with radius r. While clearly capable of modeling some curves chat

functions are unable co model, such equations are frequently underdetermined and may have

more solutions than is practical. le is also difficult to use such forms co model a portion of a

curve, say, for example, the cop half of the circle just described, without applying external

constraints co the calculation, in chis case constraining y ~ 0 [Ange97, Fole96] .

A form of representation chat overcomes the limitations of both the explicit and implicit

forms is the parametric representation, where the elements of each ordered pair (x,y) are in

fact functions on an independent variable t, meaning chat a point should more properly be

expressed in the form (x(t), y(t)) . The variable t can be thought of as being plotced on an

axis perpendicular to the x,y plane and the two-dimensional curve generated as the projection

on chis plane of the track of chis variable as it proceeds along the taxis (see Figure 2) .

2

0 0 0

-1 -1
1

40

-2
-2 -1 0 2 -1 0

Figure 2: The parametric equation x = sin(t), y = cos(t), 0 < t < 107r.

One advantage of parametric curves is char they replace the use of geometric slopes with

parametric tangent vectors, which can never cake on infinite values [Fole96]. This means

char ic is possible co cake a single parametric curve, which may prove co be compucacionally

difficult as a monolithic curve, and decompose ic into a succession of parametric curve

3

segments. The points where adjacent segments join are referred to as knots. The plotting of

the tangent vectors at the endpoints of each segment verifies the continuity of a curve form

from segment to segment.

These segments are then individual parametric functions on t, forming a piecewise

parametric curve. Computationally, the most convenient way for these segments co

approximate a given curve is for each segment to model a.polynomial function in t, typically

with values oft on the interval [O, 1]. The simplest such polynomials to compute would be

piecewise linear curve segments, but the resulting "curve" would resemble a polygonal line,

with typically not very good approximation over the length of a curve segment. Piecewise

quadratic segments would be more supple in terms of modeling a given segment but, as we

will see shortly, cannot guarantee adequate continuity from segment to segment [Ange97].

In practice, piecewise cubic parametric curves are most often used. Quartic curves are

sometimes used in applications where higher-degree derivatives are needed to determine

curves and surfaces that are aerodynamically efficient, such as in car and airplane design.

However, these curves require more computation to determine the coefficients of each

polynomial term and often produce additional "wiggle" in the representation as well

[Fole96].

Where piecewise parametric cubic curves are used, we have four unknown coefficients to

determine the curve. There must therefore be four knowns coming into the computation of

the curve to solve for these unknown coefficients. The next section examines several

piecewise cubic curve representations differentiated by the manner in which these four

"knowns" are introduced into the curve solution.

4

1.2 Piecewise Parameuic Cubic Curves

In the following, we shall be presenting alcernace representations of the cubic curve

segment q(t) denoted by

where 0~t~1. Although we are concerned with two-dimensional curves, che parametric

cubic is the lowest-degree curve char is non-planar in three dimensions [Fole96] and ic is

useful co indicate char che representations we are describing for two-dimensional curves are

available for three-dimensional ones as well. In any event, che functions x(t), y(t) and

z(t) are entirely independent of each ocher so, rather than having co find twelve equations co

solve for twelve unknowns, we need only co find che four constraints char will determine che

four coefficients for each of che equations in q(t). These constraints are known as che

control points of che curve segment and che following representations are differentiated by

how they make use of chis control information.

1.21 Hermite Forms

In all of che following representations, we are seeking a way co calculate che values of che

control points pk given a parametric cubic segment with coefficients C1c so char we can

reverse che process, i.e.: determine C1c given che control points pk. In che case of che

Hermite representation (named for che mathematician), as shown in Figure 3, two of che

5

--

p'o

p~p',

Figure 3: A Hermite curve representation

control points, p 0 and p 3 (they are indexed in chis manner for consistency with the Bezier

representation char we will see shortly) , are marked by the accual endpoints of the curve

segment. Since ac one end of the segment t = 0 and ac the ocher end t = 1, we have che

following values for p 0 and p 3 :

P o = q(O) =Co

p 3 = q(l) =Co + C1 + C2 + C3

The ocher two "points" in chis representation are, accually, two tangent veccors passing

through P o and p 3 which correspond co the firsc-order derivatives of the parametric curve

segment ac chose poincs (also known as the "velocicy" of the curve). These values, p' 0 and

p'3 are given by the following:

P'o = q'(O) = C1

p'3 = q'(l) = C1 + 2c 2 + 3c3

We may rewrite these equations in matrix form as the following:

Po 1 0 0 0 Co

p3 1 1 1 1 C1

P
1

0 0 1 0 0 C2

p'3 0 1 2 3 C3

6

We observe that the matrix relating the coefficients to the set of control points in the

previous expression is invertible. The inverse of this matrix is called the Hermite geometry

matrix MH

I 0 0 0

0 0 I 0
MH =

-3 3 -2 -1

2 -2 I

and thus the formula for the parametric cubic curve is given by

q(t)=[l t t 2

Po

Figure 4: Two adjac.cnc Hermite curves.

When two adjacent Hermite segments meet, as shown in Figure 4, not only do the

endpoints of the adjacent segments match but the derivatives of both curves at that point

match as well. The former condition is termed C 0 continuity and the latter is termed

C' continuity. The superscript in both cases corresponds to the order of the derivative both

curves share in common at that point. A similar property, G 1 continuity, means that the

7

value of the tangent vector on one curve is proportional to the tangent vector of the

neighboring curve.

J.22 Bezier Curves

Like the Hermite representation, the Bezier curve, named after Pierre Bezier, specifies the

two endpoints of the segment as control points for the curve. The other two control points,

p
1
and p

2
, control the ends of the tangent vectors through the endpoints of the curve. All

four control points, then, describe a polygon within which the curve segment spans (see

Figure 5).

Po

Figure 5: A Bczicr curve.

The points p 0 and p 3 have the same relation to the coefficients of the curve as in the

Hermite representation. The remaining points, p 1 and p 2 , are used to approximate the

tangents at t = 0 and t = 1, respectively. Using linear approximations and relating these to

the derivatives of the polynomial, we have the following equations:

q'(O)= P1 ~Po =3{p1 -po)=3p1 -3po =c1

3

q'(l) = p3 ~ P2 = 3(p3 - P2) = 3p3 -3p2 = C1 + 2c2 + 3c3

3

8

Taking these equations, we can solve as before to find the Bezier geometry matrix M 8

1 0 0 0

-3 3 0 0
M -B -

3 -6 3 0

-1 3 -3 1

and so the formula for the cubic Bezier curve is

q(1) = [1 1 12 13}\!B[pO p, P2 pJT.

Unlike the Hermite representation, adjacent Bezier curve segments sharing an endpoint

will obviously have C 0 continuity but they do not enforce C' continuity since different

approximations are used to the left and the right of a join point [Ange97]. However, the

Bezier curve satisfies an interesting property known as the convex hull property. To show

this, we will first obtain the values for the blending functions of the Bezier curve, which are

given by the transpose of the first rwo factors in the computation of q(t) above:

3]T
1 =

(1- 1)3

31(1- 1) 2

31 2 (1-1)
13

The plot of these func~ions over the interval [O,l] is shown in Figure 6. Notice that all of

the zeros occur when t = 0 or t = 1. In addition, the value of each function over the interval

3

is ~ 1 and furthermore L bi (1) = 1. This means that the representation of the polynomial
i=O

3

q(1) = 'L bi (t)pi
i=O

is a convex sum and that the entire curve lies within the convex hull described by the

polygon formed by the control points of the curve, which is clear from Figure 5 [Ange97,

Fole96].

9

o.•

0.1

0 .\ OZ Q.3 0.4 O~ 0.6 0.7 OJI 0.9

Figure 6: Blending polynomials for Bezier curve.

1.23 B-splines

The term spline originated with shipbuilding and the _early days of aircraft design and

referred co a long lath of wood or metal chat was weighted with metal "ducks". This was

done co bend the spline judiciously for the purpose of producing a curve chat could be traced

and reproduced and chat exhibited second-order or C 2 continuity [Barc87] . Cubic B-splines

also enforce C 2 continuity (which is often referred co as the "acceleration" of the curve) , as

we shall see.

B-splines differ from Hermite and Bezier representations in a number of ways. First of

all, the curve chat the four control points describe typically does not interpolate (or pass

through) any of the control points (see Figure 7a). Secondly, an individual segment muse be

considered in the context of its adjacent curve segments since three of the four control points

defining a particular curve segment also participate in the· definition of the neighboring

segment (see Figure 7b). Thus, each control point in a B-spline representation can influence

up co four adjacent curve segments and so, in a curve with m such segments, the number of

10

control points ism+ 3, versus thac of a Bezier or Hermice curve where the number of poincs

is 3m + 1.

~ ~-:
J .r ~ ' / \

i \ l !,

/ \
. \
/ \ I ;

~ ~

P i+1

P H

' \
'\

\
\
\
\

' /

Figure 7: AB-spline segment {a) and the same segment with two neighboring
segments on each side (b).

Once again, we are inceresced in determining the coefficiencs ck of the sec of polynomials

forming the paramecric curve segmenc qi (I) from the sec of concrol poincs p k . Thar is, we

are looking for a macrix M such thac

P H P i - 2

q i-I (I)= [1 I 12 13 Ju P i-2 and qi (I)= [1 I 12 13 Ju P i-!

P i-I P i

P i Pi+1

We expecc C 0 and C 1 concinuicy ac the segment join poincs or knots. Therefore we have

q;_1 (1) = q; (0) and q';-J (1) = q'; (0). We also noce thac any condicions sacisfying these

conscrainrs will noc use p i-3 since ic does noc define q i (I) nor will they use p i+J since this

poinc does noc define qi-I (I) [Ange97]. Barrels, ec al. [Barc87] show thac the following

condicions suffice:

11

I
qi-I (I)= qi (0) =Co = 6(Pi-2 + 4p i-I + p;)

q_1 (I)= q'i (0) = C1 =~(pi - Pi-2)

In addition, we obtain che following conditions at point qi (I):

I
qi(l)=co +c1 +c2 +c3 =6(p i-1 +4p i +P;+1)

q'i (I)= C1 + 2c2 + 3c3 = _!_(Pi+I - Pi 1) 2 -

Solving these equations for che coefficients ck gives us che B-spline geometry matrix M:

I 4 I 0

M =_!_
-3 0 3 0

6 3 -6 3 0

-1 3 -3 1

B-splines, like Bezier curves, also satisfy che convex-hull property, as can be seen in

Figure 7 and in che plot of che blending functions b k (1) shown in Figure 8:

(I - 1)3

13r =..!.. 4-612 +313

6 I+ 31+31 2 - 313

13

Figure 8: B-spline blending functions.

12

We note chat, again, che only zeros occuring over che interval [O, 1] are ac t = 0 and at t = 1

and, in addition, only one blending function accains a zero value. What is more interesting

abouc chese functions is char when we juxtapose che blending functions for any adjacent

segments wich chose of our firsc segment, we gee che diagram shown in Figure 9. le is clear

from chis representation chat every control point has associated wich ic a C 2 piecewise cubic

"hac" function, centered over che control point, and chat chis function is che same when

shifted and applied co all of che control points in che curve representation. Thus, each curve

segment is che sum of che values of each of chese shifted blending functions over ics

respective interval. In ocher words, chese blending functions form a basis for che polynomial

curves ch us described and in face che "B" in B-spline scands for "basis" [Ange97, Barc87].

This will have important implications when we discuss mulciresolucion curve cheory.

......

b,_2 (t)

.l .· ... ·
· •• i . ..

;" ·.
1" ;_

_.-i

,.
.. ..

.· ..

·, ·, ·. · .

Figure 9: The four basis functions that define segment i.

Lastly, ic should be noted char, since all of che above representations relate a sec of control

points co a sec of coefficients chrough che use of matrix transformations, chis means char we

can convert from one representation co anocher using a composition of chese matrices. Thus,

all of chese representations are equivalent, chough of varying economy and precision.

13

J .24 Types of B-splines

The blending funccions described above are applicable co whar are known as unifonn B

splines, char is, chose curves in possession of a uniform knor sequence. Such a sequence

occurs when each knoc in che curve is uniformly spaced and there are no mulriplicicies or

repecirions of a knoc ar a cerrain poinr. This class of B-splines is a special case of che more

general form of non-unifonn B-splines, which admic disconrinuicies and mulciplicicies in che

knor sequence. We noce char, anycime a knor is repeated, chis has che effect of pulling che

curve closer to che corresponding conrrol point. If a multiplicicy of 3 or greater occurs, che

knot(s) and control point coincide and che curve inrerpolaces char conrrol point. Under such

condicions, che blending functions defined above muse be redefined ar che poinrs chese

discontinuicies occur. Boch Foley, er al. [Fole96] and Barrels, er al. [Barr87] describe che sec

of recurrences required co redefine che blending functions over che affected inrervals.

Boch uniform and non-uniform B-splines, as described, are invarianr under rorarion,

scaling and cranslacion rransformacions. However, such curves are nor invariant under

perspective cransformarions. To guaranree chis condicion; che curve muse be defined as a

non-unifonn rational B-spline or NU RBS [Ange97, Fole96]. Such a curve plots each

component of qi (t) as a ratio between char component paramecric function and anocher

parametric function w i (t). The non-rational B-splines we have discussed would chen be

modeled as special cases where wi (t) = 1. NURBS are a standard tool in most high-end

graphic design environments and chey account for most of che popularicy in che use of B

spline represenrations in such environments.

Wich regard to representing multiresolucion curves, we shall be using endpoint

inrerpolating B-splines, which are B-splines chat have an overall uniform knot sequence

14

except at the beginning and ending of the rurve where a multiplicity of at least 3 occurs in

the sequence. This wilJ necessitate the development of special end-conditions with regard to

using the blending (basis) functions but the behavior of the curve away from the ends will be

somewhat regular, which will be of great advantage in the final implementation of the

mulciresolution engine.

1.3 Curve refinement

' \

[J

Figure 10: Editing a B-spline at a lower and higher resolution.

One of the chief advantages of the B-spline representation is the high degree of

continuity it enforces between adjacent curve segments. However, this becomes a drawback

if local editing of a curve is desired since a single control point may affect up to four adjacent

curve segments. The most direct way to overcome chis problem is to refine the curve,

introducing more segments into the curve through a procedure for knot insertion, as

suggested by Figure 10.

15

Several algorithms for knot insertion exist in the literature. The simplest may be the

deCasceljau algorithm for Bezier curves which consists of first finding the midpoints A, B

and C of the three lines forming the control polygon of the curve, then connecting these

with the lines AB and BC. Next, find the midpoints of each of these lines. The line

connecting these midpoints will also be tangent co the curve and the point at which it

contacts the curve is the location of the new knot [Barc87, Fole96].

Farin [Fari88] and Bartels, et al. [Barc87] present some complex algorithms for inserting

an arbitrary number of knots into a non-uniform B-spline. These algorithms have some

efficiency if a group of knots is inserted at one time but d? not perform as well when a

sequence of edits is made. Since any knots may be added or removed from any location,

there is also no correspondence between a regime of knot insertions and an increase in the

objective "resolution" of the curve.

A scheme that attempts co correlate knot insertions with levels of resolution is the

hierarchical B-spline refinement technique proposed by Forsey and Barrels [Fors88]. In this

idea, an explicit hierarchical framework designed by the user is deployed co permit the

editing of the overall form of a curve while preserving any details it acquired at higher levels

of resolution. Besides the problem of maintaining the data structures necessary co model this

hierarchy, however, the resulting curve will have an infinite number of possible

representations.

The research presented by Finkelstein and Salesin [Fink94] improves upon this method

by formulating a mulciresolution curve representation that uses no additional structures

other than the set of control points. Such a representation will implicitly model a hierarchy

because of the manner in which finer detail edits are preserved within the representation

using the techniques of mulciresolution analysis. Furthermore, because the mulciresolution

16

cechniques recursively subdivide che curve ac each increas~ng level of resolucion, doubling che

number of segmencs ac each level, chis resulcs in a unique mulciresolucion represencacion. ln

order co underscand how such a represencacion is possible we will, in che nexc seccion, survey

che propercies of wavelecs and che role chey play in mulciresolucion analysis.

In summary, chen, among all of che curve represencacions we have surveyed, che B-spline

is ac che same rime che mosc economical, in terms of che size of ics daca sec, and che mosc

precise, for che level of concinuicy ic enforces across che segmencs of a curve. The high

concinuicy enforced inhibits local level of concrol and so a syscemacic and efficienc mechod

for knoc insercion is desirable for increasing che resolucion of a curve. Mulciresolucion curve

represencations will meec chese requiremencs, using cechniques obcained from che cheory of

multiresolution analysis.

17

2. WAVELETS AND MULTIRESOLUTION ANALYSIS

In chis section, we will survey the properties of wavelets and the role char the wavelet

transform plays in modeling a general theory of mulciresolucion analysis.

2.1 What arc Wavdcts?

The mathematical cools known as wavelets gained their initial reputation for success in

the context of signal processing. le is difficult co describe what a wavelet is or what its

significance is in isolation from such a context; wavelets basically serve as catalyses in such

settings, bringing co light certain interesting properties. Compounding chis difficulty is the

face char even the most introductory of materials on wavelets relies on an exposition chat

draws on mathematics of considerable depth. (See, for example, [Chui92] and the

"opcimiscically tided" A Friendly Guide to Wavelets [Kais94].)

In chis section, then, we will not attempt co present apy of the deeper results from the

theory of wavelets or provide any validation for some of its stronger claims. Rather,

following the style of presentation in [Fink94] and [Scol96], we will accept certain claims as

faces and will make use of these in presenting the more salient aspects of the wavelet

transform with regard co modeling a mulciresolucion analysis.

2.11 Scaling fonctions and Wavelets

Mose introductions co wavelets [Hubb96, Chui92] preface their discussion of chis

material by presenting, for contrast and context, another cool used in signal processing for

discovering the underlying behavior of a signal which is Fourier analysis. Briefly explained, a

Fourier transform takes a given signal or dara sec and rewrites chis signal as a linear

combination of sine and cosine basis functions. le is, in fact, a striking face chat nearly all

18

signals may be decomposed in such a manner. The information conveyed by this transform,

the composition of the component frequencies underlying a given signal, unfortunately does

not yield any time-dependent details about the signal, just as the original signal itself, with its

time-specific events, yields no information about its composite frequencies. A modified

version of the Fourier transform, known as the Windowe~ Fourier Transform, is sometimes

used to discover time-related signal behaviors at a more refined level. This version of the

transform applies a window to a selected interval of the original signal and essentially

performs a Fourier transform on that windowed portion of the signal, obtaining frequency

data on that selected interval.

To describe the operation of a wavelet transform let us first assume, without loss of

generality, that n = 2 m, for integer m, is the size of the signal or data set. A wavelet

transform, rather than rewriting the original signal as a linear combination of basis functions,

uses two sets of basis functions, one set to coarsen the signal co a lower resolution, the other

set to disclose the events of significance at that same scale. The functions in the former

group are referred to as scaling foncrions. Although they form a basis, these functions are

designed for compact support, i.e.: the output of an individual function is nonzero over only

a restricted or bounded interval. The formation of a basis consists then of "sliding" a specific

instance of this function over distinct sub-intervals of the domain. They are called scaling

functions because to coarsen a signal representation, for example, the individual instance of

the sliding function is dilated (expanded) to admit twice the interval over the domain as that

of the next finer level of resolution. Notationally, the i-th scaling function of the set of

functions at resolution level j is expressed as rp/ (x) where i = 0, · · · ,21 - 1 and j = 0, · · · , m

and the vector space spanned by these basis functions is denoted V 1 .

19

Since che coarsening of a signal representation removes data from chat representation, ic

is desirable to retain chis data in some form in che event we wane to reconstitute che signal at

its original resolution. This data is preserved by che ocher set of basis functions discussed

above in che form of a sec of detail or difference values, one for each data point removed to

produce che coarser signal represencacion. These basis functions are defined to span che

vector space W 1 which is che orthogonal complement co che space V 1 under che inner

produce (/ I g); chat is, for each f in V 1 and each g in W 1 , che condition (/ I g) = 0 muse

be true, where typically

(/I g) = J~ f(x)g(x)dx.

le is these basis functions, chose spanning W 1 , chat are the functions formally defined as

wavelets. Notationally, che i-ch wavelet of the sec of functions at resolution level j is

expressed as 11r 1 (x)where i = 0 ··· 21 -1 and 1· = 0 ··· m
..,, 1 ' ' ' ' •

2.12 Example: the Haar Wavelet

An example may help co make the preceding discussion somewhat clearer. Suppose we

are given che following "signal":

[9 7 3 5]

This may be a one-dimensional image of pixel values with an original resolution value of 4.

To coarsen chis image by one level, we lower the resolution by one half, averaging the pixel

values pairwise over che dilated intervals. This leads co the following lower-resolution image:

[8 4]

where 8 is the average of che first pixel pair and 4 the average of che last pair. Ac the same

time we produce chis coarsening of the image, we wish co preserve the original information

20

contained in the four-value image. We save this information in the form of derail

coefficients, which capture the amount of the difference of the old values from the new

average. For this first pass, we have the value 1 for the first detail coefficient since the

original value 9 is I more than the average 8 and the original value 7 is 1 less. Similarly, we

obtain -1 as the other derail coefficient since the original value 3 is -1 more than the average

4 and 5 is -1 less. We may repeat this procedure recursively on the new low-resolution

image to obtain the final one-dimensional image

[6]

and saving the derail coefficient 2 since 8 is 2 greater than the average 6 and 4 is 2 less.

Note that at each level change, the size of the data sec of the coarser image is the same as

the number of derail coefficients preserved and the sum of both these quantities equals the

size of the higher-resolution image. That means that at each stage, we can convert from the

high to the low-resolution image and save the detail information all within a set of data of

constant dimension. If we preserve the image in this way, we have the following sequence of

transformed signals:

[9 7 3 5]

[8 4 I 1 -1]

[6 I 2 1 -1]

The last transformed image, with the single pixel value standing for the overall signal

followed by the list of derail coefficients, is known as the wavelet transform of the image,

using for this example the one-dimensional Haar basis.

The Haar basis, incorporating the sec of scaling functions and the sec of wavelets, is the

simplest known wavelet basis. The Haar scaling functions may be more formally expressed

as:

21

{
I 0xl

¢/(x)=¢(2ix-i) i=0,···,21 -1 where ¢(x)=
0 else

Figure 11 shows the Haar or box basis for the spaces V 2
, V 1 and V 0

•

v2:
,[L ,lIL ,:Ul , ~LJJ

o.5 · os f o.5' · os ~

0 0 1 0 : 0 : ······
0 0.5 , 0 0.5 , 0 0 .5 , 0 0.5 ,

,pg(x) ¢.2 (x) ;:(x) ¢i(x)

vi: ·fL·:UJ
0 0 .5 , 0 0 .5 ,

¢~(x) ¢.1(x)

V': .:o
0

0 0 .5 ,

;g(x)

Figure 11: The Haar basis for V', V 1and V.

Likewise, the Haar wavelets, which are orthogonal to the set of basis functions, are defined as

follows:

Figure 12 shows the Haar wavelets for W 0
, W 1 and W 2

•

2.13 Properties of Wavelets

0$x<Il2

l/2$x<l

else

In the foregoing analysis of the Haar basis we have already observed that the wavelet

transform is an information-preserving decomposition which maintains a data set of constant

size at all levels of the decomposition. It should also be noted that this is clearly a reversible

22

decomposition as well. The following are cwo machemacically equivalent expressions for che

value of che same image:

The first expression simply multiplies che original pixel values by che Haar scaling function

relating one pixel co one interval. The lase expression first applies che average value using che

Haar scaling function relating four pixels co one interval, chen applies che first set of

differences co chat average, and lastly it applies che remaining differences to che previously

changed image, resulting in the original sec of pixel values again. Implicit in these

expressions as well is the idea chat the higher-resolution function space is che same as the

lower-resolution function and wavelet spaces combined, chat is

V j + W j = V j + I •

W' : :qr- J__J] ·_ +-_j]- +-- Q _,. . _,r-·u _,~··u- _,~·o
0 0 .5 , 0 0.5 , 0 0.5 , 0 0 .5 ,

W' : :o __ L_D_
~ r ~ ~~-----~

0 0 .5 , 0 o.s ,

'I'~ (x) 'I'~ (x)

w•: _+ ml l
0 o.s

'l'g(x)

'Iii (x) 'I'; (x)

Figure 12: The Haar wavdets for 'W', W 1and W.

23

--

The last point of interest concerns the efficiency of the procedure for producing the

wavelet transform. The cransformacion on the original sec of pixels required operacions of

both the scaling functions and the wavelet funccions on all n pixels. Afrer this firsc

cransformarion, a coarser set of pixels of size n 12 and a set of derail coefficients of size n I 2

remain. The transformation may now be recursively applied on the coarser image

representation, which is now half the size of the original input. The sec of derail coefficiencs

already obtained plays no part in this lower scale cransformarion, however, so the size of the

sub-problem is strictly n I 2. Thus, if we concinue to recursively reapply the cransform

algorithm to the coarsened image at each level uncil we reach the base case of the single

average value, the number of seeps we will cake co completely transform the image is

n n
n + - + - + · · · + 4 + 2 + 1 :::;; 2n

2 4

And so, the rime it cakes to produce a wavelet transform is linear in the size of the original

data set.

2.14 Some Applications

The "image" used in our illustration of the Haar basis was somewhat small and it also

generated derail coefficients of relatively high value. A more real-world instance of this

problem would involve an image with a much larger number of pixels {say, a large power of

2). Suppose that this image is converted into a wavelet transform. If we examine the

accumulated derail values in this transform, we are likely to discover that a number of these

derail values are either 0 or are fairly close to 0, either on the positive or negative side. Whac

this means is that, in the process of averaging that generaced the coarsened image at that

level, no change was registered between the image ac char level and the nexc finer level. le is

obvious, then, char such values may be left out of the representation with impunity since

24

cheir concriburion co rescoring che overall image is minimal co nil. This is che basis of che

idea of wavelet compression, which is clearly a lossy compression technique. An obvious

application of chis technique would involve real-cime networked video: since wavelet

cransforms rake cime around cwice che size of che daca sec to perform, one could simply drop

every ocher video frame in a feed, compress ic by performing che transform and dropping a

sec number of derail coefficiencs off of che result, send che reduced frame, pad che message

wich zeros and chen reconscituce che frame by reversing ~e transform.

Another incerescing use of wavelets is in che area of fingerprinc cacegorizacion. While

individual secs of fingerprincs are unique, chey do evince well-known secs of paccerns (e.g.:

whorls, loops, ecc) which are used as che basis for cataloguing and idencifying fingerprincs

and fingerprinc owners. A wavelet transform of a fingerprinc image caken co a certain level of

coarseness would provide, in numerical form, a similar kind of general paccern signature for a

fingerprinc, making it a candidate for matching ocher such signatures wich che same

classification. This has proven to be such a successful notion in practice chac che FBI actually

employs wavelet-based fingerprinc analysis cools as part of ics database environmenc

[Hubb96].

Another incerescing use of wavelet signatures, discussed in [Scol96], involves che use of a

wavelet transform of an image as a query co find marches in an image database. For example,

if one is searching for a picture of a sunset over a blue ocean, one might sketch a round red

sphere for che sun above a larger blue volume for che ocean in a picture or bitmap editor.

Then, che wavelet transform of chis image is obtained and ic is cross-checked against

elemencs in che database, reporting scores on possible matches and, in che application

presenced, delivering thumbnail represencacions of these marches co che user for possible

selection.

25

--

2.2 Multircsolution Analysis

The preceding macerial on che generation and che propercies of che wavelec cransform

finds ics codification in che development of che general framework of multiresolucion

analysis. The mocivacion for che development of chis analysis, as narraced in che canonical

paper on mulciresolucion analysis writcen by Scephane Mallar [Mall89], was a compucer

vision problem: how to extract meaningful data ac an arbitrary scale &om two-dimensional

imagery. The goal of multiresolution analysis, as scared, is to provide a decomposition char

enables a "scale-invariant interprecation" of an image. Of course, we may subscicuce che

word "image" wich any meaningful sec of data under consideracion.

