
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

2002 

Alternative Corrosion Coating- Their Effect and Influence on Alternative Corrosion Coating- Their Effect and Influence on 

Adhesive Performance Adhesive Performance 

Khaled Alawadhi 
University of Rhode Island 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Alawadhi, Khaled, "Alternative Corrosion Coating- Their Effect and Influence on Adhesive Performance" 
(2002). Open Access Master's Theses. Paper 991. 
https://digitalcommons.uri.edu/theses/991 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/991?utm_source=digitalcommons.uri.edu%2Ftheses%2F991&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


ALTERNATIVE CORROSION COATING-THEIREFFECT AND 
INFLUENCE ON ADHESIVE PERFORMANCE 

BY 
KHALED ALA W ADHI 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 
IN 

OCEAN ENGINEERING 

UNIVERSITY OF RHODE ISLAND 
2002 



MASTER OF SCIENCE THESIS 

OF 

KHALEDALAWADHI 

APPROVED: 

Thesis Committee 

DEAN OF THE GRADUATE SCHOOL 

UNIVERSITY OF RHODE ISLAND 

2002 



Abstract 

The corrosion behavior of Cr203 and Ti02 based surface treatments in 0.5N 

NaCl solution was investigated. These surface treatments are used for adhesive bonding 

of SS3 l 6L both to itself, other metals and non-metals. In order to quantify corrosion 

behavior and determine their ability to passivate in a chloride environment, a 

poteniodynamic test was employed. 

To measure the adhesive strength of bonds using the different surface 

treatments, a standard test method, ASTM D 1002, was used. This measured the 

apparent shear strength of single lap joints made by adhesively bonding metals 

specimens together. A general-purpose epoxy adhesive was used in the experiments. 

To investigate the effect of marine exposure, lap joints samples were placed in 

salt spray apparatus for different exposure periods and the residual shear strength 

measured. Results indicated that the shear strength of adhesive joints coated with Cr203 

decreased in strength to a value less than joints treated with Ti02, even though the initial 

strength was higher. 

Adhesive and cohesive failure of joints was noticed. In order to examine the 

surface conditions of the samples after failure, a scanning electron microscopy (SEM) 

was employed. The surface treatments did not change the surface features markedly. 

It is suggested that the decrease in bond strength for the Cr20 3 treatment was 

due to crevice corrosion between the SS316 and the adhesive. The Ti02 treatment did 

not show the same degree of crevice corrosion. The potentiodynamic data supported 
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this theory as the Cr203 treatment showed a tendency to localized corrosion while the 

Ti02 treatment did not. 
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1.1 CORROSION: 

CHAPTER I 

INTRODUCTION 

Corrosion is a spontaneous process of returning metals to their natural state by 

oxidation and reduction reactions, which can result in loss of structural integrity. 

Stainless steels are a group of metallic alloys known for their high resistance to 

corrosion . 1 Stainless steel can be divided into several types and can have different 

properties depending on the alloy composition of each type. One of the major factors 

determining whether pitting or crevice corrosion will occur is the chromium, 

molybdenum, and nitrogen content of the stainless steel .2 

Corrosion of stainless steel can be initiated by exposure to seawater . Two 

processes occur upon immersion of a stainless steel in natural seawater, both of which 

displace the corrosion potential in the noble direction. Firstly, during the readjustment 

process, the air-formed passive film on the stainless steel adjusts its chemical 

composition and becomes thicker. Secondly, a biofilm develops on top of the passive 

film. This biofilm formation is also known as a " natural population biofilm" because it 

comprises of a variety of bacteria and algae. These films also raise the corrosion 

potential above the pitting potential for type 304 and type 316 stainless steel . 3 

Crevice corrosion is a localized type of corrosive attack. It occurs when a small 

crevice is formed between a metal and a non-metal in the presence of an aggressive 

environment. If the metal is susceptible under these conditions, then crevice corrosion 

will occur. This is highly probable in a lap joint under marine exposure. Analogous to 

Pitting, crevice corrosion will occur when the metal potential equals or exceeds the 



crevice corrosion potential . Since this value is usually less noble than pitting potentials, 

crevice corrosion will usually occur before pitting, and the corroding area may 

in fact prevent pitting by acting as a sacrificial anode. For stainless steel in seawater, 

crevice corrosion is considered to be a more serious corrosion problem than pitting . 

Unfortunately, crevice corrosion potentials vary with crevice geometry and 

therefore are not useful for alloy or environment comparisons. Crevice corrosion 

comparisons are generally made based on the severity of corrosive attack or the 

presence or absence of corrosive attack . 

The last two decades have seen an increase in the use of electrochemical 

techniques to the study the corrosion behavior of stainless steels . This increase has 

been stimulated by the desire to develop the ability to predict by short-term laboratory 

tests, the behavior of stainless steel in industrial and natural environments . Corrosion 

recently has become a fairly popular subject in the adhesives engineering area. Much of 

the investigative work has been in the direction of adhesively bonded structures 

resistant to specific corrosive environments . There is still a need, however to 

emphasize strongly the potential dangers for adhesive bonds as a result of crevice 

corrosion, the most important being decrease in strength or load carrying ability. 

