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ABSTRACT 

Precise curve fitting is an important feature of many computer applications, from 

statistical analysis cools, co the editors used by font and graphic designers, co the 

sophisticated computer-aided design/manufacturing environments developed for engineering 

systems. B-splines are the most widely used curve forms in such applications; composed of 

piecewise parametric cubic segments, they are notable for their compact representation, 

computational efficiency and, in particular, the high degree of continuity they enforce 

between successive curve segments. Such continuity, however, inhibits the freedom with 

which local, finer resolution editing may be performed on these curves. Refinement is most 

directly accomplished by inserting knots into the curve, subdividing the curve into a larger 

number of segments. 

Mulciresolution analysis, a form of data analysis based on the use of wavelets, offers a 

means of determining a unique such subdivision of a given curve. The application of chis 

process is also reversible so chat curve smooching or knot removal operations may be 

performed with the same economy as refinement operations. Furthermore, the special 

computational properties of wavelets guarantee chat such shifts of resolution may be 

performed in time linear with the size of the curve, suggesting chat editing operations on a 

curve, at a variety of resolutions, may be done at interactive speeds. 
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PREFACE 

Wavelets are mathematical tools, functions satisfying a specific set of properties, which are 

used to encode information in a different, more practical form. The encoding takes the form 

of abstracting from the input data set a coarser, average distribution of the data, which is 

referred to in signal processing parlance as putting the data through a low-pass filter. At the 

same time, a high-pass filter, the set of wavelet functions d1emselves, is applied to the same 

input so that the high-contrast data lost from the averaging procedure may be preserved as a 

sec of detail values. Such a procedure may be recursively reapplied to each successive coarser 

data set until a desired resolution of the data is reached. The result is termed a wavelet 

transform of the original data and it contains not only a coarse approximation to the original 

data sec but the accumulated secs of detail coefficients that apply to that data set at different 

scales of resolution. These accumulated details may be reapplied to the coarsened data plot 

to retrieve the behavior of that data at finer scales of resolution. 

Such a transformed image of an input data set provides views of that data at a variety of 

scales, providing a form of "mathematical microscope" [Hubb96]. This tool has been of 

practical benefit in a surprising variety of scientific disciplines. The term "wavelet" actually 

arose in connection with geological analysis where seismic plots are analyzed to determine 

the presence of substrata where regions of oil may occur. Signals and two-dimensional 

imagery may be "denoised" by abstracting out the high-contrast values using wavelets. The 

special properties satisfied by wavelets also allow them to be used in probability wave analysis 
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in quantum mechanics where they complement more conventional Fourier analysis cools in 

addressing the restrictions imposed by the uncertainty principle [Hubb96]. 

Researchers in computer graphics have recently found several practical uses for wavelets 

in their work, including both theoretical and practical applications in areas such as image 

compression, image editing and database querying, surface reconstruction from contour 

plots, and physical simulation for global illumination and animation. (For an excellent 

survey of chis material, see Scollnitz, et al. [Stol96].) 

Among chis work is the research presented by Finkelstein and Salesin [Fink94] 

concerning the application of multiresolution analysis, a set of techniques chat use wavelets co 

obtain information about a signal at a multitude of scales, to the problem of curve and, by 

extension, surface representation. In particular, they observe chat the recursively defined 

structure of multiresolution analysis has an advantageous correspondence with the recursive 

procedure for subdividing curves (and surfaces) generated by the set of basis functions known 

as B-splines. The authors claim chat the resulting representation, a multiresolution curve, is 

a unified framework capable of supporting a variety of editing operations including changing 

the "sweep" of a curve while maintaining its "character" or detail or, alternately, changing its 

"character" while maintaining its "sweep", or applying continuous levels of smooching or 

being able to edit a curve at a continuous level of detail. Furthermore, since a 

multiresolution decomposition can be obtained in time chat is linear in the size of the input 

data, in chis case the set of control points for a given curve, the manipulations described 

above may be performed in real time. 

The goal of chis thesis is to construct a working component capable of modeling 

multiresolution curves and the above operations in an interactive environment. Such a 

component, written in an object-oriented language, may be placed in a simple application 
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for editing such curves directly; or it may be readily integrated within a more complex 

editing environment, such as a CAD/CAM system, where it would offer a subset of a more 

general set of precise editing tools. We shall place this component within a simple GUI­

based application frame in order to verify the claims of the original research that such curve 

operations may be performed at interactive speeds. Although this thesis does nor extend the 

theoretical basis of this work, it does enhance its practical utility by realizing the application 

as a set ofJava class files, making it available to any platform supporting a Java Virtual 

Machine and, at the same time, making this application available for use as a component in a 

larger Java-based graphical editing environment. 

The presentation of the research supporting this implementation will involve four major 

sections: first, a discussion of the issues of curve representation in a computational 

environment, with some focus on the B-spline representation; second, a more derailed 

presentation of wavelets, featuring the prototypical example of the Haar wavelet, as well as an 

introduction to the concepts of mulriresolution analysis; third, a presentation of the theory 

of mulriresolution curve representation, featuring some discussion of the practical 

mathematical issues involved in this representation; and fourth, a derailed discussion of the 

design and implementation of the Java-based application, focusing in particular on how the 

demands of the mathematics involved are met by this application. 
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I. CURVE REPRESENTATIONS 

A curve is essencially a sec of poincs. More precisely, in a cwo-dimensional environmenc, 

we may refer co a curve as a sec of ordered pairs. Mathematically, this gives us a very precise 

description of a curve. Bue the enumeration of such a sec, typically drawn from the domain 

of the real numbers, will be unbounded and of little use in a finite compucacional 

environmenc. Furthermore, since such a sec is unbounded, ic cannot be exhaustive and a 

simple enumeration of a sequence of poincs will have no prediccive value for those poincs 

omined from the lisc. These observations provide the rationale for the procedure of curve 

fitting which anempcs co find a relation becween an independenc variable and a sec of poincs 

forming the closest approximation co the given sequence of poincs. This found relation is 

referred co as a curve representation and provides a more economical means for scoring and 

describing the behavior of a given curve. In this seccion, we will presenc several forms of 

curve represencacions, evaluating their respective merits and defects with regard co the range 

of curves they are capable of modeling. 

Before discussing these more economical represencacions, however, ic should be 

mencioned that a finite sec of points frequently serves as the direct represencacion of a curve 

in the form of a polygonal line or, in the three-dimensional case, as a polygon mesh [Fole96]. 

Such modeling is used when the individual daca poincs are themselves subject co direct 

editing and often where determining an accurate represencacion of the curve or surface may 

be compucacionally incractable. (We shall see, in face, that the accual rendering procedure 

used in our application basically draws jusc such a polygonal line connecting a sequence of 

poims.) The procedures for determining a mulciresolution curve cannot make use of such 

direct represemacions, however, so we will noc discuss them further. 
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Figure 1: A function and a "non-function" 

1.1 Functions, Parameuic Curves and Piecewise Polynomial Segments 

Since, by definicion, a fancti.on is considered co be a sec of ordered pairs (again, in a cwo-

dimensional environmenc), chis would seem ac firsc glance co sacisfy our basic requiremencs 

for an economical curve represencacion. A function describes a sec of poincs of che form 

( x, f (x)) , where x is an independenc variable and f ( x) is che oucpuc of che relacion 

generating che curve. Funccions are capable of generacing a wide variecy of curves, an 

example of which is che ploc off (x) = x 2 shown in che lefc pare of Figure 1. However, 

funccions are rescricced forms of relacions in char for any single inpuc x chere muse be a 

unique value f(x). This makes che represencacion of curves such as che one shown in che 

righc pare of Figure I impossible, shore of breaking che curve inco independenc segmencs. 

Functions are also nor rocacionally invarianc (implied somewhac by Figure I) and che 

descripcion of curves wich vercical cangencs is hampered due co che face char a slope of infinicy 

is difficulc co represenc [Fole96]. 

Funccions are somecimes referred co as explicit representati.ons, as opposed co equacions of 

che form f ( x, y) = 0 which are known as implicit representati.ons [Ange97]. An example of 

2 



such an equation is the formula x 2 + y 2 
- r 2 = 0 which describes the sec of points forming 

a circle around the origin with radius r. While clearly capable of modeling some curves chat 

functions are unable co model, such equations are frequently underdetermined and may have 

more solutions than is practical. le is also difficult to use such forms co model a portion of a 

curve, say, for example, the cop half of the circle just described, without applying external 

constraints co the calculation, in chis case constraining y ~ 0 [Ange97, Fole96] . 

A form of representation chat overcomes the limitations of both the explicit and implicit 

forms is the parametric representation, where the elements of each ordered pair (x,y) are in 

fact functions on an independent variable t, meaning chat a point should more properly be 

expressed in the form ( x(t), y(t)) . The variable t can be thought of as being plotced on an 

axis perpendicular to the x,y plane and the two-dimensional curve generated as the projection 

on chis plane of the track of chis variable as it proceeds along the taxis (see Figure 2) . 

2 

0 0 0 

-1 -1 
1 

40 

-2 
-2 -1 0 2 -1 0 

Figure 2: The parametric equation x = sin(t), y = cos(t), 0 < t < 107r. 

One advantage of parametric curves is char they replace the use of geometric slopes with 

parametric tangent vectors, which can never cake on infinite values [Fole96]. This means 

char ic is possible co cake a single parametric curve, which may prove co be compucacionally 

difficult as a monolithic curve, and decompose ic into a succession of parametric curve 
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segments. The points where adjacent segments join are referred to as knots. The plotting of 

the tangent vectors at the endpoints of each segment verifies the continuity of a curve form 

from segment to segment. 

These segments are then individual parametric functions on t, forming a piecewise 

parametric curve. Computationally, the most convenient way for these segments co 

approximate a given curve is for each segment to model a.polynomial function in t, typically 

with values oft on the interval [O, 1]. The simplest such polynomials to compute would be 

piecewise linear curve segments, but the resulting "curve" would resemble a polygonal line, 

with typically not very good approximation over the length of a curve segment. Piecewise 

quadratic segments would be more supple in terms of modeling a given segment but, as we 

will see shortly, cannot guarantee adequate continuity from segment to segment [Ange97]. 

In practice, piecewise cubic parametric curves are most often used. Quartic curves are 

sometimes used in applications where higher-degree derivatives are needed to determine 

curves and surfaces that are aerodynamically efficient, such as in car and airplane design. 

However, these curves require more computation to determine the coefficients of each 

polynomial term and often produce additional "wiggle" in the representation as well 

[Fole96]. 

Where piecewise parametric cubic curves are used, we have four unknown coefficients to 

determine the curve. There must therefore be four knowns coming into the computation of 

the curve to solve for these unknown coefficients. The next section examines several 

piecewise cubic curve representations differentiated by the manner in which these four 

"knowns" are introduced into the curve solution. 
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1.2 Piecewise Parameuic Cubic Curves 

In the following, we shall be presenting alcernace representations of the cubic curve 

segment q(t) denoted by 

where 0~t~1. Although we are concerned with two-dimensional curves, che parametric 

cubic is the lowest-degree curve char is non-planar in three dimensions [Fole96] and ic is 

useful co indicate char che representations we are describing for two-dimensional curves are 

available for three-dimensional ones as well. In any event, che functions x(t), y(t) and 

z(t) are entirely independent of each ocher so, rather than having co find twelve equations co 

solve for twelve unknowns, we need only co find che four constraints char will determine che 

four coefficients for each of che equations in q(t). These constraints are known as che 

control points of che curve segment and che following representations are differentiated by 

how they make use of chis control information. 

1.21 Hermite Forms 

In all of che following representations, we are seeking a way co calculate che values of che 

control points pk given a parametric cubic segment with coefficients C1c so char we can 

reverse che process, i.e.: determine C1c given che control points pk. In che case of che 

Hermite representation (named for che mathematician), as shown in Figure 3, two of che 
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p'o 

p~p', 

Figure 3: A Hermite curve representation 

control points, p 0 and p 3 (they are indexed in chis manner for consistency with the Bezier 

representation char we will see shortly) , are marked by the accual endpoints of the curve 

segment. Since ac one end of the segment t = 0 and ac the ocher end t = 1, we have che 

following values for p 0 and p 3 : 

P o = q(O) =Co 

p 3 = q(l) =Co + C1 + C2 + C3 

The ocher two "points" in chis representation are, accually, two tangent veccors passing 

through P o and p 3 which correspond co the firsc-order derivatives of the parametric curve 

segment ac chose poincs (also known as the "velocicy" of the curve). These values, p' 0 and 

p'3 are given by the following: 

P'o = q'(O) = C1 

p'3 = q'(l) = C1 + 2c 2 + 3c3 

We may rewrite these equations in matrix form as the following: 

Po 1 0 0 0 Co 

p3 1 1 1 1 C1 

P
1

0 0 1 0 0 C2 

p'3 0 1 2 3 C3 
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We observe that the matrix relating the coefficients to the set of control points in the 

previous expression is invertible. The inverse of this matrix is called the Hermite geometry 

matrix MH 

I 0 0 0 

0 0 I 0 
MH = 

-3 3 -2 -1 

2 -2 I 

and thus the formula for the parametric cubic curve is given by 

q(t)=[l t t 2 

Po 

Figure 4: Two adjac.cnc Hermite curves. 

When two adjacent Hermite segments meet, as shown in Figure 4, not only do the 

endpoints of the adjacent segments match but the derivatives of both curves at that point 

match as well. The former condition is termed C 0 continuity and the latter is termed 

C' continuity. The superscript in both cases corresponds to the order of the derivative both 

curves share in common at that point. A similar property, G 1 continuity, means that the 
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value of the tangent vector on one curve is proportional to the tangent vector of the 

neighboring curve. 

J.22 Bezier Curves 

Like the Hermite representation, the Bezier curve, named after Pierre Bezier, specifies the 

two endpoints of the segment as control points for the curve. The other two control points, 

p
1 
and p

2
, control the ends of the tangent vectors through the endpoints of the curve. All 

four control points, then, describe a polygon within which the curve segment spans (see 

Figure 5). 

Po 

Figure 5: A Bczicr curve. 

The points p 0 and p 3 have the same relation to the coefficients of the curve as in the 

Hermite representation. The remaining points, p 1 and p 2 , are used to approximate the 

tangents at t = 0 and t = 1, respectively. Using linear approximations and relating these to 

the derivatives of the polynomial, we have the following equations: 

q'(O)= P1 ~Po =3{p1 -po)=3p1 -3po =c1 

3 

q'(l) = p3 ~ P2 = 3(p3 - P2) = 3p3 -3p2 = C1 + 2c2 + 3c3 

3 
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Taking these equations, we can solve as before to find the Bezier geometry matrix M 8 

1 0 0 0 

-3 3 0 0 
M -B -

3 -6 3 0 

-1 3 -3 1 

and so the formula for the cubic Bezier curve is 

q(1) = [1 1 12 13}\!B[pO p, P2 pJT. 

Unlike the Hermite representation, adjacent Bezier curve segments sharing an endpoint 

will obviously have C 0 continuity but they do not enforce C' continuity since different 

approximations are used to the left and the right of a join point [Ange97]. However, the 

Bezier curve satisfies an interesting property known as the convex hull property. To show 

this, we will first obtain the values for the blending functions of the Bezier curve, which are 

given by the transpose of the first rwo factors in the computation of q(t) above: 

3 ]T 
1 = 

(1- 1)3 

31(1- 1) 2 

31 2 (1-1) 
13 

The plot of these func~ions over the interval [O,l] is shown in Figure 6. Notice that all of 

the zeros occur when t = 0 or t = 1. In addition, the value of each function over the interval 

3 

is ~ 1 and furthermore L bi (1) = 1. This means that the representation of the polynomial 
i=O 

3 

q(1) = 'L bi (t)pi 
i=O 

is a convex sum and that the entire curve lies within the convex hull described by the 

polygon formed by the control points of the curve, which is clear from Figure 5 [Ange97, 

Fole96]. 
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Figure 6: Blending polynomials for Bezier curve. 

1.23 B-splines 

The term spline originated with shipbuilding and the _early days of aircraft design and 

referred co a long lath of wood or metal chat was weighted with metal "ducks". This was 

done co bend the spline judiciously for the purpose of producing a curve chat could be traced 

and reproduced and chat exhibited second-order or C 2 continuity [Barc87] . Cubic B-splines 

also enforce C 2 continuity (which is often referred co as the "acceleration" of the curve) , as 

we shall see. 

B-splines differ from Hermite and Bezier representations in a number of ways. First of 

all, the curve chat the four control points describe typically does not interpolate (or pass 

through) any of the control points (see Figure 7a). Secondly, an individual segment muse be 

considered in the context of its adjacent curve segments since three of the four control points 

defining a particular curve segment also participate in the· definition of the neighboring 

segment (see Figure 7b). Thus, each control point in a B-spline representation can influence 

up co four adjacent curve segments and so, in a curve with m such segments, the number of 
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control points ism+ 3, versus thac of a Bezier or Hermice curve where the number of poincs 

is 3m + 1. 

~ ~-: 
J .r ~ ' / \ 

i \ l !, 

/ \ 
. \ 
/ \ I ; 

~ ~ 

P i+1 

P H 

' \ 
'\ 

\ 
\ 
\ 
\ 

' / 

Figure 7: AB-spline segment {a) and the same segment with two neighboring 
segments on each side (b). 

Once again, we are inceresced in determining the coefficiencs ck of the sec of polynomials 

forming the paramecric curve segmenc qi (I) from the sec of concrol poincs p k . Thar is, we 

are looking for a macrix M such thac 

P H P i - 2 

q i-I (I)= [1 I 12 13 Ju P i-2 and qi (I)= [1 I 12 13 Ju P i-! 

P i-I P i 

P i Pi+1 

We expecc C 0 and C 1 concinuicy ac the segment join poincs or knots. Therefore we have 

q;_1 (1) = q; (0) and q';-J (1) = q'; (0). We also noce thac any condicions sacisfying these 

conscrainrs will noc use p i-3 since ic does noc define q i (I) nor will they use p i+J since this 

poinc does noc define qi-I (I) [Ange97]. Barrels, ec al. [Barc87] show thac the following 

condicions suffice: 
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I 
qi-I (I)= qi (0) =Co = 6(Pi-2 + 4p i-I + p;) 

q\_1 (I)= q'i (0) = C1 =~(pi - Pi-2 ) 

In addition, we obtain che following conditions at point qi (I): 

I 
qi(l)=co +c1 +c2 +c3 =6(p i-1 +4p i +P;+1 ) 

q'i (I)= C1 + 2c2 + 3c3 = _!_(Pi+I - Pi 1) 2 -

Solving these equations for che coefficients ck gives us che B-spline geometry matrix M: 

I 4 I 0 

M =_!_ 
-3 0 3 0 

6 3 -6 3 0 

-1 3 -3 1 

B-splines, like Bezier curves, also satisfy che convex-hull property, as can be seen in 

Figure 7 and in che plot of che blending functions b k (1) shown in Figure 8: 

(I - 1)3 

13r =..!.. 4-612 +313 

6 I+ 31+31 2 - 313 

13 

Figure 8: B-spline blending functions. 
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We note chat, again, che only zeros occuring over che interval [O, 1] are ac t = 0 and at t = 1 

and, in addition, only one blending function accains a zero value. What is more interesting 

abouc chese functions is char when we juxtapose che blending functions for any adjacent 

segments wich chose of our firsc segment, we gee che diagram shown in Figure 9. le is clear 

from chis representation chat every control point has associated wich ic a C 2 piecewise cubic 

"hac" function, centered over che control point, and chat chis function is che same when 

shifted and applied co all of che control points in che curve representation. Thus, each curve 

segment is che sum of che values of each of chese shifted blending functions over ics 

respective interval. In ocher words, chese blending functions form a basis for che polynomial 

curves ch us described and in face che "B" in B-spline scands for "basis" [Ange97, Barc87]. 

This will have important implications when we discuss mulciresolucion curve cheory. 

...... 

b,_2 (t) 

.l .· ... · 
· •• i . .. 

;" ·. 
1" ;_ 

_.-i 

,. 
.. .. 

.· .. 

·, ·, ·. · . 

Figure 9: The four basis functions that define segment i. 

Lastly, ic should be noted char, since all of che above representations relate a sec of control 

points co a sec of coefficients chrough che use of matrix transformations, chis means char we 

can convert from one representation co anocher using a composition of chese matrices. Thus, 

all of chese representations are equivalent, chough of varying economy and precision. 
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J .24 Types of B-splines 

The blending funccions described above are applicable co whar are known as unifonn B­

splines, char is, chose curves in possession of a uniform knor sequence. Such a sequence 

occurs when each knoc in che curve is uniformly spaced and there are no mulriplicicies or 

repecirions of a knoc ar a cerrain poinr. This class of B-splines is a special case of che more 

general form of non-unifonn B-splines, which admic disconrinuicies and mulciplicicies in che 

knor sequence. We noce char, anycime a knor is repeated, chis has che effect of pulling che 

curve closer to che corresponding conrrol point. If a multiplicicy of 3 or greater occurs, che 

knot(s) and control point coincide and che curve inrerpolaces char conrrol point. Under such 

condicions, che blending functions defined above muse be redefined ar che poinrs chese 

discontinuicies occur. Boch Foley, er al. [Fole96] and Barrels, er al. [Barr87] describe che sec 

of recurrences required co redefine che blending functions over che affected inrervals. 

Boch uniform and non-uniform B-splines, as described, are invarianr under rorarion, 

scaling and cranslacion rransformacions. However, such curves are nor invariant under 

perspective cransformarions. To guaranree chis condicion; che curve muse be defined as a 

non-unifonn rational B-spline or NU RBS [Ange97, Fole96]. Such a curve plots each 

component of qi (t) as a ratio between char component paramecric function and anocher 

parametric function w i (t). The non-rational B-splines we have discussed would chen be 

modeled as special cases where wi (t) = 1. NURBS are a standard tool in most high-end 

graphic design environments and chey account for most of che popularicy in che use of B­

spline represenrations in such environments. 

Wich regard to representing multiresolucion curves, we shall be using endpoint­

inrerpolating B-splines, which are B-splines chat have an overall uniform knot sequence 
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except at the beginning and ending of the rurve where a multiplicity of at least 3 occurs in 

the sequence. This wilJ necessitate the development of special end-conditions with regard to 

using the blending (basis) functions but the behavior of the curve away from the ends will be 

somewhat regular, which will be of great advantage in the final implementation of the 

mulciresolution engine. 

1.3 Curve refinement 

' \ 

[J 

Figure 10: Editing a B-spline at a lower and higher resolution. 

One of the chief advantages of the B-spline representation is the high degree of 

continuity it enforces between adjacent curve segments. However, this becomes a drawback 

if local editing of a curve is desired since a single control point may affect up to four adjacent 

curve segments. The most direct way to overcome chis problem is to refine the curve, 

introducing more segments into the curve through a procedure for knot insertion, as 

suggested by Figure 10. 
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Several algorithms for knot insertion exist in the literature. The simplest may be the 

deCasceljau algorithm for Bezier curves which consists of first finding the midpoints A, B 

and C of the three lines forming the control polygon of the curve, then connecting these 

with the lines AB and BC. Next, find the midpoints of each of these lines. The line 

connecting these midpoints will also be tangent co the curve and the point at which it 

contacts the curve is the location of the new knot [Barc87, Fole96]. 

Farin [Fari88] and Bartels, et al. [Barc87] present some complex algorithms for inserting 

an arbitrary number of knots into a non-uniform B-spline. These algorithms have some 

efficiency if a group of knots is inserted at one time but d? not perform as well when a 

sequence of edits is made. Since any knots may be added or removed from any location, 

there is also no correspondence between a regime of knot insertions and an increase in the 

objective "resolution" of the curve. 

A scheme that attempts co correlate knot insertions with levels of resolution is the 

hierarchical B-spline refinement technique proposed by Forsey and Barrels [Fors88]. In this 

idea, an explicit hierarchical framework designed by the user is deployed co permit the 

editing of the overall form of a curve while preserving any details it acquired at higher levels 

of resolution. Besides the problem of maintaining the data structures necessary co model this 

hierarchy, however, the resulting curve will have an infinite number of possible 

representations. 

The research presented by Finkelstein and Salesin [Fink94] improves upon this method 

by formulating a mulciresolution curve representation that uses no additional structures 

other than the set of control points. Such a representation will implicitly model a hierarchy 

because of the manner in which finer detail edits are preserved within the representation 

using the techniques of mulciresolution analysis. Furthermore, because the mulciresolution 
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cechniques recursively subdivide che curve ac each increas~ng level of resolucion, doubling che 

number of segmencs ac each level, chis resulcs in a unique mulciresolucion represencacion. ln 

order co underscand how such a represencacion is possible we will, in che nexc seccion, survey 

che propercies of wavelecs and che role chey play in mulciresolucion analysis. 

In summary, chen, among all of che curve represencacions we have surveyed, che B-spline 

is ac che same rime che mosc economical, in terms of che size of ics daca sec, and che mosc 

precise, for che level of concinuicy ic enforces across che segmencs of a curve. The high 

concinuicy enforced inhibits local level of concrol and so a syscemacic and efficienc mechod 

for knoc insercion is desirable for increasing che resolucion of a curve. Mulciresolucion curve 

represencations will meec chese requiremencs, using cechniques obcained from che cheory of 

multiresolution analysis. 

17 



2. WAVELETS AND MULTIRESOLUTION ANALYSIS 

In chis section, we will survey the properties of wavelets and the role char the wavelet 

transform plays in modeling a general theory of mulciresolucion analysis. 

2.1 What arc Wavdcts? 

The mathematical cools known as wavelets gained their initial reputation for success in 

the context of signal processing. le is difficult co describe what a wavelet is or what its 

significance is in isolation from such a context; wavelets basically serve as catalyses in such 

settings, bringing co light certain interesting properties. Compounding chis difficulty is the 

face char even the most introductory of materials on wavelets relies on an exposition chat 

draws on mathematics of considerable depth. (See, for example, [Chui92] and the 

"opcimiscically tided" A Friendly Guide to Wavelets [Kais94].) 

In chis section, then, we will not attempt co present apy of the deeper results from the 

theory of wavelets or provide any validation for some of its stronger claims. Rather, 

following the style of presentation in [Fink94] and [Scol96], we will accept certain claims as 

faces and will make use of these in presenting the more salient aspects of the wavelet 

transform with regard co modeling a mulciresolucion analysis. 

2.11 Scaling fonctions and Wavelets 

Mose introductions co wavelets [Hubb96, Chui92] preface their discussion of chis 

material by presenting, for contrast and context, another cool used in signal processing for 

discovering the underlying behavior of a signal which is Fourier analysis. Briefly explained, a 

Fourier transform takes a given signal or dara sec and rewrites chis signal as a linear 

combination of sine and cosine basis functions. le is, in fact, a striking face chat nearly all 
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signals may be decomposed in such a manner. The information conveyed by this transform, 

the composition of the component frequencies underlying a given signal, unfortunately does 

not yield any time-dependent details about the signal, just as the original signal itself, with its 

time-specific events, yields no information about its composite frequencies. A modified 

version of the Fourier transform, known as the Windowe~ Fourier Transform, is sometimes 

used to discover time-related signal behaviors at a more refined level. This version of the 

transform applies a window to a selected interval of the original signal and essentially 

performs a Fourier transform on that windowed portion of the signal, obtaining frequency 

data on that selected interval. 

To describe the operation of a wavelet transform let us first assume, without loss of 

generality, that n = 2 m, for integer m, is the size of the signal or data set. A wavelet 

transform, rather than rewriting the original signal as a linear combination of basis functions, 

uses two sets of basis functions, one set to coarsen the signal co a lower resolution, the other 

set to disclose the events of significance at that same scale. The functions in the former 

group are referred to as scaling foncrions. Although they form a basis, these functions are 

designed for compact support, i.e.: the output of an individual function is nonzero over only 

a restricted or bounded interval. The formation of a basis consists then of "sliding" a specific 

instance of this function over distinct sub-intervals of the domain. They are called scaling 

functions because to coarsen a signal representation, for example, the individual instance of 

the sliding function is dilated (expanded) to admit twice the interval over the domain as that 

of the next finer level of resolution. Notationally, the i-th scaling function of the set of 

functions at resolution level j is expressed as rp/ ( x) where i = 0, · · · ,21 - 1 and j = 0, · · · , m 

and the vector space spanned by these basis functions is denoted V 1 . 
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Since che coarsening of a signal representation removes data from chat representation, ic 

is desirable to retain chis data in some form in che event we wane to reconstitute che signal at 

its original resolution. This data is preserved by che ocher set of basis functions discussed 

above in che form of a sec of detail or difference values, one for each data point removed to 

produce che coarser signal represencacion. These basis functions are defined to span che 

vector space W 1 which is che orthogonal complement co che space V 1 under che inner 

produce (/ I g); chat is, for each f in V 1 and each g in W 1 , che condition (/ I g) = 0 muse 

be true, where typically 

(/I g) = J~ f(x)g(x)dx. 

le is these basis functions, chose spanning W 1 , chat are the functions formally defined as 

wavelets. Notationally, che i-ch wavelet of the sec of functions at resolution level j is 

expressed as 11r 1 (x)where i = 0 ··· 21 -1 and 1· = 0 ··· m 
..,, 1 ' ' ' ' • 

2.12 Example: the Haar Wavelet 

An example may help co make the preceding discussion somewhat clearer. Suppose we 

are given che following "signal": 

[9 7 3 5] 

This may be a one-dimensional image of pixel values with an original resolution value of 4. 