The prerequisice for a mulciresolution analysis to occur is che existence wichin che

domain of che representation of a nested sec of linear spaces. Such a hierarchy of spaces is

possible only when che sec of scaling basis funccions spanning a given space Vi is refinable,

1.e.: for all j in [l, m] chere must exist a macrix pi such char

<I>i-1 = <1>i pi

where <I> i is che set of scaling basis funccions ac level j. It can be shown char all funccions

which can be subdivided are refinable, char is che sets of funccions at neighboring levels of

resolucion can be related in chis way. Anocher way to express che idea of chis nesced

hierarchy of spaces is in che form

V 0 cV 1 cV 2
C···

Note chat, since Vi and Vi-I have dimensions v(J) and v(j - 1), respectively, pi is a

v(j) x v(j - 1) matrix. Similarly, since Vi-I + W i-I =Vi , we can express che sec of wavelets

at level j - l, 'I' i-I , as linear combinations of the scaling funccions <I> i . That is, there must

exist a v(j) x w(j -1) matrix of constants Qi satisfying

26

-

For example, we can denote the matrices P 2 and Q2 which perform the refinement from

levels 1 to 2 of the Haar basis as the following

10

10 p2=
01

01

1 0

-1 0
and Q 2 =

0 1

0 -1

Note that, if we conjoin these matrices in block matrix form, they form a square matrix that

is also invertible, which will have some important implications, as we will see shortly. In

fact, we may express the general equations stated above in block matrix form as well:

This is referred to as a two-scale re/,arion for scaling functions and wavelets and the matrices

P 1 and Q 1 are known as synthesis matrices.

If the preceding precondition regarding the existence of such nested spaces is met, the

master strategy of a multiresolution analysis is to deploy a filter bank for transforming an

input image into a wavelet transform. A filter bank for converting an input image cm into a

wavelet transform would be diagrammed as follows:

Am Am-1
cm ______ __,._ c m-1 _______ c m-2 A1

--------co

Figure 13: A multircsolution filter bank.

27

In order co build this filcer bank, we muse find analysis matrices A , the low-pass,

downsampling filcer thac coarsens the signal, and Ii , the high-pass filcer thac records the

derails of significance ac this scale, such thac

cj-1=Ajcj and dj-1 =B1cj

where A j is a v(j -1) x v(j) matrix and Bj is a w(j - 1) x v(j) matrix. The contents of the

transformed image, then, begin with the base sec of coefficients c 0 and proceed with all of the

d I from righc co left along the boccom of the diagram.

If these macrices are chosen appropriacely, then the original sec of coefficients cj can be

recovered from c j-l and d 1-
1 by using the synthesis macrices P j and Q 1 as previously

defined:

cl =pl c1-1 + Qld 1-1

This works because the coefficients being modified are the linear mulcipliers for the basis

funccions already relaced by P 1 and Q 1 and so they can be directly relaced in this fashion.

This observation gives us a way co express the inverse relacion of the scaling and wavelec

funccions at adjacent levels. Using the analysis filters A j and B 1 and the face chat v(j - 1) +

w(j -1) = v(j)' we can build the block macrix [A I I B 1 r co obcain the following:

Like the block macrix previously described for combining the synthesis macrices, this square

macrix is also invertible. In face, ic is clear from comparing both of these equacions that

For example, the analysis macrices for the Haar basis at level 2 are as follows:

28

2 1 [1 1 0 OJ 2 1 [1 - 1 0 OJ A =- and B =-
2 0 0 1 1 2 0 0 1 -1

If these are combined in block matrix form and inverted, the result will be the block matrix

[P2 I Q2]. The following are some useful identities obtainable from this result:

A1Q1 =Bipi =0

Ai pi =BiQi =PiAi +Qi Bi =I

Jc should be pointed out that the Haar basis is one of the rare wavelet bases where the sec of

wavelets at a given level is orthogonal not only co the sec of scaling functions ac that same

level but also orthogonal to the scaling functions ac every coarser level of resolution as well.

This is known as an orthogonal multiresolution basis and has the nice result that the block

matrix forming the sec of analysis filters for any level j is actually the transpose of the block

matrix forming the sec of synthesis filters at that same level (within a scaling factor), that is

This happy result is not the norm for most wavelet bases. The only restriction for this

majority of cases is that the spaces V 1 and W 1 be orthogonal to each other at that level which

means that, once the synthesis filters P 1 and Q1 have been determined from the refinement

relations between the wavelets and the scaling functions at each level j, we can invert the

block matrix holding the synthesis filters to obtain the block matrix containing the analysis

filters.

To sum up, multiresolucion analysis leverages the properties of the wavelet transform co

produce a linear-time decomposition of an image, obtaining a scale-invariant representation

of that image. Perhaps most important is that once the filter bank effecting this analysis has

been defined, data representations of different scales may be directly related by these filters

without recourse co any of the scaling functions or wavelets that built them in the first place.

29

--

3. MULTIRESOLUTION CURVES

In this section, we will combine the analysis techniques described in the previous section

with the curve representation for endpoint-interpolating B-splines obtained in section 1 co

produce a unified representation for a mulciresolucion curve. The material in this section is

almost entirely drawn from [Fink94] and [Scol96].

3.1 B-splines and Spline Wavdcts

In order for a curve representation co be modeled at a number of different scales, by the

requirements of mulciresolucion analysis the sec of basis functions spanning the vector space

containing the finest scale representation of the curve muse be refinable. For a cubic B

spline, the basis functions in this case correspond co the sec of blending functions from which

each curve segment is formed. From Figure 9, in face, we can observe that the piecewise

cubic "hat" function, whose pieces form the blending functions over a specific segment,

behaves in exactly the manner we would expect from a scaling function. That is, the same

function, which is nonzero only over a bounded interval, is shifted co cover successive and, in

this case non-distinct, intervals, where the maximum value of the function is centered over

the point along the curve where the corresponding control point exerts the greatest influence.

Lascly, we know there are several algorithms for knot insertion or for subdividing a given

curve. Since the curve representation is capable of subdivision, chis means its basis functions

are refinable and so the cubic B-spline representation is a ·candidate for mulciresolucion

analysis.

The task now is co generate the synthesis filters P and Q for each level of resolution.

This seep is somewhat complicated due co the face chat we are using endpoint-interpolating

B-splines, meaning chat we have mulciplicicies at both ends of the knot sequence for our

30

curves. The usual method for finding che blending funccions for a curve wich a no:l-uniform

knoc sequence is co compuce chem using che Cox-deBoor recurrence [Fari88]:

b~(t)={} t i 5,t5,~i+ I
0 otherwise

t-t t -t
b~ (t) = i b~-I (t) + 1+ d + I b~.._~ 1 (t)

(i+d - ti f, +d+I - f,..1

where che values ti are che indexed knocs in che knoc sequence and che subscripc d refers co

che degree of che polynomial; chus, chis recurrence muse be called up co three levels co find

che appropriace blending values for a piecewise cubic polynomial. Noce chac che definicion of

che basis funccion for che base case of che recurrence, i.e.: wich d = 0, looks similar co che

definicion of che box funccion in che Haar basis. Unsurprisingly, it is che same funccion since

che Haar basis is a piecewise conscanc B-spline. Once che values of che blending funccions

are decermined, che P synthesis macrix may be builc, encoding each B-spline as a linear

combinacion of B-splines char are half as wide. We noce chac, for each levelj, che number of

segmencs in che curve represencacion is i and so che number of concrol poincs is i + 3.

Thus, che matrix Ji has i + 3 rows by Y' + 3 columns. After finding Ji, a matrix Q is found

which satisfies che equation

where [(<l> 1 I <l> 1)] is che matrix of inner produces of all che basis funccions in <l> 1 . In

essence, che problem is co find Y' column basis veccors chac can span che nullspace

(P 1)T [(<1> 1 I <1> 1)] . There are many ways co selecc such veccors buc, in praccice, che best

way is to constrain che number of nonzero encries in each column and require these encries

to be consecucive. Puccing as many zeros as possible at che cop and boccom of each column

31

will guarantee that the wavelets will have compact supports. Appendix B contains MATLAB

code for the routines that compute the P and Q matrices for any input arguments d, for the

degree of the polynomial, and j, for the level of resolution. Figure 14 shows the plots of the

scaling functions and the first four wavelets at resolution level 3 .

... L____. . '!Jh ______, D •• , /\L____, .. , A A f\ '

.... ~ ~ ~ ~

Figure 14: The B-spline scaling functions and the first four wavdets at lcvd 3.
[Fink94]

The filter banks for cubic endpoint-interpolating B-splines produced by these routines

are shown in Appendix A for the first few levels of resolution. The impact of the non-

uniform behavior of the basis functions at the endpoints is revealed in the irregular pattern of

values in the first few and lase few column vectors in both the P and Q matrices. However,

above level 3 for the P matrix and level 4 for the Q matrix, the behavior of the inner column

vectors is extremely regular; in fact, the same column vector is repeated, offset vertically by

two rows from its neighbor, with these repeated vectors framed by the irregular end

conditions. This simple structure makes the creation of filters for higher levels of resolution

relatively easy. Furthermore, the face that both secs of matrices are banded diagonal matrices

means that the number of multiplications, although still linear in the number of rows (i.e.:

the number of refined control points), is bounded by the largest number of nonzero entries

in the repeated column vectors, making refinement a linear rime operation [Pres92].

Although we may combine the P and Q filters in block matrix form and invert this to

create the analysis filters A and B, the resulting matrix will most likely not be a banded

32

diagonal macrix. Thus, coarsening operations would take quadratic time to compuce while

refinement operations took linear time. A way to get around this problem is to recast this

problem as an instance of a solution of Ax = b , where we are solving for x. This is done by

caking the LU decomposition of the combined synthesis matrix PQ. We will solve for the

set of control points c1-
1 knowing the macrix PQ and the input c1

:

PQc1- 1 = LUc1- 1 = L(Uc 1- 1
) = c1

This is done in two passes: first, solve for Ly = c 1 with backsubstitution; next, solve for

Uc1-1 = y using the same method. The LU decomposition of the matrix PQ will maintain

the efficiencies of the original' s banded diagonal form so this operation also can be

performed in time linear to the size of the data set.

3.2 Integral and Fractional levds of Resolution

Once the filter bank has been created, a multiresolution curve representation is capable

of supporting a number of graphical editing operations, including the ability to apply

continuous levels of smoothing to a curve; the ability to edit a curve at any continuous level

of detail; the ability to change the "sweep" or direction of a curve while maintaining its

texture or "character" or, conversely, the ability to modify the "character" of a curve withouc

affecting its overall "sweep".

The coarsening or refinement of a curve to integral levels of resolucion becomes trivial

once the filter banks for those levels have been created. Suppose we are given a curve

q(t) which has m control points c = [c0 · · · cm-I] and we wish to construct the

approximating curve using m' control points c' = [c' 0 • • • c' m·-i], where m' < m, assuming

both curves are endpoint-interpolating B-splines. If we assume for the moment that

33

m = 2 i + 3 and m' = 2 i ' + 3 for nonnegative integers j' < j, then the control points c' of the

approximating curve are given by

c'= Ai'+1 A i'+2 ... Ai ci

That is, we run the mulciresolution decomposition algorithm, recursively passing each

coarsened set of control points through the filter bank until the desired resolution is reached.

Again, since the computations performed at each level are done using the linear time LU

decomposition algorithm previously described, this modification of the curve can be

performed at interactive speeds. Note that, in practice, we would also be presenting each

coarsened set of control points to the corresponding B filters as well, preserving the detail

information lost through coarsening at each pass in a set of detail coefficients d i-I , · · ·, d i' .

This process is straightforward when the desired levels of resolution are discrete in

nature. If a fractional level of resolution is desired, there is no obvious way in which a quick

approximation can be constructed. Instead, a more practical solution is to define a

fractional-level curve qi+µ (t) for some value 0::; µ::; 1 which is a linear interpolation

between its two nearest integer-level curves q i (t) and q i+ I (t) , expressed by the following:

qi+µ (t) = (1 - µ)q i (t) + µ qi+i" (t)

= (l - µ)<t>i (t)ci + µ <t>i+I (t)c i+I

This interpolation allows smoothing to take place at any continuous level. An example of

such a fractional-level curve is shown in Figure 15.

Figure 15: Fractional-levd curves: {a) levd 8.0; (b) levd 5.4; (c) levd 3.1. [Fink94]

34

Ar any poinr in our application of coarsening and refinemenr operations on a

mulriresolurion curve, the curve representation may contain a sequence of low-resolurion

0 J-l d f h. h 1 . d ·1 d0 d J-l Th' . conrrol poinrs c , · · ·, c an a sec o 1g -reso unon era1 pares , · · · , . 1s perm1rs

cwo very different kinds of editing co be performed on such a curve. If we edir some low-

resolurion version of the curve cf and then add back the derail values d f, d f+ I ,. • · , d J-l , we

will have changed the overall sweep of the curve while preserving ics derails (see Figure 16).

Conversely, if we leave the low-resolution control points intact and modify instead the set of

derail values, we will have altered the character of the curve while preserving irs overall sweep

(see Figure 17). We nexc describe these editing operations in more derail.

(a) (b) (t:') (aJ

Figure 16: Changing the sweep of a curve without affecting its character. [Fink94]

Editing a curve ar an integral level of resolurion is simple. Lee cJ be the control points of

the original curve qJ (t), lee cf be a low-resolurion version of cJ, and lee cf be an edited

version of CJ' given by cf =cf + tJ..cf. The edited version of the highest-resolution curve

AJ J J
c = c + Lie can be computed and reconstructed as follows:

cJ = cJ + LicJ

=CJ + pfpJ- 1 • •• pf+l tJ..cf

The lower the value for], the greater the change co the overall sweep of the curve.

35

Editing a fractional-level curve is somewhat more complicated. Since a fractional-level

curve is an interpolation between curves ac neighboring integral levels of resolution based on

some value for µ , we would like che effect of any edits we perform on a curve of level j + µ

co interpolate che proportional changes co che curves at levels j and j + 1. Thac is, as µ

moves from 0 co l, che curve at level j is less affected by an edit and che curve ac level j + 1 is

more affected. Lee qf+µ (t) be a fractional-level curve and lee cf+µ be the sec of control points

associated with this curve, chat is

qf+µ (f) = <J>f+I (f)Cf+µ

This formulation suggests that the number of control points in cf+µ marches the size of cf+J

which is incuicively correct; in practice, these same control points are used co edic che curve.

Suppose the user modifies one of the control points erµ. To propagate the effect of chis

change, the system will have co move some of che nearby control points when erµ is

modified. The distance these nearby points are moved is inversely proportional to µ ; for

example, when µ is near 0, the control points at level j + µ are subject co a wider propagation

of che edit whereas when µ is near 1, the displacement co nearby points is more confined.

Let !J.cf+µ be a vector recording the change co the control points of the fractional-level

curve; this is essentially a zero vector except for the i-th entry which records the edit co e;+µ.

We will break chis vector into two components: a vector !J.cf recording che changes to the

control points of the nearest integral lower-resolution curve and a vector lld f recording the

changes to the wavelet coefficients of the same lower-resolution curve and defined as

lld f = Bf+1
!J.cf+I. The changes to the higher-resolution curve at level j are then

reconstructed as follows:

36

We can obtain an expression for !l.c j+µ by the following derivation:

And so

<l> j+i (t)!l.c j+µ = qj+µ (t) = (1- µ)<l> j (t)!l.c j + µ <l> j+i (t)!l.c j+i

= (1- µ)<l> j+I pj+I !l.c j + µ <l> j+I (t)!l.c j+I

!l.cj+µ = (1- µ)Pj+i !l.cj + µ !l.c j+i

= (1- µ)Pj+I !l.cj + µ(Pj+I !l.c j +Qj+l !l.d j).

= pj+I /l.cj + µ Qj+I /l.d j

Next, we need co define a new vector !l.c'j which records the changes co the control

points at level} necessary co move the modified point cf+µ co its new position. We also

define the vector !l.c'j+µ co record the user's change co the i-ch control point of the curve ac

level}+µ , char is an otherwise zero vector whose i-ch entry is !l.c/+µ . The propagation of

the effect of the edit is then determined by interpolating between these two vectors, using

some interpolation function g(µ) :

!l.cj+µ = (1- g(µ))Pj+i !l.c'j +g(µ)!l.c' j+µ

So, !l.cj+µ will move the selected point co its new position and will also propagate the

proportional effect of chis change to its neighboring control points as a function of µ . If we

equate the right-hand sides of both versions of the equation and multiply the results by either

A j+I Bj+I ch c ll . or , we get e 10 owmg:

A j+i pj+I !lcj + µ Aj+IQj+I !l.dj = (1- g(µ))Aj+I pj+i !l.c'j +g(µ)A j+I !l.c' j+µ

Bj+I pj+I !l.cj + µBj+IQj+I !l.dj = (1- g(µ))Bj+I pj+I !l.c'j +g(µ)Bj+i !l.c'j+µ

If we apply to these expressions the "invercibility" identities we listed in section 2.2, we get

the following simplified expressions:

37

/!,.c 1 = (1- g(µ))!!,.c'1 +g(µ)A J+i 1!,.c''+µ

/!,.d 1 = g(µ) B 1+1/!,.c' 1+µ
µ

In practice, any function on µ chac increases monoconically on [O, I], such as µ 2
, would be

suicable for g. The lase derail co be defined is che definition of che veccor /!,.c' '. This also will

be a vector which is zero everywhere except for one or cwo entries, depending on che index i

of che modified control point and che i-ch row of che refinement matrix p i+l . We wish co

determine che column index k of chis matrix chac identifies che point of maximal influence in

che i-ch row of chac matrix. If one such point exerts che maximal influence, chis means chac

che modified control point is mosc influenced by che control point cf+ 1 and we can define

1!,.c'i as !!,.cf+µ I P;:/1
• If cwo neighboring points exert equal influence, chen define boch /!,.c'{

d A 1) A }+µ /2pJ+I an uC k+I as uC; i,k •

The reverse of che previous sequence of derivations chen boils down into che following

sequence of seeps for modifying a fractional-level curve:

I. Define /!,.c'1+µ = [o, · · ·, 0, !!,.cf+µ, 0, of

2. Define /!,.c' 1 as described above.

3. Define /!,.c 1 and /!,.d 1 according co che equations ac che cop of chis page.

4. Conscrucc che offsets co che highesc-resolucion curve using che equation ac che cop of page

37.

The only portion of che above algorichm involving any repetitive compucacion is step 4 and,

since chis sequence of steps cakes linear cime, che entire manipulation should be able co be

performed at interactive speeds [Scol96].

38

We may now discuss the ocher form of editing operations we can perform on

multiresolucion curves, namely chose involving the detail coefficients. The goal of chis

process is co perform edits similar to chose shown in Figure 17 where the texture or character

of a curve may be modified while its general sweep is left unchanged.

((

Figure 17: Changing the character of a curve without affecting its sweep. [Fink94]

The "editing" operation in chis circumstance is almost trivial. Let cJ be a curve

· d l 0 J-i d0 dJ-i d . l . l . d .. representanon an et c , · · ·, c , , · · ·, enote ltS mu nreso unon ecomposmon.

To edit the character of a curve at resolution level j, one simply replaces the detail

coefficients d j, • • ·, d J-I with some new set d j, • • ·, d J - I and then reconstructs the curve back

to level]. Finkelstein and Salesin [Fink94] discuss the possibility of preserving a repertoire

of such textures in the form of a library of detail coefficients. The actual replacement of

some subset of detail coefficients must be performed at some integer level, of course, but the

resulting curve will still be subject to all of the ocher fractional-level manipulations described

so far.

There are different ways in which we can process these detail coefficients. The high-level

description of these editing operations as we have described chem so far ultimately rests on a

39

representation of a parametric curve chat we can treat in terms of its separate functions on x

and y. This is indeed how we process and modify the control points of the curve and how

we would practically render the curve in some graphic context. This may nor be the best

way co handle the derail coefficients of the curve representation. For example, Figure 18

shows how the derail values, if they are also computed and reconstructed using an x,y

orientation, may result in some non-intuitive and undesirable behavior in the reapplication

of char cexcure. An alternative co chis is co specify a change in the curve relative co the

tangent and normal directions of the lower-resolution curve q1-
1 (t) . These tangent and

normal values are computed using the parameter value 10 corresponding co the peak of the

wavelet If// (t). The implication is chat the curve representation is no longer a simple linear

combination of the control points and the detail coefficients; instead, a change of coordinates

must be applied, both when the details are computed and again when they are reapplied.

Since chis process is linear in the number of control points, however, chis should add no

degradation co the overall performance of the algorithm.

OP'igi/la(CCIP'IY. Ftt~d .TY·Ol'i~ntClliolt. D~tail l'r fati •~ to dr~ tangrnt.

Figure 18: Orientation of detail in an edited curve. [Fink94]

40

3.3 Implications of Multircsolucion Curve Theory

We have provided in chis section an extremely high-level, mathematical blueprint for a

number of very interesting and sophisticated graphical editing operations. Most interesting

of all is the claim, which is supported by the consistency of the derivations based upon the

core performance of the multiresolution decomposition algorithm, chat all of these complex

operations may be performed in time linear in the size of the representation, i.e: in real time.

These arguments seem persuasive and we may prefer to be convinced by chem or at least to

use these arguments as the foundation for a more rigorous proof of correctness chat would

substantiate chis claim. However, the most convincing validation (if not proof) of chis claim

would come from actually building an application chat could model these operations in a

thorough and convincing manner and to see if, in practice, these theoretical benefits can

actually occur.

The remainder of chis paper will describe the design and implementation of a GUI-based

application designed for the construction and manipulation of multiresolution curve

representations and modeling all of the operations described in chis section.

41

-

4. IMPLEMENTATION DESIGN AND RESULTS

In this seccion we will describe the design and implemencacion of an inceraccive, GUI

based applicacion we shall chriscen as "CurvEdicor". The purpose of the CurvEdicor is co

provide an environmenc for the conscruccion, edicing, and refinemenc and coarsening of

mulciresolucion curves, i.e.: cwo-dimensional curves whose represencacions are capable of

embedding a range of derail abouc the curve ac a variecy of differenc scales of resolucion.

Beyond the implemencacion of this sec of operacions, as described in seccion 3 of this paper,

the applicacion also models a sec of reasonable scandard incerface operacions, such as the

abilicy co score and recrieve curve represencacions as files; the abilicy co edic mulciple curves;

the abilicy co undo/redo edics and other operacions; the abilicy co modify the display of

edicorial derail in the graphic environmenc; and other "good policy" operacions.

We shall firsc of all presenc a high-level overview of the modular conscruccion of the

design, explaining the roles of these separace componencs. Nexc, we will discuss the

implemencacion of each of chese modules, focusing on che more imporcanc funccionalicy in

each module and how ics serves co model che operacions described in seccion 3. Lascly, we

will have some remarks on che performance of che applicacion, boch in cerms of inceraccive

performance and also correccness, some descripcion of che limicacions of che applicacion and

unimplemenced feacures, and some remarks on excensions and fucure work.

This applicacion was wriccen in che high-level programming language Java using che

implemencacion of che language provided in che JDK Qava Developer's Kie) v. 1.1.?b

combined wich che Java Foundacion Classes (Swing) Libraries. Boch of chese sofcware

developmenc cools are publically available and may be downloaded from che websice

http://www.javasoft.com/ which is sponsored by Sun Microsyscems, che originacors of che

Java language specificacion. This applicacion was also wriccen and reseed on a Pencium

42

z66MHz IBM-compatible PC wich 32MB of RAM; all scacemencs regarding any subjeccive

evaluation of che inceraccive performance of chis application should be understood in chis

concexc.

4.1 Overall Structure of Application

A fundamencally sound scracegy for organizing GUI (graphic user incerface) based

applicacions of any scale is co firsc decouple whac is known as che "business logic", or che

componenc(s) where all of che primary compucacion involved in che applicacion cakes place,

from che "UI logic", che derailed and often highly complex code char organizes che visual

information displayed co che user and refaces che requests for services char che user makes

through chis interface co che proper routines in che business logic. This scracegy was pursued

from che oucsec in che design of chis application and, as a resulc, che organization of chis

application is builc upon two key componencs: firsc, che multiresolution engine which

performs che business logic of che application; and secondly, che application interface which is

icself organized inco subcomponencs, as we shall see.

The mulciresolucion engine is che portion of che code dedicaced co creacing che filcer

bank, i.e.: the syscem of analysis and synthesis filcers which enable shifts in resolucion, and

also co supplying che basic operacions coarsen and refine, through which che resolucion

shifts occur. These operations cake as inpucs a sec of concrol points, che basis of the curve

represencacion, and an inceger for che resolucion level which also funccions as an index inco

che arrays of matrices forming che filcer bank. Boch operations return che cransformed sec of

concrol points as a return value. The ocher major operation in chis module is edi tcurve

which is invoked when an edic on a &accional-level curve is performed; chis mechod recurns

che modified set of concrol poincs recording che discribuced effecc of a fraccional-level edic, as

described in section 3.2.

43

The design of the application interface borrows an organizational idea from graphics and

Java programmer Leen Ammeraal [Amme98]. The interface itself is split into two major

components: the application frame, which contains the main method for initiating the

program and contains the typical repertoire of GUI components, such as a menu bar, a

toolbar and a slider bar, and all of the requisite interfacing logic; and the application canvas,

the field within which the curves are actually drawn and manipulated. Structurally, the

application frame contains the canvas object and the canvas contains, among its member

data, an instantiation of the multiresolucion engine. The.canvas object also contains an

instance of an undo stack, a modified version of the Java Stack object, and a Vector

containing possibly multiple instantiations of CurveState objects which is the representation

this application uses co score information defining a curve.

The complete code listing for this application can be found in Appendix C.

4.2 Description of Major Components

4.21 Multiresolution Engine

The component serving as the multiresolucion engine in this application is defined in the

file Mul tires. j ava as the Multires class. The fundamental data comprising a Multires

object are the arrays for storing the matrices or two-dimensional arrays that represent the

analysis and synthesis filters of the filter bank. The primary purpose of this module is to

create a filter bank designed explicitly to operate on sequences of control points that

represent endpoint-interpolating cubic B-spline curves and to provide coarsen and refine

methods which employ this filter bank.

The creation of the filter bank is helped greatly by the repetitive structure of these

matrices above a certain level of resolution (see section 3.1 and Appendix A). While the

44

lower resolution filters are more irregular, che construction of che higher-level matrices may

be automated to a great extent. In che Multires object, chis automated matrix generation is

done by che initMatrices method, which is called from che constructor.

The initMatrices method first of all inserts che macrices for che first three levels of

resolution into che arrays PQ and AB. These matrices have already been hardcoded as

statically declared arrays in che class definition. The reason for declaring chem as static is an

attempt at optimization; a static declaration forces chis data to reside as part of che class

definition rather than within an instance of a class so chis may employ one less level of

indirection in terms of data access. The naming of che arrays as PQ and AB refers to che fact

chat these matrices are modeling che synthesis and analysis filters as block macrices, with both

che P and che Q matrices, for example, combined in che same matrix. The sources for che P

and Q matrices are che filters shown in Appendix A. The corresponding AB matrices are che

inverses of che PQ matrices. The hardcoded values in these matrices were computed using

MATLAB. These matrices are small enough not to warrant any extra optimization regarding

macrix multiplications.

Above chis level, che matrices are built in a much more optimized manner. To

understand what is happening we need to look at che structure of che combined PQ matrix at

higher levels. First of all, che P and Q matrices at level j have, respectively, (2 1 + 3) rows by

(2 f-I + 3) columns and (2 1 + 3) rows by 2 f - I columns. Figure 19 shows che structure,

though not che actual values, of a block matrix containing che P and Q matrices at level 4.

As in che matrices shown in Appendix A, all zero entries are left as blanks. The repeated

column vectors are shown in bold. It should be clear chat, as che level j increases, che

dimensions of chis block matrix double with every increase. If we leave che structure of chis

45

I.
i I

I

I

matrix unmodified, even with the number of zeros present in the matrix any computations

using chis form would cake quadratic rather than linear time, which is not accepcable.

p q

p p q q

p p q q q

p p p q q q q

p p q q q q

p p p q q q q q

p p q q q q q

p p p q q q q q q

p p q q q q q

p p p q q q q q q

p p q q q q q

p p p q q q q q q

p p q q q q q

p p p q q q q q

p p q q q q

p p p q q q q

p p q q q

p p q q

p q

Figure 19: Block matrix diagram of synthesis filters P and Q.

