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Abstract
Aim: Theory predicts fish community biomass to decline with increasing temperature 
due to higher metabolic losses resulting in less efficient energy transfer in warm-
water food webs. However, whether these metabolic predictions explain observed 
macroecological patterns in fish community biomass is virtually unknown. Here, we 
test these predictions by examining the variation in demersal fish biomass across pro-
ductive shelf regions.
Location: Twenty one continental shelf regions in the North Atlantic and Northeast 
Pacific.
Time Period: 1980–2015.
Major Taxa Studied: Marine teleost fish and elasmobranchs.
Methods: We compiled high-resolution bottom trawl survey data of fish biomass 
containing 166,000 unique tows and corrected biomass for differences in sampling 
area and trawl gear catchability. We examined whether relationships between net pri-
mary production and demersal fish community biomass are mediated by temperature, 
food-web structure and the level of fishing exploitation, as well as the choice of spa-
tial scale of the analysis. Subsequently, we examined if temperature explains regional 
changes in fish biomass over time under recent warming.
Results: We find that biomass per km2 varies 40-fold across regions and is highest in 
cold waters and areas with low fishing exploitation. We find no evidence that tem-
perature change has impacted biomass within marine regions over the time period 
considered. The biomass variation is best explained by an elementary trophodynamic 
model that accounts for temperature-dependent trophic efficiency.
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1  |  INTRODUC TION

Climate change affects marine ecosystems through multiple driv-
ers, including changes in ocean productivity and temperature 
(Kwiatkowski et al., 2020). These changes are expected to alter fish 
distributions and abundances and eventually impact the structure 
and functioning of marine ecosystems, as well as their associated 
services for human wellbeing (Lotze et al., 2019; Petrik et al., 2020; 
Tittensor et al.,  2021). To anticipate and adapt to the ecological 
consequences of climate change, it is therefore important to better 
understand and predict how changes in ocean productivity and tem-
perature jointly affect fish production and biomass.

Current model predictions of climate impacts on fish often rely 
upon basic ecological theories of how energy flows from primary 
producers to top predators, as well as metabolic scaling of individual 
vital rates with temperature. Specifically, warmer temperatures are 
expected to accelerate most physiological rates, for example maxi-
mum consumption rate and metabolic rate, and, consequently, the 
turnover rate of biomass (Brown et al., 2004; Gillooly et al., 2001). 
The increase in metabolic rate with temperature is further expected 
to increase the fraction of energy that is lost through respiration. 
Consequently, the increasing metabolic costs constrain the amount 
of energy that flows towards the upper trophic levels of food webs 
by lowering the efficiency by which primary production is converted 
into fish biomass (Eddy et al., 2021).

The effect of temperature on the bioenergetics at least partly 
underlies projected trophic amplification of productivity, whereby 
fractional changes in primary production are amplified up through 
the trophic levels (Lotze et al.,  2019). Since marine fish dominate 
the upper trophic levels of ocean food webs worldwide (Hatton 
et al., 2022), it can further be expected that the effects of tempera-
ture on both turnover rate and trophic transfer efficiency will drive, 
at least in part, large-scale latitudinal variation in total fish commu-
nity biomass (O'Connor et al., 2009, 2011). More specifically, it can 
be hypothesized that fish community biomass should increase from 
the tropics to the poles due to a lower turnover rate and more ef-
ficient energy transfer in cold-water environments. This hypothe-
sis is endorsed by empirical studies finding temperature-mediated 
patterns in fish diversity and trophic control (Frank et al.,  2006, 
2007). It is also supported by some theoretical and empirical stud-
ies demonstrating negative relationship between temperature and 

fish community biomass (Guiet et al., 2020; Maureaud et al., 2019). 
However, empirical support based on large-scale observational 
studies across a pronounced temperature gradient is lacking.

There are several potential reasons why such macroecological 
patterns in fish biomass have not yet been documented. Firstly, 
fish communities worldwide have been exposed to long-term 
commercial fishing that changes total community biomass, as well 
as the underlying size- and trophic structure of fish communities 
(Andersen,  2019; Myers & Worm,  2003; Rice & Gislason,  1996). 
Consequently, the exploitation history may mask potential tempera-
ture effects. Secondly, energy flows from primary producers to fish 
may be context- or scale-dependent, especially since some regional 
variations in energy flows may themselves be driven by temperature. 
Notably, warmer regions may have increased stratification and rem-
ineralization of detritus in the water column (Laufkötter et al., 2017; 
Pomeroy & Deibel, 1986), which increases pelagic production, but 
lowers the detritus flux reaching the seafloor. This in turn limits the 
energy available to support benthic prey production and the bio-
mass of bottom-feeding (demersal) fish (van Denderen et al., 2018). 
Lastly, most previous studies focused on the more easily estimated 
community catch rather than the more difficult to measure commu-
nity biomass (Friedland et al.,  2012; Stock et al.,  2017). Most col-
lection of fish biomass data primarily serves to monitor trends and 
fluctuations in population-level abundances (especially of commer-
cially important species for fisheries management purposes), while 
less attention is given towards representing overall community com-
position and biomass (but see, for example, Maureaud et al. (2019) 
and Gislason et al. (2020)). Taken together, data limitations and the 
inter-dependencies between predictor variables may have compli-
cated detecting overall relationships between ocean productivity, 
temperature and fish community biomass.

In this study, we perform a large-scale empirical investigation of 
the macroecological patterns and drivers of fish community biomass 
using an extensive collection of scientific bottom-trawl surveys sam-
pled across pronounced temperature gradients in the North Atlantic 
and Northeast Pacific. The studied continental shelf regions account 
for about 15% of global fisheries catch (Watson, 2017). We find that 
temperature is a main driver of large-scale latitudinal variation in 
demersal fish community biomass. This result is likely driven by a 
reduced trophic transfer efficiency and a faster turnover rate of fish 
biomass in warmer waters. As expected, demersal fish biomass is 

Main Conclusions: Our study supports the hypothesis that temperature is a main 
driver of large-scale cross-regional variation in fish community biomass. The cross-
regional pattern suggests that long-term impacts of warming will be negative on bio-
mass. These results provide an empirical basis for predicting future changes in fish 
community biomass and its associated services for human wellbeing that is food pro-
visioning, under global climate change.

K E Y W O R D S
climate change, food webs, macro-ecology, metabolic theory, ocean productivity, teleost fish
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    |  3van DENDEREN et al.

negatively related to fishing exploitation and positively related to 
zooplankton prey production. All these findings are consistently ob-
served across the different spatial scales studied.

2  |  METHOD

2.1  |  Method overview

We compiled bottom trawl survey data of fish biomass across marine 
ecosystems in the North Atlantic and Northeast Pacific. We ana-
lysed the effect of temperature, and other environmental variables, 
on fish community biomass in four different ways. Using structural 
equation modelling, we examined whether relationships between 
net primary production and demersal fish community biomass are 
mediated by temperature, food-web structure and the level of fish-
ing exploitation at large geographic scales. Subsequently, we used 
wavelet-revised model regression to analyse finer-scale fish biomass 
variability, both across and within ecosystems. In a third analysis, 
we used an explicit trophodynamic modelling framework to compare 
and explore the robustness of our empirical results and relate it to 
past investigations of fisheries catch (Friedland et al., 2012; Stock 
et al., 2017). Lastly, we examined the effect of temperature on fish 
biomass within ecosystems over time using different recursive bio-
mass and surplus production models.

2.2  |  Scientific trawl survey data

Publicly available scientific bottom trawl survey data, primarily sam-
pling demersal commercial species, are obtained from the Northeast 
Pacific and North Atlantic shelf regions in 2021, as described in 
Appendix  S1. The data processing scripts are modified based on 
earlier work from Pinsky et al.  (2013) and Maureaud et al.  (2019) 
(Appendix  S2 for details on processing). We selected all scientific 
surveys that sampled the fish community with otter trawls. For each 
tow in each survey, we selected all demersal teleost and elasmo-
branch species and obtained species weight. We corrected these 
weights for differences in sampling area (in km2) and trawl gear 
catchability to obtain a standardized fish biomass across hauls and 
surveys. We estimated sampling area using information on wing-
spread, speed of vessel and tow duration. Weights were corrected 
for trawl gear catchability using information for 80 species in the 
Northwest Atlantic (Link et al., 2008) and 128 species and 7 func-
tional groups in the North Sea (Walker et al.,  2017). The adjust-
ments resulted in biomass estimates per unit area in metric tonnes 
(1000 kg) per km2. The final dataset contains 166,000 unique tows 
and includes data from 1980 to 2015.