1.2 DC CORROSION TESTING: 

DC electrochemical tests involve applying a potential to a specimen immersed 

in an electrolyte and measuring the resulting current. Since corrosion is an 

electrochemical reaction, a quantitative corrosion rate can be determined. Anodic 

oxidation of the metal results in corrosion and can be expressed by the general half cell 

reaction:-
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M->M" ++ne-

Like wise a cathodic reduction reaction takes place at the same rate as oxidation, 

which completes the circuit . The unit of measure of current is Ampere , which is 

equivalent to a current of 208,200,000 electrons per second . The measured current 

density, current per unit area, is directly proportional to the flux of electrons or the 

corrosion rate for a particular material. By varying the applied potential of the anodic 

and cathodic reactions and measuring the current density, Eoc, the open circuit potential 

when the reaction changes from anodic to cathodic and there is no current measured, 

can be determined . 3 

Some materials, under certain environmental conditions, experience a significant 

reduction of the corrosion rate caused by the formation of an adherent protective film on 

the surface. This phenomenon is called passivity. A materials passive region can be 

determined by continuing to apply increasing anodic potentials from Eoc until the 

current density reaches a peak and then decrease to a considerably lower value . This 

peak is called the Primary Passivating Potential (Epp) . This is the beginning of the 

passive region . As the potential increases in the anodic direction, current density will 

remain low until a rapid increase occurs . This is called the Transpassive region and is 

due to the dissolution of the passive film layer . The potential at this point is called the 

iranspassive ( ETP) . If the potential is increased well into the transpassive region and 

allowed to reverse to a lower potential, the ability of the passivating material to resist 

localized, pitting or crevice, corrosion may be determined. If upon reversing the 

potential, moving in a cathodic direction, the current either follows or decreases faster 

than the forward scan , then any damage to the passive film will be repaired 
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tuunediately. This material would be considered to have a good localized corrosion 

resistance . 4 Alternatively, upon reversing potential the current is greater than the 

forward scan , then the material has a poor resistance to localized corrosion. 

t.3 DC CORROSION TESTING TECHNIQUES: 

The basic equipment and experimental procedures used for potetiodynamic 

anodic polarization scans is described in ASTM G5. The counter electrode was a high 

density high purity, graphite rod which is a commonly used alternate to the ASTM 

suggested platinum electrode. ASTM maximum recommended scan rate of 0.6 V /hr 

was reduced to a more conservative 0.1 mV/sec. Scans began at 125mV below, or more 

cathodic, than Eoc and moved in the anodic direction. The scan direction was reversed to 

cathodic when the potential reached 200m V above Eoc as long as the current density was 

at least 200 uA/cm2. The ASTM procedure specifies the scan to reverse at 

SOOOuA/cm2. The ASTM required the scan to continue until the hysteresis loop close or 

until corrosion potential is reached 1 OOm V above Ecorr • This allowed automatic testing 

that identified all the pertinent data points . 

1.4 CHROMATE CONVERSION COATING: 

Conversion coating is any coating that chemically changes the surface of a 

metallic part. Conversion coatings serve two purposes, firstly corrosion protection and 

llCCOndly assuring good adhesion of the coated surface to other materials such as paint 

and adhesives. There are two main conversion treatments that have been used in this 

project , coating by chromium trioxide or by titanium dioxide . Before applying the 

conversion coating the surface must be degreased in either acid or alkali degreasers and, 

after coating application, rinsed and dried . Conversion coatings can be applied either 
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by immersion or spraying. Spraying equipment will result in higher investments and 

some parts of a complicated structure may be difficult to treat properly. 5 On the other 

band, the immersion treating of certain geometry's can cause drag out or carryover of 

the chemicals which can cause cross contamination of the process chemicals thereby 

reducing their active life. The choice between spray and immersion must be done after a 

total evaluation of the economy of the process and the quality of the coating . Chromate 

conversion coating has two main benefits ; one of them is that the mixed 

91'omium/substrate metal oxide coating provides better corrosion resistance than the 

substrate metal oxide alone. Additional corrosion protection is provided by chromate 

ions entrapped in the coating. These ions are readily leached from the coating and act as 

corrosion inhibitors. Another property of the chromate coating is its ability to improve 

the adhesion ofpaint6• This is probably related to the cellular structure of the mixed 

oxide film, which provides a base with more attachment points . 

Chromate conversion coating is produced on various metals by chemical 

treatment with mixtures of hexavalent chromium and certain other compounds. These 

treatments convert the metal surface to a superficial layer containing a complex mixture 

of chromium compounds . The coating is usually applied by immersion, although 

spraying, brushing, swabbing or electrolytic methods are also used. A number of metals 

and their alloys can be treated, notably: aluminum, cadmium, copper, magnesium, silver 

and zinc
7

• It was found that they have many useful applications in the aircraft, 

aerospace, welding, etching and steel manufacturing industries . The chromate films in 

most common use are formed by the chemical reaction of hexavalent chromium with a 

metat Surface in the presence of other components, or activators in acid solution . The 
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tsexavalent chromium is partially reduced to trivalent chromium during the reaction, 

with a concurrent rise in pH, forming a complex mixture consisting largely of hydrated 

basic chromium chromate and hydrous oxides of both chromium and the basic metal. 

The composition of the film is rather indefinite, since it contains varying quantities of 

the reactants, reaction products and water of hydration, as well as the associated ions of 

the particular systems . There are many important factors that control the formation of 

the chromate film. One of those factors is the pH of the treatment solution. For any 

given metal/chromate solution system there will exit a pH at which the rate of coating 

formation is maximum. As the pH is lowered from this point, the reaction products 

become more soluble, tending to remain in solution rather than deposit as a coating on 

the metal surface. Even though the rate of metal dissolution increases, the coating 

thickness will remain low . Increasing the pH beyond the maximum gradually lower the 

rate of metal dissolution and coating formation to the point at which the reaction, for all 

practical purposes, ceases. Another factor that controls the film formation is the 

activator . Chromate films will not form without the present of certain anions in 

regulated amount. They are commonly referred to as " activators" and include acetate, 

anions such as acetate, format, chloride, fluoride, nitrate phosphate and sulfamate . The 

character, rate of formation and properties of chromate films vary with the particular 

activator and its concentration. In addition to the chemical makeup of the chromating 

solutions three more parameters that should be considered during film formation. One 

of the factors is treatment time, immersion time or contact time of the metal surface and 

the solution. This can vary from one second to one hour, depending on the solution 

being used and metal being treated. Another factor is the solution temperature. 
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Cbromating temperature varies from ambient to boiling, depending on the particular 

solution and the metal being processed. For a given system, an increase in the solution 

temperature will accelerate both the film forming rate and the rate of attack on the metal 

surface. This can result in a change in the character of the chromate film. Thus, 

temperature should be adequately maintained to insure consistent results. Solution 

agitation is another factor that affect the chromate film formation. Agitation of the 

working solution, or movement of the work in the solution, generally speeds the 

reaction and provides for more uniform film formation. Air agitation and spray 

installation have been used for this purpose . 