The optimization strategy comes in two pares. The first seep is co observe chat, since

both P and Q in isolation are structured as banded diagonal matrices (recall chat we

constructed the Q matrices co support explicitly chis kind of structure) , we may interleave the

column vectors of chis block matrix co produce a single banded diagonal matrix. The

difference in the number of columns is chat P has 3 more column vectors than Q. Therefore,

such an interleaved matrix will have the first 2 columns and the lase 2 columns from P and

an alternation of columns from P and Q between these ends. The paccern of the resulting

46

interleaved matrix is shown in Figure 20 again with the elements of the repeated column

vectors in bold and also with the elements on the main diagonal highlighted in boldface and

caps. Note chat the effect of the alternation of the repeating column vectors from P and Q is

co position the center of the sequence of nonzero elements of these vectors directly on the

main diagonal.

p q

p p q q

p Q p q q

p q p q p q q

q p Q p q q

q p q p q p q q

q q p Q p q q

q q p q p q p q q

q q p Q p q q

q q p q p q p q q

q q p Q p q q

q q p q p q p q q

q q p Q p q q

q q p q p q p q

q q p Q p q

q q p q p q p

q q p Q p

q q p p

q p

Figure 20: Revised block matrix after interleaving.

Once we have created chis banded diagonal matrix we next need to find a way to make

the form more compact as a means to optimize matrix multiplications. Press, et al. [Pres92]

in the book Numerical Recipes in C describe a series of highly optimized algorithms for

manipulating a banded diagonal matrix expressed in a certain form. The transformation

47

used is co essentially declare scorage for a matrix with the same number of rows but with the

number of columns equal co the sum of the number of subdiagonals (diagonal "rows" below

the main diagonal) plus the number of superdiagonals (those above the main diagonal) plus

1 (the main diagonal). Next, the column veccors are entered into this matrix in anti-diagonal

fashion so that the column that is indexed at a position equal co the subdiagonal width plus

one contains all of the entries of the main diagonal. Performing this redistribution on our

example gives us the final compacted form in Figure 21.

p q

p p q q

p Q p q q

p q p q p q q

q p Q p q q

q p q p q p q q

q q p Q p q q

q q p q p q p q q

q q p Q p q q

q q p q p q p q q

q q p Q p q q

q q p q p q p q q

q q p Q p q q

q q p q p q p q

q q p Q p q

q q p q p q p

q q p Q p

q q p p

q p

Figure 21: Optimiud banded diagonal form for block matrix PQ.

This matrix is still somewhat sparse, as evidenced by all the (implicitly) zero entries, but the

number of such entries per row is now fewer. More to the point, as the level j increases and

48

the number of rows approximacely doubles for each increase, che widch of che macrices

generaced will always be the same. This is due co che repecicive column veccor in che Q

macrices, whose lengch of nonzero elemencs decides che widch of che cransformed block

macrix. Thus, the execucion rime for macrix mulciplicacion is reduced co che number of

encries in che column veccor co be mulciplied rimes a conscanc and cherefore becomes linear

rime. The initMatrices mechod licerally conscruccs chese compacc form macrices by

populacing che respeccive anci-diagonals of che macrix wich che values concained in che

repeated column veccors, which are declared as static one-dimensional arrays. The column

vectors belonging co che Q macrix muse firsc be mulciplied by a scalar normalizacion value

which is resolucion-level dependenc (see Appendix A). The opcimized roucine banmul, char

cakes a macrix in chis form and a column veccor as argumencs and recurns che compuced

column veccor recording cheir produce, is drawn almosc directly from che code liscing

presenced in [Pres92].

(A remark abouc che code concained in [Pres92] is in order. As inescimable as chis book

is in its praccical ucilicy, ic has che racher unforcunace habic of demonscracing array processing

roucines, which are clearly written in C, by indexing inco an array of size n wich values in che

range l..n, whereas che syncax normally expecced in chis hrnguage, and in Java as well,

handles index values from 0 con- 1 as legal. No explanacion for chis scrange usage is

offered. To use chis code, chen, one can do one of cwo chings. One can eicher declare excra

scorage, i.e.: declare an array of size n + 1 where one of size n is needed, forgeccing abouc che

entry at index 0 and using che remaining range oflegal indices. Or, one can rewrite che code

so char proper indices are used, which is a highly non-crivial cask given che opcimizacions

inherenc in che code. In chis applicacion, che laccer course was taken. So, as an addicional

public service, che code liscing presenced in Appendix C contains highly optimized code for

49

manipulating and performing operations on banded diagonal matrices which indexes the

arrays forming these matrices in a legal and proper manner.)

Having manufactured the PQ matrices for several levels of resolution in this manner,

initMatrices must also create the analysis filters or the AB matrices as well. This rime,

however, we cannot simply invert the corresponding PQ matrix since the result will not be a

banded diagonal matrix and so we will have no opportunity for optimization. Instead, we

muse decompose the PQ matrix into upper triangular and lower triangular matrices and use

these co find a solution for a given sec of control points using backsubscicucion, as described

in section 3.1.

We can describe the LU decomposition algorithm with a simple example. Suppose we

are given a square matrix A and a column vector b and we wish co find the column vector x

such that Ax= b. For clarity, lee us work with an actual example and lee

We first of all declare another matrix L which is initialized as the identity matrix with the

same dimensions as A. We next begin reducing matrix A co form U. For example, co reduce

the second row, we multiply the first row by 2 and add this co the second row, since the

entry in the pivot of the first row is 1. At the same, we place this multiplier, 2, in the first

column of the second row, yielding the following two ma"trices for U and L ac this seep:

U = [~ ~ ~] L = [~ ~ ~]
2 5 7 0 0 I

50

We perform the same reduction on the third row at chis time as well, chis time multiplying

the first row by -2 and adding the result to the third row and setting the element in the first

column of the third row of L to -2:

U = [~ ~ ~] L = [~ O ~]
0 -1 3 -2 0 1

Note chat the next logical step is to interchange the second and third rows in U in order to

have a nonzero pivot value on the second row. We must save chis permutation information

and so we will maintain an array named indx whose i-ch entry is the index of the row chat

got swapped into chis i-ch row. In chis example, the values of the array indx would read [O,

2, 2) since the first row was not swapped but the third row was swapped with the second

row. The last row is, of course, left in place so the index of chat row, 2, occupies the last

entry of the array. After swapping we have the following upper and lower triangular

matrices:

U = [~ ~ 1 ~i L = [~ O ~]
0 0 5 -2 0 1

Note chat, if we perform the multiplication LU and reverse the swap of the second and third

rows, we get the original matrix A. Having computed these matrices, we can recast the

equation Ax= bas LUx = b or L(Ux) = b. We then find the solution by first of all solving for

Ly = b and then for Ux = y, using backsubstitution in both cases.

When A is a banded diagonal matrix and is also of the compact form described above, we

can perform an LU decomposition on chis matrix using the routine bandec which has also

been adapted from [Pres92]. This routine changes the original input matrix A, just as in our

example above, so in practice, when initMatrices calls chis routine to decompose a PQ

51

macrix, ic firsc makes a copy of chis macrix and passes chis copy. This copy will concain che

upper criangular componenc as a result and che lower triangular macrix AL is contained in

anocher macrix which has che same number of rows but a. number of columns limiced by che

subdiagonal widch of A. The widch of che upper triangular pan is also, effectively, che

superdiagonal widch of A. Combined backsubstimtion chrough boch of chese macrices, chen,

in order co compute che effects of che analysis filter, will also cake time linear in che size of

che daca since che number of computations per row of boch chese macrices is bounded by a

constant. The computed decomposed matrices are scored in che two-dimensional array AB,

just as che hard-coded lower-resolution matrices are. In addition, che array ABindx

maintains a record of any row permutations undergone by che upper triangular matrix in che

process of computation.

The major utility mechods of che Mulcires object are coarsen, refine and edi tCurve.

The coarsen mechod cakes as inputs an array of Point20 objects and an inceger

corresponding co che resolution level of che desired analysis filter. First, che Point20 class, as

defined in che file Point20.java, is a lightweight object for maintaining an x,y coordinate,

wich chese elements scored as floats. The input points in chis case represent che sec of control

points for a curve wich resolution value}. The coarsen mechod first converts the points to

dual one-dimensional arrays of x and y coordinates and chen applies che analysis filters

corresponding co resolution level j co each of chese arrays. In boch arrays, che results should

be a shortened list of control point data followed by a list of detail coefficients making up che

difference of che lengch. What coarsen must do is decide what co do based upon che input

level j. If j is low enough, one of che low-resolution hard-coded analysis filters is used and so

che results are obtained by executing a simple matrix multiplication. If j > 3, chen che

multiplication result muse be obtained chrough backsubscimcion chrough che scored

52

decomposed upper and lower triangular matrices for char level. This compucacion is

performed by calling che banbks mechod, again adapted from [Pres92], which

backsubscicuces chrough boch matrices corresponding co char level, using che array of inpuc x

coordinates, chen che array of y coordinates. After chis compucacion is made, we muse

change che order of che elements in che array; recall char co build die banded diagonal matrix

in che first place we had co interleave che order of che column vectors. The oucpuc of che

backsubscicucion evinces chis same interleaving and so, as a resulc, we muse un-interleave

boch of chese x and y arrays first before we chen convert chem back into an array of Point2D

objects and return chis array.

The work involved in che refine mechod is very similar. The input sec of Point2D

objects in chis case contains a list of control points for a low-resolution curve followed by a

lisc of derail coefficients representing any significant behavior, if any, char when applied co

chis curve will show up ac che nexc level. Once again, after converting che points co arrays of

x and y coordinates, a decision is made based upon che value of j for che mulciplicacion

procedure co be used. For low values, again, a simple mulciplicacion using che hard-coded

synchesis matrix is performed. For j > 3, we use che banded diagonal forms which means

char che inpuc secs of x and y coordinates muse be interleaved in che same manner as che

column vectors char went into che building of chis matrix. Once done, a call is made for

each of che x and y arrays co che mechod banmul, again adapted from [Pres92], which returns

che result of che matrix mulciplicacion. Nore char no un-interleaving is necessary here; che

column vectors were interchanged bur che rows were lefc intact. These x and y arrays are

convened back co Point2D objects and che resulting array is returned.

Nore char in che current implementation, che only valid values for j are chose between 0

and 8. This means char che highest resolution curve char can be computed ac present is one

53

with 256 segments, which was thought sufficient for testing. The initMatrices routine

fabricates che filter bank to accommodate only this range now. The plan for extending this

portion of che implementation involves modifying the coarsen and refine routines to

handle the special case where the resolution level exceeds LEVEL_MAX. In such a case,

both routines would check the vectors PQrnore and ABrnore to see if they had any entries up

co che desired level and, if not, fabricate the filter bank matrices for chis and all intervening

levels that had not yet been created. It is unknown what the execution time would be for

chis step but it would enjoy the virtue of only needing to be done once since those portions

of the filter bank would be available for later operations. A short delay in this instance might

be acceptable.

The edi tcurve method is used when a modification is made to a control point of a

curve at a fractional-level of resolution. This method represents the implementation of the

algorithm described in section 3.2. The inputs to this method are the set of control points

for the high-resolution curve bracketing this curve (recall chat a fractional-level curve is

represented by interpolating between two integer level curves), the floor or the next integer

resolution down from the current level, the value for the fractional amount, mu, and the

delta-x and delta-y and the array index of the moved point. The input array of points is first

converted to arrays of x and y coordinates and these arrays are then coarsened to the next

lower level of resolution, using similar logic to the coarsen method. The control point

portion of this new array is then multiplied by g(µ) , here µ 2
, and the detail coefficient

portion by g(µ) Iµ. Next, we compute the small vector del taCprirne which will store the

entries of the synthesis matrix of the next level that maximally affect the control point at the

current index. The function that computes this vector basically exploits the regular structure

of the higher scale synthesis matrices, making decisions on a case by case basis depending on

54

whether one entry has rhe maximum value in rhe row corresponding co rhe index of che

conrrol poinr or whether rwo enrries do. The column corresponding co char entry is

rerurned by chis funcrion and chis value marks che index in the lower-resolution curve where

che computed del tacprime vector is applied. Lastly, after these adjusred delta values are

computed chey are applied co che input sec of control points and this lisr is chen returned.

4.22 The Applicati.on Frame

The interface for the CurvEdicor is composed of two major components: the application

frame which is represented by the CurvEditor object defined in the file CurvEditor. j ava;

and che application canvas represented by the CvBspline object defined in che file

cvBspline. j ava . Boch of these components derive a good deal of their funcrionalicy from

the use of the Java Foundation Classes or Swing libraries, a system of classes chat constitures

a wholescale revision of the graphics functionality that had formerly been offered in the Java

programming environment. Much of the success of chis application is owed co the

performance of these objects and we shall make specific citations of particular components

where appropriate.

The application frame is modeled by che CurvEditor class which extends che Swing class

]Frame. (Many of rhe improved graphics classes defined in rhe Swing libraries employ

familiar class identifiers prefaced wich the letter ']' .) This class contains a main method and

is in fact the class chat initiates the entire application. As a]Frame, rhe CurvEditor object is

capable of instantiating an independent window (complete with title bar, exit buttons, etc.).

The primary purpose of the CurvEditor frame is co deploy a system of GUI-based cools

through which the user can invoke a number of useful applicarion features. This system

includes elements such as a menu bar OMenuBar), a coolbar containing a number of push

buttons with icons OToolBar), and a slider bar used to control the resolution of a candidate

55

asl .d r) An image showing the overall appearance of the application is shown in curve t e .

Figure 22.

Figure 22: The CurvEditor interface.

The structure of the CurvEditor class is centered entirely on all of the objects comprising

rhe interface. All of the functionality in the class is tied either to the creation and

initialization of a major interface component, such as the menu bar or the coolbar, or it is

dedicated co managing a specific action eying cogether the acrion (and appearance) of an

inrerface component with a member function of the application canvas object. Because of

56

che cighc fie between che interface and che class design, a descripcion of che feacures offered by

che incerface may serve as che besc descripcion of che class ·icself.

We shall begin wich che coolbar, which is che vercical element displaying che buccons co

che lefc of che interface in Figure 22. There are cen buccons on che coolbar grouped into two

seccions, wich four buccons in che cop group and six in che boccom. The copmost group

implements a BuctonGroup membership which means chat only one buccon in che group

may be selected at any one rime, like a radio buccon. The buccons in chis group select che

current editing mode and, from top co boccom, rhe editing options are Edie or Select a curve,

Skecch (Scribble) a curve, Build (Conscrucc) a curve, and Zoom in on a cercain area. Ac

publicacion time, neicher che Sketch feacure nor che Zoom selection were fully implemented

behaviors. The buccons in the boccom group are more independent and control various

aspects of che environment displayed in che applicacion canvas. From cop co bottom these

buctons coggle between showing and hiding che control polygon of a curve, showing and

hiding che control points of a curve, showing and hiding che knots at che endpoints of che

curve segments, showing and hiding a grid, showing and hiding coordinate values in cracking

the mouse position, and lastly one for clearing che screen. Each of chese buccons has a

corresponding swapping mechod in the CurvEdicor class which updates the appearance of

the button and dispatches che current selected setcing to the application canvas object so chat

chese decisions are echoed there.

Next, we shall discuss the menubar, which contains four menu categories: File, Edit,

Options and Help. The pulldown menus associated wich each of chese entries are shown in

Figure 23.

The File menu displays, first of all, options for New, Open and Save and Save As. All of

these invoke file dialog boxes or JFileChooser objects for displaying the selected contents of a

57

parcicular cargec direccory. An objecc thac implements a FileFilcer interface may be invoked

co associate icons with specific file cypes in che pictorial representation of the directory

concents offered in the dialog box. A seleccion of a file for opening will result in the loading

of che objecc contained in thac file into che graphic environment, with the dialog box event

handler calling the canvas object's loadCurve method. Conversely, a save file opcion will

invoke anocher event handler thac will recrieve the objecc to be saved from che canvas's

saveCurve method. Noce that what is actually being loaded and/or saved in this situacion

are accual objects since the basic curve objects in our syscem implement the Java Serializable

interface and can therefore be exported, as objects with syscem scace, to any stream, including

a file.

~ Cu1vEdito1 v.1.1

Figure 23: CurvEditor menu sdcction options.

58

The remaining oprions offered under rhe File menu have co do wirh manipulating rhe

rexcure of an existing curve. Imporr Texture brings up a picrorial lisr of rhree generic

cexcures and an oprional menu for loading a user-defined .texrure into rhe environment.

Once again, an object is read in from a file, this time using rhe member loadTexture

merhod, and this object is passed along co the canvas's irnportTexture method which will

rhen revise whatever curve has been selected with the new set of details. The option Save As

Texcure also invokes a dialog box, chis one prompting the user to save a curve as a rexcure

rarher rhan as a full-blown curve representation, which involves a different file format.

Under rhe Edie menu we first of all have rhe oprions for Undo and Redo. These

selections invoke rhe obvious operations on the canvas objecr's undo stack which holds rhe

most recent moves up co a limir char rhe user selects under rhe Oprions menu. In principle,

anytime a curve is augmented wirh rhe Build curve selecrion or is edired by moving one of irs

control points, these qualify as moves co be saved co the undo stack. The remaining entries

under rhe Edit menu, Selecr, Sketch, Build, Zoom In/Our and Clear Screen, all repear rhe

funcrionality already indicared for rhe corresponding bucrons on rhe roolbar.

The Oprions menu also offers backup selection capability, chis rime echoing rhe roggle

funcrionality of all of the Show/Hide bucrons in rhe roolbar. In addition co rhese selections

we have two additional submenus, one co selecr rhe grid size, which offers rhe user the

choices of 10, 15 or 25 coordinate points for the grid dimension; rhe other co set the undo

limit, i.e. rhe deprh or rhe number of moves rhe undo stack will "remember", wirh options

for 1, 5 and 10 moves.

The Help menu simply has an About option which brings up a dialog box identifying

rhe authorship of the application.

59

The ocher major componenc of the incerface is the prominent slider bar located at the

bottom of the window. As may be inferred, chis slider bar controls the shifts in resolution

for a selected curve. The currenc value of the slider is displayed in a }Label object with the

caption "Resolution value: ". The actual value obtained from a slider is an inceger so chis

object is calibrated with 80 ticks and the return value is simply divided by 10 and displayed

chis way. (Recall chat the current implementation of the ~ultiresolution engine constructs

ics filter banks with a maximum level value of 8.) This value is also transmitted in chis way

co the member canvas object; in face, a reference-to the slider itself is passed directly to the

canvas object when it is instantiated.

The canvas object once declared is passed as an argument to the constructor of a

JScrollPane object set within the application frame. Doing chis makes the canvas a scrollable

client of the scroll pane, allowing the canvas to be able to display curves chat may be larger

than the field afforded by the frame.

4.23 The Application Canvas

The canvas component of the interface is a member object of the application frame class

and it contains among its own member data an instantiation of a Multires object. The

canvas class in chis application is the CvBspline class which extends the }Label class and is

implemented in the file CvBspline. j ava. The canvas object maintains two classes of

member data. First, the system state, meaning the characteristics of all of the curves being

drawn in the canvas at any one moment, is preserved in the Vector object state. This

Vector stores CurveState objects, defined in the file curves ta te. j a va, which contain the

set of control points (arrays of Point20 objects) needed to define a single curve as well as

some additional information such as the curve's current resolution value (an integer) and its

fractional resolution value (a float). Also belonging to this first class of member data are the

60

cwo scacks for managing the Undo and Redo commands. Boch of these are of type

UndoStack, defined in the file Undo Stack. j ava, which extends the basic capabilities of a

Stack object by defining a stack depth limit d and overloading the push operation co make

sure chat only the last d entries into the stack are preserved. As the user makes moves (either

through building a curve or editing one of its control points) the prior CurveState is saved co

the undo stack by a call within one or another of the mouse event handlers, known as

rnouseListener methods. If the user selects Undo, the current CurveState (maintained as a

state variable C) is pushed onto the Redo stack and che lase move popped from the Undo

scack and redrawn. If Redo is subsequently selected, the current state is pushed co the Undo

stack, the prior scare is popped from the Redo stack, and the lase move is redrawn again. If,

after undoing a move, the user makes a new move in the canvas, the Redo stack is erased.

Lastly, there is a Vector called Scribble used for recording a sketched curve in the canvas

environment, sketched in chis case by means of mouse input. This Vector is used when the

application is in SKETCH mode and the user wishes co hand sketch a curve representation.

Once such a curve has been completed, i.e.: at the point char the mouse is released, the next

seep is co convert the resulting sec of data points, which has been saved in the Vector by

repeated polls co the current mouse position, co a sec of control points, i.e.: a B-spline

representation. Ac publication rime, some options on how co execute chis conversion step

were being researched and so this conversion seep is not presendy implemented in the

application.

This first class of member data concerns maintaining a history within a current editing

session. The other class of member data concerns the specific instance of a curve currently

being edited. This includes first of all the CurveScace variable c which identifies one of the

curves saved in the state vector as che one curve selected for editing at char moment. Other

61

scare variables in chis class include chose recording che cencer coordinaces of che canvas and

ics heighc and widrh, necessary if che applicacion window is resized; che variable opState

which cracks rhe currenc edicing mode (EDIT, SKETCH, DRAW or ZOOM); variables

stateindex for idencifying che index in State of rhe currenc curve and Index for

idencifying rhe index of che concrol poinc in che currenc curve being ediced; variables for

recording rhe currenc undoLimi t and g ridSpacing values; and an encire range of boolean

scare variables for decermining whether the concrol polygons, concrol poincs, knots or the

grid will be drawn or noc che next time rhe system is repainced. The lase group of state

variables each have cheir own member function, called by rhe appropriate evenc handler in

rhe application frame co toggle rheir state. The variables stateindex and Index actually

gee updated every cime the merhod paintcomponent is invoked since rhe most efficienc way

co plot whether che locacion of a mouse evenc is close enough co some specific visual feature ,

such as a concrol po inc for a specific curve, is co compare rhe locacions of both of rhese as rhe

feature is being redrawn.

A small third class of member data involves a sec of helping objects, including a reference

co che slider bar in rhe applicacion frame, a]Label for displaying the currenc coordinate

values of the mouse cursor, and, of course, an inscance of rhe mulciresolucion engine.

As mencioned, rhere are four edicing modes in che canvas environmenc, only rwo of

which, EDIT and ORA W, have been fully implemenced. Much of the evenc handling logic

is performed by rhe various mouseListener classes defined locally wirhin rhe constructor.

The primary methods of rhese classes, mousePressed, mouseDragged, mouseReleased,

etc., perform some sophisticated checks and upgrades of the scare variables of the canvas on a

case basis, depending on the currenc edicing mode.

62

When the system is in ORA W mode, the user can either build a new curve in the canvas

window or add to a previously selected one, a selection having been made while in EDIT

mode. To build a curve, the user simply clicks the mouse at a location, after which a new

control point is drawn on the canvas. After four such control points are drawn, the first

segment of the described curve appears. If the user has toggled the control polygon, the

points and the knots to appear, then these will be drawn also. As the user adds additional

clicks, additional control points appear and more segments are added to the curve (see Figure

24). To exit ORA W mode, the user must selecn new editing option from the toolbar or the

menu bar.

/
_ _,, .. ----~ r··-· \

i \ I
l. •. /

'
J.i

~ I
\
. i

j
\ I
is.., ----·····"'·~

i
J

ci

Figure 24: A sample multi-segment curve showing the control points, polygon and
knots.

When the system is in EDIT mode, the user can click on an empry region of the canvas

to reset the statelndex state variable, thereby allowing a new curve to be initiated. The

user may also click on either the control points of a curve or the curve proper to select that

curve for editing, also updating the statelndex variable to the value corresponding to the

index of this curve in the State vector. Once a curve is selected, which is denoted visually

as the curve whose control points are filled squares versus outlined ones, the user may click

63

down on a control point and drag ic co a new posicion, modifying as a resulc che

representation of the curve. This of course can happen ac both integral and fractional scales

of resolucion. At an integer level, che selecced control point is icself the only one whose

position is updated as a result of the user selection. At a fraccional level of resolution, che

proporrional changes co neighboring control points must be calculaced using the edi tcurve

method of the member Mulcires object. This is done from both the mouse Dragged and the

mouseReleased mouse listener methods. The CurveStace object maintains within its

representation, at all times, two sets of control points: that of che high-resolution curve and

thac of the low-resolucion curve. The reason for chis is thac ic is more convenient co have

both integer resolution curves handy when we need to render a fraccional-level curve.

(When an integer level curve is rendered, only the high-res curve representacion is used.) To

make use of the edi tcurve method, then, che low-resolution sec of control points is passed

as an argument, along with ics resolution level, che current mu value, and che index of che

control poinc and its delta-x and delta-y values. This method returns the revised sec of

control poincs afrer the effecc of che delca has been propagaced proporrionally co che

neighboring control points. Once obcained, this low-resolution curve is then refined co

produce the corresponding high-resolution curve at the nexc level and chis high-res curve

then replaces che prior high-res curve in che current CurveScate. Now, the newly ediced

curve can be rendered.

The other major accivicy chac can occur only in EDIT mode is the shifting of che

resolution of the currently selected curve. (In our implemencacion, ic is noc possible co

coarsen or refine mulciple curves since they may begin ac differenc levels.) When che user

adjuscs the slider concrol in che applicacion frame, che changeListener associated wich that

slider invokes the canvas objecc method shiftResolution, passing co this method call the

64

floar representing the new resolution value of the curve. Note that the only time any actual

change to the sets of control points is necessary is either when we shift down from resolution

j.1 ro j.O or shift up from j.O to j. l since, at these points , the integer-level curves within the

current CurveState will both have to be upgraded one way or the other. When a shift down

occurs, from level j. I to j.O, the curve goes from a fractional-level representation to an

integral-level one. The resolutions of the low and high-res curves formerly bracketing the

fractional-level were j and j + 1, respectively. We must now shift these to j -I and j. This

means first of all the low-res curve is copied to the high-res curve in the CurveSrate. Then,

we coarsen a copy of this high-res curve to produce the corresponding curve at the next

lowest level of resolution, j -1, and make this our low-res curve in the CurveState. When

the user increases the resolution, from j.O to j.1, we repeat roughly the same procedure in

reverse. Since the bracketing curve resolutions now shift from j - 1 and j to j and j + 1,

respectively, the high-res curve now gets copied co the low-res curve and the high-res curve

then undergoes refinement by calling the Mulrires object's refine method. All other shifts

of resolution simply change the current value of the mu variable in the CurveSrare, which

subsequently affects how the curve is rendered.

Every change to a srace variable and every mouse event processed within the application

canvas triggers a call to the canvas object's inherited repaint method which, in turn, calls

the paintComponent method. This method goes through all of the curves in the State

Vector and renders them, one by one, using a call to the overloaded bspline method. Ar

the same rime, as elements are being plocred and redrawn, a comparison with the last

recorded mouse position is made since, when the system is in EDIT mode, it is by these

comparisons char any changes to state variables such as stateindex or Index are obtained.

65

If any scare variables regarding che drawing of control points, polygons, knots or grids are sec

ac chis rime, these elements are also drawn.

The bspline method has two forms: one cakes as arguments a single sec of control

points and che number of points in che set; che ocher rakes two sets of control points, che

length of che higher resolution set, and the value mu. The first form is for drawing integer

level resolution curves and the second form is for fractional-level curves. If the value of mu

in che second form of the method is 0, that method calls the integer version of the method.

The integer-level resolution version of bspllne is the more straightforward of the two.

The rendering algorithm basically iterates through the set of control points, in successive

overlapping groups of four, and computes the coefficient values ck from each group of

control points. After this, the x and y position of the next point in the curve is plotted using

Homer's method:

((c 3 x t + c2) x t + c1) x t + c0

Each point in the curve, except the first, connects with its preceding neighbor by drawing a

line between them. Thus, after all of the attempted precision and clever computation, the

curves we finally generate are nothing more than polygonal lines after all!

