
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Master's Theses 

2009 

Resource Consumption Models for Different Manufacturing Resource Consumption Models for Different Manufacturing 

System Configurations System Configurations 

Reema A. Alanber 
University of Rhode Island 

Follow this and additional works at: https://digitalcommons.uri.edu/theses 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Alanber, Reema A., "Resource Consumption Models for Different Manufacturing System Configurations" 
(2009). Open Access Master's Theses. Paper 993. 
https://digitalcommons.uri.edu/theses/993 

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access 
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact 
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/993?utm_source=digitalcommons.uri.edu%2Ftheses%2F993&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


RESOURCE CONSUMPTION MODELS FOR DIFFERENT 

MANUFACTURING SYSTEM CONFIGURATIONS 

BY 

REEMA A. ALAN BER 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

IN 

MANUFACTURING SYSTEMS ENGINEERING 

UNIVERSITY OF RHODE ISLAND 

2009 



APPROVED: 

MASTER OF SCIENCE THESIS 

OF 

REEMA A. ALANBER 

Thesis Committee: 

Major Professor--b,,{Ll!.~-Y-.!..JLJ.~=JfJrM.~~l.1:-

DEAN OF THE GRADUATE SCHOOL 

UNIVERSITY OF RHODE ISLAND 

2009 



ABSTRACT 

This thesis will focus on resource consumption models of productivity, cost 

of quality, and cycle time, to describe and select preferred configurations as a 

function of the system and operating parameters. Consider a production system 

which consists of workstations or machines that can be arranged in different 

configurations, where each configuration can affect the performance of the 

system. This thesis will model and analyze four main configurations, namely 

serial, parallel, and serial-parallel with and without crossover. 

In a production system, parts are processed at each workstation or 

machine, where a value is added to the part. Inspection is performed to classify a 

quality characteristic of a part at each workstation or machine to be accepted, 

reworked, or scrapped. The short term probability of accept, rework, and scrap 

are utilized to model the long term probabilities using an absorption Markov 

Chain methodology. Each configuration will result in unique long term 

probabilities depending on the number of processes, order and location of each 

process. The long term probabilities and process flow are used to develop the 

resource consumption models for each alternative. At first, a two process 

production system is analyzed using pure serial and parallel configurations, and 

their performance is evaluated using sensitivity analysis. Then, a four process 

production system is analyzed using the four configurations, and the 

performance of each alternative is evaluated using a numerical example. Finally, 

general models for the resource consumption of an n-process production system 



are developed for the serial , parallel , and serial-parallel without crossover. 

Mathematica® is utilized to develop the matrix calculations and equations for the 

n-process models. A case study of a biopharmaceutical company is used to 

apply the proposed models. All required data for three production systems are 

collected then analyzed to be used in identifying the productivity, quality cost, 

and cycle time for different configurations. 

It is shown that there is a relationship between system configuration and 

its performance measured by productivity, quality cost, and cycle time. The 

proposed methodology in this thesis can be used to select the preferred 

configuration, where production systems with different parameters can result in 

different conclusions. The selection of the best configuration can be done by 

evaluating the resource consumption models for each possible alternative 

considering the different operating constrains, where the models in this thesis 

allow the manufacturer to select the best alternative based on specific 

performance targets. The developed models can also be used in discrete and 

continuous manufacturing systems, such as the biopharmaceutical industry case 

study. 
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1.1 Overview 

CHAPTER ONE 

INTRODUCTION 

Many studies have focused on efficiently designing the production system 

which has fluctuations in demand in an ever-changing global market. These 

studies also focused on the continuous need for improving the production system 

to meet c1:1stomer expectations. Many models have been developed to improve 

the overall performance of the production system. These models have been 

concerned with production planning , facility layout, line balancing, and material 

handling, to name a few. The question then becomes, does the system 

configuration of equipment play a significant role in the overall system 

performance? If yes, then what are the performance measures? 

The ability to cope with continuous changes in demand has become one of 

the fundamental challenges that modern manufacturers currently face. Recently 

there are some research projects that focus on diagnosing the relationship 

between the system configuration or layout and the performance. Many metrics 

have been used to evaluate the performance of each configuration. 

This chapter will include a brief discussion about system configuration, the 

problem statement, the justification and significance of the study, a discussion of 
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scrap and rework in production systems, a review of the biopharmaceutical 

industry, and a description of the thesis organization. 

1.2 System Configuration and Challenges 

Koren et al. (1999) defined the system configuration as the machine or 

workstation arrangement and connections. The machine arrangement means how 

the processes flow through the line, but not necessarily the physical layout of the 

machines. The serial layout is the traditional system configuration by which the 

material flows from one stage to another where each stage adds value to final 

product, there is only one path for the product flow, and the line is dedicated for 

one product or product family . This configuration was traditionally used in the 

automotive industry where the high volume and low product mix were required. 

Another configuration is the pure parallel by which each workstation is arranged 

parallel to the other and each one can perform all required tasks to complete the 

final product. In this configuration machines should be flexible and multi-task 

which means a high investment cost. Other than these two extreme configurations 

(pure serial and pure parallel) , there are the parallel-serial and hybrid 

configurations. The parallel-serial includes two or more identical serial lines 

arranged in parallel , with or without crossover. Without crossover, the number of 

production flows equals the number of serial lines. The number of paths is larger 

when crossover is included, because of the flexibility in transferring products 

between lines. In contrast to the serial line, one benefit of the parallel-serial 
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configuration is the ability to keep the system producing products even when one 

or more machines fail. It also facilitates the ability of the system to not be 

completely idle during the conversion from one product to another. In hybrid 

configurations, the number of identical machines at each stage is not equal as it is 

in the parallel-serial configuration, and crossover does not necessarily exist after 

each stage. 

A number of performance metrics have been proposed in the literature to 

assess the performance of each of the above described configurations. Most of 

the studies in this area considered the following performance measures: 

productivity and reliability, quality, convertibility, number of product types, 

scalability, and cost. How the different types of configuration impact these 

measures has been the core concern of many studies. Diverse models have been 

pursued in analyzing the effect of configuration on performance measures 

separately, where an integrated model that combines all measures might be one 

option in finding the preferred system configuration that will satisfy all performance 

measures. 

1.3 Problem Statement 

There should be useful methods and principles for designing the 

manufacturing system and facilitating the selection among configuration 

alternatives. The effect of scrap and rework should be considered in modeling 

production systems, since it will reflect more accurate calculations for resource 
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utilization. This could generate a strong baseline for selecting the preferred 

configuration. 

Biopharmaceutical companies have been challenged to reduce their 

production costs to be able to deliver their products to the market at a reasonable 

price, and to remain competitive, maintaining the quality level that is required to 

provide customers with reliable products. Recognizing the effect of system 

configuration on performance, in addition to understanding biopharmaceutical 

processes, regulations, and limitations, will contribute significantly to improving the 

manufactur)ng system and decreasing high production costs that most 

biopharmaceutical companies currently face. 

Different manufacturing system configurations result in different 

performance which is measured by many metrics. When the demand and product 

type or lifetime change, the efficiency of the production line deteriorates, unless 

the equipment layout is flexible and optimized to compensate for that change. 

Equipment configuration should be analyzed to improve the manufacturing line 

efficiency. Configuration selection requires proposing potential configurations, 

analyzing the model of each configuration and then identifying the preferred one. 

Not all materials which enter the production line make it to the end as 

finished products, because there is material that leaves the line as scrap, which 

could be generated from processes or rework stations after parts fail to meet 

specifications. Rework and scrap rates strongly affect the production cost because 
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they increase labor, material, quality and other costs, and hence reducing the 

rework and scrap rates improves the line efficiency and profitability. 

Consider a production line with many equipment workstations where there 

is a need to improve the system output. Capturing how the configuration selection 

contributes to achieving this target is a large challenge. Different configurations 

such as: serial , parallel , serial-parallel with and without crossover, and hybrid 

configurations could be proposed and analyzed. The way of analyzing these 

alternatives and then finding the best one is another challenge that exists. In this 

thesis, the production flow through all stages is modeled , which includes: raw 

material, main processes, rework stations, scrap bins, and finished product. The 

probability of transition between stages is considered in building the model, where 

these probabilities are combined with the resource utilization at each stage. A 

Markov chain is a stochastic model that is applicable in this instance. After 

creating the model and depending on the type of resources that need to be 

considered, the model is analyzed to find system resource utilization for each 

configuration alternative and then the configuration that provides the best 

performance can be identified. The preferred system configuration will have higher 

productivity, lower cycle time, or lower quality cost. A case study in the 

biopharmaceutical industry will be applied to validate the model and verify the 

approach. 
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1.4 Justifications and Significance of the Study 

The problem of finding the preferred system configuration is relatively new 

and it was addressed based on the objective of finding configurations other than 

the traditional serial line due to the continuous change in the demand and lifetime 

of products. Several studies have provided methodologies, guidelines, and 

principles to increase the system responsiveness to the short life cycle of 

products. Recent studies have proposed various models and methodologies for 

analyzing the effect of the system configuration by including different measures of 

performanGe. 

In 1999, Koren et al. represented the Reconfigurable Manufacturing 

System (RMS) as a sufficient solution to increase the ability to adapt for dynamic 

changes in demands which in turn increases system responsiveness. They 

compared three types of manufacturing system: Dedicated Manufacturing Lines 

(DML), Flexible Manufacturing Systems (FMS) , and Reconfigurable Manufacturing 

System (RMS) in terms of objectives and limitations. Zhong et al. (2000) built 

models used to measure productivity and quality of different system 

configurations. They emphasized the importance of the convertibility metric in 

measuring the system performance, especially for RMS, and pointed out that 

finding an integrated model that reflects the impact of configuration on all 

performance measures is very important in selecting the right configuration. 

Spicer et al. (2002) illustrated many principles that help in designing the system 

configuration. They compared the effect of different configurations on throughput, 
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line balancing, and scalability. Freiheit et al. (2003) proposed a model to 

determine the productivity for mixed serial-parallel configurations, and showed 

how this non-traditional configuration is equivalent, in the ability of improving 

productivity, to the buffered serial configuration. Colledani et al. (2005) provided a 

decomposition method for evaluating the performance of configuration or 

reconfiguration of the production system. Shabaka et al. (2007) mentioned two 

levels of reconfiguration : system and machine. They explained how the ability of 

re-assigning the resources at these two levels leads to increases in the flexibility 

of the production system which becomes more able to cope with changes in 

product demands. The authors demonstrated how different configurations of 

machine axes of motion cause different capabilities for the machine. 

Bohn and Terwiesch (1999) mentioned that in most production systems not 

all raw materials entering the line to be processed make it to the end and turn into 

a good quality final product. They explained that at the checking point components 

are tested and classified either as good or as defective items. They explained the 

high impact of scrap and rework on the system capacity utilization especially if 

defects are detected at bottleneck machines. The authors studied the effect of 

yield losses, caused by reworked and scrapped items, in yield-driven production 

processes. They demonstrated the importance of improving the yield in increasing 

the productivity. They summarized the rework and scrap effects on material, labor, 

capacity, and variability related costs. 
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Bowling et al. (2004) presented a model to determine the expected profit 

from n-stage serial production systems by considering the cost of processing, 

scrap, and rework. The authors used absorbing Markov chains to identify the long 

term probabilities of the three states of the product during the production 

processes: rework, scrap, and accepted. 

Pillai et al. (2008) showed that Markov chain models can be used to 

represent the production system under uncertainties due to reworking and 

scrapping. The authors modeled material flow through a serial production system 

with rework and scrap by using the absorbing Markov chain. By using the model 

they adopted, system design and also production and inventory control could be 

efficiently improved. Using an absorbing Markov chain model enables the authors 

to build equations to determine the following: material requirements, number of 

machines, production cost, and manufacturing lead time. 

As can be seen from the above, many studies focused on building models 

to study the impact of system configuration on productivity, quality, scalability, and 

convertibility, but they do not typically consider resource consumption which is 

strongly related to the production cost or profit. On the other hand, some studies 

focused on the effect of scrap and rework on the production system performance, 

but they only focused on the serial configuration and did not consider other types 

of system configurations. This thesis will use the Markovian approach to model 

the production flow of four different system configurations: serial, parallel, serial­

parallel without crossover, and serial-parallel with crossover. Scrap and rework 
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probabilities will be considered, and different system resources such as money 

and time will be built into the model. After that, the proposed model will be used to 

evaluate many configuration alternatives and select the best one. Scrapping and 

reworking make deterministic modeling unreasonable, so instead stochastic 

modeling is required which could be achieved by using Markov chains, as will be 

adopted in this thesis. Moreover, although most of the studies of the effect of 

configuration on system performance have been applied in machinery or similar 

production systems, in this thesis a case study will be applied at a 

biopharmaceutical company to validate the model. All of the above make this 

research unique with significant contributions to the literature. 

1.5 Scrap and Rework States in Production Systems 

The production system consists of stages where items are being 

processed, inspected, and forwarded to consecutive stages, such as reworked, 

scrapped, or finished products. Scrap and Rework are two states in the production 

system that affect the quality, cost, and cycle time, and if their probabilities are 

known, then the production system characteristics will be better understood which 

in turn will improve the process of achieving the production target. 

In production , parts could conform to quality specifications or be defective. 

Parts that conform to the quality specifications continue through subsequent 

production processes, where the defective parts, which are items that do not 

confirm to predetermined specification limits and attribute requirements, could be 
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then either reworked or scrapped . Parts that could not be repaired by the rework 

process have to be scrapped, but this is not the only criteria to classify items as 

scrapped or reworked; sometimes the items are scrapped because it is more 

economically feasible than repair. In specific types of production, such as 

machining , items are scrapped or reworked if the quality characteristic fall outside 

the specification limits. 

Raw materials, unfinished products, rework, scrap or finished goods 

represent all possible states that material could transfer through when raw 

material enters the production line. Building a stochastic model that combines all 

of these states will be one of the challenges in this thesis. 

1.6 Biopharmaceutical Industry 

A Biopharmaceutical can be identified as: "A therapeutic product created 

through the genetic manipulation of living things, including (but not limited to) 

proteins and monoclonal antibodies, peptides, and other molecules that are not 

chemically synthesized, along with gene therapies, cell therapies and engineered 

tissues" (Odum, 2002) . 

Newcombe et al. (2008) mentioned that "more than a third of all drugs 

under development by pharmaceutical and biotechnology companies are 

biopharmaceuticals". They said that in 2005 there were nearly 300 licensed 

biopharmaceuticals on the worldwide market and the number is growing annually 
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by 20%. They also said that the revenue for these biopharmaceuticals is 

approximately $85 billion. 

Biopharmaceutical companies have been challenged to reduce their 

production costs to be able to deliver their products to the market at a reasonable 

price, and to remain competitive, maintaining the quality level that is required to 

provide customers with reliable products. There are many regulations that 

biopharmaceutical production processes have to meet before products exist in the 

market, which also increase the challenges. In addition, there are limitations that 

affect the ability of the companies to upgrade their production systems. For 

example, when a company changes from producing one product to 

producing multiple products it increases the risk of cross 

contamination which makes it more difficult to ensure the quality and 

safety of the products. Improving production and reducing operational costs in 

both continuous and discrete production environments is essential for the 

pharmaceutical and biopharmaceutical industries. 

Recognizing the effect of machine configuration on system performance, in 

addition to gaining a better understanding of the biopharmaceutical processes, 

regulations, and limitations will contribute significantly in improving the 

manufacturing system and decreasing high production costs that most 

biopharmaceutical companies currently face. 
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1.7 Thesis Organization 

This thesis is organized as follows : the introduction has been presented in 

Chapter 1. The literature review is addressed in Chapter 2. The research theory 

and development of models for a multi-stage production system with two, four, 

and n processes is provided in Chapters 3, 4, and 5 respectively. After that, a 

case study at a biopharmaceutical company is applied in chapter 6. The 

discussion and conclusions are included in chapter 7. 
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2.1 Introduction 

CHAPTER TWO 

LITERATURE REVIEW 

As the ever-changing global market and the growth of competitiveness 

increases the pressure that modern manufacturing systems face, the production 

layout problem has attracted the interest of many scholars, with new models 

developed to address the complexity of today's production system design. Coping 

with the continuous demand changes has been considered as a fundamental 

challenge in designing the production layout. While much of the research in the 

field of manufacturing systems has been concerned with physical machine 

arrangement, others focus on the way that products flow through the workstations. 

Finding the relationship between system configuration and system performance is 

relatively new in literature. Some scholars have developed models for analyzing 

the system performance that is measured by one or more me tries such as: 

productivity, quality, scalability, convertibility, or cost. They have used the 

proposed models to analyze different configuration alternatives and find the best 

one. In this thesis a new model is developed to assess the performance for 

different configurations by also considering the scrap and rework rates which are 

in turn associated with resource utilization. Many scholars have studied and 

analyzed the effect of scrap and rework and used them in modeling the production 
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system, but they have focused on serial configurations more than on other types 

of configurations. Moreover, many research projects for improving production 

layout have included case studies that have been applied in different types of 

production systems like automotive and machining , but not many studies have 

been implemented in biotech or pharmaceutical industries. However, some 

studies using Industrial Engineering principles and tools have been published in 

these industries. 

This chapter presents som e literature that focuses on several relevant 

topics, which are: 

1. Changing demands and needs for non-traditional system configuration. 

2. Layout design problems and challenges. 

3. The relationship between different configurations and system performance. 

4. Scrap and rework effects and considering them in modeling the production 

system. 

5. Challenges in the biopharmaceutical and pharmaceutical industries. 

6. Studies that apply industrial engineering concepts or tools in system design 

at biopharmaceutical and pharmaceutical industries. 

2.2 Changing Demands and Needs for Non-Traditional System Configuration 

Continuous changes in customer demands and short product life cycles 

mean that manufacturers need to be more flexible when producing a large range 

of products. The challenge is to construct system configurations that have the 

ability to rapidly react to these changes at the lowest cost. Recently, research in 
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this area has been increasing and generally focuses on proposing different 

configurations other than the traditional serial line. 

Kochhar and Heragu (1999) proposed a methodology for layout design in a 

dynamic facility where the product mix and volume are not constant. The authors 

demonstrated that there is a continuous change in the product range and volume, 

and getting an accurate forecast becomes not possible any more. Based on that, 

they emphasized the importance of designing a dynamic layout that has the ability 

to be highly responsive to continuous changes. 

Suh et al. (1998) demonstrated that there is a strong relationship between 

manufacturing system design and productivity. They illustrated that the different 

functional requirements and constraints which need to be satisfied generate 

different manufacturing system designs. They introduced the principles and 

methods for the axiomatic design of manufacturing systems which is based on the 

chosen functional requirements. The authors introduced the challenges that 

industry faces to produce a mix of products, and asserted the importance of using 

scientific principles and approaches rather than empirical knowledge when 

designing the manufacturing systems. The authors explained that constraints 

related to the available technology, cost, and performance metrics sometimes 

may affect the functional requirements which need to be considered in the design 

which, in turn, leads to weakness in the manufacturing system design. 

Koren et al. (1998) explained that the traditional serial line configuration is 

not useful in "low volume - high variety" production systems. Freiheit et al. (2003) 
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mentioned that increasing buffer size to improve the system capacity is not 

beneficial anymore due to the continuous changes in demand which requires 

efficient reaction to market changes by reducing work in process, detecting quality 

problems quickly, and avoiding the risk of overproduction. In terms of productivity, 

Freiheit et al. proposed a model to analyze how the nontraditional configurations, 

such as mixed serial and parallel configurations, or reserve capacity 

configurations, could be equal to traditional serial systems with buffers. They 

described the importance of having a reliable material handling system to achieve 

the productivity improvement in the proposed nontraditional configurations. 

Spicer et al. (2002) illustrated many fundamentals that help in the design of 

the system configuration. They mentioned how the continuous change in 

customer demand generates the need to obtain new alternatives for system 

configuration other than the traditional serial layout. These alternatives could be 

facilitated by the reduction in the cost of Computer Numerically Controlled (CNC) 

machines, and the introduction of new technologies. They also mentioned that 

multi-axes CNC machining systems generate multi-task systems that have the 

ability to align with different possible system configurations. The authors 

differentiated between two configurations with and without crossover, and 

between the symmetric and asymmetric configurations. In contrast to the 

symmetric configurations, in the asymmetric configurations the parts are 

processed by various plans and on different numbers of machines. They 

mentioned that the system configuration is defined not only by the machine layout 

but also by the machine connections. They introduced the effect of setup 
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arrangements on system configuration length, which is determined by the number 

of machines the part should be processed on. The configuration length can be 

adjusted either by operation division or setup combination. They introduced the 

system configuration width as a number of parallel machine sets. Besides 

determining the upper and lower bounds for the configuration length, they also 

determined these bounds for the configuration width. 