We compared the corrected trawl survey biomasses with avail-
able fisheries stock assessment biomasses to validate the range and 
distribution of the biomass estimates. To this end, we calculated spa-
tial overlap between the surveyed area and the bounding region of 
all fisheries assessment areas from the RAM Legacy database (Ricard 

et al., 2012). For each area that overlapped at least 50% with the sur-
veyed area, we compared biomass of each assessed stock with the 
gear-corrected trawl survey biomass for the corresponding species. 
The comparison shows that the corrected biomass has a reasonable 
match with the stock assessment biomass and no apparent bias, for 
most of the 120 stocks in the Atlantic and Pacific (Appendix  S2: 
Figure S3). This finding improves confidence that the gear-corrected 
trawl survey estimates, hereafter termed demersal fish biomass and/
or demersal community biomass, are representative and comparable 
across areas and surveys.

Using the individual haul coordinates, we estimated an average 
demersal community biomass, in tonnes per km2, per equal area grid 
cell (6000 km2) and surveyed year. To reduce the effect of potential 
outlying biomass estimates, we removed all individual observations 
1.5 times less/greater than the interquantile range per survey and 
year based on log-transformed biomass values (but note that the 
overall conclusions are robust with or without such a data removal, 
not shown).

2.3  |  Analysis of spatial patterns in biomass across 
geographic scales

We analysed the spatial patterns in demersal fish biomass for re-
lationships with environmental and anthropogenic drivers at three 
spatial scales (ecoregion n = 21, subdivision n = 45 and grid cell 
n = 1083, Appendix S3: Figure S1), and using average demersal fish 
biomass data from three time periods (1990–1995, 2000–2005 and 
2010–2015; note that all data are used in the time series analy-
sis). For the ecoregion and subdivision scale, we used a structural 
equation model (SEM), which is a multivariate analysis to describe 
a network of causal relationships (Grace, 2006). The network links 
were inspired by recent modelling predictions of demersal fish bi-
omass based on a trait-based food-web model (Petrik et al., 2019; 
van Denderen et al., 2021). As such, we hypothesized that relation-
ships between net primary production and demersal fish community 
biomass are mediated by pelagic and benthic secondary production. 
Following the rationale laid out in the Introduction and Appendix S3: 
Figure S2, we further hypothesized that demersal fish biomass de-
clines with increasing temperature, fishing exploitation and the mean 
trophic level of the community. Lastly, we expected seafloor depth 
to have an indirect effect on demersal fish biomass by changing the 
flux of detritus to the benthos (Appendix S3: Figure S2). SEM analy-
ses were performed using the package ‘Lavaan’ in R (Rosseel, 2012). 
Since ecoregions/subdivisions varied in their characteristics, multi-
ple sensitivity analyses were performed to test for potential effects 
of differences in for example the number of grid cells and sampled 
depths (Appendix S4: Figures S1 and S2).

We further analysed spatial changes in demersal community 
biomass at the grid cell level. This analysis was not done with SEM, 
as we expect our hypothesized causal structure to differ at more 
local spatial scales, that is effects of fisheries may vary with depth 
and prey productivity within each region. We used wavelet-revised 
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4  |    van DENDEREN et al.

model regression (Carl & Kühn, 2010) to explain finer-scale “within 
region” variability in demersal fish biomass from the same set of 
predictor variables included in the SEM. Wavelet-revised model 
regression is designed for regular grid-based data while account-
ing for spatial autocorrelation and non-stationarity (i.e. spatial au-
tocorrelation may vary across regions). This may be important for 
fish distributions due to biotic and abiotic differences across ma-
rine regions that could affect fish movement patterns, for example, 
Windle et al. (2010). Wavelet-revised model regression decomposes 
the spatial data into different scales and translations using wavelet 
analysis. The wavelet coefficients capture the contribution of the 
corresponding wavelet function to the fish biomass at specific spa-
tial scales and translations, where the translations are analogous to 
the phase of the wavelet. The spatial analysis at the individual grid 
cell level was done for the same three time periods as the SEM. Both 
biomass and the exploitation rate (catch/biomass) were log10 trans-
formed. Since a few grid cells had zero catch (n = 2 for 1990–1995, 3 
for 2000–2005 and 19 for 2010–2015), we added a small quantity 
(1 kg/km2 per year) to avoid taking the log of zero. Model fits for dif-
ferent sets of predictors were assessed using the Akaike information 
criterion (AIC) and the model with the lowest AIC was selected as 
best candidate. When other candidate models had a difference of 
0–2 AIC units, we concluded that models were essentially equivalent 
and the model with the fewest parameters was selected. The analy-
ses were performed using the package ‘spind’ in R (Carl et al., 2018).

The set of environmental variables used as predictors in both 
the SEM and wavelet-revised model regression was compiled from 
several sources. Seafloor depths were measured in 96% of the sur-
vey hauls and extracted for the remaining hauls, using the haul co-
ordinates, from bathymetric data per 1/12° grid from the ETOPO1 
Global Relief Model with sea ice cover (Amante & Eakins,  2009). 
Temperatures were estimated using the COBE sea surface tempera-
ture data per 1° grid and year (www.esrl.noaa.gov/psd/data/gridd​
ed/data.cobe.html). Data on bottom temperatures were not avail-
able for the entire time series but was used to verify some of our 
results (Appendix  S4: Figures  S3 and S4). Fish mean trophic level 
(MTL), describing the biomass-weighted mean trophic level of the 
community, was calculated from the survey data using species-
specific trophic level information (Beukhof et al.,  2019; Froese & 
Pauly, 2018). Fishing exploitation rates were estimated by dividing 
annual fisheries catch of demersal fish with demersal fish survey 
biomass. Fisheries catch data, available on a 30-min spatial grid, 
were obtained from Watson  (2017) and estimated as the sum of 
fisheries landings, illegal, unregulated and unreported catch and dis-
cards at sea. Net primary production was obtained from the cafe 
algorithm using MODIS data per 1/6° grid and averaged between 
2005 and 2010 (scien​ce.orego​nstate.edu/ocean.productivity) (Silsbe 
et al., 2016). Estimates of pelagic and benthic secondary production 
were based on output of GFDL's Carbon, Ocean Biogeochemistry 
and Lower Trophics (COBALT) ecosystem model from a climatology 
of the global earth system model (ESM2.6) representative of the 
contemporary ocean under 1990 greenhouse gas concentrations 
(Stock et al., 2014, 2017). Simulated mesozooplankton biomass and 

productivity in ESM2.6 broadly captures observed and estimated 
contrasts across Large Marine Ecosystems (Stock et al., 2017), and 
the energy available to fish through this pelagic pathway can be 
estimated as mesozooplankton production not consumed by other 
mesozooplankton (Zflux). ESM2.6-COBALT also simulates the detrital 
flux that reaches the seafloor, which is used as a proxy for benthic 
secondary production (Dflux). For all the predictor variables described 
above, we obtained an estimate per area and year, averaged for each 
time period, with the exception of net primary production, Zflux and 
Dflux, for which a fixed mean value was used due to data limitations 
and uncertainties in the estimated values over time.

To compare and explore the robustness of the empirical SEM 
results, we used a trophodynamic model to predict demersal fish 
biomass for each subdivision and ecoregion. We compared these 
with the observed estimates using linear regression and obtained 
the explained variance (R2) and root mean square error (RMSE). In 
the trophodynamic model, modified from Stock et al. (2017), we as-
sumed that energy flux into the fish community is in equilibrium with 
the fisheries harvest out of the community after accounting for food 
chain length variations and trophic transfer efficiency. Demersal fish 
biomass B in each region i can then be estimated by dividing the flux 
with the observed fisheries exploitation rate (ER):

Following the approach of Pauly and Christensen  (1995) and 
Stock et al.  (2017), zooplankton were assigned to trophic level 2.1 
and detritus to 1, such that the number of trophic steps separating 
the zooplankton/detritus flux (Zflux and Dflux) from the fisheries catch 
was estimated by MTL minus 2.1 or 1. We further assumed that only 
part of the zooplankton production is available to demersal fish and 
this fraction is proportional to p, which is estimated as the fraction 
of demersal fish catch relative to total fish catch in each region. The 
value of p was obtained from Watson  (2017). The final parameter 
is the trophic transfer efficiency (TE). This parameter controls the 
decay of energy between trophic levels and was varied from 0.05 
to 0.15 (Eddy et al., 2021). Additionally, we varied the thermal sensi-
tivity (Q10) of TE from 0.2 to 2.5: TEi = TE ∙ Q10

Ti−10

10 , with Ti being the 
average temperature T in each region i.