The rendering of the fractional-level curve is somewhat trickier. Recall that in order to

render a curve of fractional resolution we interpolate proportionally between the two

adjacent integer level resolution curves on the basis of the value of mu. Since the refinement

of a low-resolution curve segment evolves into two adjacent high-resolution curve segments,

this means we are actually interpolating between one curve on the low-resolution end and a

sequence of two curves on the high-resolution end. This means, first of all, we have to be

somewhat careful in the manner in which we sample values for ton the interval [O, 1]. For

the integer-level renderings, sampling 50 such points works well in practice. However, if we

66

maincain chis praccice for interpolacion purposes, we will have 50 points on che low end

versus 100 points on che high end. Obviously, whac we will need to do is co sample che firsc

25 poincs of che low end curve and every ocher po inc from a 50 point sample of che firsc

high-end curve and incerpolace che firsc 25 poincs, chen repeac che process for che remaining

half of che curve. In compucing che coefficiencs char decermine chese curve segmencs, we

muse also nocice char che low-end curve segment is builc from four concrol poincs while che

high-end pair of curve segmencs are builc from five control poincs, chree of which are shared

by che cwo segmencs. The coefficiencs for each of che high-end segmencs, however, will be

discincc. Thus, even chough che high-end curve segmencs share concrol informacion, we

muse generace chree overall discincc secs of four coefficients to describe each of che chree

segmencs as a basis for compucing che interpolacion. Once we have done all chis, we may

ploc che respeccive x and y posicions of che fraccional-level curve by ploccing che samples from

che low-end curve and each segment of che high-end curve, mulciplying che laccer by mu and

che former by 1 - mu. Figure 25 shows an example of such a ploc. Once a segmenc of che

fraccional-level curve has been rendered, we adjusc che indices into boch secs of concrol poincs

so char we evaluace che nexc adjacenc low-resolucion curve segment and che nexc pair of high-

resolucion curve segmencs.

Figure 25: Interpolation between a high-resolution curve (left) and a low-resolution
curve (right).

le should be mencioned char che Swing libraries confer cheir greacesc benefic co chis

applicacion righc here ac che rendering scage. Nearly all of che new graphical objeccs offered

67

by che Swing libraries, including che]Label class, inheric from che JComponenc class. One

of che mosc useful mechods in chis class is one simply called setDoubleBuffered which

cakes a boolean argumenc. The effecc of calling setDoubleBuffered (true) is co make any

graphical updaces operacing on chac componenc implemenc aucomacically a double-buffering

scracegy for redisplaying che updaced visual image. Thus che programmer is freed complecely

from having co manage such a buffering policy himself. (le should also be mencioned chac

che Swing libraries offer no canvas object per se. The usual caccic, as performed in chis

applicacion, is co use anocher JComponenc, such -as]Label. Unfortunately, such an object

resiscs maincaining any fixed size, say for example a heighc and widch each chree cimes chose

of che applicacion frame, unless forced co by inserting an icon of chac size. Thus, ac scare up,

an icon composed of noching hue a huge field of whice is inserted inco che canvas objecc co

give ic its expanded dimensions. This seep single-handedly accounts for a nociceable delay in

che inicializacion of che application; fortunately, it only needs co be done once.)

The lase funccionalicy of inceresc in che CvBspline class is chac for saving and importing

textures. The formac of a cexrure is simply che wavelec cransform of che curve describing che

cexcure, i.e.: a Veccor concaining a sec of four concrol points decermining che lowesc

resolucion form of chac curve followed by a sec of detail coefficiencs which record che desired

cexcure. To save a cexcure is simply co coarsen che selecced curve, excracc che Vector

concaining che control poincs and detail information from che curve's CurveScace, and recurn

chis Veccor co the event handler in che applicacion frame calling chis mechod. To import a

texcure, a curve in che canvas environment muse firsc be selecced. This curve is chen

coarsened down co four concrol points and the decail coefficients from che imported Veccor

of texture points are chen copied over into che selecced curve. (If che size of che cexcure is

greacer, che size of che curve is increased accordingly.) Once done, che curve is chen refined

68

back co its prior level of resolution. Lastly, coarsening this curve creates the companion low

resolution curve co this one in the selected CurveState. Note that, in these operations and in

the loadCurve and savecurve methods, which simply load and return the State Veccor,

respectively, only the CvBspline class has any dealings with CurveState objects. The 1/0

routines of the application frame deal only with the more generic Veccor objects (which

happen to contain CurveState objects or Point20 objects!.

4.3 Evaluation and Results

The evaluation of the performance of an interactive application is somewhat difficult co

objectify. For this particular application we are concerned with two predominant issues.

One, the correctness of the rendering of B-spline curves at integral and fractional levels of

resolution and, by implication, the correctness of the coarsening and refinement operations

as applied co the representations of these curves. Two, the efficient performance of these

coarsen and refine operations; are these operations capable of modeling shifts of resolution at

interactive speeds?

As partial validation of the first issue, a number of the figures used in the illusrration of

this paper are screen captures of curves constructed using.the CurvEdicor application, which

at least indicates that the curve rendering procedures actually function. A more precise

diagnostic is supplied by the grid option of the display. We can, in practice, deploy a set of

control points at explicit grid coordinates and compare the curve produced in the canvas

environment with one similarly generated by a tool such as MATLAB and make a visual

comparison of the results. A number of such sample curves produced discernably identical

curves in both environments. Figure 26 demonstrates one such comparison. In terms of

testing the coarsening and refinement operations, perhaps the best way to verify their

accuracy is to construct a sample low-resolution curve, using a set of pre-determined grid

69

coordinates, refine chis curve to the maximum serring, and then coarsen the curve back co its

original low-resolution form. Aligning the mouse cursor with one of the resulring sec of

control points will give us the coordinates of char point shown in the "Position: " label of the

interface. Any error introduced over the course of shifting the resolution of the curve will be

evinced by a discrepancy between the new coordinate values of the point and the old. A

number of such rests were conducted using several different curves and no appreciable error

was found in any instance. The margin for error used was the width of the square visually

identifying the control point which measures co about a value of 1.6 in the grid coordinate

sys rem.

20.----.-----r-----.------.---r---.-----,

Figure 26: Sample comparison of curves produced by (a) CurvEditor and (b)
MATLAB.

The performance of the coarsen and refine operations was reseed by raking a sec of 1000

curves, with randomly instantiated control point information, and refining each of these

curves to the maximum level of resolution, recording the execution time at each level and

averaging the results over all 1000 curves. Next, the procedure was repeated, chis time in the

reverse direction timing the coarsening operation. A graph showing the plot of execution

time vs. resolution level for both operations is shown in Figure 27, clearly demonstrating char

70

even for larger sers of conrrol poinrs, the amounr of rime spenr in these respecrive operations

is nor a facror in rhe overall performance of the applicarion. We had inrended ro generate

another graph demonsrraring the execution times of these operations plus that of the graphic

redrawing co ger an estimate on how much delay is attributable co the graphics operations

versus the coarsening and refinemenr operations. Unforrunarely, rhe implemenracion of the

Java inrerprerer in the resring environmenr used in this research appears ro consign graphic

redrawing operarions co a separare thread of execution. This makes ir difficulr co bracket the

beginning and ending of a sequence of rasks, including a graphic redraw with rimer checks,

co derermine irs overall execurion rime. Anecdorally, rhe delay incurred from redrawing is

much more noriceable at higher levels of resolution, due no doubr co rhe number of curve

segmenrs co plor and render. The inclusion of the grid sreps this delay up even more so.

However, the delay is nor prohibirive and does nor undermine rhe utiliry of basic ediring

operarions such as moving a conrrol poinr.

6 6
.. q,

. . o .- ·<I> 5 .o · 5

,O ··· Q ··· -0·
o---O·--·o ·

-;"4 ~ .0. .s,4 -
~ 9 · 'O

~3 o ·· G· -·-0' ~3
"jj +'

2 2

1 1

"" 0: ~

0 2 4 6 8 0 2 4 6 8
le.,,el l<ve.I

Figure 27: Average execution time of (a) refine and (b) coarsen methods per resolution
level (in milliseconds).

We have already menrioned several componenrs of the application that were nor fully

implemented ar publicarion rime, such as the procedure for convening a skerched curve co a

71

sec of concrol poincs or the zoom feacure. One other feacure not implemented is the plotting

of the change of orientation of the detail coefficients mentioned in section 3.2. The

methodology for applying this change of coordinates calculation was still being researched at

publicacion rime and its implemencacion would conscicuce the first desirable revision of the

presenc applicacion. Another sub-performing feacure, one belonging in this case co the

Swing libraries, is the]Slider object. Like the graphics redrawing procedure, che event

handler underlying the slider seems also to operace on a different thread of execucion,

making ics manipulacion somewhac difficulc in praccice. (The cescing environment used for

this application uses a couchpad instead of a mouse; che slider may conceivably perform

beccer when a mouse is used.) We have circumvented chis problem in this application by

allowing the slider co be manipulated by the arrow keys on the keyboard.

Despite the aforementioned problems and deficiencies, the overall performance of this

application is quite good and seems co provide the confirmation we sought regarding the

ability of multiresolucion curve representations to be modeled ac interactive speeds. The fact

thac we have been able co confirm this using a language as nocoriously compromised in its

execucion rime as Java only serves to amplify the success of these concepts.

Avenues for fucure work on this material are plentiful. Since the publication of the

original paper on mulciresolucion curves [Fink94], research on modeling multiresolucion

surfaces has already made significant headway, the most promising research being done in

conjunction with Pixar Scudios (see Scollnitz, et al. [Scol96]). The extension of the

mathematics involved uses the well-researched construction of so-called Bezier and B-spline

patches, which are the surface equivalents of curve segments [Barc87]. Among the

preliminary conclusions of this research is that any surfaces copologically related co a two

dimensional mesh are candidates for multiresolution analysis [Scol96]. The present

72

application could conceivably be rewriccen co model such surfaces using che Java 3D API

which leverages a high degree of efficiency by mapping Java calls co DirectX or OpenGL

libraries on the host system.

In its present form, che application is, by design, already extensible. Since che canvas is

effectively decoupled from che application interface, it may already serve as a ready-made

object capable of being plugged in co a larger, richer Java-based graphical editing application.

Furthermore, since che basic data types in che system, che CurveState objects , are serializable,

they may be exported co any data stream, which opens up the possiblicy for constructing a

discribuced, Java-based curve editing environment.

73

5. CONCLUSIONS

We have presented in this paper a unified representation that is capable of modeling a

given two-dimensional curve at multiple scales of resolution. As outlined in the original

research published by Finkelstein and Salesin [Fink94], this representation is based on the

use of the wavelet transform. Such a curve representation consists of a set of control points

defining a succession of piecewise cubic B-spline segments and a set of detail values marking

or recording changes to, or events occuring on, this curve at higher levels of resolution. We

have shown that the techniques for manipulating wavelet transforms used in multiresolution

analysis are also applicable to this curve representation. Furthermore, when special care is

taken ro optimize the construction of the filter bank used to shift these representations

between adjacent levels of resolution, we have shown that these operations may be performed

in time linear with the size of the curve.

Besides operations for coarsening and refining the resolution of a curve, we have also

described operations for rendering these curves at continuous levels of resolution, i.e.: at both

integer and also at so-called fractional levels of resolution . This latter depiction is effected by

performing a linear interpolation between neighboring integer level resolution curves. We

have also defined operations for editing a curve's "sweep" and a curve's "character"

independently by modifying the set of control points and the set of derail coefficients

respectively within the curve representation. In the case of editing the "sweep", we have

further defined operations for both integer and fractional level curves.

These operations form the basis of an interactive application for editing mulriresolution

curves. We have realized this application in the form of an independent object-oriented

component, the Application Canvas, which is written in Java and may be embedded in any

Java-based environment where these curve-editing operations are desirable. This object

74

makes use of a member object of its own, che multiresolution engine, to generate the filter

bank and to provide che operations for coarsening and refining the set of control points

forming che curve. Each set of control points is itself contained in another object, the

CurveState, which is declared as Serializable so chat it can be ported in its object state to any

input/output scream, such as a file stream or a channel across a network. Lastly, we have

placed chis canvas object within a simple GUI-based application frame, forming a basic

application for editing two-dimensional mulciresolucion curves. Through the use of chis

application, we have demonstrated chat che above operations defined on mulciresolucion

curves may indeed be performed in real time, i.e.: at interactive speeds, as was suggested in

che original research [Fink94]. The result is an application component capable of modeling

two-dimensional curves at multiple levels of resolution and available to operate in any

environment supporting a Java Virtual Machine.

75

REFERENCES

[Amme98] Leen Ammeraal. Computer Graphics for Java Programmers. Chichester: John
Wiley and Sons, 1998.

[Ange97] Edward Angel. Interactive Computer Graphics: a Top-Down Approach with
OpenGL. Reading, Massachusetts: Addison-Wesley Publishing Company, 1997.

[Bank90] M.J . Banks and E. Cohen. "Realcime spline curves from interactively
sketched data. " Computer Graphics. Vol. 24, no. 2: pp. 99-107, 1990.

[Barr87] Richard H. Barrels, John C. Beatty, Brian A. Barsky. An Introduction to
Splines for Use in Computer Graphics and Geometric Modeling. Los Altos, California: Morgan
Kaufman Publishers, Inc., 1987. -

[Chui92]
1992.

Charles K. Chui. An Introduction to Wavelets. San Diego: Academic Press,

[Fari88] Gerald Farin. Curves and Suifaces for Computer-Aided Geometric Design.
Boston: Academic Press, 1988.

[Fink94] Adam Finkelstein, David H . Salesin. "Mulciresolucion Curves". Proceedings
of the Special Interest Group on Computer Graphicx (SIGGRAPH) 1994, pp. 261-268.
Association for Computing Machinery, New York, 1994.

[Fole96] James D. Foley, Andries van Dam, Steven K Feiner, John F. Hughes.
Computer Graphics: Principles and Practice, Second Edition. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1996.

[Fors88] David Forsey and Richard H. Barrels. "Hierarchical B-spline Refinement".
Computer Graphics. Vol. 22, no. 4: pp. 205-212, 1988.

[Hubb96] Barbara Burke Hubbard. The World According to Wavelets. Wellesley,
Massachusetts: A. K Peters, Led., 1996.

[Kais94] Gerald Kaiser. A Friendly Guide to Wavelets. Boston, Massachuseccs:
Birkhauser, 1994.

[Mall89] Stephane Mallar. "A Theory for Mulciresolucion Signal Decomposition: the
Wavelet Representation." Institute of Electrical and Electronic Engineers Transactions on
PatternAnafysisandMachinelntelligence, Vol.11,no. 7: pp.674-693. July, 1989.

[Pres92] William H. Press, Saul A. Teukolsky, William T. Veccerling, Brian P.
Flannery. Numerical Recipes in C The Art of Scientific Computing, Second Edition.
Cambridge: Cambridge University Press, 1992.

76

[Scol96] Eric J. Scollnicz, Tony D. DeRose, David H . Salesin. Wavekts for Computer
Graphics: Theory and Applications. San Francisco: Morg;m Kaufman Publishers, Inc., 1996.

77

APPENDIX A; Endpoint-interpolating cubic B-spline matrices

Source: Eric J. Stollnitz, et al. Wavelets and Computer Graphics: Theory and Applications.
San Francisco, California: Morgan Kaufmann Publishers, Inc., 1996. Pp. 214-216.

2

16

8 8

12 4
p 2 =-1 3 10 3

16
4 12

8 8

16

16

8 8

12 4

3 11 2

8 8

2 12

8

2
pJ?.3 =-1

16

1

2

Q2 =

2

8

12

8

2

78

1

-2
QI ~.Ji 3

-2

1

315

31196288

2

8

1368

-2064

1793

-1053

691

-240

12 2

8 8

2 11 3

3 12

-240

691

-1053

1793

-2064

1368

8 8

16

Q3

, .. _ -)~
Q - 675221664

6.3 11 454

- 9.189342 - 1.543996

7.334627 4.226722 0.087556

- 3.514553 - 5.585477 - 0.473604

1. 271 268 6.05955 7 1.903267

-0.2599 14 - 4.367454 - 4.367454

0.019190 1.903267 6.059557

- 0.000155 - 0.473604 - 5.585477

0.087556 4.226722

- 1.543996

25931.200710
-37755.27 1723 -0369.3054 53

30 135 .003012 17429.266054 385.797044
- 14439.869635 - 23004 .252368 -2086.545605 -I

5223 .125428 24848.487871 8349.373420 124
-1067 .879425 - 17678.884301 - 18743.473059 - 1677 -I

78.842887 7394 .685374 24291.795239 79().1 124
--0.635830 - 1561.868558 - 18420.997597 - 18482 -1677

115.466347 7866.732009 24264 79().1
--0.9311 80 - 1668.6 15872 - 18482 -18482

123.378671 79().1 24264
-I

124
- 1677

79().1

- 0.000 155

0.0 19 190

- 0.2599 14

1.271268

- 3.51 4553

7.334627

-9. 189342

6.311454

--0.994989
123.37867 1

--0.994989 - 1677 - 18482
124 79().1

-I -1677
124
-I

-18482 - 1668.61 5872
24264 7866. 732009

--0.931 180
115.466347

-18482 -18420.997597 - 1561.868558
7904 24291.795239 7394.685374

--0.635830
78.842887

-1677 - 18743.473059 -17678 .88430 1 - 1067.879425
124 8349.373420 24848.487871 5223.125428
- I -2086.545605 -23004.252368 -14439.869635

385.797044 17429.266054 30135.003012
-0369.305453 - 37755.271723

25931.2007 10

79

APPENDIX B: MATIAS code for B-spline wavdets.

Source: Eric J. Srollnirz, et al. Wavelets and Computer Graphics: Theory and Applications.
San Francisco, California: Morgan Kaufmann Publishers, Inc., 1996. Pp. 217-222.

function P = FindP(d, j)
% p = FindP(d, j) returns the P matrix for B-spline scaling functions
% of degreed, level j.

d = fix(d);

if d < 0
error('FindP: Must have d >= 0. ');

end;

j = fix(j);

if j < 1
error('FindP: Must have j >= 1. ');

end;

if d==O
P=[l;l);
for i = 2: j

P = [P zeros(size(P)); zeros(size(P)) P);
end;

else
u = Knots(d, j-1);
g Greville (d,u);
P eye(2 A(j - 1) + d);
fork= 0:2 A(j-1)-1

[u, g, Pl = InsKnot (d , u, g, P, (2*k+l) /2 Aj);
end;

end;

return;

function x = Knots(d, j)

% x = Knots(d, j) returns a vector of knot values for B-spline scaling
% functions of degreed, level j.

x = [zeros(l, d-1) [0:2 Aj-1)/2 Aj ones(l, d));
return;

function x = Greville(d, u)

% x = Greville(d, u) returns the vector of Greville abscissa values
% corresponding to degree d and knot vector u.

80

1
x

length(u);
u(l:l-d+l);

for k
x

end;

2 :d
x + u(k:l-d+k) ;

x = x I d;
return;

function [uret, gret, pret] = InsKnot(d, u, g, p, unew)

% (uret, gret, pret] = InsKnot(d, u, g, p, unew) inserts a new knot
% at unew for B-spline scaling functions of degree d, thereby
% modifying knot vector u, Greville abscissas g, and synthesis matrix

% P·

uret
gret
pr et
return;

sort([u unew]);
Greville(d, uret) ;
PolyEval(g, p, gret);

function pret = Pol yEval (g , p, gnew)

% pret = PolyEval(g, p, gnew) returns the values of a control pol y gon
% defined by abscissas g and ordinates p, evaluated at gnew.

[m, n] = size(p);
if length(g) -= m

error('PolyEval: Length of g and rows of p must be the same.') ;
end;

for i = l:length(gnew)
row= max(find(g <= gnew(i)));
if row == m

pret (i, :) = p (m, :) ;
else

frac = (g(row+l) - gnew(i))/(g(row+l) - g(row)) ;
pret(i, :) = frac*p(row, :) + (1-frac)*p(row+l, :) ;

end;
end;
return;

function I = Inner(d, j)

% I = Inner(d, j) returns the inner product matrix for B-spline
% scaling functions of degreed at level j.

IO= Berninnr(d);
n 2 " j + d;
I
w

zeros(n);
BernWts(d, j);

81

for k = 1: n
wl = reshape (w(:,k) , d+l, 2"j) ;
for l = k:n

w2 = reshape (w(:,l) , d+l, 2"j) ;
I(k,l) trace(wl'*IO*w2) ;
I(l,k) = I(k,l);

end;
end;

I= I I 2 " j;
return;

function I = Berninnr(d)

% I = Berninnr(d) returns the matrix of inner products of
% Bernstein polynomials of degree d.

i ones (d+l, 1) * [O:d];
j i I ;

I Choose(d, i).*Choose(d, j)./ (Choose(2*d, i+j)*(2*d + 1)) ;

return;

function c = Choose(n, r)

% c = Choose(n, r) returns (n choose r)

c = Fact(n) ./(Fact(r) .*Fact(n-r));
return;

function f = Fact(m)

n! I (r! (n-r)!) .

% f = Fact(m) returns the matrix of factorials of entries of m.

(r,c] = size(m);
f = zeros (r, c);
for i = 1: r

for j = 1: c
f(i,j) prod(2:m(i,j));

end;
end;
return;

function w = BernWts(d, j)

% w = BernWts(d, j) returns a matrix of B-spline scaling
% function weights for Bernstein polynomials of degreed, level j.

w = eye(2"j + d);
if d == 0

return

82

end;
u _ Knots (d, j} i

g = Greville(d, u};
for i = 1:2 Aj - 1

for r = 1: d
[u, g, w) InsKnot(d, u, g, w, i /2A j } ;

end;
end;
return;

function Q = FindQ(d, j, normalization}

% Q = FindQ(d, j, normalization} returns the Q matrix for B-spline
% scaling functions of degreed, level j. If normalization is 'min'
% (or is not specified} then the smallest entry in each column is made
% 1. If normalization is 'max' then the largest entry in each column
% is made 1. If normalization is '12' then the 1 A2 norm of each
% wavelet is made 1.

if nargin < 3
normalization= 'min';

elseif -strcmp(normalization, 'min' } & -strcmp(normalization, 'max') ...
& -strcmp (normalization, '12' }

error ('FindQ: normalization must be ''min'', ''max'', or '' 12' '. ' } ;
end;

P FindP(d, j};
I Inner (d, j};
M P'*I;
[ml, m2) = size(M);
n = m2 - rank (M};
Q = zeros(m2, n};
found = 0;
start col = 0;

while (found < n/2} & (start col < m2 }
start col = start col + 1 + (found > d};
width = 0;
rank_def = 0;
while -rank def & (width < m2 - start col + 1)

width = width + l;
submatrix = M(:,start col:start col+width-1);
rank def= width - rank(submatrix};

end;
if rank def

% find nullspace of submatrix(should be just one column}
q_col = null(submatrix};
if strcmp(normalization, 'min'}

% normalize column so smallest nonzero entry has Ill
q col= q col/min(abs(q col+ le38*(abs(q col}<le-10)));

elseif strcmp(normalization, 'max'} -
% normalize column so largest entry has magnitude 1
q_col q_col/max(abs(q_col}};

end;

83

% change sign to give consistent orientation
q_col = q_col*(-l }A(start_c ol + floor ((d+l}/2} + (q_col(l ,1 }>0} } ;

% put c olumn into left half of Q
found = found + l;
Q(start_col:start_col + width-1, found} = q_col;

% use symmetry to put column into right half of Q in reverse
% order and negated if degree is even
Q(:, n-found+l) = flipud(Q(:, found))*(-l)A(d+l) ;

end;
end;

if strcmp (normalization, 'L2')
% normalize matrix so each column has LA2 no rm of 1
ip = Q'*I*Q;
Q = Q*diag(l./sqrt (diag(ip)));

end;

return;

84

APPENDIX C: CurvEditor code listing.

Mu/tires.Java Contains the code for the multiresolurion· engine. Creates the synthesis

matrices P and Q for the first eight resolution levels. The marrices for the lowest three

resolution levels are just hardcoded in place, as are the analysis filters A and B for these levels.

Above level 3, the column vectors for the P and Q matrices are interleaved and the resulting

matrices are reformed into more compact forms to support efficient banded-diagonal matrix

multiplication operations. The corresponding an_alysis matrices at these levels are built by

performing an LU decomposition on the PQ banded diagonal matrix, storing these resulting

matrices and solving for the value of x in the equation L(U(x))=b by backsubstirution.

Major methods: coarsen, refine, editCurve.

CurvEditor.java. Contains the application frame and the basic interfacing functionality for

processing GUI-based events and requests and relaying these to its member CvBspline

object, which processes all of the curve editing operations. Also contains functionality for

handling file-based 1/0 of Vector objects representing curve and texture objects.

CvBspline.java. Contains all of the functionality for manipulating curve representations

graphically. A number of methods are tied in directly with elements of the interface defined

in the CurvEditor object. Major methods: the overloaded shiftResolution methods

which make use of the coarsen and refine operations of its member Mu/tires object; the

overloaded Bspline drawing methods; and the various event handlers involved with curve

editing operations.

85

CurveState.java. Co mains che definicion of che Cloneable and Serializable curve

represencacion objecc used by che CvBspline objecc.

Point2D.java. Defines a lighcweighc daca scruccure for modeling a cwo-dimensional

coordinace char is also Cloneable and Serializable.

UndoStack.java. Augmems che propercies of a basic Scack objecc by seccing a scack limic and

keeping crack only of che mosc recem addicions co che scack up co char limic. Also used by

che CvBspline objecc.

86

11 File: Multires.java
Stephen Alberg II

II
II
II
II
II
II
II
II
I I
II
II
II
I I
II
II
II
II
II
II

Author:

This file contains the implementation o f an object of t ype Multires.
A Multires object performs two primary actions: coarsen and refine.
The inputs to these operations are arrays of Point2D objects,
representing the control points for a parametric cubic B-spline
curve representation.

The coarsen operation takes an input set of control points and
performs a knot removal operation on the curve, removing half of
the curve's segments. The returned array, of the same dimension,
contains the reduced set of control points in the top half of the
array and, in the bottom half, the difference coefficients obtained
from the multi-resolution decomposition.

The refine operation takes as input? an array of control points and
an array of difference coefficients and returns an enlarged array of
control points doubling the number of curve segments featured in the
input representation and incorporating any features conveyed by the
input difference coefficients.

import java.util . *;

public class Multires
II Class constants
static final float TINY = l.Oe-20f;
static final int MAX = 1024;
static final int LEVEL MAX = 8; -
static final int SUB DIAG WIDTH S;
static final int SUPER DIAG WIDTH = - S;
static final int DIAG WIDTH SUB DIAG
static final int DOWN = l;
static final int UP = -1;

WIDTH + SUPER

II Small resolution synthesis and analysis matrices.