1.5 HEAL TH HAZARDS OF CHROMIUM: 

Chromium can enter the body when people breath air, eat food, or drink water 

containing it. Chromium is also found in house dust and soil, which can be ingested or 

inhaled. Of the various forms of chromium, hexavalent chromium is the most toxic. 

Certain hexavalent chromium compounds have been found to be carcinogenic in 

humans, but the evidence to date indicates that the carcinogenicity is site-specific-­

limited to the lung and sinonasal cavity--and dependent on high exposures, such as 

might be encountered in an industrial setting. Hexavalent chromium can cause a wide 

range of other health effects. Inhaling relatively high concentrations of some forms of 

hexavalent chromium can cause a runny nose, sneezing, itching, nosebleeds, ulcers, and 

holes in the nasal septum. Short-term high-level inhalation exposure can cause adverse 

effects at the contact site, including ulcers, irritation of the nasal mucosa, and holes in 

the nasal septum. Ingestion of very high doses of hexavalent chromium can cause 

kidney and liver damage, nausea, and irritation of the gastrointestinal tract, stomach 
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utcers. convulsions, and death. 5 Dermal exposures may cause skin ulcers or allergic 

reactions. Hexavalent chromium is one of the most highly allergenic metals (second 

only to nickel). Studies of mice fed high doses ofhexavalent chromium have shown 

asproductive effects including reduced litter size and decreased fetal weight. There is a 

great deal of controversy about the relative health effects of the various routes of 

exposure for hexavalent chromium. According to the International Agency for Research 

on Cancer (IARC), ingested hexavalent chromium is largely converted to trivalent 

chromium in the stomach, a fact that many chromium experts believe prevents 

ingestional exposures from posing significant health dangers, since trivalent chromium 

is not readily absorbed into the body.5 The saliva, gastric juice, intestinal bacteria, 

blood, liver, epithelial lining fluid, pulmonary alveolar macrophages, peripheral lung 

parynchema, and bronchial tree have all been associated with eliminating hexavalent 

chromium from the body. In an article published in the March 1997 issue of 

(/llrcinogenesis, Silvio De Flora, director of the Department of Health Sciences at the 

University of Genoa, and colleagues present estimates of the ability of various human 

organs, cell populations, and fluids to reduce hexavalent chromium in the body.5 They 

found that major detoxification is accomplished by red blood cells, with over half of a 

100-microgram (µg) dose ofhexavalent chromium being sequestered or reduced by 1 

milliliter of blood within 60 minutes. De Flora and colleagues write, "The massive 

reducing and sequestering capacity of the blood explains why hexavalent chromium 

exerts its toxicological consequences at the portal of entry into the organism, while it is 

not a systemic toxicant or carcinogen" . 7 
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t.6 TITANIUM DIOXIDE COATING: 

The high corrosion resistance and good biocompatibility of titanium and its 

alloys are dure to a thin passive film that consists essentially of titanium dioxide. There 

is increasing evidence, however, that under certain conditions extensive titanium release 

may occur in vivo. An ion beam assisted sputtering deposition technique deposited thick 

and dense Ti02 film on titanium and stainless steel surfaces. Titanium films have been 

investigated in phosphate buffered saline solution using the following measurements: 

(1) open circuit potential versus time of exposure, (2) electrochemical impedance 

&>eCtroscopy, (3) potentiodynamic polarization, and (4) Mott-Schottky plot.8 A higher 

electrical film resistance, lower passive current density, and lower donor density have 

been measured for sputter-deposited oxide film on titanium. The improved corrosion 

protection of the sputter-deposited oxide film can be explained by a low defect 

concentration and, consequently, by a slow mass transport process across the film. As 

opposed to Ti02 on titanium, a deviation from normal n-type semiconducting Mott­

Schottky behavior was observed for Ti02 on stainless steel.9 In 1994 Imokawa, 

Fujisawa, Suda and Tsuikawa studied the protection of 304 stainless steel by titanium 

dioxide. 

The photo electrochemical behavior of 304 stainless steel sputter coated with 

TiOi in NaCl solutions at ambient temperature was studied.15 It was found that coating 

the 304 with a Ti02 thickness greater than 3 run initiated cathodic protection under light 

irradiation condition through the Ti02 coating layer acting as a non-sacrificial anode. 

Up to a Ti02 coating thickness of 1 OOnm, Eoc, the open circuit potential of the coated 

steel specimen tended to shift toward the less noble, cathodic, values with increasing 
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coating layer thickness. Eoc of the coating steel specimen with thickness 100 nm was -

340 m v vs. SCE under the light irradiation condition ensuring no occurrence of crevice 

uorrosion in NaCl solution with concentration not exceeding 2%. When defects were 

present in the coating layer, Eoc remained constant as long as the area ratio was no 

greater than 10%. With rising intensity of the irradiated light, Eoc of the coated steel 

specimen tended to shift toward less noble side implying enhanced trend of cathodic 

corrosion protection. A possible cause of ennoblement of Eoc for the coated steel 

1peeimen subjected to heat treatment at temperature higher than 300 °C under light 

irradiation condition was identified to be the diffusion of Fe from the steel substrate to 

the Ti02 coating layer . 