2.4  |  Analysis of temporal biomass variation 
in ecoregions

We examined whether the changes in demersal fish biomass with 
temperature, as observed in the SEM and wavelet-revised model re-
gression spatial analyses, also drive biomass changes in ecoregions 
over time. The length of the time series varied per region; no data 
were included before 1980 and after 2015 (Appendix S2: Figure S6). 
We estimated the influence of temperature on demersal commu-
nity biomass and production by fitting different recursive biomass 
and surplus production models to the data (see Table 1 for model 

(1)
Bi =

(

Dflux,i × TEi
MTLi−1 + pi × Zflux,i × TEi

MTLi−2.1
)

ERi
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    |  5van DENDEREN et al.

details). We used different models to vary how temperature may af-
fect the demersal fish community, e.g. through an effect on com-
munity biomass, biomass production or carrying capacity. In each 
model, ecoregion was included as a random effect and fishing catch 
was treated as an offset. The temperature term was centred on the 
mean temperature per ecoregion (obtained from the COBE sea sur-
face temperature data but see Appendix S4: Figure S4) to limit our 
analysis to temperature changes within each region. We scaled bio-
mass and production to the maximum biomass per ecoregion. We 
evaluated each model with/without a temperature term using AIC, 
where a model with temperature was considered most parsimoni-
ous if at least 2 AIC units lower. We did not determine which model 
best determined biomass or biomass production and only compared 
each model to itself with and without the temperature term. Lastly, 
we examined if the temperature effect on biomass depended on the 
average temperature in an ecosystem. We did not find support for 
such a relationship and excluded the analysis from the result and 
discussion section.

3  |  RESULTS

Demersal fish biomass was highest in the northern regions of the 
Northeast Pacific (Gulf of Alaska, Eastern Bering Sea and Aleutian 
Islands) and Northeast Atlantic (Barents Sea and Norwegian Sea) 
(Figure 1a). Conversely, demersal fish biomass was lowest in the Gulf 
of Mexico and temperate regions of the North Atlantic (Baltic Sea, 
southern North Sea, Gulf of Saint Lawrence).

At the ecoregion scale, Pearson correlations between demer-
sal fish biomass and temperature (Figure  1b, r = −0.54), fishing 

exploitation (Figure 1c, r = −0.35), net primary production (Figure 1d, 
r = −0.39) and detrital bottom flux (r = −0.33) were negative, while 
depth correlated positively with biomass (r = 0.23). Demersal fish 
biomass had no correlation with zooplankton production (r = 0.05) 
and mean trophic level (r = −0.04). Temperature had a weak negative 
correlation with fishing exploitation (r = −0.19). Whether the correla-
tions with biomass were direct effects of the predictor variable or 
indirect effects governed by other predictor variables were exam-
ined with the SEM.

Including all predictors resulted in a SEM that could be used 
to identify relationships between individual pathways but was too 
complex given the available number of observations to assess over-
all goodness-of-fit (Appendix  S3: Figure  S2). Hence, we simplified 
the full model before assessing overall goodness-of-fit by removing 
the detrital bottom flux, which had an insignificant relation with bio-
mass in 6 out of 6 runs (2 spatial scales × 3 time periods). We also 
removed depth, which became unconnected to the SEM network 
after removing the detrital bottom flux. The final model, including 
the remaining five predictors, had a mean χ2 value of 6.02 (SD from 
the 6 runs is 2.4) with 6 df, and p-values ranging between 0.21 and 
0.88, indicating that our hypothesized causal structure is supported 
by the data (an insignificant result indicates good model fit).

Among the individual pathways, demersal fish biomass at the 
ecoregion and subdivision scale was negatively related to tem-
perature, fishing exploitation and mean trophic level and positively 
related to zooplankton production (Figure  2). The pronounced 
spatial variation in demersal fish biomass was reasonably well ex-
plained (mean R2 = 0.59) with no clear spatial pattern in the residu-
als (Appendix S3: Figure S3). The effects of temperature and fishing 
were almost equally strong (Appendix S3: Figure S4). For most other 

TA B L E  1  Analysis of temporal demersal biomass variation in ecoregions with different recursive biomass models and surplus production 
models.

Formula Model information
θ estimate (ΔAIC; 
p-value)

Recursive biomass models

(M1) Bi,t+1 =

(

� − �Bi,t + �iTi,t
)

Bi,t − Ci,t + �i,t Changes in biomass B in ecoregion i over time t depend on 
biomass in the previous year, a growth term α, a carrying 
capacity term β and θ, which describes the influence of 
temperature T on the fish community. C is the observed 
demersal catch and is treated as an offset.

θ = 0.003 (2.0; 0.92)

(M2) Bi,t+1 =

(

� − �Bi,t −
Ci,t

Bi,t

)

Bi,t ∙ e
�Ti,t ∙ �i,t

Same as M1, but now temperature affects the fish community 
with a multiplicative temperature term.

θ = 0.012 (1.9; 0.70)

(M3) Bi,t+1 =

(

1 −
Ci,t

Bi,t

)

∙ Bi,t
(�−�Bi,t+�iTi,t) ∙ �i,t

Ricker inspired equation with same terms as M1 and M2. Θ = 0.046 (−0.1; 0.15)

Surplus production models

(M4) Pi,t = riBi,t

(

1 −
Bi,t

Ki

)

∙ e�Ti,t + �i,t
Surplus production model with a temperature term following 

Free et al. (2019). Surplus production Pi,t is calculated as the 
change in total biomass: Pi,t = Bi,t+1−Bi,t + Ci,t. r is the intrinsic 
growth rate and K the carrying capacity. Temperature affects 
the fish community with a multiplicative temperature term.

Θ = −0.253 (1.0; 0.26)

(M5) Pi,t = riBi,t

(

1 −
Bi,t

Ki ∙ e
�Ti,t

)

+ �i,t
Similar to M4, but now temperature only affects the carrying 

capacity K.
θ = −0.02 (1.9; 0.69)

Note: The ΔAIC is obtained by subtracting the AIC of a model with a temperature term θT from the AIC of a model without this term (the more 
negative ΔAIC the more important the temperature effect). The p-value of θ is also reported.
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6  |    van DENDEREN et al.

pathways, the directionality conformed with the initial expecta-
tions (Figure 2 vs. Appendix S3: Figure S2). A partial effect size plot 
showed that demersal fish biomass is approximately twice as high 
with a decline in temperature from 15 to 5°C and a decline in ex-
ploitation rate from 0.3 to 0.03, whereas the effect of mean trophic 
level and zooplankton production on biomass were more variable 
(Figure 3).

Similar to the SEM analyses, the grid-cell analysis using wavelet-
revised model regression showed a negative relationship between 
demersal fish biomass and fishing exploitation and temperature, 
while zooplankton had a positive relationship with biomass for all 
three time periods (Table 2). In contrast to the previous analysis, the 
detrital bottom flux, which was excluded in the SEM, had a mixed 
effect on biomass (positive in one period and negative in the two 
others), but it was noted that the detrital bottom flux was the least 
significant predictor consistent with the SEM analysis. Mean trophic 
level was not part of the best candidate model in any of the time 
periods.

The best fit between observed and predicted demersal fish bio-
mass with the trophodynamic model (i.e. Equation 1) was obtained 
with a trophic transfer efficiency of 0.075 and a Q10 temperature 
scaling of trophic transfer efficiency between 0.4 and 0.7 (Figure 4, 

Appendix S3: Figure S5), implying that trophic transfer declines with 
increasing temperature. Replacing the temperature-dependent tro-
phic transfer efficiency with a single mean value, that is making the 
transfer efficiency temperature independent, sharply reduced the 
R2 of the trophodynamic model from 0.66 to 0.42. Furthermore, re-
placing the exploitation rate in Equation 1 with a single mean value 
and refitting led to an R2 of 0.55. The results of the trophodynamic 
model are thus consistent with the SEM in suggesting temperature-
linked trophodynamic effects and a trophic transfer efficiency de-
crease with increasing temperature.