DIAG WIDTH

II AB* matrices are the inverses of their corresponding PQ*
II matrices.
II
II The contents of these matrices have been adapted from those

+

II presented in Wavelets for Computer Graphics. Stollnitz, DeRose
II and Salesin. Morgan Kaufmann, 1996. Specifically, these

l;

II matrices relate the sets of cubic B-spline scaling functions and
II endpoint-interpolating cubic B-spline wavelets at neighboring,
II integral levels of resolution.

static final float[][] PQl =
{ 1 . Of I 0. Of I 0. Of, 0. Of, 2.64S7Slf } I

{ 0. Sf I 0. Sf, 0. Of, 0. Of I -S.291S03f } I

{ 0. Of, 0. Sf I 0. Sf, O.Of, 7.9372S4f } I

{ O.Of, 0. Of, 0. Sf, O.Sf, -S.291S03f } I

{ O.Of, 0. Of, 0. Of, 1. Of, 2 .64S7Slf } } ;

static final float[][] ABl
{ 0.937Sf, 0.12SOf, - 0.12S0f, 0.12SOf, -0.062Sf } '
{ -0.687Sf, l.37S0f, 0. 62SOf, -0.62S0f, 0.312Sf } I

{ 0.312Sf, - 0. 62SOf, 0.62SOf, 1. 37SOf, -0.687Sf } '

87

-0.0 62 Sf, 0.12SOf,
0 . 023623 f, -0.047246f,

- 0 .12S Of, 0.12S0f,
0 . 047246f , -0.047246f,

0.937Sf },
0 . 023623f }} ;

static final float[)[) PQ2 =

{ 1. Of, 0. Of, 0. Of, O.Of , O. Of ,
4.347003f, O.Of } I

O. Sf, 0. Sf, 0 . Of, 0. Of, O.Of,
-6.SS8636f, -0. 762632f) ,

0. Of, 0.7Sf, 0. 2Sf , 0. Of, 0. Of,
s. 697497f, 2.19S74Sf } ,

0 . Of, 0.187Sf, 0.62Sf , 0.187Sf, 0. Of ,
-3.346048f, -3.346048f } ,

0 . Of I 0 . Of, 0 . 2Sf, 0 .7Sf, 0 . Of,
2.19S74Sf, S.697497f) ,

0 . Of, 0. Of , 0 . Of, 0. Sf, 0 . Sf I
-0. 762632f , -6.SS863Sf } ,

0 . Of I 0. Of, 0. Of , 0. Of1 1. Of,
0. Of , 4 . 347003f) } ;

static final float [) [) AB2 = {
0.83S1S6f, 0.329688f, -0.239S 83f , 0 .079167f,

0.041667f, -0.092188f, 0.046094f),
-0.3S3906f , 0.707812f, 0.947917f, -0.34S833f,

-0.083333f, 0.2S4688f , -0.127346f),
0.29062Sf, -0 . S812SOf , -0.01S62Sf, 1 . 612S00f,

-0.01S62Sf, -0.S812SOf, 0.29062Sf),
-0 .127344f, 0 . 2S4688f , -0. 083333f, -0. 34S833f,

0.947917f , 0.707812f , -0.3S3906f),
0.046094f , -0.092188f, 0.041667f , 0.079167f,

-0 . 239S83f , 0.329688f , 0 . 83 S1S6f },
0 .037921f , -0.07S842f, O.OSS11Sf, -0.018212f,

-0.009S8Sf, 0 . 021207f, -0.010604f) ,
- 0 .010604f, 0.021207f , -0.009S 8Sf , - 0 .018212f,

O.OSSllSf, -0.07S842f, 0 . 03792 1f)) ;

static final float[)[) PQ3
1.0f, O.Of, O.Of , O. Of , O. Of , O.Of, O.Of,

6.3114S4f , O.Of , O.Of, O.Of),
O.Sf, O.Sf, O.Of, O. Of, O.Of, O.Of, O.Of,

-9 . 189342f, -1.S43996f, O.Of, O. Of),
O.Of, 0.7Sf, 0.2Sf, O.Of, O.Of, O.Of, O.Of,

7 . 334627f , 4.226722f, 0.087SS6f, O.Of },
O.Of , 0.187Sf, 0.687Sf, 0 .12Sf, O.Of, O.Of, O.Of,

-3.S14SS3f, -S.S8S477f, -0.473604f, -0 . 000lSSf),
O.Of, O.Of, O.Sf, O. Sf, O.Of, O. Of, 0 . 0f,

1.271268f, 6.0S9SS7f, 1.903267f, 0.019190f),
O.Of, O.Of, 0.12Sf, 0.7Sf, 0.12Sf, O. Of, O.Of,

-0.2S9914f, -4.3674S4f, -4.3674S4f, -0 .2S9914f },
O.Of, O.Of, O.Of, O.Sf, O.Sf, O.Of, O.Of,

0.019190f, 1.903267f, 6 . 0S9SS7f, 1.271268f),
O.Of, O. Of, O.Of, 0.12Sf, 0.687Sf,0 . 187Sf,0.0f,

-0.000lSSf, -0.473604f, -S . S8S477f, -3.S14SS3f),
O.Of, O.Of, O.Of, O.Of, 0.2Sf , 0.7Sf, O.Of,

O.Of, 0 . 087SS6f, 4 . 226722f, 7.334627f },
O. Of, O.Of, O.Of, O.Of, O.Of, O.Sf, O.Sf,

O.Of, O.Of, -1.S43996f, -9 .189342f },
O.Of , O.Of, O.Of, O.Of, O.Of, O. Of, 1.0f,

88

0. Of, 0. Of, 0. Of , 6 . 311 454f));

static final float[][] AB3 = {
0.802757f , 0.394486f, -0.253324f, - 0.038667f,

0 . 2029 45f, -0.09246lf, -0.071912f, 0 .069304f,
- 0 .000533f, -0.025190f, 0 . 012 595f) ,

-0.271 998 f, 0.543996f, 0.983350f, -0.05072lf,
-0.483377f, 0.245774f, 0.169557f, -0 . 168642f,

0 .001764f, 0.060594f, -0.03 0297f),
0 .135 699f, -0. 271398f, -0. 085737f, 1. 066678 f,

0.705998f, -0.519247f, -0.266282f, 0.289940f,
- 0 .005147f, -0.101007f, 0.050503f) ,

-0.067342f, 0.134684f, 0.014071f, - 0 .415441f,
0.294364f, 1.079328f, 0.294364f, -0 .415441f,

0 .014071f, 0.134684f, -0.067342f),
o. 050503f , -0.101007f, -0. 005147f, 0 . 289940f,

-0. 26 6282f, -0.519247f, 0 .705 998f, 1 . 066678f,
-0.085737f, -0.271398f, 0.135699f) ,

-0.030297f, 0.060594f, 0.001764f, -0.168642f,
0 .169557f, 0 . 245774f, -0.483377f, -0 . 050721f,

0 .983350f, 0.543996f, -0.271998f),
0 . 012595f, -0. 025190f, -0. 000533f, 0. 069304f,

-0. 071912f, -0. 092461f, 0. 202945f, -0. 038667f,
- 0 .253324f, 0.394486f, 0.802757f),

o.o312s2f, -o.062S03f, o .040l37f, · o .oo6126f,
-0.032155f, 0.014650f, 0.011394f, -0.010981f,

0 . 000084f, 0. 003991f , -0. 001996f) ,
-0.014120f, 0.028241f, -0.002475f, - 0 . 06 5410f,

0.100562f , -0.037543f, -0.036192f, 0 .033185f,
- 0 .000104f, -0.012288f, 0.006144f },

0.006144f, -0.012288f, -0 .000104f, 0 . 033185f,
-0.036192f, -0.037543f, 0.100562f, -0.065410f,

-0.002475f, 0.028241f, -0.014120f) ,
-0.001996f, 0.003991f, 0.000084f, - 0.0 10981f,

0 . 011 394f, 0.014650f, -0.032155f, 0 .006126f,
0 .040137f, -0.062503f, 0.031252f });

II Arrays for storing precomputed synthesis and analysis
II matrices up to level LEVEL_MAX. AB matrices are the
II LU decomposition matrices of the respective PQ matrices.
II
II Initialized by call to initMatrices().

float(][][] PQ new float[LEVEL_MAX] [] [];
float[][][][] AB= new float[LEVEL_MAX] [2] [] [];
int[](] ABindx =new int[LEVEL_MAX] [];

II Additional storage for matrices of level > LEVEL MAX
Vector PQmore =new Vector();
Vector ABmore =new Vector();
Vector ABindxmore =new Vector();

II Repeating column vectors used in the creation of the synthesis
II matrices for resolution levels > 3.
static final float[] Pl l.Of, O.Sf);
static final float[] P2 = { O.Of, O.Sf, 0 .75f, 0.1875f);

89

} i

static final float[) P3 O.Of, O.Of, 0.25f, 0.6875f, O.Sf, 0.125f

static final float[) PC 0.125f, O.Sf, 0.75f, 0 .Sf, 0 .125f };

II wavelet space synthesis matrix columns must be multiplied
II by the factor sqrt (5 * 2Aj I 675221664)
static final float[) Ql =

{ 25931.200710f, -37755.271723f, 30135.003012f,
-14439.869635f, 5223.125428f, -1067.879425f,

78.842887f, -0.635830f };
static final float[) Q2 =

{ O.Of, -6369.305453f, 17429.266054f,
-23004.252368f, 24848 .487 87lf, -17678.88430lf,

7394.685374f, -1561 .868558f, 115.466347f,
-0.931180f };

static final float[) Q3 =
{ O.Of, 385.797044f,

-2086.545605f, 8349 . 373420f, -18743.473059f,
24291.795239f, -18420.997597f, 7866.732009f,
-1668.615872f, 123.37867lf, -0.994989f) ;

static final float(] QC= { -1.0f, 124.0f, -1677.0f, 7904.0f,
-184 82.0f , 24264.0f, -18482.0f,
7904. Of, -1677. Of, 124. Of, -1. Of) ;

II Constructor:
Multires ()
{ initMatrices();
}

II Initializes synthesis and analysis matrices for first
II LEVEL MAX levels of resolution.
void initMatrices()
{ II The first three levels are the statically declared matrices

PQ[O] = PQl; PQ[l) = PQ2; PQ[2) PQ3;
AB[O] [OJ = ABl; AB[l) [OJ = AB2; AB[2) [OJ = AB3;

II Next, create the banded diagonal matrices for the remaining
II levels. This will be done by interleaving column vectors
II from the respective P and Q analysis matrices, using the
II static P# and Q# vectors declared above. For each such
II banded matrix created, we will also perform an LU
II decomposition on the matrix for use in the analysis operation
II (coarsen) .

int htBase 16; II start at output

for {int j 3; j < LEVEL MAX; ++j)
{ II

2A4 + 3 control points

II first, create the banded diagonal matrix
II

int height = htBase + 3;
PQ[j) =new float[height) [DIAG WIDTH);
float[)[) M = new float[heightJ[DIAG_WIDTH);

II compute multiplier and create lo~al copies of

90

II Q column vectors
float q = (float) (Math.sqrt((double) (5 * htBase) I

(double) (675221664))) ;
float []
float []
float []
float []

tQl
tQ2
tQ3
tQC

scalarMult (Ql,
scalarMult (Q2,
scalarMult (Q3,
scalarMult (QC,

q);

q);
q);
q);

II first seven columns of matrix:
int row = 0, col = SUB DIAG WIDTH;

II use the static vectors to create the banded diagona l
II matrix one column at a time ...
populateDiagonal(PQ[j], M, Pl, row, col, DOWN);
populateDiagonal(PQ[j], M, P2, row, ++col, DOWN);
populateDiagonal(PQ[j], M, tQl, row, ++col, DOWN);
populateDiagonal(PQ[j], M, P3! row, . ++col, DOWN);
populateDiagonal(PQ[j], M, tQ2, row, ++col, DOWN);
populateDiagonal(PQ[j], M, PC, row+3, SUB DIAG WIDTH+ 2 ,

DOWN);
populateDiagonal(PQ[j], M, tQ3, row+l, DIAG_WIDTH-1, DOWN) ;

II next, populate the middle column vectors:
for (row= 7; row < height - 7; row++)
{ if (row % 2 == 1)

populateDiagonal(PQ[j], M, PC, row-2, SUB_DIAG_WIDTH+2,
DOWN);

else
populateDiagonal(PQ[j], M, tQC, row-5, DIAG_WIDTH-1,

DOWN);

II lastly, populate the last seven column vectors:
row = height-1; col = 0;
populateDiagonal(PQ[j], M, tQ3, row-1, col, UP);
populateDiagonal (PQ[j], M, PC, row- 3 , SUB_DIAG_WIDTH- 2 , UP) ;
populateDiagonal(PQ[j], M, tQ2, row, ++col, UP);
populateDiagonal(PQ[j], M, P3, row, ++col, UP);
populateDiagonal(PQ[j], M, tQl, row, ++col, UP);
populateDiagonal(PQ[j], M, P2, row, ++col, UP);
populateDiagonal(PQ[j], M, Pl, row, . ++col, UP);

II
II next, create the LU decomposition of this matrix
II

AB[j] [0] =new float[height] [SUB_DIAG_WIDTH];
AB [j] [l] = M;
ABindx[j] =new int[height];

II lower
II upper

bandec(AB[j] [l], SUB_DIAG_WIDTH, SUPER_DIAG_WIDTH,
AB [j] [0] , ABindx [j]) ;

htBase *= 2;

91

II Performs a simple scalar multiplication on an input vecto r.
float[] scalarMult(float[] v, fl oat scala r)
{ float[] x =new float[v.length] ;

for (int i = 0; i < v.length; ++i)
x[i] = v[i] * scalar;

return x;

II Performs a simple matrix multiplication on an input
II matrix and vector.
II MODIFIED (319199): input x contains elements that are
II not multiplied by the matrix and need to be copied
II over into the solution vector.
float[] matrixMult(float[] [] A, float[] x , int n)
{ int m =A.length; II, n = x .length;

if (m <= 0 I I A[O] .length != n)
return null;

float[] b =new float[x.length]; llm];
int i = 0;
for (; i < m; ++i)
{ b[i] = O.Of;

for (int j = 0; j < n; ++j)
b [i] += A [i] [j] * x [j] ;

I I copy over any remaining elements in the vector
for (; i < x.length; ++i)

b[i] = x [i];

return b;

II Used by initMatrices to create synthesis matrices.
void popula teDiagonal (float [] [] A, float [] [] M, float [] v, int row,

int col, int dir)
int n = v.length;
for (int i = O; i < n; ++i)
{ A[row] [col] = M[row] [col]

if(dir == DOWN)
{ row++; col--;
}

else
row--; col++;

v[i];

II Reduces resolution of cubic B-spline curve representation.
II
II
II
II
II
II

Input: set of control points cAj I <difference coeffs. d Aj ,
j+, ... >

Output: set of control points c A(j-1) I difference coeffs.
d A(j-1) I <difference coeffs. d Aj, j+, ... >

public synchronized Point2D[] coarsen(Point2D[] P, int j)

92

II convert points to arrays of floats
float[)[) x y = Point2DToXY(P);

II for level j, index into stored matrices is j-1
if (j <= 3)
{ II use simple matrix multiplicati on

xy[O] matrixMult(AB[j-1) (0), xy[O], numPoints(j));
xy[l) matrixMult(AB[j-1) [OJ, xy[l), numPoints(j));

else if (j <= LEVEL_MAX)
{ II use LU decomposition of banded diagonal matrices

banbks(AB[j-1) (1), SUB_DIAG_WIDTH, SUPER_DIAG_WIDTH,
AB[j-1)(0), ABindx[j-1), xy[O));

banbks(AB[j-1) (1), SUB_DIAG_WIDTH, SUPER_DIAG_WIDTH,
AB[j-1] [0], ABindx[j-1), xy (l]) ;

II uninterleave the output ve~tors
int n numPoints(j);
xy[O] unleave(xy[O], n);
xy(l] unleave(xy[l], n);

else
II check if matrices up to and including this level
II have been constructed ...
if (j - LEVEL_MAX < ABmore.size ())
{ II build new matrices up to level j ...
}

return XYToPoint2D(xy);

II Increases resolution of cubic B-spline curve representation.
II
II
II
II
II
II

Input: set of control points c "(j-1) I difference coeffs.
d"(j-1) I <difference coeffs. d"j, j+, .. . >

Output: set of control points c " j I <difference coeffs. d "j ,
j+, ... >

public synchronized Point2D[] refine(Point2D[] P, int j)
II convert points to arrays of floats
float[)[] xy = Point2DToXY(P);

II for level j, index into stored matrices is j-1
if (j <= 3)

{ II use simple matrix multiplication
xy[O] matrixMult(PQ[j-1), xy[O], numPoints(j));
xy[l] matrixMult(PQ[j-1], xy(l], numPoints(j));

else if (j <= LEVEL MAX)
{ II use banded di~gonal multiplication

int n numPoints(j);
xy[O] interleave(xy[O], n);
xy[l] interleave(xy[l), n);

xy[O] banmul{PQ[j-1), SUB DIAG_WIDTH, SUPER_DIAG_WIDTH,
xy[OJ);

93

xy(l]

else

banmul (PQ[j-1], SUB_DIAG_WIDTH, SUPER_ DIAG_WIDTH,
x y [1]) ;

II check if matrices up to and including this level
II hav e been constructed ...
if (j - LEVEL_MAX < PQmore.size ())
(II build new matrices up to level j ...
}

return XYToPoint2 D(xy);

II Computes c hanges to set of control points at l evel j a fter
I I an edit is appl i ed to the point index at lev e l (j +mu) .
II
II
II
II
II
II
II
II

P is the set o f control points at level j,
j is the floor o f the current level of res o l ution,
mu is a number on the interval (0,1] _.
deltaX, deltaY are the edit changes to control point index
at level (j +mu),

index is the index of the edited control p oi n t at leve l (j+mu).

public Point2 D[] editCurve(Point2D[] P, int j, float mu,
float deltaX, float deltaY, int index)

float g = mu * mu; II monotonicall y increasing fun c tion o n mu
II for gradational propagation of edits to
II control points.

if (mu > 0) j--;

int n numPoints(j), nPlus = numPoints(j+l) ;

float [] [] xy

xy [O] [index]
xy [l] [index]

if (j < 3)

{

new float[2] [nPlus];

deltaX;
d eltaY;

II creates array of z eros

II put deltas in array

xy[O]
x y[l]

matri xMult(AB[j] [OJ, xy [O], nPlus) ;
matrixMult(AB[j] [OJ, xy[l], nPlus) ;

else if (j < LEVEL_MAX)
{ banbks (AB[j] [1], SUB DIAG_WIDTH, SUPER_DIAG_WIDTH,

AB[j] [OJ, ABindx[j], x y[O]);

}

banbks (AB[j] [1], SUB_DIAG_WIDTH, SUPER_DIAG_WIDTH,
AB [j] [0] , ABindx [j] , xy [1]) ;

xy[O]
x y[1]

unleave(xy[O], nPlus);
unleave(xy[l], nPlus);

II else j is larger: implementation must wa i t until larger
II matrices are created and stored

II multipl y control point deltas at level j b y g and differenc e

94

/I coefficient deltas at level j by g/mu
int i = 0;
while(i < n)
{ xy[O] [i) *= g;

xy[l) (i] *= g;
i++;

while(i < nPlus)
x y [0] [i] * = mu;
x y [l] [i l * = mu;
i++;

I I (mu * mu) I mu

/I apply deltaC_prime to k-th index of control points
float(][) deltaCprime =new float[2) [2);
int k = computeDeltaCprime(deltaCprime, j, index, deltaX,

deltaY);

II multiply by (1 - g)
for(i = 0; i < 2; ++i)

for(int ii= 0; ii < 2; ++ii)
deltaCprime[i] [ii] *= (1.0 - g);

II ... and add to array of deltas at index k
xy[O) [kl += deltaCprime[O] [OJ;
if(k+l < n)

xy[O] [k+l) += deltaCprime[O] (1);

xy[l) [kl += deltaCprime[l) [OJ;
if(k+l < n)

xy[l] [k+l] += deltaCprime(l] [l];

II Lastly, apply these deltas to the array of control points
int limit = (P.length < xy[O] .length) ? P.length : x y[O) .length;

for(i = 0; i < nPlus; ++i) //limit; ++i)
{ P(i].x+=xy[O)[i];

P [i J . y += xy [l J [i) ;

return P;

II Computes the changes to a subset of control points at level j
II as a result of an edit at a fractional resolution. Returns
II the index of the set of control points which is affected.
int computeDeltaCprime(float[] [) dCprime, int j, int index,

float deltaX, float deltaY)
int k -1; // the index to be returned
int n = numPoints(j+l);

if (j+l == 1)

{ switch(index)
{

case 0: k = 0;
dCprime [OJ [OJ
dCprime [l) [0)

deltaX; dCprime[O] [l)
deltaY; dCprime[l) (l]

95

O.Of;
0. Of;

break;

case 1: k = 0 ;
dCprime [OJ [OJ deltaX; dCprime[OJ [lJ deltaX;
dCprime[lJ [OJ deltaY; dCprime[lJ [lJ deltaY;
break;

case 2: k = l;
dCprime[OJ (OJ deltaX ; dCprime(OJ [lJ deltaX;
dCprime [lJ [OJ deltaY; dCprime[lJ [lJ deltaY;
break;

case 3: k = 2;
dCprime[OJ [OJ deltaX; dCprime[OJ [lJ deltaX;
dCprime[lJ [OJ deltaY; dCprime [lJ [lJ deltaY;
break;

case 4: k = 3;
dCprime(OJ [OJ deltaX; dCprime [0 J [1 J O.Of;
dCprime [1 J [0 J deltaY; dCprime[lJ [lJ O. Of;
break;

} ;

else if(j+l == 2)
{ switch(index)

{

case 0 : k = 0;
dCprime [0 J [0 J deltaX; dCprime [OJ [lJ O.Of;
dCprime [l J [0 J deltaY; dCprime [l J [l J O.Of;
break;

case 1: k = 0 ;
dCprime[OJ [OJ deltaX; dCprime[OJ [lJ deltaX;
dCprime [l J [0 J deltaY; dCprime [lJ [lJ deltaY;
break;

case 2 : k = l;
dCprime [0 J [0 J deltaX/0.75f; dCprime [0 J [1 J 0 . Of ;
dCprime [1 J [0 J deltaY/0.75f; dCprime[lJ (lJ O.Of;
break;

case 3 : k = 2;
dCprime[OJ [OJ deltaX/0.625f; dCprime [OJ [lJ O.Of ;
dCprime [lJ [OJ deltaY/0.625f; dCprime[lJ (lJ O.Of ;
break;

case 4 : k = 3;
dCprime [OJ [OJ deltaX/0 . 75f; dCprime [OJ [lJ 0 . Of;
dCprime [lJ [OJ deltaY/0 .75f ; dCprime[lJ [lJ O. Of;
break;

case 5: k = 3;
dCp rime [0 J [0 J deltaX; dCprime [0 J [1 J deltaX;
dCp rime [1 J [0 J deltaY; dCprime[lJ [lJ deltaY;
break;

case 6: k = 4;

96

} ;

}

dCprime[O] (OJ
dCprime[lJ [OJ
break;

deltaX; d Cprime(OJ [lJ
deltaY; d Cprime[lJ (lJ

O. Of;
0 . 0 f;

else if(j+l >= 3)
{ if (index < 4)

{ switch(index)
{

case 0: k = 0;
dCprime[OJ [OJ
dCprime(lJ [OJ
break;

case 1: k = 0;
dCprime(OJ [OJ
dCprime[lJ [OJ
break;

deltaX; dCprime [0 J [l J
deltaY; dCprime(lJ (lJ

d~ltaX; dCprime[OJ [lJ
deltaY; dCprime[lJ [lJ

O.Of;
O.Of;

deltaX;
deltaY;

case 2: k = 1;
dCprime[OJ [OJ
dCprime[lJ [OJ
break;

deltaX/0.75f; dCprime[OJ [lJ= O.Of;
deltaY/0.75f; dCprime[lJ [lJ= O.Of;

case 3: k = 2;

} ;

dCp rime [0 J [0 J
dCprime[OJ [lJ
dCprime [l J [0 J
dCprime[lJ [lJ
break;

else if(index > n-5)
{ int m = numPoints(j);

deltaX/0.6875f;
0. Of;
deltaY/0.6875f;
0. Of;

if(index == n-4)
{ k = m - 3;

dCprime [0 J [0 J
dCprime[lJ [OJ

deltaX/0.6875f; dCprime[OJ [lJ
deltaY/0.6875f; dCprime[lJ [lJ

else if(index == n-3)
{ k = m - 2;

dCp rime [0 J [0 J
dCprime [lJ [OJ

deltaX/O. 75f; dCprime[OJ [lJ
deltaY/0. 75f; dCprime[lJ [lJ

else if(index == n-2)

O.Of;
O.Of;

O.Of;
O.Of;

{ k = m - 2;
dCprime[OJ [OJ
dCprime[lJ [OJ

deltaX; dCprime[OJ (lJ
deltaY; dCprime[lJ (lJ

deltaX;
deltaY;

else if(index == n-1)
{ k = m - l;

dCprime[OJ [OJ
dCprime[lJ (OJ

deltaX; dCprime(OJ [lJ
deltaY; dCprime [l J [l J

97

O.Of;
O.Of;

else
i f (inde x % 2 == 0)
{ k = indexl2 ;

d Cpri me [0) [0]
dCpr i me [l] [0]

el s e
l;

II mult i pl e i nfluence

deltaX; d Cp rime [O] [l]
deltaY; d Cprime[l] [l]

II single i n f luen c e

deltaX;
d eltaY;

k = index l2 +
dCprime[O] [OJ
dCpr i me [l] [0]

deltaXIO. 75f; dCpri me[O) [l)
= deltaYI 0 .7 5 f; dCprime [l] [l]

deltaX;
deltaY;

return k ;

II Interleav es first n elements of p for u se with interleav ed
II banded diagonal synthesis matrices .
float[) interleave(float[] p, int n)
{ float[] v =new float[p.length);

II distr i bute s caling function input
v [O] = p [O]; v [l] = p[l];
int i = 3 , k = 2 ;
while (i < n-1)
{ v[i] =p[k];

k++;
i += 2 i

v[n-1] = p[k);

II now distribute wavelet input
i = 2; k++ ;
while (i < n-1)
(v[i) = p [k) ;

k++;
i += 2 ;

i++;

II copy remaini ng vector, if any
while (i < p.length)
{ v[i] =p[i);

i++;

return v;

II Reverses interleaving of first n elements o f p.
float(] unleave(float[] p, int n)
{ float[] v = new float[p . length];

II redistribute scaling function output
v[O] = p [O]; v[l] = p[l];

98

int i = 2, k = 3;
while (k < n-1)
{ v[i] = p[k];

i++;
k += 2 ;

}
v[i) = p[n-1];

II now, redistribute wavelet output
i++;
k = 2;
while (k < n-1)
{ v[i] = p[k);

i++;
k += 2;

II copy remaining vector , if any
while (i < p.length)
{ v[i] =p[i];

i++;

return v;

II Returns the number of control points in a B-spline
II curve of resolution level j.
int numPoints(int j)
{ return (int) (Math.pow(2, j)) + 3;
}

II This function is adapted from Numerical Recipes in C,
II Press, Teukolsky, et al. Cambridge Univ. Press, 1992.
II
II Given an n*n matri x a, this routine replaces it by the LU
II decomposition of a rowwise permutation of itself. a is output
II with the U portion of the matrix the upper triangle and main
II diagonal of a and the L portion the lower triangle part (L's main
II diagonal values are all 1.) indx is an output vector that
II records the row permutation effected by the partial pivoting;
II the return value is +or - 1, depending on whether the number of
II row interchanges was even or odd, respectively. Use this routine
II in combination with lubksb to solve linear equations or invert
II a matrix.
public float ludcmp{float[] [] a, int[] indx)
{ int imax = -1, n = a.length;

float d, big, dum, sum, temp;
float[] vv =new float[n];

d = 1.0f;
for(int i = 0; i < n; ++i)
{ big = O.Of;

for(int j = 0; j < n; ++j)
{ temp =Math.abs (a[i) [j]);

if (temp > big)
big = temp;

99

II no row interchanges yet
II loop over rows to get
II scaling information

if (big == 0. Of}
(System. out. println ("ERROR: ludcmp: singular matri x " } ;

return O.Of;
}

vv[i) = l.Oflbig; II save the scaling

II next, loop over the columns per Crout's algorithm:
for(int j = 0; j < n; ++j }
{ for(int i = O; i < j; ++i)

{ sum=a[i][j);
for(int k = O; k < i ; ++k}

sum-= a[i] [k] * a[k] [j];
a [i] [j] = sum;

big= O.Of; II init. for the search for the
II largest pivot element

for(int i = j; i < n; ++i }
{ sum=a[i][j];

for (int k = O; k < j; ++k)
sum -= a[i] [k] * a [k] [j];

a [i] [j] = sum;
dum = vv[i] * Math.abs (sum};
if (dum >= big)
{ II is the figure of merit for · the pivot better than the

II best so far?
big = dum;
imax = i;

if (j != imax} II do we need to interchange rows?
{ for (int k = O; k < n; ++k) II Yes, do so ...

{ dum = a[imax] [k];
a [imax] [k] = a [j] [k] ;
a [j] [kl = dum;

d = -1.0f*d;
vv[imax] = vv[j];

indx[j] = imax;
i f (a [j] [j] == 0 . 0 f)

a(j] [j] = TINY;

II ... and change the parity of d
II and interchange scale factor.