To coarsen chis image by one level, we lower the resolution by one half, averaging the pixel 

values pairwise over che dilated intervals. This leads co the following lower-resolution image: 

[8 4] 

where 8 is the average of che first pixel pair and 4 the average of che last pair. Ac the same 

time we produce chis coarsening of the image, we wish co preserve the original information 
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contained in the four-value image. We save this information in the form of derail 

coefficients, which capture the amount of the difference of the old values from the new 

average. For this first pass, we have the value 1 for the first detail coefficient since the 

original value 9 is I more than the average 8 and the original value 7 is 1 less. Similarly, we 

obtain -1 as the other derail coefficient since the original value 3 is -1 more than the average 

4 and 5 is -1 less. We may repeat this procedure recursively on the new low-resolution 

image to obtain the final one-dimensional image 

[6] 

and saving the derail coefficient 2 since 8 is 2 greater than the average 6 and 4 is 2 less. 

Note that at each level change, the size of the data sec of the coarser image is the same as 

the number of derail coefficients preserved and the sum of both these quantities equals the 

size of the higher-resolution image. That means that at each stage, we can convert from the 

high to the low-resolution image and save the detail information all within a set of data of 

constant dimension. If we preserve the image in this way, we have the following sequence of 

transformed signals: 

[9 7 3 5] 

[8 4 I 1 -1] 

[6 I 2 1 -1] 

The last transformed image, with the single pixel value standing for the overall signal 

followed by the list of derail coefficients, is known as the wavelet transform of the image, 

using for this example the one-dimensional Haar basis. 

The Haar basis, incorporating the sec of scaling functions and the sec of wavelets, is the 

simplest known wavelet basis. The Haar scaling functions may be more formally expressed 

as: 
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{
I 0$x$l 

¢/(x)=¢(2ix-i) i=0,···,21 -1 where ¢(x)= 
0 else 

Figure 11 shows the Haar or box basis for the spaces V 2
, V 1 and V 0

• 

v2: 
,[L ,lIL ,:Ul , ~LJJ 

o.5 · os f o.5' · os ~ 

0 ...... 0 1 ...... 0 : ...... 0 : ······ 
0 0.5 , 0 0.5 , 0 0 .5 , 0 0.5 , 

,pg(x) ¢.2 (x) ;:(x) ¢i(x) 

vi: ·fL·:UJ 
0 0 .5 , 0 0 .5 , 

¢~(x) ¢.1(x) 

V': .:o 
0 

0 0 .5 , 

;g(x) 

Figure 11: The Haar basis for V', V 1and V. 

Likewise, the Haar wavelets, which are orthogonal to the set of basis functions, are defined as 

follows: 

Figure 12 shows the Haar wavelets for W 0
, W 1 and W 2

• 

2.13 Properties of Wavelets 

0$x<Il2 

l/2$x<l 

else 

In the foregoing analysis of the Haar basis we have already observed that the wavelet 

transform is an information-preserving decomposition which maintains a data set of constant 

size at all levels of the decomposition. It should also be noted that this is clearly a reversible 
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decomposition as well. The following are cwo machemacically equivalent expressions for che 

value of che same image: 

The first expression simply multiplies che original pixel values by che Haar scaling function 

relating one pixel co one interval. The lase expression first applies che average value using che 

Haar scaling function relating four pixels co one interval, chen applies che first set of 

differences co chat average, and lastly it applies che remaining differences to che previously 

changed image, resulting in the original sec of pixel values again. Implicit in these 

expressions as well is the idea chat the higher-resolution function space is che same as the 

lower-resolution function and wavelet spaces combined, chat is 

V j + W j = V j + I • 

W' : :qr- J__J] ·_ +-_j]- +-- Q _,. . _,r-·u _,~··u- _,~·o 
0 0 .5 , 0 0.5 , 0 0.5 , 0 0 .5 , 

W' : :o __ L_D_ 
~ r ~ ~~-----~ 

0 0 .5 , 0 o.s , 

'I'~ (x) 'I'~ (x) 

w•: _+ ml l 
0 o.s 

'l'g(x) 

'Iii (x) 'I'; (x) 

Figure 12: The Haar wavdets for 'W', W 1and W. 
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The last point of interest concerns the efficiency of the procedure for producing the 

wavelet transform. The cransformacion on the original sec of pixels required operacions of 

both the scaling functions and the wavelet funccions on all n pixels. Afrer this firsc 

cransformarion, a coarser set of pixels of size n 12 and a set of derail coefficients of size n I 2 

remain. The transformation may now be recursively applied on the coarser image 

representation, which is now half the size of the original input. The sec of derail coefficiencs 

already obtained plays no part in this lower scale cransformarion, however, so the size of the 

sub-problem is strictly n I 2. Thus, if we concinue to recursively reapply the cransform 

algorithm to the coarsened image at each level uncil we reach the base case of the single 

average value, the number of seeps we will cake co completely transform the image is 

n n 
n + - + - + · · · + 4 + 2 + 1 :::;; 2n 

2 4 

And so, the rime it cakes to produce a wavelet transform is linear in the size of the original 

data set. 

2.14 Some Applications 

The "image" used in our illustration of the Haar basis was somewhat small and it also 

generated derail coefficients of relatively high value. A more real-world instance of this 

problem would involve an image with a much larger number of pixels {say, a large power of 

2). Suppose that this image is converted into a wavelet transform. If we examine the 

accumulated derail values in this transform, we are likely to discover that a number of these 

derail values are either 0 or are fairly close to 0, either on the positive or negative side. Whac 

this means is that, in the process of averaging that generaced the coarsened image at that 

level, no change was registered between the image ac char level and the nexc finer level. le is 

obvious, then, char such values may be left out of the representation with impunity since 
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cheir concriburion co rescoring che overall image is minimal co nil. This is che basis of che 

idea of wavelet compression, which is clearly a lossy compression technique. An obvious 

application of chis technique would involve real-cime networked video: since wavelet 

cransforms rake cime around cwice che size of che daca sec to perform, one could simply drop 

every ocher video frame in a feed, compress ic by performing che transform and dropping a 

sec number of derail coefficiencs off of che result, send che reduced frame, pad che message 

wich zeros and chen reconscituce che frame by reversing ~e transform. 

Another incerescing use of wavelets is in che area of fingerprinc cacegorizacion. While 

individual secs of fingerprincs are unique, chey do evince well-known secs of paccerns (e.g.: 

whorls, loops, ecc) which are used as che basis for cataloguing and idencifying fingerprincs 

and fingerprinc owners. A wavelet transform of a fingerprinc image caken co a certain level of 

coarseness would provide, in numerical form, a similar kind of general paccern signature for a 

fingerprinc, making it a candidate for matching ocher such signatures wich che same 

classification. This has proven to be such a successful notion in practice chac che FBI actually 

employs wavelet-based fingerprinc analysis cools as part of ics database environmenc 

[Hubb96]. 

Another incerescing use of wavelet signatures, discussed in [Scol96], involves che use of a 

wavelet transform of an image as a query co find marches in an image database. For example, 

if one is searching for a picture of a sunset over a blue ocean, one might sketch a round red 

sphere for che sun above a larger blue volume for che ocean in a picture or bitmap editor. 

Then, che wavelet transform of chis image is obtained and ic is cross-checked against 

elemencs in che database, reporting scores on possible matches and, in che application 

presenced, delivering thumbnail represencacions of these marches co che user for possible 

selection. 

25 



--

2.2 Multircsolution Analysis 

The preceding macerial on che generation and che propercies of che wavelec cransform 

finds ics codification in che development of che general framework of multiresolucion 

analysis. The mocivacion for che development of chis analysis, as narraced in che canonical 

paper on mulciresolucion analysis writcen by Scephane Mallar [Mall89], was a compucer 

vision problem: how to extract meaningful data ac an arbitrary scale &om two-dimensional 

imagery. The goal of multiresolution analysis, as scared, is to provide a decomposition char 

enables a "scale-invariant interprecation" of an image. Of course, we may subscicuce che 

word "image" wich any meaningful sec of data under consideracion. 

The prerequisice for a mulciresolution analysis to occur is che existence wichin che 

domain of che representation of a nested sec of linear spaces. Such a hierarchy of spaces is 

possible only when che sec of scaling basis funccions spanning a given space Vi is refinable, 

1.e.: for all j in [l, m] chere must exist a macrix pi such char 

<I>i-1 = <1>i pi 

where <I> i is che set of scaling basis funccions ac level j. It can be shown char all funccions 

which can be subdivided are refinable, char is che sets of funccions at neighboring levels of 

resolucion can be related in chis way. Anocher way to express che idea of chis nesced 

hierarchy of spaces is in che form 

V 0 cV 1 cV 2 
C··· 

Note chat, since Vi and Vi-I have dimensions v(J) and v(j - 1), respectively, pi is a 

v(j) x v(j - 1) matrix. Similarly, since Vi-I + W i-I =Vi , we can express che sec of wavelets 

at level j - l, 'I' i-I , as linear combinations of the scaling funccions <I> i . That is, there must 

exist a v(j) x w(j -1) matrix of constants Qi satisfying 
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For example, we can denote the matrices P 2 and Q2 which perform the refinement from 

levels 1 to 2 of the Haar basis as the following 

10 

10 p2= 
01 

01 

1 0 

-1 0 
and Q 2 = 

0 1 

0 -1 

Note that, if we conjoin these matrices in block matrix form, they form a square matrix that 

is also invertible, which will have some important implications, as we will see shortly. In 

fact, we may express the general equations stated above in block matrix form as well: 

This is referred to as a two-scale re/,arion for scaling functions and wavelets and the matrices 

P 1 and Q 1 are known as synthesis matrices. 

If the preceding precondition regarding the existence of such nested spaces is met, the 

master strategy of a multiresolution analysis is to deploy a filter bank for transforming an 

input image into a wavelet transform. A filter bank for converting an input image cm into a 

wavelet transform would be diagrammed as follows: 

Am Am-1 
cm ______ __,._ c m-1 _______ c m-2 A1 

--------co 

Figure 13: A multircsolution filter bank. 
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In order co build this filcer bank, we muse find analysis matrices A , the low-pass, 

downsampling filcer thac coarsens the signal, and Ii , the high-pass filcer thac records the 

derails of significance ac this scale, such thac 

cj-1=Ajcj and dj-1 =B1cj 

where A j is a v(j -1) x v(j) matrix and Bj is a w(j - 1) x v(j) matrix. The contents of the 

transformed image, then, begin with the base sec of coefficients c 0 and proceed with all of the 

d I from righc co left along the boccom of the diagram. 

If these macrices are chosen appropriacely, then the original sec of coefficients cj can be 

recovered from c j-l and d 1-
1 by using the synthesis macrices P j and Q 1 as previously 

defined: 

cl =pl c1-1 + Qld 1-1 

This works because the coefficients being modified are the linear mulcipliers for the basis 

funccions already relaced by P 1 and Q 1 and so they can be directly relaced in this fashion. 

This observation gives us a way co express the inverse relacion of the scaling and wavelec 

funccions at adjacent levels. Using the analysis filters A j and B 1 and the face chat v(j - 1) + 

w(j -1) = v(j)' we can build the block macrix [A I I B 1 r co obcain the following: 

Like the block macrix previously described for combining the synthesis macrices, this square 

macrix is also invertible. In face, ic is clear from comparing both of these equacions that 

For example, the analysis macrices for the Haar basis at level 2 are as follows: 
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2 1 [1 1 0 OJ 2 1 [1 - 1 0 OJ A =- and B =-
2 0 0 1 1 2 0 0 1 -1 

If these are combined in block matrix form and inverted, the result will be the block matrix 

[P2 I Q2]. The following are some useful identities obtainable from this result: 

A1Q1 =Bipi =0 

Ai pi =BiQi =PiAi +Qi Bi =I 

Jc should be pointed out that the Haar basis is one of the rare wavelet bases where the sec of 

wavelets at a given level is orthogonal not only co the sec of scaling functions ac that same 

level but also orthogonal to the scaling functions ac every coarser level of resolution as well. 

This is known as an orthogonal multiresolution basis and has the nice result that the block 

matrix forming the sec of analysis filters for any level j is actually the transpose of the block 

matrix forming the sec of synthesis filters at that same level (within a scaling factor), that is 

This happy result is not the norm for most wavelet bases. The only restriction for this 

majority of cases is that the spaces V 1 and W 1 be orthogonal to each other at that level which 

means that, once the synthesis filters P 1 and Q1 have been determined from the refinement 

relations between the wavelets and the scaling functions at each level j, we can invert the 

block matrix holding the synthesis filters to obtain the block matrix containing the analysis 

filters. 

To sum up, multiresolucion analysis leverages the properties of the wavelet transform co 

produce a linear-time decomposition of an image, obtaining a scale-invariant representation 

of that image. Perhaps most important is that once the filter bank effecting this analysis has 

been defined, data representations of different scales may be directly related by these filters 

without recourse co any of the scaling functions or wavelets that built them in the first place. 
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3. MULTIRESOLUTION CURVES 

In this section, we will combine the analysis techniques described in the previous section 

with the curve representation for endpoint-interpolating B-splines obtained in section 1 co 

produce a unified representation for a mulciresolucion curve. The material in this section is 

almost entirely drawn from [Fink94] and [Scol96]. 

3.1 B-splines and Spline Wavdcts 

In order for a curve representation co be modeled at a number of different scales, by the 

requirements of mulciresolucion analysis the sec of basis functions spanning the vector space 

containing the finest scale representation of the curve muse be refinable. For a cubic B­

spline, the basis functions in this case correspond co the sec of blending functions from which 

each curve segment is formed. From Figure 9, in face, we can observe that the piecewise 

cubic "hat" function, whose pieces form the blending functions over a specific segment, 

behaves in exactly the manner we would expect from a scaling function. That is, the same 

function, which is nonzero only over a bounded interval, is shifted co cover successive and, in 

this case non-distinct, intervals, where the maximum value of the function is centered over 

the point along the curve where the corresponding control point exerts the greatest influence. 

Lascly, we know there are several algorithms for knot insertion or for subdividing a given 

curve. Since the curve representation is capable of subdivision, chis means its basis functions 

are refinable and so the cubic B-spline representation is a ·candidate for mulciresolucion 

analysis. 

The task now is co generate the synthesis filters P and Q for each level of resolution. 

This seep is somewhat complicated due co the face chat we are using endpoint-interpolating 

B-splines, meaning chat we have mulciplicicies at both ends of the knot sequence for our 
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curves. The usual method for finding che blending funccions for a curve wich a no:l-uniform 

knoc sequence is co compuce chem using che Cox-deBoor recurrence [Fari88]: 

b~(t)={} t i 5,t5,~i+ I 
0 otherwise 

t-t t -t 
b~ (t) = i b~-I (t) + 1+ d + I b~.._~ 1 (t) 

(i+d - ti f, +d+I - f,..1 

where che values ti are che indexed knocs in che knoc sequence and che subscripc d refers co 

che degree of che polynomial; chus, chis recurrence muse be called up co three levels co find 

che appropriace blending values for a piecewise cubic polynomial. Noce chac che definicion of 

che basis funccion for che base case of che recurrence, i.e.: wich d = 0, looks similar co che 

definicion of che box funccion in che Haar basis. Unsurprisingly, it is che same funccion since 

che Haar basis is a piecewise conscanc B-spline. Once che values of che blending funccions 

are decermined, che P synthesis macrix may be builc, encoding each B-spline as a linear 

combinacion of B-splines char are half as wide. We noce chac, for each levelj, che number of 

segmencs in che curve represencacion is i and so che number of concrol poincs is i + 3. 

Thus, che matrix Ji has i + 3 rows by Y' + 3 columns. After finding Ji, a matrix Q is found 

which satisfies che equation 

where [( <l> 1 I <l> 1)] is che matrix of inner produces of all che basis funccions in <l> 1 . In 

essence, che problem is co find Y' column basis veccors chac can span che nullspace 

(P 1 )T [(<1> 1 I <1> 1)] . There are many ways co selecc such veccors buc, in praccice, che best 

way is to constrain che number of nonzero encries in each column and require these encries 

to be consecucive. Puccing as many zeros as possible at che cop and boccom of each column 
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will guarantee that the wavelets will have compact supports. Appendix B contains MATLAB 

code for the routines that compute the P and Q matrices for any input arguments d, for the 

degree of the polynomial, and j, for the level of resolution. Figure 14 shows the plots of the 

scaling functions and the first four wavelets at resolution level 3 . 

... L____. . '!Jh ______, D •• , /\L____, .. , A A f\ ' 

.... ~ .... ~ .... ~ .... ~ 

Figure 14: The B-spline scaling functions and the first four wavdets at lcvd 3. 
[Fink94] 

The filter banks for cubic endpoint-interpolating B-splines produced by these routines 

are shown in Appendix A for the first few levels of resolution. The impact of the non-

uniform behavior of the basis functions at the endpoints is revealed in the irregular pattern of 

values in the first few and lase few column vectors in both the P and Q matrices. However, 

above level 3 for the P matrix and level 4 for the Q matrix, the behavior of the inner column 

vectors is extremely regular; in fact, the same column vector is repeated, offset vertically by 

two rows from its neighbor, with these repeated vectors framed by the irregular end 

conditions. This simple structure makes the creation of filters for higher levels of resolution 

relatively easy. Furthermore, the face that both secs of matrices are banded diagonal matrices 

means that the number of multiplications, although still linear in the number of rows (i.e.: 

the number of refined control points), is bounded by the largest number of nonzero entries 

in the repeated column vectors, making refinement a linear rime operation [Pres92]. 

Although we may combine the P and Q filters in block matrix form and invert this to 

create the analysis filters A and B, the resulting matrix will most likely not be a banded 
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diagonal macrix. Thus, coarsening operations would take quadratic time to compuce while 

refinement operations took linear time. A way to get around this problem is to recast this 

problem as an instance of a solution of Ax = b , where we are solving for x. This is done by 

caking the LU decomposition of the combined synthesis matrix PQ. We will solve for the 

set of control points c1-
1 knowing the macrix PQ and the input c1

: 

PQc1- 1 = LUc1- 1 = L(Uc 1- 1
) = c1 

This is done in two passes: first, solve for Ly = c 1 with backsubstitution; next, solve for 

Uc1-1 = y using the same method. The LU decomposition of the matrix PQ will maintain 

the efficiencies of the original' s banded diagonal form so this operation also can be 

performed in time linear to the size of the data set. 

3.2 Integral and Fractional levds of Resolution 

Once the filter bank has been created, a multiresolution curve representation is capable 

of supporting a number of graphical editing operations, including the ability to apply 

continuous levels of smoothing to a curve; the ability to edit a curve at any continuous level 

of detail; the ability to change the "sweep" or direction of a curve while maintaining its 

texture or "character" or, conversely, the ability to modify the "character" of a curve withouc 

affecting its overall "sweep". 

The coarsening or refinement of a curve to integral levels of resolucion becomes trivial 

once the filter banks for those levels have been created. Suppose we are given a curve 

q(t) which has m control points c = [c0 · · · cm-I] and we wish to construct the 

approximating curve using m' control points c' = [c' 0 • • • c' m·-i], where m' < m, assuming 

both curves are endpoint-interpolating B-splines. If we assume for the moment that 
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m = 2 i + 3 and m' = 2 i ' + 3 for nonnegative integers j' < j, then the control points c' of the 

approximating curve are given by 

c'= Ai'+1 A i'+2 ... Ai ci 

That is, we run the mulciresolution decomposition algorithm, recursively passing each 

coarsened set of control points through the filter bank until the desired resolution is reached. 

Again, since the computations performed at each level are done using the linear time LU 

decomposition algorithm previously described, this modification of the curve can be 

performed at interactive speeds. Note that, in practice, we would also be presenting each 

coarsened set of control points to the corresponding B filters as well, preserving the detail 

information lost through coarsening at each pass in a set of detail coefficients d i-I , · · ·, d i' . 

This process is straightforward when the desired levels of resolution are discrete in 

nature. If a fractional level of resolution is desired, there is no obvious way in which a quick 

approximation can be constructed. Instead, a more practical solution is to define a 

fractional-level curve qi+µ (t) for some value 0::; µ::; 1 which is a linear interpolation 

between its two nearest integer-level curves q i (t) and q i+ I (t) , expressed by the following: 

qi+µ (t) = (1 - µ)q i (t) + µ qi+i" (t) 

= (l - µ)<t>i (t)ci + µ <t>i+I (t)c i+I 

This interpolation allows smoothing to take place at any continuous level. An example of 

such a fractional-level curve is shown in Figure 15. 

Figure 15: Fractional-levd curves: {a) levd 8.0; (b) levd 5.4; (c) levd 3.1. [Fink94] 
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Ar any poinr in our application of coarsening and refinemenr operations on a 

mulriresolurion curve, the curve representation may contain a sequence of low-resolurion 

0 J-l d f h. h 1 . d ·1 d0 d J-l Th' . conrrol poinrs c , · · ·, c an a sec o 1g -reso unon era1 pares , · · · , . 1s perm1rs 

cwo very different kinds of editing co be performed on such a curve. If we edir some low-

resolurion version of the curve cf and then add back the derail values d f, d f+ I ,. • · , d J-l , we 

will have changed the overall sweep of the curve while preserving ics derails (see Figure 16). 

Conversely, if we leave the low-resolution control points intact and modify instead the set of 

derail values, we will have altered the character of the curve while preserving irs overall sweep 

(see Figure 17). We nexc describe these editing operations in more derail. 

(a) (b) (t:') (aJ 

Figure 16: Changing the sweep of a curve without affecting its character. [Fink94] 

Editing a curve ar an integral level of resolurion is simple. Lee cJ be the control points of 

the original curve qJ (t), lee cf be a low-resolurion version of cJ, and lee cf be an edited 

version of CJ' given by cf =cf + tJ..cf. The edited version of the highest-resolution curve 

AJ J J 
c = c + Lie can be computed and reconstructed as follows: 

cJ = cJ + LicJ 

=CJ + pfpJ- 1 • •• pf+l tJ..cf 

The lower the value for], the greater the change co the overall sweep of the curve. 
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Editing a fractional-level curve is somewhat more complicated. Since a fractional-level 

curve is an interpolation between curves ac neighboring integral levels of resolution based on 

some value for µ , we would like che effect of any edits we perform on a curve of level j + µ 

co interpolate che proportional changes co che curves at levels j and j + 1. Thac is, as µ 

moves from 0 co l, che curve at level j is less affected by an edit and che curve ac level j + 1 is 

more affected. Lee qf+µ (t) be a fractional-level curve and lee cf+µ be the sec of control points 

associated with this curve, chat is 

qf+µ (f) = <J>f+I (f)Cf+µ 

This formulation suggests that the number of control points in cf+µ marches the size of cf+J 

which is incuicively correct; in practice, these same control points are used co edic che curve. 

Suppose the user modifies one of the control points erµ. To propagate the effect of chis 

change, the system will have co move some of che nearby control points when erµ is 

modified. The distance these nearby points are moved is inversely proportional to µ ; for 

example, when µ is near 0, the control points at level j + µ are subject co a wider propagation 

of che edit whereas when µ is near 1, the displacement co nearby points is more confined. 

Let !J.cf+µ be a vector recording the change co the control points of the fractional-level 

curve; this is essentially a zero vector except for the i-th entry which records the edit co e;+µ. 

We will break chis vector into two components: a vector !J.cf recording che changes to the 

control points of the nearest integral lower-resolution curve and a vector lld f recording the 

changes to the wavelet coefficients of the same lower-resolution curve and defined as 

lld f = Bf+1 
!J.cf+I. The changes to the higher-resolution curve at level j are then 

reconstructed as follows: 
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We can obtain an expression for !l.c j+µ by the following derivation: 

And so 

<l> j+i (t)!l.c j+µ = qj+µ (t) = (1- µ )<l> j (t)!l.c j + µ <l> j+i (t)!l.c j+i 

= (1- µ )<l> j+I pj+I !l.c j + µ <l> j+I (t)!l.c j+I 

!l.cj+µ = (1- µ)Pj+i !l.cj + µ !l.c j+i 

= (1- µ)Pj+I !l.cj + µ(Pj+I !l.c j +Qj+l !l.d j ). 

= pj+I /l.cj + µ Qj+I /l.d j 

Next, we need co define a new vector !l.c'j which records the changes co the control 

points at level} necessary co move the modified point cf+µ co its new position. We also 

define the vector !l.c'j+µ co record the user's change co the i-ch control point of the curve ac 

level}+µ , char is an otherwise zero vector whose i-ch entry is !l.c/+µ . The propagation of 

the effect of the edit is then determined by interpolating between these two vectors, using 

some interpolation function g(µ) : 

!l.cj+µ = (1- g(µ))Pj+i !l.c'j +g(µ)!l.c' j+µ 

So, !l.cj+µ will move the selected point co its new position and will also propagate the 

proportional effect of chis change to its neighboring control points as a function of µ . If we 

equate the right-hand sides of both versions of the equation and multiply the results by either 

A j+I Bj+I ch c ll . or , we get e 10 owmg: 

A j+i pj+I !lcj + µ Aj+IQj+I !l.dj = (1- g(µ))Aj+I pj+i !l.c'j +g(µ)A j+I !l.c' j+µ 

Bj+I pj+I !l.cj + µBj+IQj+I !l.dj = (1- g(µ))Bj+I pj+I !l.c'j +g(µ)Bj+i !l.c'j+µ 

If we apply to these expressions the "invercibility" identities we listed in section 2.2, we get 

the following simplified expressions: 
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/!,.c 1 = (1- g(µ))!!,.c'1 +g(µ)A J+i 1!,.c''+µ 

/!,.d 1 = g(µ) B 1+1/!,.c' 1+µ 
µ 

In practice, any function on µ chac increases monoconically on [O, I], such as µ 2 
, would be 

suicable for g. The lase derail co be defined is che definition of che veccor /!,.c' '. This also will 

be a vector which is zero everywhere except for one or cwo entries, depending on che index i 

of che modified control point and che i-ch row of che refinement matrix p i+l . We wish co 

determine che column index k of chis matrix chac identifies che point of maximal influence in 

che i-ch row of chac matrix. If one such point exerts che maximal influence, chis means chac 

che modified control point is mosc influenced by che control point cf+ 1 and we can define 

1!,.c'i as !!,.cf+µ I P;:/1
• If cwo neighboring points exert equal influence, chen define boch /!,.c'{ 

d A 1) A }+µ /2pJ+I an uC k+I as uC; i,k • 

The reverse of che previous sequence of derivations chen boils down into che following 

sequence of seeps for modifying a fractional-level curve: 

I. Define /!,.c'1+µ = [o, · · ·, 0, !!,.cf+µ, 0, of 

2. Define /!,.c' 1 as described above. 

3. Define /!,.c 1 and /!,.d 1 according co che equations ac che cop of chis page. 

4. Conscrucc che offsets co che highesc-resolucion curve using che equation ac che cop of page 

37. 

The only portion of che above algorichm involving any repetitive compucacion is step 4 and, 

since chis sequence of steps cakes linear cime, che entire manipulation should be able co be 

performed at interactive speeds [Scol96]. 
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We may now discuss the ocher form of editing operations we can perform on 

multiresolucion curves, namely chose involving the detail coefficients. The goal of chis 

process is co perform edits similar to chose shown in Figure 17 where the texture or character 

of a curve may be modified while its general sweep is left unchanged. 

( ( 

Figure 17: Changing the character of a curve without affecting its sweep. [Fink94] 

The "editing" operation in chis circumstance is almost trivial. Let cJ be a curve 

· d l 0 J-i d0 dJ-i d . l . l . d .. representanon an et c , · · ·, c , , · · ·, enote ltS mu nreso unon ecomposmon. 

To edit the character of a curve at resolution level j, one simply replaces the detail 

coefficients d j, • • ·, d J-I with some new set d j, • • ·, d J - I and then reconstructs the curve back 

to level]. Finkelstein and Salesin [Fink94] discuss the possibility of preserving a repertoire 

of such textures in the form of a library of detail coefficients. The actual replacement of 

some subset of detail coefficients must be performed at some integer level, of course, but the 

resulting curve will still be subject to all of the ocher fractional-level manipulations described 

so far. 

There are different ways in which we can process these detail coefficients. The high-level 

description of these editing operations as we have described chem so far ultimately rests on a 
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representation of a parametric curve chat we can treat in terms of its separate functions on x 

and y. This is indeed how we process and modify the control points of the curve and how 

we would practically render the curve in some graphic context. This may nor be the best 

way co handle the derail coefficients of the curve representation. For example, Figure 18 

shows how the derail values, if they are also computed and reconstructed using an x,y 

orientation, may result in some non-intuitive and undesirable behavior in the reapplication 

of char cexcure. An alternative co chis is co specify a change in the curve relative co the 

tangent and normal directions of the lower-resolution curve q1-
1 (t) . These tangent and 

normal values are computed using the parameter value 10 corresponding co the peak of the 

wavelet If// (t). The implication is chat the curve representation is no longer a simple linear 

combination of the control points and the detail coefficients; instead, a change of coordinates 

must be applied, both when the details are computed and again when they are reapplied. 