2.3 Layout Design Problems and Challenges 

There have been many articles developed to study, investigate, and build 

models for layout design. Many targets and constraints have been considered in 

the layout design and many challenges have faced the researchers through their 

studies. In some of the literature, models for block layout (or physical arrangement 

of departments and machines) were built, where other literature looked at the 

layout as how the product parts flow through the machines, regardless of the 

physical location. 

Kochhar and Heragu (1999) proposed a methodology for block design of a 

multiple-floor facility to be more flexible in the ability of rearranging the 

departments, workstations or machines in future periods. The objective of their 

methodology, the Dynamic Heuristically Operated Placement Evolution (DHOPE), 

was minimizing the rearrangement costs and material flow costs by designing a 

dynamic facility over two consecutive periods. They pointed out that the 
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infrastructure and the supportive tools should be designed to have the ability to 

facilitate the rearrangement actions. 

Hassan (1994) studied the problems that relate to the machine 

arrangement in production floors for modern manufacturing, and he argued that 

block layout is not applied practically in actual production systems and hence, 

other methodologies are required . The author demonstrates the importance of 

machine layout and the factors that play roles in its development. He differentiated 

among three types of layout: single row, multiple rows, and the loop layout (fig.1 ). 

The author also explained different measures that affect choosing among these 

layouts. 

Hassan (1994) differentiated between the machine layout and the block 

layout problems, and explained the need for considering the issues of 

backtracking and bypassing and not ignoring them, as in the block layout 

problem. The author also asserted the importance of the material handling 

consideration in machine layout design, and pointed out the importance of the 

flexible machine layout to cope with uncertainties in customer demand and 

product mix with minimum or no changes in the layout arrangement. He 

discussed different studies about the formulations of the machine layout problem 

in terms of objective, constraints , and layout type, and about the different 

suggested layout performance measures. He mentioned that Quadratic 

Assignment Problem (QAP) as one of the most common procedures for 

formulation of the machine layout problem. The author compared the different 

suggested procedures in the literature for layout construction or improvement. 
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The comparison was in terms of problem formulation, solution methodology, 

layout type (row, multiple rows, or loop layout), and problem size. Evaluation of 

the solutions and results were mentioned also for each methodology. He 

criticized many of these suggested layout procedures. For example, he argued 

that these procedures were not performed in real manufacturing plants. 
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Fig. 2.1 Type of machine layout: (a) Single row layout; (b) multi­

row layout; (c) loop layout (Hassan, 1994). 
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Klampfl et al. (2005) mentioned that although the mixed model assembly 

line responds quickly to variations in customer demand, many efforts are required 

to find the preferred production layouts. The authors proposed three formulations 

for optimizing the layout in automotive assembly lines. Their method was based 

on the lean system concept of decreasing the non value added time. They defined 

and used the e-Workcell tool, which is a tool that has been used by Ford to 

develop a 30 image of the workcell elements according to data from the 

production plant. They describe their optimization problem, and the objective of 

reducing the non-value added time which is affected by the arrangement of the 

workcell elements. The authors proposed several formulations (unconstrained, 

one-dimensional constrained, and two-dimensional constrained) to solve the 

objective function and optimize the layout. Their proposed methods for optimizing 

the layout efficiency enhance the objective of increasing the flexibility in the 

production system to respond efficiently to different product mix. 

Kaebernick et al. (1996) presented an integrated model for designing the 

layout of a Cellular Manufacturing system. The authors pointed out that there are 

three phases of Cellular Manufacturing design: parts/machine grouping, the layout 

of machines within cells, and the layout of cells in the shop floor. They 

emphasized the importance of layout design as an essential element in achieving 

the desired benefits from Cellular Manufacturing. Their developed model is based 

on evaluating the integrated effects of the three phases of design on the overall 

system. It provides multiple alternatives which need to be assessed based on the 

predetermined criteria. 
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2.4 The Relationship between Different Configurations and System 

Performance 

Some authors have started to recognize the strong relationship between 

the system configuration and its performance in their studies. The traditional serial 

configuration may be insufficient for adapting to dynamic customer demands, and 

hence, the need for new configuration designs is introduced with many associated 

challenges and problems which need to be considered. This section presents 

literature that has shown the impact of system configuration on its performance, 

and then presents some research that have focused on studying different 

performance measures. 

Koren et al. (1998) discussed how different configurations of the 

manufacturing system lead to different performance. They described that 

choosing the preferred configuration is based on the following measures of 

performance: productivity, reliability, quality, capacity, and cost. They mentioned 

that there is a relationship between the number of machines in the system and the 

number of configurations that could exist. They analyzed the effect of system 

configuration on performance by proposing a methodology of comparing many 

configuration alternatives based on the above performance measures. 

Spicer et al. (2002) demonstrated the relationship between the system 

configuration and its performance by comparing four symmetric configuration 

alternatives (pure serial, pure parallel and short serial lines in parallel with and 
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without crossover) based on four metrics: throughput, line balancing, system 

investment cost, and capacity scalability. 

Zhong et al. (2000) pointed out that there are different metrics for 

evaluating the performance of different configurations for the production line, 

where an integrated method that combines all measures is more efficient in 

selecting the best arrangement for machines. The authors proposed 

methodologies to determine three measures of performance: productivity, quality, 

and convertibility. As a case study, they compared four configurations of the 

machining ,system (serial, parallel , and two hybrid configurations) in terms of 

productivity, quality, and convertibility. 

2.4.1 Productivity and System Reliability 

System productivity is often the most important target that most 

manufacturers try to improve. There are many researchers who have used 

productivity as a basic objective in building their models for improving the system 

performance. 

In terms of throughput, Spicer et al. (2002) explained examples of the 

effect of configuration on the gross throughput, on the expected throughput, and 

on the probability distribution function . 

Zhong et al. (2000) used machine availability and complexity and 

processing rate as parameters for determining system productivity. 
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sun et al. (2008) investigated the relationship between the machine 

configuration, machine-level reliability and the system-level reliability. They 

developed a methodology for analyzing the quality reliability at both the machine 

level and the system level. They analyzed the machine level quality reliability by 

considering the joining effect of product quality and tool degradation. Then they 

used the proposed integrated model for machine-level reliability to predict the 

system level reliability for serial-parallel hybrid manufacturing systems with 

various selected configurations 

2.4.2 Quality and Stream of Variation Theory 

Quality has been considered as a fundamental measure of system 

performance. Many studies have analyzed the effect of good quality on improving 

the production system. 

Colledani and Tolio (2006) illustrated that configuration has an impact on 

both the productivity and quality control performance. They emphasized the 

fundamental importance of considering the quality and throughput measures 

together during the design phase of the production system. Colledani and Tolio 

proposed a method for evaluating the production system performance by 

considering both of these measures. They mentioned that there are many tools 

and techniques that have been developed to predict the production throughput 

and monitor the quality level, but only recently some literature has begun 

recognizing the importance of using an integrated method to deal with both of 
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them. Zhong et al. (2000) used the mean and standard deviation as measures for 

the quality of the finished product. 

Stream of variation 

Recent works have analyzed the effect of the production and process 

system design on the quality of the finished parts. The stream of variation theory 

has been introduced to predict how the variability of products propagates through 

the workstations of a production system. 

Hu and Koren (1997) suggested a model for the flow of dimensional errors 

when the product moves from one station to the next. The authors said that the 

assembly variation is larger than the variation in the component, since the 

dimensional variation is accumulated while the product is transformed through the 

assembly system. The developed model helps in solving the quality problem 

earlier, since it increases the ability to predict the variation evolution through the 

assembly line. They demonstrated that sheet metal parts in the automotive 

industry can be deformed through the assembly process, and that causes an 

increase in the dimensional changes. Hu and Koren (1997) explained the two 

elements of the Stream-of-Variation theory: 1) analyzing how the dimensional 

variation of the components is propagated through the assembly line so that the 

variation of the final product can be anticipated and 2) determining the variation 

causes and sources in the assembly line. He studied the relationship between the 

propagation of the assembly variation and the assembly configurations. He 

showed that variability and the diagnosability features of the serial and parallel 
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assemblies are different. The author identified two causes of variation in the 

automotive body assembly: (1) by fixture and (2) by part or welding process 

deviation. He also developed a fault diagnosis strategy to reduce the variation. 

Djurdjanovic and Ni (2006) demonstrated that the dimensional variations 

are transformed and accumulated from one operation to the next through a multi­

station machining system. The authors introduced methods for measurement 

scheme analysis in multi-station machining systems to predict the root causes for 

the dimensional faults . In this methodology, the combinations of measurements 

are evaluated in terms of the goodness of information they provide about the 

machining process parameters. The best set of measurements is the one that is 

more informative in reflecting the root causes of the machining dimensional errors. 

The stream of variation model was the basis for their methodology. 

2.4.3 System Responsiveness 

Zhong et al. (2000) pointed out that the system responsiveness is 

measured by the convertibility and scalability of the system, where the 

convertibility reflects the system ability to produce different products, and the 

scalability reflects its ability to adjust the production volume depending on the 

demand, with less cost and less time. They asserted the importance of the 

convertibility measure in the Reconfigurable Manufacturing System (RMS). They 
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proposed using the time required to convert the system as a measure for its 

convertibility. 

Maier-Speredelozzi et al. (2003) discussed the significance of the 

production system responsiveness as a result of the continuing variation in 

customer demand. They introduced the meaning of convertibility which , together 

with capacity scalability, indicates the system responsiveness. The authors 

developed equations that reflect three metrics for the convertibility related to 

configuration, machines, and material handling . The authors showed that different 

layouts and different ways of connecting machines result in different alternatives 

of configuration which is associated with minimum conversion increment, number 

of routing connections, and the number of replicated machines. Regarding the 

machine convertibility measure, they explained how it depends on the machine's 

features. They also introduced many factors related to measuring the material 

handling convertibility. The authors analyzed two case studies as examples of 

using the convertibility metrics to compare alternatives. 

In terms of capacity scalability, Spicer et al. (2002) suggested that different 

configurations cause different levels of scalability. Having more scalability, either 

through the ability to add new machines in parallel or by just adding a scalable 

tool to such a machine, increases th e ability to change the system capacity 

depending on customer demand. They proposed a multi-spindle scalable machine 

tool, which could help in improving the system scalability without adding new 

machines, reducing floor space and decreasing system investment cost. 
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2
.4.4 Changeability and Reconfigurability of the Production System 

The Reconfigurable Manufacturing System (RMS) concept has been 

developed to help manufacturers cope with continuous fluctuations in demand. 

Many research projects have been constructed to investigate and analyze the 

impact of the RMS. 

Koren et al. (1999) showed that the reconfigurable system is required due 

to short pro duct lifetimes and continuous change in customer demand. They 

argued that there were studies and technologies created to develop the product 

design, but not that many efforts were invested to develop a method for designing 

the production system. They demonstrated that the reconfigurability of the system 

makes the system more adaptable to the changes in the capacity functionality, 

which will reduce the system design time. The authors compared three systems: 

Dedicated Manufacturing Lines (DML), Flexible Manufacturing Systems (FMS), 

and Reconfigurable Manufacturing Systems (RMS). DML produces high 

throughput but it is not scalable or flexible, and FMS is scalable but expensive and 

has general flexibility, while the RMS is scalable and has customized flexibility. 

They defined the RMS and its main aspects to be CNC machines, Re­

configurable Machine Tools (or adjustable machine structure), and reconfigurable 

software and hardware. All of these enhance the quick response to the fluctuation 

in demand and product mix. The authors demonstrated five main characteristics 

for the reconfigurable system: modularity, integrability, customization, 

convertibility, and diagnosability. They also explained issues in RMS: system-level 
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design, machine-level design, and system ramp up. They supported their 

discussion with examples about a reconfigurable machining system. 

Azab and EIMaraghy (2007) proposed a mathematical model for 

Reconfigurable Process Planning and sequencing for the reason that the 

customer demand becomes unpredictable and requires an effective changeable 

or reconfigurable manufacturing system. They formulated the problem and set up 

the objectives and constraints, taking into account choosing the best location for 

the new required features . 

Hon and Xu (2007) discussed the complexity that dynamic demand adds 

to the system design problem. The authors investigated the effect of the dynamic 

product life cycle on the timing and extent of reconfiguration. They asserted that 

companies should know when and how to perform a reconfiguration , where this 

decision depends on the individual circumstances and characteristics of each 

manufacturing system. The authors mentioned that there are three common 

methods for adding capacity to the system configuration, which are: using better 

tools or machine reconditioning, replacing the current machine, or adding a new 

machine. Th ey used the simulation method to analyze the multi-stage multi­

product manufacturing system. The three steps in their simulation approach are: 

modeling the original configuration, optimizing the reconfigured system, and then 

optimizing the product portfolio. 

Colledani et al. (2005) illustrated the meaning of changeability which 

reflects the ability of the company to respond to the unpredictable customer 
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demand with minimum cost. They discussed the system reconfigurability which is 

one aspect of the system changeability. They proposed an approximate analytical 

method to assess the Reconfigurable Manufacturing System (RMS). They 

introduced a model based on two levels of decomposition: machine and buffer. 

Their suggested model was applied as a case study to evaluate different 

configurations as alternatives to increase the system capacity. 

Shabaka et al. (2007) mentioned two levels of reconfiguration for RMS: 

system and machine. They explained how the ability of re-assigning the resources 

at these two levels leads to increases in the flexibility of the production system 

which becomes more able to cope with changes in product demand. The authors 

demonstrated how different configurations of machine axes of motion cause 

different capabilities for the machine. They proposed a methodology to construct 

the machine tool configuration based on part geometry and features, operations 

precedence constraints, tool approach directions (TAD), operation clusters, and 

the integration between the product features and machine capability. 

2.5 Scrap and Rework in the Production System 

Scrap and rework are two factors that have an impact on achieving the goal 

of improving the performance of a production system. Their effects could 

significantly increase cycle time and production cost, and decrease system 

efficiency. There are many scholars who have recognized that and hence, they 
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have started to focus on studying and analyzing scrap and rework in the 

production system. 

2.s.1 scrap and Rework Definitions and Effects on Production System 

Bowling et al. (2004) classified an item as scrap if the value of the quality 

characteristic of interest is less than the lower specification limit and as rework if 

the value is more than the specification limit. Bohn and Terwiesch (1999) 

mentioned that in most production systems not all raw materials entering the line 

to be processed make it to the end and turn into a good quality final product. In 

other words, the number of parts entering the process does not necessarily equal 

the number of parts coming out as finished products. They mentioned the 

possibility of having some scrapped items either directly from the main processes, 

or from the rework processes. They also explained that at the checking point 

components are tested and classified either as good or as defectives items. If the 

item is good then it proceeds to the next process, and if not, it could be reworked 

or scrapped. They explained the high impact of scrap and rework on the system 

capacity utilization especially if defects are detected at bottleneck machines. They 

described that more value is added to the items as they move forward through the 

production system, and hence, having more reworked or scrapped items at later 

processes means more losses. The authors studied the effect of yield losses, 

caused by reworked and scrapped items, in yield-driven production processes. 

They demonstrated the importance of improving the yield in increasing the 

productivity. Besides that, they analyzed the economics of multi-stage yield-driven 
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production processes and showed the effect of consuming cost and time due to 

scrap and rework processes. They summarized the rework and scrap effects on 

material, labor, capacity, and variability related costs. 

2.s.2 scrap and Rework Considerations in Production System Modeling 

Bowling et al. (2004) presented a model to determine the expected profit 

by considering the cost of processing , scrap, and rework. The authors used 

absorbing Markov chains to identify the long term probabilities of the three states 

of the product during the production process: rework, scrap, and accepted. The 

long term probabilities were used to build a profit model for one, two, and n-stage 

serial production systems to determine the optimal process target at each stage. 

They applied sensitivity analysis by varying the model parameters to study their 

impact on the output. 

Pillai et al. (2008) showed that Markov chain models can be used to 

represent the production system under uncertainties due to rework and scrap. The 

authors modeled material flow through a serial production system with rework and 

scrap by using the absorbing Markov chain , where both the scrap and finished 

product states were considered as absorbing states. By using the model they 

adopted, system design and also production and inventory control could be 

efficiently improved. Using an absorbing Markov chain model enables the authors 

to build equations to determine the following: material requirements, number of 

machines, production cost, and manufacturing lead time. 
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Davis and Kennedy (1987) considered rework, work in process, inspection, 

and scrap in their modeling of a serial production system. They also took into 

account the tool wear and the scheduling impact of the tool wear rate utilizing a 

Markov chain model for the production system. They analyzed the serial 

production system under different scenarios using the Markov models to have 

outputs that assist in solving production planning problems. 

2.6 Challenges in the Biopharmaceutical and Pharmaceutical Industries 

Biopharmaceutical and pharmaceutical companies, like other industries, 

are facing the ever-increasing challenges of improving their production systems to 

produce high quality products with the lowest cost. Many production regulations 

in the biopharmaceutical and pharmaceutical industry increase the challenges and 

complexity in designing the production systems. Researchers have studied these 

challenges, analyzed data from these industries, and pointed out the issues that 

biopharmaceutical and pharmaceutical companies should start to consider for 

improving their outcomes. 

Abboud and Hensley (2003) talked about how pharmaceutical companies 

and the FDA have begun recognizing the importance of focusing on improving the 

production system instead of focusing only on developing new drugs for the 

market. They mentioned that the increasing number of recalls and the high 

percentage of defects in pharmaceutical production were strong indications for the 

FDA (Food and Drug Administration) about the need to start improving and 

introducing new methods and techniques in the production process. The authors 
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of this article mentioned that many production shortcomings in the pharmaceutical 

industry are due to the production system's insufficient tools and methodologies. 

They included results from the analysis of financial statements by Raymond 

Scherzer, 2001 , in which he illustrated that the production cost for the top 

pharmaceutical companies are 36% of the total costs, which is two times the 

expenses for Research and Development (R&D). They also suggested that 

concentration on improving the manufacturing processes is the rational way to 

save money and increase the pharmaceutical companies' profits, since there are 

fewer chances to develop new drugs or to increase sales. The authors gave 

examples from some companies, like Pfizer, that start investing in their production 

systems by applying new technologies to improve production efficiency. 

Basu et al. (2008) discussed a study aimed at analyzing the production 

cost for some pharmaceutical companies, which was divided into three categories: 

brand, generic, and biotech companies. They also studied the relationship 

between the material and production cost or Cost of Goods Sold (COGS), and the 

Research and Development (R&D) spending . They mentioned that some studies 

indicated that the cost for production was more than three times the expenditure 

for R&D. The authors illustrated that one of many factors causing the high 

production cost in the pharmaceutical industry are the FDA regulations that 

require the companies to abide by the "current Good Manufacturing Practices" 

(cGMP). By comparing the annual reports of the top pharmaceutical companies, 

the authors demonstrated that in 2005 the revenue of the brand name companies 

($10 billion) was two times the revenue for the generic companies ($5 billion). On 
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ther hand they expected that the generic companies would have much 
the o ' 

higher revenue in 2008, due to the expectation that more than two thirds of 

prescriptions would be converted to generic substitutes instead of brand name 

drugs. 

By comparing the data of pharmaceutical companies with the highest 

market share from the above three groups over a study period of twelve years 

(from 1994 to 2005) , Basu et al. (2008) found the following : 

_ In terms of COGS% (COGS as a percentage of total sales), the generic 

companies have a higher average than that for brand name companies 

which are higher than the average of the biotech companies. 

- In terms of R&D% (percentage of R&D spending divided by sales) and 

operating income, biotech companies have a higher average, and then the 

brand name has a lower average, while the generic companies have the 

lowest average. 

In terms of general expense, brand name companies have the higher 

average, then the biotech , followed by the generic companies. 

- For the brand name companies there is a "strong negative correlation 

between the COGS% and R&D%". 

- For the generic companies, there is "strong negative correlation between 

the COGS% and the operating income". 

- The manufacturing costs for the generic and brand name companies are 

around 50% and 27% of the total sales revenue, respectively. 
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Basu et al. (2008) gave a hint that reducing the production cost by 

improving the efficiency of the production system will reduce the price of the 

drugs, increase the investment in R&D, and increase the pharmaceutical 

companies' profits. Odum (2005) pointed out that biopharmaceutical design 

engineers should reduce the production cost and capital expenditures, and 

improve the flexibility in the production system. Odum identified three attributes 

that influence the facility design. These are product, process, and facility 

attributes. He emphasized that there are fundamental principles that should be 

fully understood to improve design and operation in the biopharmaceutical 

industry. One of these principles is that the process and facility designs are 

connected to each other. The author addressed the implementation of closed 

process system, controlled processing capabilities, and manufacturing flexibility. 