II if the pivot element is zero the matrix is singular (a t
II least to the precision of the algorithm). For some
II applications on singular matrices, it is desirable to
II substitute TINY for 0 .0.

if (j != n} II now, divide by the pivot element.
{ dum = 1. 0 fl (a [j] [j]) ;

for (int i = j+l; i < n; ++i}
a[i] [j] *= dum;

return d;

100

/I This function is adapted from Numerical Recipes in C,
/I Press, Teukolsky, et al. Cambridge Univ. Press, 1992 .
II
/I Solves the set of n linear equations A*x = b. Here a is an input
/I n*n matrix , not as the matrix a but as its LU decomposition as
/I returned from ludcmp. indx is input as the permutation vector
/ I returned from ludcmp. b is input as the right-hand side vector
/ I and returns with the solution vector x. a and indx are not
// modified by this routine and can be left in place for successive
/ I calls with different right-hand sides b.
public void lubksb(float[] [] a, int[) indx, float[) b)
{ int n = a . length, ii = -1, ip;

float sum;

for (int i = O; i < n; ++i)
ip = indx[i];
sum= b[ip];
b[ip) = b[i);

if (ii > -1)

II When ii is set to a pos. value,
II it will become the index o f the
II first nonvanishing element of b.
II We now do the forward
II substitution.

{ for (int j ii; j <= i-1; ++j)
sum-= a[i) [j) * b[j);

else if (sum> O.Of)
ii = i;

b[i) = sum;

II A nonzero element was found,
II so now we do the sums in the loop.

for (int i = n-1; i >= 0; --i) II Now, backsubstitute ...
{ sum = b [i];

for (int j = i+l; j
sum-= a[i] [j) *

b [i] = sum/ a [i] [i) ;

< n; j++)
b [j l ;

II Store a component of the sol. x.

II This function is adapted from Numerical Recipes in C,
II Press, Teukolsky, et al. Cambridge University Press, 1992.
II
II Matrix multiply b = A*x, where A is a band diagonal with ml rows
II below the diagonal and m2 rows above. The input vector x and
II output vector bare length n. The array a is n*(ml+m2+1) with
II the diagonal elements in column vector index ml. Subdiagonals
II are in the values a[j .. (n-1))(0.(ml-l)), with j > 1 appropriate
II to the number of elements on each subdiagonal. Superdiagonal
II elements are in a[l . . j] [(ml+l) .. (ml+m2)] with j < (n-1)
II appropriate to the number of elements on each superdiagonal.
II MODIFIED (3/14/99): length of vector x may be longer than width
II and so the length of b will be longer than the height of a.
II Therefore, copy any remaining elements from x to b after
II multiplication.
float[] banmul(float[] [) a, int ml, int m2, float[] x)
{ int tmploop , n = a.length;

float[] b =new float[x.length]; //n];

for (int i = O; i < n; ++i)

101

int k = i - ml;
int w = ml + m2, u = n - k - l;
tmploop = (w < u) ? w u;
b[i] = O.Of;
for (int j (0 > -k) ? 0 : -k; j <= tmploop; ++j)

b [i] += a [i] [j] * x [j + k] ;

II now, copy over elements from x to b, if any.
for (int i = n; i < x.length; ++i)

b[i] = x[i];

return b;

II This function is adapted from Numerical Recipes in C,
II Press, Teukolsky, et al. Cambri~ge University Press, 1992.
II
II Given an n*n band diagonal matrix A with ml subdiagonal rows and
II m2 superdiagonal rows, compactly stored in the n*(ml+m2+1) array
II a as described for the method banmul above, this method
II constructs an LU decomposition of a rowwise permutation of A.
II The upper triangular matrix replaces a, while the lower
II triangular matrix is returned in the n*ml array al. indx is an
II output vector which records the row permutation effected by the
II partial pivoting; dis output as +I- 1 depending on whether the
II number of row interchanges was even or odd, respectively. Use
II this in combination with the method banbks below.
void bandec(float[] [] a, int ml, int m2, float[][] al, int[] indx)
{ int mm = ml + m2 + 1, l = ml, n = a.length;

float dum;

II rearrange the storage: left justify the top ml rows
for (int i = 0; i < ml; ++i)
{ for (int j = ml-i; j <mm; ++j)

a[i][j-1] = a[i][j];

}

1--;
for (int j

a [i) [j)
mm-1-1; j <mm; ++j)
O.Of;

l ml;
for (int k = 0; k < n; ++k}

dum = a[k) [0];
int i k;
if (1 < n}

l++;

II For each row ...

for (int j = k+l; j < l; ++j) II find the pivot element.
{ if (Math.abs(a[j] [0]} > Math.abs(dum)}

{ dum = a [j) [0] ;
i = j;

indx[k] i;
if (dum == 0.0)

a[k][O] =TINY;
if (i != k}

{ for (int j = 0;

II Matrix is algorithmically singular
II but proceed anyway wl TINY pivot.

j <mm; ++j) II interchange rows

102

float temp= a[k) [j);
a[k) [j) a[i] [j);
a [i) [j) = temp ;

for (i = k+l; i < l; ++i} II do the elimination
{ dum = a[i) [O)la[k) [OJ;

al[k) [i-k-1) = dum;
for (int j = l; j < mm; ++j}

a[i] [j-1] = a[i] [j) - dum * a[k) [j);
a [i) [mm-1) = 0 . 0 f;

II This function is adapted from Numerical Recipes in C,
II Press, Teukolsky, et al. Cambri?ge Univ. Press, 1992.
II
II Given the arrays a, al and indx, as obtained from bandec, above,
II and given a right-hand side vector b, solves the band diagonal
II linear equations A*x = b . The solution vector x overwrites b.
II The other input arrays are not modified, and can be left in place
II for successive calls with different right-hand sides.
void banbks(float[) [) a, int ml, int m2,

float[)[) al, int[) indx, float[) b }
int n = a.length, mm = ml + m2 + 1, l = ml;
float dum;

II Forward substitution, unscrambling the permuted rows as we go.
for (int k = 0; k < n; ++k}
{ inti= indx[k];

if (i != k}

{ float temp= b[k);
b[k) b[i);
b[i] = temp;

if (1 < n}

l++;
for (i = k+l; i < l; ++i}

b[i) -= al[k) [i-k-1) * b[k];

l = l;

II Backsubstitution.
for (int i = n-1; i >= 0; i--}
{ dum=b[i);

for (int k = l; k < l; ++k}
dum -= a[i) (kl * b(k+i];

b (i] = dum I a (i) (0] ;
if (1 < mm)

l++;

II Converts an array of Point2D to a 20 array of floats.
float[)(] Point2DToXY(Point2D() P)

103

int n = P.length;
float[][] points =new fl oat[2] [n];

for (int i = 0 ;
points [OJ [i]
points[l] [i]

return points;

i < n; ++i)
P [i]. x ;
p [i] . y ;

II Converts a 2D array of floats to an array of Point2 D.
Point2D[] XYToPoint2D(float[] [] P)
{ int n = P[O] .length;

Point2D[] points= new Point2D[n];

for (int i = O; i < n; ++i)
points[i] new Point2D (P[O][i], P[l][i]) ;

return points;

104

// File: CurvEditor.java
//Author: Stephen Alberg
// Uses: CvBspline and Swing classes

//
II
//
II
II
II
II
II
II
II
II
II
II
II
II

This file the class definition fo r an interactive multiresolution
curve editor. The CurvEditor class invokes c omponents of the Swing
library to provide a fluent interface to the program. The CvBspline
class is a canvas object within which multiple curves may be edited.
When a user request to edit the resolution of a curve is made, the
cvBspline object calls upon the coarsen/refine methods of its member
Multires object, receiving as a return value the modified set of
control points for the curve

TO DO: scribble translation interface, zoom control, knot editing
vs. control point editing (using HermitelBspline conversion) .

Original source for the curve enterjng and drawing functionalit y :
Leen Ammeraal, Computer Graphics for Java Programmers. Wiley, 1998.

import
import
import
import

java.awt.*;
java.awt.event.*;
java.io.*;
java.util.*;

import
import
import

. . * Javax.swing. ;
javax.swing.border.*;
javax.swing.event.*;

public class CurvEditor extends J Frame
public static void main(String[] args)
{ // use system look and feel

try {

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName ()) ;
} catch(Exception e) {}
new CurvEditor();

static JFrame instance;

JSlider slider;
CvBspline canvas;

JToggleButton edit= new JToggleButton();
JToggleButton scribble= new JToggleButton();
JToggleButton draw= new JToggleButton();
JToggleButton zoom= new JToggleButton();
JPopupMenu zoomPopup = new JPopupMenu(); ·
JToggleButton zoomPlus = new JToggleButton();
JToggleButton zoomMinus = new JToggleButton();
JToggleButton zoomOne =new JToggleButton();
JButton polygon= new JButton();
JButton points= new JButton();
JButton knots= new JButton();
JButton grid= new JButton();
JButton coords =new JButton();
JButton clear= new JButton();

105

JLabel resLabel =new JLabel("Resoluti on value: 0 • 0 II } ;

JLabel coordsLabel =new JLabel("Posit ion : " } ;

II image icons for buttons
Imageicon editUnselected, editRollover, editSelected;
Imageicon scribbleUnselected, scribbleRollover, scribbleSelected;
Imageicon drawUnselected, drawRollover, drawSelected;
Imageicon zoomUnselected, zoomRollover, zoomSelected;
Imageicon zoomPlusUnselected, zoomPlusRollover, zoomPlusSelected;
Imageicon zoomMinusUnselected, zoomMinusRollover, zoomMinusSelected;
Imageicon zoomOneUnselected, zoomOneRoll ove r, zoomOneSelected;
Imageicon polygonUnselected, polygonRol love r, polygonSelected;
Imageicon pointsUnselected, pointsRollover, pointsSelected;
Imageicon knotsUnselected, knotsRollover, knotsSelected;
Imageicon gridUnselected, gridRollover, gridSelected;
Imageicon coordsUnselected, coords~ollover, coordsSelected;
Imageicon clearUnselected, clearRollover;
Imageicon c anvasBG;
Imageicon crvicon, dificon;
Imageicon textureiconl, textureicon2, textureicon3;

II menu items for menubar
JMenuitem exit;
JMenuitem undo, redo, select, sketch, build;
JMenuitem zoomin, zoomOut, clearScreen;
JMenuitem shPolygon, shPoints, shKnots , shGrid, shCoords;
JMenu importTexture, gridSpacing, undoStack;
JMenuitem about;

II dialog boxes
JDialog aboutBox ;

boolean shiftAllowed

II Constructor
CurvEdi tor (}

true;

{ super ("CurvEdi tor v. 1. l"} ;
instance = this;

addWindowListener(new WindowAdapter(}
public void windowClosing(WindowEvent e}
{ System.exit(O);
}

}) ;

setSize (800, 600);
getContentPane(} .setLayout(new BorderLayout(}};

slider =new JSlider(JSlider.HORIZONTAL, O, 80, 0);
canvas =new CvBspline(slider);
canvasBG =new Imageicon("imageslbigwhite.gif"};
canvas.seticon(canvasBG};

JScrollPane pane= new JScrollPane(canvas);
getContentPane() .add(pane, BorderLayout.CENTER);

106

loadimages () ;

JMenuBar menubar = createMenuBar ();
setJMenuBar (menubar);

JToolBar toolbar =new JToolBar(JToolBar. VERTICAL) ;
initButtons(toolbar);
getContentPane () .add(toolbar, BorderLayout.WEST) ;

slider.setPaintTicks(true);
slider.setMajorTickSpacing(lO);
slider.setMinorTickSpacing(l);
slider.setSnapToTicks(true);
slider.setPaintLabels(false);
slider.setBorder(new BevelBorder(BevelBorder.LOWERED));
slider.addChangeListener(new ChangeListener ()
{ public void stateChanged(ChangeEvent e)

{ if (shiftAllowed)
(shiftAllowed = false;

slider.setEnabled(false);
canvas . shiftResolution(

(float) (slider.getValue())110.0f);
res Label. set Text ("Resolution value: " +

(double) (slider. getValue ()) 110. 0) ;
slider.setEnabled(true);
shiftAllowed = true;

}

}) ;
this.addKeyListener(new KeyListener()

public void keyPressed(KeyEvent e)

)) ;

(if (e.getKeyCode() == KeyEvent.VK_LEFT)
slider.setValue(slider.getValue() - l) ;

else if(e.getKeyCode() == KeyEvent.VK_RIGHT)
slider.setValue(slider.getValue() + 1) ;

canvas. shiftResolution ((float) (slider. getValue ()) I 10. Of) ;
resLabel.setText("Resolution value: " +

(double) (slider.getValue ()) /10.0);

II dummy functions necessary to implement abstract class
public void keyReleased(KeyEvent e) {}
public void keyTyped(KeyEvent e) {)

II Set layout of bottom of interface
canvas.setCoordsLabel(coordsLabel);

JPanel p =new JPanel();
p.setLayout(new BoxLayout(p, BoxLayout.Y AXIS));
p.setBackground(Color.lightGray);
getContentPane() .add (p, BorderLayout.SOUTH);

JPanel q =new JPanel();
q.setLayout(new BoxLayout(q, BoxLayout.X_AXIS)) ;

107

q.add(Box.createRigidArea(new Dimension(75,20))) ;
resLabel.setPreferredSize(new Dimension(l40, 25)) ;
q.add("West", resLabel) ;
q.add(Box .createRigidArea (new Dimension(75,20))) ;

coordsLabel.setPreferredSize(new Dimension (240 , 2 5)) ;
q.add("West", coordsLabel);
q.add(Box.createGlue ()) ;

p.add(q);

q =new JPanel() ;
q.setLayout(new BoxLayout(q, BoxLayout. X_AXIS)) ;

q.add(Box.createRigidArea(new Dimension(75, 25))) ;
slider.setPreferredSize(new Dime?sion(525, 50)) ;
q.add("West", slider);
q.add(Box.createRigidArea(new Dimension(75, 2 5))) ;

p.add(q);
p.add(Box.createRigidArea(new Dimension(75, 2 5))) ;

show();

public static JFrame shared!nstance()
{ return instance;
I

void load!mages()
editUnselected new Image!con("images/hand.gif") ;

Image!con("images/handl.gif") ;
Image!con("images/hand2.gif");

editRollover new
editSelected new
scribbleUnselected new Image!con("images/pencil . gif") ;

new Image!con("images/pencil l .gif"); scribbleRollover
scribbleSelected
drawUnselected
drawRollover
draws elected
zoomUnselected

new Image!con("images/pencil2.gif") ;
new Image!con("images/curve.gif") ;
new Image!con("images/curver.gif") ;
new Image!con("images/curve2.gif") ;

zoomRollover new
new Image!con("images/zoom.gif");

Image!con("images/zooml.gif") ;
Image!con("images/zoom2.gif") ; zoomSelected new

zoomPlusUnselected
zoomPlusRollover
zoomPlusSelected
zoomMinusUnselected

new Image!con("images/zoomplus.gif");
new Image!con("images/zoomplusl.gif");
new Image!con("images/zoomplus2.gif");

new Image!con("images/zoomminus.gif");
=new Image!con("images/zoomminusl.gif");
=new Image!con("images/zoomminus2.gif");
new Image!con("images/zoomone.gif");
new Image!con("images/zoomonel.gif");
new Image!con("images/zoomone2.gif");
new Image!con("images/polygon.gif");
new Image!con("images/polygonl.gif") ;
new Image!con("images/pol ygon 2 .gif") ;

zoomMinusRollover
zoomMinusSelected
zoomOneUnselected
zoomOneRollover
zoomOneSelected
polygonUnselected
polygonRollover
polygonSelected
points Unselected
points Rollover

new Image!con("images/points.gif") ;
=new Image!con("images/points l . gif") ;

108

pointsSelected =new Imageicon("images/points2.gif") ;
knotsUnselected new Imageicon("images/knots.gif") ;
knotsRollover =new Imageicon("images/knotsl.gif");
knotsSelected = new Imageicon("images/knots3.gif");
gridUnselected new Imageicon("images/grid.gif");
gridRollover new Imageicon("images/gridl.gif") ;
gridSelected new Imageicon("images/grid2.gif");
coordsUnselected new Imageicon("images/coords.gif") ;
coordsRollover =new Imageicon("images/coordsl.gif");
coordsSelected = new Imageicon("images/coords2.gif") ;
clearUnselected =new Imageicon("images/clear.gif'');
clearRollover =new Imageicon("images/clearl.gif") ;
crvicon = new Imageicon("images/crvicon.gif");
dificon = new Image Icon ("images/dificon. gif") ;
textureiconl new Imageicon ("images/txl. gif");
textureicon2 new Imageicon("images/tx2.gif");
textureicon3 new Image Icon ("im_ages/tx3. gif");

void initButtons(JToolBar toolbar)
ButtonGroup bg =new ButtonGroup();
Insets margin= new Insets(0,0,0,0);

edit .seticon(editUnselected) ;
edit.setRollovericon(editRollover);
edit .setSelectedicon(editSelected);
edit.setSelected(true);
edit .setToolTipText("Edit/Select Curve");
edit.setMargin(margin);
bg.add(edit);
toolbar.add(edit);

scribble.seticon(scribbleUnselected);
scribble.setRollovericon(scribbleRollover);
scribble.setSelectedicon(scribbleSelected);
scribble.setToolTipText("Write Curve");
scribble.setMargin(margin);
bg.add(scribble);
toolbar.add(scribble);

draw.seticon(drawUnselected);
draw.setRollovericon(drawRollover);
draw.setSelectedicon(drawSelected);
draw.setToolTipText("Build Curve");
draw.setMargin(margin);
bg. add (draw);
toolbar.add(draw);

zoom.seticon(zoomUnselected);
zoom.setRollovericon(zoomRollover);
zoom.setSelectedicon(zoomSelected);
zoom.setToolTipText("Zoom");
zoom.setMargin(margin);
bg. add (zoom) ;
toolbar.add(zoom);

bg =new ButtonGroup();

109

zoomPlus.seticon(zoomPlusUnselected) ;
zoomPlus.setRollovericon(zoomPlusRollover);
zoomPlus.setSelectedicon(zoomPlusSelected);
zoomPlus.setToolTipText("Zoom in") ;
zoomPlus.setMargin(margin);
bg.add(zoomPlus);
zoomPopup.add(zoomPlus);

zoomMinus.seticon(zoomMinusUnselected) ;
zoomMinus.setRollovericon(zoomMinusRollover);
zoomMinus.setSelectedicon(zoomMinusSelected);
zoomMinus.setToolTipText("Zoom out") ;
zoomMinus.setMargin(margin);
bg.add(zoomMinus);
zoomPopup.add(zoomMinus);

zoomOne.seticon(zoomOneUnselecte9) ;
zoomOne.setRollovericon(zoomOneRollover);
zoomOne.setSelectedicon(zoomOneSelected);
zoomOne.setToolTipText("Zoom default") ;
zoomOne.setMargin(margin);
bg.add(zoomOne);
zoomPopup.add(zoomOne);

toolbar.addSeparator(new Dimension(S,5));

polygon.seticon(polygonUnselected);
polygon.setRollovericon(polygonRollover);
polygon.setToolTipText("Hide Polygon");
polygon.setMargin(margin);
toolbar.add(polygon);

points.seticon(pointsUnselected);
points.setRollovericon(pointsRollover) ;
points.setToolTipText("Hide Points");
points.setMargin(margin);
toolbar.add(points);

knots.seticon(knotsSelected);
knots.setRollovericon(knotsRollover);
knots.setToolTipText("Show Knots");
knots.setMargin(margin);
toolbar.add(knots);

grid.seticon(gridUnselected);
grid.setRollovericon(gridRollover);
grid.setToolTipText("Show Grid");
grid.setMargin(margin);
toolbar.add(grid);

coords.seticon(coordsUnselected);
coords.setRollovericon(coordsRollover) ;
coords.setToolTipText("Show Coordinates");
coords.setMargin(margin);
toolbar.add(coords);

clear.seticon(clearUnselected);

110

clear.setRollovericon(clearRollover);
clear.setToolTipText("Clear Screen") ;
clear.setMargin(margin);
toolbar.add(clear) ;

edit.addActionListener(new ActionListener ()
(public void actionPerformed(ActionEvent e)

(canvas.setOpState(CvBspline.EDIT) ;
}

}) ;

scribble.addActionListener(new ActionListener()
(public void actionPerformed(ActionEvent e)

{ canvas.setOpState(CvBspline.SKETCH);
}

}) ;

draw.addActionListener(new ActionListener ()
(public void actionPerformed(ActionEvent e)

{ canvas.setOpState{CvBspline.DRAW);
}

}) ;

zoom.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ llcanvas.setOpState(CvBspline.ZOOM) ;

}
}) ;

zoomPopup.show(zoom, zoom.getWidth () , 10);

zoomPlus.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ canvas.setOpState{CvBspline.ZOOM);

}
}) ;

II perform the zoom ...

II reset the system to edit mode
edit.setSelected(true);
llcanvas.setOpState(CvBspline.EDIT) ;
zoomPlus.setSelected(false);
repaint();

zoomMinus.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ canvas.setOpState(CvBspline.ZOOM);

}
}) ;

II perform the zoom ...

II reset the system to edit mode
edit.setSelected(true);
llcanvas.setOpState(CvBspline.EDIT);
zoomMinus.setSelected{false);
repaint();

zoomOne.addActionListener(new ActionListener()

111

public void actionPerformed(ActionEvent e)
{ canvas .setOpState(CvBspline.ZOOM);

)
)) ;

II perform the zoom ...

II reset the system to edit mode
edit.setSelec ted(true);
//canvas.setOpState(CvBspline.EDIT) ;
zoomOne.setSelected(false);
repaint();

clear.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ canvas.clear () ;

)
)) ;

edit.setSelected(true);
repaint();

knots.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ canvas.toggleKnots();

}
}) ;

swapKnotsLabel();

polygon.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ canvas.togglePolygon();
swapPolygonLabel();

)
}) ;

points.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ canvas .togglePoints();
swapPointsLabel();

}
)) ;

grid.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ canvas.toggleGrid();

}
}) ;

swapGridLabel();

coords.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ canvas.toggleCoords();
swapCoordsLabel();

}
)) ;

JMenuBar createMenuBar()

112

JMenuBar menubar =new JMenuBar();

II Create File menu
JMenu file = new JMenu (" File ");
file.setMnemonic('F');
JMenuitem mi;
mi = new JMenuitem ("New . . . ") ;
mi.setMnemonic('N') ;
mi.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ // show dialog box asking if we want to save
II the current drawing (set of curves) first
Vector currState = canvas .saveCurve();

if (currState.size() > 0)
{ //if answer from dialog box is yes

int result = JOptionPan~.showConfirmDialog (

CurvEditor.sharedinstance(),
"Do you wish to save the present drawing? "

) ;

if (result== JOptionPane.YES_OPTION)
saveFile();

if (result != JOptionPane.CANCEL_OPTION)
canvas.clear() ;

else
canvas.clear() ;

void saveFile ()
JFileChooser saveChooser = new JFileChooser () ;
ExampleFileFilter filter= new ExampleFileFilter (

new String [) { " crv") , "CurvEditor files"
) ;

ExampleFileView fileVi ew = new ExampleFileView () ;
fileView.puticon("cr v ", crvicon);
saveChooser.setFileView(fileView);
saveChooser.addChoosableFileFilter(filter) ;
saveChooser.setFileFilter(filter);
saveChooser.setCurrentDirectory(

new File("CurvEditor.class"));

int retval = saveChooser.showSaveDialog(
CurvEditor.sharedinstance ()) ;

if (retval == 0)
{ File theFile = saveChooser.getSelectedFile () ;

II Load selected curve into environment
if (theFile 1= null)
{ try

(ObjectOutputStream os = new ObjectOutputStream(
new FileOutputStream(theFile)

) ;

Vector newState = canvas.saveCurve() ;
os.writeObject(newState);
as.close();

catch(Exception ex) {
System.out.println(ex);

113

}

}) ;

file.add(mi);
mi = new JMenuitem ("Open ... ") ;
mi.setMnemonic('O');
mi.addActionListener(new ActionListener()
{ public void actionPerformed (ActionEvent e)

{ llJFileChooser chooser= new JFileChooser ();
JFileChooser openChooser =new JFileChooser();
ExampleFileFilter filter =new ExampleFileFilter (

new String [] { "crv" } , "CurvEdi tor files"

}

) ;
ExampleFileView fileView =new ExampleFileView();
fileView.puticon("crv", cr_vicon);
openChooser.setFileView(fileView);
openChooser.addChoosableFileFilter(filter);
openChooser.setFileFilter (filter);
openChooser.setCurrentDirectory(

new File("CurvEditor.class"));

int retval = openChooser.showOpenDialog(
CurvEditor.sharedinstance ()) ;

if (retval == 0)
{ File theFile = openChooser.getSelectedFile() ;

II Load selected curve into environment
if (theFile 1= null)
{ try

{ ObjectinputStream os = new ObjectinputStream (
new FileinputStream(theFile)

) ;
Vector newState = (Vector)os.readObject() ;
canvas.loadCurve (newState);
cs.close();

catch(Exception ex) {
System.out.println (ex); ·

}) ;

file.add(rni);
mi= new JMenuitem("Save");
rni.setMnemonic('S');
mi.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)

(
JFileChooser saveChooser =new JFileChooser();
ExampleFileFilter filter= new ExampleFileFilter(

new String [] ("crv" } , "CurvEdi tor files"
) ;

ExampleFileView fileView =new ExampleFileView ();
fileView.puticon("crv", crvicon);
saveChooser.setFileView(fileView);
saveChooser.addChoosableFileFilter(filter) ;

114

)
}) ;

saveChooser.setFileFilter(filter) ;
saveChooser.setCurrentDirectory (

new File("CurvEditor.class")) ;

int retval = saveChooser.showSaveDialog (
CurvEditor.sharedinstance());

if (retval == 0)
(File theFile = saveChooser.getSelectedFile();

I I Load selected curve into environment
if (theFile != null)
(try

{ ObjectOutputStream os = new ObjectOutputStream(
new FileOutputStream (theFile)

) ;
Vector newState = canvas.saveCurve();
os.writeObject(newState) ;
as.close();

catch(Exception ex) {
System.out.println(ex);

file. add (mi) ;

mi= new JMenuitem("Save As ... ");
mi. setMnemonic ('A') ;
mi.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{

JFileChooser saveChooser =new JFileChooser();
ExampleFileFilter filter= new ExampleFileFilter(

new String[) { "*") , "All files"
) ;

ExampleFileView fileView =new ExampleFileView();
fileView.puticon("crv", crvicon);
saveChooser.setFileView(fileView) ;
saveChooser.addChoosableFileFilter (filter);
saveChooser.setFileFilter(filter) ;
saveChooser.setCurrentDirectory(

new File("CurvEditor.class")) ;

int retval = saveChooser.showSaveDialog(
CurvEditor.sharedinstance());

if (retval == 0)
(File theFile = saveChooser.getSelectedFile();

II Load selected curve into environment
if (theFile 1 = null)
{ try

{ ObjectOutputStream os = new ObjectOutputStream(
new FileOutputStream(theFile)

) ;

Vector newState = canvas.saveCurve();
os.writeObject(newState) ;
as.close();

catch(Exception ex) {
System.out.println(ex);

115

--

}

}) ;

file. add (mi) ;
file.add(new JSeparator());
importTexture =new JMenu("Import Texture") ;
importTexture.setMnemonic('I'};
mi= new JMenultem(texturelconl);
mi.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ loadTexture(texturelconl);
}

}) ;
importTexture.add(mi);
mi = new JMenultem(texturelcon2);
mi.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ loadTex ture(texturelcon2);
}

}) ;

importTexture.add(mi);
mi= new JMenultem(texturelcon3);
mi.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ loadTexture(texturelcon3);
}

}) ;

importTexture.add(mi);
importTexture.add(new JSeparator());
mi= new JMenultem ("User-defined Tex ture .. . ") ;
mi.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ loadTexture(null);
}

}) ;

importTexture.add(mi);
file.add(importTexture);
mi = new JMenultem ("Save As Texture ... ") ;
mi.setMnemonic('T');
mi.addActionListener{new ActionListener {)
{ public void actionPerformed{ActionEvent e)