Since chis process is linear in the number of control points, however, chis should add no 

degradation co the overall performance of the algorithm. 

OP'igi/la( CCIP'IY. Ftt~d .TY·Ol'i~ntClliolt. D~tail l'r fati •~ to dr~ tangrnt. 

Figure 18: Orientation of detail in an edited curve. [Fink94] 
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3.3 Implications of Multircsolucion Curve Theory 

We have provided in chis section an extremely high-level, mathematical blueprint for a 

number of very interesting and sophisticated graphical editing operations. Most interesting 

of all is the claim, which is supported by the consistency of the derivations based upon the 

core performance of the multiresolution decomposition algorithm, chat all of these complex 

operations may be performed in time linear in the size of the representation, i.e: in real time. 

These arguments seem persuasive and we may prefer to be convinced by chem or at least to 

use these arguments as the foundation for a more rigorous proof of correctness chat would 

substantiate chis claim. However, the most convincing validation (if not proof) of chis claim 

would come from actually building an application chat could model these operations in a 

thorough and convincing manner and to see if, in practice, these theoretical benefits can 

actually occur. 

The remainder of chis paper will describe the design and implementation of a GUI-based 

application designed for the construction and manipulation of multiresolution curve 

representations and modeling all of the operations described in chis section. 
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4. IMPLEMENTATION DESIGN AND RESULTS 

In this seccion we will describe the design and implemencacion of an inceraccive, GUI­

based applicacion we shall chriscen as "CurvEdicor". The purpose of the CurvEdicor is co 

provide an environmenc for the conscruccion, edicing, and refinemenc and coarsening of 

mulciresolucion curves, i.e.: cwo-dimensional curves whose represencacions are capable of 

embedding a range of derail abouc the curve ac a variecy of differenc scales of resolucion. 

Beyond the implemencacion of this sec of operacions, as described in seccion 3 of this paper, 

the applicacion also models a sec of reasonable scandard incerface operacions, such as the 

abilicy co score and recrieve curve represencacions as files; the abilicy co edic mulciple curves; 

the abilicy co undo/redo edics and other operacions; the abilicy co modify the display of 

edicorial derail in the graphic environmenc; and other "good policy" operacions. 

We shall firsc of all presenc a high-level overview of the modular conscruccion of the 

design, explaining the roles of these separace componencs. Nexc, we will discuss the 

implemencacion of each of chese modules, focusing on che more imporcanc funccionalicy in 

each module and how ics serves co model che operacions described in seccion 3. Lascly, we 

will have some remarks on che performance of che applicacion, boch in cerms of inceraccive 

performance and also correccness, some descripcion of che limicacions of che applicacion and 

unimplemenced feacures, and some remarks on excensions and fucure work. 

This applicacion was wriccen in che high-level programming language Java using che 

implemencacion of che language provided in che JDK Qava Developer's Kie) v. 1.1.?b 

combined wich che Java Foundacion Classes (Swing) Libraries. Boch of chese sofcware 

developmenc cools are publically available and may be downloaded from che websice 

http://www.javasoft.com/ which is sponsored by Sun Microsyscems, che originacors of che 

Java language specificacion. This applicacion was also wriccen and reseed on a Pencium 
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z66MHz IBM-compatible PC wich 32MB of RAM; all scacemencs regarding any subjeccive 

evaluation of che inceraccive performance of chis application should be understood in chis 

concexc. 

4.1 Overall Structure of Application 

A fundamencally sound scracegy for organizing GUI (graphic user incerface) based 

applicacions of any scale is co firsc decouple whac is known as che "business logic", or che 

componenc(s) where all of che primary compucacion involved in che applicacion cakes place, 

from che "UI logic", che derailed and often highly complex code char organizes che visual 

information displayed co che user and refaces che requests for services char che user makes 

through chis interface co che proper routines in che business logic. This scracegy was pursued 

from che oucsec in che design of chis application and, as a resulc, che organization of chis 

application is builc upon two key componencs: firsc, che multiresolution engine which 

performs che business logic of che application; and secondly, che application interface which is 

icself organized inco subcomponencs, as we shall see. 

The mulciresolucion engine is che portion of che code dedicaced co creacing che filcer 

bank, i.e.: the syscem of analysis and synthesis filcers which enable shifts in resolucion, and 

also co supplying che basic operacions coarsen and refine, through which che resolucion 

shifts occur. These operations cake as inpucs a sec of concrol points, che basis of the curve 

represencacion, and an inceger for che resolucion level which also funccions as an index inco 

che arrays of matrices forming che filcer bank. Boch operations return che cransformed sec of 

concrol points as a return value. The ocher major operation in chis module is edi tcurve 

which is invoked when an edic on a &accional-level curve is performed; chis mechod recurns 

che modified set of concrol poincs recording che discribuced effecc of a fraccional-level edic, as 

described in section 3.2. 
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The design of the application interface borrows an organizational idea from graphics and 

Java programmer Leen Ammeraal [Amme98]. The interface itself is split into two major 

components: the application frame, which contains the main method for initiating the 

program and contains the typical repertoire of GUI components, such as a menu bar, a 

toolbar and a slider bar, and all of the requisite interfacing logic; and the application canvas, 

the field within which the curves are actually drawn and manipulated. Structurally, the 

application frame contains the canvas object and the canvas contains, among its member 

data, an instantiation of the multiresolucion engine. The.canvas object also contains an 

instance of an undo stack, a modified version of the Java Stack object, and a Vector 

containing possibly multiple instantiations of CurveState objects which is the representation 

this application uses co score information defining a curve. 

The complete code listing for this application can be found in Appendix C. 

4.2 Description of Major Components 

4.21 Multiresolution Engine 

The component serving as the multiresolucion engine in this application is defined in the 

file Mul tires. j ava as the Multires class. The fundamental data comprising a Multires 

object are the arrays for storing the matrices or two-dimensional arrays that represent the 

analysis and synthesis filters of the filter bank. The primary purpose of this module is to 

create a filter bank designed explicitly to operate on sequences of control points that 

represent endpoint-interpolating cubic B-spline curves and to provide coarsen and refine 

methods which employ this filter bank. 

The creation of the filter bank is helped greatly by the repetitive structure of these 

matrices above a certain level of resolution (see section 3.1 and Appendix A). While the 
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lower resolution filters are more irregular, che construction of che higher-level matrices may 

be automated to a great extent. In che Multires object, chis automated matrix generation is 

done by che initMatrices method, which is called from che constructor. 

The initMatrices method first of all inserts che macrices for che first three levels of 

resolution into che arrays PQ and AB. These matrices have already been hardcoded as 

statically declared arrays in che class definition. The reason for declaring chem as static is an 

attempt at optimization; a static declaration forces chis data to reside as part of che class 

definition rather than within an instance of a class so chis may employ one less level of 

indirection in terms of data access. The naming of che arrays as PQ and AB refers to che fact 

chat these matrices are modeling che synthesis and analysis filters as block macrices, with both 

che P and che Q matrices, for example, combined in che same matrix. The sources for che P 

and Q matrices are che filters shown in Appendix A. The corresponding AB matrices are che 

inverses of che PQ matrices. The hardcoded values in these matrices were computed using 

MATLAB. These matrices are small enough not to warrant any extra optimization regarding 

macrix multiplications. 

Above chis level, che matrices are built in a much more optimized manner. To 

understand what is happening we need to look at che structure of che combined PQ matrix at 

higher levels. First of all, che P and Q matrices at level j have, respectively, (2 1 + 3) rows by 

(2 f-I + 3) columns and (2 1 + 3) rows by 2 f - I columns. Figure 19 shows che structure, 

though not che actual values, of a block matrix containing che P and Q matrices at level 4. 

As in che matrices shown in Appendix A, all zero entries are left as blanks. The repeated 

column vectors are shown in bold. It should be clear chat, as che level j increases, che 

dimensions of chis block matrix double with every increase. If we leave che structure of chis 
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matrix unmodified, even with the number of zeros present in the matrix any computations 

using chis form would cake quadratic rather than linear time, which is not accepcable. 

p q 
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p p q q q 

p p p q q q q 

p p q q q q 

p p p q q q q q 

p p q q q q q 

p p p q q q q q q 
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p p q q q 

p p q q 

p q 

Figure 19: Block matrix diagram of synthesis filters P and Q. 

The optimization strategy comes in two pares. The first seep is co observe chat, since 

both P and Q in isolation are structured as banded diagonal matrices (recall chat we 

constructed the Q matrices co support explicitly chis kind of structure) , we may interleave the 

column vectors of chis block matrix co produce a single banded diagonal matrix. The 

difference in the number of columns is chat P has 3 more column vectors than Q. Therefore, 

such an interleaved matrix will have the first 2 columns and the lase 2 columns from P and 

an alternation of columns from P and Q between these ends. The paccern of the resulting 
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interleaved matrix is shown in Figure 20 again with the elements of the repeated column 

vectors in bold and also with the elements on the main diagonal highlighted in boldface and 

caps. Note chat the effect of the alternation of the repeating column vectors from P and Q is 

co position the center of the sequence of nonzero elements of these vectors directly on the 

main diagonal. 
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Figure 20: Revised block matrix after interleaving. 

Once we have created chis banded diagonal matrix we next need to find a way to make 

the form more compact as a means to optimize matrix multiplications. Press, et al. [Pres92] 

in the book Numerical Recipes in C describe a series of highly optimized algorithms for 

manipulating a banded diagonal matrix expressed in a certain form. The transformation 
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used is co essentially declare scorage for a matrix with the same number of rows but with the 

number of columns equal co the sum of the number of subdiagonals (diagonal "rows" below 

the main diagonal) plus the number of superdiagonals (those above the main diagonal) plus 

1 (the main diagonal). Next, the column veccors are entered into this matrix in anti-diagonal 

fashion so that the column that is indexed at a position equal co the subdiagonal width plus 

one contains all of the entries of the main diagonal. Performing this redistribution on our 

example gives us the final compacted form in Figure 21. 
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Figure 21: Optimiud banded diagonal form for block matrix PQ. 

This matrix is still somewhat sparse, as evidenced by all the (implicitly) zero entries, but the 

number of such entries per row is now fewer. More to the point, as the level j increases and 
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the number of rows approximacely doubles for each increase, che widch of che macrices 

generaced will always be the same. This is due co che repecicive column veccor in che Q 

macrices, whose lengch of nonzero elemencs decides che widch of che cransformed block 

macrix. Thus, the execucion rime for macrix mulciplicacion is reduced co che number of 

encries in che column veccor co be mulciplied rimes a conscanc and cherefore becomes linear 

rime. The initMatrices mechod licerally conscruccs chese compacc form macrices by 

populacing che respeccive anci-diagonals of che macrix wich che values concained in che 

repeated column veccors, which are declared as static one-dimensional arrays. The column 

vectors belonging co che Q macrix muse firsc be mulciplied by a scalar normalizacion value 

which is resolucion-level dependenc (see Appendix A). The opcimized roucine banmul, char 

cakes a macrix in chis form and a column veccor as argumencs and recurns che compuced 

column veccor recording cheir produce, is drawn almosc directly from che code liscing 

presenced in [Pres92]. 

(A remark abouc che code concained in [Pres92] is in order. As inescimable as chis book 

is in its praccical ucilicy, ic has che racher unforcunace habic of demonscracing array processing 

roucines, which are clearly written in C, by indexing inco an array of size n wich values in che 

range l..n, whereas che syncax normally expecced in chis hrnguage, and in Java as well, 

handles index values from 0 con- 1 as legal. No explanacion for chis scrange usage is 

offered. To use chis code, chen, one can do one of cwo chings. One can eicher declare excra 

scorage, i.e.: declare an array of size n + 1 where one of size n is needed, forgeccing abouc che 

entry at index 0 and using che remaining range oflegal indices. Or, one can rewrite che code 

so char proper indices are used, which is a highly non-crivial cask given che opcimizacions 

inherenc in che code. In chis applicacion, che laccer course was taken. So, as an addicional 

public service, che code liscing presenced in Appendix C contains highly optimized code for 
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manipulating and performing operations on banded diagonal matrices which indexes the 

arrays forming these matrices in a legal and proper manner.) 

Having manufactured the PQ matrices for several levels of resolution in this manner, 

initMatrices must also create the analysis filters or the AB matrices as well. This rime, 

however, we cannot simply invert the corresponding PQ matrix since the result will not be a 

banded diagonal matrix and so we will have no opportunity for optimization. Instead, we 

muse decompose the PQ matrix into upper triangular and lower triangular matrices and use 

these co find a solution for a given sec of control points using backsubscicucion, as described 

in section 3.1. 

We can describe the LU decomposition algorithm with a simple example. Suppose we 

are given a square matrix A and a column vector b and we wish co find the column vector x 

such that Ax= b. For clarity, lee us work with an actual example and lee 

We first of all declare another matrix L which is initialized as the identity matrix with the 

same dimensions as A. We next begin reducing matrix A co form U. For example, co reduce 

the second row, we multiply the first row by 2 and add this co the second row, since the 

entry in the pivot of the first row is 1. At the same, we place this multiplier, 2, in the first 

column of the second row, yielding the following two ma"trices for U and L ac this seep: 

U = [~ ~ ~] L = [~ ~ ~] 
2 5 7 0 0 I 
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We perform the same reduction on the third row at chis time as well, chis time multiplying 

the first row by -2 and adding the result to the third row and setting the element in the first 

column of the third row of L to -2: 

U = [~ ~ ~] L = [ ~ O ~] 
0 -1 3 -2 0 1 

Note chat the next logical step is to interchange the second and third rows in U in order to 

have a nonzero pivot value on the second row. We must save chis permutation information 

and so we will maintain an array named indx whose i-ch entry is the index of the row chat 

got swapped into chis i-ch row. In chis example, the values of the array indx would read [O, 

2, 2) since the first row was not swapped but the third row was swapped with the second 

row. The last row is, of course, left in place so the index of chat row, 2, occupies the last 

entry of the array. After swapping we have the following upper and lower triangular 

matrices: 

U = [~ ~ 1 ~i L = [ ~ O ~] 
0 0 5 -2 0 1 

Note chat, if we perform the multiplication LU and reverse the swap of the second and third 

rows, we get the original matrix A. Having computed these matrices, we can recast the 

equation Ax= bas LUx = b or L( Ux) = b. We then find the solution by first of all solving for 

Ly = b and then for Ux = y, using backsubstitution in both cases. 

When A is a banded diagonal matrix and is also of the compact form described above, we 

can perform an LU decomposition on chis matrix using the routine bandec which has also 

been adapted from [Pres92]. This routine changes the original input matrix A, just as in our 

example above, so in practice, when initMatrices calls chis routine to decompose a PQ 
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macrix, ic firsc makes a copy of chis macrix and passes chis copy. This copy will concain che 

upper criangular componenc as a result and che lower triangular macrix AL is contained in 

anocher macrix which has che same number of rows but a. number of columns limiced by che 

subdiagonal widch of A. The widch of che upper triangular pan is also, effectively, che 

superdiagonal widch of A. Combined backsubstimtion chrough boch of chese macrices, chen, 

in order co compute che effects of che analysis filter, will also cake time linear in che size of 

che daca since che number of computations per row of boch chese macrices is bounded by a 

constant. The computed decomposed matrices are scored in che two-dimensional array AB, 

just as che hard-coded lower-resolution matrices are. In addition, che array ABindx 

maintains a record of any row permutations undergone by che upper triangular matrix in che 

process of computation. 

The major utility mechods of che Mulcires object are coarsen, refine and edi tCurve. 

The coarsen mechod cakes as inputs an array of Point20 objects and an inceger 

corresponding co che resolution level of che desired analysis filter. First, che Point20 class, as 

defined in che file Point20.java, is a lightweight object for maintaining an x,y coordinate, 

wich chese elements scored as floats. The input points in chis case represent che sec of control 

points for a curve wich resolution value}. The coarsen mechod first converts the points to 

dual one-dimensional arrays of x and y coordinates and chen applies che analysis filters 

corresponding co resolution level j co each of chese arrays. In boch arrays, che results should 

be a shortened list of control point data followed by a list of detail coefficients making up che 

difference of che lengch. What coarsen must do is decide what co do based upon che input 

level j. If j is low enough, one of che low-resolution hard-coded analysis filters is used and so 

che results are obtained by executing a simple matrix multiplication. If j > 3, chen che 

multiplication result muse be obtained chrough backsubscimcion chrough che scored 
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decomposed upper and lower triangular matrices for char level. This compucacion is 

performed by calling che banbks mechod, again adapted from [Pres92], which 

backsubscicuces chrough boch matrices corresponding co char level, using che array of inpuc x 

coordinates, chen che array of y coordinates. After chis compucacion is made, we muse 

change che order of che elements in che array; recall char co build die banded diagonal matrix 

in che first place we had co interleave che order of che column vectors. The oucpuc of che 

backsubscicucion evinces chis same interleaving and so, as a resulc, we muse un-interleave 

boch of chese x and y arrays first before we chen convert chem back into an array of Point2D 

objects and return chis array. 

The work involved in che refine mechod is very similar. The input sec of Point2D 

objects in chis case contains a list of control points for a low-resolution curve followed by a 

lisc of derail coefficients representing any significant behavior, if any, char when applied co 

chis curve will show up ac che nexc level. Once again, after converting che points co arrays of 

x and y coordinates, a decision is made based upon che value of j for che mulciplicacion 

procedure co be used. For low values, again, a simple mulciplicacion using che hard-coded 

synchesis matrix is performed. For j > 3, we use che banded diagonal forms which means 

char che inpuc secs of x and y coordinates muse be interleaved in che same manner as che 

column vectors char went into che building of chis matrix. Once done, a call is made for 

each of che x and y arrays co che mechod banmul, again adapted from [Pres92], which returns 

che result of che matrix mulciplicacion. Nore char no un-interleaving is necessary here; che 

column vectors were interchanged bur che rows were lefc intact. These x and y arrays are 

convened back co Point2D objects and che resulting array is returned. 

Nore char in che current implementation, che only valid values for j are chose between 0 

and 8. This means char che highest resolution curve char can be computed ac present is one 
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with 256 segments, which was thought sufficient for testing. The initMatrices routine 

fabricates che filter bank to accommodate only this range now. The plan for extending this 

portion of che implementation involves modifying the coarsen and refine routines to 

handle the special case where the resolution level exceeds LEVEL_MAX. In such a case, 

both routines would check the vectors PQrnore and ABrnore to see if they had any entries up 

co che desired level and, if not, fabricate the filter bank matrices for chis and all intervening 

levels that had not yet been created. It is unknown what the execution time would be for 

chis step but it would enjoy the virtue of only needing to be done once since those portions 

of the filter bank would be available for later operations. A short delay in this instance might 

be acceptable. 

The edi tcurve method is used when a modification is made to a control point of a 

curve at a fractional-level of resolution. This method represents the implementation of the 

algorithm described in section 3.2. The inputs to this method are the set of control points 

for the high-resolution curve bracketing this curve (recall chat a fractional-level curve is 

represented by interpolating between two integer level curves), the floor or the next integer 

resolution down from the current level, the value for the fractional amount, mu, and the 

delta-x and delta-y and the array index of the moved point. The input array of points is first 

converted to arrays of x and y coordinates and these arrays are then coarsened to the next 

lower level of resolution, using similar logic to the coarsen method. The control point 

portion of this new array is then multiplied by g(µ) , here µ 2 
, and the detail coefficient 

portion by g(µ) Iµ. Next, we compute the small vector del taCprirne which will store the 

entries of the synthesis matrix of the next level that maximally affect the control point at the 

current index. The function that computes this vector basically exploits the regular structure 

of the higher scale synthesis matrices, making decisions on a case by case basis depending on 
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whether one entry has rhe maximum value in rhe row corresponding co rhe index of che 

conrrol poinr or whether rwo enrries do. The column corresponding co char entry is 

rerurned by chis funcrion and chis value marks che index in the lower-resolution curve where 

che computed del tacprime vector is applied. Lastly, after these adjusred delta values are 

computed chey are applied co che input sec of control points and this lisr is chen returned. 

4.22 The Applicati.on Frame 

The interface for the CurvEdicor is composed of two major components: the application 

frame which is represented by the CurvEditor object defined in the file CurvEditor. j ava; 

and che application canvas represented by the CvBspline object defined in che file 

cvBspline. j ava . Boch of these components derive a good deal of their funcrionalicy from 

the use of the Java Foundation Classes or Swing libraries, a system of classes chat constitures 

a wholescale revision of the graphics functionality that had formerly been offered in the Java 

programming environment. Much of the success of chis application is owed co the 

performance of these objects and we shall make specific citations of particular components 

where appropriate. 

The application frame is modeled by che CurvEditor class which extends che Swing class 

]Frame. (Many of rhe improved graphics classes defined in rhe Swing libraries employ 

familiar class identifiers prefaced wich the letter ']' .) This class contains a main method and 

is in fact the class chat initiates the entire application. As a ]Frame, rhe CurvEditor object is 

capable of instantiating an independent window (complete with title bar, exit buttons, etc.). 

The primary purpose of the CurvEditor frame is co deploy a system of GUI-based cools 

through which the user can invoke a number of useful applicarion features. This system 

includes elements such as a menu bar OMenuBar), a coolbar containing a number of push 

buttons with icons OToolBar), and a slider bar used to control the resolution of a candidate 
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asl .d r) An image showing the overall appearance of the application is shown in curve t e . 

Figure 22. 

Figure 22: The CurvEditor interface. 

The structure of the CurvEditor class is centered entirely on all of the objects comprising 

rhe interface. All of the functionality in the class is tied either to the creation and 

initialization of a major interface component, such as the menu bar or the coolbar, or it is 

dedicated co managing a specific action eying cogether the acrion (and appearance) of an 

inrerface component with a member function of the application canvas object. Because of 
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che cighc fie between che interface and che class design, a descripcion of che feacures offered by 

che incerface may serve as che besc descripcion of che class ·icself. 

We shall begin wich che coolbar, which is che vercical element displaying che buccons co 

che lefc of che interface in Figure 22. There are cen buccons on che coolbar grouped into two 

seccions, wich four buccons in che cop group and six in che boccom. The copmost group 

implements a BuctonGroup membership which means chat only one buccon in che group 

may be selected at any one rime, like a radio buccon. The buccons in chis group select che 

current editing mode and, from top co boccom, rhe editing options are Edie or Select a curve, 

Skecch (Scribble) a curve, Build (Conscrucc) a curve, and Zoom in on a cercain area. Ac 

publicacion time, neicher che Sketch feacure nor che Zoom selection were fully implemented 

behaviors. The buccons in the boccom group are more independent and control various 

aspects of che environment displayed in che applicacion canvas. From cop co bottom these 

buctons coggle between showing and hiding che control polygon of a curve, showing and 

hiding che control points of a curve, showing and hiding che knots at che endpoints of che 

curve segments, showing and hiding a grid, showing and hiding coordinate values in cracking 

the mouse position, and lastly one for clearing che screen. Each of chese buccons has a 

corresponding swapping mechod in the CurvEdicor class which updates the appearance of 

the button and dispatches che current selected setcing to the application canvas object so chat 

chese decisions are echoed there. 

Next, we shall discuss the menubar, which contains four menu categories: File, Edit, 

Options and Help. The pulldown menus associated wich each of chese entries are shown in 

Figure 23. 

The File menu displays, first of all, options for New, Open and Save and Save As. All of 

these invoke file dialog boxes or JFileChooser objects for displaying the selected contents of a 
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parcicular cargec direccory. An objecc thac implements a FileFilcer interface may be invoked 

co associate icons with specific file cypes in che pictorial representation of the directory 

concents offered in the dialog box. A seleccion of a file for opening will result in the loading 

of che objecc contained in thac file into che graphic environment, with the dialog box event 

handler calling the canvas object's loadCurve method. Conversely, a save file opcion will 

invoke anocher event handler thac will recrieve the objecc to be saved from che canvas's 

saveCurve method. Noce that what is actually being loaded and/or saved in this situacion 

are accual objects since the basic curve objects in our syscem implement the Java Serializable 

interface and can therefore be exported, as objects with syscem scace, to any stream, including 

a file. 

~ Cu1vEdito1 v.1.1 

Figure 23: CurvEditor menu sdcction options. 
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The remaining oprions offered under rhe File menu have co do wirh manipulating rhe 

rexcure of an existing curve. Imporr Texture brings up a picrorial lisr of rhree generic 

cexcures and an oprional menu for loading a user-defined .texrure into rhe environment. 

Once again, an object is read in from a file, this time using rhe member loadTexture 

merhod, and this object is passed along co the canvas's irnportTexture method which will 

rhen revise whatever curve has been selected with the new set of details. The option Save As 

Texcure also invokes a dialog box, chis one prompting the user to save a curve as a rexcure 

rarher rhan as a full-blown curve representation, which involves a different file format. 

Under rhe Edie menu we first of all have rhe oprions for Undo and Redo. These 

selections invoke rhe obvious operations on the canvas objecr's undo stack which holds rhe 

most recent moves up co a limir char rhe user selects under rhe Oprions menu. In principle, 

anytime a curve is augmented wirh rhe Build curve selecrion or is edired by moving one of irs 

control points, these qualify as moves co be saved co the undo stack. The remaining entries 

under rhe Edit menu, Selecr, Sketch, Build, Zoom In/Our and Clear Screen, all repear rhe 

funcrionality already indicared for rhe corresponding bucrons on rhe roolbar. 

The Oprions menu also offers backup selection capability, chis rime echoing rhe roggle 

funcrionality of all of the Show/Hide bucrons in rhe roolbar. In addition co rhese selections 

we have two additional submenus, one co selecr rhe grid size, which offers rhe user the 

choices of 10, 15 or 25 coordinate points for the grid dimension; rhe other co set the undo 

limit, i.e. rhe deprh or rhe number of moves rhe undo stack will "remember", wirh options 

for 1, 5 and 10 moves. 

The Help menu simply has an About option which brings up a dialog box identifying 

rhe authorship of the application. 
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The ocher major componenc of the incerface is the prominent slider bar located at the 

bottom of the window. As may be inferred, chis slider bar controls the shifts in resolution 

for a selected curve. The currenc value of the slider is displayed in a }Label object with the 

caption "Resolution value: ". The actual value obtained from a slider is an inceger so chis 

object is calibrated with 80 ticks and the return value is simply divided by 10 and displayed 

chis way. (Recall chat the current implementation of the ~ultiresolution engine constructs 

ics filter banks with a maximum level value of 8.) This value is also transmitted in chis way 

co the member canvas object; in face, a reference-to the slider itself is passed directly to the 

canvas object when it is instantiated. 

The canvas object once declared is passed as an argument to the constructor of a 

JScrollPane object set within the application frame. Doing chis makes the canvas a scrollable 

client of the scroll pane, allowing the canvas to be able to display curves chat may be larger 

than the field afforded by the frame. 

4.23 The Application Canvas 

The canvas component of the interface is a member object of the application frame class 

and it contains among its own member data an instantiation of a Multires object. The 

canvas class in chis application is the CvBspline class which extends the }Label class and is 

implemented in the file CvBspline. j ava. The canvas object maintains two classes of 

member data. First, the system state, meaning the characteristics of all of the curves being 

drawn in the canvas at any one moment, is preserved in the Vector object state. This 

Vector stores CurveState objects, defined in the file curves ta te. j a va, which contain the 

set of control points (arrays of Point20 objects) needed to define a single curve as well as 

some additional information such as the curve's current resolution value (an integer) and its 

fractional resolution value (a float). Also belonging to this first class of member data are the 
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cwo scacks for managing the Undo and Redo commands. Boch of these are of type 

UndoStack, defined in the file Undo Stack. j ava, which extends the basic capabilities of a 

Stack object by defining a stack depth limit d and overloading the push operation co make 

sure chat only the last d entries into the stack are preserved. As the user makes moves (either 

through building a curve or editing one of its control points) the prior CurveState is saved co 

the undo stack by a call within one or another of the mouse event handlers, known as 

rnouseListener methods. If the user selects Undo, the current CurveState (maintained as a 

state variable C) is pushed onto the Redo stack and che lase move popped from the Undo 

scack and redrawn. If Redo is subsequently selected, the current state is pushed co the Undo 

stack, the prior scare is popped from the Redo stack, and the lase move is redrawn again. If, 

after undoing a move, the user makes a new move in the canvas, the Redo stack is erased. 

Lastly, there is a Vector called Scribble used for recording a sketched curve in the canvas 

environment, sketched in chis case by means of mouse input. This Vector is used when the 

application is in SKETCH mode and the user wishes co hand sketch a curve representation. 

Once such a curve has been completed, i.e.: at the point char the mouse is released, the next 

seep is co convert the resulting sec of data points, which has been saved in the Vector by 

repeated polls co the current mouse position, co a sec of control points, i.e.: a B-spline 

representation. Ac publication rime, some options on how co execute chis conversion step 

were being researched and so this conversion seep is not presendy implemented in the 

application. 