He mentioned that there are companies starting to produce multiple products, and 

that there is new trend to apply concurrent manufacturing to help achieve multi­

product facilities. He represented the need for building strong strategic planning 

for the manufacturing capability in order to cope with the dynamic markets of 

many biological products. He also explained the changes in equipment design 

Principles due to the increasing trends to move to a multi-product manufacturing 

system which require the equipment design to be more flexible and cost effective. 
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7 
Studies that Apply Industrial Engineering Concepts or Tools in System 

2. 
Design at Biopharmaceutical and Pharmaceutical Industries 

Oh et al. (2004) proposed a method to improve the throughput and the 

capacity of the production lines of Monoclonal antibodies (Mabs). The authors 

demonstrated that the demand for Mabs products keeps increasing while the 

biomanufacturers are unable to increase their production capacity to meet this 

high demand. They suggested using a simulation tool from Superpro® software to 

determine the constraints or problems in such design, instead of using the 

traditional method of conducting pilot plant experiments, which is a more costly 

and time consuming approach. By demonstrating a case study, the authors gave 

an example of using Superpro to simulate the processes by entering the inputs 

from a simple laboratory experiment. Then the material flow steam was 

constructed, and then the batch process simulation model was obtained. After 

that, the software was used to produce the machine utilization chart, which was 

used to determine the bottleneck in the system. The authors suggested many 

scenarios to increase the system capacity and productivity. They economically 

analyzed one new design scenario by applying a cost and profit analysis of 

increasing the number of machines to study its impact on increasing the number 

of batches produced and profit. 

Hamamoto et al. (1999) developed a model for designing the facility layout 

and implemented this model at two pharmaceutical companies producing solid 

dosage forms. They built their proposed model based on a genetic algorithm with 
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mbedded simulation model. They pointed out that the previously developed 
an e 

heuristic algorithms are not flexible enough and are built based on only one 

objective, usually determined in advance, while their method is more flexible and 

allows for choosing objectives that are required for each specific layout. The 

authors asserted difficulties and constraints that affect the layout design due to the 

nature of the production of the pharmaceutical companies. Some of these 

constraints are: the contamination which could result from using different 

materials, the predetermined methods for transporting the materials, the high cost 

for making changes in the design, and also the FDA regulations. All of these 

constraints should be considered carefully in building the model, which should be 

designed in a perfect way from the beginning since it may stay and be used for a 

long time without the ability to be adjusted . 

Hamamoto et al. (1999) used a genetic algorithm in their model as the 

search algorithm, and the growth and band layout methods as the decoding 

algorithms. Their model's objectives are improving the throughput and reducing 

the traveling time. They compared the layouts they generated, the actual layouts, 

and also the ones which resulted from existing layout algorithms such as: 

CORELAP (construction algorithm), CRAFT (improvement algorithm), and 

BLOCPLAN (hybrid algorithm). 

Newcombe et al. (2008) pointed to many hidden sources of variability in the 

manufacturing process of biological products. Hence it is important, during the 

development stage, to propose manufacturing processes that will have the ability 
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et Predetermined specifications. They introduced the "design space" term, 
to me 

which indicates a range of process parameters that assure producing products 

with good quality if they fall within this range. They mentioned the increased 

trends in applying Design of Experiments (DOE) for modern biopharmaceutical 

development. They mentioned that DOE could be used to define the design space 

for the process. The authors also showed how the DOE approach is very useful in 

finding the critical process parameters and the quality attributes. The authors 

applied the DOE approach in case study to analyze the impact of some factors on 

stability of an antibody derived biotherapeutic. 

2.8 Summary 

Table 2.1 and table 2.2 are used to summarize most of the articles that are 

mentioned in the literature review chapter. Table 2.1 includes the articles in which 

authors are focused on studying the effect of system configuration on the following 

metrics: productivity, quality, scalability, convertibility, changeability. Table 2.2 

includes the articles that are mentioned under each of the following subjects: 

layout design, relationship between system configuration and performance, 

Reconfigurable Manufacturing System, effects of scrap and rework on the 

production system, and biopharmaceutical industry. 
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CHAPTER THREE 

METHODOLOGY: MODEL FOR TWO PROCESS PRODUCTION SYSTEM 

3.1 Abstract 

Davis and Kennedy (1987) used Markov models for a serial production 

system to assist in solving problems that related to production planning. Bowling 

et al. (2004) used the absorbing Markov chain to build a profit model for one, two, 

and n-stage serial production systems to determine the optimal process target at 

each stage. Pillai et al. (2008) also used the absorbing Markov chain to represent 

a serial production system, in order compute material requirements, number of 

machines, production cost, and manufacturing lead time. In this thesis, absorbing 

Markov chains are adopted to model four system configurations: serial, parallel, 

serial-parallel without crossover, and serial parallel with crossover, in order to 

develop models for cost of quality, productivity, and cycle time, that can be used in 

comparing the performance of the different configurations to find the preferred 

configuration. Chapters three, four, and five include develop the models for 

production systems with two, four, and n processes, respectively. 

This chapter focuses on a two process production system, where two 

different configurations are applied: the serial (where products go through two 

stages) and parallel (where products go through one stage) configurations. A 

Product is processed at any given stage and then moves to the next step if it 
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meets quality specifications, while it gets reworked or scrapped if it is defective. 

Three models for cost of quality, productivity, and cycle time are proposed to 

define the configurations that obtain the best output of each model. The results 

show that the different configurations have different values of quality cost, system 

productivity, and total cycle time. 

A brief description of the Markov Chain tool is discussed first, since it is 

used as a starting point to develop the three models for each configuration. After 

building the models, simple numerical examples are used to apply these models, 

and then sensitivity analysis is provided. 

3.2 Markov Chains 

When a product goes through multiple states in a production line, the 

probability that describes the product at any specific state is a function of that 

process or state. As the product proceeds in the line, the probability at each state 

becomes related to the prior process, i.e. the probability of state i depends on that 

of state i-1, while it is not related to the probability at any states prior to state i-1. 

This process is described to follow a Markov Chain process. The independence of 

probability at state i from all previous states (except i-1) makes the Markov chain 

method widely applicable in industry to predict the long term and steady state 

Probability distribution of any given state, since the probability at any state can be 
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defined by only the state that is immediately before, and it is independent of all 

prior states and any history of prior states. 

In a Markov Chain process, the transition probabilities are considered. A 

transition occurs when the system moves from one state to the next state during 

one period of time. A transition represents when the system changes its state from 

; to j at a probability of Pij· For example, in a production line, when a product 

moves from process 1 to process 2, then the transition probability is defined to be 

the probability of moving a product from process 1 to process 2, which can be 

referred to· as the acceptance probability between 1 and 2. There is a primary 

assumption related to Markov chains, which is the stationary assumption. It 

implies that the transition probability of any state i to another state j does not 

change over time and is always the same. A Markov Chain is usually represented 

as a matrix of transition probabilities between any two states. 

One of the widely used applications of a Markov Chain is the Absorbing 

chain which includes absorbing states in addition to the transient states. An 

absorbing state is a state when the system or product enters permanently without 

any chance to leave to any other state, i.e. the probability of leaving an absorbing 

state is zero, and the probability that a product or the system stays in the same 

absorbing state is 1. An example of an absorbing state could be the finished 

Product state, or scrap state. Absorbing Markov Chains are used to find the long 

term probabilities of states that the product of the system would eventually enter, 

like a finished product or scrap state. 
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3 
Two stage Serial System with Two Processes 

3. 

consider a two stage production line, where one process is in each stage. 

A product is processed at the first stage, and then needs to go through the second 

stage for another required processing step before it reaches the finished product 

status. This type of production can be referred to as a two stage production 

system with two processes. These two production stages do not necessarily have 

to be physically in series, as long as the product needs to go through process X1 

and then process X2 before it can be called a finished product. 

In a serial system raw material is released to enter the first production 

stage, stage 1, where process X1 will occur. Stage 1 processes the raw material 

and adds value by performing certain set of operations, which will add new 

features to the raw material. At the end of stage 1, a quality characteristic needs 

to meet specific requirements defined by the customer (internal or external 

customer); hence, each product needs to be inspected against the pre-defined 

requirements, or the customer specifications. When a product is inspected at 

stage 1, there will be three outcomes that are assigned to that particular product. 

- A product can proceed to the next stage (stage 2) if the quality 

characteristic at stage 1 falls within the acceptable range of the customer 

specifications. 

- A product can be reworked by re-entering stage 1 if the quality 

characteristic at stage 1 falls within the rework range in the customer 

specifications. Each reworked product will go through the same exact 
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operations at stage 1 and will be then subjected to the inspection station at 

stage 1. 

_ A product is scrapped and will never be processed at any other stage if the 

quality characteristic falls within the scrap range in the customer 

specification. 

Note that the rework and scrap ranges are not defined by the customer, but rather 

defined by the process capability, engineering assessment, nature of the product, 

ability to rework a product, etc... For example, consider a turning machine at 

stage 1, where the manufacturer cuts metallic shafts and produces to customer­

defined specifications of 1 O+/- 0.5 mm in diameter, i.e. the acceptable range is 9.5 

mm to 10.5 mm. If the shaft is produced at 9.3 mm, then it cannot be reworked, 

since the material has already been cut from the shaft, and it will be scrapped 

(material cannot be added to the shaft to bring the diameter up to the acceptable 

range). While if the shaft is produced at 10.7 mm, then it can be reworked by re­

processing at stage 1 to reduce the diameter to within the acceptable range (9.5 

mm-10.5 mm). 

A product that can be reworked will be sent back to the same stage, stage 

1, to be processed again, while a scrapped product will be sent to scrap bin and 

never leave that bin. However, a good part at stage 1, which is a product that has 

a quality characteristic that falls within the acceptable range of the customer 

specifications, will be sent to the next stage, stage 2. Hence, only good parts from 

stage 1 can be transferred to stage 2. 
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At stage 2, other set of operations are performed on the incoming products 

from stage 1, where operations will attach a new quality characteristic (different 

from the quality characteristic at stage 1 ). At stage 2, each product will be 

inspected against the customer specifications defined for the new quality 

characteristic at stage 2, and each product can go through one of the three 

options defined above (rework, scrap, or accept). When the item is accepted at 

stage 2 (and it is also accepted at stage 1 ), then the part is considered as finished 

product, and it can be sold to a customer as finished goods. 

Overall , we have two production stages, where each product is processed, 

and a unique quality characteristic is attached to the final product at each 

respective stage. There are two rework loops, the first rework loop takes items at 

stage 1 back to the same stage to re-process them until they are accepted or 

reworked. The second rework loop is defined at stage 2, where a rework-able item 

will be sent back to the same stage (stage 2) to be processed again. Similarly, 

there are two scrap states, where an item at stage 1 is sent to the scrap bin and 

will never leave if it is considered scrap-able, and also scrapped items at stage 2 

will leave the production system and will be sent to the scrap bin is the quality 

characteristic at stage 2 is within the scrap range. Finally, we have two 

acceptance states, where good items at stage 1 are sent to stage 2, and all 

acceptable items at stage 2 will be sent to the finished product state. 

The quality characteristic at each stage, stages 1 and 2 are unique and 

independent of each other; the acceptance of a product at stage 1 (implying the 
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quality characteristic is within the accepted range) does not affect the acceptance 

of a product at stage 2, nor does it influence the quality characteristic at stage 2. 

3.3.1 Model for Two Processes-Two Stages in Series 

Figure (3.1) shows a flow diagram for the two stage production system in series. 

RM 
State (1) State (2) 

State (3) 

Finished 
Product 

State (4) 

Fig. 3.1: Two processes production system in series 

In this model , process X1 (at stage 1) is considered as a transient state, state 1, 

whereas process X2 (at stage 2) is considered a transient state 2. A transient state 

is any state that the system or the product enters and eventually leaves to another 

state. States 3 and 4 are considered to be absorbing states, since any product 

that enters states 3 or 4 (scrap or finished product respectively) stays and never 

leaves. For example, consider a production line where two chemicals are mixed at 
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twO different stages. One chemical is added at each stage and the two production 

stages tor adding and mixing are considered to be transient states. When the 

product is finally mixed and meets all the specifications, it is sent to the finished 

product storage area and never returns to any other states. If the product fails to 

meet any of the specifications at either production stages, it will be scrapped (if it 

cannot be reworked), and sent to the scrap bin, where it stays and never leaves. 

In this example, the finished good storage, as well as the scrap bin are considered 

to be absorbing states, whereas all of the production processes are considered as 

transient states, since the part will eventually leave to another transient state 

(production process), or absorbing state (finished good or scrap). 

3.3.2 Building Absorbing Markov Chain Matrices 

In order to build an absorption chain matrix for any production system, we 

need to understand the material flow and the short term probabilities of moving 

from each state to the next. By collecting data about the considered quality 

characteristic at each production stage, we can understand the quality 

characteristic distributions of acceptance, rework, or scrap at each stage, and 

then the short term probabilities could be used to develop an absorbing Markov 

chain model. Using the states shown in figure 3.1, an absorbing Markov chain is 

built as shown in equation (3.1 ). First we start with the initial transition probability 

matrix (P): 
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Pii: is the probability that an item at state i will go to state j, where i = 1, 2, 3, and 4 

and j = 1, 2, 3, and 4. For example P12 is the short term probability that a part 

which starts at state 1 (process X1) will go to state 2 (process X2). 

Matrix Pis divided to four sub-matrices: 

I 

-I~iH-
• 

Where: 

Q: is the matrix that contains the probabilities of moving from one transient state 

to another transient state. 

R: is the matrix that contains the probabilities of moving from a transient state to 

an absorbing state. 

0: is the zero matrix. 

I: is the identity matrix. 

The absorbing Markov chain that includes the long terms probabilities of moving 

from transient to absorbing states equals: (I - ar1 R, such that: 
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Where: 

a11 : is the average number of times that an item from state i stay at state j. 

Hence, the long term absorbing Markov chain matrix becomes: 

1 
= 
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1 
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Where: 

.. · . the long term probability that an item from state i ends up in state j. 
b11· IS 

For example, b13 is the long term probability that a part from state 1 

(process X1) ends up at state 3 (scrap pin), and bz4 is the long term probability that 

a part from state 2 (process X2) ends up at state 4 (finished good storage). 

3.3.3 Resource Consumption Models 

In any production system it is important to improve the cost of quality, 

productivity, and cycle time to stay competitive. There are four categories of cost 

of quality as determined by Juran et. al ( 197 4 ): ( 1) internal failure costs, such as 

scrap and rework, (2) external failure costs, such as warranty charges, (3) 

appraisal costs, such as inspection and test, ( 4) prevention costs, such as quality 

planning. In this thesis, however, the cost of quality is considered to be a total of 

scrap and rework costs only. Scrapping a part means throwing away the 

unfinished product and losing all values that are added to that part such as raw 

material, labor hours, processing time, and overhead. Reworking a part means 

reprocessing that part again which consumes resources such as labor hours, 

Processing time, and overhead. Reworking a part means reprocess the part again 

and that consumes resources such as labor hours, processing time, and 

overhead. Productivity is considered as a ratio between the system output and 

input. It is preferred to have higher productivity, but there are many factors affect 
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t nd reduce the productivity such as the existence of the scrap and rework, 
tha a 

and hence not all the raw material (input) ends up as finished products (output). 

Cycle time is the total of the processing and reworking time from the point the part 

enters the system until it leaves as finished product. In this section three models 

are developed to identify the resource consumption per part. These resources 

could be quality cost defined by rework and scrap waste which will be translated 

into cost, material consumption measured by the productivity, and time 

consumption to produce one item measured by the cycle time. Equations (3.2) 

and (3.3) are used to develop the three models. 

3.3.3.1 Cost of Quality Model 

The cost of quality model is developed by recognizing that the expense of 

quality problems existing in the production system will be the sum of the total cost 

of reworking or scrapping an item. The quality cost is therefore: 

Quality Cost = Rework Cost + Scrap Cost 

(3.4) 

Where: 

QC: cost of quality per item 

Rei: the cost of reworking one item from stage (i) 
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f(RCi) = [Probability that an item enters stage (i)] x [Expected number of times an 

·s reworked at stage (i)] x [rework cost at stage (i) per item] 
1tem 1 

SCi: the cost of scrapping one item from stage (i) 

f(SCi) :: [Probability that item enters stage (i)] x [probability an item from stage (i) 

is scrapped] x [Scrap cost per item from stage (i)] 

Then: 

3.3.3.2 Productivity Model 

Productivity is the ratio of the output from the production system to the 

input. The output is the total products accepted as finished goods. The input is the 

total raw material which enters to the system. Hence: 

Productivity= (number of Finished Product) I (number of Raw Material) 
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= (N x probability an item is accepted at stage 1 and 2) I (N) 

= Probability an item is accepted at stage 1 and 2 

Where: 

N is number of Raw Material (RM) parts which enters the first stage. 

Therefore: 

Productivity = (probability of accepting item at stage 1) x 

(probability of accepting item at stage 2) 

3.3.3.3 Cycle Time Model 

(3.7) 

(3.8) 

Cycle time is defined as the total time required to process product at stage 

1, and then 2 so that it can be accepted as finished product. The cycle time is 

therefore: 

Total Cycle Time= CT1 + CT2 (3.9) 

Where: 

CTi: cycle time at stage i, which includes processing time and reworking time at 

that stage. 
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CTi = (processing time at stage i) + [(probability item is reworked at stage i) x 

(rework time per item at stage i)] 

Therefore: 

Total Cycle Time= (PI; +(a11 -IXRJ;))+(PT2 +(a22 -IXRTi)) (3.10) 

(3.11) 

Where: 

PT1: processing time at stage i 

RT1: reworking time at stage i 

3.3.4 Numerical Example (1) 

Assume that we have two processing stages with two processes, A and B, 

and their quality characteristics follow the normal distribution. Table 3.1 shows all 

required parameters. The resource consumption models (quality cost, productivity, 

cycle time) are calculated based on the parameters shown in table 3.1. 
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Table 3.1: Numerical example (1) data 

,..... Process A Process B 

~ean 8 22 

t-""stDev 1.1 2 

Upper limit 10 26 
,...Lower limit 6.5 19 
ptrewo~ above USL 0.035 0.023 

r-~acceJili. 0.879 0.910 
P(scra~, below LSL 0.086 0.067 
RC1$/item) 0.2 0.5 

sclSlitemI 1.2 2.2 
PT 1min/iteml 3 5 
RT lmin/iten1_1 1.5 2 
Number of entered RM 2000 

From equation (3.6): 

c=[( 1 -lJ(o.2)+(1_(0.os6X1-o.023)+(0.879Xo.o67)J( 1 -l)(o.s)]+ 
Q (1-o.03s) (1-o.03sX1 -0.023) 1-0.023 

(
(o.086X1 - 0.023 )+ (o.879 Xo.061)J(i.2 )+ 

(1- .03sX1-o.023) 

(1 _ (o.086X1 -0.023 )+ (0.819 Xo.061)J( 0.061 )(2.2) 
(1- .03sX1 -0.023) 1-0.023 

= $0.33 per item 

So, on average each product will cost $0.33 as cost of quality problems. 

From equation (3.8): 

Productivity= (l- (0.086Xl-0.023)+(0.879X0.067)J(l- 0.067 J = o.7903 
(1-o.03sX1 - 0.023) (1- 0.023) 
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the productivity for this production system is 79.03%. 
so, 

From equation (3.11 ): 

= 8.10 min per item 

That means that on average each item needs 8.10 minutes to be produced. 

3.4 One Stage Parallel System with Two Processes 

Consider a one stage production line consisting of two production 

processes in parallel, namely process X'1 and process X' 2, both manufacturing 

the same product. Process X' 1 manufactures a product by adding value to meet 

pre-defined specifications required by the customer (internal or external). An item 

is pulled from the raw material store and process X' 1 performs certain operations 

on the item, where an inspection is being done to measure and evaluate a specific 

quality characteristic, and then a decision is made on either accepting the part and 

sending it to finished goods store, scrapping the item, or reworking it. If the quality 

characteristic falls within the acceptable range of customer specifications, then the 

part is considered as a good item, and it is sent to the finished goods storage 

ready to be sold for the customer. On the other hand, if the part falls within the 

rework range, then the part will be sent back to the same process (process X'1) to 

be reworked, by performing more operations to bring the quality characteristic into 
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Ceptable range, and the item will be inspected again. A part is scrapped if 
the ac 

the quality characteristic falls in the scrap range, at which time an item is rejected, 

and sent to the scrap bin to never leave. Process X'2 manufactures the same 

product, and each item that is pulled from the raw material store goes through the 

same set of operations, and similar decisions will be made: accepting the part, 

reworking, or scrapping the part. 

Processes X'1 and X'2 run independently in parallel. Any item that is 

manufactured by process X' 1 will be reworked only on process X' 1, while any 

scrapped or accepted part will end up in the same scrap bin or finished goods 

storage. Rework loops are uniquely defined by each process; each process X' 1 

and process X'2 has a separate rework loop, and there is no crossover between 

processes at the rework loops (a reworked item at process X'1 can not be 

reworked at process X'2 , and vice versa). 