As results of these results, it was confirmed that coating from 30 to 100 nm thick 

could protect 304 stainless steel cathodically under illumination. The coating defects 

don't hinder the protection performance when its area ratio is less than 1/10. As shown 

by Honda and Fujishima, the anodic reaction on Ti02 is neither dissolution nor 

"'9t00ecomposition but oxygen evolution. Therefore, the Ti02 coating is expected to 

work as a non-sacrificed anode. This is a highly contrasted feature of the coating as 

compared with zinc coating for steels, which is destined to be consumed. TiOi thick 

films were prepared on stainless steel by plasma-spray coating and the electrode 

potential of the films were reduced by about 250mV under ultra-violet irradiation. This 

potential drop value is sufficient for protection from corrosion .16 

Cathodic protection for stainless steel 304L was studied by sol-gel- derived Ti02 

coating under illumination of light and they found out that Fe was much more intense 

than other elements, which decrease the photo effect ofTi02 coating. In order to avoid 
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Fe involvement in the coating, a passivation treatment with HN03 was carried out to 

retard the Fe by enrichment of Cr in the passive film, and enabled the Ti02 coating on 

the 304 specimens to exhibit less noble photo potentials when temperature reached 

400C .11 

1•7 ADHESIVE BONDING: 

Adhesive bonding has been used for a number of decades for construction of 

aircraft components. Lightweight sandwich construction and structural bonded joints 

fonn a major proportion of modem aircraft. Bonded patches are also used for repair of 

llJldwich panels, cracks in metallic structure or reinforcement of deficient structures. 

The advantages of adhesive bonding include reduced weight, high performance at low 

cost, electrical insulation of materials which minimize the possibility of electrolytic 

corrosion, longer life in the presence of structure vibration and distribution of stress 

over an area, not a confined point.17 The main disadvantage is that it does not permit 

visual examination of the bonded area. The appropriateness for adhesive bonding 

depends on surface preparation and bonding design, along with the function to be 

performed by the adhesive joint. 

A simple lap joint is the most common for structural elements because of its 

simplicity, and low cost. Increasing the width of the joint results in a proportional 

increase in strength while increasing the height beyond a certain limit has very little 

effect at all .18 The mechanical load imposed on the joint is shear loading which is 

perpendicular to the bond line . The end of the bond resists a greater amount of stress 

than does the middle. If the overlapping length is greatly increased, there is little, if any, 

change in the bond strength. There are two main failure modes, adhesive failure which 
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. bond failure between the adhesive and the adherend and cohesive failure when a 
1s a 

ftacture occurs within the adhesive and allows a layer of the adhesive to remain on both 

surfaces. 

Corrosion at any site within a lap joint depends on various factors such us 

solution resistance, alloy composition, solution chemistry, presence of crevices and 

local potential. An extensive investigation of the corrosion behavior due to adhesive on 

coated steel samples with an interlayer between the adhesive and the substrate was 

performed. A Ti interlayer was introduced to form TiN/Ti/steel. Results demonstrated 

that the corrosion properties of the TiN coated steel are determined by a synergetic 

effect between the defect content and thickness of the coating. The strength of the 

coated samples increases with increasing interdiffusion layer thickness. 23 
• 
24 

• 
25 

• 
26 

• 
27 

• 
28 

1.8 EPOXIES: 

Epoxy adhesives provide a strong joint and because of their excellent creep 

properties they are suitable for structural application and for metal bonding, glass, 

ceramics, concrete and thermosetting plastic. Epoxies can be found in many different 

types of compositions. The mechanics of the adhesive can be divided in to three groups 

(1) chemical bonding, (2) physical bonding, (3) mechanical interlocking .25 

1.9 OBJECTIVE: 

The objective of this study is to measure the residual lap shear strength of 

adhesively bonded 316L stainless steel after marine exposure. Different surface 

treatments will be used prior to adhesive bonding, the normal chromate based and an 

alternate to chromate. The data will determine the effectiveness of an alternate to 

chromate. 

12 



CHAPTER II 

EXPERIMENT AL METHODS 

The material used in this study is stainless steel 316L. 316 L is known for its 

low carbon content, the composition of this type of stainless steel is 16-18% chromium, 

t0-14% nickel, 0.03% carbon, 2.0% molybdenum, 1.0% silicon, 0.045 phosphate and 

0.03% sulfur.316 type of stainless steel contains molybdenum and has greater resistance 

to pitting in marine and chemical industry environment. The low carbon content is for 

"Weldability to avoid weld decay . 

2.1 SPECIMEN SIZE: 

The measurements of the specimen used in this work were as follows: the length 

was 75 mm, the width was 25 mm, and the thickness was 1.6 mm. 

2.2 COATING OF 316L BY CHROMIUM TRIOXIDE: 

To etch the metal it was immersed for approximately three quarter of their 

length in a bath consisting of 25 grams of sodium metasilicate, 11 grams of 

tetrasodium pyrophosphate, 11 grams of sodium hydroxide, 3 grams of nacconol 

dissolved in 950 cc of deionized water DI for 10 minutes at desired temperature of 140-

160 F with a circulating system operation. The sample was rinsed with deionized water 

(DI) before immersion in a second bath of 100 grams of chromium trioxide dissolved in 

SOOgrams of DI for another 10 minutes at 140-190 F. The metal was washed in cold 

running DI as prolonged rinsing or use of very hot rinse water can dissolve, or leach the 

more soluble hexavalent chromium compound from a freshly formed coating resulting 

in a decrease in protective value. During rinsing the metal plane was parallel to the flow 
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of the solution. A final drying took place in a forced-draft oven at less than 140 F, then 

the sample was allowed to air cool . 

After the cooling, adhesive was applied to some of the specimens using the 

standard method while some of the cooled specimens were tested electrochemically. 

2.3 COATING OF 316L BY TITANIUM DIOXIDE: 

For the alternate to chromate, the only change was to replace chromium dioxide 

with titanium dioxide so the bath consisted of 50 grams of titanium dioxide dissolved in 

500 cc DI for 10 minutes at 140-190 F. The remainder of the coating process was 

identical to that used for chromium dioxide. 