This first class of member data concerns maintaining a history within a current editing 

session. The other class of member data concerns the specific instance of a curve currently 

being edited. This includes first of all the CurveScace variable c which identifies one of the 

curves saved in the state vector as che one curve selected for editing at char moment. Other 
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scare variables in chis class include chose recording che cencer coordinaces of che canvas and 

ics heighc and widrh, necessary if che applicacion window is resized; che variable opState 

which cracks rhe currenc edicing mode (EDIT, SKETCH, DRAW or ZOOM); variables 

stateindex for idencifying che index in State of rhe currenc curve and Index for 

idencifying rhe index of che concrol poinc in che currenc curve being ediced; variables for 

recording rhe currenc undoLimi t and g ridSpacing values; and an encire range of boolean 

scare variables for decermining whether the concrol polygons, concrol poincs, knots or the 

grid will be drawn or noc che next time rhe system is repainced. The lase group of state 

variables each have cheir own member function, called by rhe appropriate evenc handler in 

rhe application frame co toggle rheir state. The variables stateindex and Index actually 

gee updated every cime the merhod paintcomponent is invoked since rhe most efficienc way 

co plot whether che locacion of a mouse evenc is close enough co some specific visual feature , 

such as a concrol po inc for a specific curve, is co compare rhe locacions of both of rhese as rhe 

feature is being redrawn. 

A small third class of member data involves a sec of helping objects, including a reference 

co che slider bar in rhe applicacion frame, a ]Label for displaying the currenc coordinate 

values of the mouse cursor, and, of course, an inscance of rhe mulciresolucion engine. 

As mencioned, rhere are four edicing modes in che canvas environmenc, only rwo of 

which, EDIT and ORA W, have been fully implemenced. Much of the evenc handling logic 

is performed by rhe various mouseListener classes defined locally wirhin rhe constructor. 

The primary methods of rhese classes, mousePressed, mouseDragged, mouseReleased, 

etc., perform some sophisticated checks and upgrades of the scare variables of the canvas on a 

case basis, depending on the currenc edicing mode. 
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When the system is in ORA W mode, the user can either build a new curve in the canvas 

window or add to a previously selected one, a selection having been made while in EDIT 

mode. To build a curve, the user simply clicks the mouse at a location, after which a new 

control point is drawn on the canvas. After four such control points are drawn, the first 

segment of the described curve appears. If the user has toggled the control polygon, the 

points and the knots to appear, then these will be drawn also. As the user adds additional 

clicks, additional control points appear and more segments are added to the curve (see Figure 

24). To exit ORA W mode, the user must selecn new editing option from the toolbar or the 

menu bar. 
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Figure 24: A sample multi-segment curve showing the control points, polygon and 
knots. 

When the system is in EDIT mode, the user can click on an empry region of the canvas 

to reset the statelndex state variable, thereby allowing a new curve to be initiated. The 

user may also click on either the control points of a curve or the curve proper to select that 

curve for editing, also updating the statelndex variable to the value corresponding to the 

index of this curve in the State vector. Once a curve is selected, which is denoted visually 

as the curve whose control points are filled squares versus outlined ones, the user may click 
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down on a control point and drag ic co a new posicion, modifying as a resulc che 

representation of the curve. This of course can happen ac both integral and fractional scales 

of resolucion. At an integer level, che selecced control point is icself the only one whose 

position is updated as a result of the user selection. At a fraccional level of resolution, che 

proporrional changes co neighboring control points must be calculaced using the edi tcurve 

method of the member Mulcires object. This is done from both the mouse Dragged and the 

mouseReleased mouse listener methods. The CurveStace object maintains within its 

representation, at all times, two sets of control points: that of che high-resolution curve and 

thac of the low-resolucion curve. The reason for chis is thac ic is more convenient co have 

both integer resolution curves handy when we need to render a fraccional-level curve. 

(When an integer level curve is rendered, only the high-res curve representacion is used.) To 

make use of the edi tcurve method, then, che low-resolution sec of control points is passed 

as an argument, along with ics resolution level, che current mu value, and che index of che 

control poinc and its delta-x and delta-y values. This method returns the revised sec of 

control poincs afrer the effecc of che delca has been propagaced proporrionally co che 

neighboring control points. Once obcained, this low-resolution curve is then refined co 

produce the corresponding high-resolution curve at the nexc level and chis high-res curve 

then replaces che prior high-res curve in che current CurveScate. Now, the newly ediced 

curve can be rendered. 

The other major accivicy chac can occur only in EDIT mode is the shifting of che 

resolution of the currently selected curve. (In our implemencacion, ic is noc possible co 

coarsen or refine mulciple curves since they may begin ac differenc levels.) When che user 

adjuscs the slider concrol in che applicacion frame, che changeListener associated wich that 

slider invokes the canvas objecc method shiftResolution, passing co this method call the 
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floar representing the new resolution value of the curve. Note that the only time any actual 

change to the sets of control points is necessary is either when we shift down from resolution 

j.1 ro j.O or shift up from j.O to j. l since, at these points , the integer-level curves within the 

current CurveState will both have to be upgraded one way or the other. When a shift down 

occurs, from level j. I to j.O, the curve goes from a fractional-level representation to an 

integral-level one. The resolutions of the low and high-res curves formerly bracketing the 

fractional-level were j and j + 1, respectively. We must now shift these to j -I and j. This 

means first of all the low-res curve is copied to the high-res curve in the CurveSrate. Then, 

we coarsen a copy of this high-res curve to produce the corresponding curve at the next 

lowest level of resolution, j -1, and make this our low-res curve in the CurveState. When 

the user increases the resolution, from j.O to j.1, we repeat roughly the same procedure in 

reverse. Since the bracketing curve resolutions now shift from j - 1 and j to j and j + 1, 

respectively, the high-res curve now gets copied co the low-res curve and the high-res curve 

then undergoes refinement by calling the Mulrires object's refine method. All other shifts 

of resolution simply change the current value of the mu variable in the CurveSrare, which 

subsequently affects how the curve is rendered. 

Every change to a srace variable and every mouse event processed within the application 

canvas triggers a call to the canvas object's inherited repaint method which, in turn, calls 

the paintComponent method. This method goes through all of the curves in the State 

Vector and renders them, one by one, using a call to the overloaded bspline method. Ar 

the same rime, as elements are being plocred and redrawn, a comparison with the last 

recorded mouse position is made since, when the system is in EDIT mode, it is by these 

comparisons char any changes to state variables such as stateindex or Index are obtained. 
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If any scare variables regarding che drawing of control points, polygons, knots or grids are sec 

ac chis rime, these elements are also drawn. 

The bspline method has two forms: one cakes as arguments a single sec of control 

points and che number of points in che set; che ocher rakes two sets of control points, che 

length of che higher resolution set, and the value mu. The first form is for drawing integer­

level resolution curves and the second form is for fractional-level curves. If the value of mu 

in che second form of the method is 0, that method calls the integer version of the method. 

The integer-level resolution version of bspllne is the more straightforward of the two. 

The rendering algorithm basically iterates through the set of control points, in successive 

overlapping groups of four, and computes the coefficient values ck from each group of 

control points. After this, the x and y position of the next point in the curve is plotted using 

Homer's method: 

((c 3 x t + c2 ) x t + c1 ) x t + c0 

Each point in the curve, except the first, connects with its preceding neighbor by drawing a 

line between them. Thus, after all of the attempted precision and clever computation, the 

curves we finally generate are nothing more than polygonal lines after all! 

The rendering of the fractional-level curve is somewhat trickier. Recall that in order to 

render a curve of fractional resolution we interpolate proportionally between the two 

adjacent integer level resolution curves on the basis of the value of mu. Since the refinement 

of a low-resolution curve segment evolves into two adjacent high-resolution curve segments, 

this means we are actually interpolating between one curve on the low-resolution end and a 

sequence of two curves on the high-resolution end. This means, first of all, we have to be 

somewhat careful in the manner in which we sample values for ton the interval [O, 1]. For 

the integer-level renderings, sampling 50 such points works well in practice. However, if we 
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maincain chis praccice for interpolacion purposes, we will have 50 points on che low end 

versus 100 points on che high end. Obviously, whac we will need to do is co sample che firsc 

25 poincs of che low end curve and every ocher po inc from a 50 point sample of che firsc 

high-end curve and incerpolace che firsc 25 poincs, chen repeac che process for che remaining 

half of che curve. In compucing che coefficiencs char decermine chese curve segmencs, we 

muse also nocice char che low-end curve segment is builc from four concrol poincs while che 

high-end pair of curve segmencs are builc from five control poincs, chree of which are shared 

by che cwo segmencs. The coefficiencs for each of che high-end segmencs, however, will be 

discincc. Thus, even chough che high-end curve segmencs share concrol informacion, we 

muse generace chree overall discincc secs of four coefficients to describe each of che chree 

segmencs as a basis for compucing che interpolacion. Once we have done all chis, we may 

ploc che respeccive x and y posicions of che fraccional-level curve by ploccing che samples from 

che low-end curve and each segment of che high-end curve, mulciplying che laccer by mu and 

che former by 1 - mu. Figure 25 shows an example of such a ploc. Once a segmenc of che 

fraccional-level curve has been rendered, we adjusc che indices into boch secs of concrol poincs 

so char we evaluace che nexc adjacenc low-resolucion curve segment and che nexc pair of high-

resolucion curve segmencs. 

Figure 25: Interpolation between a high-resolution curve (left) and a low-resolution 
curve (right). 

le should be mencioned char che Swing libraries confer cheir greacesc benefic co chis 

applicacion righc here ac che rendering scage. Nearly all of che new graphical objeccs offered 
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by che Swing libraries, including che ]Label class, inheric from che JComponenc class. One 

of che mosc useful mechods in chis class is one simply called setDoubleBuffered which 

cakes a boolean argumenc. The effecc of calling setDoubleBuffered ( true) is co make any 

graphical updaces operacing on chac componenc implemenc aucomacically a double-buffering 

scracegy for redisplaying che updaced visual image. Thus che programmer is freed complecely 

from having co manage such a buffering policy himself. (le should also be mencioned chac 

che Swing libraries offer no canvas object per se. The usual caccic, as performed in chis 

applicacion, is co use anocher JComponenc, such -as ]Label. Unfortunately, such an object 

resiscs maincaining any fixed size, say for example a heighc and widch each chree cimes chose 

of che applicacion frame, unless forced co by inserting an icon of chac size. Thus, ac scare up, 

an icon composed of noching hue a huge field of whice is inserted inco che canvas objecc co 

give ic its expanded dimensions. This seep single-handedly accounts for a nociceable delay in 

che inicializacion of che application; fortunately, it only needs co be done once.) 

The lase funccionalicy of inceresc in che CvBspline class is chac for saving and importing 

textures. The formac of a cexrure is simply che wavelec cransform of che curve describing che 

cexcure, i.e.: a Veccor concaining a sec of four concrol points decermining che lowesc­

resolucion form of chac curve followed by a sec of detail coefficiencs which record che desired 

cexcure. To save a cexcure is simply co coarsen che selecced curve, excracc che Vector 

concaining che control poincs and detail information from che curve's CurveScace, and recurn 

chis Veccor co the event handler in che applicacion frame calling chis mechod. To import a 

texcure, a curve in che canvas environment muse firsc be selecced. This curve is chen 

coarsened down co four concrol points and the decail coefficients from che imported Veccor 

of texture points are chen copied over into che selecced curve. (If che size of che cexcure is 

greacer, che size of che curve is increased accordingly.) Once done, che curve is chen refined 
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back co its prior level of resolution. Lastly, coarsening this curve creates the companion low­

resolution curve co this one in the selected CurveState. Note that, in these operations and in 

the loadCurve and savecurve methods, which simply load and return the State Veccor, 

respectively, only the CvBspline class has any dealings with CurveState objects. The 1/0 

routines of the application frame deal only with the more generic Veccor objects (which 

happen to contain CurveState objects or Point20 objects!. 

4.3 Evaluation and Results 

The evaluation of the performance of an interactive application is somewhat difficult co 

objectify. For this particular application we are concerned with two predominant issues. 

One, the correctness of the rendering of B-spline curves at integral and fractional levels of 

resolution and, by implication, the correctness of the coarsening and refinement operations 

as applied co the representations of these curves. Two, the efficient performance of these 

coarsen and refine operations; are these operations capable of modeling shifts of resolution at 

interactive speeds? 

As partial validation of the first issue, a number of the figures used in the illusrration of 

this paper are screen captures of curves constructed using.the CurvEdicor application, which 

at least indicates that the curve rendering procedures actually function. A more precise 

diagnostic is supplied by the grid option of the display. We can, in practice, deploy a set of 

control points at explicit grid coordinates and compare the curve produced in the canvas 

environment with one similarly generated by a tool such as MATLAB and make a visual 

comparison of the results. A number of such sample curves produced discernably identical 

curves in both environments. Figure 26 demonstrates one such comparison. In terms of 

testing the coarsening and refinement operations, perhaps the best way to verify their 

accuracy is to construct a sample low-resolution curve, using a set of pre-determined grid 
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coordinates, refine chis curve to the maximum serring, and then coarsen the curve back co its 

original low-resolution form. Aligning the mouse cursor with one of the resulring sec of 

control points will give us the coordinates of char point shown in the "Position: " label of the 

interface. Any error introduced over the course of shifting the resolution of the curve will be 

evinced by a discrepancy between the new coordinate values of the point and the old. A 

number of such rests were conducted using several different curves and no appreciable error 

was found in any instance. The margin for error used was the width of the square visually 

identifying the control point which measures co about a value of 1.6 in the grid coordinate 

sys rem. 

20.----.-----r-----.------.---r---.-----, 

Figure 26: Sample comparison of curves produced by (a) CurvEditor and (b) 
MATLAB. 

The performance of the coarsen and refine operations was reseed by raking a sec of 1000 

curves, with randomly instantiated control point information, and refining each of these 

curves to the maximum level of resolution, recording the execution time at each level and 

averaging the results over all 1000 curves. Next, the procedure was repeated, chis time in the 

reverse direction timing the coarsening operation. A graph showing the plot of execution 

time vs. resolution level for both operations is shown in Figure 27, clearly demonstrating char 
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even for larger sers of conrrol poinrs, the amounr of rime spenr in these respecrive operations 

is nor a facror in rhe overall performance of the applicarion. We had inrended ro generate 

another graph demonsrraring the execution times of these operations plus that of the graphic 

redrawing co ger an estimate on how much delay is attributable co the graphics operations 

versus the coarsening and refinemenr operations. Unforrunarely, rhe implemenracion of the 

Java inrerprerer in the resring environmenr used in this research appears ro consign graphic 

redrawing operarions co a separare thread of execution. This makes ir difficulr co bracket the 

beginning and ending of a sequence of rasks, including a graphic redraw with rimer checks, 

co derermine irs overall execurion rime. Anecdorally, rhe delay incurred from redrawing is 

much more noriceable at higher levels of resolution, due no doubr co rhe number of curve 

segmenrs co plor and render. The inclusion of the grid sreps this delay up even more so. 

However, the delay is nor prohibirive and does nor undermine rhe utiliry of basic ediring 

operarions such as moving a conrrol poinr. 

6 6 
.. q, 

. . o .- ·<I> 5 .o · 5 

,O ··· Q ··· -0· 
o---O·--·o · 

-;"4 ~ .0. .s,4 -
~ 9 · 'O 

~3 o ·· G· -·-0' ~3 
"jj +' 

2 2 

1 1 

"" 0: ~ 

0 2 4 6 8 0 2 4 6 8 
le.,,el l<ve.I 

Figure 27: Average execution time of (a) refine and (b) coarsen methods per resolution 
level (in milliseconds). 

We have already menrioned several componenrs of the application that were nor fully 

implemented ar publicarion rime, such as the procedure for convening a skerched curve co a 
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sec of concrol poincs or the zoom feacure. One other feacure not implemented is the plotting 

of the change of orientation of the detail coefficients mentioned in section 3.2. The 

methodology for applying this change of coordinates calculation was still being researched at 

publicacion rime and its implemencacion would conscicuce the first desirable revision of the 

presenc applicacion. Another sub-performing feacure, one belonging in this case co the 

Swing libraries, is the ]Slider object. Like the graphics redrawing procedure, che event 

handler underlying the slider seems also to operace on a different thread of execucion, 

making ics manipulacion somewhac difficulc in praccice. (The cescing environment used for 

this application uses a couchpad instead of a mouse; che slider may conceivably perform 

beccer when a mouse is used.) We have circumvented chis problem in this application by 

allowing the slider co be manipulated by the arrow keys on the keyboard. 

Despite the aforementioned problems and deficiencies, the overall performance of this 

application is quite good and seems co provide the confirmation we sought regarding the 

ability of multiresolucion curve representations to be modeled ac interactive speeds. The fact 

thac we have been able co confirm this using a language as nocoriously compromised in its 

execucion rime as Java only serves to amplify the success of these concepts. 

Avenues for fucure work on this material are plentiful. Since the publication of the 

original paper on mulciresolucion curves [Fink94], research on modeling multiresolucion 

surfaces has already made significant headway, the most promising research being done in 

conjunction with Pixar Scudios (see Scollnitz, et al. [Scol96]). The extension of the 

mathematics involved uses the well-researched construction of so-called Bezier and B-spline 

patches, which are the surface equivalents of curve segments [Barc87]. Among the 

preliminary conclusions of this research is that any surfaces copologically related co a two­

dimensional mesh are candidates for multiresolution analysis [Scol96]. The present 
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application could conceivably be rewriccen co model such surfaces using che Java 3D API 

which leverages a high degree of efficiency by mapping Java calls co DirectX or OpenGL 

libraries on the host system. 

In its present form, che application is, by design, already extensible. Since che canvas is 

effectively decoupled from che application interface, it may already serve as a ready-made 

object capable of being plugged in co a larger, richer Java-based graphical editing application. 

Furthermore, since che basic data types in che system, che CurveState objects , are serializable, 

they may be exported co any data stream, which opens up the possiblicy for constructing a 

discribuced, Java-based curve editing environment. 
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5. CONCLUSIONS 

We have presented in this paper a unified representation that is capable of modeling a 

given two-dimensional curve at multiple scales of resolution. As outlined in the original 

research published by Finkelstein and Salesin [Fink94], this representation is based on the 

use of the wavelet transform. Such a curve representation consists of a set of control points 

defining a succession of piecewise cubic B-spline segments and a set of detail values marking 

or recording changes to, or events occuring on, this curve at higher levels of resolution. We 

have shown that the techniques for manipulating wavelet transforms used in multiresolution 

analysis are also applicable to this curve representation. Furthermore, when special care is 

taken ro optimize the construction of the filter bank used to shift these representations 

between adjacent levels of resolution, we have shown that these operations may be performed 

in time linear with the size of the curve. 

Besides operations for coarsening and refining the resolution of a curve, we have also 

described operations for rendering these curves at continuous levels of resolution, i.e.: at both 

integer and also at so-called fractional levels of resolution . This latter depiction is effected by 

performing a linear interpolation between neighboring integer level resolution curves. We 

have also defined operations for editing a curve's "sweep" and a curve's "character" 

independently by modifying the set of control points and the set of derail coefficients 

respectively within the curve representation. In the case of editing the "sweep", we have 

further defined operations for both integer and fractional level curves. 

These operations form the basis of an interactive application for editing mulriresolution 

curves. We have realized this application in the form of an independent object-oriented 

component, the Application Canvas, which is written in Java and may be embedded in any 

Java-based environment where these curve-editing operations are desirable. This object 
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makes use of a member object of its own, che multiresolution engine, to generate the filter 

bank and to provide che operations for coarsening and refining the set of control points 

forming che curve. Each set of control points is itself contained in another object, the 

CurveState, which is declared as Serializable so chat it can be ported in its object state to any 

input/output scream, such as a file stream or a channel across a network. Lastly, we have 

placed chis canvas object within a simple GUI-based application frame, forming a basic 

application for editing two-dimensional mulciresolucion curves. Through the use of chis 

application, we have demonstrated chat che above operations defined on mulciresolucion 

curves may indeed be performed in real time, i.e.: at interactive speeds, as was suggested in 

che original research [Fink94]. The result is an application component capable of modeling 

two-dimensional curves at multiple levels of resolution and available to operate in any 

environment supporting a Java Virtual Machine. 
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APPENDIX A; Endpoint-interpolating cubic B-spline matrices 

Source: Eric J. Stollnitz, et al. Wavelets and Computer Graphics: Theory and Applications. 
San Francisco, California: Morgan Kaufmann Publishers, Inc., 1996. Pp. 214-216. 
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APPENDIX B: MATIAS code for B-spline wavdets. 

Source: Eric J. Srollnirz, et al. Wavelets and Computer Graphics: Theory and Applications. 
San Francisco, California: Morgan Kaufmann Publishers, Inc., 1996. Pp. 217-222. 

function P = FindP(d, j) 
% p = FindP(d, j ) returns the P matrix for B-spline scaling functions 
% of degreed, level j. 

d = fix(d); 

if d < 0 
error('FindP: Must have d >= 0. '); 

end; 

j = fix(j); 

if j < 1 
error('FindP: Must have j >= 1. '); 

end; 

if d==O 
P=[l;l); 
for i = 2: j 

P = [P zeros(size(P)); zeros(size(P)) P); 
end; 

else 
u = Knots(d, j-1); 
g Greville (d,u); 
P eye(2 A( j - 1) + d); 
fork= 0:2 A(j-1)-1 

[u, g, Pl = InsKnot (d , u, g, P, (2*k+l ) /2 Aj); 
end; 

end; 

return; 

function x = Knots(d, j) 

% x = Knots(d, j) returns a vector of knot values for B-spline scaling 
% functions of degreed, level j. 

x = [zeros(l, d-1) [0:2 Aj-1)/2 Aj ones(l, d)); 
return; 

function x = Greville(d, u) 

% x = Greville(d, u) returns the vector of Greville abscissa values 
% corresponding to degree d and knot vector u. 
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1 
x 

length(u); 
u(l:l-d+l); 

for k 
x 

end; 

2 :d 
x + u(k:l-d+k ) ; 

x = x I d; 
return; 

function [uret, gret, pret] = InsKnot(d, u, g, p, unew) 

% (uret, gret, pret] = InsKnot(d, u, g, p, unew) inserts a new knot 
% at unew for B-spline scaling functions of degree d, thereby 
% modifying knot vector u, Greville abscissas g, and synthesis matrix 

% P· 

uret 
gret 
pr et 
return; 

sort([u unew]); 
Greville(d, uret ) ; 
PolyEval(g, p, gret); 

function pret = Pol yEval (g , p, gnew) 

% pret = PolyEval(g, p, gnew) returns the values of a control pol y gon 
% defined by abscissas g and ordinates p, evaluated at gnew. 

[m, n] = size(p); 
if length(g) -= m 

error('PolyEval: Length of g and rows of p must be the same.' ) ; 
end; 

for i = l:length(gnew) 
row= max( find(g <= gnew(i) )); 
if row == m 

pret ( i, : ) = p (m, : ) ; 
else 

frac = (g(row+l) - gnew(i) )/(g(row+l) - g(row) ) ; 
pret(i, : ) = frac*p(row, :) + (1-frac)*p(row+l, : ) ; 

end; 
end; 
return; 

function I = Inner(d, j) 

% I = Inner(d, j) returns the inner product matrix for B-spline 
% scaling functions of degreed at level j. 

IO= Berninnr(d); 
n 2 " j + d; 
I 
w 

zeros(n); 
BernWts(d, j); 
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for k = 1: n 
wl = reshape (w( :,k ) , d+l, 2"j) ; 
for l = k:n 

w2 = reshape (w(:,l ) , d+l, 2"j) ; 
I(k,l) trace(wl'*IO*w2) ; 
I(l,k) = I(k,l); 

end; 
end; 

I= I I 2 " j; 
return; 

function I = Berninnr(d ) 

% I = Berninnr(d) returns the matrix of inner products of 
% Bernstein polynomials of degree d. 

i ones (d+l, 1) * [O:d]; 
j i I ; 

I Choose(d, i).*Choose(d, j)./ (Choose(2*d, i+j)*(2*d + 1)) ; 

return; 

function c = Choose(n, r) 

% c = Choose(n, r) returns (n choose r) 

c = Fact(n) ./(Fact(r) .*Fact(n-r ) ); 
return; 

function f = Fact(m) 

n! I (r! (n-r)! ) . 

% f = Fact(m) returns the matrix of factorials of entries of m. 

(r,c] = size(m); 
f = zeros (r, c); 
for i = 1: r 

for j = 1: c 
f(i,j) prod(2:m(i,j) ); 

end; 
end; 
return; 

function w = BernWts(d, j) 

% w = BernWts(d, j) returns a matrix of B-spline scaling 
% function weights for Bernstein polynomials of degreed, level j. 

w = eye(2"j + d); 
if d == 0 

return 
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end; 
u _ Knots (d, j} i 

g = Greville(d, u}; 
for i = 1:2 Aj - 1 

for r = 1: d 
[u, g, w) InsKnot(d, u, g, w, i /2A j } ; 

end; 
end; 
return; 

function Q = FindQ(d, j, normalization} 

% Q = FindQ(d, j, normalization} returns the Q matrix for B-spline 
% scaling functions of degreed, level j. If normalization is 'min' 
% (or is not specified} then the smallest entry in each column is made 
% 1. If normalization is 'max' then the largest entry in each column 
% is made 1. If normalization is '12' then the 1 A2 norm of each 
% wavelet is made 1. 

if nargin < 3 
normalization= 'min'; 

elseif -strcmp(normalization, 'min' } & -strcmp(normalization, 'max' ) ... 
& -strcmp (normalization, '12' } 

error ( 'FindQ: normalization must be ''min'', ''max'', or '' 12' '. ' } ; 
end; 

P FindP(d, j}; 
I Inner (d, j}; 
M P'*I; 
[ml, m2) = size(M); 
n = m2 - rank (M}; 
Q = zeros(m2, n}; 
found = 0; 
start col = 0; 

while ( found < n/2} & (start col < m2 } 
start col = start col + 1 + ( found > d}; 
width = 0; 
rank_def = 0; 
while -rank def & (width < m2 - start col + 1) 

width = width + l; 
submatrix = M(:,start col:start col+width-1); 
rank def= width - rank(submatrix}; 

end; 
if rank def 

% find nullspace of submatrix(should be just one column} 
q_col = null(submatrix}; 
if strcmp(normalization, 'min'} 

% normalize column so smallest nonzero entry has Ill 
q col= q col/min(abs(q col+ le38*(abs(q col}<le-10))); 

elseif strcmp(normalization, 'max'} -
% normalize column so largest entry has magnitude 1 
q_col q_col/max(abs(q_col}}; 

end; 
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% change sign to give consistent orientation 
q_col = q_col*(-l }A( start_c ol + floor (( d+l}/2} + (q_col(l ,1 }>0} } ; 

% put c olumn into left half of Q 
found = found + l; 
Q(start_col:start_col + width-1, found} = q_col; 

% use symmetry to put column into right half of Q in reverse 
% order and negated if degree is even 
Q(:, n-found+l) = flipud(Q(:, found ) )*(-l)A( d+l ) ; 

end; 
end; 

if strcmp (normalization, 'L2') 
% normalize matrix so each column has LA2 no rm of 1 
ip = Q'*I*Q; 
Q = Q*diag(l./sqrt (diag(ip))); 

end; 

return; 
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APPENDIX C: CurvEditor code listing. 

Mu/tires.Java Contains the code for the multiresolurion· engine. Creates the synthesis 

matrices P and Q for the first eight resolution levels. The marrices for the lowest three 

resolution levels are just hardcoded in place, as are the analysis filters A and B for these levels. 

Above level 3, the column vectors for the P and Q matrices are interleaved and the resulting 

matrices are reformed into more compact forms to support efficient banded-diagonal matrix 

multiplication operations. The corresponding an_alysis matrices at these levels are built by 

performing an LU decomposition on the PQ banded diagonal matrix, storing these resulting 

matrices and solving for the value of x in the equation L( U(x))=b by backsubstirution. 

Major methods: coarsen, refine, editCurve. 

CurvEditor.java. Contains the application frame and the basic interfacing functionality for 

processing GUI-based events and requests and relaying these to its member CvBspline 

object, which processes all of the curve editing operations. Also contains functionality for 

handling file-based 1/0 of Vector objects representing curve and texture objects. 

CvBspline.java. Contains all of the functionality for manipulating curve representations 

graphically. A number of methods are tied in directly with elements of the interface defined 

in the CurvEditor object. Major methods: the overloaded shiftResolution methods 

which make use of the coarsen and refine operations of its member Mu/tires object; the 

overloaded Bspline drawing methods; and the various event handlers involved with curve 

editing operations. 
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CurveState.java. Co mains che definicion of che Cloneable and Serializable curve 

represencacion objecc used by che CvBspline objecc. 

Point2D.java. Defines a lighcweighc daca scruccure for modeling a cwo-dimensional 

coordinace char is also Cloneable and Serializable. 

UndoStack.java. Augmems che propercies of a basic Scack objecc by seccing a scack limic and 

keeping crack only of che mosc recem addicions co che scack up co char limic. Also used by 

che CvBspline objecc. 
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11 File: Multires.java 
Stephen Alberg II 

II 
II 
II 
II 
II 
II 
II 
II 
I I 
II 
II 
II 
I I 
II 
II 
II 
II 
II 
II 

Author: 

This file contains the implementation o f an object of t ype Multires. 
A Multires object performs two primary actions: coarsen and refine. 
The inputs to these operations are arrays of Point2D objects, 
representing the control points for a parametric cubic B-spline 
curve representation. 