3.4.1 Model for Two Processes-One Stage in Parallel 

Figure 3.2 shows the flow diagram for a one stage system which consists 

of two processes: X' 1 and X' 2 . In this model, process X' 1 and X' 2 are considered 

to be transient states: (1) and (2) respectively. When the product enters any of 

them then it eventually leaves to another state. Scrap and finished product are 

absorbing states, (3) and (4) respectively, where any product which enters stays 

and never leaves. 
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RM 

RM 

State (1) 

State (2) 

Finished 
Product 

State (4) 

State (3) 

Fig. 3.2: Two processes production system in parallel 

Process X'1 and process X'2 perform the same tasks, where the assumption is 

that both processes X' 1 and x· 2 could perform the same processes that both 

processes X1 and X2 can perform in the serial configuration model. Returning 

back to the example of adding two chemicals (described in section 3.3.1) in a 

parallel configuration each process has the ability of adding and mixing the two 

chemicals. This could require the two machines at process x· 1 and X' 2 to be more 

flexible and probably more expensive than X1 and X2 in the serial configuration. In 

this example, there are no transitions which occur between X'1 and X'2. In other 

WOrds, P12 and P21 are equal to zero. The transition only occurs from X'1 or X'2 to 

either scrap or finished good storage which are the absorbing states. 
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4 2 
Building Absorbing Markov Chain Matrices 

3 . . 

Referring to figure 3.2, the initial transition probability matrix (P) is: 

1 2 ! 3 4 
I 

I 

1 Pi1 0 i Pi3 Pi4 
I 

2 0 P22 ! P23 P 24 

P= j -o·-·-·a·- -:--1 ·-·-·0-·-
4 0 0 0 1 

(3.12) 

As previously mentioned, the P matrix contains four sub-matrices: Q, R, 0, and I 

I 

-l~iH 
I 

To find the long term probabilities we need to find (1-ar1 R: 

(I - Q) = [1 -Pi I 0 l 
0 l-P22 

1 2 

0 

1 

l-P22 
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Where: 

.. · . average number of times that an item from state i stays at state j. 
811· '

5 

1 

B=(I-Qt1 R = 
2 

Where: 

3 

0 

1 

Pi3 
(l-Pi1) 

P23 
1-P22 

4 

Pi4 
(1- Pi I) 

P24 
1-P22 

bii: is the long term probability item from state i ends up in state j. 

3.4.3 Resource Consumption Models 

(3.14) 

Equations (3.13) and (3.14) are used to build the models for cost of quality, 

productivity, and cycle time for the parallel configuration system. 

3.4.3.1 Cost of Quality Model 

Using the same procedure that is used in developing equation (3.6), quality cost 

for the parallel configuration system is: 
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l·ty cost == Rework Cost + Scrap Cost 
aua1 

Where; 

QC: cost of quality per item. 

RCi: the cost of reworking one item from process (X' i). 

sc
1
: the cost of scrapping one item from process (X' i). 

Ni: total number of raw material parts that enter process (X'i). 

Therefore: 

3.4.3.2 Productivity Model 

(3.16) 

(3.17) 

Productivity is the percentage of the production system total output to the 

Production system total input. The output is the total products accepted as finished 
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d 
from both process X' 1 and process X' 2. The input is the total raw material 

goo s 

which enters to both processes. Hence: 

productivity = [(N1 x probability an item from process x· 1 is accepted) + 

(N2 x probability an item from process X'2 is accepted)] I (N1 + N2) 

Therefore: 

(3.18) 

(3.19) 

3.4.3.3 Cycle Time Model 

The expected cycle time for the two process production system that is shown in 

figure 3.2 is: 

Cycle Time= [(N1)(CT1) +(N2)(CT2)] I (N1 + N2) 

Cycle Time = [N1 ((PTi) + (a1 i -1 XRTi ))] + [N2 ((PT2) + (a 22 -1 XRT2 ))] 
(N1 +N2) 

~ N,((n; )+( ~ -l)RT, l)+ N,((n,}+(i _1P,, -1)Rr,)) 
(N1 +N2) 
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Where: 

T
. ycle time at state i, which includes processing time and reworking time at 

C I· C 

process X' i · 

PTi: processing time at process X' i 

RTi: reworking time at process X' 1 

3.4.4 Numerical Example (2) 

Considering the same example of adding and mixing two chemicals, the 

assumptions are: 

1- A' and B' have the same mean, standard deviation, specification limits, 

processing and rework times, and rework and scrap costs. 

2- The considered quality characteristic at A' and B' is the same as in process 

B in the serial configuration system (the specification limits equal to that for 

process B). 

3- The considered quality characteristic at A' or B' has the same mean and 

standard deviation for process B only. 

4- The process time at each of processes A' and B' equals the summation of 

process times at processes A and B in the serial configuration system. 
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5
• The rework time at each of processes A' and 8' equals the summation of 

rework times at processes A and B. 

6
• The rework cost at each of processes A' and 8' equals the summation of 

rework costs at processes A and B. 

1. The scrap cost at each of processes A' and 8' equals the summation of 

scrap costs at processes A and B. 

Based on the above assumptions, the parameters required for calculating quality 

cost, productivity, and cycle time for the parallel production system are 

summarized in table 3.2. 

Table 3.2: Numerical example (2) data 

Process A' Process B' 
Mean 

. 22 22 
StDev 

. 2 2 . 

U_p_p_er limit 26 26 
Lower limit 19 19 
P(rework1 above USL 0.023 0.023 
P1acce.lill_ 0.91 0.910 
Piscra~ below LSL _: 0.067 0.067 
RC' ($/itemI 0.7 0.7 
sc· IS/item_[ 3.4 3.4 
Pr (min/item) 8 8 
Rr]"min/item) 3.5 3.5 
Number of entered RM 1000 1000 

Using equations (3.17), (3.19), and (3.22), the cost of quality, productivity, and 

expected cycle time can be found: 

QC = $0.25 per item 
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productivity= 93.16 % 

cycle time = 8.13 minutes per item 

3.5 sensitivity Analysis 

In this section assumptions and values from example (1) and (2) are used 

for building sensitivity analysis for the three models to find the effect of main 

factors on each model and to compare the serial and parallel system 

configurations. 

3.5.1 Sensitivity Analysis for Cost of Quality Model 

This model has four main factors: RC1, RC2, SC1, and SC2. The cost of quality is 

plotted versus each one of these factors (one at a time). In each plot the 

considered factor has different values while the other factors stay constant. 

Figure (3.3) shows the effect of RC1 on the cost of quality while RC2= 0.5, 

SC1= 1.2, and SC2= 2.2 stay constant. The plot indicates that for both serial and 

parallel configurations, quality cost increases as RC1 increases. It also shows that 

the parallel configuration always has lower quality cost than the serial 

configuration. Figure (3.4) shows the effect of RC2 on the cost of quality while 

RC1= 0.2, SC1= 1.2, and SC2= 2.2 stay constant. It indicates that by increasing 
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the RC
2 

the quality cost increases for both configurations. For all values of RC2, 

the parallel configuration gives lower quality cost than the serial. 

Effect of RC1 

0.45 
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0.45 

0.·1 
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Fig. 3.3: Effect of RC1 on quality cost 

Effect of RC2 
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Fig. 3.4: Effect of RC2 on quality cost 
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. (3 5) shows the effect of SC1 on the cost of quality while RC1= 0.2, RC2= 
Figure · 

5 
and sc2= 2.2 stay constant. It indicates that the quality cost for both o. , 

configurations increases as SC1 increases. It also shows that when SC1 is less 

than $0.264 the serial configuration has lower quality cost than the parallel. On the 

other hand when the SC1 is more than $0.264 the parallel configuration has the 

lower quality cost. 

Effect or SC1 

0.6 1 

0.5 J_l __________________ ~ll'C'-

e ! 0.4 
~ 

f 0.3 l 
i o.2 ~L----~~:;;.--- -
u 

I 
0.1 I 

0 l 
0 0.5 1 1.5 2 

Fig. 3.5: Effect of SC1 on quality cost 

2.5 

-+-Serial 

- Parallel 

Figure (3.6) shows the effect of SC2 on the cost of quality while RC1= 0.2, RC2= 

0.5, and SC1= 1.2 stay constant. It indicates that quality cost increases with 

increasing SC2, and there is also a breakeven point. Below SC2 = $9.8, the 

parallel configuration has the lower value, while above this point the serial 

configuration has the lower value. 
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Fig. 3.6: Effect of SC2 on quality cost 

3.5.2 Sensitivity Analysis for Productivity Model 

This model has two main factors: mean and standard deviation of the 

considered quality characteristics. The productivity is plotted versus these two 

factors (one at a time). In each plot, the considered factor has different values 

while the other factors stay constant. Figure (3. 7) shows the effect of mean1 on 

system productivity while mean2= 22, StDev1= 1.1, and StDev2= 2 stay constant. It 

indicates that the system productivity of the parallel configuration almost stays 

constant as mean1 increases. For the serial configuration, the system productivity 

increases and then become constant. This figure shows that the parallel 

configuration has higher productivity than the serial. 
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Effect of Mean1 
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Fig. 3. 7: Effect of mean1 on productivity 
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Fig. 3.8: Effect of mean2 on productivity 
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. e (3 8) shows the effect of mean2 on system productivity while mean1= 8, 
F1gur · 

stoev1::: 1.1, and StDev2= 2 stay constant. It indicates that for both serial and 

parallel configurations, system productivity increases as mean 2 increases. It also 

shows that the parallel configuration has higher productivity than the serial for all 

values of mean 2. 

Figure (3.9) shows the effect of StDev1 on system productivity while 

mean1== 8, mean2= 22, and StDev2= 2 stay constant. It indicates that the 

productivity of the parallel configuration is almost constant for all values of 

Standard Deviation1 (StDev1). On the other hand, for the serial configuration , the 

system productivity decreases as StDev1 decreases. The productivity for the 

parallel configuration is higher than that for the serial. 

Effect of StDev1 
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Fig. 3.9: Effect of StDev1 on productivity 
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. (3 10) shows the effect of StDev2 on system productivity while mean1= 8, 
Figure · 

_ 22 and StDev1= 1.1 stay constant. It indicates that the productivity of 
rnean2- · 

bOth the parallel and serial configurations decreases as StDev2 increases, but the 

parallel configuration has higher productivity than the serial. 
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Fig. 3.10: Effect of StDev2 on productivity 

3.5.3 Sensitivity Analysis for Cycle Time Model 

This model has four main factors: PT 1, PT 2, RT 1, and RT 2. As for cost of 

quality and productivity, the cycle time is plotted versus each one of these factors. 

For each plot the considered factor has different values while the other factors 

stay constant. 
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Figure (3.11) shows the effect of PT1 on total cycle time while PT2= 5, RT1= 

5 
nd RT2= 2 stay constant. It indicates that by increasing the PT1 the cycle 

1. , a 

time increases for both configurations. For all values of PT1, the serial 

configuration gives slightly lower cycle time than the parallel (due to the very small 

difference, this not clearly shown in the graph). 

Effect of PT 1 
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Fig. 3.11 : Effect of PT1 on cycle time 

Figure (3.12) shows the effect of PT2 on the total cycle time while PT1= 3, RT1= 

1.5, and RT 2= 2 stay constant. It indicates that for both configurations, cycle time 

increases as PT 2 increases, and for all values of PT 2, the serial configuration gives 

slightly lower cycle time than the parallel (due to the very small difference, this not 

clearly shown in the graph). 
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Fig. 3.12: Effect of PT2 on cycle time 
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Fig. 3.13: Effect of RT1 on cycle time 

Figure (3.13) shows the effect of RT1 on total cycle time while PT1= 3, PT2= 5, and 

RT2= 2 stay constant. It indicates that by increasing the RT1 the cycle time 
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ases for both the serial and parallel configurations. The graph shows that 
inc re 

there is a breakeven point, RT1 = 3. Below this point the serial configuration has 

the lower value of cycle time, while above this point the parallel configuration has 

the lower value. 

Figure (3.14) shows the effect of RT2 on cycle time while PT1= 3, PT2= 5, 

and RT1= 1.5 stay constant. It indicates that the cycle time for both the serial and 

parallel configurations increases as RT 2 increases. The graph shows that there is 

a breakeven point, RT2 = 5. Below this point the serial configuration has the lower 

value of cycle time, while above this point the parallel configuration has the lower 

value. 
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Fig. 3.14: Effect of RT2 on cycle time 
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4 summary for the Sensitivity Analysis Results: 
3.5. 

At first it should be asserted that the result shown in figure 3.3 to figure 

3
.14 are based on the data from examples 1 and 2 (in sections 3.3.4 and 3.4.3 

respectively). Different examples or cases could give different results. 

In terms of quality cost, figures 3.3 - 3.6 show that within the specified 

range of each factor, parallel configuration performs better than the serial at 

different rework cost, while at different scrap cost the parallel or serial 

configuration could perform better. In terms of productivity, all of the figures 3. 7 -

3.10 show that system productivity for parallel configuration is higher than that for 

the serial (within the specified range of each factor). In terms of total cycle time, 

figures 3.11 - 3.14 show that at different processing time both configurations 

perform almost the same since there is slight difference, while at lower rework 

time the serial configuration performs better, however at higher rework time the 

parallel configuration performs better (within the specified range of each factor). 
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CHAPTER FOUR 

METHODOLOGY: MODEL FOR FOUR PROCESS PRODUCTION SYSTEM 

4.1 Abstract 

In this chapter, four processes are considered in serial, parallel, and mixed 

serial-parallel configurations. Three resource consumption models are evaluated 

for each configuration to select the one that results in a better objective. Similar to 

previous analysis, a Markov chain is used to build the resource consumption 

models (cost of quality, productivity, and total cycle time), which represent the 

long term probabilities of good, rework, and scrap parts at each process. 

Four machines can be arranged in different patterns giving different 

configurations. As shown in figure 4.1, four machines c9uld be arranged one after 

each other obtaining a pure serial configuration; all of them could be arranged in 

pure parallel, or two serial machines could be parallel to another two serial 

machines. The mixed parallel and serial configuration may or may not allow 

crossover between production system stages. Each configuration is studied and 

modeled, and resource consumption models are developed, in order to analyze 

the performance of each configuration in terms of the output of each model. 

Simple numerical examples are used to apply these models. 
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Ml 
(a) Pure serial configuration 

(b) Pure parallel configuration 

~ 
( c) Serial-parallel configuration 
(without crossover) 

(d) Serial-parallel configuration 
(with crossover) 

Fig. 4.1 Four different configurations of production system with four machines 

4.2 Notation 

In this chapter, notations similar to that in chapter three are used. All 

notations that are used in chapter four's sections are listed below. 

• Pii: the probability that an item at state i will go to state j. 

• 0: matrix that contains the probabilities of moving from one transient state to 

another transient state. 

• R: matrix that contains the probabilities of moving from a transient state to an 

absorbing state. 

• 0: zero matrix. 

• I: identity matrix. 
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. (I Q)-1 matrix, where: eA: IS -

.·average number of times that an item from state i stays at state j. 
a11· 

• B: (I -Qt1 R matrix, where: 

bii: long term probability item from state i ends up in state j. 

•Xi: process i in the production system. 

•QC: quality cost per item. 

• RC1: rework cost per item from process (X1) . 

• f(RC1): function of RC at process (Xi), where: 

f(RC1) = [Probability that an item enters process (Xi)] x [Expected number of 

times an item is reworked at process (X1)] x (RC1). 

• SC1: scrap cost per item from process (X1). 

• f(SC1): function of SC at process (X1), where: 

f(SC1) = [Probability that item enters process (X1)] x [probability an item from 

process (X1) is scrapped] x (SC1). 

• N1: total number of raw material parts that enter process (X1). 

• CT1: cycle time at process (Xi), which includes processing time and reworking 

time, where: 
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CTi ::: (processing time at process (Xi)) + [(probability an item is reworked at 

process (Xi)} x (rework time per item at process (Xi))] 

• PTi: processing time per item at process (Xi). 

• RTi: reworking time per item at process (Xi). 

W . . the percentage of accepted parts from process x "i that go to process x"i· 
• lj· 

4.3 four Stage Serial System with Four Processes 

Consider four processes in series, where raw material enters the first 

process and a product is processed and it moves to the second process and so 

on. At each process, value is added to the product by performing certain 

operations. Typically, a product quality characteristic is inspected at each 

respective process, and compared with pre-defined specifications. When the 

quality characteristic falls within the acceptable range, the product is accepted at 

the respective process and then transferred to the next process, and when the 

part finishes process four, it is then moved to the finished goods storage. On the 

other hand, when the product falls outside the acceptable range, it could be either 

reworked or scrapped, depending on the value of the quality characteristic. If a 

Product falls in the rework range at any given process, the product is re-entered 

into the process to be reprocessed and re-inspected against the same 

specification limits. A scrapped part is a part the falls in the scrap range of the 

8pecifications, and it could not be reworked, and hence will be discarded from the 
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d t·ion line. Figure 4.2 shows a flow diagram of four processes in a serial pro uc 

configuration. 

RM 

State (5) 
State (6) 

Fig. 4.2: Four process production system in series 

Processes one through four represent the transition states (1 ), (2), (3), and (4) 

respectively in the Markov chain, where the scrap is considered as an absorption 

state (5) and the finished product as an absorption state (6). Probabilities of 

transferring between states are used as the inputs for the transition probability 

matrix P. 

4.3.1 Building Absorbing Markov Chain Matrices 

The transition probability matrix is: 
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1 2 3 4 5 6 

1 Pit Pi2 0 0 Pis 0 

2 0 P22 P23 0 P2s 0 

3 0 0 ~3 ~4 ~5 0 

P= 0 P 44 ~5 p46 
(4.1) 

4 0 0 
- ·-·- ·- · - ·- ·- - ·- - - ·- ·- ·- ·- ·- -. --. -. 

0 0 0 0 I 1 0 5 
0 0 

I 
0 6 0 0 I 

By subtracting the Q matrix from the 4x4 identity matrix, the I - Q matrix becomes: 

I-Pi t - Pi2 0 0 

(I-Q)= 
0 l-P22 - P23 0 

0 0 1-~3 -~4 
0 0 0 l-P44 

And hence: 

A=(I-Qt1 = 

1 2 3 4 

1 Pi2 Pi2Pi3 Pi 2 Pi3~4 
1 {t-Pit) {t-Pi2X1-P44 ) (t-PitXt-Pi2 X1 - ~J (t - Pi t Xt-Pi2 X1 - ~3 X1-P44 ) 

2 0 
(1-Pi2 X1-~3 X1- ~4 ) 

3 1 ~4 0 0 

4 
0 0 0 

(4.2) 

Then: 
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5 6 

J:SCl - PiJ(l - ~3)(1-~4) +Pi i?i5(1-~3)(1- ~4) +Pi i?i~5(1-~4) +Pi i?i~~s Pi i?i~~6 
1 - (1- Pi 1)(1- Pi2)(1-~3)(1-~4) (1- Pi 1)(1 - PiJ(l - ~3)(1- ~4) 

2 

3 

4 

Pi5(1-~3)(1-P44) +P2~5(1-~4) + Pi~~5 

(1- PiJ(l - ~3)(1-~4) 

~5(1- ~4) + ~~5 

(1 - ~3)(1-~4) 

4.3.2 Resource Consumption Models 

(4.3) 

Equations (4.2) and (4.3) are used to build the models for cost of quality, 

productivity, and cycle time for the four stage serial configuration system. 

4.3.2.1 Cost of Quality Model 

Since there are four processes in the considered production system, the 

expected scrap and rework could exist at any of these processes, and hence the 

cost of quality model is: 

Quality Cost = Rework Cost + Scrap Cost 
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Where: 

f(RCJ== (a11 -l)RC1 (4.5) 

/(RC2)==(1-b15Xa22 -l)RC2 (4.6) 

J(RC3) == (l -b15 X1 - h25 Xa33 -1 )RC3 (4.7) 

J(RC
4

) == (1-b, 5 X1 -b25 X1-b35 Xa44 -1 )RC4 (4.8) 

J(SC, )= b15 SC1 
(4.9) 

/(SC2 )= (1-b,5 ')b25 SC2 (4.10) 

J(SC3 )= (1-b,5 X1 -b25 ')b35 SC3 (4.11) 

J(SC4 )= (1- b15 Xt - h2s Xt - b3s )b45SC4 (4.12) 

4.3.2.2 Productivity Model 

The productivity of a system of four processes in series is simply the 

multiplication of the probabilities of acceptance at each state. 

