
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Dissertations 

2018 

EXPERIMENTAL AND NUMERICAL SIMULATIONS FOR FLUID EXPERIMENTAL AND NUMERICAL SIMULATIONS FOR FLUID 

BODY INTERACTION PROBLEMS BODY INTERACTION PROBLEMS 

Amin Mivehchi 
University of Rhode Island, aminmivehchi@gmail.com 

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Mivehchi, Amin, "EXPERIMENTAL AND NUMERICAL SIMULATIONS FOR FLUID BODY INTERACTION 
PROBLEMS" (2018). Open Access Dissertations. Paper 819. 
https://digitalcommons.uri.edu/oa_diss/819 

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open 
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please 
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/819?utm_source=digitalcommons.uri.edu%2Foa_diss%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


EXPERIMENTAL AND NUMERICAL SIMULATIONS FOR FLUID BODY

INTERACTION PROBLEMS

BY

AMIN MIVEHCHI

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

OCEAN ENGINEERING

UNIVERSITY OF RHODE ISLAND

2018



DOCTOR OF PHILOSOPHY DISSERTATION

OF

AMIN MIVEHCHI

APPROVED:

Dissertation Committee:

Major Professor Jason M. Dahl

Stephan T. Grilli

Stephen Licht

Kathleen Donohue

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2018



ABSTRACT

This dissertation focuses on the experimental and numerical modelling of fluid

structure interaction (FSI) problems. The main objective of this work was to

develop state-of-art experimental and numerical tools to investigate a variety of

Fluid-Structure Interaction problems. This topic is of critical importance to Naval

Hydrodynamics and offshore applications,such as in ship design, floating offshore

wind platforms and offshore ocean energy systems.

On the experimental modelling of FSI, this dissertation includes detailed

of state-of-art hydrodynamic testing tank system for studying biomimetic fluid-

structure interaction problems. This system was employed to study unsteady

ground effect for pitching and heaving flapping foil propulsors in the near near

presence of a wall. More than 2000 experiment were conducted demonstrating the

dynamic ground effect on lift and thrust with flapping foil propulsor as a function of

Strouhal number, distance from the wall, and foil kinematics. It was demonstrated

that 2D and 3D ground effect in a dynamically flapping system are fundamentally

different.

The dissertation also focus on the development and improvement of a numer-

ical wave tank based on fully nonlinear potential flow method accelerated with the

Fast Multipole Method (FMM) for advanced FSI problems. In the past 30 years,

increasingly accurate and efficient models have been developed to simulate non-

linear wave propagation and transformations over a varying nearshore bathymetry

as well as their interactions with submerged and surface piercing fixed or float-

ing structures. One successful approach has been based on models solving Fully

Nonlinear Potential Flow (FNPF) theory, by a higher-order Boundary Element

Method (BEM), in 2D and 3D. Such models can accurately simulate overturn-

ing waves and have been used to investigate their physical properties just before



breaking.In this thesis, an improved Numerical Wave Tank (NWT) based on BEM-

FNPF is discussed with developed improvements for implementation with a fast

hybrid BEM-LBM solver for ship seakeeping simulations. In particular, improve-

ments are developed to incorporate compatibility condition in 3D corner intersec-

tions and implementation method to suppress wave breaking in 3D potential flow

simulations.

In many naval hydrodynamics and ocean/coastal engineering applications, it

is desirable to prevent steep waves from overturning as this eventually leads to

instabilities and stops computations. A number of methods have been proposed

to do so, some based on specifying an “absorbing surface pressure”, similar to the

method used in absorbing beaches. A method is implemented in the NWT using

Hilbert transform tracking of wave crest to implement slope and curvature based

criteria to identify and suppress breaking waves.Impending breaking is detected

based on local maximum free surface slope/steepness criterion, and wave energy

absorbed using local ”absorbing pressure” patch whose strength is calibrated with

a physical criterion.The method is validated for a submerged hydrofoil generating

waves at the free surface with experiments from Duncan(1981).
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PREFACE

This dissertation, Experimental and Numerical Simulations for Fluid-

Structure Interaction Problems, is constructed in the manuscript format and con-

sists of 4 manuscripts.

The first manuscript (chapter 1), Heaving and pitching oscillating foil propul-

sion in ground effect was published in Journal of Fluids and Structures, 63 (2016)

174-187.

The second manuscript (chapter 2) is A Hybrid Solver Based on Efficient

BEM-Potential and LBM-NS Models: Recent BEM Developments and Applica-

tions to Naval Hydrodynamics, is published as a conference proceeding in the 27th

Offshore and Polar Engng. Conf. ISOPE17, San Francsico, USA. (2017), 721-728.

The third manuscript (chapter 3), Identification and individual energy absorp-

tion of breaking waves in 3D fully nonlinear BEM simulations., will be submitted

to Journal Engineering Analysis with Boundary Element Method.