Finally, we found no evidence that temporal changes in tempera-
ture have impacted demersal community biomass and biomass pro-
duction within ecoregions during the period 1980–2015 (Table 1). 
All models with and without a temperature term differed <2 AIC 
units and temperature had a non-significant effect on the recent bio-
mass and biomass production variation.

4  |  DISCUSSION

Our study supports the hypothesis that temperature is a main driver 
of large-scale latitudinal variation in fish community biomass. This 

F I G U R E  1  Mean demersal fish biomass per grid cell (6000 km2) in 1990–2015 (a). Bivariate correlations between mean demersal fish 
biomass and temperature (b), exploitation rate (c) and net primary production (d) aggregated per ecoregion. The lines were fit with linear 
regression.
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    |  7van DENDEREN et al.

result is likely driven by a reduced trophic transfer efficiency and a 
faster turnover rate of fish biomass in warmer waters. As expected, 
demersal community biomass is negatively related to fishing exploi-
tation and positively related to zooplankton prey production. The 
effect of mean trophic level on demersal community biomass is 
relatively weak. All these findings are consistently observed across 
the different spatial scales studied. We find no evidence that tem-
perature fluctuations and recent warming have impacted demersal 
community biomass. Even though we found no effect of recent 
warming, our study provides an empirical basis for long-term climate 
predictions and suggests a set of explanatory variables that are most 
important.

The lack of a relationship between demersal fish biomass and the 
detrital bottom flux and the positive but weak relationship between 
zooplankton prey production and demersal fish biomass in the SEM 
were unexpected, as prey production should ultimately constrain 
the energy available to fish. From a trophodynamic perspective, the 
weak relationship between prey production and biomass and the 
strong relationship with temperature suggests that temperature-
modulated impacts on fish turnover rates and/or trophic transfer 
efficiencies are more important than the baseline prey resources 
in determining demersal fish biomass, at least for the range of sys-
tems and scales considered here. This finding is supported by the 
trophodynamic model, which required a strong negative relationship 

F I G U R E  2  Final SEM showing the direct and indirect effects of predictors on demersal fish biomass averaged across model runs 
(conducted at the two broad spatial scales for each time period; Appendix S3: Figure S4). The colour and thickness of the arrows shows 
the sign (blue arrow = positive, red oval = negative) and strength of each relationship based on linear scaling of the mean standardized 
coefficients across model runs. The coefficient of determination (R2) is indicated for each response variable. We removed the grey predictor 
variables and pathways in the final SEM to limit the number of predictors relative to the number of observations.

F I G U R E  3  Partial effect of temperature (a), exploitation rate (b), mean trophic level (c) and zooplankton production (d) on demersal 
fish biomass as estimated from the SEM (Figure 2). The plots show the change in demersal fish biomass along the range of each predictor 
while keeping the other variables fixed at their mean values. The lines represent different spatial scales and time periods (see legend and 
Appendix S3: Figure S4 for each SEM).
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8  |    van DENDEREN et al.

between the transfer efficiency and temperature to obtain skillful 
demersal fish biomass predictions. In retrospect, the weak relation-
ship with prey production is not too surprising as the data compi-
lation covers a considerable thermal range (−1 to 27°C), while the 
studied shelf systems have moderate to high productivity and pro-
ductivity varies less than a factor 4 (Figure 1d). It is thus expected 
that prey production could become more important for predicting 
changes in demersal fish biomass in both the SEM and the tropho-
dynamic model along a broader productivity gradient. For example, 
a gradient from the shelf to the deep ocean that covers larger differ-
ences in benthic prey production (Wei et al., 2011).

It is important to note that the negative relationship between 
demersal fish biomass and temperature does not necessarily imply 
that the potential sustainable fishing catch will be lower in warmer 
shelf systems. Catch is a flux (biomass removed per unit time) similar 
to production and is differently affected by temperature compared 
to biomass. Increased biomass turnover times at higher tempera-
tures, for example, decreases the biomass associated with a given 

production after warming, for example du Pontavice et al. (2021). In 
contrast with the demersal fish biomass results herein, estimates of 
plankton food web production available to fish can provide moder-
ately skillful fisheries catch predictions at a global scale (Friedland 
et al., 2012; Stock et al., 2017). Similar to the demersal fish biomass 
results herein, a strong negative dependence between the transfer 
efficiency and temperature significantly improved fisheries catch 
estimates (Stock et al., 2017).

Whereas most relationships in the SEM are consistently ob-
served at the two spatial scales and three time periods, the link 
between NPP and trophic level varies from slightly positive at subdi-
vision scale in 2000–2005 to strongly negative at both spatial scales 
in 2010–2015. We are unable to provide an explanation for this vari-
able effect. Low NPP is thought to lengthen planktonic food chains 
but the trophic level of fish that we used in the analysis does not 
account for variations in the planktonic food chain. We therefore 
expected NPP to increase the biomass-weighted trophic level as, 
theoretically, increasing productivity increases the biomass of the 
(top-) predator (Oksanen et al., 1981). Possibly, the variable effect 
between NPP and trophic level reflects variation of another param-
eter not included in the SEM network.

4.1  |  Climate predictions of marine fish

Ensemble simulations of marine fish dynamics under different future 
climate scenarios typically project declines in fish community bio-
mass ranging between 5% to 15% depending on the climate scenario 
(Tittensor et al., 2021). The fish community models used for these 
simulations have different ways of applying temperature, such as 
on feeding and metabolism for some, and on mortality and trophic 
efficiency for others. For individual models, the decline in biomass 
with climate warming is estimated to range between 0.5% and 15% 
per +1°C (Heneghan et al., 2021). This decline compares well with 
the predicted (spatial) decline of demersal fish biomass with tem-
perature in the SEM ~5% per +1°C and the trophodynamic model 
~10% per +1°C. Both our SEM and trophodynamic model findings 
thus support the fish ensemble simulations.

The parametrization of temperature in the trophodynamic 
equation is naturally a simplification of temperature effects on fish 
physiology. Studies have indicated that the temperature scaling of 
feeding rates is typically lower than the scaling of metabolic rates 
(Rall et al., 2012; Vucic-Pestic et al., 2011), as implemented in some 

TA B L E  2  Selected models using wavelet-revised model regression for spatial changes in demersal fish biomass at the grid cell level.

Model estimated intercept p-value Years Nb of grid cells

log10(B) = 0.70–0.04∙T−0.36∙log10(ER) + 0.002∙Zflux + 0.001∙Dflux All p < 0.001 1990–95 846

log10(B) = 1.07–0.04∙T−0.27∙log10(ER) + 0.002∙Zflux – 0.0003∙Dflux pDflux = 0.008; all p < 0.001 2000–05 983

log10(B) = 1.10–0.04∙T−0.23∙log10(ER) + 0.002∙Zflux – 0.0002∙Dflux pDflux = 0.05; other p < 0.001 2010–15 972

Note: The models are tested with all five predictor variables from the original SEM. Mean trophic level is not shown as it is not part of the best 
candidate model in any of the time periods.
Abbreviations: Dflux, detrital bottom flux; ER, fishing exploitation; T, temperature; Zflux, zooplankton production.

F I G U R E  4  Ecoregion comparison of predicted and observed 
demersal fish biomass (in tonnes per km2) averaged between 1990–
2015. The predicted biomass is estimated using the trophodynamic 
model with a transfer efficiency of 0.075 and a temperature scaling 
(Q10) of the transfer efficiency of 0.55 (see Appendix S3: Figure S5 
for a range of values). The dashed line is the 1:1 line, and the solid 
line is a linear fit. R2 is the coefficient of determination, RMSE the 
root mean square error. Similar results are obtained when analysis 
is done at subdivision scale (Appendix S3: Figure S6).
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    |  9van DENDEREN et al.

models used for global simulations of marine fish dynamics (Cheung 
et al.,  2013; Petrik et al.,  2019). The lower temperature scaling of 
feeding rates reduces the fraction of energy that is available for fish 
growth in warmer waters. As a consequence, average fish growth 
increases less along a temperature cline than the expected increase 
in metabolism (van Denderen et al., 2020). So far, it has been diffi-
cult to predict how such temperature scaling at the individual level 
translates to the overall community. Our empirical results provide 
evidence indicating that demersal community biomass is equally 
constrained by temperature.