Productivity = 

[(probability of accepting item at X1) x (probability of accepting item at X2) x 

(Probability of accepting item at X3) x (probability of accepting item at Xi)] 

Productivity= (1 b X1 b X1 b X b ) - 15 - 25 - 35 1 - 45 (4.13) 
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4.3.2.3 Cycle Time Model 

The cycle time is the total time of processing and reworking at each 

process, and then: 

Total Cycle Time= CT1 + CT2 + CT3 + CT4 

Therefore: 

Cl; =PT; +(a11 -l)RT; 

CT3 = PT3 + (a33 -1)RT3 

CT4 = PT4 + (a 44 -1)RT4 

4.3.3 Numerical Example (1) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

Assume there is a production system with four serial machining processes 

(A, B, C, and D). Each process adds a new feature to the product. The mean, 

standard deviation, and the specification limits of the key quality characteristic at 

each process are summarized in table 4.1, where they are used to calculate the 

Probability of accepting, scrapping, and reworking parts at each process. The 

table also includes rework costs, scrap costs, processing times, and rework times 

at each process. 
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The assumptions are: 

_ The quality characteristics of all processes follow the normal distribution. 

_ A part is considered to be acceptable if it falls within the specification limits, 

scrap if it falls below the lower specification limit and rework if it falls above 

the upper specification limit. 

_ The sequence of the processes is: A, B, C, and then D. 

Table 4.1 Numerical example (1) 
Process Process Process Process 

I: A B c D 
lean 5 7 9 12 
5tl)ev j 0.4 0.4 0.4 0.8 

~limit ..2. 6.2 8 10.5 13.6 
r limit 4 6.2 8.4 10.6 

l!P(rewor~ above USL 0.0013 0.0062 0.0001 0.0228 
M acce_.lill_ 0.9924 0.9710 0.9331 0.9372 

f!{_scra_ID_, below LSL 0.0062 0.0228 0.0668 0.0401 
B_CJ$/itemI 1 1.5 1.5 2 
SC1$/iteml 2 3.2 3.7 4 

r·PTimin/item) 3 4 4 5 
~RT 1min/item} 2 3 3 3.5 
Number of entered RM 10000 --- --- ---

The P, A, and B matrices are: 
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1 

I 0.0013 

2 0 

3 0 
P= 4 0 

5 0 

6 0 

1 

l l.0014 

2 0 
A= 

3 0 

4 0 

5 

I 0.1310 

2 0.1256 
B= 

3 0.1051 

4 0.0410 

2 3 

0.9924 0 

0.0062 0.9710 

0 0.0001 

0 0 

0 0 

0 0 

2 3 

0.9999 0.9711 

1.0062 0.9772 

0 1.0001 

0 

6 

0.8690 

0.8744 

0.8949 

0.9590 

0 

4 5 6 

0 0.0062 0 

0 0.0228 0 

0.9331 0.0668 0 

0.0228 0.0401 0.9372 

0 1 0 

0 0 1 

4 

0.9272 

0.9331 

0.9549 

1.0233 

By applying the models from section 4.3.2, cost of quality, productivity, and 

cycle time can be found. For the cost of quality model, rework costs and scrap 

costs are found by applying equations 4.5 through 4.8 and 4.9 through 4.12, 

respectively: 

f(RC1) = 0.0014 , f(RC2) = 0.0081 , f(RC3) = 0.0001, f(RC4) = 0.0317 

f(SC1) = 0.2620, f(SC2) = 0.3491, f(SC3) = 0.2954, f(SC4) = 0.1115 
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Then: 

QC= $1.06 per part (by applying equation 4.4) 

BY applying equation (4.13): 

productivity = 0.6522 = 65.22%. 

By applying equations (4.15 through 4.18): 

CT1 =3.0027, CT2 = 4.0187, CT3 = 4.0003, CT4 = 5.0815. 

Then: 

The total cycle time = 16.1 O minutes per part (by applying equation 4.14 ). 

4.4 One Stage Parallel System with Four Processes 

Consider four processes in parallel, where raw material enters each 

process which is capable of performing all required operations to produce a 

finished product. Parts from each process could be finished product if they meet 

the predetermined specifications, or can be reworked or scrapped if they do not 

meet specifications. Figure 4.3 shows a flow diagram of a configuration with four 

processes in parallel. As in the serial configuration the production processes are 

considered as transition states ((1 ), (2), (3), and (4)), where the scrap and finished 

Product are considered as the absorption states (5) and (6) respectively. 
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RM 
/> 

N1 

RM 

Nz 

RM 
~ 

....... 

N3 

RM 
/> 

N4 

_:f 
X' 1 

State (1) 

_:f 
X'2 

State (2) 

_i_ 

X'3 

State (3) 

_i_ 

X'4 

State (4) 

l 

l 

l 

l 

...... 

.... 

Finished 
Product 

State (6) 

Fig. 4.3: Four processes production system in parallel 

4.4.1 Building Absorbing Markov Chain Matrices 

The transition probability matrix P is: 

1 2 3 6 
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The (/ _ Q) matrix becomes: 

1-P., 0 0 0 

0 l-Pi2 0 0 
(1-Q)== 0 0 1-~3 0 

O 0 0 l -P44 

And hence: 

1 2 3 4 

1 
0 0 0 1 

(1-P.,) 

0 
1 

0 0 2 (1-P22 ) 
A=(I-Qt' = 

0 
1 

0 3 0 
(1-~J 

(4.20) 

0 0 
1 

4 0 
(l -P44) 

Then: 

5 6 

Pis P.6 

1 
(1-P.,) (1-P.,) 

P2s Pi6 
2 (1- Pi2) (l-P22 ) 

B=(l-Qt'R= (4.21) 
~5 ~6 

3 (1- ~3) (1-~J 

4 P4s p46 
(l-P44 ) (l-P44) 

4.4.2 Resource Consumption Models 

Equations (4.20) and (4.21) are used to build the resource consumption 

models for the parallel configuration system with four processes. 
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4
.4.2.1 cost of Quality Model 

Each of the four processes contributes to the total quality cost per item 

which is the summation of the rework and scrap cost for all processes. 

Where: 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

/(SC3)= N3b3sSC3 
(N1 +N2 +N3 +N4) 

(4.29) 

/(SC4)= N4b4sSC4 
(N1 +N2 +N3 +N4) 

(4.30) 
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4
.4.2.2 productivity Model 

The productivity of the production system that consists of four processes in 

parallel is the expected number of finished products divided by the total number of 

raw material parts that enter the system. Based on that: 

productivity = [(N1 x probability an item from process X' 1 is accepted) + 

(N2 x probability an item from process X' 2 is accepted) + 

(N3 x probability an item from process X'3 is accepted)+ 

(N4 x probability an item from process X ' 4 is accepted)] I 

Therefore: 

(4.31) 

4.4.2.3 Cycle Time Model 

The cycle time is the summation of processing and reworking times at each 

of the four processes weighted to account for the proportion of raw material in 

each process path, therefore: 

Expected Cycle Time= N,CI'., + N zCTz + N3CT3 + N 4CT4 
N, +N2 +N3 +N4 
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Where: 

(4.33) 

4.4.3 Numerical Example (2) 

Assume there is a production system with four parallel machining 

processes (A', B' , C', and D'). Each process can perform all production 

operations that are required to produce a finished product. Table 4.2 includes all 

required data, where the assumptions are: 

- The quality characteristics of all processes follow the normal distribution. 

- The considered quality characteristics at A', B' , c·, and D' are the same as 

process D in the serial configuration system in example 1 and the 

specification limits are equal to those for process D. 

- A part is considered to be acceptable if it falls within the specification limits, 

scrap if it falls below the lower specification limit and rework if it falls above 

the upper specification limit. 

- A·, s·, c·, and o· each has the same mean, standard deviation, 

specification limits, processing and rework times, and rework and scrap 

costs. 

- The process time at each of the processes A', s·, C', and D' equals the 

summation of process times at processes A, B, C, and Din example 1. 
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_ The rework time at each of the processes A', B', c·, and D' equals the 

summation of rework times at processes A, B, C, and D in example 1. 

_ The rework cost at each of the processes A', B', C', and D' equals the 

summation of rework costs at processes A, B, C, and D in example 1. 

_ The scrap cost at each of the processes A', B', c·, and D' equals the 

summation of scrap costs at processes A, B, C, and D in example 1. 

Table 4.2 Numerical example (2) 

r Process Process Process Process 
A' e· c· o· 

Mean 12 12 12 12 
StDev 0.8 0.8 0.8 0.8 

bU~rlimit 13.6 13.6 13.6 13.6 
~er limit 10.6 10.6 10.6 10.6 
l!{_rewor~ above USL 0.0228 0.0228 0.0228 0.0228 
!facce~n 0.9372 0.9372 0.9372 0.9372 
~cra:eL below LSL 0.0401 0.0401 0.0401 0.0401 

11.Cl$/ltem1 6 6 6 6 
t§C1$/iteml 12.9 12.9 12.9 12.9 
rPTimin/item) 16 16 16 16 
ffi.T 1min/itemI 11.5 11.5 11 .5 11.5 
!!Number of entered RM 2500 2500 2500 2500 

The P, A, and 8 matrices are: 

1 2 3 4 5 6 

I 0.0228 0 0 0 0.0401 0.9372 
2 0 0.0228 0 0 0.0401 0.9372 

P= 
3 0 0 0.0228 0 0.0401 0.9372 
4 0 0 0 0.0228 0.0401 0.9372 
5 0 0 0 0 1 0 
6 0 0 0 0 0 
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1 2 3 4 

I I.0233 0 0 0 

2 0 1.0233 0 0 

A== 
3 0 0 1.0233 0 

4 0 0 0 1.0233 

5 6 

I 0.0410 0.9590 

2 0.0410 0.9590 
B== 

3 0.0410 0.9590 

4 0.0410 0.9590 

The cost of quality, productivity, and cycle time can be found using the 

models from section 4.4.2. For the cost of quality model, rework costs and scrap 

costs are found by applying equations 4.23 through 4.30: 

Then: 

QC= $0.67 per part (by applying equation 4.22). 

By applying equation (4.31 ): Productivity= 0.9590 = 95.90%. 

The expected cycle time = 16.27 minutes per part (by applying equation 4.32). 
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4
.
5 

Two Stage Serial-Parallel System with Four Processes (without 

crossover) 

consider two parallel lines with two serial processes each, where raw 

material parts enter the first process of each line and then are processed and 

moved to the second process if they meet the quality specifications. If they do not 

meet specifications, they are scrapped or reworked. Parts from the first stage can 

only go to the next process in the same line and can not crossover to the second 

line. Figure 4.4 shows a flow diagram of the two parallel lines that consist of two 

serial processes each. Processes X\ X"2, X\, and X\ are considered as 

transition states ((1 ), (2), (3), and (4)), where the scrap and finished product are 

considered as the absorption states (5) and (6) respectively. 

RM 
State (1) State (3) 

c::=::=R=M~ State ( 2) State (4) 

Finished 
Product 

State (6) 

Fig. 4.4: Serial-parallel configuration without crossover 
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4
.s.1 Building Absorbing Markov Chain Matrices 

The transition probability matrix P is: 

1 2 3 

} Pi I Q Pi3 
2 0 P22 0 

4 I 5 
I 
I 

0 ~Pi s 
I 

P24 jP2s 

6 

0 

0 

3 0 0 ~3 0 ! ~5 ~6 
P= I 

4 0 0 0 P 44 iP.is P.i6 
--5 -'6 ·-·- ·0 ·-· -·0· -· -· -0-·-re-· -·0· - -·-

60 0 0 0 iO 1 
I 

The / - Q matrix is: 

l-Pi1 0 -Pi3 0 

(1-Q)= 
0 l-P22 0 -P24 

0 0 1-~3 0 

0 0 0 l-P44 

And hence: 

1 2 

1 
3 

Pi3 1 
(1-Pi1) 

0 
(t-Pi1X1-~3 ) 

2 0 
1 

A=(I-Qti = (1-P2i} 
0 

3 0 0 
1 

(t-~J 

4 0 0 0 

98 

(4.34) 

4 

0 

f>i4 
(1 - P22 Xt - P.i4) (4.35) 

0 

1 
(1-P44 ) 



5 6 

Pis (1-~3 )+ Pi 3~5 
P,,P,, I 

1 
(1- Pi I X1 - ~3 ) (1 - Pi iX1 - ~3 ) 

P2s (1- P44 ) + P24 P4s f>i4P46 

2 (1-P22 Xl-P44 ) (l-P22 X1-P4J 

B==(1-Qt1R= (4.36) 
~5 ~6 

3 (1- ~3 ) (1- ~3 ) 

4 ~5 p46 
(1-~4 ) (l-P44 ) 

4.5.2 Resource Consumption Models 

Equations (4.35) and (4.36) are used to build the resource consumption 

models for a serial-parallel production system with four processes when there is 

no crossover. 

4.5.2.1 Cost of Quality Model 

Each of the four processes at stages one and two contributes to the total 

quality cost per part: 

Where: 

/(Rc1)== N1(a11 -l)RCI 
(Ni +N2) 

(4.38) 
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J(RC2 )== 
N2(a22 -l)RC2 (4.39) 

(N, +N2) 

J(RCJ== 
N, (1- b,5 Xa33 -1 )RC3 (4.40) 

(N, +N2) 

J(RC4)== 
N2 (1- b25 Xa 44 -1 )RC4 ( 4.41) 

(N, +N2) 

) N,b, 5 SC, 
I (sc' == (N' + N 2 ) 

(4.42) 

( )- Nzb25SC2 
I SC2 - (N, + N2) 

(4.43) 

J(SC3 )= 
N1 (l -b.15 )b35 SC3 (4.44) 

(N, +N2) 

J(SC4)= Ni (l-b25 )b45 SC4 
(4.45) 

(N, +N2) 

4.5.2.2 Productivity Model 

The productivity is the ratio between the finished products delivered from 

processes X\ and X"4 and the total raw material parts that enter the two parallel 

lines, therefore: 
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productivity= [(N1 x probability an item is accepted at x"1 and X"3) + 

(N2 x probability an item is accepted at X"2 and X"4)] I (N1 + Nz) 

Then: 

(4.46) 

4.5.2.3 Cycle Time Model 

For the parallel configuration without crossover, the expected cycle time 

becomes: 

(4.47) 

Where: 

(4.48) 

4.5.3 Numerical Example (3) 

Assume that there is a production system with four machining processes 

(A", B", C", and D\ Processes A" and c" are parallel to processes s" and o". 

Each pair of processes can perform all production operations that are required to 
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produce a finished product. Table 4.3 includes all required data, where the 

assumptions are: 

_ The quality characteristics of all processes follow the normal distribution. 

_ The considered quality characteristics at A" and 8
11 

are the same as in 

process B in the serial configuration system in example 1 (the specification 

limits are equal to those for process B). On the other hand, the considered 

quality characteristics at c" and o", are the same as in process D in 

example 1. 

- A part is considered to be acceptable if it falls within the specification limits, 

scrap if it falls below the lower specification limit and rework if it falls above 

the upper specification limit. 

- Processes A
11 

and 8
11 

have the same mean, standard deviation, 

specification limits, processing and rework times, and rework and scrap 

costs. The process time, rework time, rework cost, and scrap cost for each 

process equals, respectively, the summation of process time, rework time, 

rework cost, and scrap cost of that for processes A and B in example 1. 

- Processes c" and o" have the same mean, standard deviation, 

specification limits, processing and rework times, and rework and scrap 

costs. The process time, rework time, rework cost, and scrap cost for each 

process equals, respectively, the summation of process time, rework time, 

rework cost, and scrap cost of that for processes C and D in example 1 . 
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Table 4.3 Numerical example (3) 

,- Process Process Process Process 
. A" e" c" o" 

~ean 7 7 12 12 

~tDev 0.4 0.4 0.8 0.8 
W- - ... r limit 8 8 13.6 13.6 
!'~''"". • •t 6.2 6.2 10.6 10.6 Lower llm• 
rii{reworltl, above USL 0.0062 0.0062 0.0228 0.0228 

P(accep_t) 0.9710 0.9710 0.9372 0.9372 
...-P{scrap), below LSL 0.0228 0.0228 0.0401 0.0401 

f:RC1$/item) 2.5 2.5 3.5 3.5 

SC($/iteml 5.2 5.2 7.7 7.7 

PTlmin/item) 7 7 9 9 

,>:RT (min/item) 5 5 6.5 6.5 
Number of entered RM 5000 5000 

The P, A, and B matrices are: 

1 2 3 4 5 6 

1 0.0062 0 0.9710 0 0.0228 0 

2 0 0.0062 0 0.9710 0.0228 0 

P= 
3 0 0 0.0228 0 0.0401 0.9372 

4 0 0 0 0.0228 0.0401 0.9372 

5 0 0 0 0 1 0 
6 0 0 0 0 0 1 

1 2 3 4 

1 1.0062 0 0.9999 0 

A= 
2 0 1.0062 0 0.9999 
3 0 0 1.0233 0 
4 0 0 0 1.0233 
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5 6 

1 0.0629 0.9371 

2 0.0629 0.9371 
B= 

3 0.0410 0.9590 

4 0.0410 0.9590 

By applying the models from section 4.5.2: 

f(RC1) = f(RC2) = 0.0078, f(RC3) = f(RC4) = 0.0382 (by applying equations 4.38 

through 4.41 ). 

f(SC1) = f(SC2) = 0.1637, f(SC3) = f(SC4) = 0.1479 (by applying equations 4.42 

through 4.45). 

Therefore: 

QC = $0. 72 per part (by applying equation 4.37). 

By applying equation (4.46): Productivity= 0.8986 = 89.86%. 

By applying equations 4.48: 

CT1 = CT2 = 7.0312, CT3 = CT4 = 9.1513. 

Then: 

The expected cycle time = 16.18 minutes per part (by applying equation 4.4 7). 
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4
.
6 

rwo Stage Serial-Parallel System with Four Processes (with Crossover) 

consider two parallel lines with two serial processes each, where raw 

material parts enter the first process of each line and then are processed and 

rnoved to the second process. This configuration is similar to the one in section 

4_5, where the only difference is that in this configuration parts from stage one 

could proceed to any process in stage two. Figure 4.5 shows the flow diagram for 

this type of system configuration (there is only one scrap state, but it is 

represented twice in the figure). 

RM 

N1 

RM 

N2 

State (1) State (3) 

\ I 
Finished 

" Product , .. , 

X2 X4 

State (2) State (4) 

State (5) 

Fig 4.5: Serial-parallel configuration with crossover 
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4
.6.1 Building Absorbing Markov Chain Matrices 

The transition probability matrix P is: 

I 
1 2 3 4 iS 6 

1 Pi 1 0 Pi3 Pi4 i Pis 0 

2 0 P22 P23 f>i4 ! P2s 0 
I 

3 0 0 ~3 0 i ~5 ~6 
P= . 

. ~ . -~ . -. -~ . -. -. Q. -. -P_ ~ . ~ . f.4J . -. !.1.6. 
50 0 0 Ojl 0 

60 o o 0 1 0 1 
I 
I 

The / - Q matrix is: 

l-Pi1 0 -Pi3 -Pi4 

(I-Q)= 
0 

0 

0 

And hence: 

1 

2 

A=(I-Qt = 

3 

4 

1-P22 
0 

0 

1 

1 

0 

0 

0 

-P23 -P24 

1-~3 0 

0 1-P44 

2 

0 

1 

(l -P22 ) 

0 

0 

3 4 

Pi3 Pi4 
(1 - Pi I X1 - ~3) (1 - Pi I X1 - ?44) 

P 23 P24 

(1-P22 X1-~3) (l-P22 X1-P44) 

1 

(1- ~3 ) 
0 

0 
1 

(l -?44) 
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5 

Pi s (1-~3 Xl - P44 ) + Pi 3~s {1- P44 ) + Pi4P4s {1-~3 ) 
1 - (1-Pi1X1-~3 X1-P44) 

6 

Pi 3~6 (1- P44 ) + Pi 4~6 {1-~3 ) 
{l-Pi1 X1-~3 Xl-P44 ) 

Pis (1- ~3 X1 - P44 ) + P23~s {1- P44 ) + f>i4P4s (1- ~3 ) P23~6 (1- P44 ) + P24 P46 (1- ~3 ) 
2 (1 - P22 X1 - ~3 X1 - ~4) (1 - P22 X1 - ~3 X1 - P4J 

3 ~s ~6 
(1- ~3 ) (1-~J 

4 P4s p46 
(l -P44 ) (l -P44 ) 

(4.51) 

4.6.2 Resource Consumption Models 

Equations (4.50) and (4.51) are used to build the models of quality cost, 

productivity, and cycle time for the serial-parallel production system with four 

processes when there is crossover. 