2.4 POTENTIODYNAMIC POLARIZATION METHODS: 

Polarization methods such as potentiodynamic polarization, potentiostaircase, 

and cyclic voltammetry are often used for laboratory corrosion testing. These 

techniques can provide significant useful information regarding the corrosion 

mechanisms, corrosion rate and susceptibility of specific materials to corrosion in 

designated environment. Polarization methods involve changing the potential of the 

working electrode and monitoring the current, which is produced as a function of time 

or potential. 

2.S CYCLIC POLARIZATION: 

The advantage of cyclic potentiodynamic anodic polarization scans is quick 

results and easily interpreted date. The disadvantages of this test are the data cannot 

predict long-term behavior; it is a destructive test; and it cannot be used in certain high 

resistance applications. 
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The localized corrosion behavior of the specimens was investigated by cyclic 

.,ianzation. The parameters used for cyclic polarization measurements were: initial 

potential= -125 mV for OCP, maximum potential= 400 mV for OCP. Threshold value 

== 0.1 mA, scan rate= 0.1 m V/s and the scan increment= 2.0 m V. When a cyclic anodic 

polarization curve is used several important parameters were obtained: E TP transpassive 

potential, EN pit nucleation potential and E p pit passive potential. A cyclic anodic 

polarization scan consists of two parts: the forward scan and the reverse scan. During 

the forward scan the pit nucleation potential E N or transpassivation potential E TP would 

be determined. The reverse scan yield a pit passivation potential E p. 

The electrochemical test was performed using an EG&G Princeton Applied 

Research electrochemical system consisting of a model 273A potentiostat and a 

computer with control software. A flat sample holder corrosion cell was used which 

contained platinum wire as a counter electrode and a saturated calomel electrode (SCE) 

reference electrode. The sample whose anodic behavior was investigated serve as the 

working electrode. To ensure a maximum cathodic reaction, oxygen was purged into the 

0.5 normal sodium chloride electrolyte. 

2.6 ADHESIVE BONDING TECHNIQUES: 

Adhesion is one of the most complex and important parameters that determine the 

quality of coating systems. The theoretical adhesion strength is a result of all interfacial 

and intennolecular forces. However, the practical adhesion strength, which is the force 

or energy needed for detachment of the coating, never reaches this theoretical value. 

The difference is caused by the hollow spaces and defects at the interface of substrate 

and coating. The environment (temperature, diffusion of water, oxygen) contributes to 
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the adhesive strength of a system, therefore, dry as well as wet adhesion are important 

parameters for characterization . 

The procedure of adhesion bonding was as follows. A total of 48 lap shear test 

samples were prepared using 42 individual samples coated with chromium trioxide to 

make 21 lap shear test samples and 42 individual samples pairs coated with titanium 

dioxide to make 21 lap shear test samples, and 12 individual samples not coated and 

used to make 6 lap shear samples. The epoxy adhesive was applied to the area across 

the end of one or both metal sheets so that the adhesive would cover a space 

approximately linch. The thickness of the adhesive layer was controlled by shims in the 

adhesive bonding fixture to be 0.01 or 0.005 inch. The assembled specimens were left 

for 24 hours at room temperature for the adhesive to cure. 

2.7 LAP JOINT TESTING: 

Lap joints were tested to failure in an Instron tensile test machine. The test is 

applicable for determining adhesive strength, surface preparation parameters and 

adhesive environmental durability. In this study the residual strength after marine 

exposure was measured. 

For comparison, 3 non-coated specimens were tested to determine the lap joint 

strength in the absence of any surface coating. The rest of the specimens, both coated 

and the uncoated, were placed either in the open air or in the salt spray chamber. After a 

certain period of time, one week, 2 weeks, 3 weeks, or 4 weeks, the samples were 

~thdrawn from the salt spray chamber or the open air tested to failure. The specimens 

Were placed in the grip of the testing machine so that the outer 25 mm of each end were 
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in contact with the jaws, and so that the long axis of the tested specimens coincided 

with the direction of the applied pull through the centerline of the grip assembly. The 

loading was applied immediately to the specimen at rate of 1200-1400 psi of the shear 

area per minute. The loading was continued to failure. The rate of the loading was 

_,roximated by free crosshead speed of0.05 inch/min. The loading at failure and the 

nature and the amount of this failure for each specimen was recorded. 

2.8SALT SPRAY TESTING: 

The oldest and the most widely used test is ASTM B 117, method for salt spray 

testing, a test that introduces a spray into a close chamber where some specimens are 

exposed at specific location and angles. The concentration of the NaCl solution was 5% 

by weight in deionized water. There is a wide range of chambers designs and sizes 

including walk- in rooms that are capable of performing this test. 

Hot, humid air is created by bubbling compressed air through a bubble tower 

containing hot deionized water. Salt solution is typically moved from a reservoir 

through a filter to the nozzle by a gravity-feed system. When the hot, humid air and the 

salt solution mix at the nozzle, the solution is atomized into a corrosive atmosphere. 

This created a 100 percent relative humidity condition in the exposure zone. For a low­

humidity state the exposure zone of the chamber, air is forced into the exposure zone 

via a blower motor that directs air over the energized chamber heaters. 

Specimens coated with paints or nonmetallic coating should not be cleaned or 

handled excessively prior to test. The specimens should be supported or suspended 

between 15-30 ° from the vertical and parallel to the principal direction of flow of fog 

1hrough the chamber, based upon the dominant surface being tested. The specimens 
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should not contact each other or any metallic material or any material capable of acting 

as a wick. The salt solution should be prepared by dissolving 5± 1 parts by mass of 

sodium chloride in 95 parts of water. The salt used should be sodium chloride free of 

nickel and cooper and containing on the dry basis not more that 0.1 % sodium iodide and 

not more than 0.3 % of total impurities. The pH of the salt solution should be such that 

when atomized at 35 ° C the collected solution will be in the pH range from 6.5 - 7.2. 