{

JFileChooser saveChooser =new JFileChooser{);
ExampleFileFilter filter= new ExampleFileFilter{

new String [] { "dif" } , "Curve Texture files"
) ;

ExampleFileView fileView =new ExampleFileView{);
fileView.puticon{"dif", dificon);
saveChooser.setFileView{fileView);
saveChooser.addChoosableFileFilter{filter);
saveChooser.setFileFilter{filter);
saveChooser.setCurrentDirectory{

new File{"CurvEditor.class"));

int retval = saveChooser.showSaveDialog (

116

CurvEditor.sharedin stanc e ()) ;
i f (retval == 0)
{ File theFil e = s aveChooser.getS e lectedFi le () ;

II Load sele c ted c urve into env ironment
if (theFile 1 = null)
{ try

{ Obje ctOutputStream os = new Obj ec t OutputStream (
new FileOutputStream(theFile)

) ;

Vecto r newTex ture = c anvas.saveTex t u r e () ;
os.writeObject(newTexture) ;
os.close () ;

catch (Exception e x) {
System.out.println(ex);

}

)) ;

file. add (mi) ;
file.add(new JSeparator ()) ;
exit= new JMenuitem ("Exit") ;
exit.setMnemonic (' x ') ;
e xit.addActionListener (new Ac tionListener ()
{ public void actionPerformed(ActionEvent e)

{ System.exit(O) ;
}

}) ;
file.add(exit);
menubar.add(file);

II Create Edit menu
JMenu mEdit =new JMenu ("Edit") ;
mEdit.setMnemonic('E') ;
undo = new JMenuI tern ("Undo ") ;
undo.setMnemonic ('U') ;
undo.setEnabled(false) ;
undo.addActionListener (new ActionListener ()

public void actionPerformed(ActionEvent e)
{ canvas.undoLastMove();

repaint();
}

}) ;

mEdit.add(undo);
redo = new JMenuI tern ("Redo") ;
redo.setMnemonic('R') ;
redo.setEnabled(false) ;
redo.addActionListener(new ActionListener ()
{ public void actionPerformed{ActionEvent e)

{ canvas.redoLastMove{);
repaint();

}

}) ;

mEdit.add{redo);
mEdit.add{new JSeparator{));
select= new JMenuitem("Select");
select.setMnemonic {'l') ;

117

select.addActionListener (new ActionListener ()
(public void actionPerforrned (Acti onEvent e)

{ canvas.setOpState (CvBspline.EDIT) ;
edit.setSelected (true) ;

}

}) ;

rnEdit.add(select);
sketch = new JMenuitern("Sketch") ;
sketch.setMnemonic('k');
sketch.addActionListener (new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ canvas.setOpState(CvBspline.SKETCH);
scribble.setSelected (t rue) ;

}

}) ;

mEdit.add(sketch);
build = new JMenuI tern ("Build") ;
build.setMnemonic('B');
build.addActionListener(new ActionListener()
{ public void actionPerforrned (ActionEvent e)

{ canvas.setOpState(CvBspline.DRAW);
draw.setSelected(true);

}

}) ;

mEdit.add(build);
mEdit.add(new JSeparator()) ;
zoomin =new JMenuitem("Zoom In");
zoomin.setMnemonic('Z') ;
mEdit.add(zoomin);
zoomOut =new JMenuitern("Zoorn Out");
zoomOut.setMnemonic('o');
mEdit.add(zoomOut);
clearScreen = new JMenuitern ("Clear Screen");
clearScreen.setMnemonic('C') ;
clearScreen.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)

}) ;

{ canvas .clear();

}

edit.setSelected (true) ;
repaint();

mEdit.add(clearScreen);
mEdit.addChangeListener(new ChangeListener()

public void stateChanged(ChangeEvent e)
{ if (canvas.undoStackEmpty())

undo.setEnabled(false);

}

else
undo.setEnabled(true);

if (canvas.redoStackEmpty())
redo.setEnabled(false);

else
redo.setEnabled(true);

}) ;

menubar.add(mEdit);

118

I I Create Options menu
JMenu options = new JMenu{"Options") ;
options .setMnemoni c('p') ;
shPol ygon = new JMenuitem {"Hide Po l ygon ") ;
shPol ygon.setMnemonic { ' y ') ;
shPol ygon.addActionListener (new ActionListener()
(public void actionPerformed {ActionEvent e)

{ canvas .togglePolygon();
swapPolygonLabel();

}

}) ;

options.add{shPolygon);
shPoints =new JMenuitem("Hide Points ") ;
shPoints.setMnemonic{'i');
shPoints.addActionListener{new ActionListener()
{ public void actionPerformed {ActionEvent e)

{ canvas.togglePoints{);
swapPointsLabel();

}

}) ;

options.add(shPoints);
shKnots = new JMenuitem ("Show Knots") ;
shKnots.setMnemonic ('K') ;
shKnots.addActionListener (new ActionListener()
(public void actionPerformed (Act ionEvent e)

{ c anvas.toggleKnots();
swapKnotsLabel();

}

}) ;

options.add(shKnots);
shGrid = new JMenuitem("Show Grid");
shGrid.setMnemonic{'G');
shGrid.addActionListener{new ActionListener()
{ public void actionPerformed (ActionEvent e)

{ canvas .toggleGrid{);
swapGridLabel();

}

}) ;

options.add(shGrid);
shCoords = new JMenuitem("Show Coords");
shCoords.setMnemonic('d');
shCoords.addActionListener(new ActionListener()
{ public void actionPerformed(ActionEvent e)

{ canvas.toggleCoords{);
swapCoordsLabel();

}

}) ;

options.add(shCoords);
options.add(new JSeparator());
gridSpacing =new JMenu("Grid Spacing");
JCheckBoxMenuitem temp;
ButtonGroup bg =new ButtonGroup();
temp = (JCheckBoxMenuitem) gridSpacing.add(

new JCheckBoxMenuitem("lO")) ;
temp.setSelected(true);
temp.addActionListener(new ActionListener()
{ public void actionPerformed (ActionEvent e)

119

{ canvas.setGridSpacing(lO.Of);
}

}) i
bg. add (temp) ;
temp = (JCheckBoxMenuitem) gridSpacing.add (

new JCheckBoxMenuI tern ("2 0")) ;
temp.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

(canvas.setGridSpacing(20.0f);
)

)) i

bg. add (temp) ;
temp = (JCheckBoxMenuitem) gridSpacing.add (

new JCheckBoxMenuitem("25"));
temp.addActionListener(new ActionListener ()
(public void actionPerformed(ActionEvent e)

(canvas.setGridSpacing(25.0f);
) -

)) i

bg. add (temp);
options.add(gridSpacing);
undoStack = new JMenu("Undo Stack Depth") ;
bg =new ButtonGroup();
temp = (JCheckBoxMenuitem) undoStack.add (

new JCheckBoxMenuitem("l"));
temp.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

(canvas.setUndoLimit(l);
)

)) i

bg.add(temp);
temp = (JCheckBoxMenuitem) undoStack.add (

new JCheckBoxMenuitem("S"));
temp.setSelected(true);
temp.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ canvas.setUndoLimit(S);
)

)) i

bg. add (temp) ;
temp = (JCheckBoxMenuitem) undoStack.add (

new JCheckBoxMenuitem("lO"));
temp.addActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ canvas.setUndoLimit(lO);
)

)) i

bg. add (temp) ;
temp = (JCheckBoxMenuitem) undoStack.add(

new JCheckBoxMenuitem("lS"));
temp.addActionListener(new ActionListener()
(public void actionPerformed(ActionEvent e)

(canvas.setUndoLimit(lS);
)

)) i

bg.add(temp);
options.add(undoStack);

120

menubar.add(options) ;

II Create Help menu
JMenu help =new JMenu("Help");
help.setMnemonic ('H');
about= new JMenuitem("About ... ") ;
about.setMnemonic ('t');
about.adc!ActionListener(new ActionListener()

public void actionPerformed(ActionEvent e)
if (aboutBox == null)

}

{ aboutBox =new JDialog(CurvEditor.sharedinstance(),
"About CurvEditor v l. l", false);

JPanel authorPanel =new JPanel (new BorderLayout());
Imageicon author =

new Imagelcon("imageslcopyright.gif") ;
aboutBox.getContentPane() .add (authorPanel,

_ BorderLayout.CENTER);
JLabel authorLabel =new JLabel(author) ;
authorPanel.add(authorLabel, BorderLayout.CENTER);
JPanel buttonPanel =new JPanel(true) ;
authorPanel.add(buttonPanel, BorderLayout . SOUTH) ;
JButton button= (JButton) buttonPanel.add (

new JButton("OK"));
button.adc!ActionListener(new ActionListener ()
{ public void actionPerformed(ActionEvent e)

{ aboutBox.setVisible(false);
)

}) i

aboutBox.pack();
aboutBox.show();

}) i

help.add(about);
menubar.add(help) ;

return menubar;

void loadTexture(Imageicon icon)
File theFile = null;

if(icon == textureiconl)
theFile =new File("texl.dif");

else if(icon == textureicon2)
theFile =new File("tex2.dif"};

else if(icon == textureicon3)
theFile =new File("tex3.dif");

else
JFileChooser chooser= new JFileChooser();
ExampleFileFilter filter =new ExampleFileFilter (

new String [] { "dif" } , "Curve Texture files "
) i
ExampleFileView fileView =new ExampleFileView () ;
fileView.puticon("dif", dificon);
chooser.setFileView(fileView);
chooser.addChoosableFileFilter(filter) ;

121

chooser.setFileFilter (filter);
chooser.setCurrentDirecto ry(new File ("CurvEditor.class")) ;

int retval =
chooser.showOpenDialog(CurvEditor.sharedinstance (} } ;

if (retval == 0)
theFile = chooser.getSelectedFile();

if(theFile !=null)
{ try

{ ObjectinputStream os = new ObjectinputStream (
new FileinputStream(theFile)

} ;

Vector newTexture = (Vector}os.readObject(};
canvas.importTexture (newT~xture};

os.close(};
catch(Exception ex) {
System.out.println (e x) ;

void swapKnotsLabel(}
if (knots.geticon() == knotsUnselected)
{ knots.seticon(knotsSelected};

knots.setToolTipText("Show Knots");
shKnots.setText("Show Knots"};

else
knots.seticon(knotsUnselected);
knots.setToolTipText("Hide Knots"};
shKnots.setText("Hide Knots");

void swapPolygonLabel(}
if (polygon.geticon() == polygonUnselected)
{ polygon.seticon(polygonSelected);

polygon.setToolTipText("Show Polygon"};
shPolygon.setText("Show Polygon"};

else
polygon.seticon(polygonUnselected);
polygon.setToolTipText("Hide Polygon"};
shPolygon.setText("Hide Polygon");

void swapPointsLabel(}
if (points.geticon() == pointsUnselected)
{ points.seticon(pointsSelected};

points.setToolTipText("Show Points"};
shPoints.setText("Show Points"};

else

122

points.seticon(pointsUnselec ted) ;
points.setToolTipText ("Hide Points") ;
shPoints.setText("Hide Points") ;

void swapGridLabel()
if (grid.geticon() == gridUnselected)
{ grid.seticon(gridSelected);

grid.setToolTipText("Hide Grid") ;
shGrid.setText("Hide Grid");

else
grid.seticon(gridUnselected) ;
grid.setToolTipText("Show Grid") ;
shGrid.setText("Show Grid") ;

void swapCoordsLabel()
if (coords.geticon() == coordsUnselected)
{ coords.seticon(coordsSelected);

coords.setToolTipText ("Hide Coordinates") ;
shCoords.setText("Hide Coordinates");

else
coords.seticon(coordsUnselected);
coords.setToolTipText("Show Coordinates");
shCoords.setText("Show Coordinates");

123

II File: CvBspline.java
II Author: Stephen Alberg
II Uses: Point2D, Multires, UndoStack, CurveState a nd Swing c lasses
II
II This file the class definition for an interactive multiresolution
II curve editor. The CvBspline class is a scrollable cl ient c anvas
II object. It inherits from the JViewport object which forms part of
II the JScrollPane in a CurvEditor object. This canvas-type object
II relates mouse inputs and selections from the CurvEditor interface to
II the member Multires object for processing shifts in curve
II resolution. Requires t hat a JSlider object is instantiated in the
II interface object prior to this object's instantiation.
II
II TO DO: scribble translation interface, zoom control, knot editing
II vs. control point editing (using Hermite lBspline c onversion) .
II
I I Original source for the curve ente~ing and drawing functionality :
II Leen Ammeraal , Computer Graphics for Java Prog rammers . Wiley, 1998.

import java.awt.*;
import java.awt.event.*;
import java.util.*;

import javax . swing.*;
import javax.swing . border.*;
import javax.swing . event.*;

public class CvBspline extends JLabel
II constants
static final Cursor EDIT CURSOR =

Cursor . getPredefinedCursor(Cursor . CROSSHAIR_CURSOR) ;
static final Cursor DRAW CURSOR =

Cursor.getPredefinedCursor(Cursor . CROSSHAIR_CURSOR);
static final Cursor WAIT CURSOR =

Cursor . getPredefinedCursor(Cursor.WAIT_CURSOR);

II system state IDs
static final int EDIT 1;
static final int SKETCH = 2;
static final int DRAW 3 ;
static final int ZOOM 4;

II C is the currently selected CurveState
CurveSta t e C;

II State contains all of the curves in the present environment.
Vector State = new Vector();

II Scribble contains a set of data points used for saving
II a sketched line in the editing system.
Vector Scribble= new Vector() ;

I I Two stacks, one for preserving the last undoLimit moves , the
II other for saving moves as undo operations are applied.
UndoStack undo new UndoStack();
UndoStack redo= new UndoStack();

124

II c oordinates of screen center
II Instance variables
int centerX, centerY,

index = -1,
stateindex = -1;

II index of selected control point
II index of current cu r ve in State vector

float rWidth = 1000.0F, rHeight = 750.0F,
eps = rWidthllOOF, pixelSize;

float zoomX O. Of , zoomY = O. Of , zoomXt = O. Of , zoomYt

int opState EDIT;
int undoLimit = 5;
float gridSpacing = 10.0f;

O. Of ;

float mouseX = rWidth , mouseY = rWidth;
float lastX = O. Of, lastY = O.Of;

II used in EDIT operations
. 11 used by Scribble vector

boolean showCoords = false,
showGrid = false,
showKnots = false,
showRect = true,
showPolygon = true,
showPoints = true,
editCurve = false,
mouseDown = false ,
shiftAllowed = true,
paintFirstTime = true;

Multires multires =new Multires();
JSlider slider;
JLabel c oordsLabel;

II Constructor
CvBspline(JSlider s)
{ super();

this .slider= s;
this.slider.setValue(O);
this.slider.setEnabled(false) ;
TitledBorder tb = (TitledBorder)this.slider . getBorder();

setCursor(EDIT_CURSOR);

addMouseListener(new MouseAdapter()
{ public void mousePressed(MouseEvent evt)

{ float x = fx(evt.getX()), y = fy(evt.get Y()) ;
mouseX = x; mouseY = y;

switch(opState)
{
case DRAW:

II If there is no current curve, start a new one
if (C == null)
{ C =new CurveState(State.size());

State.addElement(C);

else II otherwise, save the curve to the undo stack
undo.push(C.clone());

125

II empty the redo stack
redo.removeAllElements();

C.V.addElement(new Point2D(x, y));
C.np++;
if (C.np == C.nextNPsize)
(C.jCurr++;

C.nextNPsize = multires.numPoints(C.jCurr + 1);

II Add coarser curve rep to CurveState
if (C.jCurr > 0)

{ Point2D[] P =new Point2D[C.V.size ()];
copyFrom(C.V, P);
P = multires.coarsen(P, C . jCurr);
copyBack(C.Vl, P);

llslider.setValue(C.jCurr*lO);
resetSliderValue();

break;
case SKETCH:

II Reset the Scribble vector
Scribble =new Vector();
Scribble.addElement(new Point2D(x, y));
break;

case EDIT:
II If no curve or control point was clicked on,
II set current curve to null
stateindex = -1;
for (int j = 0; j < State.size(); ++j)
{ CurveState cTemp (CurveState) (State.elementAt(j));

if (index < 0)
(for (inti= O; i < cTemp.V.size(); ++i)

if (onPoint((Point2D) (cTemp.V.elementAt(i)),
x, y))

index = i; i = cTemp.V.size();
C = cTemp;
stateindex j; j = State.size();

II If we deselected a curve, save the last
II version of it to the undo . stack.
if (C != null)
(undo.push{C.clone());

redo.removeAllElements();

if (stateindex < 0)
(C = null;

slider.setValue(O);

break;

126

case ZOOM:

) ;

zoomX = zoomXt
break;

x; zoomY zoomYt y;

repaint();

public void mouseReleased (MouseEvent evt)
(switch(opState)

(

case DRAW:
II If number of segments in curve is not a power o f 2 ,
II insert knots into curve until next power of 2 is
II reached.
// DON'T CHECK THIS HERE! Wait until the opState is
II changed and update it then.
break;

case SKETCH:
float sx = fx(evt.getX ()) , sy = fy(evt.getY ()) ;
Scribble.addElement (new Point2D(sx, sy));

II Convert scribble to CurveState and add to State
/IC= ScribbleToCurve(Scribble, State.size());
//State.addElement (C) ;
//Scribble= new Vector();
repaint();
break;

case EDIT:
if (stateindex < 0)

C null;
else

C (CurveState) (State.elementAt(stateindex));
//slider.setValue (C.jCurr*lO);
resetSliderValue () ;
if (index >= 0)

(float x = fx (evt.getX()) , y = fy(evt.getY ()) ;

II Need to modify this for fractional editing
Point2D p = (Point2D) (C.V.elementAt(index)) ;
Point2D[] P;

if (C.mu
(p.x =

0) //C. jCurr
x; P·Y = y;

0)

II Coarsen the low-res vector
if (C.jCurr > 0)
(P =new Point2D[C.V.size()];

copyFrom(C.V, P);

else

P = multires.coarsen (P, C.jCurr);
copyBack(C.Vl, P);

II Determine influence on control points
float deltaX = x - p.x, deltaY = y - p.y;

127

}

} } ;

P =new Point2D[C.V.size(});
copyFrom(C.Vl, P) ;
P = multires.editCurve(P , C.jCurr, C.mu,

deltaX, deltaY, index } ;
copyBack(C.Vl, P) ;

II now, re-refine the control points
P =new Point2D[C. V.size(});
copyFrom(C.Vl, P} ;
P = multires.refine(P, C.jCurr);
copyBack(C.V, P};

II reset global value index
index = -1;

editCurve
repaint(};
break;

false;

case ZOOM:

} ;

II map zoom rectangle to overall screen ...
repaint(};

II now, reset zoom rectangle
zoomX = zoomY = zoomXt = zoomYt
setOpState(EDIT};
break;

O.Of;

mouseX mouseY rWidth;

addMouseMotionListener(new MouseMotionAdapter(}
public void mouseDragged(MouseEvent evt)
(float x = fx(evt.getX()), y = fy(evt.getY());

mouseX = evt.getX(); mouseY = evt.getY();

if (showCoords}
coordsLabel. setText ("Position .: " + round (x} +

" + round(y});

switch(opState}
{

case DRAW:
break;

case SKETCH:
Scribble.addElement(new Point2D(x, y));
repaint();
break;

case EDIT:
//if (stateindex >= 0)
/I C = (CurveState) (State. elementAt (stateindex}) ;
if (C != null && index >= 0)
{ // Need to modify this for fractional editing

Point2D p = (Point2D) (C.V.elementAt(index));

128

Point2 D[] P;

if (C.mu == 0) l l j Cu r r 0)
{ p. x = x ; p. y = y ;

I I Coarsen the low-res v e ctor
if (c. j Curr > 0)
{ P =new Point2D[C. V. s ize (}] ;

copyFrom{C.V, P);
P = multires.coarsen (P, C. jCurr) ;
copyBack(C.Vl, P);

else
II Determine influenc e on contro l poin ts
float deltaX = x - p . x, deltaY = y - p. y ;
P = new Point2 D[~.V.si ze ()) ;

copyFrom(C.Vl, P);
P = multires.editCurv e (P, C. jCurr, C .mu,

deltaX, deltaY, index) ;
copyBack(C.Vl, P);

II now, re-refine the contro l po ints
P =new Point2D[C.V.si z e ()];
copyFrom(C . Vl, P);
P = multires.refine(P, C.jCurr) ;
c opyBack(C. V, P);

repaint();

break;
case ZOOM :

} ;

zoomXt = x ; zoomYt y;
repaint();
break;

public void mouseMoved(MouseEvent evt)
float x = f x (evt.getX ()), y = f y(e vt. getY()) ;

i f (showCoords)
coordsLabel.setTex t("Position: " + round(x) +

" + round(y)) ;
}

)) ;

setOpaque(true);
super.setOpaque(true);
setDoubleBuffered(true);
setBackground(Color.white);

II Interface relay functions
public void clear (}
{ Graphics g = getGraphics() ;

129

II clear all curves from system
State.removeAllElements();
Scribble.removeAllElements () ;
undo.removeAllElements () ;
redo.removeAllElements() ;
C = null;

II reset interface
slider.setValue(O);
setCursor(DRAW_CURSOR);
opState = EDIT;
index = stateindex = -1;

II clear the screen
JViewport jvp = (JViewport)getParent();
if (jvp != null)
{ g.setColor(getBackground());

g.fillRect(jvp.getViewPosition() .x, jvp.getViewPosition() .y,
jvp.getExtentSize() .width,
jvp . getExtentSize() .height);

jvp . setViewPosition(new Point(plotX(jvp), plotY (jvp)));

repaint();

public void loadCurve (Vector newState)
{ clear();

State = newState;
repaint();

public Vector saveCurve ()
{ return State;
)

public void importTexture(Vector texture)
{ II texture format: first 4 entries are control points,

II the remaining are difference (wavelet) coefficients
int nd = texture.size() - 4 ;

if(nd < 0) return;

II MODIFIED 4129199: take current resolution of cu r ve and
II apply texture from the next finer level on up to this
II curve, expanding its length if necessary.

II reduce the resolution of the current curve
11Point2D[] P new Point2D[C.V.size()];
II
llwhile(C . jCurr > 0)
II{ copyFrom(C.V, P);
II P = multires.coarsen(P, C.jCurr);
II copyBack(C . V, P);
II c.jCurr--;
Ill

130

II test if the texture can e ven make a dent in the curren t c urve:
if(texture.size() > multires.numPoints (C.jCurr))
{

II copy the texture into the current curve
llfor(int i = 0; i < 4; ++i)
for(int i = 0; i < multires.numPoints(C.jCurr}; ++i }
{ texture.removeElementAt (i);

texture.insertElementAt(((Point2 D)
(C.V.elementAt(i})) .clone () ,i) ;

C.V = texture;

II bring curve back to previous resolution, or to resolution
II of texture, whichever is greater.
int np = 4;
int limit (C.np >texture.size()} ? C.np texture.size ();
Point2D[] P = new Point2D[limit];

while(np < limit}
{ np = multires.numPoints (++C.jCurr);

copyFrom(C.V, P);
P = multires.refine(P, C.jCurr);
copyBack{C.V, P};

II lastly, create the low-res curve in the current curv e
C.np = limit;
copyFrom(C.V, P);
P = multires.coarsen(P, C.jCurr);
copyBack(C.Vl, P};

resetSliderValue();
repaint(};

public Vector saveTexture()
{ II saving the selected texture means

II saving the set of control points of the
II current CurveState

CurveState temp= (CurveState) (C.clone(}};
Point2D[] P =new Point2D[temp.V.size(}];

II reduce resolution of texture to level 0
while{temp.jCurr > 0)
{ copyFrom(temp.V, P};

P = multires.coarsen(P, temp.jCurr};
copyBack{temp.V, P);
temp.jCurr--;

return temp.V;

131

public void setCoordsLabel(JLabel coordsLabel)
{ this.coordsLabel = coordsLabel;
}

public void setOpState(int opid)
{ opState = opid;

if (opState == EDIT)
{ setCursor(EDIT CURSOR);

slider.setEnabled(true);

II Check current curve C to see if the
II number of segments is a power of 2 and,
II if not, insert knots until it is.

II MODIFIED 4/29/99: added this capability
if(C !=null && C.np > 4 && .