4.6.2.1 Cost of Quality Model 

Since the processes at stage two, X"3 and X\, could receive parts from 

either process x"1 or x"2 , weights are given to identify the proportion of parts which 

enter X"3 and X"4 . "wi/' term is used to represents the weights, where: 
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.· the percentage of accepted parts from process x"i that go to process x"j· 
W1J· 

For this type of system configuration: 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 
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4.6.2.2 productivity Model 

System productivity is the ratio between the finished products delivered 

from processes X"3 and X\ and the total raw material parts that enter the two 

parallel lines. When considering the weights given to identify proportions of parts 

that enter x"3 and x"4 from x"1 and x"2, the system productivity becomes: 

productivity = 

[N,(1-b,Jw,J + N2 (l-b2J w2J x (l-b35 )+ [N, (1-b,J w,4)+ N2(l - b2J w24 )] x (l - b45 ) 

(N, +N2) 

4.6.2.3 Cycle Time Model 

The expected Cycle Time= 

(N,Cfi +(N1w13 +N2w23 )CT3)+(N2CT2 +(N1w14 + N2w24 )cT4 ) 

N1+N2 

Where: 

Cf; =PT; + (a11 -1 )RT; 

4.6.3 Numerical Example (4) 

(4.61) 

(4.62) 

(4.63) 

The assumptions in this example are similar to that in example 3, except 

that Parts from either process in stage one can go to any process at stage two. 
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75
% of parts that are accepted at process A" proceed to c" and 25% proceed to 

DA, whereas 50% of parts that are accepted at process 8
11 

proceed to c" 

(assuming c" has higher capacity than 0
11

) and 50% proceed to o". Table 4.3 

includes all required data for this example. 

Table 4.4 Numerical example (4) 

Process Process Process Process 

L. 
A" e" c" o" 

h;Mean 7 7 12 12 
StDev 0.4 0.4 0.8 0.8 
U~limit 8 8 13.6 13.6 
Lower limit 6.2 6.2 10.6 10.6 
~eworkl, above USL 0.0062 0.0062 0.0228 0.0228 
P1accept) 0.9372 0.9372 

l ~P(accepted then go 1sr 
~cess at 2nd sta_g_e l 0.7283 0.4855 --- ---
tp(accepted then go 2na 
;process at 2nd stage) 0.2428 0.4855 --- ---
!Plscrap), below LSL 0.0228 0.0228 0.0401 0.0401 
m_cI$/itemI 2.5 2.5 3.5 3.5 
r·SC 1$/item_l 5.2 5.2 7.7 7.7 
t·PTJmin/iteml 7 7 9 9 
RT Imin/itemI 5 5 6.5 6.5 
Number of entered RM 5000 5000 

The P, A, and B matrices are: 

1 2 3 4 5 6 

1 0.0062 0 0.7283 0.2428 0.0228 0 
2 0 0.0062 0.2428 0.7283 0.0228 0 

P= 
3 0 0 0.0228 0 0.0401 0.9372 
4 0 0 0 0.0228 0.0401 0.9372 
5 0 0 0 0 1 0 
6 0 0 0 0 0 1 
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1 2 3 4 

1 1.0062 0 0.7499 0.2500 

2 0 1.0062 0.2500 0.7499 
A== 

3 0 0 1.0233 0 

4 0 0 0 1.0233 

5 6 

1 0.0629 0.9371 

2 0.0629 0.9371 
B== 

3 0.0410 0.9590 

4 0.0410 0.9590 

f(RC1) = f(RC2) = 0.0078, f(RC3) = 0.0477, f(RC4) = 0.0286 (by applying equations 

4.53 through 4.56). 

f(SC1) = f(SC2) = 0.1637, f(SC3) = 0.1849, f(SC4) = 0.1109 (by applying equations 

4.57 through 4.60). 

Then: 

QC= $0.72 per part (by applying equation 4.52). 

By applying equation (4.61 ), the system productivity= 0.8986 = 89.86%. 

CT1 = CT2 = 7.0312, CT3 = CT4 = 9.1514 (by applying equation 4.63). 

Then: 

The expected cycle time = 16.18 minutes per part (by applying equation 4.62). 
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4
.7 summary of the Numerical Example Results: 

Table 4.5 summarizes the results from examples 1, 2, 3, and 4. For the 

machining production system that is assumed in the four examples, we can 

conclude that: 

Table 4.5 Summary table 

QC Productivity Cycle time 
$ % min./ art 

1.06 65.22 16.10 

arallel 0.67 95.90 16.27 
rial-parallel with 

sover 0.72 89.86 16.18 
rial-parallel 

lthout crossover 0.72 89.86 16.18 

Based on the data and assumptions, serial-parallel with crossover and 

serial-parallel without crossover configurations have same quality cost, 

productivity, and total cycle time. Their total quality costs are equal, although their 

f(RC3) and f(RC4) values are not the same. The quality cost, productivity, and 

cycle time equations for the system with crossover are not the same as that for 

the system without crossover (as shown in section 4.5 and 4.6 respectively), 

Which in turn indicates that the result in this example is just a special case where 

the two configurations perform the same due to the assumptions that the 

Processes at each stage are similar in terms of the parameters used in the three 

models 
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In terms of the quality cost, the parallel configuration has the lowest cost, 

followed by the serial-parallel configurations, and then the serial configuration. In 

terms of productivity, the parallel configuration has the highest value, followed by 

the serial-parallel configurations, and then the serial configuration. In terms of total 

cycle time, the serial configuration has the lowest time, followed by the serial­

parallel configurations, and then the parallel configuration. 

In summary, the parallel configuration of the assumed production system 

has the best performance in terms of quality cost and productivity, followed by the 

serial-parallel configurations and then the serial configuration. On the other hand, 

the serial configuration has the best performance in terms of total cycle time 

followed by the serial-parallel configurations and then the parallel configuration. 
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CHAPTER FIVE 

METHODOLOGY: MODEL FOR n PROCESS PRODUCTION SYSTEM 

5.1 Abstract 

In chapters three and four, the resource consumption models are 

developed for two and four process production systems respectively, while in this 

chapter the work is extended to build a general model for n process production 

systems for each of the serial, parallel, and serial-parallel without crossover 

configurations. 

5.2 Introduction about Building the n Model 

It can be concluded from the models for two and four process production 

systems (in chapters three and four) that there are only two terms needed to 

develop the resource consumption models: 

1- aii from matrix A, where i= 1,2, .. , n, and n =number of the processes. 

2- bi(n+1) from matrix B, which is the long term probability that an item from 

state i will end up as scrap, where state (n+1) is the scrap state and state 

(n+2) is the finished goods state. For example, when the production 

system consists of two processes (n=2), then b13 is the long term 

probability that an item from process 1 (state 1) ends as scrap. 
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Mathematica® software is used to generate the model for different values of n, 

and then the trend for both of aii and bi(n+1) is analyzed to generate a general 

expression. For the definitions of the notations in next sections, refer to section 

4.2 in chapter four. 

5.3 Serial Production System with n Processes 

Figure 5.1 represents a production system with n processes arranged in series. 

Fig. 5.1 Pure serial configuration for n process 

The general expression for aii is: 

1 acnco = ---­
(1 - P (i)(i)) 

The general expression for bi(n+1) is: 
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L~"' ( (P (~(·+tl ) (rt, F <•-tl:•l) ( n ::; c 1 - p (,+ tl(}->1)))) 
(5.2) 

~•l<•+1l = (n'.=/ c.-tlc•i)(f1)1- Pc .. icwil) 

The general expression for the cost of quality model is: 

n 

QC = ~ ( ( ( a (i)(<) - 1) RC( i) + b (i)(n +1) SC(fJ) n (1- b(k-1) ( n+1) )) ( 5 .3) L lc=2 

i =l 

The general expression for the productivity model is: 

n 

Prductivity = n (1 - bi(n+1)) (5.4) 
i=l 

The general expression for the cycle time model is: 

11 

Cycle Time= L (PT(i) + RT(i}(arn(i) - 1)) 
c=1 

(5.5) 

As an example, suppose there is a production system with 5 processes (n=5), 

and the P matrix that includes the probabilities of the transitions between states 

is: 
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1 2 3 4 5 6 7 

1 0.02 0.97 0 0 0 0.01 0 

2 0 0.06 0.91 0 0 0.03 0 

3 0 0 0.05 0.93 0 0.02 0 

p == 4 0 0 0 0.04 0.95 0.01 0 

5 0 0 0 0 0.04 0.03 0.93 

6 0 0 0 0 0 1 0 

7 0 0 0 0 0 0 1 

Where: 

States 1, 2, 3, 4, and 5 represent the states of a part being processed at 

workstations 1, 2, 3, 4, and 5 respectively. State 6 represents the scrap and state 

7 represents the finished goods. 

Assume that: 

The rework costs are: RC1 = $4/part, RC2 = $3/part, RC3 = $3/part, RC4 = $1 /part, 

and RC5 = $2/part; 

the scrap costs are: SC1 = $5/part, SC2 = $5.5/part, SC3 = $6.2/part, SC4 = 

$6.5/part, and SC5 = $7/part; 

the processing times are: PT1 = 3 min/part, PT2 = 2 min/part, PT3 = 2 min/part, 

PT 4 = 1 min/part, and PT 5 = 1.5 min/part; 

and the rework times are: RT1 = 2.5 min/part, RT2 = 2 min/part, RT3 = 1.5 

min/part, RT4 = 1 min/part, and RT5 = 1.5 min/part. 
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Therefore, by applying equations 5.3, 5.4, and 5.5 respectively the quality cost, 

productivity, and cycle time can be found: 

Total rework costs= $0.48 per part 

Total scrap costs = $1 .63 per part 

Therefore, the QC = $2.11 per part 

Productivity= 71.21 % 

Cycle time = 9.86 minutes per part 

5.4 Parallel Production System with n Processes 

Figure 5.2 represents production system with n processes arranged in parallel. 

n 

Fig. 5.2 Pure parallel configuration for n process 
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The general expression for aii, bi(n+1), and the resource consumption models are: 

1 

tJ{ j)(i) = (1 - p (i)(i)) 

i'( i)(n+1) 

b(i)(n+l) = (1 - P ct)(;)) 

I·~ (Ni (1 - b (1)(n+1) )) 

Productivity= i -l Ln N 
k=l k 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

For example, assume there is a production system with 3 processes, and the 

transition probability matrix is: 

1 2 3 4 5 

1 0.15 0 0 0.04 0.81 
2 0 0.1 0 0.07 0.83 

P=3 0 0 0.05 0.08 0.87 
4 0 0 0 1 0 
5 0 0 0 0 
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If: 

The rework costs are: RC1 = RC2 = RC3 = $6/part 

The scrap costs are: SC1 =SC2 = SC3 = $7/part 

Processing times are: PT 1 = PT 2 = PT 3 = 10 min/part 

Rework times are: RT1 = RT2 = RT3 = 8 min/part 

Then: 

QC= $1.17 per part. 

Productivity = 93% 

Expected cycle time = 10.91 minutes per part 

5.5 Serial-Parallel Production System with n Processes (Without 

Crossover) 

Figure 5.3 shows a serial-parallel configuration without crossover with n 

processes, arranged in two parallel lines. For each process, a product can get 

accepted and sent to the next process, reworked, or scrapped. The total number 

of processes in both lines is n, where the number of processes in each line could 

vary between 1 to n-1, while the rest of the processes exist in the other line. In 

other words, n processes can be distributed between the two lines such that 
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there should be at least one process in each line. A line with no processes would 

convert this configuration into a pure serial. 

Fig.5.3: Serial-Parallel configuration for n 
processes, arranged in two parallel lines 

Product 

(n+2) 

To define the resource consumption models, the following conditions should be 

fulfilled: 

1- If n processes are to be modeled, and they are distributed in two 

production lines, namely line #1 and line #2, the number of processes in 

one line can be n-1 or fewer, while the rest of the processes are located in 

the other line. For example, if n = 6, then line #1 can have 2 processes, 
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and line #2 can have 4 processes; another combination could be 1 

process in line #1, and 5 processes in line #2, etc ... 

2- If the number of processes in lines 1 and 2 are not equal, then virtual 

processes must be added to the shorter line in order to use the developed 

models. For example, for n = 6, if the production line is arranged to contain 

2 processes in line #1, and 4 processes in line #2, then we will need to 

add 2 virtual processes to line #1, so that both lines will have 4 processes, 

and then hence, m = 8. Generally, in any configuration, m equals 2 times 

the number of processes in the longer line. In the example above, m = 2 X 

4=8 

3- Virtual processes are processes which exist at the end of each line when 

needed. In the above example, line #1 contains processes 1 and 2, and 

then contains virtual processes 3 and 4, while line #2 has processes 5 

through 8. 

4- Virtual processes should fulfill the following conditions: 

a. Processing time = 0 

b. Rework time = 0 

c. Probability of scrap = 0 

d. Probability of rework= 0 

e. Probability of acceptance = 1 
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Figure 5.4 expands on figure 5.3, shown after adding the virtual processes. 

Fig.5.4: Serial-Parallel configuration for m 
processes, with added virtual processes 

Finished 
Product 

(m+2) 

Based on the above explained methodology, aii. bi(n+1) and the resource 

consumption models become: 

1 
a(i)(i) = (1 - P ) 

(i)( i) 
(5.11) 
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(5.12) 

m 
2 

QC ~ (N 
1

; N,) I ( ( ( a (•l<•l - 1 )Rew + b ( i)(m+<) SCrn) [I ( 1 - b (k-1) (m+i))) 
i=i 
tn 

" 
( ( a (h) (h) - 1 )RC(h) + b ch)(m+i)SC(h)) n ( 1 - b ck-i)(m-+1) ) 
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k=-z+Z 

(5.13) 



~;z m 

J>roductivity = (N ; N ) n (t - b (i)(m-t-1) ) + (N :z N) n (1-b(b)(m+i)) 
:1 

2 i=t 1 2 h=~1z +t 

(5.14) 

As an example, suppose that there are five machines arranged in two parallel 

lines with three processes in the first line and two processes in the second line. 

Table 5.1 shows the probabilities of scrap, rework, and acceptance for each 

machine. It also includes rework and scrap costs, and processing and reworking 

times. 

Table 5.1 Data for serial-parallel production system with 5 processes 

Process Process Process Process Process 
1 2 3 4 5 

Pjreworltl_ 0.1 0.05 0.06 0.07 0.1 
P1scrap) 0.02 0.04 0.09 0.03 0.03 
~acce_E_tedj 0.88 0.91 0.85 0.9 0.87 
RCJ$[par!}_ 1 2 3 1.5 4 
SC _{$lP_artj 4 4.2 4.5 5 5.4 
PT JminlP_artj 6 7 4 3 7 
RT_(minlP_ar'!) 4 5 3 2 2 

m = 3*2 = 6 processes 
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Figure 5.5 shows the configuration of the 5 main processes and the virtual 

process (number 6). 

1 

4 6 
Virtual 

Finished 
Product 

8 

Fig.5.5: Serial-Parallel configuration for 5 
processes, with added virtual processes 

The transition matrix for the 6 processes becomes: 

1 2 3 4 5 6 7 8 

0.1 0.88 0 0 0 0 0.02 0 

2 0 0.05 0.91 0 0 0 0.04 0 

3 0 0 0.06 0 0 0 0.09 0.85 

P= 
4 0 0 0 0.07 0.90 0 0.03 0 
5 0 0 0 0 0.1 0.87 0.03 0 
6 0 0 0 0 0 0 0 1 
7 0 0 0 0 0 0 1 0 
8 0 0 0 0 0 0 0 1 
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state 6 represents a part at process 6, which is the virtual process in this 

example. Note that the rework and scrap probabilities for process 6 equal zero, 

whereas the acceptance probability equals 1. 

By applying equations 6.13 through 6.15 respectively the quality cost, 

productivity, and cycle time are: 

ac = $1.23 per part 

Productivity = 82.40% 

Expected cycle time = 12.88 min per part 

The n process serial-parallel configuration with crossover involves a 

complicated model for the long term scrap probabilities bi(n+1) as well as more 

complicated resource consumption models. However, there is an example of four 

process serial-parallel configuration with crossover in section 4.6, and an 

example of six process serial-parallel configuration with crossover in section 

6.5.2, which can be used for similar production systems in each case. The level 

of complexity and difficulty to follow a pattern in the probability matrices and the 

resource consumption models is too high and it is advised that the reader uses 

mathematical software packages to help develop the model for configurations 

with a large number of processes. 
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CHAPTER SIX 

CASE STUDY AT BIOPHARMACEUTICAL COMPANY 

6.1 Abstract 

The methodologies and models in this thesis are applied in a 

biopharmaceutical industry case study. Two production systems from a 

biopharmaceutical company have been utilized to apply the serial-parallel model 

(with and without crossover), and the serial model. This chapter includes a brief 

background about the company and the description and analysis of the two 

production systems. 

6.2 Company Background 

XY Company is a fast growing biopharmaceutical company that develops 

and produces drug products. It has many locations outside and inside the United 

State. It has short and long term objectives that aim to satisfy their customer with 

a high quality product that meets the Good Manufacturing Practices (GMPs), 

established by the Food and Drug Administration (FDA), in all aspects, and 

hence it maintains the safety, identity, strength, quality, and purity of its products. 

As in many biopharmaceutical companies, the main processes for 

Producing the drug products are preparing media, cell culture, preparing buffer, 

purification, and filling and packaging as shown in figure 6.1. The focus of this 

case study is to apply the methodologies and analysis on the Media and cell 

culture processes. 

128 



Media s==::>tCell culture--.... Purifications==::>t Filling and 
preparation Packaging 

Buffer 
preparation 

Fig. 6.1: Main production processes 

6.3 Media Preparation Production System 

Media is defined as: "a (usually sterile) preparation made for the growth, 

storage, maintenance, or transport of microorganisms or other cells" (Odum, 

2002). Different types of biopharmaceutical products need different types of 

media, and for each product there are two types of media, growth and production 

media. Figures 6.2 and 6.3 show the value stream map (VSM) for producing 750 

liters of media starting from the point the raw material is received to the point 

where finished media is ready to be transferred to the internal customer (cell 

culture department). 

The media production system consists of two preparation tanks, two hold 

tanks, and transfer lines as show in figure 6.4. Media is prepared at tanks A and 

B, where the components are added to WFI (Water for Injection) followed by 

titrating the solution to adjust the pH value. The holding tanks (A' and B') are 

used to keep the media under pressure after going through the filters at the 

transferring lines. Filters should pass two tests, pre-test and post-test, to ensure 
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that they were in good condition and did not cause any contamination of the 

media. To meet the GMP requirements and avoid cross contamination, GIP 

(Clean in Place) and SIP (Steam in Place) processes are applied to clean the 

tanks and the transfer lines before producing the media. 

As can be seen from figures 6.2 and 6.3, the VSM tracks all activities 

occurring at preparation tanks A and B, and hold tanks A' and B'. Both figures 

show the percentage of value added time at each tank. For example, hold tank A' 

has 65% value added time whereas hold tank B' has 5% value added time, 

which is the lowest percent. The two most common non-value adding activities 

are different types of waiting and paperwork. 

6.4 Media Production System Configuration 

Two types of media, Land M, are used in this case study, where both are 

used for the same drug product. As shown in figure 6.4, the production system of 

media L or M consists of three main production stages. The first stage is 

preparing media at tank A or B by adding chemicals and serum to WFI. The 

second stage is titrating the media at tank A or B, and the third stage is filtering 

and transferring the media to holding tank A' or B' . The system configuration is 

considered to be serial-parallel, where there are two parallel lines, and each line 

consists of three processes. Crossover may also happen between the processes 

at stages two and three. That means the media after titration could be transferred 

to either of A' or B' as shown in figure 6.4. 
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Fig. 6.4: Configuration of the media production system 

Two configuration alternatives are analyzed to find the performance of each 

alternative in terms of quality cost, productivity, and cycle time. These 

configuration alternatives are, serial-parallel without crossover and serial-parallel 

with crossover. In the case of this specific production system it is not appropriate 

to arrange the six processes into a pure parallel configuration, because this 

would violate the requirement of filtering the media before it enters the hold tanks 

and is ready for use by the cell culture department. In other words, filtering the 

media should not be performed in the same processing stage where it is 

prepared. Arranging them in a pure serial configuration is not applicable as well. 

For example, if the two processes in the preparing media stage were arranged in 

series where adding water is performed at tank A and adding chemicals is 

Performed at tank B, then that will be not feasible since water has to be 
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transferred again from tank A to tank B in order to be able to add chemicals, and 

hence filling water into tank A becomes meaningless. That means that preparing 

and transferring the media can only be performed by three stages, not one stage 

(as in a pure parallel configuration) or six stages (as in a pure serial 

configuration). The models developed in chapter five for the "three stage serial­

parallel system with six processes" can be applied in this case study. 

6.5 Resource Consumption Models at the Media Production System 

In this section the resource consumption models are applied to the two 

alternative configurations, and then the results are used to analyze their 

performance. 

6.5.1 Serial-Parallel Configuration (without Crossover) 

The required data to build the resource consumption models have been 

collected, with the exception of data that are related to costs because this is not 

available to be included in the thesis. As a starting point, the types of media that 

are used in this case study are identified . After that, the key quality characteristic 

for each process is defined, and then the short term probabilities of acceptance, 

rework, and scrap are determined. 