The coarsen operation takes an input set of control points and 
performs a knot removal operation on the curve, removing half of 
the curve's segments. The returned array, of the same dimension, 
contains the reduced set of control points in the top half of the 
array and, in the bottom half, the difference coefficients obtained 
from the multi-resolution decomposition. 

The refine operation takes as input? an array of control points and 
an array of difference coefficients and returns an enlarged array of 
control points doubling the number of curve segments featured in the 
input representation and incorporating any features conveyed by the 
input difference coefficients. 

import java.util . *; 

public class Multires 
II Class constants 
static final float TINY = l.Oe-20f; 
static final int MAX = 1024; 
static final int LEVEL MAX = 8; -
static final int SUB DIAG WIDTH S; 
static final int SUPER DIAG WIDTH = - S; 
static final int DIAG WIDTH SUB DIAG 
static final int DOWN = l; 
static final int UP = -1; 

WIDTH + SUPER 

II Small resolution synthesis and analysis matrices. 

DIAG WIDTH 

II AB* matrices are the inverses of their corresponding PQ* 
II matrices. 
II 
II The contents of these matrices have been adapted from those 

+ 

II presented in Wavelets for Computer Graphics. Stollnitz, DeRose 
II and Salesin. Morgan Kaufmann, 1996. Specifically, these 

l; 

II matrices relate the sets of cubic B-spline scaling functions and 
II endpoint-interpolating cubic B-spline wavelets at neighboring, 
II integral levels of resolution. 

static final float[][] PQl = 
{ 1 . Of I 0. Of I 0. Of, 0. Of, 2.64S7Slf } I 

{ 0. Sf I 0. Sf, 0. Of, 0. Of I -S.291S03f } I 

{ 0. Of, 0. Sf I 0. Sf, O.Of, 7.9372S4f } I 

{ O.Of, 0. Of, 0. Sf, O.Sf, -S.291S03f } I 

{ O.Of, 0. Of, 0. Of, 1. Of, 2 .64S7Slf } } ; 

static final float[][] ABl 
{ 0.937Sf, 0.12SOf, - 0.12S0f, 0.12SOf, -0.062Sf } ' 
{ -0.687Sf, l.37S0f, 0. 62SOf, -0.62S0f, 0.312Sf } I 

{ 0.312Sf, - 0. 62SOf, 0.62SOf, 1. 37SOf, -0.687Sf } ' 
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-0.0 62 Sf, 0.12SOf, 
0 . 023623 f, -0.047246f, 

- 0 .12S Of, 0.12S0f, 
0 . 047246f , -0.047246f, 

0.937Sf }, 
0 . 023623f }} ; 

static final float[)[) PQ2 = 

{ 1. Of, 0. Of, 0. Of, O.Of , O. Of , 
4.347003f, O.Of } I 

O. Sf, 0. Sf, 0 . Of, 0. Of, O.Of, 
-6.SS8636f, -0. 762632f ) , 

0. Of, 0.7Sf, 0. 2Sf , 0. Of, 0. Of, 
s. 697497f, 2.19S74Sf } , 

0 . Of, 0.187Sf, 0.62Sf , 0.187Sf, 0. Of , 
-3.346048f, -3.346048f } , 

0 . Of I 0 . Of, 0 . 2Sf, 0 .7Sf, 0 . Of, 
2.19S74Sf, S.697497f ) , 

0 . Of, 0. Of , 0 . Of, 0. Sf, 0 . Sf I 
-0. 762632f , -6.SS863Sf } , 

0 . Of I 0. Of, 0. Of , 0. Of1 1. Of, 
0. Of , 4 . 347003f ) } ; 

static final float [) [) AB2 = { 
0.83S1S6f, 0.329688f, -0.239S 83f , 0 .079167f, 

0.041667f, -0.092188f, 0.046094f ), 
-0.3S3906f , 0.707812f, 0.947917f, -0.34S833f, 

-0.083333f, 0.2S4688f , -0.127346f ), 
0.29062Sf, -0 . S812SOf , -0.01S62Sf, 1 . 612S00f, 

-0.01S62Sf, -0.S812SOf, 0.29062Sf ), 
-0 .127344f, 0 . 2S4688f , -0. 083333f, -0. 34S833f, 

0.947917f , 0.707812f , -0.3S3906f ), 
0.046094f , -0.092188f, 0.041667f , 0.079167f, 

-0 . 239S83f , 0.329688f , 0 . 83 S1S6f }, 
0 .037921f , -0.07S842f, O.OSS11Sf, -0.018212f, 

-0.009S8Sf, 0 . 021207f, -0.010604f ) , 
- 0 .010604f, 0.021207f , -0.009S 8Sf , - 0 .018212f, 

O.OSSllSf, -0.07S842f, 0 . 03792 1f )) ; 

static final float[)[) PQ3 
1.0f, O.Of, O.Of , O. Of , O. Of , O.Of, O.Of, 

6.3114S4f , O.Of , O.Of, O.Of ), 
O.Sf, O.Sf, O.Of, O. Of, O.Of, O.Of, O.Of, 

-9 . 189342f, -1.S43996f, O.Of, O. Of ), 
O.Of, 0.7Sf, 0.2Sf, O.Of, O.Of, O.Of, O.Of, 

7 . 334627f , 4.226722f, 0.087SS6f, O.Of }, 
O.Of , 0.187Sf, 0.687Sf, 0 .12Sf, O.Of, O.Of, O.Of, 

-3.S14SS3f, -S.S8S477f, -0.473604f, -0 . 000lSSf ), 
O.Of, O.Of, O.Sf, O. Sf, O.Of, O. Of, 0 . 0f, 

1.271268f, 6.0S9SS7f, 1.903267f, 0.019190f ), 
O.Of, O.Of, 0.12Sf, 0.7Sf, 0.12Sf, O. Of, O.Of, 

-0.2S9914f, -4.3674S4f, -4.3674S4f, -0 .2S9914f }, 
O.Of, O.Of, O.Of, O.Sf, O.Sf, O.Of, O.Of, 

0.019190f, 1.903267f, 6 . 0S9SS7f, 1.271268f ), 
O.Of, O. Of, O.Of, 0.12Sf, 0.687Sf,0 . 187Sf,0.0f, 

-0.000lSSf, -0.473604f, -S . S8S477f, -3.S14SS3f ), 
O.Of, O.Of, O.Of, O.Of, 0.2Sf , 0.7Sf, O.Of, 

O.Of, 0 . 087SS6f, 4 . 226722f, 7.334627f }, 
O. Of, O.Of, O.Of, O.Of, O.Of, O.Sf, O.Sf, 

O.Of, O.Of, -1.S43996f, -9 .189342f }, 
O.Of , O.Of, O.Of, O.Of, O.Of, O. Of, 1.0f, 
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0. Of, 0. Of, 0. Of , 6 . 311 454f )); 

static final float[][] AB3 = { 
0.802757f , 0.394486f, -0.253324f, - 0.038667f, 

0 . 2029 45f, -0.09246lf, -0.071912f, 0 .069304f, 
- 0 .000533f, -0.025190f, 0 . 012 595f ) , 

-0.271 998 f, 0.543996f, 0.983350f, -0.05072lf, 
-0.483377f, 0.245774f, 0.169557f, -0 . 168642f, 

0 .001764f, 0.060594f, -0.03 0297f ), 
0 .135 699f, -0. 271398f, -0. 085737f, 1. 066678 f, 

0.705998f, -0.519247f, -0.266282f, 0.289940f, 
- 0 .005147f, -0.101007f, 0.050503f ) , 

-0.067342f, 0.134684f, 0.014071f, - 0 .415441f, 
0.294364f, 1.079328f, 0.294364f, -0 .415441f, 

0 .014071f, 0.134684f, -0.067342f ), 
o. 050503f , -0.101007f, -0. 005147f, 0 . 289940f, 

-0. 26 6282f, -0.519247f, 0 .705 998f, 1 . 066678f, 
-0.085737f, -0.271398f, 0.135699f ) , 

-0.030297f, 0.060594f, 0.001764f, -0.168642f, 
0 .169557f, 0 . 245774f, -0.483377f, -0 . 050721f, 

0 .983350f, 0.543996f, -0.271998f ), 
0 . 012595f, -0. 025190f, -0. 000533f, 0. 069304f, 

-0. 071912f, -0. 092461f, 0. 202945f, -0. 038667f, 
- 0 .253324f, 0.394486f, 0.802757f ), 

o.o312s2f, -o.062S03f, o .040l37f, · o .oo6126f, 
-0.032155f, 0.014650f, 0.011394f, -0.010981f, 

0 . 000084f, 0. 003991f , -0. 001996f ) , 
-0.014120f, 0.028241f, -0.002475f, - 0 . 06 5410f, 

0.100562f , -0.037543f, -0.036192f, 0 .033185f, 
- 0 .000104f, -0.012288f, 0.006144f }, 

0.006144f, -0.012288f, -0 .000104f, 0 . 033185f, 
-0.036192f, -0.037543f, 0.100562f, -0.065410f, 

-0.002475f, 0.028241f, -0.014120f ) , 
-0.001996f, 0.003991f, 0.000084f, - 0.0 10981f, 

0 . 011 394f, 0.014650f, -0.032155f, 0 .006126f, 
0 .040137f, -0.062503f, 0.031252f }); 

II Arrays for storing precomputed synthesis and analysis 
II matrices up to level LEVEL_MAX. AB matrices are the 
II LU decomposition matrices of the respective PQ matrices. 
II 
II Initialized by call to initMatrices(). 

float(][][] PQ new float[LEVEL_MAX] [] []; 
float[][][][] AB= new float[LEVEL_MAX] [2] [] []; 
int[](] ABindx =new int[LEVEL_MAX] []; 

II Additional storage for matrices of level > LEVEL MAX 
Vector PQmore =new Vector(); 
Vector ABmore =new Vector(); 
Vector ABindxmore =new Vector(); 

II Repeating column vectors used in the creation of the synthesis 
II matrices for resolution levels > 3. 
static final float[] Pl l.Of, O.Sf ); 
static final float[] P2 = { O.Of, O.Sf, 0 .75f, 0.1875f ); 
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} i 

static final float[) P3 O.Of, O.Of, 0.25f, 0.6875f, O.Sf, 0.125f 

static final float[ ) PC 0.125f, O.Sf, 0.75f, 0 .Sf, 0 .125f }; 

II wavelet space synthesis matrix columns must be multiplied 
II by the factor sqrt ( 5 * 2Aj I 675221664 ) 
static final float[) Ql = 

{ 25931.200710f, -37755.271723f, 30135.003012f, 
-14439.869635f, 5223.125428f, -1067.879425f, 

78.842887f, -0.635830f }; 
static final float[) Q2 = 

{ O.Of, -6369.305453f, 17429.266054f, 
-23004.252368f, 24848 .487 87lf, -17678.88430lf, 

7394.685374f, -1561 .868558f, 115.466347f, 
-0.931180f }; 

static final float[) Q3 = 
{ O.Of, 385.797044f, 

-2086.545605f, 8349 . 373420f, -18743.473059f, 
24291.795239f, -18420.997597f, 7866.732009f, 
-1668.615872f, 123.37867lf, -0.994989f ) ; 

static final float(] QC= { -1.0f, 124.0f, -1677.0f, 7904.0f, 
-184 82.0f , 24264.0f, -18482.0f, 
7904. Of, -1677. Of, 124. Of, -1. Of ) ; 

II Constructor: 
Multires () 
{ initMatrices(); 
} 

II Initializes synthesis and analysis matrices for first 
II LEVEL MAX levels of resolution. 
void initMatrices() 
{ II The first three levels are the statically declared matrices 

PQ[O] = PQl; PQ[l) = PQ2; PQ[2) PQ3; 
AB[O] [OJ = ABl; AB[l) [OJ = AB2; AB[2) [OJ = AB3; 

II Next, create the banded diagonal matrices for the remaining 
II levels. This will be done by interleaving column vectors 
II from the respective P and Q analysis matrices, using the 
II static P# and Q# vectors declared above. For each such 
II banded matrix created, we will also perform an LU 
II decomposition on the matrix for use in the analysis operation 
II (coarsen) . 

int htBase 16; II start at output 

for {int j 3; j < LEVEL MAX; ++j) 
{ II 

2A4 + 3 control points 

II first, create the banded diagonal matrix 
II 

int height = htBase + 3; 
PQ[j) =new float[height) [DIAG WIDTH); 
float[)[) M = new float[heightJ[DIAG_WIDTH); 

II compute multiplier and create lo~al copies of 
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II Q column vectors 
float q = (float ) (Math.sqrt( (double) (5 * htBase ) I 

(double) (675221664) ) ) ; 
float [] 
float [] 
float [] 
float [] 

tQl 
tQ2 
tQ3 
tQC 

scalarMult (Ql, 
scalarMult (Q2, 
scalarMult (Q3, 
scalarMult (QC, 

q); 

q); 
q); 
q); 

II first seven columns of matrix: 
int row = 0, col = SUB DIAG WIDTH; 

II use the static vectors to create the banded diagona l 
II matrix one column at a time ... 
populateDiagonal(PQ[j], M, Pl, row, col, DOWN); 
populateDiagonal(PQ[j], M, P2, row, ++col, DOWN); 
populateDiagonal(PQ[j], M, tQl, row, ++col, DOWN); 
populateDiagonal(PQ[j], M, P3! row, . ++col, DOWN); 
populateDiagonal(PQ[j], M, tQ2, row, ++col, DOWN); 
populateDiagonal(PQ[j], M, PC, row+3, SUB DIAG WIDTH+ 2 , 

DOWN); 
populateDiagonal(PQ[j], M, tQ3, row+l, DIAG_WIDTH-1, DOWN ) ; 

II next, populate the middle column vectors: 
for (row= 7; row < height - 7; row++) 
{ if (row % 2 == 1) 

populateDiagonal(PQ[j], M, PC, row-2, SUB_DIAG_WIDTH+2, 
DOWN); 

else 
populateDiagonal(PQ[j], M, tQC, row-5, DIAG_WIDTH-1, 

DOWN); 

II lastly, populate the last seven column vectors: 
row = height-1; col = 0; 
populateDiagonal(PQ[j], M, tQ3, row-1, col, UP); 
populateDiagonal ( PQ[j], M, PC, row- 3 , SUB_DIAG_WIDTH- 2 , UP ) ; 
populateDiagonal(PQ[j], M, tQ2, row, ++col, UP); 
populateDiagonal(PQ[j], M, P3, row, ++col, UP); 
populateDiagonal(PQ[j], M, tQl, row, ++col, UP); 
populateDiagonal(PQ[j], M, P2, row, ++col, UP); 
populateDiagonal(PQ[j], M, Pl, row, . ++col, UP); 

II 
II next, create the LU decomposition of this matrix 
II 

AB[j] [0] =new float[height] [SUB_DIAG_WIDTH]; 
AB [ j] [ l] = M; 
ABindx[j] =new int[height]; 

II lower 
II upper 

bandec(AB[j] [l], SUB_DIAG_WIDTH, SUPER_DIAG_WIDTH, 
AB [ j] [ 0] , ABindx [ j] ) ; 

htBase *= 2; 
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II Performs a simple scalar multiplication on an input vecto r. 
float[] scalarMult(float[] v, fl oat scala r ) 
{ float[] x =new float[v.length ] ; 

for (int i = 0; i < v.length; ++i ) 
x[i] = v[i] * scalar; 

return x; 

II Performs a simple matrix multiplication on an input 
II matrix and vector. 
II MODIFIED (319199): input x contains elements that are 
II not multiplied by the matrix and need to be copied 
II over into the solution vector. 
float[] matrixMult(float[] [] A, float[] x , int n) 
{ int m =A.length; II, n = x .length; 

if (m <= 0 I I A[O] .length != n) 
return null; 

float[] b =new float[x.length]; llm]; 
int i = 0; 
for (; i < m; ++i) 
{ b[i] = O.Of; 

for (int j = 0; j < n; ++j) 
b [ i ] += A [ i ] [ j ] * x [ j ] ; 

I I copy over any remaining elements in the vector 
for (; i < x.length; ++i) 

b[i] = x [i]; 

return b; 

II Used by initMatrices to create synthesis matrices. 
void popula teDiagonal (float [] [] A, float [] [] M, float [] v, int row, 

int col, int dir ) 
int n = v.length; 
for (int i = O; i < n; ++i) 
{ A[row] [col] = M[row] [col] 

if(dir == DOWN) 
{ row++; col--; 
} 

else 
row--; col++; 

v[i]; 

II Reduces resolution of cubic B-spline curve representation. 
II 
II 
II 
II 
II 
II 

Input: set of control points cAj I <difference coeffs. d Aj , 
j+, ... > 

Output: set of control points c A(j-1) I difference coeffs. 
d A(j-1) I <difference coeffs. d Aj, j+, ... > 

public synchronized Point2D[] coarsen(Point2D[] P, int j) 
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II convert points to arrays of floats 
float[)[ ) x y = Point2DToXY(P); 

II for level j, index into stored matrices is j-1 
if ( j <= 3) 
{ II use simple matrix multiplicati on 

xy[O] matrixMult(AB[j-1) (0), xy[O ], numPoints(j)); 
xy[l) matrixMult(AB[j-1) [OJ, xy[ l), numPoints(j)); 

else if ( j <= LEVEL_MAX) 
{ II use LU decomposition of banded diagonal matrices 

banbks(AB[j-1) (1), SUB_DIAG_WIDTH, SUPER_DIAG_WIDTH, 
AB[j-1)(0), ABindx[j-1), xy[O)); 

banbks(AB[j-1) (1), SUB_DIAG_WIDTH, SUPER_DIAG_WIDTH, 
AB[j-1] [0], ABindx[j-1), xy (l] ) ; 

II uninterleave the output ve~tors 
int n numPoints(j); 
xy[O] unleave(xy[O], n); 
xy(l] unleave(xy[l], n); 

else 
II check if matrices up to and including this level 
II have been constructed ... 
if ( j - LEVEL_MAX < ABmore.size ()) 
{ II build new matrices up to level j ... 
} 

return XYToPoint2D(xy); 

II Increases resolution of cubic B-spline curve representation. 
II 
II 
II 
II 
II 
II 

Input: set of control points c "( j-1 ) I difference coeffs. 
d"( j-1) I <difference coeffs. d"j, j+, .. . > 

Output: set of control points c " j I <difference coeffs. d "j , 
j+, ... > 

public synchronized Point2D[] refine(Point2D[] P, int j) 
II convert points to arrays of floats 
float[)[] xy = Point2DToXY(P); 

II for level j, index into stored matrices is j-1 
if (j <= 3) 

{ II use simple matrix multiplication 
xy[O] matrixMult(PQ[j-1), xy[O], numPoints(j)); 
xy[l] matrixMult(PQ[j-1], xy(l], numPoints(j)); 

else if (j <= LEVEL MAX) 
{ II use banded di~gonal multiplication 

int n numPoints(j); 
xy[O] interleave(xy[O], n); 
xy[l] interleave(xy[l), n); 

xy[O] banmul{PQ[j-1), SUB DIAG_WIDTH, SUPER_DIAG_WIDTH, 
xy[ OJ); 

93 



xy(l] 

else 

banmul (PQ[j-1], SUB_DIAG_WIDTH, SUPER_ DIAG_WIDTH, 
x y [ 1] ) ; 

II check if matrices up to and including this level 
II hav e been constructed ... 
if ( j - LEVEL_MAX < PQmore.size () ) 
( II build new matrices up to level j ... 
} 

return XYToPoint2 D( xy); 

II Computes c hanges to set of control points at l evel j a fter 
I I an edit is appl i ed to the point index at lev e l ( j +mu ) . 
II 
II 
II 
II 
II 
II 
II 
II 

P is the set o f control points at level j, 
j is the floor o f the current level of res o l ution, 
mu is a number on the interval (0,1] _. 
deltaX, deltaY are the edit changes to control point index 
at level (j +mu), 

index is the index of the edited control p oi n t at leve l ( j+mu). 

public Point2 D[] editCurve(Point2D[] P, int j, float mu, 
float deltaX, float deltaY, int index ) 

float g = mu * mu; II monotonicall y increasing fun c tion o n mu 
II for gradational propagation of edits to 
II control points. 

if (mu > 0 ) j--; 

int n numPoints(j), nPlus = numPoints(j+l ) ; 

float [] [] xy 

xy [ O] [index ] 
xy [l] [index ] 

if ( j < 3) 

{ 

new float[2] [nPlus]; 

deltaX; 
d eltaY; 

II creates array of z eros 

II put deltas in array 

xy[O] 
x y[l] 

matri xMult(AB[j] [OJ, xy [O], nPlus ) ; 
matrixMult(AB[j] [OJ, xy[l], nPlus ) ; 

else if ( j < LEVEL_MAX) 
{ banbks (AB[j] [1], SUB DIAG_WIDTH, SUPER_DIAG_WIDTH, 

AB[j] [OJ, ABindx[j], x y[O]); 

} 

banbks (AB[j] [1], SUB_DIAG_WIDTH, SUPER_DIAG_WIDTH, 
AB [ j ] [ 0] , ABindx [ j ] , xy [ 1] ) ; 

xy[O] 
x y[ 1] 

unleave(xy[O], nPlus); 
unleave( xy[l], nPlus); 

II else j is larger: implementation must wa i t until larger 
II matrices are created and stored 

II multipl y control point deltas at level j b y g and differenc e 
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/I coefficient deltas at level j by g/mu 
int i = 0; 
while(i < n) 
{ xy[O] [i) *= g; 

xy[l) (i] *= g; 
i++; 

while(i < nPlus) 
x y [ 0 ] [ i ] * = mu; 
x y [ l ] [ i l * = mu; 
i++; 

I I (mu * mu) I mu 

/I apply deltaC_prime to k-th index of control points 
float(][) deltaCprime =new float[2) [2); 
int k = computeDeltaCprime(deltaCprime, j, index, deltaX, 

deltaY); 

II multiply by (1 - g) 
for(i = 0; i < 2; ++i) 

for(int ii= 0; ii < 2; ++ii) 
deltaCprime[i] [ii] *= (1.0 - g); 

II ... and add to array of deltas at index k 
xy[O) [kl += deltaCprime[O] [OJ; 
if(k+l < n) 

xy[O] [k+l) += deltaCprime[O] (1); 

xy[l) [kl += deltaCprime[l) [OJ; 
if(k+l < n) 

xy[l] [k+l] += deltaCprime(l] [l]; 

II Lastly, apply these deltas to the array of control points 
int limit = (P.length < xy[O] .length) ? P.length : x y[O) .length; 

for(i = 0; i < nPlus; ++i) //limit; ++i) 
{ P(i].x+=xy[O)[i]; 

P [ i J . y += xy [ l J [ i) ; 

return P; 

II Computes the changes to a subset of control points at level j 
II as a result of an edit at a fractional resolution. Returns 
II the index of the set of control points which is affected. 
int computeDeltaCprime(float[] [) dCprime, int j, int index, 

float deltaX, float deltaY) 
int k -1; // the index to be returned 
int n = numPoints(j+l); 

if (j+l == 1) 

{ switch(index) 
{ 

case 0: k = 0; 
dCprime [OJ [OJ 
dCprime [ l) [ 0) 

deltaX; dCprime[O] [l) 
deltaY; dCprime[l) (l] 
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break; 

case 1: k = 0 ; 
dCprime [OJ [OJ deltaX; dCprime[OJ [lJ deltaX; 
dCprime[lJ [OJ deltaY; dCprime[lJ [lJ deltaY; 
break; 

case 2: k = l; 
dCprime[OJ (OJ deltaX ; dCprime(OJ [lJ deltaX; 
dCprime [ lJ [OJ deltaY; dCprime[lJ [lJ deltaY; 
break; 

case 3: k = 2; 
dCprime[OJ [OJ deltaX; dCprime[OJ [lJ deltaX; 
dCprime[lJ [OJ deltaY; dCprime [ lJ [ lJ deltaY; 
break; 

case 4: k = 3; 
dCprime(OJ [OJ deltaX; dCprime [ 0 J [ 1 J O.Of; 
dCprime [ 1 J [ 0 J deltaY; dCprime[lJ [lJ O. Of; 
break; 

} ; 

else if(j+l == 2) 
{ switch(index) 

{ 

case 0 : k = 0; 
dCprime [ 0 J [ 0 J deltaX; dCprime [OJ [ lJ O.Of; 
dCprime [ l J [ 0 J deltaY; dCprime [ l J [ l J O.Of; 
break; 

case 1: k = 0 ; 
dCprime[OJ [OJ deltaX; dCprime[OJ [lJ deltaX; 
dCprime [ l J [ 0 J deltaY; dCprime [ lJ [ lJ deltaY; 
break; 

case 2 : k = l; 
dCprime [ 0 J [ 0 J deltaX/0.75f; dCprime [ 0 J [ 1 J 0 . Of ; 
dCprime [ 1 J [ 0 J deltaY/0.75f; dCprime[lJ (lJ O.Of; 
break; 

case 3 : k = 2; 
dCprime[OJ [OJ deltaX/0.625f; dCprime [OJ [ lJ O.Of ; 
dCprime [ lJ [OJ deltaY/0.625f; dCprime[lJ (lJ O.Of ; 
break; 

case 4 : k = 3; 
dCprime [OJ [OJ deltaX/0 . 75f; dCprime [OJ [ lJ 0 . Of; 
dCprime [ lJ [OJ deltaY/0 .75f ; dCprime[lJ [lJ O. Of; 
break; 

case 5: k = 3; 
dCp rime [ 0 J [ 0 J deltaX; dCprime [ 0 J [ 1 J deltaX; 
dCp rime [ 1 J [ 0 J deltaY; dCprime[lJ [lJ deltaY; 
break; 

case 6: k = 4; 
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} ; 

} 

dCprime[O] (OJ 
dCprime[lJ [OJ 
break; 

deltaX; d Cprime(OJ [lJ 
deltaY; d Cprime[lJ (lJ 

O. Of; 
0 . 0 f; 

else if(j+l >= 3) 
{ if (index < 4) 

{ switch(index) 
{ 

case 0: k = 0; 
dCprime[OJ [OJ 
dCprime(lJ [OJ 
break; 

case 1: k = 0; 
dCprime(OJ [OJ 
dCprime[lJ [OJ 
break; 

deltaX; dCprime [ 0 J [ l J 
deltaY; dCprime(lJ (lJ 

d~ltaX; dCprime[OJ [lJ 
deltaY; dCprime[lJ [lJ 

O.Of; 
O.Of; 

deltaX; 
deltaY; 

case 2: k = 1; 
dCprime[OJ [OJ 
dCprime[lJ [OJ 
break; 

deltaX/0.75f; dCprime[OJ [lJ= O.Of; 
deltaY/0.75f; dCprime[lJ [lJ= O.Of; 

case 3: k = 2; 

} ; 

dCp rime [ 0 J [ 0 J 
dCprime[OJ [lJ 
dCprime [ l J [ 0 J 
dCprime[lJ [lJ 
break; 

else if(index > n-5) 
{ int m = numPoints(j); 

deltaX/0.6875f; 
0. Of; 
deltaY/0.6875f; 
0. Of; 

if(index == n-4) 
{ k = m - 3; 

dCprime [ 0 J [ 0 J 
dCprime[lJ [OJ 

deltaX/0.6875f; dCprime[OJ [lJ 
deltaY/0.6875f; dCprime[lJ [lJ 

else if(index == n-3) 
{ k = m - 2; 

dCp rime [ 0 J [ 0 J 
dCprime [ lJ [OJ 

deltaX/O. 75f; dCprime[OJ [lJ 
deltaY/0. 75f; dCprime[lJ [lJ 

else if(index == n-2) 

O.Of; 
O.Of; 

O.Of; 
O.Of; 

{ k = m - 2; 
dCprime[OJ [OJ 
dCprime[lJ [OJ 

deltaX; dCprime[OJ (lJ 
deltaY; dCprime[lJ (lJ 

deltaX; 
deltaY; 

else if(index == n-1) 
{ k = m - l; 

dCprime[OJ [OJ 
dCprime[lJ (OJ 

deltaX; dCprime(OJ [lJ 
deltaY; dCprime [ l J [ l J 
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else 
i f (inde x % 2 == 0) 
{ k = indexl2 ; 

d Cpri me [ 0 ) [ 0 ] 
dCpr i me [ l] [ 0] 

el s e 
l; 

II mult i pl e i nfluence 

deltaX; d Cp rime [O ] [ l] 
deltaY; d Cprime[l ] [l ] 

II single i n f luen c e 

deltaX; 
d eltaY; 

k = index l2 + 
dCprime[O] [OJ 
dCpr i me [ l] [ 0] 

deltaXIO. 75f; dCpri me[ O) [l) 
= deltaYI 0 .7 5 f; dCprime [ l ] [l] 

deltaX; 
deltaY; 

return k ; 

II Interleav es first n elements of p for u se with interleav ed 
II banded diagonal synthesis matrices . 
float[) interleave(float[] p, int n) 
{ float[] v =new float[p.length); 

II distr i bute s caling function input 
v [ O] = p [O ]; v [l] = p[l]; 
int i = 3 , k = 2 ; 
while (i < n-1 ) 
{ v[i] =p[k]; 

k++; 
i += 2 i 

v[n-1] = p[k); 

II now distribute wavelet input 
i = 2; k++ ; 
while (i < n-1) 
( v[i ) = p [ k) ; 

k++; 
i += 2 ; 

i++; 

II copy remaini ng vector, if any 
while (i < p.length) 
{ v[i] =p[i); 

i++; 

return v; 

II Reverses interleaving of first n elements o f p. 
float(] unleave(float[] p, int n) 
{ float[] v = new float[p . length]; 

II redistribute scaling function output 
v[O] = p [O ]; v[ l] = p[l]; 
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int i = 2, k = 3; 
while (k < n-1) 
{ v[i] = p[k]; 

i++; 
k += 2 ; 

} 
v[i) = p[n-1]; 

II now, redistribute wavelet output 
i++; 
k = 2; 
while (k < n-1) 
{ v[i] = p[k); 

i++; 
k += 2; 

II copy remaining vector , if any 
while (i < p.length ) 
{ v[i] =p[i]; 

i++; 

return v; 

II Returns the number of control points in a B-spline 
II curve of resolution level j. 
int numPoints(int j) 
{ return (int) (Math.pow(2, j)) + 3; 
} 

II This function is adapted from Numerical Recipes in C, 
II Press, Teukolsky, et al. Cambridge Univ. Press, 1992. 
II 
II Given an n*n matri x a, this routine replaces it by the LU 
II decomposition of a rowwise permutation of itself. a is output 
II with the U portion of the matrix the upper triangle and main 
II diagonal of a and the L portion the lower triangle part (L's main 
II diagonal values are all 1.) indx is an output vector that 
II records the row permutation effected by the partial pivoting; 
II the return value is +or - 1, depending on whether the number of 
II row interchanges was even or odd, respectively. Use this routine 
II in combination with lubksb to solve linear equations or invert 
II a matrix. 
public float ludcmp{float[] [] a, int[] indx) 
{ int imax = -1, n = a.length; 

float d, big, dum, sum, temp; 
float[] vv =new float[n]; 

d = 1.0f; 
for(int i = 0; i < n; ++i) 
{ big = O.Of; 

for(int j = 0; j < n; ++j) 
{ temp =Math.abs (a[i) [j]); 

if (temp > big) 
big = temp; 
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if (big == 0. Of} 
( System. out. println ( "ERROR: ludcmp: singular matri x " } ; 

return O.Of; 
} 

vv[i) = l.Oflbig; II save the scaling 

II next, loop over the columns per Crout's algorithm: 
for(int j = 0; j < n; ++j } 
{ for(int i = O; i < j; ++i) 

{ sum=a[i][j); 
for(int k = O; k < i ; ++k} 

sum-= a[i] [k] * a[k] [j]; 
a [ i] [ j] = sum; 

big= O.Of; II init. for the search for the 
II largest pivot element 

for(int i = j; i < n; ++i } 
{ sum=a[i][j]; 

for (int k = O; k < j; ++k) 
sum -= a[i] [ k ] * a [k ] [j]; 

a [ i ] [ j ] = sum; 
dum = vv[i] * Math.abs (sum}; 
if (dum >= big) 
{ II is the figure of merit for · the pivot better than the 

II best so far? 
big = dum; 
imax = i; 

if (j != imax} II do we need to interchange rows? 
{ for (int k = O; k < n; ++k) II Yes, do so ... 