The compressed air supply to the nozzle or nozzle for atomizing the salt solution should 

be free of oil and dirt. The temperature should be maintained inside the ch~ber at 35 

+1.1- 1.7 °c. 

The test should be continuous for the duration of the entire test period. 

Continuous operation implied that the chamber be closed and the spray operating 

continuously except for the short daily interruption necessary to inspect, rearrange, or 

remove test specimens to check and replenish the solution in the reservoir, and to make 

necessary recording. In this work 21 pairs coated with chromium trioxide were exposed 

to the salt spray for one week, two weeks, three weeks, four weeks and five weeks. 

Another 21 pairs coated with titanium dioxide were exposed to the salt spay test for one 

week, two weeks, three weeks, four weeks and five weeks. After the exposure period, 

the samples were tested to failure. 

2.9 SCANNING ELECTRON MICRSOCOPY: 

Scanning electron microscopy was used to detail the surface appearance of the 

coating prior to and after failure. It provides direct image of the topographical nature of 

the surface from all the emitted secondary electrons. It helps investigate the mode of 

failure such as fatigue, creep, shear overload, tensile over load or other complex failure 
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JDodes. The samples were scanned with a high energy electron beam in a raster pattern 

which causes the ejection of numbers of particles, including secondary electrons which 

fonn an image of the surface ejecting them. One disadvantage of the scanning electron 

JDicroscope is that it is normally not possible to examine samples that produce any 

significant amount of vapor when placed in vacuum and many samples like grease and 

adhesive liquids, foods, gels cannot be examined. 
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CHAPTER III 

RESULTS AND DISCUSSION 

3.1 ELECTROCHEMICAL BEHAVIOR: 

A study of the electrochemical behavior ofTi02 and Cr203 coatings on 316L 

stainless steel was conducted. The aggressive environment was 0.5 N NaCL Cyclic 

polarization scans plots for bare 316L is shown in figure ( 1 ). Upon reversal of the 

potential in a cathodic direction, the current density is higher than the forward anodic 

direction indicating that uncoated 316L is susceptible to localized corrosion. A 

comparison of the cyclic polarization data for the316L coated by Ti02 and Cr20 3 is 

shown in figure (2). Data from these figures is shown in tables 1 and 2, listing the open 

circuit potential, the passivation potential, the critical current density and breakdown 

potential for passivation. The titanate coating has the same open circuit potential as the 

uncoated stainless steel, while the chromate coating is 1 OOm V more anodic. Both of the 

coatings exhibit a passive region. However the chromate coating breaks down at less 

than lOOmV anodic to its open circuit potential. The titanate coating does not break 

down over the same anodic shift from its open circuit potential. The chromate has a 
. 

higher current density upon reversing the potential in the cathodic direction after 

breakdown, indicating that it would not resist localized corrosion. The titanate coating 

has a similar current density upon reversing the potential in the cathodic direction, 

indicating that it would have a good resistance to localized corrosion. 

Earlier investigations have shown that for lower potential the surface films 

contains lower oxides state of components such as cr3+, oxy hydroxide and small 
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IOllcentration ofFe3
+, as well as an increased total content of oxide 5 • The formation of 

chr<>mium oxides and iron oxides in the passive film because they are less noble than 

aaolybdenum and nickel. Passive films can be described by a three factor model : a 

hydrated layer in contact with solution , an oxide layer consisting of Fe and Cr oxides 

and a metallic layer enriched in Ni 5 
• The current density increase above the 

uanspassive potential was due to oxygen evolution and not rapid corrosion of the 316L. 

The passive film maybe formed by diffusion of the anions from metal surface through 

the passive film to the passive film I solution interface. The growth of the passive film 

is dependent on diffusion of various ionic species and or conductivity of the film. 

Therefore, as the passive film develops, the rate of the passive film formation decreases. 

The rate of the passive film formation slows enough that a gradual increase in open 

circuit potential with respect to time is observed as the passive film formation 

decreases. It is well known that either increasing the molybdenum content within the 

alloy or moving the applied potential in the active direction has a significant and 

beneficial effect on the resistance to breakdown of the passive film, especially for 

pitting corrosion by altering the distribution and the susceptibility of weak points in the 

passive film, with little change in the macro-characteristics of the film5
• The cyclic 

tK>larization curves of Ti02/ss in figure (2) exhibited no hystersis. When this type of 

hystersis occurs the damaged passivity repair itself and pits do not initiate and the 

current density of the anodic back scan is either the same or less than the current density 

of the original forward anodic scan. The significant result obtained was that Ti02 coated 

3 l 6L has a greater passive range than Cr20 3 coated 316L or bare metal and this is 

shown in figure 2. 
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J.2 ADHESIVE BONDING BEHAVIOR: 

Samples of coated and bonded 316L with either Cr02 or Ti02 coatings were 

exposed to salt spray in from one to five weeks in order to determine the effect of a 

corrosive environment on the bond strength. ASTM standard B-117 was used and all 

samples were kept in the salt spray with constantly temperature of 95°F (35°C). Each 

specimen was tested until failure load was reached and recorded. Bond strength ranged 

from 200 lb to 850 lb. Figures 3, 4, 5, 6, and 7 illustrate load failure in pounds versus 

time of exposure in weeks for four samples coated by Cr03 and Ti02 exposed in salt 

spray test for up to five weeks with adhesive thickness of 0.005 inch . The data 

showing failure load for the different exposures and surface coatings for 0.005 in 

adhesive thickness is presented in table 3. Data for uncoated and unexposed 316L is 

shown in table 4. The chromate coating does increase the initial bond strength 

significantly, while the titanate coating has little effect on initial bond strength. The 

data indicates that the failure load decreases with exposure for both the Cr20 3 and Ti02 

coated and bonded 316L exposed to salt. However the titanate showed a higher failure 

load compared to chromate coating after three weeks of exposure. 