We observed no changes in demersal fish biomass that were cor-
related with temperature over the time period of the survey data. 
Temperature and fisheries catch fluctuate in time and fish popula-
tions may have lagged responses to both. We therefore expect that 
the observed variations in temperature were too small to reveal a sig-
nal, at least during the study period. Other studies reporting changes 
in fish populations and communities under recent warming investi-
gated species-specific responses in recruitment, productivity and/
or distributional changes, as well as shifts in the trait-composition of 
the fish community (Frainer et al., 2017; Free et al., 2019; Friedland 
et al., 2020; Pinsky et al., 2013). The latter are likely more sensitive 
to environmental changes than demersal community biomass, as 
these trait-based metrics account for changes in both composition 
and relative abundances of individual species. Additionally, changes 
in fish carrying capacity as well as changes in mean trophic level due 
to fishing could have limited our ability to detect temperature ef-
fects on fish community biomass.

4.2  |  The role of fishing

The Northeast Atlantic region was found to have the highest fisher-
ies exploitation rates, whereas Aleutian Islands and Barents Sea had 
the lowest rates (Appendix  S3: Figure  S7). This finding is consist-
ent with previous work on the footprint of bottom trawling, where 
around 2% of the total area was trawled in the Aleutian Islands and 
45% in the North Sea (Amoroso et al., 2018). The exploitation rates 
in the North Sea showed the most pronounced temporal decline in 
catch per biomass (i.e. from 0.4 in the 1980s to 0.2 year−1 in recent 
years), supporting previous studies documenting a strong reduction 
of fishing pressure on the demersal community (Couce et al., 2020). 
All North American regions had exploitation rates <0.06 year−1. 
These lower rates, compared with the Northeast Atlantic region, are 
likely due to a different fisheries management strategy and generally 
lower exploitation rates of commercial species (Battista et al., 2018; 
Witherell et al., 2000).

We found a strong negative relationship between demersal 
community biomass and a log10-transformed fishing exploitation 
rate. This implies that small increases at low exploitation rate (based 
on the untransformed data) may cause large declines in demer-
sal community biomass. We expect that this non-linear effect is 
caused by the decline of large and long-lived individuals that have 

accumulated biomass over their lifetime. Additionally, fishing had a 
weak but negative relationship with the mean trophic level of the 
community, which in turn had a negative relationship with biomass 
(see Appendix  S3: Figure  S2 for hypothesized mechanisms). This 
indirect effect of fishing channelled through mean trophic level is 
thus positive on demersal community biomass but is weaker than 
the direct negative effect of fishing. The sensitivity of the demersal 
fish community to fishing highlights that reducing fishing mortality 
is an effective way of reducing the impacts of climate change on the 
fish community, sensu Brander (2007). Our results further stress the 
need for future exploitation rate scenarios in line with the Shared 
Socioeconomic Pathways for making climate change projections of 
fish biomass (Hamon et al., 2021).

4.3  |  Demersal and pelagic fish

Changes in community biomass were solely analysed for the demer-
sal part of the fish community. However, higher proportions of pe-
lagic fish catch relative to demersal fish catch are observed in the 
three ecoregions with the highest temperatures, that is Northern 
Gulf of Mexico, Carolinian and Floridian. These higher proportions 
support previously documented patterns in global fish catches to-
wards dominance of pelagic fish towards the tropics (van Denderen 
et al., 2018) and could have contributed to the observed declines of 
demersal fish biomass with temperature. The trophodynamic model 
implicitly accommodated regional variation in pelagic and demersal 
fish (by way of parameter p). Although the trophodynamic model 
supported the SEM outcome, it is important to note that not all the 
decline in demersal fish biomass with temperature may be associ-
ated with a direct bioenergetic effect of temperature on fish.

5  |  CONCLUSION

To anticipate the consequences of climate change on marine eco-
system function and services (e.g. food provisioning and climate 
regulation through carbon sequestration), it is critical to understand 
how changes in ocean productivity and temperature may affect the 
upper trophic levels of marine ecosystems. Our large-scale empirical 
investigation showed a pronounced latitudinal increase in demer-
sal fish community biomass from the subtropics to the poles. The 
changes in demersal community biomass are linked to differences 
in temperature, fishing, and ocean productivity. The observed nega-
tive relationship between temperature and community biomass indi-
cates that the long-term impacts of climate warming on community 
biomass will be negative. This finding is consistent with model pre-
dictions of fish biomass (Lotze et al., 2019; Tittensor et al., 2021). 
Hence, our results provide an important empirical basis to formally 
validate and ground truth such model-based predictions in order to 
evaluate sound and robust management actions in the face of global 
change.

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13732 by U

niversity O
f R

hode Island L
ib, W

iley O
nline L

ibrary on [29/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10  |    van DENDEREN et al.

ACKNO​WLE​DG E​MENTS
We wish to thank ICES, NOAA, DFO, IMR and OceanAdapt for 
making data available and/or accessible. Daniel van Denderen 
was funded by the European Union's Horizon 2020 Research 
and Innovation Programme under the Marie Sklodowska-Curie 
grant agreement No 101024886. Martin Lindegren acknowl-
edges financial support from the European Union's Horizon 2020 
projects “Mission Atlantic” (ID: 862428) and “B-USEFUL” (ID: 
101059823). Ken H. Andersen acknowledges support from the 
Danish Research Foundation, from the VKR Centre for Ocean 
Life and from European Union Horizon Europe Research and 
Innovation Programme under Grant Agreement No 101083922, 
project OceanICU. The results of this work reflects only the au-
thor's view and the Commission is not responsible for any use that 
may be made of the information it contains. Colleen M. Petrik was 
funded by NOAA grants NA20OAR4310438, NA20OAR4310441 
and NA20OAR4310442.

CONFLIC T OF INTERE S T S TATEMENT
There is no conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
Data are already published and publicly available, with those 
items properly cited in this submission. A complete list of pub-
licly available datasets used for this manuscript can be found in 
Appendix  S1. A secondary data product, combining processed 
data for all regions, is archived as a .csv data table in ZENODO: 
https://doi.org/10.5281/zenodo.7992514. All data and scripts 
for processing and analyses can be found in the Github reposi-
tory Dvandenderen/DemFish_trawl (https://doi.org/10.5281/
zenodo.7992482).

ORCID
Daniel van Denderen   https://orcid.org/0000-0001-6351-0241 
Aurore A. Maureaud   https://orcid.org/0000-0003-4778-9443 
Ken H. Andersen   https://orcid.org/0000-0002-8478-3430 
Sarah Gaichas   https://orcid.org/0000-0002-5788-3073 
Martin Lindegren   https://orcid.org/0000-0002-9185-951X 
Colleen M. Petrik   https://orcid.org/0000-0003-3253-0455 
Charles A. Stock   https://orcid.org/0000-0001-9549-8013 
Jeremy Collie   https://orcid.org/0000-0002-7708-4105 

R E FE R E N C E S
Amante, C., & Eakins, B. (2009). ETOPO1 1 arc-minute global relief 

model: Procedures, data sources and analysis. ETOPO1 1 arc-minute 
global relief model: Procedures, data sources and analysis. NOAA 
Technical Memorandum NESDIS NGD-C24.

Amoroso, R. O., Pitcher, C. R., Rijnsdorp, A. D., McConnaughey, R. A., 
Parma, A. M., Suuronen, P., Eigaard, O. R., Bastardie, F., Hintzen, N. 
T., Althaus, F., Baird, S. J., Black, J., Buhl-Mortensen, L., Campbell, 
A. B., Catarino, R., Collie, J., Cowan, J. H., Durholtz, D., Engstrom, 
N., … Silva, C. (2018). Bottom trawl fishing footprints on the world's 
continental shelves. Proceedings of the National Academy of Sciences 
of the United States of America, 115, E10275–E10282. https://doi.
org/10.1073/pnas.1802379115

Andersen, K. H. (2019). Fish ecology, evolution, and exploitation. Princeton 
University Press.