{ dum = a[imax] [k]; 
a [imax] [k] = a [j] [ k] ; 
a [ j] [kl = dum; 

d = -1.0f*d; 
vv[imax] = vv[j]; 

indx[j] = imax; 
i f ( a [ j ] [ j ] == 0 . 0 f ) 

a(j] [j] = TINY; 

II ... and change the parity of d 
II and interchange scale factor. 

II if the pivot element is zero the matrix is singular (a t 
II least to the precision of the algorithm). For some 
II applications on singular matrices, it is desirable to 
II substitute TINY for 0 .0. 

if (j != n} II now, divide by the pivot element. 
{ dum = 1. 0 fl (a [ j] [ j] ) ; 

for (int i = j+l; i < n; ++i} 
a[i] [j] *= dum; 

return d; 
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/I This function is adapted from Numerical Recipes in C, 
/I Press, Teukolsky, et al. Cambridge Univ. Press, 1992 . 
II 
/I Solves the set of n linear equations A*x = b. Here a is an input 
/I n*n matrix , not as the matrix a but as its LU decomposition as 
/I returned from ludcmp. indx is input as the permutation vector 
/ I returned from ludcmp. b is input as the right-hand side vector 
/ I and returns with the solution vector x. a and indx are not 
// modified by this routine and can be left in place for successive 
/ I calls with different right-hand sides b. 
public void lubksb(float[] [] a, int[) indx, float[) b) 
{ int n = a . length, ii = -1, ip; 

float sum; 

for (int i = O; i < n; ++i) 
ip = indx[i]; 
sum= b[ip]; 
b[ip) = b[i); 

if (ii > -1) 

II When ii is set to a pos. value, 
II it will become the index o f the 
II first nonvanishing element of b. 
II We now do the forward 
II substitution. 

{ for (int j ii; j <= i-1; ++j) 
sum-= a[i) [j) * b[j); 

else if (sum> O.Of) 
ii = i; 

b[i) = sum; 

II A nonzero element was found, 
II so now we do the sums in the loop. 

for (int i = n-1; i >= 0; --i) II Now, backsubstitute ... 
{ sum = b [i]; 

for (int j = i+l; j 
sum-= a[i] [j) * 

b [ i ] = sum/ a [ i] [ i ) ; 

< n; j++) 
b [ j l ; 

II Store a component of the sol. x. 

II This function is adapted from Numerical Recipes in C, 
II Press, Teukolsky, et al. Cambridge University Press, 1992. 
II 
II Matrix multiply b = A*x, where A is a band diagonal with ml rows 
II below the diagonal and m2 rows above. The input vector x and 
II output vector bare length n. The array a is n*(ml+m2+1) with 
II the diagonal elements in column vector index ml. Subdiagonals 
II are in the values a[j .. (n-1))(0.(ml-l)), with j > 1 appropriate 
II to the number of elements on each subdiagonal. Superdiagonal 
II elements are in a[l . . j] [(ml+l) .. (ml+m2)] with j < (n-1) 
II appropriate to the number of elements on each superdiagonal. 
II MODIFIED (3/14/99): length of vector x may be longer than width 
II and so the length of b will be longer than the height of a. 
II Therefore, copy any remaining elements from x to b after 
II multiplication. 
float[] banmul(float[] [) a, int ml, int m2, float[] x) 
{ int tmploop , n = a.length; 

float[] b =new float[x.length]; //n]; 

for (int i = O; i < n; ++i) 
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int k = i - ml; 
int w = ml + m2, u = n - k - l; 
tmploop = (w < u) ? w u; 
b[i] = O.Of; 
for (int j (0 > -k) ? 0 : -k; j <= tmploop; ++j) 

b [ i ] += a [ i] [ j ] * x [ j + k] ; 

II now, copy over elements from x to b, if any. 
for (int i = n; i < x.length; ++i) 

b[i] = x[i]; 

return b; 

II This function is adapted from Numerical Recipes in C, 
II Press, Teukolsky, et al. Cambri~ge University Press, 1992. 
II 
II Given an n*n band diagonal matrix A with ml subdiagonal rows and 
II m2 superdiagonal rows, compactly stored in the n*(ml+m2+1) array 
II a as described for the method banmul above, this method 
II constructs an LU decomposition of a rowwise permutation of A. 
II The upper triangular matrix replaces a, while the lower 
II triangular matrix is returned in the n*ml array al. indx is an 
II output vector which records the row permutation effected by the 
II partial pivoting; dis output as +I- 1 depending on whether the 
II number of row interchanges was even or odd, respectively. Use 
II this in combination with the method banbks below. 
void bandec(float[] [] a, int ml, int m2, float[][] al, int[] indx) 
{ int mm = ml + m2 + 1, l = ml, n = a.length; 

float dum; 

II rearrange the storage: left justify the top ml rows 
for (int i = 0; i < ml; ++i) 
{ for (int j = ml-i; j <mm; ++j) 

a[i][j-1] = a[i][j]; 

} 

1--; 
for (int j 

a [i) [ j) 
mm-1-1; j <mm; ++j) 
O.Of; 

l ml; 
for (int k = 0; k < n; ++k} 

dum = a[k) [0]; 
int i k; 
if (1 < n} 

l++; 

II For each row ... 

for (int j = k+l; j < l; ++j) II find the pivot element. 
{ if (Math.abs(a[j] [0]} > Math.abs(dum)} 

{ dum = a [ j) [ 0] ; 
i = j; 

indx[k] i; 
if (dum == 0.0) 

a[k][O] =TINY; 
if (i != k} 

{ for (int j = 0; 

II Matrix is algorithmically singular 
II but proceed anyway wl TINY pivot. 

j <mm; ++j) II interchange rows 
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float temp= a[k) [j); 
a[k) [j) a[i] [j); 
a [ i ) [ j ) = temp ; 

for (i = k+l; i < l; ++i} II do the elimination 
{ dum = a[i) [O)la[k) [OJ; 

al[k) [i-k-1) = dum; 
for (int j = l; j < mm; ++j} 

a[i] [j-1] = a[i] [j) - dum * a[k) [j); 
a [ i) [ mm-1) = 0 . 0 f; 

II This function is adapted from Numerical Recipes in C, 
II Press, Teukolsky, et al. Cambri?ge Univ. Press, 1992. 
II 
II Given the arrays a, al and indx, as obtained from bandec, above, 
II and given a right-hand side vector b, solves the band diagonal 
II linear equations A*x = b . The solution vector x overwrites b. 
II The other input arrays are not modified, and can be left in place 
II for successive calls with different right-hand sides. 
void banbks(float[) [) a, int ml, int m2, 

float[)[) al, int[) indx, float[) b } 
int n = a.length, mm = ml + m2 + 1, l = ml; 
float dum; 

II Forward substitution, unscrambling the permuted rows as we go. 
for (int k = 0; k < n; ++k} 
{ inti= indx[k]; 

if (i != k} 

{ float temp= b[k); 
b[k) b[i); 
b[i] = temp; 

if (1 < n} 

l++; 
for (i = k+l; i < l; ++i} 

b[i) -= al[k) [i-k-1) * b[k]; 

l = l; 

II Backsubstitution. 
for (int i = n-1; i >= 0; i--} 
{ dum=b[i); 

for (int k = l; k < l; ++k} 
dum -= a[i) (kl * b(k+i]; 

b ( i] = dum I a ( i) ( 0] ; 
if (1 < mm) 

l++; 

II Converts an array of Point2D to a 20 array of floats. 
float[)(] Point2DToXY(Point2D() P) 
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int n = P.length; 
float[][] points =new fl oat[ 2 ] [n]; 

for (int i = 0 ; 
points [OJ [i] 
points[l] [i] 

return points; 

i < n; ++i ) 
P [i]. x ; 
p [ i] . y ; 

II Converts a 2D array of floats to an array of Point2 D. 
Point2D[] XYToPoint2D(float[] [] P) 
{ int n = P[O] .length; 

Point2D[] points= new Point2D[n]; 

for (int i = O; i < n; ++i) 
points[i] new Point2D (P[O][i], P[l][i] ) ; 

return points; 
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// File: CurvEditor.java 
//Author: Stephen Alberg 
// Uses: CvBspline and Swing classes 

// 
II 
// 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

This file the class definition fo r an interactive multiresolution 
curve editor. The CurvEditor class invokes c omponents of the Swing 
library to provide a fluent interface to the program. The CvBspline 
class is a canvas object within which multiple curves may be edited. 
When a user request to edit the resolution of a curve is made, the 
cvBspline object calls upon the coarsen/refine methods of its member 
Multires object, receiving as a return value the modified set of 
control points for the curve 

TO DO: scribble translation interface, zoom control, knot editing 
vs. control point editing (using HermitelBspline conversion ) . 

Original source for the curve enterjng and drawing functionalit y : 
Leen Ammeraal, Computer Graphics for Java Programmers. Wiley, 1998. 

import 
import 
import 
import 

java.awt.*; 
java.awt.event.*; 
java.io.*; 
java.util.*; 

import 
import 
import 

. . * Javax.swing. ; 
javax.swing.border.*; 
javax.swing.event.*; 

public class CurvEditor extends J Frame 
public static void main(String[] args) 
{ // use system look and feel 

try { 

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName ()) ; 
} catch(Exception e) {} 
new CurvEditor(); 

static JFrame instance; 

JSlider slider; 
CvBspline canvas; 

JToggleButton edit= new JToggleButton(); 
JToggleButton scribble= new JToggleButton(); 
JToggleButton draw= new JToggleButton(); 
JToggleButton zoom= new JToggleButton(); 
JPopupMenu zoomPopup = new JPopupMenu(); · 
JToggleButton zoomPlus = new JToggleButton(); 
JToggleButton zoomMinus = new JToggleButton(); 
JToggleButton zoomOne =new JToggleButton(); 
JButton polygon= new JButton(); 
JButton points= new JButton(); 
JButton knots= new JButton(); 
JButton grid= new JButton(); 
JButton coords =new JButton(); 
JButton clear= new JButton(); 
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JLabel resLabel =new JLabel("Resoluti on value: 0 • 0 II } ; 

JLabel coordsLabel =new JLabel("Posit ion : " } ; 

II image icons for buttons 
Imageicon editUnselected, editRollover, editSelected; 
Imageicon scribbleUnselected, scribbleRollover, scribbleSelected; 
Imageicon drawUnselected, drawRollover, drawSelected; 
Imageicon zoomUnselected, zoomRollover, zoomSelected; 
Imageicon zoomPlusUnselected, zoomPlusRollover, zoomPlusSelected; 
Imageicon zoomMinusUnselected, zoomMinusRollover, zoomMinusSelected; 
Imageicon zoomOneUnselected, zoomOneRoll ove r, zoomOneSelected; 
Imageicon polygonUnselected, polygonRol love r, polygonSelected; 
Imageicon pointsUnselected, pointsRollover, pointsSelected; 
Imageicon knotsUnselected, knotsRollover, knotsSelected; 
Imageicon gridUnselected, gridRollover, gridSelected; 
Imageicon coordsUnselected, coords~ollover, coordsSelected; 
Imageicon clearUnselected, clearRollover; 
Imageicon c anvasBG; 
Imageicon crvicon, dificon; 
Imageicon textureiconl, textureicon2, textureicon3; 

II menu items for menubar 
JMenuitem exit; 
JMenuitem undo, redo, select, sketch, build; 
JMenuitem zoomin, zoomOut, clearScreen; 
JMenuitem shPolygon, shPoints, shKnots , shGrid, shCoords; 
JMenu importTexture, gridSpacing, undoStack; 
JMenuitem about; 

II dialog boxes 
JDialog aboutBox ; 

boolean shiftAllowed 

II Constructor 
CurvEdi tor (} 

true; 

{ super ( "CurvEdi tor v. 1. l"} ; 
instance = this; 

addWindowListener(new WindowAdapter(} 
public void windowClosing(WindowEvent e} 
{ System.exit(O); 
} 

} ) ; 

setSize ( 800, 600); 
getContentPane(} .setLayout(new BorderLayout(}}; 

slider =new JSlider(JSlider.HORIZONTAL, O, 80, 0); 
canvas =new CvBspline(slider); 
canvasBG =new Imageicon("imageslbigwhite.gif"}; 
canvas.seticon(canvasBG}; 

JScrollPane pane= new JScrollPane(canvas); 
getContentPane() .add(pane, BorderLayout.CENTER); 
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loadimages () ; 

JMenuBar menubar = createMenuBar ( ); 
setJMenuBar (menubar); 

JToolBar toolbar =new JToolBar(JToolBar. VERTICAL ) ; 
initButtons(toolbar); 
getContentPane ( ) .add(toolbar, BorderLayout.WEST ) ; 

slider.setPaintTicks(true); 
slider.setMajorTickSpacing(lO); 
slider.setMinorTickSpacing(l); 
slider.setSnapToTicks(true); 
slider.setPaintLabels(false); 
slider.setBorder(new BevelBorder(BevelBorder.LOWERED)); 
slider.addChangeListener(new ChangeListener () 
{ public void stateChanged(ChangeEvent e) 

{ if (shiftAllowed) 
( shiftAllowed = false; 

slider.setEnabled(false); 
canvas . shiftResolution( 

(float) (slider.getValue() )110.0f); 
res Label. set Text ("Resolution value: " + 

(double) (slider. getValue ()) 110. 0 ) ; 
slider.setEnabled(true); 
shiftAllowed = true; 

} 

} ) ; 
this.addKeyListener(new KeyListener() 

public void keyPressed(KeyEvent e) 

) ) ; 

( if (e.getKeyCode() == KeyEvent.VK_LEFT) 
slider.setValue(slider.getValue() - l ) ; 

else if(e.getKeyCode() == KeyEvent.VK_RIGHT) 
slider.setValue(slider.getValue() + 1 ) ; 

canvas. shiftResolution ( (float) (slider. getValue () ) I 10. Of) ; 
resLabel.setText("Resolution value: " + 

(double) (slider.getValue () ) /10.0); 

II dummy functions necessary to implement abstract class 
public void keyReleased(KeyEvent e) {} 
public void keyTyped(KeyEvent e) {) 

II Set layout of bottom of interface 
canvas.setCoordsLabel(coordsLabel); 

JPanel p =new JPanel(); 
p.setLayout(new BoxLayout(p, BoxLayout.Y AXIS)); 
p.setBackground(Color.lightGray); 
getContentPane() .add (p, BorderLayout.SOUTH); 

JPanel q =new JPanel(); 
q.setLayout(new BoxLayout(q, BoxLayout.X_AXIS) ) ; 
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q.add(Box.createRigidArea(new Dimension(75,20 ))) ; 
resLabel.setPreferredSize(new Dimension(l40, 25)) ; 
q.add("West", resLabel ) ; 
q.add(Box .createRigidArea (new Dimension(75,20 ))) ; 

coordsLabel.setPreferredSize(new Dimension (240 , 2 5 )) ; 
q.add("West", coordsLabel); 
q.add(Box.createGlue ()) ; 

p.add(q); 

q =new JPanel( ) ; 
q.setLayout(new BoxLayout(q, BoxLayout. X_AXIS ) ) ; 

q.add(Box.createRigidArea(new Dimension(75, 25) )) ; 
slider.setPreferredSize(new Dime?sion(525, 50) ) ; 
q.add("West", slider); 
q.add(Box.createRigidArea(new Dimension(75, 2 5 ))) ; 

p.add(q); 
p.add(Box.createRigidArea(new Dimension(75, 2 5 ))) ; 

show(); 

public static JFrame shared!nstance() 
{ return instance; 
I 

void load!mages() 
editUnselected new Image!con("images/hand.gif" ) ; 

Image!con("images/handl.gif" ) ; 
Image!con("images/hand2.gif"); 

editRollover new 
editSelected new 
scribbleUnselected new Image!con("images/pencil . gif" ) ; 

new Image!con("images/pencil l .gif"); scribbleRollover 
scribbleSelected 
drawUnselected 
drawRollover 
draws elected 
zoomUnselected 

new Image!con("images/pencil2.gif" ) ; 
new Image!con("images/curve.gif" ) ; 
new Image!con("images/curver.gif" ) ; 
new Image!con("images/curve2.gif" ) ; 

zoomRollover new 
new Image!con("images/zoom.gif"); 

Image!con("images/zooml.gif" ) ; 
Image!con("images/zoom2.gif" ) ; zoomSelected new 

zoomPlusUnselected 
zoomPlusRollover 
zoomPlusSelected 
zoomMinusUnselected 

new Image!con("images/zoomplus.gif"); 
new Image!con("images/zoomplusl.gif"); 
new Image!con("images/zoomplus2.gif"); 

new Image!con("images/zoomminus.gif"); 
=new Image!con("images/zoomminusl.gif"); 
=new Image!con("images/zoomminus2.gif"); 
new Image!con("images/zoomone.gif"); 
new Image!con("images/zoomonel.gif"); 
new Image!con("images/zoomone2.gif"); 
new Image!con("images/polygon.gif"); 
new Image!con("images/polygonl.gif" ) ; 
new Image!con("images/pol ygon 2 .gif" ) ; 

zoomMinusRollover 
zoomMinusSelected 
zoomOneUnselected 
zoomOneRollover 
zoomOneSelected 
polygonUnselected 
polygonRollover 
polygonSelected 
points Unselected 
points Rollover 

new Image!con("images/points.gif" ) ; 
=new Image!con("images/points l . gif" ) ; 
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pointsSelected =new Imageicon("images/points2.gif" ) ; 
knotsUnselected new Imageicon("images/knots.gif" ) ; 
knotsRollover =new Imageicon("images/knotsl.gif"); 
knotsSelected = new Imageicon("images/knots3.gif"); 
gridUnselected new Imageicon("images/grid.gif"); 
gridRollover new Imageicon("images/gridl.gif" ) ; 
gridSelected new Imageicon("images/grid2.gif"); 
coordsUnselected new Imageicon("images/coords.gif" ) ; 
coordsRollover =new Imageicon("images/coordsl.gif"); 
coordsSelected = new Imageicon("images/coords2.gif" ) ; 
clearUnselected =new Imageicon("images/clear.gif''); 
clearRollover =new Imageicon("images/clearl.gif" ) ; 
crvicon = new Imageicon("images/crvicon.gif"); 
dificon = new Image Icon ( "images/dificon. gif") ; 
textureiconl new Imageicon ( "images/txl. gif"); 
textureicon2 new Imageicon("images/tx2.gif"); 
textureicon3 new Image Icon ( "im_ages/tx3. gif"); 

void initButtons(JToolBar toolbar) 
ButtonGroup bg =new ButtonGroup(); 
Insets margin= new Insets(0,0,0,0); 

edit .seticon(editUnselected ) ; 
edit.setRollovericon(editRollover); 
edit .setSelectedicon(editSelected); 
edit.setSelected(true); 
edit .setToolTipText("Edit/Select Curve"); 
edit.setMargin(margin); 
bg.add(edit); 
toolbar.add(edit); 

scribble.seticon(scribbleUnselected); 
scribble.setRollovericon(scribbleRollover); 
scribble.setSelectedicon(scribbleSelected); 
scribble.setToolTipText("Write Curve"); 
scribble.setMargin(margin); 
bg.add(scribble); 
toolbar.add(scribble); 

draw.seticon(drawUnselected); 
draw.setRollovericon(drawRollover); 
draw.setSelectedicon(drawSelected); 
draw.setToolTipText("Build Curve"); 
draw.setMargin(margin); 
bg. add (draw); 
toolbar.add(draw); 

zoom.seticon(zoomUnselected); 
zoom.setRollovericon(zoomRollover); 
zoom.setSelectedicon(zoomSelected); 
zoom.setToolTipText("Zoom"); 
zoom.setMargin(margin); 
bg. add (zoom) ; 
toolbar.add(zoom); 

bg =new ButtonGroup(); 
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zoomPlus.seticon(zoomPlusUnselected ) ; 
zoomPlus.setRollovericon(zoomPlusRollover); 
zoomPlus.setSelectedicon(zoomPlusSelected); 
zoomPlus.setToolTipText("Zoom in" ) ; 
zoomPlus.setMargin(margin); 
bg.add(zoomPlus); 
zoomPopup.add(zoomPlus); 

zoomMinus.seticon(zoomMinusUnselected ) ; 
zoomMinus.setRollovericon(zoomMinusRollover); 
zoomMinus.setSelectedicon(zoomMinusSelected); 
zoomMinus.setToolTipText("Zoom out" ) ; 
zoomMinus.setMargin(margin); 
bg.add(zoomMinus); 
zoomPopup.add(zoomMinus); 

zoomOne.seticon(zoomOneUnselecte9 ) ; 
zoomOne.setRollovericon(zoomOneRollover); 
zoomOne.setSelectedicon(zoomOneSelected); 
zoomOne.setToolTipText("Zoom default" ) ; 
zoomOne.setMargin(margin); 
bg.add(zoomOne); 
zoomPopup.add(zoomOne); 

toolbar.addSeparator(new Dimension(S,5)); 

polygon.seticon(polygonUnselected); 
polygon.setRollovericon(polygonRollover); 
polygon.setToolTipText("Hide Polygon"); 
polygon.setMargin(margin); 
toolbar.add(polygon); 

points.seticon(pointsUnselected); 
points.setRollovericon(pointsRollover ) ; 
points.setToolTipText("Hide Points"); 
points.setMargin(margin); 
toolbar.add(points); 

knots.seticon(knotsSelected); 
knots.setRollovericon(knotsRollover); 
knots.setToolTipText("Show Knots"); 
knots.setMargin(margin); 
toolbar.add(knots); 

grid.seticon(gridUnselected); 
grid.setRollovericon(gridRollover); 
grid.setToolTipText("Show Grid"); 
grid.setMargin(margin); 
toolbar.add(grid); 

coords.seticon(coordsUnselected); 
coords.setRollovericon(coordsRollover ) ; 
coords.setToolTipText("Show Coordinates"); 
coords.setMargin(margin); 
toolbar.add(coords); 

clear.seticon(clearUnselected); 
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clear.setRollovericon(clearRollover); 
clear.setToolTipText("Clear Screen" ) ; 
clear.setMargin(margin); 
toolbar.add(clear ) ; 

edit.addActionListener(new ActionListener () 
( public void actionPerformed(ActionEvent e) 

( canvas.setOpState(CvBspline.EDIT ) ; 
} 

} ) ; 

scribble.addActionListener(new ActionListener( ) 
( public void actionPerformed(ActionEvent e ) 

{ canvas.setOpState(CvBspline.SKETCH); 
} 

} ) ; 

draw.addActionListener(new ActionListener () 
( public void actionPerformed(ActionEvent e) 

{ canvas.setOpState{CvBspline.DRAW); 
} 

} ) ; 

zoom.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e) 

{ llcanvas.setOpState(CvBspline.ZOOM) ; 

} 
} ) ; 

zoomPopup.show(zoom, zoom.getWidth () , 10); 

zoomPlus.addActionListener(new ActionListener() 
{ public void actionPerformed(ActionEvent e) 

{ canvas.setOpState{CvBspline.ZOOM); 

} 
} ) ; 

II perform the zoom ... 

II reset the system to edit mode 
edit.setSelected(true); 
llcanvas.setOpState(CvBspline.EDIT ) ; 
zoomPlus.setSelected(false); 
repaint(); 

zoomMinus.addActionListener(new ActionListener() 
{ public void actionPerformed(ActionEvent e) 

{ canvas.setOpState(CvBspline.ZOOM); 

} 
} ) ; 

II perform the zoom ... 

II reset the system to edit mode 
edit.setSelected(true); 
llcanvas.setOpState(CvBspline.EDIT); 
zoomMinus.setSelected{false); 
repaint(); 

zoomOne.addActionListener(new ActionListener() 
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public void actionPerformed(ActionEvent e ) 
{ canvas .setOpState(CvBspline.ZOOM); 

) 
) ) ; 

II perform the zoom ... 