Figures 8, 9, 10, 11, and 12 illustrate the failure load for 4 pairs bonded and 

coated with Cr203 and Ti02 subjected to salt spray for up to five weeks with adhesive 

thickness of 0.01 inch. Failure loads as a function of exposure time in weeks are listed 

in table 5 for specimens with 0.01 inch adhesive thickness. Data for 0.01 in adhesive 

thickness 316L but uncoated and unexposed is shown in table 6. Again chromate 
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coating appeared to increase initial bond strength while the titanate had little effect. The 

failure load decreased for both coating types as exposure increased. However the 

titanate coating decreased less and was significantly higher than chromate after three 

weeks. 

For both adhesive bond thickness, coating by Ti02 showed significantly higher 

bond failure load than Cr203 coated specimens after three weeks of exposure. 

Comparison of the date in table 3 and table 5 reveals an interesting point that thinner 

adhesive offered a higher degree of bond strength although there was an obvious 

decline in the load failure for all coated and bonded specimens either with 0.01 inch or 

0.005 inch thickness. Comparison of the data in figures 13 and 14 illustrate the average 

failure load for all coated samples either by Cr203 or Ti02 and exposed to salt spray test 

on weekly basis with adhesive thickness of either 0.01 inch or 0.005 inch. 

It is expected that localized corrosion due to the geometry from adhesive 

bonding occurred on the SS316L. Moisture adsorption might play a significant part in 

order to decrease the bonding strength, however this decrease should be the same for 

both coatings as the same adhesive and exposure conditions were used. Figure 15 and 

16 shows a comparison between reference samples coated by Cr20 3 and Ti02 after five 

weeks with two different adhesive thickness after five weeks of air exposure. An 

insignificant change in failure load after five weeks exposure for samples coated by 

Ti02 was found. For coatings of Cr20 3 there was a large decreases in the failure load 

which indicate bond damaging between the adhesive and coated film. Figures 1 7 and 18 

shows a comparison between non-coated reference after air exposure for five weeks 

With adhesive thickness of 0.005 and 0.01 inch. The decline in the uncoated failure load 
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in air was significant, but not as large as the chromate decrease. The data is shown in 

tables 3 and 5. 

Because the nature of the lap joint allows moisture adsorption through the sides 

of the specimens, salt deposit trapped between the bonded surface. Rust was found on 

the specimens surface of the bonded samples after exposure to salt spray, figures 19 and 

20, which indicates that corrosion occurred. The location of the corrosion also further 

indicates that was localized or crevice corrosion. This would clearly identify one cause 

of the decrease in adhesive failure load with exposure to salt spray to be initiation of 

crevice corrosion. As the titanate coating showed improved resistance over the 

chromate to localized corrosion, it can be hypothesized that it was this resistance to 

localized corrosion that maintained the bond strength for the titanate coating in 

comparison to the chromate. 
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CONCLUSIONS 

A titanate coating provided better durability for adhesive bond strength over a chromate 

coating on 316L stainless steel after exposure to a marine environment . 

The localized corrosion resistance of the titanate compared to the poor resistance 

chromate in retarding crevice corrosion was thought to be the important factor in 

increasing bond strength after marine exposure. 
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FUTURE WORK 

Applying an interlayer between the substrate and the coating . 

Use of the TiOi instead of Cr203 shows some promise of use in corrosion resistance 

applications and should be investigated . 

Conduct more adhesive bonding testing by examining the effect of adhesive 

thickness and continue salt spry testing . 

Examine the effect of the alternative coating process . 

Use more samples of SS3 l 6L to identify corrosion effect and testing procedure errors . 
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J'ABLE 1 : cyclic polarization characteristics of bare SS 316 

Bare Metal 
Non coated 

Bare SS 316 

Ecorr 
V vs.SCE 

-0.071 

Epp 
Vvs.SCE 

-0.004 

lcorr 
Ncm2 

-0.520 

Eb 
Vvs.SEC 
0.101 

lent 
Ncm2 

- 1.85 

IABLE 2 : cyclic polarization characteristics of TIO~ and Cr1.{b coatine 

Metal Ecorr Ep I corr Eb Icrit 

coated (V vs.SCE) ( V vs.SCE) (pA/cm2
) ( V vs.SCE) (pA/cm2

) 

with 
Ti02 - 0.011 - 0.032 - 0.580 NV - 2.540 
Cr203 0.039 -0.042 -1.301 0.126 - 2.688 
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TABLE 3 : Data characteristics of tensile test for each bonded and 
coated SS 316L either by Titanium Dioxide or Chromium Trioxide 
{D.005 inch adhesive thickness ) 

,.... 
Time Metal Load (lb) Average 

In weekly Coated with 
basis 

Reference Chromium 750.221, 806.201 778.211 
No salt spray Titanium 538.695, 526.782 523.738 

Week one Chromium 885.328, 711.547 798.437 
(Salt spray) Titanium 528.360, 533.109 530.735 
Week two Chromium 547.782, 865.212 706.497 

(Salt ~ray) Titanium 443.685, 680.387 562.036 
Week Three Chromium 455.963, 420.213 438.088 
( salt spray ) Titanium 482.374' 520.218 501.296 
Week Four Chromium 500.717, 321.2011 410.959 
(salt spray) Titanium 414.113,420.179 417.146 
Week Five Chromium 303.074' 301.742 302.408 

( salt spray ) Titanium 370.739, 323.154 346.946 
Week Five Chromium 585.214' 540.141 562.677 

No salt spray Titanium 540. 792, 607 .288 574.04 

TABLE 4 : Data characteristics of tensile test for bonded and non 
coated SS 316L ( 0.005 adhesive thickness) 