C.np > multires.numPoints(C. jCurr))
C nextLevelCurve(C);

//else
//{
//}

//if(opState == SKETCH)

else if(opState == DRAW)
setCursor(DRAW CURSOR);
slider.setEnabled(false);

II promote fractional value to next higher
II integral level if we're adding to the c urve
if(C !=null)
{ C.mu = O;

resetSliderValue();

}
//else if(opState
//{
//}
else

ZOOM)

setCursor(DRAW_CURSOR);
slider.setEnabled(false);

repaint();

public void undoLastMove()
{ if (!undoStackEmpty())

(// First, save current move to redo stack
redo.push(C.clone());

II Next, pop the undo stack and make this the current curve
C = (CurveState) (undo.pop());
State.setElementAt(C, C.stateindex);
resetSliderValue();

II ... and repaint
repaint();

132

public void redoLastMove()
{ if ('redo.empty())

{ II Save current state back to undo stack
undo.push(C.clone());

II Next , pop the redo stack and make this the current curve
C = (CurveState) (redo .pop());
State.setElementAt(C, C.stateindex) ;
resetSliderValue();

II ... and repaint
repaint();

public boolean undoStackErnpty()
{ return undo.empty();
}

public boolean redoStackErnpty()
return redo.empty();

public void setUndoLirnit(int Limit)
{ undo.setStackLimit(Limit);

redo.setStackLirnit(Lirnit);

public void setGridSpacing(float gridSpacing)
this.gridSpacing = gridSpacing;
repaint();

public void toggleKnots()
showKnots = !showKnots;
repaint();

public void togglePolygon()
showPolygon = !showPolygon;
repaint();

public void togglePoints()
showPoints = !showPoints;
repaint();

public void toggleRect()
{ showRect = !showRect;

repaint();

public void toggleGrid()
showGrid = !showGrid;

133

repaint() ;

public void toggleCoo rds ()
showCoords = !showCoords;
if (! showCoords)

coordsLabel.setText("Position: ");
repaint() ;

II Integer level resolution shifting
public void shiftResolution(int jNew)
{ int n = multires . numPoints(jNew);

II guard against overlapping concurrent calls
II from event handler
if {shiftAllowed && C != null)
{ shiftAllowed = false;

II no interpolation for now
if (multires.numPoints(C.jCurr)
if (jNew > C.jCurr)
{ Point2D[) P;

if (n <= C.V.size())
P new Point2D[C . V.size());

else
p new Point2D[n);

copyFrom(C.V, P);
P = multires.refine(P, jNew};
copyBack (C .V, P);
C.np = n; C.jCurr = jNew;

else if{jNew < C. jCurr }

C.np)

{ Point2D[) P =new Point2D[C.V.size {}) ;
copyFrom(C.V, P} ;
P = multires.coarsen(P, C.jCurr } ;
copyBack (C.V, P);
C.np = n; C.jCurr = jNew;

repaint(};
}

llshiftAllowed true;

II Fractional level resolution shifting
public void shiftResolution(float jNew}
{ int jLow = {int}jNew, jHigh = jLow + l;

int nLow = multires.numPoints(jLow},
nHigh = multires . nurnPoints{jHigh};

float mu = (float) { ((int} {jNew*lO}) % 10) 110;
Point2D[) P;

II All fractional-level shifting occurs when the level of

134

II resolution either go es from j.O to j.l or down from j . l to
II j. O. We test for these two c ases below.
if (C != null)
{ if (jNew - (C . jCurr + C.mu) > 0 && C. mu O. Of &&

jLow == C. jCurr && mu >= O.lf)
II save the current low-res c urve to Vl
P =new Point2D[C . V.size ()) ;
copyFrom(C. V, P);
copyBack(C. Vl, P) ;

II refine the current c urve
shiftResolution (jHigh) ;

else if(jNew - (C.jCurr + C.mu) < 0 && C .mu >= O.l f &&
jLow < C.jCurr && mu== O.Of)

II reset current curve to low-res curve
P =new Point2D[C.Vl.size());
copyFrom(C.Vl, Pl ;
copyBack(C.V, P);
C.jCurr--;
C.np = multires.numPoints(C.jCurr);

II if jCurr > 0 , coarsen current curve and save to Vl
if(C.jCurr > 0)
{ P =new Point2 D[C. V.size());

copyFrom(C.V, P) ;
P = multires.coarsen(P, C.jCurr) ;
copyBack(C.Vl , P);

else
C.Vl new Vector();

II Reset C 's mu value
if (C != null)

C.mu = mu;

repaint();

II internal utility functions
void initgr()
{ Dimension d = getSize();

int maxX = d.width - 1, maxY = d.height - l;
pixelSize = Math.max(rWidthlmaxX, rHeightlmaxY) ;
centerX = maxXl2; centerY = maxYl2;

int iX(float x) {return Math.round(centerX + x lpixelS ize) ;}
int iY(float y) {return Math.round(centerY - ylpixelSize) ;}
float fx(int X) {return (X - centerX) * pixelSize;}
float fy(int Y) {return (centerY - Y) * pixelSize;}

int plotX{JViewport jvp)
{ return getSize() .width/2 - jvp.getExtentSi z e () . width/2;
}

135

int plotY(JViewport jvpl
{ return getSize() .heightl2 - jvp.getExte ntSize () .heightl2;
)

float round(float fl
{ return (float) (Math.round (f * 100 0 . 0 f)) I 1000. 0f;
)

void copyFrom(Vector v , Point2D [] P)
int i = 0;
for (; i < v .size(); ++i)

P[i] = (Point2D) (v.elementAt (i)) ;
for (; i < P.length; ++i)

P[i] = new Point2D(O.Of, O. Of) ;

void copyBack(Vector v , Point2D [] P)
v.removeAllElements();
for (int i = O; i < P.length; ++i)

v.insertElementAt(P[i], i) ;

CurveState ScribbleToCurveState(Vector scribble , int index)
II Converts an input series of Point2D objects into
II a more compact curve representation using a derivative
II of the least-squares matching method. NOT IMPLEMENTED YET .
return null;

I I Adds control points to a CurveState until the number of
II segments is the next power of 2.
CurveState nextLevelCurve(CurveState Cl
(II Keep inserting knots until we get the

II right number of segments.
Point2D[] Q =new Point2D[C. V.size ()];
copyFrom(C.V, Q);

while(C.np < multires.numPoints (C .jCurr+l))
{ II Build current knot sequence

float[] knots = knotSequence (C .np - 3);

II Build old abscissa values
float[] oldAbscissa = computeAbscissae(knots);

II Find next knot insertion point
int point!ndex = findMaxinterval(C.V);
int knot!ndex point!ndex + l;

float newKnot (knots[knot!ndex] + knots[knotindex-1]) I 2 ;

II Recalculate the new Greville abscissa values for
II points at point!ndex and point!ndex - 1 and newPoint
float[] abscissa= new float[3];

abscissa[O] = (knots[knot!ndex - 2] +
knots[knot!ndex - l] +

136

abscissa[!]

abscissa[2]

newKnot) I 3;
(knots[knot!ndex 1) +
newKnot +
knots[knot!ndex)) I 3 ;

(newKnot +
knots[knot!ndex) +
knots[knot!ndex + 1)) I 3 ;

II Now, recalculate the ordinate values for the x and y co-
ll ordinates of the affected control points and the new point.
Point2 D[] oldPoints =new Point 2D[4) ;
for (int i = pointindex - 2, j=O; j < 4; ++i , j++)
{ if (i < 0)

oldPoints(j] = (Point2D) (C.V.elementAt(i+l));
else if(i >= C. V.size())

oldPoints[j) (Point2D) (C.V.elementAt(i-1));
else

oldPoints[j] (Point2D) (C . V.elementAt (i)) ;

Point2D[) newPoints = new Point2D[3] ;
for(int i = 0 ; i < 3; ++i)
{ float interval;

if(pointindex == 1 && i == 0)
interval = 0;

else if(point!ndex C.V.size () - 1 && i
interval 0;

else
interval oldAbscissa[pointindex + i

oldAbscissa[pointindex + i -
float xSlope = (interval == 0) ? 0 :

(oldPoints[i+l) . x -
oldPoints[i) .x)linterval;

float ySlope (interval == 0) ? 0 :
(oldPoints[i+l] . y -
oldPoints[i] . y) I interval;

2)

l] -
2] ;

int oldAbsindex (point!ndex == C.V.size()-1 && i
point!ndex : point!ndex + i - 1 ;

float newX

float newY

xSlope * abscissa[i] +
oldPoints[i+l] . x -
xSlope * oldAbscissa [oldAbsindex];
ySlope * abscissa[i] +
oldPoints[i+l] .y -
ySlope * oldAbscissa[oldAbsindex];

newPoints[i] =new Point2D(newX, newY);

II Reset the two old points in the control set and add
II the new control point .
C.V.setElementAt(newPoints[O], point!ndex - 1);
C.V.setElementAt(newPoints[2] , point!ndex);

C.V.insertElementAt(newPoints(l], point!ndex);

137

2) ?

II Increment point counter
C.np++;

Q =new Point2D[C.V.size()];
copyFrom (C.V, Q) ;

II Prepare remaining components of CurveState
C.jCurr++;
C.nextNPsize = multires.numPoints (C.jCurr + 1) ;

Point2D[] P =new Point2D[C.V.size()];
copyFrom (C.V, P) ;
P = multires.coarsen(P, C.jCurr);
copyBack(C.Vl, P);

resetSliderValue();

return C;

II Returns a uniform knot sequence of size numSegments.
float[] knotSequence(int numSegments)
{ int n = numSegments + 5;

float[] knots = new float[n];

for(int i = 0; i < n; ++i)
knots[i] (float) ((float) (i)ln); llnumSegments);

return knots;

II Returns the sequence of Greville abscissae related to the
II input knot sequence for an endpoint-interpolating B-spline.
float[] computeAbscissae(float[] knots)
{ float[] abscissae = new float[knots.length - 2] ;

for(int i = O; i < knots.length - 2; ++i)
abscissae[i] = (knots[i] + knots[i+l] + kno ts[i+2]) I 3 ;

return abscissae;

II Finds the largest distance between adjacent pairs
II of x,y points in P and returns the upper index.
int findMaxinterval(Vector V)
{ Point2D[] P =new Point2D[V . size()];

copyFrom(V, P);

float max= distance(P[O], P[l]) ;
int maxindex = l;

for(int i = 2; i < V.size(); ++i)
{ float newMax = distance(P[i-1] , P[i]) ;

if(max < newMax)
{ max newMax;

138

maxindex i;

return maxindex ;

float distance(Point2D p, Point2D q)
(return (float)Math.sqrt ((q .x - p.x)* (q.x - p.x) +

(q.y - p.y)*(q.y - p.y)) ;

boolean onPoint(Point2D p, float x, float y)
return Math.abs(iX (p.x) - iX(x)) < 2 &&

Math.abs(iY (p.y) - iY(y)) < 2;

void resetSliderValue ()
if (C != null)
{ i f (C . mu == 0)

slider.setValue(C.jCurr * 10);
else

slider.setValue ((int) ((C.jCurr-1 + C .mu) * 10)) ;

if (opState 1 = EDIT)
slider.setEnabled (false) ;

void drawGrid(Graphics g)
JViewport jvp = (JViewport)getParent();
if (jvp != null)
{ Point p = jvp . getViewPosition();

Dimension d = jvp.getExtentSize();

float gx

gy

(float)Math.ceil(fx(p.x)/gridSpacing) *
gridSpacing,

(float)Math.ceil(fy(p.y)/gridSpacing) *
gridSpacing;

float gxMax
gyMin

fx(p.x + d.width),
f y(p.y + d.height);

g.setColor(Color.lightGray);
for (float f = gx; f < gxMax; f += gridSpacing)

for (float h = gy; h > gyMin; h gridSpacing)
{ g.fillOval (iX(f), iY(h), 2, 2);
)

g.setColor(Color.black);

II Integral-level resolution version
void bspline(Graphics g, Point2D[) P, int n, int thisindex)
(int m = 50; //, n = np; /IP.length;

float x.A, yA, xB, yB, xC, ye , xD , yD,
aO, al, a2, a3, bO, bl, b2, b3, x = 0 , y

boolean first = true;

139

0 , xO, yO ;

for (int i = l; i < n-2; ++i)
{ xA P[i-1) . x ; x B = P[i) .x ; xc

yA P[i-1) . y ; yB = P[i) .y ; ye
a3 (-xA+3* (xB- xe}+xD) l6 ; b3
a2 (xA-2*xB+xe) 12 ; b2
al (xe-xA} 12; bl
aO (xA+4*xB+xC) 16 ; bO
for (int j = 0; j <= m; ++j)
{ xO = x;

yO = y;
float t = (float)jl (float) m;
x = ((a3*t+a2)*t+al}*t+a0;
y = ((b3*t+b2)* t+bl)*t+b0;

if (opState == EDIT &&

P [i+ l) . x ; x D = P[i+2) .x ;
P[i+l) .y; y D = P[i+2] .y ;
(-yA+ 3*(yB-yC)+yD)l6 ;
(yA- 2*yB+yC)l2;
(yC-yA)l2 ;
(yA+4*yB+yC)l6 ;

onPoint(new Point2D(x, y} , mouseX, mouseY))
stateindex = thisindex;

if (showKnots)
! if (j == o I I j == m)

g.fillOval(iX(x)-2 , iY(y) - 2 , 4 , 4) ;

if (first} first = false;
else

g.drawLine(iX(xO} , iY(yO), iX~x) , iY(y)) ;

II Fractional-level resolution ve rsion
void bspline(Graphics g, Point2D [) P, int n, Point2D[) PL, f l oat mu,

int thisindex)
II If the curve is of integral resolution,
II call the other B-spline plot .
if (mu == 0 . 0 f)

bspline(g, P, n, thisindex) ;

II Otherwise, plot the cu r ve that exists at some fractional
II level mu between the higher resolution c urve P and the
II lower resolution curve PL.
else

int m = 25 ; 1150;
float xA, yA, x B, yB, xc, ye, xD, yD, x E, yE,

aO, al, a2, a3, bO, bl, b2, b3,
cO, cl, c2 , c3, dO, dl, d2, d3, x = 0 , y = 0 , xO , yO ;

float xAL, yAL, xBL , yBL, xCL, yeL, x DL, yDL ,
aOL, alL, a2L, a3L, bOL, blL, b2L, b3L;

boolean first = true;

for (int i = 1, iL = l; i < n-3; iL++, i+=2)
{ II Save first 5 control points of high-res curve

xA P[i-1). x ; x B P[i]. x ; xe P[i+l].x; xD P[i+2].x;
yA P[i-1) .y; yB P[i) .y; ye= P[i+l] . y ; yo= P[i+2) . y ;
xE P[i+3) .x ; yE P[i+3) .y;

II Save first 4 control points of low-res c urve

140

xAL=PL[iL-1] .x ; xBL=PL[iL] .x;
xCL=PL[iL+l] .x; xDL=PL[iL+2] . x;
yAL=PL[iL-1) .y; yBL=PL[iL) .y ;
yCL=PL[iL+l) .y; yDL=PL[iL+2) . y ;

II Save coefficients of first part of high-res curve ...
a3 (-xA+3*(xB-xC)+xD)l6 ; b3 (-yA+3*(yB-yC)+yD)l6;
a2 (xA-2*xB+xCll2; b2 (yA-2*yB+yC)l2;
al (xC-xA) 12;. bl (yC-yA)l2;
aO (xA+4*xB+xC)l6; bO (yA+4*yB+yC)l6;

II . . . a s wel l a s the second part · of the high- res curve ...
c3 (-xB+3*(xC- xD)+xE)l6; d3 (-yB+3*(yC-yD)+yE)l6;
c2 (xB-2*xC+xD)l2 ; d2 (yB- 2*yC+yD)l2 ;
cl (xD-xB)l2; dl (yD-yB)l2;
cO (xB+4*xC+xD)l6 ; dO (yB+4*yC+yD)l6 ;

of the low-res curve. II . . . and las tly the coefficients
a3L (-xAL+3*(xBL-xCL)+xDL)l6;
b3L (-yAL+3*(yBL-yCL)+yDL)l6;
a2L (xAL-2*xBL+xCL)l2; b2L
alL (xCL-xAL)l2;
aOL (xAL+4*xBL+xCL)l6 ;

blL
bOL

(yAL-2*yBL+yCL)l2;
(yCL-yAL)l2 ;
(yAL+4*yBL+yCL)l6;

I I Interpolate first half of curve ...
for (int j = 0 ; j <= m; ++j)
{ xO = x;

yO = y;
floa t t = (float)jl(float)m;
float tL = (float)jl(float)m*O.Sf;
x =mu* (((a3*t+a2)*t+al)*t+a0) +

(l.Of - mu)*(((a3L*tL+a2L)*tL+alL)*tL+a0L);
y mu* (((b3*t+b2)*t+bl)*t+b0) +

(l.Of - mu)*(((b3L*tL+b2L)*tL+blL)*tL+b0L);

if (opState == EDIT &&
onPoint(new Point2D(x, y), mouseX, mouseY))

stateindex = thisindex;

if (showKnots)
{ if (j == o I I j == ml

g.fillOval(iX(x)-2 , iY(y)-2 , 4 , 4);

if (first) first = false;
else

g . drawLi n e(iX(xO) , iY(yO), iX(x) , iY(y)) ;

II ... and then the second half of the curve
for (int j = O; j <= m; ++j)
{ xO = x;

yO = y;
floa t t = (float)jl(float)m;
floa t tL = (float)jl(float)m*O . Sf + O. Sf ;
x =mu* (((c3*t+c2)*t+cl)*t+c0) +

(l.Of - mu)*({(a3L*tL+a2L)*tL+alL)*tL+aOL);

141

y mu * (((d3 *t+d2)* t+dl)*t+d 0) +
(l.Of - mu)*(((b3L*tL+b 2L) *tL+b lL) *tL+bOL);

if (opState == EDIT &&
onPoint(new Point2 D(x , y) , mouseX, mouse Y))

stateindex = thisindex ;

if (showKnots)
{ if (j == o I I j == ml

g.fillOval(iX(x) - 2 , i Y(y) - 2 , 4 , 4) ;

// if (first) first = false;
//else

g.drawLine(iX(xO), i Y(yO) , iX (x) , i Y(y)) ;

publi c void paintComponent(Graphics g)
super.paintComponent (g) ;

if (paintFir s tTime)
{ paintFirstTime = false;

JViewport j vp = (JViewport) getPare n t () ;
if (jvp != null)

jvp.setViewPosition (new Point (pl o t X (jvp) , plotY(jvp))) ;

initgr () ;
int left= i X(-rWidth/2), right= i X(rWidth /2) ,

bottom i Y(-rHeight/ 2) , top = i Y(rHeight/2) ;

II Draw g rid a nd zoom re c tangl e
if (showGrid)

drawGrid (g) ;
if (opS ta te == ZOOM && z oomX != z oomXt && zoomY != zoomYt)
{ int zLeft = i X (zoomX), zRight = i X(zoomXt) ,

zBottom = i Y (zoomYt), zTop = i Y(z oomY) ;
if (zRight >= zLeft)
{ if (zBottom >= zTop)

g . drawRect(zLeft, zTop, zRight - zLeft, zBottom - zTop);
else

g.drawRect(zLeft, zBottom, zRight- zLe ft, zTop-zBottom);

else
if (zBottom >= zTop)

g.drawRect(zRight, zTop, zLeft- z Ri ght, zBottom - zTop);
else

g.drawRect(zRight, zBottom, z Le ft- zRight, zTop-zBottorn);

Point2D[) P;
Point2D[) PL;

142

II Draw the s c ribb le
if (S cribble 1 = null)
{ P =new Point2D [Sc ribble.size ()) ;

Scribble . copyinto(P) ;
for (int k = O; k < Scribble.size(); ++k)
{ if (k > 0)

g.drawLine (iX(P[k-1) . x) , iY(P[k-1) . y) ,
iX(P[k) . x) , iY(P(k] . y)) ;

II Repeat for each curve in State:
for (int k = 0; k < State.size(); ++k)
{ CurveState cTemp = (CurveState) (State.elementAt (k)) ;

P =new Point2D[cTemp.V.size());
PL= new Point2D[cTemp.Vl.size());
cTemp.V.copyinto (P);
cTemp.Vl.copyinto(PL);
g.setColor(Color.gray);
for (int i = 0 ; i < cTemp.np; i++)
{ II if we're moving a control point, find

II which curve it belongs to
if (opState == EDIT &&

onPoint (P [i), mouseX, mouseY))
stateindex = k;

II Show tiny rectangle around point:
if (showPoints)
{ if(k == stateindex)

g.fillRect(iX(P[i) . x)-2 , iY(P[i) . y) -2, 4 , 4) ;
else

g.drawRect(iX(P[i) . x)-2 , iY(P[i) .y) -2, 4 , 4);

if (i > 0 && showPolygon)
II Draw line P[i-l)P[i):
g.drawLine(iX(P[i-1) . x), iY(P[i-1) . y) ,

iX (P [i) . x) , i Y (P [i) . y)) ;

g.setColor(Color.black);
if (cTemp.np >= 4) bspline(g, P, cTemp.np, PL, c Temp.mu, k);

shiftAllowed true;

143

II File: CurveState .j ava
I I Author : Stephen Alberg
I I Uses: Point2D class
I I
I I This file contains the class definition for a CurveState object.
I I The CurveState class performs the duty of registering the data
I I constituting each curve presently drawn in a multiresolution curve
I I editing system. It may also be used to save the last edit
I I information onto an undo stack.

import java.io.*;
import java.util.*;

public class CurveState implements Cloneable, Serializable
{ public Vector V; II Records the set of control points

II and any difference coefficients
public Vector Vl; II The set ~f control points at resolution

public
public
public
public
public

II jCurr. Used for fractional curve editing
int np; II The number of control points
int stateindex; II The "id" of the curve in the environment
int jCurr;
int nextNPsize;
float mu;

II Current level of resolution
II Number of control points in next res.
II Fractional offset from jCurr, if any

CurveState(Vector V, Vector Vl , int np, int stateindex, int jCurr ,
int nextNPsize, float mu)

this.V = V; this.Vl = Vl; this.np = np;
this.stateindex = stateindex;
this.jCurr = jCurr; this.nextNPsize = nextNPsize ;
this.mu= mu;

CurveState(int stateindex)
{ V = new Vector(); Vl =new Vector(); np O;

this.stateindex = stateindex;
jCurr = -1; nextNPsize = 4; mu 0 . 0f;

public synchronized Object clone() II overrides Object
{ return new CurveState ((Vector) (V. clone ()), (Vector) (Vl. clone ()),

np, stateindex, jCurr,
nextNPsize, mu);

144

II Point2D . java : Class for points in logical coordinates.

import java.io.*;

public class Point2D implements Cloneable , Serializable
{ float x , y ;

Point2D(float x , floaty) {this. x = x; this.y = y ;}

public synchronized Object clone() / / overrides Object
{ return new Point2D(x, y) ;
}

145

II File: UndoStack.java
II Author: Stephen Alberg
II
II This file contains the class definition of an UndoStack object. An
II UndoStack ex tends the basic properties of the Java Stack object by
II by providing more direct manipulation and limit checking of the
II stack size.

import java.u~il.Stack;

public class UndoStack extends Stack
{

int stackLimit;

UndoStack ()
{ super() ;

stackLimit 5;
II instantiate the parent object
II default stack size

UndoStack (in t stackLimit)
(super() ;

this.stackLimit = stackLimit;

II Overrides parent method push()
public Object push(Object item)
{ Object o = super.push(item);

removeEx traObjects{);
return o ;

public void setStackLimit(int newLimit)
{ stackLimit = newLimit;

removeExt raObjects();

public int getStackLimit()
return stackLimit;

void removeExtraObjects()
II The Stack object evidently appends the last insertion
II to the end of the parent Vector, rather than inserting
II at the beginning. Therefore, to trim the undoStack,
II keep removing elements at index 0.
while (size() > stackLimit)

super.removeElementAt(O);

146

BIBLIOGRAPHY

Ammeraal, Leen. Computer Graphics for Java Programmers. Chichester: John Wiley and
Sons, 1998.

Angel, Edward. Interactive Computer Graphics: a Top-Down Approach with OpenGL.
Reading, Massachusetts: Addison-Wesley Publishing Company, 1997.

Banks, Michael]. and Elaine Cohen. "Realtime spline curves from interactively sketched
data." Computer Graphics. Vol. 24, no. 2: pp. 99-107, 1990.

Barrels, Richard H., John C. Beatty, Brian A Barsky. An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling. Los Altos, California: Morgan Kaufman
Publishers, Inc., 1987. -

Chui, Charles K.. An Introduction to Wavelets. San Diego: Academic Press, 1992.

Farin, Gerald. Curves and Surfaces for Computer-Aided Geometric Design. Boston: Academic
Press, 1988.

Finkelstein, Adam and David H Sales in. "Multiresolucion Curves". Proceedings of the Special
Interest Group on Computer Graphicx (SIGGRAPH) 1994, pp. 261-268. Association for
Computing Machinery, New York, 1994.

Foley, James D., Andries van Dam, Steven K. Feiner, John F. Hughes. Computer Graphics:
Principles and Practice, Second Edition. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1996.

Forsey, David and Richard H. Barrels. "Hierarchical B-spline Refinement". Computer
Graphics. Vol. 22, no. 4: pp. 205-212, 1988.

Hubbard, Barbara Burke. The World According to Wavelets. Wellesley, Massachusetts: A. K
Peters, Ltd., 1996.

Kaiser, Gerald. A Friendly Guide to Wavelets. Boston, Massachusetts: Birkhauser, 1994.

Mallat, Stephane. "A Theory for Multiresolucion Signal Decomposition: the Wavelet
Representation." Institute of Electrical and Electronic Engineers Transactions on Pattern
Analysis and Machine Intelligence, Vol. 11, no. 7: pp. 674-693. July, 1989.

OpenGL Architecture Review Board, Mason Woo, Jackie Neider, Tom Davis. OpenGL
Programming Guide, Second Edition. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1997.

147

Press, William H., Saul A. Teukolsky, William T . Vetterling, Brian P. Flannery. Numerical
Recipes in C The Art of Scientific Computing, Second Edition. Cambridge: Cambridge
University Press, 1992.

Salisbury, Michael P. , Sean E. Anderson, Ronen Barze! , David H. Salesin. "Interactive Pen
and-Ink Illustration". Proceedings of the Special Interest Group on Computer Graphics
(SIGGRAPH) 1994, pp. 101-108. Association for Computing Machinery, New York,
1994.

Scollnitz, Eric J ., Tony D. DeRose, David H. Salesin. Wavelets for Computer Graphics:
Theory and Applications. San Francisco: Morgan Kaufman Publishers, Inc., 1996.

148

	Interactive Multireslution Curve Editing Using
	Terms of Use
	Recommended Citation

	thesis_alberg_1999_001
	thesis_alberg_1999_002
	thesis_alberg_1999_003
	thesis_alberg_1999_004
	thesis_alberg_1999_005
	thesis_alberg_1999_006
	thesis_alberg_1999_007
	thesis_alberg_1999_008
	thesis_alberg_1999_009
	thesis_alberg_1999_010
	thesis_alberg_1999_011
	thesis_alberg_1999_012
	thesis_alberg_1999_013
	thesis_alberg_1999_014
	thesis_alberg_1999_015
	thesis_alberg_1999_016
	thesis_alberg_1999_017
	thesis_alberg_1999_018
	thesis_alberg_1999_019
	thesis_alberg_1999_020
	thesis_alberg_1999_021
	thesis_alberg_1999_022
	thesis_alberg_1999_023
	thesis_alberg_1999_024
	thesis_alberg_1999_025
	thesis_alberg_1999_026
	thesis_alberg_1999_027
	thesis_alberg_1999_028
	thesis_alberg_1999_029
	thesis_alberg_1999_030
	thesis_alberg_1999_031
	thesis_alberg_1999_032
	thesis_alberg_1999_033
	thesis_alberg_1999_034
	thesis_alberg_1999_035
	thesis_alberg_1999_036
	thesis_alberg_1999_037
	thesis_alberg_1999_038
	thesis_alberg_1999_039
	thesis_alberg_1999_040
	thesis_alberg_1999_041
	thesis_alberg_1999_042
	thesis_alberg_1999_043
	thesis_alberg_1999_044
	thesis_alberg_1999_045
	thesis_alberg_1999_046
	thesis_alberg_1999_047
	thesis_alberg_1999_048
	thesis_alberg_1999_049
	thesis_alberg_1999_050
	thesis_alberg_1999_051
	thesis_alberg_1999_052
	thesis_alberg_1999_053
	thesis_alberg_1999_054
	thesis_alberg_1999_055
	thesis_alberg_1999_056
	thesis_alberg_1999_057
	thesis_alberg_1999_058
	thesis_alberg_1999_059
	thesis_alberg_1999_060
	thesis_alberg_1999_061
	thesis_alberg_1999_062
	thesis_alberg_1999_063
	thesis_alberg_1999_064
	thesis_alberg_1999_065
	thesis_alberg_1999_066
	thesis_alberg_1999_067
	thesis_alberg_1999_068
	thesis_alberg_1999_069
	thesis_alberg_1999_070
	thesis_alberg_1999_071
	thesis_alberg_1999_072
	thesis_alberg_1999_073
	thesis_alberg_1999_074
	thesis_alberg_1999_075
	thesis_alberg_1999_076
	thesis_alberg_1999_077
	thesis_alberg_1999_078
	thesis_alberg_1999_079
	thesis_alberg_1999_080
	thesis_alberg_1999_081
	thesis_alberg_1999_082
	thesis_alberg_1999_083
	thesis_alberg_1999_084
	thesis_alberg_1999_085
	thesis_alberg_1999_086
	thesis_alberg_1999_087
	thesis_alberg_1999_088
	thesis_alberg_1999_089
	thesis_alberg_1999_090
	thesis_alberg_1999_091
	thesis_alberg_1999_092
	thesis_alberg_1999_093
	thesis_alberg_1999_094
	thesis_alberg_1999_095
	thesis_alberg_1999_096
	thesis_alberg_1999_097
	thesis_alberg_1999_098
	thesis_alberg_1999_099
	thesis_alberg_1999_100
	thesis_alberg_1999_101
	thesis_alberg_1999_102
	thesis_alberg_1999_103
	thesis_alberg_1999_104
	thesis_alberg_1999_105
	thesis_alberg_1999_106
	thesis_alberg_1999_107
	thesis_alberg_1999_108
	thesis_alberg_1999_109
	thesis_alberg_1999_110
	thesis_alberg_1999_111
	thesis_alberg_1999_112
	thesis_alberg_1999_113
	thesis_alberg_1999_114
	thesis_alberg_1999_115
	thesis_alberg_1999_116
	thesis_alberg_1999_117
	thesis_alberg_1999_118
	thesis_alberg_1999_119
	thesis_alberg_1999_120
	thesis_alberg_1999_121
	thesis_alberg_1999_122
	thesis_alberg_1999_123
	thesis_alberg_1999_124
	thesis_alberg_1999_125
	thesis_alberg_1999_126
	thesis_alberg_1999_127
	thesis_alberg_1999_128
	thesis_alberg_1999_129
	thesis_alberg_1999_130
	thesis_alberg_1999_131
	thesis_alberg_1999_132
	thesis_alberg_1999_133
	thesis_alberg_1999_134
	thesis_alberg_1999_135
	thesis_alberg_1999_136
	thesis_alberg_1999_137
	thesis_alberg_1999_138
	thesis_alberg_1999_139
	thesis_alberg_1999_140
	thesis_alberg_1999_141
	thesis_alberg_1999_142
	thesis_alberg_1999_143
	thesis_alberg_1999_144
	thesis_alberg_1999_145
	thesis_alberg_1999_146
	thesis_alberg_1999_147
	thesis_alberg_1999_148
	thesis_alberg_1999_149
	thesis_alberg_1999_150
	thesis_alberg_1999_151
	thesis_alberg_1999_152
	thesis_alberg_1999_153
	thesis_alberg_1999_154
	thesis_alberg_1999_155
	thesis_alberg_1999_156
	thesis_alberg_1999_157
	thesis_alberg_1999_158
	thesis_alberg_1999_159