II reset the system to edit mode 
edit.setSelec ted(true); 
//canvas.setOpState(CvBspline.EDIT ) ; 
zoomOne.setSelected(false); 
repaint(); 

clear.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e ) 

{ canvas.clear () ; 

) 
) ) ; 

edit.setSelected(true); 
repaint(); 

knots.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e ) 

{ canvas.toggleKnots(); 

} 
} ) ; 

swapKnotsLabel(); 

polygon.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e) 

{ canvas.togglePolygon(); 
swapPolygonLabel(); 

) 
} ) ; 

points.addActionListener(new ActionListener() 
{ public void actionPerformed(ActionEvent e ) 

{ canvas .togglePoints(); 
swapPointsLabel(); 

} 
) ) ; 

grid.addActionListener(new ActionListener() 
{ public void actionPerformed(ActionEvent e) 

{ canvas.toggleGrid(); 

} 
} ) ; 

swapGridLabel(); 

coords.addActionListener(new ActionListener() 
{ public void actionPerformed(ActionEvent e) 

{ canvas.toggleCoords(); 
swapCoordsLabel(); 

} 
) ) ; 

JMenuBar createMenuBar() 
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JMenuBar menubar =new JMenuBar(); 

II Create File menu 
JMenu file = new JMenu ( " File "); 
file.setMnemonic('F'); 
JMenuitem mi; 
mi = new JMenuitem ( "New . . . " ) ; 
mi.setMnemonic('N' ) ; 
mi.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e) 

{ // show dialog box asking if we want to save 
II the current drawing (set of curves) first 
Vector currState = canvas .saveCurve(); 

if (currState.size( ) > 0) 
{ //if answer from dialog box is yes 

int result = JOptionPan~.showConfirmDialog ( 

CurvEditor.sharedinstance(), 
"Do you wish to save the present drawing? " 

) ; 

if (result== JOptionPane.YES_OPTION) 
saveFile(); 

if (result != JOptionPane.CANCEL_OPTION) 
canvas.clear( ) ; 

else 
canvas.clear( ) ; 

void saveFile () 
JFileChooser saveChooser = new JFileChooser () ; 
ExampleFileFilter filter= new ExampleFileFilter ( 

new String [) { " crv" ) , "CurvEditor files" 
) ; 

ExampleFileView fileVi ew = new ExampleFileView () ; 
fileView.puticon("cr v ", crvicon); 
saveChooser.setFileView(fileView); 
saveChooser.addChoosableFileFilter(filter ) ; 
saveChooser.setFileFilter(filter); 
saveChooser.setCurrentDirectory( 

new File("CurvEditor.class")); 

int retval = saveChooser.showSaveDialog( 
CurvEditor.sharedinstance ()) ; 

if (retval == 0) 
{ File theFile = saveChooser.getSelectedFile () ; 

II Load selected curve into environment 
if (theFile 1= null) 
{ try 

( ObjectOutputStream os = new ObjectOutputStream( 
new FileOutputStream(theFile) 

) ; 

Vector newState = canvas.saveCurve() ; 
os.writeObject(newState); 
as.close(); 

catch(Exception ex) { 
System.out.println(ex); 
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} 

} ) ; 

file.add(mi); 
mi = new JMenuitem ("Open ... " ) ; 
mi.setMnemonic('O'); 
mi.addActionListener(new ActionListener() 
{ public void actionPerformed (ActionEvent e) 

{ llJFileChooser chooser= new JFileChooser ( ); 
JFileChooser openChooser =new JFileChooser(); 
ExampleFileFilter filter =new ExampleFileFilter ( 

new String [] { "crv" } , "CurvEdi tor files" 

} 

) ; 
ExampleFileView fileView =new ExampleFileView(); 
fileView.puticon("crv", cr_vicon); 
openChooser.setFileView(fileView); 
openChooser.addChoosableFileFilter(filter); 
openChooser.setFileFilter (filter); 
openChooser.setCurrentDirectory( 

new File("CurvEditor.class")); 

int retval = openChooser.showOpenDialog( 
CurvEditor.sharedinstance () ) ; 

if (retval == 0) 
{ File theFile = openChooser.getSelectedFile( ) ; 

II Load selected curve into environment 
if (theFile 1= null) 
{ try 

{ ObjectinputStream os = new ObjectinputStream ( 
new FileinputStream(theFile) 

) ; 
Vector newState = (Vector)os.readObject( ) ; 
canvas.loadCurve (newState); 
cs.close(); 

catch(Exception ex ) { 
System.out.println (ex); · 

} ) ; 

file.add(rni); 
mi= new JMenuitem("Save"); 
rni.setMnemonic('S'); 
mi.addActionListener(new ActionListener() 
{ public void actionPerformed(ActionEvent e) 

( 
JFileChooser saveChooser =new JFileChooser(); 
ExampleFileFilter filter= new ExampleFileFilter( 

new String [] ( "crv" } , "CurvEdi tor files" 
) ; 

ExampleFileView fileView =new ExampleFileView ( ); 
fileView.puticon("crv", crvicon); 
saveChooser.setFileView(fileView); 
saveChooser.addChoosableFileFilter(filter ) ; 
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) 
} ) ; 

saveChooser.setFileFilter(filter ) ; 
saveChooser.setCurrentDirectory ( 

new File("CurvEditor.class" ) ) ; 

int retval = saveChooser.showSaveDialog ( 
CurvEditor.sharedinstance()); 

if (retval == 0) 
( File theFile = saveChooser.getSelectedFile(); 

I I Load selected curve into environment 
if (theFile != null) 
( try 

{ ObjectOutputStream os = new ObjectOutputStream( 
new FileOutputStream (theFile) 

) ; 
Vector newState = canvas.saveCurve(); 
os.writeObject(newState ) ; 
as.close(); 

catch(Exception ex) { 
System.out.println(ex); 

file. add (mi) ; 

mi= new JMenuitem("Save As ... "); 
mi. setMnemonic ( 'A' ) ; 
mi.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e) 

{ 

JFileChooser saveChooser =new JFileChooser(); 
ExampleFileFilter filter= new ExampleFileFilter( 

new String[) { "*" ) , "All files" 
) ; 

ExampleFileView fileView =new ExampleFileView(); 
fileView.puticon("crv", crvicon); 
saveChooser.setFileView(fileView) ; 
saveChooser.addChoosableFileFilter (filter); 
saveChooser.setFileFilter(filter ) ; 
saveChooser.setCurrentDirectory( 

new File("CurvEditor.class" )) ; 

int retval = saveChooser.showSaveDialog( 
CurvEditor.sharedinstance()); 

if (retval == 0) 
( File theFile = saveChooser.getSelectedFile(); 

II Load selected curve into environment 
if (theFile 1 = null) 
{ try 

{ ObjectOutputStream os = new ObjectOutputStream( 
new FileOutputStream(theFile) 

) ; 

Vector newState = canvas.saveCurve(); 
os.writeObject(newState ) ; 
as.close(); 

catch(Exception ex) { 
System.out.println(ex); 
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} 

} ) ; 

file. add (mi ) ; 
file.add(new JSeparator()); 
importTexture =new JMenu("Import Texture" ) ; 
importTexture.setMnemonic('I'}; 
mi= new JMenultem(texturelconl); 
mi.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e ) 

{ loadTexture(texturelconl); 
} 

} ) ; 
importTexture.add(mi); 
mi = new JMenultem(texturelcon2); 
mi.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e ) 

{ loadTex ture(texturelcon2); 
} 

} ) ; 

importTexture.add(mi); 
mi= new JMenultem(texturelcon3); 
mi.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e ) 

{ loadTexture(texturelcon3); 
} 

} ) ; 

importTexture.add(mi); 
importTexture.add(new JSeparator()); 
mi= new JMenultem ( "User-defined Tex ture .. . " ) ; 
mi.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e ) 

{ loadTexture(null); 
} 

} ) ; 

importTexture.add(mi); 
file.add(importTexture); 
mi = new JMenultem ("Save As Texture ... " ) ; 
mi.setMnemonic('T'); 
mi.addActionListener{new ActionListener {) 
{ public void actionPerformed{ActionEvent e ) 

{ 

JFileChooser saveChooser =new JFileChooser{); 
ExampleFileFilter filter= new ExampleFileFilter{ 

new String [] { "dif" } , "Curve Texture files" 
) ; 

ExampleFileView fileView =new ExampleFileView{); 
fileView.puticon{"dif", dificon); 
saveChooser.setFileView{fileView); 
saveChooser.addChoosableFileFilter{filter); 
saveChooser.setFileFilter{filter); 
saveChooser.setCurrentDirectory{ 

new File{"CurvEditor.class")); 

int retval = saveChooser.showSaveDialog ( 
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CurvEditor.sharedin stanc e () ) ; 
i f ( retval == 0) 
{ File theFil e = s aveChooser.getS e lectedFi le () ; 

II Load sele c ted c urve into env ironment 
if (theFile 1 = null) 
{ try 

{ Obje ctOutputStream os = new Obj ec t OutputStream ( 
new FileOutputStream(theFile ) 

) ; 

Vecto r newTex ture = c anvas.saveTex t u r e () ; 
os.writeObject(newTexture ) ; 
os.close () ; 

catch (Exception e x) { 
System.out.println(ex ); 

} 

) ) ; 

file. add (mi ) ; 
file.add(new JSeparator ()) ; 
exit= new JMenuitem ( "Exit" ) ; 
exit.setMnemonic ( ' x ' ) ; 
e xit.addActionListener (new Ac tionListener () 
{ public void actionPerformed(ActionEvent e ) 

{ System.exit( O) ; 
} 

} ) ; 
file.add(exit); 
menubar.add(file); 

II Create Edit menu 
JMenu mEdit =new JMenu ("Edit" ) ; 
mEdit.setMnemonic('E' ) ; 
undo = new JMenuI tern ( "Undo " ) ; 
undo.setMnemonic ( 'U' ) ; 
undo.setEnabled(false ) ; 
undo.addActionListener (new ActionListener () 

public void actionPerformed(ActionEvent e ) 
{ canvas.undoLastMove(); 

repaint(); 
} 

} ) ; 

mEdit.add(undo); 
redo = new JMenuI tern ("Redo" ) ; 
redo.setMnemonic('R' ) ; 
redo.setEnabled(false ) ; 
redo.addActionListener(new ActionListener ( ) 
{ public void actionPerformed{ActionEvent e) 

{ canvas.redoLastMove{); 
repaint(); 

} 

} ) ; 

mEdit.add{redo); 
mEdit.add{new JSeparator{)); 
select= new JMenuitem("Select"); 
select.setMnemonic {'l' ) ; 
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select.addActionListener (new ActionListener () 
( public void actionPerforrned (Acti onEvent e) 

{ canvas.setOpState (CvBspline.EDIT ) ; 
edit.setSelected (true ) ; 

} 

} ) ; 

rnEdit.add(select); 
sketch = new JMenuitern("Sketch" ) ; 
sketch.setMnemonic('k'); 
sketch.addActionListener (new ActionListener() 
{ public void actionPerformed(ActionEvent e) 

{ canvas.setOpState(CvBspline.SKETCH); 
scribble.setSelected (t rue ) ; 

} 

} ) ; 

mEdit.add(sketch); 
build = new JMenuI tern ("Build") ; 
build.setMnemonic('B'); 
build.addActionListener(new ActionListener() 
{ public void actionPerforrned (ActionEvent e) 

{ canvas.setOpState(CvBspline.DRAW); 
draw.setSelected(true); 

} 

} ) ; 

mEdit.add(build); 
mEdit.add(new JSeparator() ) ; 
zoomin =new JMenuitem("Zoom In"); 
zoomin.setMnemonic('Z' ) ; 
mEdit.add(zoomin); 
zoomOut =new JMenuitern("Zoorn Out"); 
zoomOut.setMnemonic('o'); 
mEdit.add(zoomOut); 
clearScreen = new JMenuitern ("Clear Screen"); 
clearScreen.setMnemonic('C' ) ; 
clearScreen.addActionListener(new ActionListener() 
{ public void actionPerformed(ActionEvent e) 

} ) ; 

{ canvas .clear(); 

} 

edit.setSelected (true ) ; 
repaint(); 

mEdit.add(clearScreen); 
mEdit.addChangeListener(new ChangeListener() 

public void stateChanged(ChangeEvent e) 
{ if (canvas.undoStackEmpty()) 

undo.setEnabled(false); 

} 

else 
undo.setEnabled(true); 

if (canvas.redoStackEmpty()) 
redo.setEnabled(false); 

else 
redo.setEnabled(true); 

} ) ; 

menubar.add(mEdit); 
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I I Create Options menu 
JMenu options = new JMenu{"Options" ) ; 
options .setMnemoni c( 'p' ) ; 
shPol ygon = new JMenuitem {"Hide Po l ygon " ) ; 
shPol ygon.setMnemonic { ' y ' ) ; 
shPol ygon.addActionListener (new ActionListener() 
( public void actionPerformed {ActionEvent e ) 

{ canvas .togglePolygon(); 
swapPolygonLabel(); 

} 

} ) ; 

options.add{shPolygon); 
shPoints =new JMenuitem("Hide Points " ) ; 
shPoints.setMnemonic{'i'); 
shPoints.addActionListener{new ActionListener() 
{ public void actionPerformed {ActionEvent e ) 

{ canvas.togglePoints{); 
swapPointsLabel(); 

} 

} ) ; 

options.add(shPoints); 
shKnots = new JMenuitem ( "Show Knots" ) ; 
shKnots.setMnemonic ( 'K' ) ; 
shKnots.addActionListener (new ActionListener( ) 
( public void actionPerformed (Act ionEvent e) 

{ c anvas.toggleKnots(); 
swapKnotsLabel(); 

} 

} ) ; 

options.add(shKnots); 
shGrid = new JMenuitem("Show Grid"); 
shGrid.setMnemonic{'G'); 
shGrid.addActionListener{new ActionListener() 
{ public void actionPerformed (ActionEvent e ) 

{ canvas .toggleGrid{); 
swapGridLabel(); 

} 

} ) ; 

options.add(shGrid); 
shCoords = new JMenuitem("Show Coords"); 
shCoords.setMnemonic('d'); 
shCoords.addActionListener(new ActionListener() 
{ public void actionPerformed(ActionEvent e) 

{ canvas.toggleCoords{); 
swapCoordsLabel(); 

} 

} ) ; 

options.add(shCoords); 
options.add(new JSeparator()); 
gridSpacing =new JMenu("Grid Spacing"); 
JCheckBoxMenuitem temp; 
ButtonGroup bg =new ButtonGroup(); 
temp = (JCheckBoxMenuitem) gridSpacing.add( 

new JCheckBoxMenuitem("lO" )) ; 
temp.setSelected(true); 
temp.addActionListener(new ActionListener() 
{ public void actionPerformed (ActionEvent e) 
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{ canvas.setGridSpacing(lO.Of); 
} 

} ) i 
bg. add (temp) ; 
temp = (JCheckBoxMenuitem) gridSpacing.add ( 

new JCheckBoxMenuI tern ( "2 0") ) ; 
temp.addActionListener(new ActionListener ( ) 
{ public void actionPerformed(ActionEvent e ) 

( canvas.setGridSpacing(20.0f); 
) 

) ) i 

bg. add (temp) ; 
temp = (JCheckBoxMenuitem) gridSpacing.add ( 

new JCheckBoxMenuitem("25")); 
temp.addActionListener(new ActionListener () 
( public void actionPerformed(ActionEvent e ) 

( canvas.setGridSpacing(25.0f); 
) -

) ) i 

bg. add (temp); 
options.add(gridSpacing); 
undoStack = new JMenu("Undo Stack Depth" ) ; 
bg =new ButtonGroup(); 
temp = (JCheckBoxMenuitem) undoStack.add ( 

new JCheckBoxMenuitem("l")); 
temp.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e ) 

( canvas.setUndoLimit(l); 
) 

) ) i 

bg.add(temp); 
temp = (JCheckBoxMenuitem) undoStack.add ( 

new JCheckBoxMenuitem("S")); 
temp.setSelected(true); 
temp.addActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e ) 

{ canvas.setUndoLimit(S); 
) 

) ) i 

bg. add (temp) ; 
temp = (JCheckBoxMenuitem) undoStack.add ( 

new JCheckBoxMenuitem("lO")); 
temp.addActionListener(new ActionListener ( ) 
{ public void actionPerformed(ActionEvent e ) 

{ canvas.setUndoLimit(lO); 
) 

) ) i 

bg. add (temp) ; 
temp = (JCheckBoxMenuitem) undoStack.add( 

new JCheckBoxMenuitem("lS")); 
temp.addActionListener(new ActionListener() 
( public void actionPerformed(ActionEvent e ) 

( canvas.setUndoLimit(lS); 
) 

) ) i 

bg.add(temp); 
options.add(undoStack); 
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menubar.add(options ) ; 

II Create Help menu 
JMenu help =new JMenu("Help"); 
help.setMnemonic ( 'H'); 
about= new JMenuitem("About ... " ) ; 
about.setMnemonic ( 't'); 
about.adc!ActionListener(new ActionListener( ) 

public void actionPerformed(ActionEvent e ) 
if (aboutBox == null) 

} 

{ aboutBox =new JDialog(CurvEditor.sharedinstance(), 
"About CurvEditor v l. l", false); 

JPanel authorPanel =new JPanel (new BorderLayout()); 
Imageicon author = 

new Imagelcon("imageslcopyright.gif" ) ; 
aboutBox.getContentPane() .add (authorPanel, 

_ BorderLayout.CENTER); 
JLabel authorLabel =new JLabel(author ) ; 
authorPanel.add(authorLabel, BorderLayout.CENTER); 
JPanel buttonPanel =new JPanel(true ) ; 
authorPanel.add(buttonPanel, BorderLayout . SOUTH) ; 
JButton button= (JButton) buttonPanel.add ( 

new JButton("OK")); 
button.adc!ActionListener(new ActionListener () 
{ public void actionPerformed(ActionEvent e ) 

{ aboutBox.setVisible(false); 
) 

} ) i 

aboutBox.pack(); 
aboutBox.show(); 

} ) i 

help.add(about); 
menubar.add(help ) ; 

return menubar; 

void loadTexture(Imageicon icon) 
File theFile = null; 

if(icon == textureiconl) 
theFile =new File("texl.dif"); 

else if(icon == textureicon2) 
theFile =new File("tex2.dif"}; 

else if(icon == textureicon3) 
theFile =new File("tex3.dif"); 

else 
JFileChooser chooser= new JFileChooser(); 
ExampleFileFilter filter =new ExampleFileFilter ( 

new String [] { "dif" } , "Curve Texture files " 
) i 
ExampleFileView fileView =new ExampleFileView () ; 
fileView.puticon("dif", dificon); 
chooser.setFileView(fileView); 
chooser.addChoosableFileFilter(filter ) ; 
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chooser.setFileFilter (filter); 
chooser.setCurrentDirecto ry(new File ("CurvEditor.class" )) ; 

int retval = 
chooser.showOpenDialog(CurvEditor.sharedinstance (} } ; 

if ( retval == 0) 
theFile = chooser.getSelectedFile(); 

if(theFile !=null) 
{ try 

{ ObjectinputStream os = new ObjectinputStream ( 
new FileinputStream(theFile) 

} ; 

Vector newTexture = (Vector}os.readObject(}; 
canvas.importTexture ( newT~xture}; 

os.close(}; 
catch(Exception ex) { 
System.out.println (e x) ; 

void swapKnotsLabel(} 
if (knots.geticon() == knotsUnselected) 
{ knots.seticon(knotsSelected}; 

knots.setToolTipText("Show Knots"); 
shKnots.setText("Show Knots"}; 

else 
knots.seticon(knotsUnselected); 
knots.setToolTipText("Hide Knots"}; 
shKnots.setText("Hide Knots"); 

void swapPolygonLabel( } 
if (polygon.geticon() == polygonUnselected) 
{ polygon.seticon(polygonSelected); 

polygon.setToolTipText("Show Polygon"}; 
shPolygon.setText("Show Polygon"}; 

else 
polygon.seticon(polygonUnselected); 
polygon.setToolTipText("Hide Polygon"}; 
shPolygon.setText("Hide Polygon"); 

void swapPointsLabel(} 
if (points.geticon() == pointsUnselected) 
{ points.seticon(pointsSelected}; 

points.setToolTipText("Show Points"}; 
shPoints.setText("Show Points"}; 

else 
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points.seticon(pointsUnselec ted ) ; 
points.setToolTipText ( "Hide Points" ) ; 
shPoints.setText("Hide Points" ) ; 

void swapGridLabel() 
if (grid.geticon() == gridUnselected) 
{ grid.seticon(gridSelected); 

grid.setToolTipText("Hide Grid" ) ; 
shGrid.setText("Hide Grid"); 

else 
grid.seticon(gridUnselected ) ; 
grid.setToolTipText("Show Grid" ) ; 
shGrid.setText("Show Grid" ) ; 

void swapCoordsLabel() 
if (coords.geticon() == coordsUnselected) 
{ coords.seticon(coordsSelected); 

coords.setToolTipText ( "Hide Coordinates" ) ; 
shCoords.setText("Hide Coordinates"); 

else 
coords.seticon(coordsUnselected); 
coords.setToolTipText("Show Coordinates"); 
shCoords.setText("Show Coordinates"); 
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II File: CvBspline.java 
II Author: Stephen Alberg 
II Uses: Point2D, Multires, UndoStack, CurveState a nd Swing c lasses 
II 
II This file the class definition for an interactive multiresolution 
II curve editor. The CvBspline class is a scrollable cl ient c anvas 
II object. It inherits from the JViewport object which forms part of 
II the JScrollPane in a CurvEditor object. This canvas-type object 
II relates mouse inputs and selections from the CurvEditor interface to 
II the member Multires object for processing shifts in curve 
II resolution. Requires t hat a JSlider object is instantiated in the 
II interface object prior to this object's instantiation. 
II 
II TO DO: scribble translation interface, zoom control, knot editing 
II vs. control point editing (using Hermite lBspline c onversion) . 
II 
I I Original source for the curve ente~ing and drawing functionality : 
II Leen Ammeraal , Computer Graphics for Java Prog rammers . Wiley, 1998. 

import java.awt.*; 
import java.awt.event.*; 
import java.util.*; 

import javax . swing.*; 
import javax.swing . border.*; 
import javax.swing . event.*; 

public class CvBspline extends JLabel 
II constants 
static final Cursor EDIT CURSOR = 

Cursor . getPredefinedCursor(Cursor . CROSSHAIR_CURSOR) ; 
static final Cursor DRAW CURSOR = 

Cursor.getPredefinedCursor(Cursor . CROSSHAIR_CURSOR); 
static final Cursor WAIT CURSOR = 

Cursor . getPredefinedCursor(Cursor.WAIT_CURSOR); 

II system state IDs 
static final int EDIT 1; 
static final int SKETCH = 2; 
static final int DRAW 3 ; 
static final int ZOOM 4; 

II C is the currently selected CurveState 
CurveSta t e C; 

II State contains all of the curves in the present environment. 
Vector State = new Vector(); 

II Scribble contains a set of data points used for saving 
II a sketched line in the editing system. 
Vector Scribble= new Vector() ; 

I I Two stacks, one for preserving the last undoLimit moves , the 
II other for saving moves as undo operations are applied. 
UndoStack undo new UndoStack(); 
UndoStack redo= new UndoStack(); 
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II c oordinates of screen center 
II Instance variables 
int centerX, centerY, 

index = -1, 
stateindex = -1; 

II index of selected control point 
II index of current cu r ve in State vector 

float rWidth = 1000.0F, rHeight = 750.0F, 
eps = rWidthllOOF, pixelSize; 

float zoomX O. Of , zoomY = O. Of , zoomXt = O. Of , zoomYt 

int opState EDIT; 
int undoLimit = 5; 
float gridSpacing = 10.0f; 

O. Of ; 

float mouseX = rWidth , mouseY = rWidth; 
float lastX = O. Of, lastY = O.Of; 

II used in EDIT operations 
. 11 used by Scribble vector 

boolean showCoords = false, 
showGrid = false, 
showKnots = false, 
showRect = true, 
showPolygon = true, 
showPoints = true, 
editCurve = false, 
mouseDown = false , 
shiftAllowed = true, 
paintFirstTime = true; 

Multires multires =new Multires(); 
JSlider slider; 
JLabel c oordsLabel; 

II Constructor 
CvBspline(JSlider s) 
{ super(); 

this .slider= s; 
this.slider.setValue(O); 
this.slider.setEnabled(false ) ; 
TitledBorder tb = (TitledBorder)this.slider . getBorder(); 

setCursor(EDIT_CURSOR); 

addMouseListener(new MouseAdapter() 
{ public void mousePressed(MouseEvent evt) 

{ float x = fx(evt.getX()), y = fy(evt.get Y()) ; 
mouseX = x; mouseY = y; 

switch(opState) 
{ 
case DRAW: 

II If there is no current curve, start a new one 
if (C == null) 
{ C =new CurveState(State.size()); 

State.addElement(C); 

else II otherwise, save the curve to the undo stack 
undo.push(C.clone()); 
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II empty the redo stack 
redo.removeAllElements(); 

C.V.addElement(new Point2D(x, y)); 
C.np++; 
if (C.np == C.nextNPsize) 
( C.jCurr++; 

C.nextNPsize = multires.numPoints(C.jCurr + 1); 

II Add coarser curve rep to CurveState 
if (C.jCurr > 0) 

{ Point2D[] P =new Point2D[C.V.size () ]; 
copyFrom(C.V, P); 
P = multires.coarsen(P, C . jCurr); 
copyBack(C.Vl, P); 

llslider.setValue(C.jCurr*lO); 
resetSliderValue(); 

break; 
case SKETCH: 

II Reset the Scribble vector 
Scribble =new Vector(); 
Scribble.addElement(new Point2D(x, y)); 
break; 

case EDIT: 
II If no curve or control point was clicked on, 
II set current curve to null 
stateindex = -1; 
for (int j = 0; j < State.size(); ++j) 
{ CurveState cTemp (CurveState) (State.elementAt(j)); 

if (index < 0) 
( for (inti= O; i < cTemp.V.size(); ++i ) 

if (onPoint( (Point2D) (cTemp.V.elementAt(i)), 
x, y)) 

index = i; i = cTemp.V.size(); 
C = cTemp; 
stateindex j; j = State.size(); 

II If we deselected a curve, save the last 
II version of it to the undo . stack. 
if (C != null) 
( undo.push{C.clone() ); 

redo.removeAllElements(); 

if (stateindex < 0) 
( C = null; 

slider.setValue(O); 

break; 

126 



case ZOOM: 

) ; 

zoomX = zoomXt 
break; 

x; zoomY zoomYt y; 

repaint(); 

public void mouseReleased (MouseEvent evt) 
( switch(opState) 

( 

case DRAW: 
II If number of segments in curve is not a power o f 2 , 
II insert knots into curve until next power of 2 is 
II reached. 
// DON'T CHECK THIS HERE! Wait until the opState is 
II changed and update it then. 
break; 

case SKETCH: 
float sx = fx(evt.getX ()) , sy = fy(evt.getY ()) ; 
Scribble.addElement (new Point2D(sx, sy)); 

II Convert scribble to CurveState and add to State 
/IC= ScribbleToCurve(Scribble, State.size()); 
//State.addElement (C) ; 
//Scribble= new Vector(); 
repaint(); 
break; 

case EDIT: 
if (stateindex < 0) 

C null; 
else 

C (CurveState ) (State.elementAt(stateindex)); 
//slider.setValue (C.jCurr*lO); 
resetSliderValue () ; 
if (index >= 0) 

( float x = fx (evt.getX() ) , y = fy(evt.getY ()) ; 

II Need to modify this for fractional editing 
Point2D p = (Point2D) (C.V.elementAt(index) ) ; 
Point2D[] P; 

if (C.mu 
( p.x = 

0) //C. jCurr 
x; P·Y = y; 

0) 

II Coarsen the low-res vector 
if (C.jCurr > 0) 
( P =new Point2D[C.V.size()]; 

copyFrom(C.V, P); 

else 

P = multires.coarsen ( P, C.jCurr); 
copyBack(C.Vl, P); 

II Determine influence on control points 
float deltaX = x - p.x, deltaY = y - p.y; 
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} 

} } ; 

P =new Point2D[C.V.size(}); 
copyFrom(C.Vl, P ) ; 
P = multires.editCurve(P , C.jCurr, C.mu, 

deltaX, deltaY, index } ; 
copyBack(C.Vl, P) ; 

II now, re-refine the control points 
P =new Point2D[C. V.size(}); 
copyFrom(C.Vl, P} ; 
P = multires.refine(P, C.jCurr); 
copyBack(C.V, P}; 

II reset global value index 
index = -1; 

editCurve 
repaint(}; 
break; 

false; 

case ZOOM: 

} ; 

II map zoom rectangle to overall screen ... 
repaint(}; 

II now, reset zoom rectangle 
zoomX = zoomY = zoomXt = zoomYt 
setOpState(EDIT}; 
break; 

O.Of; 

mouseX mouseY rWidth; 

addMouseMotionListener(new MouseMotionAdapter(} 
public void mouseDragged(MouseEvent evt) 
( float x = fx(evt.getX() ), y = fy(evt.getY()); 

mouseX = evt.getX(); mouseY = evt.getY(); 

if (showCoords} 
coordsLabel. setText ("Position .: " + round (x} + 

" + round(y}); 

switch(opState} 
{ 

case DRAW: 
break; 

case SKETCH: 
Scribble.addElement(new Point2D(x, y)); 
repaint(); 
break; 

case EDIT: 
//if (stateindex >= 0) 
/I C = (CurveState) (State. elementAt ( stateindex} ) ; 
if (C != null && index >= 0) 
{ // Need to modify this for fractional editing 

Point2D p = (Point2D) (C.V.elementAt(index)); 
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Point2 D[] P; 

if (C.mu == 0) l l j Cu r r 0) 
{ p. x = x ; p. y = y ; 

I I Coarsen the low-res v e ctor 
if ( c. j Curr > 0 ) 
{ P =new Point2D[C. V. s ize (} ] ; 

copyFrom{C.V, P); 
P = multires.coarsen (P, C. jCurr ) ; 
copyBack(C.Vl, P); 

else 
II Determine influenc e on contro l poin ts 
float deltaX = x - p . x, deltaY = y - p. y ; 
P = new Point2 D[~.V.si ze () ) ; 

copyFrom(C.Vl, P); 
P = multires.editCurv e (P, C. jCurr, C .mu, 

deltaX, deltaY, index) ; 
copyBack(C.Vl, P); 

II now, re-refine the contro l po ints 
P =new Point2D[C.V.si z e () ]; 
copyFrom(C . Vl, P); 
P = multires.refine(P, C.jCurr ) ; 
c opyBack(C. V, P); 

repaint(); 

break; 
case ZOOM : 

} ; 

zoomXt = x ; zoomYt y; 
repaint(); 
break; 

public void mouseMoved(MouseEvent evt ) 
float x = f x (evt.getX ( ) ), y = f y( e vt. getY()) ; 

i f (showCoords) 
coordsLabel.setTex t("Position: " + round( x) + 

" + round( y)) ; 
} 

) ) ; 

setOpaque(true); 
super.setOpaque(true); 
setDoubleBuffered(true); 
setBackground(Color.white); 

II Interface relay functions 
public void clear ( } 
{ Graphics g = getGraphics( ) ; 
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II clear all curves from system 
State.removeAllElements(); 
Scribble.removeAllElements () ; 
undo.removeAllElements () ; 
redo.removeAllElements( ) ; 
C = null; 

II reset interface 
slider.setValue(O); 
setCursor(DRAW_CURSOR); 
opState = EDIT; 
index = stateindex = -1; 

II clear the screen 
JViewport jvp = (JViewport)getParent(); 
if (jvp != null) 
{ g.setColor(getBackground()); 

g.fillRect(jvp.getViewPosition() .x, jvp.getViewPosition() .y, 
jvp.getExtentSize() .width, 
jvp . getExtentSize() .height); 

jvp . setViewPosition(new Point(plotX(jvp), plotY ( jvp))); 

repaint(); 

public void loadCurve (Vector newState) 
{ clear(); 

State = newState; 
repaint(); 

public Vector saveCurve () 
{ return State; 
) 

public void importTexture(Vector texture) 
{ II texture format: first 4 entries are control points, 

II the remaining are difference (wavelet) coefficients 
int nd = texture.size() - 4 ; 

if(nd < 0) return; 

II MODIFIED 4129199: take current resolution of cu r ve and 
II apply texture from the next finer level on up to this 
II curve, expanding its length if necessary. 