Time_(_ weekl_y_}_ Load_(_ lbl Avera_g_e 
Reference 650.354, 540.320 595.337 

Week Five 454.201, 540.231 542.716 
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TABLE 5 : Data characteristics of tensile test for each bonded and 
;-0 ated SS 316L either by Titanium Dioxide or Chromium Trioxide 
(0.01 inch adhesive thickness ) : 

Time Metal Load (lb) Average 
In weekly basis Coated with 

Reference Chromium 730.542 730.542 
(No salt spray) Titanium 511.891 511.891 

Week one Chromium 557.152, 557.152 
(Salt spray) Titanium 443.666 443.666 

Week two Chromium 507.114 507.114 
(Salt ~ray) Titanium 411.061 411.061 
Week Three Chromium 248.998 248.998 
( salt spray ) Titanium 421.586 421.586 
Week Four Chromium 213.149 231.149 
( salt spray ) Titanium 400.192 400.192 
Week Five Chromium 213.866 213.866 

( salt spray ) Titanium 275.326 275.326 
Week Five Chromium 460.810 460.810 

(No salt Titanium 469.503 469.503 
S_Q_r'!Y}_ 

TABLE 6 : Data characteristics of tensile test for bonded and non 
coated SS 316L( 0.01 inch adhesive thickness): 

Time i weekly ) Load (lb) Average 
Reference 512.612 512.612 

Week Five 454.201 454.201 
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FIGURES 

Bare Stainless steel sample 316L 
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Figure 1. Potentiodynamic polarization curve for uncoated 316L and exposed to de­
aerated 0.5 M NaCL solution . 
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Coated stainless steel 316L by Chromium Trioxide 
& litanium dioxide 
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Figure 2. Potentiodynamic polarization curve for 3 l 6L stainless steel coated by 
chromium trioxide and titanium dioxide exposed to de-aerated 0.05M NaCl 
solution. 
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Figure 3. Comparison of failure load for the two pairs of chromium trioxide coated 
samples and another two pairs of titanium dioxide coated samples that were 
exposed to salt spray test for one week with adhesive thickness of 0.005 inch. 
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Figure 4 Comparison of failure load for the two pairs of chromium trioxide coated 
samples and another two pairs of titanium dioxide coated samples that were 
exposed to salt spray test for two week with adhesive thickness of 0.005 inch 
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Figure 5 Comparison of failure load for the two pairs of chromium trioxide coated 
samples and another two pairs of titanium dioxide coated samples that were 
exposed to salt spray test for three weeks with adhesive thickness of 0.005 
inch. 
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Figure 6 Comparison of failure load for the two pairs of chromium trioxide coated 
samples and another two pairs of titanium dioxide coated samples that were 
exposed to salt spray test for four weeks with adhesive thickness of 0.005 inch 
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Figure 7 Comparison of failure load for the two pairs of chromium trioxide coated 
samples and another two pairs of titanium dioxide coated samples that 
were exposed to salt spray test for five weeks with adhesive thickness of 
0.005 inch. 
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Figure 8 Comparison of failure load for the two pairs of chromium trioxide coated 
samples and another two pairs of titanium dioxide coated samples that 
wereexposed to salt spray test for one week with adhesive thickness of 
O.Olinch. 
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Figure 9 Comparison of failure load for the two pairs of chromium trioxide coated 
samples and another two pairs of titanium dioxide coated samples that were 
exposed to salt spray test for two weeks with adhesive thickness of 
O.Olinch. 

38 



Tensile test of Chromium 
trioxide and Tetanium dioxide 

with adhesive thickness of 
( 0.01 inch) 
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Figure 10 Comparison of failure load for the two pairs of chromium trioxide coated 
samples and another two pairs of titanium dioxide coated samples that were 
exposed to salt spray test for three weeks with adhesive thickness of0.01 
inch. 
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Figure 11 Comparison of failure load for the two pairs of chromium trioxide coated 
samples and another two pairs of titanium dioxide coated samples that were 
exposed to salt spray test for four weeks with adhesive thickness of 
0.01 inch. 
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Tensile Test of coated SS 316L 
with Cr20 3 & Ti02 with adhesive 

thickness ( 0.01 inch ) 
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Figure 12. Comparison of failure load for the two pairs of chromium trioxide coated 
samples and another two pairs of titanium dioxide coated samples that 
were exposed to salt spray test for five weeks with adhesive thickness 
of 0.01 inch. 
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Figure 13 Average failure load for all coated samples either by trioxide chromium or 
titanium dioxide exposed to salt spray test on weekly bases with adhesive 
thickness of 0.005 inch. 
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Figure 14 Average failure load for all coated samples either by chromium trioxide or 
titanium dioxide exposed to salt spray test on weekly bases with adhesive 
thickness of 0.01 inch. 

41 



~ 
~ ca 
0 ..... 

Tensile Test of coated ss316L 
by Cr20 3 & TI02 with adhesive 

Thickness of ( 0.005 inch ) 
NO salt spray 

1000 

800 

600 

400 

200 

0 
Reference week Five 

Time (weeks) 

•Chromium 
CTitanium 

Figure 15. Comparison of failure load between uncoated reference samples after air 
exposure for five weeks then, with adhesive thickness of 0.005 inch. 
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Figure 16. Comparison of failure load between uncoated reference samples after air 
exposure for five weeks, adhesive thickness of 0.01 inch. 
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Tensile test of non coated ss316L 
with adhesive thickness of 

( 0.005 inch ) 
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Figures 17. A comparison of failure load for non coated 316L samples after air 
exposure for 5 weeks, 0.005 inch adhesive thickness. 
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Figures 18. A comparison of failure load for non coated 3 l 6L samples after air 
exposure for 5 weeks, 0.01 inch adhesive thickness. 
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Figure 19 Corrosion on the chromate sample took place after 5 weeks exposure to salt spray 

Figure 20. Crevice corrosion on 316L. 
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