6.5.1.1 Quality Characteristics and Short Term Probabilities 

Figure 6.4 shows states 1 through 8 that are used in developing the 

Markov chain model. At the first processing stage (state (1) and (4)), the operator 
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should make sure that the total amount of WFI is within the acceptance range 

after adding the chemicals. OIT (Operation Interface Terminal) technology is 

used to control the amount of added WFI before and after adding the chemicals, 

so at this process all of the prepared media is accepted, since it always falls 

within the pre-specified range, and moved to the titration stage. 

At titration, the considered quality characteristic is the pH value. The 

prepared media can not proceed to the next stage unless the pH value at titration 

falls within a given acceptance range. The solution is re-titrated until pH falls 

within this range; hence, there is no scrap from this stage. Once the media is 

accepted at titration it is then filtered and transferred to the hold tanks. 

There is no rework at stage three (filtering and transferring media). The 

amount of scrapped media at stage three could range from a few liters up to all of 

the prepared media. If the filters do not pass the post-test, the media is 

considered to be non-qualified media and is all scrapped. Although losing the 

entire amount of media rarely happens, there are always small amounts lost 

during the filtering and transferring process. 

Historical data for the pH values at the titration stage are collected in order 

to find the rework rate. Minitab software is used to find the probability distribution 

that the data follows. Data for media L shows that the pH value of the titrated 

media from tank A (state 2) fits the normal and lognormal distributions, whereas 

the pH value of the titrated media from tank 8 (state 5) fits the lognormal 

distribution (figures 6.5 and 6.6 show part of the Minitab outputs for finding the 
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best distribution. The figures of other distributions are attached in the appendix). 

Figures 6. 7 and 6.8 show the pH value histograms for the titration processes. 
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For media M, the titrated media from tank A (figure 6.9) fits the largest extreme 

value distributions, while the titrated media from tank B does not fit any 

distribution, so Johnson transformation is applied to the data (figure 6.10) and the 

resulting P-Value is accepted (the figures for other distributions are attached in 

the appendix). Figure 6.11 shows the pH value histogram for the titrated media 

from tank A, while figure 6.12 shows the histogram of the transformed data of 

titrated media from tank B. 
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Fig. 6.12: Histogram of the transformed data after using Johnson 
transformation (for media M prepared at tank B) 

After finding the distributions for the pH data, the probability of rework at each of 

the titration processes for both types of media is calculated, and summarized in 

Table 6.1. The probability of rework is the probability that the pH value will be 

above the upper specification limit (pH = 6.8) or below the lower specification 

limit (pH = 6.6). 
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Table 6.1 : Rework probabilities at titration processes 

,..-Media 
PJpH<LSLl PJ_pH>USLl t~e Process/sate Total 

i- L 3 0.038 0.015 0.053 

L 4 0.024 0.041 0.065 

M 3 0 0.009 0.009 
M 4 0.057 0.008 0.065 

Historical data for the percentages of media that are lost during the 

filtering and transferring process are collected to find the average scrap rate. For 

media L, when the titrated media is prepared at tank A and transferred to hold 

tank A' the average scrap rate equals 3.2%. On the other hand, when the titrated 

media is prepared at Tank B and transferred to hold tank B', the average scrap 

rate equals 12.3%. For media M, the scrap rate values for hold tanks A' and B' 

are 1.6% and 2.3%, respectively. 

Each campaign of the selected product includes, on average, seven lots of 

type L and fifteen lots of type M. The rework time and processing time for the 

titration process are almost equal. Since cost data is not available, the rework 

cost at any process is measured by the labor time in minutes at that process. On 

the other hand, the scrap cost is measured by the labor time in minutes 

consumed for producing the media starting from receiving the raw material to the 

point where the scrap happens. Tables 6.2 and 6.3 summarize all of the data that 

is required to apply the resource consumption models for the production system 

of media L and M. 
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Table 6.2: Data summary for media L 

,.... Preparing Media Titrating Media Filtering /Transferring 
atA, B from A, B to A', a· 

State 1 State 4 State 2 State 5 State 3 State6 
r-

P(reworkl 0 0 0.053 0.065 0 0 

P(accelill_ 1 1 0.947 0.935 0.968 0.877 

Pl scrap) 0 0 0 0 0.032 0.123 
RC 

(labor min/unit medial 0 0 45 45 0 0 
SC 

_i!abor min/unit medlaj_ 0 0 0 0 257 257 
PT 

1mln/ unit medlaj__ 140 140 45 45 72 72 
RT 

(min/ unit medial 0 0 45 45 0 0 
Number of lots 

~er cam_p_aig_n 1Nl 3 4 

Table 6.3: Data summary for media M 
Preparing Media Titrating Media Filtering /Transferring 

atA, B from A, B to A', a· 
State 1 State 4 State 2 State 5 State 3 State 6 

PJ.reworkl 0 0 0.009 0.065 0 0 

PJ.acce__i:ill_ 1 1 0.991 0.935 0.984 0.977 

PJ.scrap) 0 0 0 0 0.016 0.023 
RC 

_{labor min/unit media}_ 0 0 45 45 0 0 
SC 

J!abor min/unit medial 0 0 0 0 257 257 
PT 

Jmin/ unit mediaj_ 140 140 45 45 72 72 
RT 

Jmin/1 medial 0 0 45 45 0 0 
Number of lots 

_p_er cam_p_a!_g_n 1Nl 5 10 
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From the data presented in this section, the short term probabilities can be 

summarized in the transition probability matrix (P), where PL and PM are the 

transition probability matrices for media L and M respectively: 

1 2 3 4 5 6 7 8 

1 0 0 0 0 0 0 0 

2 0 0.053 0.947 0 0 0 0 0 

3 0 0 0 0 0 0 0.032 0.968 

4 0 0 0 0 1 0 0 0 
pl = 5 0 0 0 0 0.065 0.935 0 0 

6 0 0 0 0 0 0 0.123 0.877 

7 0 0 0 0 0 0 1 0 

8 0 0 0 0 0 0 0 1 

1 2 3 4 5 6 7 8 

0 1 0 0 0 0 0 0 

2 0 0.009 0.991 0 0 0 0 0 

3 0 0 0 0 0 0 0.016 0.984 

4 0 0 0 0 1 0 0 0 
PM = 

0 0 0 0 0.065 0.935 0 0 5 

6 0 0 0 0 0 0 0.023 0.977 

7 0 0 0 0 0 0 1 0 

8 0 0 0 0 0 0 0 1 

6.5.1.2 Quality Cost, Productivity, and Cycle Time 

The procedure used in previous chapters is used to find the cost of quality, 

Productivity, and cycle time models. 
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1· Cost of Quality Model: 

6 6 

QC= Lf(RC;)+ Lf(SC;), where: 
i= l i=I 

J(RC,)= N, *(a11 -l)RC1 

(N1 +N2 ) 

J(RC
2
)= N,(l-h11 Xa 22 -l)RC2 

(N1 +Ni) 

J(RC
3

) = N , (l - h11 X1 - h21 Xa33 -1 )RC3 
(N1 +Ni) 

J(RC4)= N2 (a 44 -l)RC4 
(N1 +N2 ) 

J(RCs)= N2 (l -b41 Xa 55 - l)RC5 
(N1 +N2 ) 

J(RC
6
)= N2(l-b41Xl-hs1Xa 66 -l)RC6 

(N1 +N2 ) 

J(SC
2
) = N, (l-b.11 )b21SC2 

(N, +N2 ) 

/(SC3) = N , (t -b.17 Xt-b27 )b37 SC3 
(N1 +N2 ) 

J(sc4 )= N2 b47 SC4 
(Ni +N2) 

J(sc5) = N2 (1- h47 )b57SC5 
(N, + N 2 ) 

J(sc6 )= N2 (t -h47 X1 -hs1 )b67sc6 
(N1 + N 2 ) 
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(Refer to the definitions of aii, and bii from section 4.2). 

2• Productivity Model: 

3. Cycle Time Model: 

d C I T
. N1 ( CI'i + CT2 + CT3 ) + N 2 ( CT4 + CT5 + CT6 ) 

Expecte ye e 1me = --'---------------'--'-'-
N1 +Ni 

Where: 

CT; =PT; +(a;; -1 )RT; 

Table 6.4 summarizes the calculated quality cost, productivity, and cycle time 

after applying the equations. 

Table 6.4: Without crossover configuration 

Quality Cost Productivity Expected Cycle Time 
J..labor min/ unit medial _{.100%1 _{.min I unit medial 

Media L 19.81 77.42 259.87 
Media M 7.26 93.93 259.22 

6.5.2 Serial-Parallel Configuration (with Crossover) 

In this configuration the titrated media from stage two can proceed to any 

process in stage three. That means that there are four possible paths for the 

Produced media: 
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prepared at tank A- titrated -filtered and transferred to Tank A' 

prepared at tank B - titrated - filtered and transferred to Tank A' 

prepared at tank A - titrated - filtered and transferred to Tank B' 

Prepared at tank B - titrated - filtered and transferred to Tank B' 

6.5.2.1 Quality Characteristics and Short Term Probabilities 

The considered quality characteristics are the same as in section 6.5.1 

when crossover is not allowed between stage three and stage four. The 

probability of re-titrating the prepared media does not change (table 6.1 ). The 

only change is the scrap rates during the filtering and transferring process. Table 

6.5 shows the percentages of titrated media from Tanks A and B that is filtered 

and transferred to the hold tanks A' and B'. 

Table 6.5: Percentage of accepted parts 
h f h t at__g_o rom one _grocess to anot er 

A' B' 

A 80% 20% 

B 42% 58% 

For media L, when hold tank A' receives media from both processes in the 

previous stage, the average scrap rate becomes 11.2%. On the other hand, 

when hold tank B' receives media from both processes in the previous stage, the 

average scrap rate becomes 8.0%. For media M, the scrap rate values are 

2.23% and 1.65 % respectively for hold tanks A' and B'. 
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Therefore, the new P matrices become: 

1 2 3 4 5 6 7 8 

1 0 1 0 0 0 0 0 0 

2 0 0.053 0.758 0 0 0.189 0 0 

3 0 0 0 0 0 0 0.112 0.888 

4 0 0 0 0 0 0 0 
pl= 5 0 0 0.393 0 0.065 0.542 0 0 

6 0 0 0 0 0 0 0.080 0.920 

7 0 0 0 0 0 0 1 0 

8 0 0 0 0 0 0 0 1 

1 2 3 4 5 6 7 

1 0 1 0 0 0 0 0 

2 0 0.009 0.7928 0 0 0.1982 0 

3 0 0 0 0 0 0 0.0223 

4 0 0 0 0 1 0 0 
PM = 

0 0 0.3927 0 0.065 0.5423 0 5 

6 0 0 0 0 0 0 0.0165 

7 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 

6.5.2.2 Quality Cost, Productivity, and Cycle Time 

1- Cost of Quality Model: 

6 6 

QC= Lf(RC;) + "If(SC;), where: 
i=I i=I 

!(Rel)= N1(a11 -l)RCI 
(N1 +N2 ) 

!(RC )= N1 (l -b11 Xw12 )+ N2 (l-b41 Xw42) x (a - l)RC 
2 (N1 +N2) 22 2 
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(Ni (1- h11 X W12) + N 2 (1- b47 X W42 )Xl - h21 X W23) x (a33 -1 )RC3 + 
J(RCJ= (N

1 
+ N 2) 

(N1 (l -b17 X w1J+ N2 (l -b47 Xw4JX1 -b51 X w5J x (a
33 

- l)RC
3 (N1 + N 2 ) 

N 2 (a 44 -l)RC4 
J(RC4 )= (Ni + N 2) 

) N1 (l-b17 Xw1J+ N2(l-b41 Xw45) x (a -l)RC 
J(RC5 = (Ni+ Ni) 55 5 

) (N1 (l -b17 Xw12 )+ N 2 (l-b47 Xw42 )Xl -b21 Xw26 ) x (a - l)RC
6 

+ 
J(RC6 = (Ni + N2) 66 

(N1 (l-b17 Xw15 )+ N 2 (l -b47 Xw45)X1 -b51 Xw56) x (a
66 

- l)RC
6 (N1 +N2 ) 

(NI (1- bl7 x W15) + N2 (1- b47 x W45 )X1 - b57 x W53 ) x b37SC3 
(N1 +N2 ) 

f(SC4 )= N2b47sc4 
(N1 +Ni) 

J(sc )- Ni (1- h17 X w15) + N 2 (1- h41 X w45) x b57SC5 
5 - (NI+ N 2) 

!( ) (N1(1-b17 Xw12)+N2(l-b41Xw42)Xl-b21 Xw26 ) x b SC + sc6 = ( ) 67 6 
NI +N2 

(N1 (1- b17 X w15 ) + N 2 (l -b41 Xw45 )X1 -b51 Xw56 ) x b
67
sc

6 
(Ni +N2) 
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(Refer to the definitions of aii, bii , and Wii from section 4.2). 

2- Productivity Model: 

Productivity = 

(Ni(l- bi1X 1'112)+ N;(1-b41X w.i2)X1-b21X ~3)+(iYi(l-hi 1X "11s)+ Ni(1-b41X w.is)X1-bs1X 1153) x(i - b_
11

)+ 
(iYi +N; ) 

(Ni(l-bi 1X '1i2)+ Ni(l-b41X w.iJX1-b21X ~6)+(iYi(t-bi1X "11 s)+ Ni(1-b41X w.is)X1-a,1X 1156) x(i-b
61

) 
(Ni +N;) 

3- Cycle Time Model: 

Expected Cycle Time= 

(N1CI'i +(N1w12 +N2w42 ')cT2 +((N1w12 +N2w42 )w23 +(N1w15 +N2w45 )w5JCT3)+ 
NI +N2 

(N2CT4 + (N1 w1s + N2 w4s)CTs + ((N1 W12 + N2 W42 )w26 + (N1 Wis + N2 W4s )ws6 ')cr6) 
NI +N2 

Where: 

CT; =PT;+ (a;; -l)RT; 

Table 6.6 summarizes the results of applying the equations of quality cost, 

productivity, and cycle time for serial-parallel system configurations with 

crossover: 

Table 6.6: With crossover configuration 

Quality Cost Productivity Expected Cycle Time 
_ilabor min/ unit medial J.100%1 _lmin I unit medial 

Media L 23.11 73.33 259.87 
Media M 7.05 94.20 259.22 
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Charts 6.13, 6.14, and 6.15 show the difference in performance of the two 

configurations in terms of quality cost, productivity, and cycle time, respectively. 
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6.6 Cell Culture Production System 

Odum, 2002 defined cell culture as: "Cells taken from a living organism 

and grown under controlled conditions ("in vitro"). Method used to maintain cell 

lines or strains". There are four main stages which happen during the cell culture 

production system: initiation, cell expansion, refeed, and harvest. A brief 

description of the production processes for two types of drug products is shown 

in section 6.6.1. 

6.6.1 Process Flow for Cell Culture Production System 

The production for product 1 starts with the initiation process followed by 

four cell expansions (CE), one refeed, and finally fourteen harvest processes 

(HA), with an average processing time of 76 days, as shown in figure 6.16. On 

the other hand, the production for product 2 includes one initiation process, three 
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cell expansions (CE), one refeed, and three harvest processes (HA), with an 

average processing time of 56 days, as shown in figure 6.17. During the initiation 

and cell expansion processes the growth media is used, where during the refeed 

and harvests processes the production media is used instead. 

Initiation 

7 days 

Initiation 

7 days 

Harvest 
(3) 

7 days 

Cell 
Expansion 

(1) 

6 days 

14 Harvests 
(HA) 

3 days/ 1 HA 

Cell 
Expansion 

(2) 

6 days 

Re-Feed 

3 days 

Fig. 6.16: Process flow for product #1 
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Fig. 6.17: Process flow for product #2 
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Each campaign of product 1 includes six lots; three as main lots and three as 

back-up lots that proceed only to cell expansion three. Each campaign of product 

2 includes seven lots; five as main lots and two as back-up lots that proceed only 

to cell expansion two. The back-up lots are only used if any of the main lots are 

lost because of a bioburden or contamination problem. 

6.6.2 Initiation and Cell Expansion Processes 

The cells are seeded inside the media to grow other cells. The media with 

the cells inside are saved inside roller bottles (RB). Figures 6.18 and 6.19 show, 

on average, the number of seeded bottles per lot at each of the initiation and cell 

expansion processes and show how many of them proceed to the next process. 

After the final cell expansion process for the main lots, the number of seeded RB 

stays constant unless a contaminated RB is found in a subsequent process. The 

back-up lots are discarded if none of the main lots are lost. 

Main Lots 

!1. 2, or 3 j 

I initiation I [f§J 

/ e 
~/ 

Back-up Lots 0---0<~ ·---, 
1 10 ---• . --- -, ~.5.orsl ---- :._88 ) 

Fig. 6.18 Number of RB for product 1 
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Fig. 6.19 Number of RB for product 2 

Proceed: 2172 
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Proceed: 172 
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Reviewing the historical data shows that using the back-up lots rarely happens, 

and most of the time the back-up lots end up discarded. The total number of 

seeded bottles for each back-up lot is 476 RB for product 1 (from initiation, CE1, 

CE2, and CE3) and 226 RB for product 2 (from initiation, CE1, and CE2). Since 

each campaign of product 1 has three back-up lots, the total quantity of seeded 

bottles (which will be mostly discarded) becomes 1,428 RB, and since each 

campaign of product 2 has 2 back-up lots, the total quantity of seeded bottles 

becomes 452 RB. 
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Through an online search for the market price of the empty RB, it can be 

assumed that its price from the supplier equals $5 (http://www.coleparmer.com). 

Then, the total cost of empty RB that are used in the back-up lots becomes 

$7,140 per single campaign of product 1, and $2,260 per campaign of product 2. 

By adding the costs of labor hours, overhead, and other raw material, the total 

cost becomes even larger. This is an example that shows the type of challenges 

and difficulties that the biopharmaceutical industry faces to be competitive and 

meet the market needs. Back-up lots that cost a lot of money are produced just 

to make sure that the company will not risk a shortage of critical product available 

in the market for their patients which in turns means loosing the customer 

satisfaction, not helping the patients, and loosing millions of dollars. Tables 6.7 

and 6.8 include the total number of RB per campaign for product 1 and product 2. 

Table 6.7: Number of RB per campaign of product 1 

Total Total Total 
1 lot (3 main lots) (3 back-up lots) (per campaign) 

Initiation _Q_roceed 1 3 3 6 
unused 0 0 0 0 

CE1 
_Q_roceed 10 30 30 60 
unused 0 0 0 0 

CE2 
proceed 25 75 75 150 
unused 40 120 120 240 

CE3 
_Q_roceed 312 936 936 1872 
unused 88 264 264 528 

CE4 _Q_roceed 330 990 - 990 
unused 0 - - -
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Table 6.8: Number of RB per campaign of product 2 
!"""" Total Total Total 

1 lot _{_5 main lotsl l_2 back-u_Q lotsl J.2..er cam_Q_a!9_nl 

Initiation 
_e_roceed 2 10 4 14 
unused 1 5 2 7 

CE1 
_e_roceed 20 100 40 140 
unused 3 15 6 21 

CE2 
Q_roceed 150 750 300 1050 
unused 50 250 100 350 

_e_roceed 2000 10000 - 10000 
CE3 unused 0 - - -

The percentages of discarded RB per campaign at each initiation and cell I 

expansion processes are now found. The discarded RB are the unused seeded 

RB from main lots and all RB from the back-up lots. Table 6.9 includes the total 

non-discarded and discarded RB for each process. 

Table 6.9: Total non-discarded and discarded RB per campaign 

Product 1 Product 2 
Non- Non-

Discarded Discarded Discarded Discarded 
main 3 0 10 5 

Initiation back up 0 3 0 6 
total 3 3 10 11 
main 30 0 100 15 

CE1 back u_.e._ 0 30 0 46 
total 30 30 100 61 
main 75 120 750 250 

CE2 back u_.e._ 0 195 0 400 
total 75 315 750 650 
main 936 264 10000 -

CE3 back u_.e._ 0 1200 0 0 
total 936 1464 10000 -
main 990 - - -

CE4 back u_Q_ 0 0 - -
total 990 0 - -
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As can be seen in table 6.9, 50% of RB at initiation, 50% of RB at CE1, 

81 % of RB at CE2, and 61 % of RB at CE3 are discarded per campaign of product 

1. For product 2, 52% of RB at initiation, 38% of RB at CE1, and 46% of RB at 

Cfa, are discarded per campaign. 

Each of the cell expansion processes includes two steps, trypsinization 

and inoculation. The final expansion before the refeed is performed by robots, 

whereas all of the previous cell expansions are performed manually. When the 

robots perform the trypsinization, some RB might be discarded if any problem 

happens during this semi-automated process. There is no available historical 

data regarding how many RB each robot might loose during the process, but 

based on two days of personal observations the percentage of the discarded 

bottles from all robots during the last cell expansion averages 1.57% for product 

1 and 6.14% for product 2. Assuming that these observations are representative 

of typical production, and based on figures 6.15 and 6.16, the percentages of the 

discarded RB for each of the main lots at each of the initiation and cell expansion 

processes can be found . Table 6.10 summarizes these percentages for product 1 

and product 2. 