II reduce the resolution of the current curve 
11Point2D[] P new Point2D[C.V.size()]; 
II 
llwhile(C . jCurr > 0) 
II{ copyFrom(C.V, P); 
II P = multires.coarsen(P, C.jCurr); 
II copyBack(C . V, P); 
II c.jCurr--; 
Ill 

130 



II test if the texture can e ven make a dent in the curren t c urve: 
if(texture.size() > multires.numPoints (C.jCurr) ) 
{ 

II copy the texture into the current curve 
llfor(int i = 0; i < 4; ++i) 
for(int i = 0; i < multires.numPoints(C.jCurr}; ++i } 
{ texture.removeElementAt (i); 

texture.insertElementAt( ((Point2 D) 
(C.V.elementAt(i})) .clone ( ) ,i ) ; 

C.V = texture; 

II bring curve back to previous resolution, or to resolution 
II of texture, whichever is greater. 
int np = 4; 
int limit (C.np >texture.size()} ? C.np texture.size ( ); 
Point2D[] P = new Point2D[limit]; 

while(np < limit} 
{ np = multires.numPoints (++C.jCurr); 

copyFrom(C.V, P); 
P = multires.refine(P, C.jCurr); 
copyBack{C.V, P}; 

II lastly, create the low-res curve in the current curv e 
C.np = limit; 
copyFrom(C.V, P); 
P = multires.coarsen(P, C.jCurr); 
copyBack(C.Vl, P}; 

resetSliderValue(); 
repaint(}; 

public Vector saveTexture() 
{ II saving the selected texture means 

II saving the set of control points of the 
II current CurveState 

CurveState temp= (CurveState) (C.clone(}}; 
Point2D[] P =new Point2D[temp.V.size(}]; 

II reduce resolution of texture to level 0 
while{temp.jCurr > 0) 
{ copyFrom(temp.V, P}; 

P = multires.coarsen(P, temp.jCurr}; 
copyBack{temp.V, P); 
temp.jCurr--; 

return temp.V; 
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public void setCoordsLabel(JLabel coordsLabel) 
{ this.coordsLabel = coordsLabel; 
} 

public void setOpState(int opid) 
{ opState = opid; 

if (opState == EDIT) 
{ setCursor(EDIT CURSOR); 

slider.setEnabled(true); 

II Check current curve C to see if the 
II number of segments is a power of 2 and, 
II if not, insert knots until it is. 

II MODIFIED 4/29/99: added this capability 
if(C !=null && C.np > 4 && . 

C.np > multires.numPoints(C. jCurr )) 
C nextLevelCurve(C); 

//else 
//{ 
//} 

//if(opState == SKETCH ) 

else if(opState == DRAW) 
setCursor(DRAW CURSOR); 
slider.setEnabled(false); 

II promote fractional value to next higher 
II integral level if we're adding to the c urve 
if(C !=null) 
{ C.mu = O; 

resetSliderValue(); 

} 
//else if(opState 
//{ 
//} 
else 

ZOOM) 

setCursor(DRAW_CURSOR); 
slider.setEnabled(false); 

repaint(); 

public void undoLastMove() 
{ if (!undoStackEmpty()) 

( // First, save current move to redo stack 
redo.push(C.clone()); 

II Next, pop the undo stack and make this the current curve 
C = (CurveState) (undo.pop()); 
State.setElementAt(C, C.stateindex); 
resetSliderValue(); 

II ... and repaint 
repaint(); 
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public void redoLastMove() 
{ if ('redo.empty()) 

{ II Save current state back to undo stack 
undo.push(C.clone()); 

II Next , pop the redo stack and make this the current curve 
C = (CurveState) (redo .pop( )); 
State.setElementAt(C, C.stateindex ) ; 
resetSliderValue(); 

II ... and repaint 
repaint(); 

public boolean undoStackErnpty() 
{ return undo.empty(); 
} 

public boolean redoStackErnpty() 
return redo.empty(); 

public void setUndoLirnit(int Limit) 
{ undo.setStackLimit(Limit); 

redo.setStackLirnit(Lirnit); 

public void setGridSpacing(float gridSpacing) 
this.gridSpacing = gridSpacing; 
repaint(); 

public void toggleKnots() 
showKnots = !showKnots; 
repaint(); 

public void togglePolygon() 
showPolygon = !showPolygon; 
repaint(); 

public void togglePoints() 
showPoints = !showPoints; 
repaint(); 

public void toggleRect() 
{ showRect = !showRect; 

repaint(); 

public void toggleGrid() 
showGrid = !showGrid; 
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repaint( ) ; 

public void toggleCoo rds () 
showCoords = !showCoords; 
if ( ! showCoords ) 

coordsLabel.setText("Position: "); 
repaint( ) ; 

II Integer level resolution shifting 
public void shiftResolution(int jNew) 
{ int n = multires . numPoints(jNew); 

II guard against overlapping concurrent calls 
II from event handler 
if {shiftAllowed && C != null ) 
{ shiftAllowed = false; 

II no interpolation for now 
if (multires.numPoints(C.jCurr) 
if (jNew > C.jCurr) 
{ Point2D[) P; 

if (n <= C.V.size()) 
P new Point2D[C . V.size()); 

else 
p new Point2D[n); 

copyFrom(C.V, P); 
P = multires.refine(P, jNew}; 
copyBack (C .V, P); 
C.np = n; C.jCurr = jNew; 

else if{jNew < C. jCurr } 

C.np ) 

{ Point2D[) P =new Point2D[C.V.size {}) ; 
copyFrom(C.V, P} ; 
P = multires.coarsen(P, C.jCurr } ; 
copyBack (C.V, P); 
C.np = n; C.jCurr = jNew; 

repaint(}; 
} 

llshiftAllowed true; 

II Fractional level resolution shifting 
public void shiftResolution(float jNew} 
{ int jLow = {int}jNew, jHigh = jLow + l; 

int nLow = multires.numPoints(jLow}, 
nHigh = multires . nurnPoints{jHigh}; 

float mu = (float) { ((int} {jNew*lO}) % 10) 110; 
Point2D[) P; 

II All fractional-level shifting occurs when the level of 
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II resolution either go es from j.O to j.l or down from j . l to 
II j. O. We test for these two c ases below. 
if (C != null) 
{ if ( jNew - (C . jCurr + C.mu ) > 0 && C. mu O. Of && 

jLow == C. jCurr && mu >= O.lf ) 
II save the current low-res c urve to Vl 
P =new Point2D[C . V.size ()) ; 
copyFrom(C. V, P); 
copyBack(C. Vl, P) ; 

II refine the current c urve 
shiftResolution ( jHigh ) ; 

else if(jNew - (C.jCurr + C.mu) < 0 && C .mu >= O.l f && 
jLow < C.jCurr && mu== O.Of) 

II reset current curve to low-res curve 
P =new Point2D[C.Vl.size()); 
copyFrom(C.Vl, Pl ; 
copyBack(C.V, P); 
C.jCurr--; 
C.np = multires.numPoints(C.jCurr); 

II if jCurr > 0 , coarsen current curve and save to Vl 
if(C.jCurr > 0) 
{ P =new Point2 D[ C. V.size()); 

copyFrom(C.V, P) ; 
P = multires.coarsen(P, C.jCurr) ; 
copyBack(C.Vl , P); 

else 
C.Vl new Vector(); 

II Reset C 's mu value 
if (C != null) 

C.mu = mu; 

repaint(); 

II internal utility functions 
void initgr() 
{ Dimension d = getSize(); 

int maxX = d.width - 1, maxY = d.height - l; 
pixelSize = Math.max(rWidthlmaxX, rHeightlmaxY ) ; 
centerX = maxXl2; centerY = maxYl2; 

int iX(float x) {return Math.round(centerX + x lpixelS ize ) ;} 
int iY(float y) {return Math.round(centerY - ylpixelSize) ;} 
float fx(int X) {return (X - centerX) * pixelSize;} 
float fy(int Y) {return (centerY - Y) * pixelSize;} 

int plotX{JViewport jvp) 
{ return getSize() .width/2 - jvp.getExtentSi z e () . width/2; 
} 
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int plotY(JViewport jvpl 
{ return getSize() .heightl2 - jvp.getExte ntSize () .heightl2; 
) 

float round(float fl 
{ return (float) (Math.round (f * 100 0 . 0 f)) I 1000. 0f; 
) 

void copyFrom(Vector v , Point2D [] P ) 
int i = 0; 
for ( ; i < v .size(); ++i) 

P[i] = (Point2D) (v.elementAt (i ) ) ; 
for (; i < P.length; ++i) 

P[i] = new Point2D(O.Of, O. Of ) ; 

void copyBack(Vector v , Point2D [] P ) 
v.removeAllElements(); 
for (int i = O; i < P.length; ++i ) 

v.insertElementAt(P[i], i) ; 

CurveState ScribbleToCurveState(Vector scribble , int index) 
II Converts an input series of Point2D objects into 
II a more compact curve representation using a derivative 
II of the least-squares matching method. NOT IMPLEMENTED YET . 
return null; 

I I Adds control points to a CurveState until the number of 
II segments is the next power of 2. 
CurveState nextLevelCurve(CurveState Cl 
( II Keep inserting knots until we get the 

II right number of segments. 
Point2D[] Q =new Point2D[C. V.size () ]; 
copyFrom(C.V, Q); 

while(C.np < multires.numPoints (C .jCurr+l )) 
{ II Build current knot sequence 

float[] knots = knotSequence (C .np - 3); 

II Build old abscissa values 
float[] oldAbscissa = computeAbscissae(knots); 

II Find next knot insertion point 
int point!ndex = findMaxinterval(C.V); 
int knot!ndex point!ndex + l; 

float newKnot (knots[knot!ndex] + knots[knotindex-1]) I 2 ; 

II Recalculate the new Greville abscissa values for 
II points at point!ndex and point!ndex - 1 and newPoint 
float[] abscissa= new float[3]; 

abscissa[O] = (knots[knot!ndex - 2] + 
knots[knot!ndex - l] + 
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abscissa[!] 

abscissa[2] 

newKnot) I 3; 
(knots[knot!ndex 1) + 
newKnot + 
knots[knot!ndex) ) I 3 ; 

(newKnot + 
knots[knot!ndex ) + 
knots[knot!ndex + 1) ) I 3 ; 

II Now, recalculate the ordinate values for the x and y co-
ll ordinates of the affected control points and the new point. 
Point2 D[] oldPoints =new Point 2D[4) ; 
for (int i = pointindex - 2, j=O; j < 4; ++i , j++) 
{ if (i < 0) 

oldPoints(j] = (Point2D) (C.V.elementAt(i+l)); 
else if(i >= C. V.size()) 

oldPoints[j) (Point2D) (C.V.elementAt(i-1)); 
else 

oldPoints[j] (Point2D) (C . V.elementAt (i )) ; 

Point2D[) newPoints = new Point2D[3] ; 
for(int i = 0 ; i < 3; ++i) 
{ float interval; 

if(pointindex == 1 && i == 0) 
interval = 0; 

else if(point!ndex C.V.size () - 1 && i 
interval 0; 

else 
interval oldAbscissa[pointindex + i 

oldAbscissa[pointindex + i -
float xSlope = (interval == 0) ? 0 : 

(oldPoints[i+l) . x -
oldPoints[i) .x )linterval; 

float ySlope (interval == 0) ? 0 : 
(oldPoints[i+l] . y -
oldPoints[i] . y) I interval; 

2) 

l] -
2 ] ; 

int oldAbsindex (point!ndex == C.V.size()-1 && i 
point!ndex : point!ndex + i - 1 ; 

float newX 

float newY 

xSlope * abscissa[i] + 
oldPoints[i+l] . x -
xSlope * oldAbscissa [oldAbsindex]; 
ySlope * abscissa[i] + 
oldPoints[i+l] .y -
ySlope * oldAbscissa[oldAbsindex]; 

newPoints[i] =new Point2D(newX, newY); 

II Reset the two old points in the control set and add 
II the new control point . 
C.V.setElementAt(newPoints[O], point!ndex - 1); 
C.V.setElementAt(newPoints[2] , point!ndex); 

C.V.insertElementAt(newPoints(l], point!ndex); 
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II Increment point counter 
C.np++; 

Q =new Point2D[C.V.size( ) ]; 
copyFrom (C.V, Q) ; 

II Prepare remaining components of CurveState 
C.jCurr++; 
C.nextNPsize = multires.numPoints (C.jCurr + 1 ) ; 

Point2D[] P =new Point2D[C.V.size( ) ]; 
copyFrom (C.V, P ) ; 
P = multires.coarsen(P, C.jCurr); 
copyBack(C.Vl, P); 

resetSliderValue(); 

return C; 

II Returns a uniform knot sequence of size numSegments. 
float[] knotSequence(int numSegments) 
{ int n = numSegments + 5; 

float[] knots = new float[n]; 

for(int i = 0; i < n; ++i) 
knots[i] (float) ((float) (i)ln); llnumSegments); 

return knots; 

II Returns the sequence of Greville abscissae related to the 
II input knot sequence for an endpoint-interpolating B-spline. 
float[] computeAbscissae(float[] knots) 
{ float[] abscissae = new float[knots.length - 2] ; 

for(int i = O; i < knots.length - 2; ++i ) 
abscissae[i] = (knots[i] + knots[i+l] + kno ts[i+2 ]) I 3 ; 

return abscissae; 

II Finds the largest distance between adjacent pairs 
II of x,y points in P and returns the upper index. 
int findMaxinterval(Vector V) 
{ Point2D[] P =new Point2D[V . size()]; 

copyFrom(V, P); 

float max= distance(P[O], P[l] ) ; 
int maxindex = l; 

for(int i = 2; i < V.size(); ++i) 
{ float newMax = distance(P[i-1] , P[i] ) ; 

if(max < newMax) 
{ max newMax; 
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maxindex i; 

return maxindex ; 

float distance(Point2D p, Point2D q) 
( return ( float)Math.sqrt ( (q .x - p.x)* (q.x - p.x) + 

(q.y - p.y)*(q.y - p.y ) ) ; 

boolean onPoint(Point2D p, float x, float y) 
return Math.abs(iX (p.x ) - iX(x)) < 2 && 

Math.abs(iY (p.y) - iY(y)) < 2; 

void resetSliderValue ( ) 
if (C != null ) 
{ i f ( C . mu == 0 ) 

slider.setValue(C.jCurr * 10); 
else 

slider.setValue ( (int ) ( (C.jCurr-1 + C .mu ) * 10) ) ; 

if (opState 1 = EDIT ) 
slider.setEnabled (false ) ; 

void drawGrid(Graphics g) 
JViewport jvp = (JViewport)getParent(); 
if (jvp != null) 
{ Point p = jvp . getViewPosition(); 

Dimension d = jvp.getExtentSize(); 

float gx 

gy 

(float)Math.ceil(fx(p.x)/gridSpacing) * 
gridSpacing, 

(float)Math.ceil(fy(p.y)/gridSpacing) * 
gridSpacing; 

float gxMax 
gyMin 

fx(p.x + d.width), 
f y( p.y + d.height); 

g.setColor(Color.lightGray); 
for (float f = gx; f < gxMax; f += gridSpacing) 

for (float h = gy; h > gyMin; h gridSpacing ) 
{ g.fillOval (iX( f), iY(h), 2, 2); 
) 

g.setColor(Color.black); 

II Integral-level resolution version 
void bspline(Graphics g, Point2D[) P, int n, int thisindex) 
( int m = 50; //, n = np; /IP.length; 

float x.A, yA, xB, yB, xC, ye , xD , yD, 
aO, al, a2, a3, bO, bl, b2, b3, x = 0 , y 

boolean first = true; 
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for (int i = l; i < n-2; ++i ) 
{ xA P[i-1) . x ; x B = P[i) .x ; xc 

yA P[i-1) . y ; yB = P[i ) .y ; ye 
a3 (-xA+3* (xB- xe}+xD) l6 ; b3 
a2 (xA-2*xB+xe) 12 ; b2 
al (xe-xA} 12; bl 
aO (xA+4*xB+xC) 16 ; bO 
for (int j = 0; j <= m; ++j) 
{ xO = x; 

yO = y; 
float t = (float)jl (float ) m; 
x = ((a3*t+a2)*t+al}*t+a0; 
y = ( (b3*t+b2)* t+bl )*t+b0; 

if (opState == EDIT && 

P [i+ l) . x ; x D = P[i+2) .x ; 
P[i+l) .y; y D = P[i+2] .y ; 
(-yA+ 3*(yB-yC)+yD )l6 ; 
(yA- 2*yB+yC)l2; 
(yC-yA)l2 ; 
(yA+4*yB+yC)l6 ; 

onPoint(new Point2D(x, y} , mouseX, mouseY)) 
stateindex = thisindex; 

if (showKnots) 
! if ( j == o I I j == m) 

g.fillOval(iX(x)-2 , iY( y) - 2 , 4 , 4) ; 

if (first} first = false; 
else 

g.drawLine(iX(xO} , iY(yO), iX~x) , iY(y) ) ; 

II Fractional-level resolution ve rsion 
void bspline(Graphics g, Point2D [) P, int n, Point2D[) PL, f l oat mu, 

int thisindex) 
II If the curve is of integral resolution, 
II call the other B-spline plot . 
if (mu == 0 . 0 f) 

bspline(g, P, n, thisindex) ; 

II Otherwise, plot the cu r ve that exists at some fractional 
II level mu between the higher resolution c urve P and the 
II lower resolution curve PL. 
else 

int m = 25 ; 1150; 
float xA, yA, x B, yB, xc, ye, xD, yD, x E, yE, 

aO, al, a2, a3, bO, bl, b2, b3, 
cO, cl, c2 , c3, dO, dl, d2, d3, x = 0 , y = 0 , xO , yO ; 

float xAL, yAL, xBL , yBL, xCL, yeL, x DL, yDL , 
aOL, alL, a2L, a3L, bOL, blL, b2L, b3L; 

boolean first = true; 

for (int i = 1, iL = l; i < n-3; iL++, i+=2) 
{ II Save first 5 control points of high-res curve 

xA P[i-1). x ; x B P[i]. x ; xe P[i+l].x; xD P[i+2].x; 
yA P[i-1) .y; yB P[i) .y; ye= P[i+l] . y ; yo= P[i+2) . y ; 
xE P[i+3) .x ; yE P[i+3) .y; 

II Save first 4 control points of low-res c urve 
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xAL=PL[iL-1] .x ; xBL=PL[iL] .x; 
xCL=PL[iL+l] .x; xDL=PL[iL+2] . x; 
yAL=PL[iL-1) .y; yBL=PL[iL) .y ; 
yCL=PL[iL+l) .y; yDL=PL[iL+2) . y ; 

II Save coefficients of first part of high-res curve ... 
a3 (-xA+3*(xB-xC)+xD)l6 ; b3 (-yA+3*(yB-yC)+yD)l6; 
a2 (xA-2*xB+xCll2; b2 (yA-2*yB+yC)l2; 
al (xC-xA) 12;. bl (yC-yA)l2; 
aO (xA+4*xB+xC)l6; bO (yA+4*yB+yC)l6; 

II . . . a s wel l a s the second part · of the high- res curve ... 
c3 (-xB+3*(xC- xD)+xE)l6; d3 (-yB+3*(yC-yD)+yE)l6; 
c2 (xB-2*xC+xD)l2 ; d2 (yB- 2*yC+yD)l2 ; 
cl (xD-xB)l2; dl (yD-yB)l2; 
cO (xB+4*xC+xD)l6 ; dO (yB+4*yC+yD)l6 ; 

of the low-res curve. II . . . and las tly the coefficients 
a3L (-xAL+3*(xBL-xCL)+xDL)l6; 
b3L (-yAL+3*(yBL-yCL)+yDL)l6; 
a2L (xAL-2*xBL+xCL)l2; b2L 
alL (xCL-xAL)l2; 
aOL (xAL+4*xBL+xCL)l6 ; 

blL 
bOL 

(yAL-2*yBL+yCL)l2; 
(yCL-yAL)l2 ; 
(yAL+4*yBL+yCL)l6; 

I I Interpolate first half of curve ... 
for (int j = 0 ; j <= m; ++j) 
{ xO = x; 

yO = y; 
floa t t = (float)jl(float)m; 
float tL = (float)jl(float)m*O.Sf; 
x =mu* ( ((a3*t+a2)*t+al)*t+a0) + 

(l.Of - mu)*( ((a3L*tL+a2L)*tL+alL)*tL+a0L); 
y mu* ( ((b3*t+b2)*t+bl)*t+b0 ) + 

(l.Of - mu)*( ((b3L*tL+b2L)*tL+blL)*tL+b0L); 

if (opState == EDIT && 
onPoint(new Point2D(x, y), mouseX, mouseY)) 

stateindex = thisindex; 

if (showKnots) 
{ if ( j == o I I j == ml 

g.fillOval(iX(x)-2 , iY(y)-2 , 4 , 4); 

if (first) first = false; 
else 

g . drawLi n e(iX(xO) , iY(yO), iX(x) , iY(y)) ; 

II ... and then the second half of the curve 
for (int j = O; j <= m; ++j) 
{ xO = x; 

yO = y; 
floa t t = (float)jl(float)m; 
floa t tL = (float)jl(float)m*O . Sf + O. Sf ; 
x =mu* ( ( (c3*t+c2)*t+cl)*t+c0) + 

(l.Of - mu)*({(a3L*tL+a2L)*tL+alL)*tL+aOL); 
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y mu * ((( d3 *t+d2)* t+dl )*t+d 0) + 
( l.Of - mu )*(( (b3L*tL+b 2L ) *tL+b lL ) *tL+bOL); 

if (opState == EDIT && 
onPoint(new Point2 D(x , y) , mouseX, mouse Y)) 

stateindex = thisindex ; 

if (showKnots) 
{ if ( j == o I I j == ml 

g.fillOval(iX(x) - 2 , i Y(y ) - 2 , 4 , 4) ; 

// if (first) first = false; 
//else 

g.drawLine(iX( xO), i Y(yO) , iX (x ) , i Y(y) ) ; 

publi c void paintComponent(Graphics g) 
super.paintComponent (g ) ; 

if (paintFir s tTime ) 
{ paintFirstTime = false; 

JViewport j vp = (JViewport ) getPare n t () ; 
if ( jvp != null) 

jvp.setViewPosition (new Point (pl o t X ( jvp) , plotY( jvp ))) ; 

initgr () ; 
int left= i X(-rWidth/2), right= i X( rWidth /2) , 

bottom i Y( -rHeight/ 2) , top = i Y(rHeight/2) ; 

II Draw g rid a nd zoom re c tangl e 
if (showGrid ) 

drawGrid (g) ; 
if (opS ta te == ZOOM && z oomX != z oomXt && zoomY != zoomYt ) 
{ int zLeft = i X (zoomX), zRight = i X(zoomXt ) , 

zBottom = i Y (zoomYt), zTop = i Y(z oomY) ; 
if (zRight >= zLeft) 
{ if (zBottom >= zTop ) 

g . drawRect(zLeft, zTop, zRight - zLeft, zBottom - zTop); 
else 

g.drawRect(zLeft, zBottom, zRight- zLe ft, zTop-zBottom); 

else 
if (zBottom >= zTop) 

g.drawRect(zRight, zTop, zLeft- z Ri ght, zBottom - zTop); 
else 

g.drawRect(zRight, zBottom, z Le ft- zRight, zTop-zBottorn); 

Point2D[) P; 
Point2D[) PL; 
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II Draw the s c ribb le 
if (S cribble 1 = null) 
{ P =new Point2D [Sc ribble.size ()) ; 

Scribble . copyinto(P) ; 
for (int k = O; k < Scribble.size(); ++k) 
{ if (k > 0) 

g.drawLine (iX(P[k-1) . x) , iY(P[k-1) . y) , 
iX(P[k) . x) , iY(P(k] . y)) ; 

II Repeat for each curve in State: 
for (int k = 0; k < State.size(); ++k) 
{ CurveState cTemp = (CurveState) (State.elementAt (k)) ; 

P =new Point2D[cTemp.V.size()); 
PL= new Point2D[cTemp.Vl.size()); 
cTemp.V.copyinto (P); 
cTemp.Vl.copyinto(PL); 
g.setColor(Color.gray); 
for (int i = 0 ; i < cTemp.np; i++) 
{ II if we're moving a control point, find 

II which curve it belongs to 
if (opState == EDIT && 

onPoint (P [i), mouseX, mouseY )) 
stateindex = k; 

II Show tiny rectangle around point: 
if (showPoints) 
{ if(k == stateindex) 

g.fillRect(iX(P[i) . x)-2 , iY(P[i) . y) -2, 4 , 4) ; 
else 

g.drawRect(iX(P[i) . x)-2 , iY(P[i) .y ) -2, 4 , 4); 

if (i > 0 && showPolygon) 
II Draw line P[i-l)P[i): 
g.drawLine(iX(P[i-1) . x), iY(P[i-1) . y) , 

iX ( P [ i) . x) , i Y ( P [ i) . y) ) ; 

g.setColor(Color.black); 
if (cTemp.np >= 4) bspline(g, P, cTemp.np, PL, c Temp.mu, k); 

shiftAllowed true; 
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II File: CurveState .j ava 
I I Author : Stephen Alberg 
I I Uses: Point2D class 
I I 
I I This file contains the class definition for a CurveState object. 
I I The CurveState class performs the duty of registering the data 
I I constituting each curve presently drawn in a multiresolution curve 
I I editing system. It may also be used to save the last edit 
I I information onto an undo stack. 

import java.io.*; 
import java.util.*; 

public class CurveState implements Cloneable, Serializable 
{ public Vector V; II Records the set of control points 

II and any difference coefficients 
public Vector Vl; II The set ~f control points at resolution 

public 
public 
public 
public 
public 

II jCurr. Used for fractional curve editing 
int np; II The number of control points 
int stateindex; II The "id" of the curve in the environment 
int jCurr; 
int nextNPsize; 
float mu; 

II Current level of resolution 
II Number of control points in next res. 
II Fractional offset from jCurr, if any 

CurveState(Vector V, Vector Vl , int np, int stateindex, int jCurr , 
int nextNPsize, float mu) 

this.V = V; this.Vl = Vl; this.np = np; 
this.stateindex = stateindex; 
this.jCurr = jCurr; this.nextNPsize = nextNPsize ; 
this.mu= mu; 

CurveState(int stateindex) 
{ V = new Vector(); Vl =new Vector(); np O; 

this.stateindex = stateindex; 
jCurr = -1; nextNPsize = 4; mu 0 . 0f; 

public synchronized Object clone() II overrides Object 
{ return new CurveState ((Vector) (V. clone ()), (Vector) (Vl. clone ()), 

np, stateindex, jCurr, 
nextNPsize, mu); 
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II Point2D . java : Class for points in logical coordinates. 

import java.io.*; 

public class Point2D implements Cloneable , Serializable 
{ float x , y ; 

Point2D(float x , floaty) {this. x = x; this.y = y ;} 

public synchronized Object clone() / / overrides Object 
{ return new Point2D(x, y) ; 
} 
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II File: UndoStack.java 
II Author: Stephen Alberg 
II 
II This file contains the class definition of an UndoStack object. An 
II UndoStack ex tends the basic properties of the Java Stack object by 
II by providing more direct manipulation and limit checking of the 
II stack size. 

import java.u~il.Stack; 

public class UndoStack extends Stack 
{ 

int stackLimit; 

UndoStack () 
{ super( ) ; 

stackLimit 5; 
II instantiate the parent object 
II default stack size 

UndoStack (in t stackLimit) 
( super( ) ; 

this.stackLimit = stackLimit; 

II Overrides parent method push() 
public Object push(Object item) 
{ Object o = super.push(item); 

removeEx traObjects{); 
return o ; 

public void setStackLimit(int newLimit) 
{ stackLimit = newLimit; 

removeExt raObjects(); 

public int getStackLimit() 
return stackLimit; 

void removeExtraObjects() 
II The Stack object evidently appends the last insertion 
II to the end of the parent Vector, rather than inserting 
II at the beginning. Therefore, to trim the undoStack, 
II keep removing elements at index 0. 
while (size( ) > stackLimit) 

super.removeElementAt(O); 
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