Battista, W., Kelly, R. P., Erickson, A., & Fujita, R. (2018). Fisheries gov-
ernance affecting conservation outcomes in the United States and 
European Union. Coastal Management, 46(5), 388–452. https://doi.
org/10.1080/08920​753.2018.1498711

Beukhof, E., Dencker, T. S., Palomares, M. L. D., & Maureaud, A. (2019). 
A trait collection of marine fish species from North Atlantic and 
Northeast Pacific continental shelf seas. Pangaea. https://doi.
org/10.1594/PANGA​EA.900866

Brander, K. M. (2007). Global fish production and climate change. 
Proceedings of the National Academy of Sciences of the United States 
of America, 104(50), 19709–19714. https://doi.org/10.1073/
pnas.0702059104

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. 
(2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771–
1789. https://doi.org/10.1890/03-9000

Carl, G., & Kühn, I. (2010). A wavelet-based extension of general-
ized linear models to remove the effect of spatial autocor-
relation. Geographical Analysis, 42(3), 323–337. https://doi.
org/10.1111/j.1538-4632.2010.00777.x

Carl, G., Levin, S. C., & Kühn, I. (2018). Spind: An R package to account 
for spatial autocorrelation in the analysis of lattice data. Biodiversity 
Data Journal, 6, e20760. https://doi.org/10.3897/BDJ.6.e20760

Cheung, W. W. L., Sarmiento, J. L., Dunne, J., Frölicher, T. L., Lam, V. W. 
Y., Deng Palomares, M. L., Watson, R., & Pauly, D. (2013). Shrinking 
of fishes exacerbates impacts of global ocean changes on ma-
rine ecosystems. Nature Climate Change, 3, 254–258. https://doi.
org/10.1038/nclim​ate1691

Couce, E., Schratzberger, M., & Engelhard, G. H. (2020). Reconstructing 
three decades of total international trawling effort in the North 
Sea. Earth System Science Data, 12(1), 373–386. https://doi.
org/10.5194/essd-12-373-2020

du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C., & Cheung, W. 
W. L. (2021). Climate-induced decrease in biomass flow in marine 
food webs may severely affect predators and ecosystem pro-
duction. Global Change Biology, 27(11), 2608–2622. https://doi.
org/10.1111/gcb.15576

Eddy, T. D., Bernhardt, J. R., Blanchard, J. L., Cheung, W. W. L., Colléter, M., 
du Pontavice, H., Fulton, E. A., Gascuel, D., Kearney, K. A., Petrik, C. 
M., Roy, T., Rykaczewski, R. R., Selden, R., Stock, C. A., Wabnitz, C. 
C. C., & Watson, R. A. (2021). Energy flow through marine ecosys-
tems: Confronting transfer efficiency. Trends in Ecology & Evolution, 
36(1), 76–86. https://doi.org/10.1016/j.tree.2020.09.006

Frainer, A., Primicerio, R., Kortsch, S., Aune, M., Dolgov, A. V., Fossheim, 
M., & Aschan, M. M. (2017). Climate-driven changes in functional 
biogeography of Arctic marine fish communities. Proceedings of the 
National Academy of Sciences of the United States of America, 114(46), 
12202–12207. https://doi.org/10.1073/pnas.17060​80114

Frank, K. T., Petrie, B., & Shackell, N. L. (2007). The ups and downs of trophic 
control in continental shelf ecosystems. Trends in Ecology & Evolution, 
22(5), 236–242. https://doi.org/10.1016/j.tree.2007.03.002

Frank, K. T., Petrie, B., Shackell, N. L., & Choi, J. S. (2006). 
Reconciling differences in trophic control in mid-latitude ma-
rine ecosystems. Ecology Letters, 9(10), 1096–1105. https://doi.
org/10.1111/j.1461-0248.2006.00961.x

Free, C. M., Thorson, J. T., Pinsky, M. L., Oken, K. L., Wiedenmann, J., 
& Jensen, O. P. (2019). Impacts of historical warming on marine 
fisheries production. Science, 363(6430), 979–983. https://doi.
org/10.1126/scien​ce.aau1758

Friedland, K. D., Langan, J. A., Large, S. I., Selden, R. L., Link, J. S., Watson, 
R. A., & Collie, J. S. (2020). Changes in higher trophic level produc-
tivity, diversity and niche space in a rapidly warming continental 
shelf ecosystem. Science of the Total Environment, 704, 135270. 
https://doi.org/10.1016/j.scito​tenv.2019.135270

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13732 by U

niversity O
f R

hode Island L
ib, W

iley O
nline L

ibrary on [29/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.7992514
https://doi.org/10.5281/zenodo.7992482
https://doi.org/10.5281/zenodo.7992482
https://orcid.org/0000-0001-6351-0241
https://orcid.org/0000-0001-6351-0241
https://orcid.org/0000-0003-4778-9443
https://orcid.org/0000-0003-4778-9443
https://orcid.org/0000-0002-8478-3430
https://orcid.org/0000-0002-8478-3430
https://orcid.org/0000-0002-5788-3073
https://orcid.org/0000-0002-5788-3073
https://orcid.org/0000-0002-9185-951X
https://orcid.org/0000-0002-9185-951X
https://orcid.org/0000-0003-3253-0455
https://orcid.org/0000-0003-3253-0455
https://orcid.org/0000-0001-9549-8013
https://orcid.org/0000-0001-9549-8013
https://orcid.org/0000-0002-7708-4105
https://orcid.org/0000-0002-7708-4105
https://doi.org/10.1073/pnas.1802379115
https://doi.org/10.1073/pnas.1802379115
https://doi.org/10.1080/08920753.2018.1498711
https://doi.org/10.1080/08920753.2018.1498711
https://doi.org/10.1594/PANGAEA.900866
https://doi.org/10.1594/PANGAEA.900866
https://doi.org/10.1890/03-9000
https://doi.org/10.1111/j.1538-4632.2010.00777.x
https://doi.org/10.1111/j.1538-4632.2010.00777.x
https://doi.org/10.3897/BDJ.6.e20760
https://doi.org/10.1038/nclimate1691
https://doi.org/10.1038/nclimate1691
https://doi.org/10.5194/essd-12-373-2020
https://doi.org/10.5194/essd-12-373-2020
https://doi.org/10.1111/gcb.15576
https://doi.org/10.1111/gcb.15576
https://doi.org/10.1016/j.tree.2020.09.006
https://doi.org/10.1073/pnas.1706080114
https://doi.org/10.1016/j.tree.2007.03.002
https://doi.org/10.1111/j.1461-0248.2006.00961.x
https://doi.org/10.1111/j.1461-0248.2006.00961.x
https://doi.org/10.1126/science.aau1758
https://doi.org/10.1126/science.aau1758
https://doi.org/10.1016/j.scitotenv.2019.135270


    |  11van DENDEREN et al.

Friedland, K. D., Stock, C., Drinkwater, K. F., Link, J. S., Leaf, R. T., Shank, 
B. V., Rose, J. M., Pilskaln, C. H., & Fogarty, M. J. (2012). Pathways 
between primary production and fisheries yields of large marine 
ecosystems. PLoS One, 7(1), e28945. https://doi.org/10.1371/journ​
al.pone.0028945

Froese, R., & Pauly, D. (Eds.) (2018). FishBase World Wide Web electronic 
publication. www.fishbase.org, version (10/2018). www.fishb​ase.org.

Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., & Charnov, E. 
L. (2001). Effects of size and temperature on metabolic rate. 
Science, 293(5538), 2248–2251. https://doi.org/10.1126/scien​
ce.1061967

Gislason, H., Collie, J., MacKenzie, B. R., Nielsen, A., de Fatima Borges, 
M., Bottari, T., Chaves, C., Dolgov, A. V., Dulčić, J., Duplisea, D., 
Fock, H. O., Gascuel, D., Gil de Sola, L., Hiddink, J. G., ter Hofstede, 
R., Isajlović, I., Jonasson, J. P., Jørgensen, O., Kristinsson, K., … 
Vrgoč, N. (2020). Species richness in North Atlantic fish: Process 
concealed by pattern. Global Ecology and Biogeography, 29(5), 842–
856. https://doi.org/10.1111/geb.13068

Grace, J. B. (2006). Structural equation modeling and natural systems. 
Cambridge University Press.