Table 6.10: Percentage of discarded RB per lot 
(at initiation and cell expansions) 

Initiation CE1 CE2 CE3 
Product 1 0 0 0.6250 0.2200 

Product 2 0.3333 0.1304 0.2500 0.0614 
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6.6.3 Refeed and Harvest Processes 

The refeed and harvest processes follow the cell expansion processes. 

The refeed process involves replacing the media in the RB and returning the RB 

back to the storage room to continue growing the cell. The harvest processes 

include collecting product from the RB, adding new media, and then returning 

them back to the storage room. The process flow is shown in detail in figure 6.20. 

During the refeed and harvest processes the roller bottles (RB) are 

visually checked to determine if any is contaminated. An RB is discarded if its 

contents are contaminated or damaged by an operator or robot, or if the bottle 

itself is damaged. Two years of historical data for the number of discarded bottles 

at refeed and harvest were used to calculate the average percentage of 

discarded RB for each process. Since the discarded RB does not add value to 

the finished product, they will be considered to be waste or scrap. Table 6.11 

shows the percentage of discarded RB (scrap rate) for refeed and all harvest 

processes of product 1 and product 2. 

The data describing the number of discarded RB at all processes of cell 

culture (initiation, cell expansions, refeed, and harvests) are used to develop a 

transition probability matrix for the serial configuration of the entire cell culture 

production system. Then, the quality cost, productivity, and the cycle time can be 

found. 
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Table 6.11: Percentage of discarded 
RB per lot (at refeed and harvests) 

Product 1 Product 2 
Refeed 0.0009 0.0012 

HV1 0.0007 0.0007 
HV2 0.0010 0.0005 
HV3 0.0021 0.0002 
HV4 0.0008 -
HV5 0.0014 -
HV6 0.0006 -
HV7 0.0009 -
HV8 0.0011 -
HV9 0.0010 -
HV10 0.0008 -
HV11 0.0008 -
HV12 0.0009 -
HV13 0.0026 -
HV14 0.0005 -

6.6.4 Resource Consumption Models for the Cell Culture System 

The initiation and cell expansion processes (except the last cell 

expansion) are not considered in the P matrix in developing the Markova chain, 

but they will be considered in determining the quality cost, productivity, and cycle 

time. That is because at each of these processes the scrap rate is based on a 

constant quantity that is needed to be achieved each time and it could not be 

variable with time, so it will not be changed in long run. On the other hand, scrap 

at the last cell expansion, refeed , and harvest processes is caused by robot, 

operator, or contamination, so it may vary with time. The transition probability 

matrix is developed based on data shown in tables 6.10 and 6.11. Since any RB 

with any quality problem will be discarded to maintain the highest possible 

production quality, there is no rework in the cell culture production system. 
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The transition probability matrix for product 1 is: 

CE.. RF HA· HA· HA, HA, HA HA HA, HA, HA HA·, HA·· HA·> HA·, HA. SC FG 

CE, 0 

RJ' 0 

HI\ 0 

HA, 0 

HAi 0 

HA,. 0 

HA, 0 

HA,, 0 

!{~HA, 0 

H4 0 

HA; 0 

HJi0 0 

HJi 1 0 

.9843 0 0 0 0 0 

0 .9991 0 0 0 0 

0 .9993 0 0 

0 0 .9990 0 

0 0 0 .9979 0 

0 0 0 0 .9992 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

Hiu 0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

HJi3 0 0 

HJi, 0 0 

SC 0 0 

FG 0 0 

Where: 

0 

0 

0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

.9986 0 0 

0 .9994 0 

0 0 .9991 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 
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0 0 

0 0 
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.0157 
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0 

0 

0 
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0 
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0 0 . 9974 .0026 0 

0 0 0 .0005 .9995 
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0 0 0 0 

INT: initiation, CE: cell expansion, RF: refeed, HA: harvest, SC: scrap, and FG: 

finished goods. 

The transition probability matrix for product 2 is: 

liQ . SC 

CE . 0 0.9386 0 0 0 0.0614 0 

RF 0 0 0.9988 0 0 0.0012 0 

HA 0 0 0 0.9993 0 0.0007 0 
P. =HA 0 

HA 0 
SC 0 
FG 0 

0 

0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

0 

0.9995 0.0005 0 
0 

0 

0 

0.0002 0.9998 

0 

0 

A modified model for the n stage serial configuration is used by 

considering the short term probabilities for the initiation and cell expansion 

processes (except the final cell expansion) and the long term probabilities for the 
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rest of the processes obtained from the Markov chain model. Table 6.12 

summarizes the results of applying the resource consumption models for the 

serial configuration cell culture system. 

Table 6.12: Result of resource consumption models for products 1 and 2 

Quality Cost Productivity Expected Cycle Time 
_(hr/ lo!l _(100%1 _(hr I lotl_ 

Product 1 105.72 24.84 1824 
Product 2 99.95 40.51 1344 

6. 7 Cell Expansion 3 for Product 2 

In this section another case study is developed for the final cell expansion 

process in producing product 2. The final cell expansion process is performed by 

three robots, and it includes trypsinization and then an inoculation process. Three 

robots are used to perform the cell expansion, robots X, Y and Z. Based on 

observations, the percentage of wasted RB during the trypsinization step is 

assumed to be 10. 71 % at robot X, and 3.8% at robots Y and Z. On the other 

hand, the scrap rate during the inoculation process is assumed to be 0.0025% for 

robot X, while it is 0% for robots Y and Z. Robot X has some operation problems 

caused by different factors such as the sensor, robot arm, or keyboard. 

During the trypsinization process the cell suspension is prepared in a 

spinner, and then at the inoculation process the spinner content is distributed to 

empty bottles in order to expand the cells. Table 6.13 includes the average time 
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required to perform the trypsinization and inoculation processes when they are 

completed at the same robot. 

Table 6.13: Processing time for cell expansion 3 

Time Time 
T~sinization _(min/s~nnel'}_ Inoculation _(min/s~nnerj_ 

Setup 30 Calibrations 32 
Material Material 
handling and handling and 

_p_ap_erwork 16 _p_a~erwork 28 
Robot's Robot's 
o_p_erations 40 o_p_erations 166 

Sam_p_les 3 _IC 

Cell count 15 

Total 104 226 

Different alternative configurations are considered, and then the resource 

consumption models are applied. Since Robots Y and Z are similar in terms of 

the scrap rate, the number of alternatives is reduced to eight, as shown in figure 

6.21 . The current configuration is a pure parallel, by which both trypsinization and 

inoculation are performed at the same robot. On the other hand, the other 

alternative configurations have a combination where the two processes could be 

performed at the same robot or at two different robots. If the inoculation is 

performed at different robot from the one that performs the trypsinization, then 

the average time for inoculation is assumed to be increased by 10 minutes for 

material handling and setup. 
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Fig. 6.21: Eight configuration alternatives for CE3 

6.7.1 Quality Cost, Productivity, and Cycle Time for All Alternative 

Configurations 

Robot 
y 

Robot 
x 

Robot 
y 

To develop the results for the eight configurations the model from chapter 

three for the pure serial and serial-parallel configurations is used assuming that 

the appropriate process has zero parameters. For example, in configuration #5, a 
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hypothetical process of zero parameters is assumed to be in series with process 

z. Table 6.14, and figures 6.22, 6.23, 6.24 summarize the results for all 

configurations. 

Table 6.14: Result of resource consumption models for different 
alternative configurations 

Quality Cost Productivity Cycle Time 
Jmin/ 1 s_p.!nneij_ Jmin/ 1 s_p.!nneij_ Jmin/ 1 s_p.!nned_ 

Conf!9_uration 1 7.57 92.72 340 

Config_uration 2 4.82 95.67 340 
Configuration 3 11 .13 89.30 340 
Configuration 4 4.41 95.91 340 
Configuration 5 11.92 92.73 335 
Configuration 6 8.76 95.91 335 
Configuration 7 19.66 92.73 335 
Configuration 8 15.37 95.40 330 

Quality Cost 
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Fig. 6.22: Quality Cost for all alternative configurations 
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6.8 Summary and Conclusions 

6.8.1 Case Study One: Media Production System 

The production system for two different types of media is analyzed, where 

there are two configuration alternatives: serial-parallel with crossover and serial­

parallel without crossover. All data required to model each configuration is 

collected, and then the productivity, quality cost, and cycle time are determined 

for each alternative. 

The results for media L show that the quality cost is 19.81 (labor minute 

per unit of media) for the serial-parallel configuration without crossover, and 

23.11 (labor minute per unit of media) for the serial-parallel configuration with 

crossover. The total expected time to produce one unit of media for both 

configurations is 259.87 minutes, so this indicates that 19.81 minutes is 7.62% 

and 23.11 minutes is 8.89% of the total time that is required to produce one unit 

of media. In other words, 7.62% and 8.89% of the total time required to produce 

1 unit of media is a waste because of the scrap and rework. Converting labor 

minutes to labor costs of two operators, and then adding the material and 

overhead costs, will indicate how much money is lost due to quality costs. In 

terms of productivity, the configuration without crossover has 77.42% 

productivity, whereas the configuration with crossover has 73.33%. 

The results for media M show that the quality cost per unit of media is 7.26 

(labor minutes) when the configuration is without crossover, and 7.04 (labor 

minutes) when there is crossover, which are, respectively, 2.80% and 2.72% of 

cycle time (259.22 minutes). When the configuration is without crossover the 
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productivity is 93.93%, while it is 94.20% when the configuration is with 

crossover. 

As a conclusion, the cost of quality and productivity for the media M 

production system is better than that for media L, since the rework and scrap 

rates are different as shown in Tables 6.2 and 6.3. The without-crossover 

configuration of media L has a lower cost of quality and higher productivity than a 

configuration with crossover, while the expected cycle time is the same for both 

configurations. On the other hand, for the media M production system, a 

configuration with crossover performs slightly better than a configuration without 

crossover by generating less cost of quality and higher productivity. The 

expected cycle time, however, is the same for with and without crossover 

configurations of media M. 

6.8.2 Case Study Two: Cell Culture Production System 

The cell culture production system has a serial configuration and this is 

the only applicable configuration, because of the nature of the product, where 

cells should stay for a certain amount of time after each process to keep growing 

before proceeding to next process. The developed resource consumption models 

for serial configuration still can be used to find the quality cost, productivity and 

cycle time for product 1 and product 2 production systems. 

For product 1 the scrap rates at cell expansions 2 and 3 are the highest 

and they affect the quality cost and productivity more than the remaining 

processes. The cycle time equals 1824 hours (76 days), which is just the 
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summation of the processing time at each process since there is no rework time. 

The quality cost is 105.72 hours per lot (approximately 4 day and 10 hours per 

lot), which is 5.8 % of the total time. The productivity is only 24.84% and that is 

obviously because of the high scrap rate at many processes. 

For product 2 the Initiation, cell expansions 1, and cell expansion 2 

processes have the highest scrap rate, so they have greatest effect on quality 

cost and productivity more than the remaining processes. The quality cost is 

99.95 hours per lot (approximately 4 days and 4 hours per lot), which is 7.44 % of 

the total time. The productivity is only 40.51 % which is better than that for 

product 1 but still not high. There is no rework in producing product 2, so the 

cycle time equals the summation of the processing time at each process which is 

1344 hours (56 days). The company should consider improving the processes to 

reduce the scrap rate especially for processes that have the highest rates, in 

order to reduce the quality cost and increase productivity. 

6.8.3 Case Study Three: Cell Expansion 

Different alternative configurations are analyzed to find which one 

performs better. Figures 6.22 shows that configuration 4 is the best in term of 

quality cost since it has the lowest quality cost, while configuration 7 is the worst 

since it has the highest quality cost. Figure 6.23 shows that configurations 4 and 

6 have the highest productivity and hence they perform best, while configuration 

3 has the lowest productivity so it is the worst one. Figure 6.24 shows that 

configuration 8 has the lowest cycle time so it is the best, while configurations 
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1,2, 3, and 4 have the highest cycle time so they are the worst. Table 6.15 

includes the ranks of the eight configurations from best to worst. 

Table 6.15: Ranking the different configurations 

Rank Quality Cost Productivity Cycle Time 

8 (best) 4 4,6 8 
7 2 2 5,6, 7 
6 1 8 1,2,3,4 
5 6 5, 7 
4 3 1 
3 5 3 
2 8 

1 (worst) 7 

It can be concluded from table 6.15 that although performance metrics may 

involve trade off, it is possible to achieve multiple goals at the same time. For 

example, configuration 4 performs the best in term of two metrics: quality cost 

and productivity. Configuration 8, which is the current configuration, has the best 

performance only in term of cycle time. Selecting the best configuration depends 

on the metrics that the management wants to consider in improving the 

production system performance. The managers also could give weights to the 

performance measures depending on the importance of each measure. For 

example, if the weights for the quality cost, productivity, and cycle time are 0.4, 

0.4, and 0.2 respectively, then table 6.16 shows that in terms of all metrics, 

configuration 4 performs the best while configuration 7 performs the worst. The 
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applicability of each alternative should also be considered before selecting the 

best one. 

Table 6.16: Assigning weights to select the preferred configuration 

Rank *Weight 
Configuration Quality Cost Productivity Cycle Time Total 

1 2.4 1.6 1.2 5.2 

2 2.8 2.8 1.2 6.8 

3 1.6 1.2 1.2 4 

4 3.2 3.2 1.2 7.6 

5 1.2 2 1.4 4.6 

6 2 3.2 1.4 6.6 

7 0.4 2 1.4 3.8 

8 0.8 2.4 1.6 4.8 

171 



CHAPTER SEVEN 

DISCUSSION AND CONCLUSION 

This chapter provides a summary of the results obtained, with a 

comprehensive discussion. The conclusions are then proposed . 

7.1 Summary and Discussion 

A summary of the numerical example results for the two process 

production system (using a numerical example as shown in sections 3.3.4 and 

3.4.4) is shown in table 7.1. 

Table 7.1 : Resource consumption summary for two process production system 
I exam_Qle 

Configuration Serial Parallel 

Cost of Quality ($/item) 0.33 0.25 

Productivity(%) 79.03 93.16 

Cycle Time (min/item) 8.10 8.13 

The results show that the selection of the better alternative depends on 

the performance measure of interest. For example, if this manufacturer is 

interested in reducing the cost of quality, then the parallel configuration performs 

better than the serial, or in other words, changing the production configuration 
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from serial to parallel can save 24.2% of the quality cost. Such an improvement 

is also combined with an increase in the productivity of the production system 

from 79.03% (serial) to 93.16% (parallel). However, the cycle time slightly 

increases using the parallel configuration. The manufacturer can make a decision 

based on the performance target of interest. 

Next, a full summary of the sensitivity analysis for the two process 

numerical example is shown in tables 7.2, 7.3, and 7.4. Note that the results 

apply for the ranges of parameters selected for the sensitivity analysis. Table 7.2 

indicates that the parallel configuration performs better than the serial 

configuration when rework costs change, while the preferred configuration 

depends on the value of the scrap costs. Table 7.3 indicates that the parallel 

configuration performs better than the serial configuration when means and 

standard deviations change. Table 7.4 shows that the serial configuration 

performs slightly better than the parallel configuration when the processing times 

change, while the preferred configuration depends on the value of the rework 

times of processes 1 and 2. 

Table 7.2: Sensitivity analysis summary for quality cost of the two process 
d f t I _Qro uc ion sys em exam_2!e 

Parameters Results summary 

RC1 Parallel has lower QC than the serial 

RC2 Parallel has lower QC than the serial 

SC1 Parallel has lower QC than the serial at high SC1 

SC2 Parallel has lower QC than the serial at low SC2 
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Table 7.3: Sensitivity analysis summary for productivity of the two process 
d f t I _Q_rO uc ion s_ys em exam_21 e 

Parameters Results summary 

Mean1 Parallel has higher productivity than the serial 

Mean2 Parallel has higher productivity than the serial 

StDev1 Parallel has higher productivity than the serial 

StDev2 Parallel has higher productivity than the serial 

Table 7.4: Sensitivity analysis summary for cycle time of the two process 
d f t I Q_rO uc ion s_ys em exam_Q_!e 

Parameters Results summary 

PT1 Serial has slightly lower cycle time than the parallel 

PT2 Serial has slightly lower cycle time than the parallel 

RT1 Serial has lower cycle time than the parallel at low RT1 

RT2 Serial has lower cycle time than the parallel at low RT 2 

With a two process production system, there are only two possible 

configurations to be applied, pure serial and parallel. In the following discussion, 

a four process production system is analyzed, and the four possible 

configurations are implemented, which are pure serial and pure parallel, and 

serial-parallel with and without crossover. Table 7.5 summarizes the results of 
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the resource consumption models using a numerical example as in sections 

4.3.3, 4.4.3, 4.5.3, and 4.6.3. 

Table 7.5: Resource consumption summary for four process production system 
I exam_.E!e 

Configuration Serial Parallel Serial-parallel Serial-parallel 
without crossover with crossover 

Cost of Quality ($/item) 1.06 0.67 0.72 0.72 

Productivity(%) 65.22 95.90 89.86 89.86 

Cycle Time (min/item) 16.10 16.27 16.18 16.18 

Similarly, the selection of any given configuration depends on the 

performance target assigned by the manufacturer. The parallel configuration 

shows the highest productivity and the lowest cost of quality compared to the 

other alternatives, while the serial process flow has the lowest cycle time. 

In table 7.5, the results show that the serial-parallel configurations (with 

and without crossover) performed the same, based on the assumptions and 

parameters used for that example. However, when applying the serial-parallel 

models (with and without crossover) on the case study analysis at a 

biopharmaceutical company in Chapter 6, results were different between the two 

alternatives. The parameters used to develop the case study were based on 

actual production data, where results were dependent on the operating 

parameters, assumptions, and production constraints. A production line for two 
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media products containing six processes was analyzed , utilizing serial-parallel 

configurations (with and without crossover). Referring to section 6.5, table 7.6 

summarizes these results. Note that media L and M are two different products 

that are manufactured on the same production system. 

Table 7.6: Resource consumption summary for serial-parallel configuration of 
M d. L d M f th t d e 1a an 0 e cases u !Y_ 

Media L Media M 

Configuration 
without with without with 

crossover crossover crossover crossover 

Cost of Quality 19.81 23.11 7.26 7.05 
(labor min/unit media) 

Productivity(%) 77.42 73.33 93.93 94.20 

Cycle Time 259.87 259.87 259.22 259.22 
(labor min/ unit media) 

Table 7.6 shows that the results for configurations with and without 

crossover are different. In terms of cost of quality and productivity, the 

configuration without crossover for media L performs better, while the 

configuration with crossover for media M performs better. However, the cycle 

time remains the same between the two configurations for each media type, 

because the processing time and rework parameters - including the rework time 

and probabilities - stays the same when changing configurations. 
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In another case study implemented at the same biopharmaceutical 

company, three robots within cell expansion 3 are arranged into all possible 

configurations of pure parallel and serial-parallel configurations. Note that the 

model was adjusted so that it can be used for configurations of any number of 

processes, odd or even, by making the appropriate assumptions and adding 

virtual processes. Based on the performance target, the eight different 

configurations were ranked to achieve the best production output. 

7 .2 Conclusions 

This thesis provides an analytical approach to model a production system and 

select the preferred configuration . There is a relationship between the 

configuration of any production line and the performance. Based on the 

production and operating parameters, the preferred configuration could vary 

accordingly. Cost of quality, productivity, and cycle time are three important 

metrics in measuring the system performance. They are affected by the system 

configuration and the operating parameters. Besides the transition probabilities 

between the states of the production system, the main parameters that affect the 

quality cost are rework and scrap costs, while the main parameters for cycle time 

are the processing time and rework time. An n process general model can be 

applied for odd or even numbers of processes in any production line, with direct 

calculations for the resource consumption models which provides great benefits 

for analyzing large production systems. This thesis provides an excellent 

177 

I 

11 



reference for the biopharmaceutical industry, with models that are applicable for 

the performance analysis of both continuous and discrete production systems. 

7 .3 Future Work 

Based on the results obtained, the following are suggested as possible 

extensions to the research in this thesis: 

1- Use a simulation tool to model the production flows of the four different 

system configurations and then to verify the proposed resource 

consumption models. 

2- Include the short term probability factor in the sensitivity analysis. 

3- Extend the sensitivity analysis by utilizing the design of experiment 

approach to reveal more information about th e significant factors that 

affect each model. 

4- Extend the study to include more metrics that are important to the 

biopharmaceutical industry. 
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