Guiet, J., Galbraith, E. D., Bianchi, D., & Cheung, W. W. L. (2020). 
Bioenergetic influence on the historical development and decline 
of industrial fisheries. ICES Journal of Marine Science, 77(5), 1854–
1863. https://doi.org/10.1093/icesj​ms/fsaa044

Hamon, K. G., Kreiss, C. M., Pinnegar, J. K., Bartelings, H., Batsleer, 
J., Catalán, I. A., Damalas, D., Poos, J.-J., Rybicki, S., Sailley, S. F., 
Sgardeli, V., & Peck, M. A. (2021). Future socio-political scenarios 
for aquatic resources in Europe: An operationalized framework for 
marine fisheries projections. Frontiers in Marine Science, 8, 578516. 
https://www.front​iersin.org/artic​les/, https://doi.org/10.3389/
fmars.2021.578516

Hatton, I. A., Heneghan, R. F., Bar-On, Y. M., & Galbraith, E. D. (2022). 
The global ocean size spectrum from bacteria to whales. Science 
Advances, 7(46), eabh3732. https://doi.org/10.1126/sciadv.
abh3732

Heneghan, R. F., Galbraith, E., Blanchard, J. L., Harrison, C., Barrier, N., 
Bulman, C., Cheung, W., Coll, M., Eddy, T. D., Erauskin-Extramiana, 
M., Everett Jason, D., Fernandes-Salvador Jose, A., Gascuel, D., 
Guiet, J., Maury, O., Palacios-Abrantes, J., Petrik Colleen, M., du 
Pontavice, H., Richardson Anthony, J., … Tittensor, D. P. (2021). 
Disentangling diverse responses to climate change among global 
marine ecosystem models. Progress in Oceanography, 198, 102659. 
https://doi.org/10.1016/j.pocean.2021.102659

Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., 
Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., 
Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-
Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., … Ziehn, T. 
(2020). Twenty-first century ocean warming, acidification, deoxy-
genation, and upper-ocean nutrient and primary production decline 
from CMIP6 model projections. Biogeosciences, 17(13), 3439–3470. 
https://doi.org/10.5194/bg-17-3439-2020

Laufkötter, C., John, J. G., Stock, C. A., & Dunne, J. P. (2017). Temperature 
and oxygen dependence of the remineralization of organic mat-
ter. Global Biogeochemical Cycles, 31(7), 1038–1050. https://doi.
org/10.1002/2017G​B005643

Link, J., Overholtz, W., O'Reilly, J., Green, J., Dow, D., Palka, D., Legault, 
C., Vitaliano, J., Guida, V., & Fogarty, M. (2008). The northeast US 
continental shelf energy modeling and analysis exercise (EMAX): 
Ecological network model development and basic ecosystem 
metrics. Journal of Marine Systems, 74(1–2), 453–474. https://doi.
org/10.1016/j.jmarsys.2008.03.007

Lotze, H. K., Tittensor, D. P., Bryndum-Buchholz, A., Eddy, T. D., Cheung, 
W. W. L., Galbraith, E. D., Barange, M., Barrier, N., Bianchi, D., & 
Blanchard, J. L. (2019). Global ensemble projections reveal tro-
phic amplification of ocean biomass declines with climate change. 
Proceedings of the National Academy of Sciences of the United States 

of America, 116(26), 12907–12912. https://doi.org/10.1073/
pnas.19001​94116

Maureaud, A., Hodapp, D., van Denderen, P. D., Hillebrand, H., Gislason, 
H., Spaanheden Dencker, T., Beukhof, E., & Lindegren, M. (2019). 
Biodiversity–ecosystem functioning relationships in fish commu-
nities: Biomass is related to evenness and the environment, not 
to species richness. Proceedings of the Royal Society B: Biological 
Sciences, 286(1906), 20191189. https://doi.org/10.1098/
rspb.2019.1189

Myers, R. A., & Worm, B. (2003). Rapid worldwide depletion of pred-
atory fish communities. Nature, 423(6937), 280–283. https://doi.
org/10.1038/Natur​e01610

O'Connor, M. I., Gilbert, B., & Brown, C. J. (2011). Theoretical predictions 
for how temperature affects the dynamics of interacting herbi-
vores and plants. The American Naturalist, 178(5), 626–638. https://
doi.org/10.1086/662171

O'Connor, M. I., Piehler, M. F., Leech, D. M., Anton, A., & Bruno, J. F. 
(2009). Warming and resource availability shift food web struc-
ture and metabolism. PLoS Biology, 7(8), e1000178. https://doi.
org/10.1371/journ​al.pbio.1000178

Oksanen, L., Fretwell, S. D., Arruda, J., & Niemela, P. (1981). Exploitation 
ecosystems in gradients of primary productivity. The American 
Naturalist, 118(2), 240–261.

Pauly, D., & Christensen, V. (1995). Primary production required to 
sustain global fisheries. Nature, 374(6519), 255–257. https://doi.
org/10.1038/374255a0

Petrik, C. M., Stock, C. A., Andersen, K. H., van Denderen, P. D., & 
Watson, J. R. (2019). Bottom-up drivers of global patterns of de-
mersal, forage, and pelagic fishes. Progress in Oceanography, 176, 
102124. https://doi.org/10.1016/j.pocean.2019.102124

Petrik, C. M., Stock, C. A., Andersen, K. H., van Denderen, P. D., & Watson, 
J. R. (2020). Large pelagic fish are most sensitive to climate change 
despite pelagification of ocean food webs. Frontiers in Marine 
Science, 7, 588482. https://doi.org/10.3389/fmars.2020.588482

Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., & Levin, S. A. 
(2013). Marine taxa track local climate velocities. Science, 341(6151), 
1239–1242. https://doi.org/10.1126/scien​ce.1239352

Pomeroy, L. R., & Deibel, D. O. N. (1986). Temperature regulation of bac-
terial activity during the spring bloom in Newfoundland coastal 
waters. Science, 233(4761), 359–361. https://doi.org/10.1126/scien​
ce.233.4761.359

Rall, B. C., Brose, U., Hartvig, M., Kalinkat, G., Schwarzmüller, F., Vucic-
Pestic, O., & Petchey, O. L. (2012). Universal temperature and 
body-mass scaling of feeding rates. Philosophical Transactions of the 
Royal Society B: Biological Sciences, 367(1605), 2923–2934. https://
doi.org/10.1098/rstb.2012.0242

Ricard, D., Minto, C., Jensen, O. P., & Baum, J. K. (2012). Examining the 
knowledge base and status of commercially exploited marine spe-
cies with the RAM Legacy Stock Assessment Database. Fish and 
Fisheries, 13(4), 380–398. https://doi.org/10.1111/j.1467-2979.​
2011.00435.x

Rice, J., & Gislason, H. (1996). Patterns of change in the size spectra of 
numbers and diversity of the North Sea fish assemblage, as re-
flected in surveys and models. ICES Journal of Marine Science, 53, 
1214–1225. https://doi.org/10.1006/jmsc.1996.0146

Rosseel, Y. (2012). Lavaan: An R package for structural equation mod-
eling. Journal of Statistical Software, 48(2), 1–36. https://doi.
org/10.18637/jss.v048.i02

Silsbe, G. M., Behrenfeld, M. J., Halsey, K. H., Milligan, A. J., & Westberry, 
T. K. (2016). The CAFE model: A net production model for global 
ocean phytoplankton. Global Biogeochemical Cycles, 30(12), 1756–
1777. https://doi.org/10.1002/2016G​B005521

Stock, C. A., Dunne, J. P., & John, J. G. (2014). Global-scale carbon and 
energy flows through the marine planktonic food web: An analysis 
with a coupled physical–biological model. Progress in Oceanography, 
120, 1–28. https://doi.org/10.1016/j.pocean.2013.07.001

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13732 by U

niversity O
f R

hode Island L
ib, W

iley O
nline L

ibrary on [29/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1371/journal.pone.0028945
https://doi.org/10.1371/journal.pone.0028945
http://www.fishbase.org
https://doi.org/10.1126/science.1061967
https://doi.org/10.1126/science.1061967
https://doi.org/10.1111/geb.13068
https://doi.org/10.1093/icesjms/fsaa044
https://www.frontiersin.org/articles/
https://doi.org/10.3389/fmars.2021.578516
https://doi.org/10.3389/fmars.2021.578516
https://doi.org/10.1126/sciadv.abh3732
https://doi.org/10.1126/sciadv.abh3732
https://doi.org/10.1016/j.pocean.2021.102659
https://doi.org/10.5194/bg-17-3439-2020
https://doi.org/10.1002/2017GB005643
https://doi.org/10.1002/2017GB005643
https://doi.org/10.1073/pnas.1900194116
https://doi.org/10.1073/pnas.1900194116
https://doi.org/10.1098/rspb.2019.1189
https://doi.org/10.1098/rspb.2019.1189
https://doi.org/10.1038/Nature01610
https://doi.org/10.1038/Nature01610
https://doi.org/10.1086/662171
https://doi.org/10.1086/662171
https://doi.org/10.1371/journal.pbio.1000178
https://doi.org/10.1371/journal.pbio.1000178
https://doi.org/10.1038/374255a0
https://doi.org/10.1038/374255a0
https://doi.org/10.1016/j.pocean.2019.102124
https://doi.org/10.1126/science.1239352
https://doi.org/10.1126/science.233.4761.359
https://doi.org/10.1126/science.233.4761.359
https://doi.org/10.1098/rstb.2012.0242
https://doi.org/10.1098/rstb.2012.0242
https://doi.org/10.1111/j.1467-2979.2011.00435.x
https://doi.org/10.1111/j.1467-2979.2011.00435.x
https://doi.org/10.1006/jmsc.1996.0146
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.18637/jss.v048.i02
https://doi.org/10.1002/2016GB005521
https://doi.org/10.1016/j.pocean.2013.07.001


12  |    van DENDEREN et al.

Stock, C. A., John, J. G., Rykaczewski, R. R., Asch, R. G., Cheung, W. W. 
L., Dunne, J. P., Friedland, K. D., Lam, V. W. Y., Sarmiento, J. L., & 
Watson, R. A. (2017). Reconciling fisheries catch and ocean pro-
ductivity. Proceedings of the National Academy of Sciences, 114(8), 
E1441–E1449. https://doi.org/10.1073/pnas.16102​38114

Tittensor, D. P., Novaglio, C., Harrison, C. S., Heneghan, R. F., Barrier, N., 
Bianchi, D., Bopp, L., Bryndum-Buchholz, A., Britten, G. L., Büchner, 
M., Cheung, W. W. L., Christensen, V., Coll, M., Dunne, J. P., Eddy, T. 
D., Everett, J. D., Fernandes-Salvador, J. A., Fulton, E. A., Galbraith, 
E. D., … Blanchard, J. L. (2021). Next-generation ensemble projec-
tions reveal higher climate risks for marine ecosystems. Nature 
Climate Change, 11(11), 973–981. https://doi.org/10.1038/s4155​
8-021-01173​-9

van Denderen, D., Gislason, H., van den Heuvel, J., & Andersen, K. H. 
(2020). Global analysis of fish growth rates shows weaker re-
sponses to temperature than metabolic predictions. Global Ecology 
and Biogeography, 29(12), 2203–2213. https://doi.org/10.1111/
geb.13189

van Denderen, P. D., Lindegren, M., MacKenzie, B. R., Watson, R. A., & 
Andersen, K. H. (2018). Global patterns in marine predatory fish. 
Nature Ecology & Evolution, 2(1), 65–70. https://doi.org/10.1038/
s4155​9-017-0388-z

van Denderen, P. D., Petrik, C. M., Stock, C. A., & Andersen, K. H. 
(2021). Emergent global biogeography of marine fish food webs. 
Global Ecology and Biogeography, 30(9), 1822–1834. https://doi.
org/10.1111/geb.13348

Vucic-Pestic, O., Ehnes, R. B., Rall, B. C., & Brose, U. (2011). Warming 
up the system: Higher predator feeding rates but lower energetic 
efficiencies. Global Change Biology, 17(3), 1301–1310. https://doi.
org/10.1111/j.1365-2486.2010.02329.x

Walker, N. D., Maxwell, D. L., Le Quesne, W. J. F., & Jennings, S. (2017). 
Estimating efficiency of survey and commercial trawl gears from 
comparisons of catch-ratios. ICES Journal of Marine Science, 74(5), 
1448–1457. https://doi.org/10.1093/icesj​ms/fsw250

Watson, R. A. (2017). A database of global marine commercial, small-
scale, illegal and unreported fisheries catch 1950–2014. Scientific 
Data, 4, 170039. https://doi.org/10.1038/sdata.2017.39

Wei, C.-L., Rowe, G. T., Escobar-Briones, E., Boetius, A., Soltwedel, T., 
Caley, M. J., Soliman, Y., Huettmann, F., Qu, F., Yu, Z., Pitcher, C. 
R., Haedrich, R. L., Wicksten, M. K., Rex, M. A., Baguley, J. G., 

Sharma, J., Danovaro, R., MacDonald, I. R., Nunnally, C. C., … 
Narayanaswamy, B. E. (2011). Global patterns and predictions of 
seafloor biomass using random forests. PLoS One, 5(12), e15323. 
https://doi.org/10.1371/journ​al.pone.0015323

Windle, M. J. S., Rose, G. A., Devillers, R., & Fortin, M.-J. (2010). Exploring 
spatial non-stationarity of fisheries survey data using geographi-
cally weighted regression (GWR): An example from the Northwest 
Atlantic. ICES Journal of Marine Science, 67(1), 145–154. https://doi.
org/10.1093/icesj​ms/fsp224

Witherell, D., Pautzke, C., & Fluharty, D. (2000). An ecosystem-based 
approach for Alaska groundfish fisheries. ICES Journal of Marine 
Science, 57(3), 771–777. https://doi.org/10.1006/jmsc.2000.0719

BIOSKE TCH

The authors are marine ecologists and ecosystem modellers and 
develop mechanistic trait-based approaches to study life in the 
ocean. These approaches are used for large-scale assessments 
of climate change, fisheries, biodiversity and marine ecosystem 
functions.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: van Denderen, D., Maureaud, A. A., 
Andersen, K. H., Gaichas, S., Lindegren, M., Petrik, C. M., 
Stock, C. A., & Collie, J. (2023). Demersal fish biomass 
declines with temperature across productive shelf seas. 
Global Ecology and Biogeography, 00, 1–12. https://doi.
org/10.1111/geb.13732

 14668238, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13732 by U

niversity O
f R

hode Island L
ib, W

iley O
nline L

ibrary on [29/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1073/pnas.1610238114
https://doi.org/10.1038/s41558-021-01173-9
https://doi.org/10.1038/s41558-021-01173-9
https://doi.org/10.1111/geb.13189
https://doi.org/10.1111/geb.13189
https://doi.org/10.1038/s41559-017-0388-z
https://doi.org/10.1038/s41559-017-0388-z
https://doi.org/10.1111/geb.13348
https://doi.org/10.1111/geb.13348
https://doi.org/10.1111/j.1365-2486.2010.02329.x
https://doi.org/10.1111/j.1365-2486.2010.02329.x
https://doi.org/10.1093/icesjms/fsw250
https://doi.org/10.1038/sdata.2017.39
https://doi.org/10.1371/journal.pone.0015323
https://doi.org/10.1093/icesjms/fsp224
https://doi.org/10.1093/icesjms/fsp224
https://doi.org/10.1006/jmsc.2000.0719
https://doi.org/10.1111/geb.13732
https://doi.org/10.1111/geb.13732

	Demersal fish biomass declines with temperature across productive shelf seas
	Citation/Publisher Attribution

	Demersal fish biomass declines with temperature across productive shelf seas
	Creative Commons License
	Authors

	Demersal fish biomass declines with temperature across productive shelf seas
	Abstract
	1|INTRODUCTION
	2|METHOD
	2.1|Method overview
	2.2|Scientific trawl survey data
	2.3|Analysis of spatial patterns in biomass across geographic scales
	2.4|Analysis of temporal biomass variation in ecoregions

	3|RESULTS
	4|DISCUSSION
	4.1|Climate predictions of marine fish
	4.2|The role of fishing
	4.3|Demersal and pelagic fish

	5|CONCLUSION
	ACKNO​WLE​DGE​MENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES
	BIOSKETCH