The forth manuscript (chapter 4), Three Dimensional Boundary Element So-

lution of Nonlinear Wave Flow with Uniform Cubic B-Spline Elements and Corner

Treatments., will be submitted to Journal of Engineering Analysis with Boundary

Element Method.
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Abstract

A detailed series of experiments is performed to investigate the ‘ground effect’

experienced by propulsive flapping foils operating near a solid boundary. A high

aspect ratio foil is towed at constant speed and oscillated in pitch and heave at

varying distances from a rigid wall. It is shown that this distance has a significant

impact on the lift and thrust forces generated by the foil, both in the time averaged

mean forces and the phase averaged periodic forces. For some thrust producing

kinematics, the instantaneous force profile may change significantly without alter-

ing the time averaged mean force; thus, mean force measurements alone are not

sufficient to indicate the proximity, or the effect, of the solid boundary. Results are

presented across a wide range of thrust generating kinematics, showing that the

strength of the ground effect can be modulated, for any achievable level of thrust,

through appropriate selection of kinematics. This finding in particular has signif-

icance for underwater vehicles propelled by oscillating foil thrusters, as it follows

that the sensitivity of the thrusters to ground effect can be controlled indepen-

dently of the desired thrust. While propulsive efficiency is increased slightly near

the wall for some kinematics, in general this does not occur for kinematics where

a strong ground cushion (repulsion) effect is observed. Finally, the results suggest

that span-wise flow around the tip of the foil is important in determining whether

the foil is repelled from or pulled into the wall.

1.1 Introduction

At least since Gray [1] , biologists and engineers have actively studied how

aquatic animals propel themselves through the water with foils, fins, and other ac-

tive control surfaces. Research on biological propulsion methods has had the dual

goal of (a) understanding animal morphology and behavior from an evolutionary

biology perspective, and (b) extracting useful techniques and principles that can
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be applied to the engineering development of man-made underwater vehicles. One

engineering rationale for the use of alternative propulsion approaches is the desire

to use unmanned underwater vehicles (UUVs) in dynamic, shallow water environ-

ments. In near-bottom operations, the impact of the solid bottom boundary on

the propulsor dynamics is of critical importance; indeed, gliding birds Reyner [2]

and swimming and ‘flying’ fish (Nowroozi et. al. [3] and Park and Choi [4]) are

believed to take advantage of near-ground and near-boundary effects to reduce

cost-of-transport.

In steady flight, the physical mechanisms by which a ‘ground effect’ arises

when an airfoil is operated near the ground is a well understood phenomena that

has been exhaustively researched in the aeronautical engineering literature [5].

While fixed foils produce lift and a small amount of drag with a steady wake,

oscillating foils can produce both thrust and lift with a fundamentally unsteady

fluid wake [6]. It is therefore expected that an oscillating foil’s interactions with

the ground will arise from different, time dependent physical mechanisms. The

growing body of research into ground effect in oscillating foils has approached the

problem using a variety of numerical and experimental techniques.

1.1.1 Experimental Studies

The creation of robotic models has become a standard technique in both bio-

logical and engineering focused research into oscillatory propulsors. These models,

which are of varying fidelity to the biological muse according to the motivation for

the experimenters, are used to measure the force, power, and wake structure gener-

ated by moving the propulsors through water with different kinematics. Examples

of robotic investigations of oscillating propulsors in the free-stream, i.e. far from

obstacles or surfaces, include systems which rely on deformation of highly flexible

structures such as ribbon fins [7, 8] and batoid wings [9], as well as systems where
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rigid foils are actuated in one [10] or two [11] degrees of freedom.

Fernandez-Pratz et al.[12] experimentally investigated pitching-only oscillat-

ing foils near the wall using a very flexible, very low aspect ratio foil (AR = 0.9)

with span-wise flow allowed over both ends. Quinn et al.[13] investigated a rigid,

surface piercing foil spanning an entire flow channel (AR = ∞) with no spanwise

flow allowed at either end. Quinn et al.[14] and Belvins and Lauder[15] also in-

vestigated a very flexible, very low aspect ratio foil (AR = 0.5), in this case to

experimentally study undulatory swimming. A traveling wave was generated in

this foil by actuating the leading edge of the foil in heave as well as pitch; spanwise

flow was allowed around both ends. Quinn et al.[13] is the only previous case in

which “high net thrust conditions” are considered, i.e. 0.25 < St < 0.45.

Table 1: Comparison of Existing Literature to Present Effort

AR Flexibility Spanwise
Flow

Relative
Flow

Actuation

Fernandez-
Pratz et

al. (2015)

0.9 Very Flexible Allowed
Both Ends

Self-
Propelled

Pitch Only

Blevins
and

Lauder
(2013)

0.5 Very Flexible Allowed
Both Ends

Self-
Propelled,

Flow
Channel

Heave and
Pitch, Un-
dulatory

Quinn et
al.(2014a)

∞ Very Flexible Allowed
Both Ends

Self-
Propelled,

Flow
Channel

Heave and
Pitch, Un-
dulatory

Quinn et
al.(2014b)

∞ Rigid Blocked
Flow

Channel
Pitch Only

Current
Work

4.9 and ∞ Rigid Allowed at
Tip

Towed
Heave and

Pitch

Although the methods and morphologies vary greatly across the four exper-

imental studies, as laid out in Table 1, there is a clear consensus that operating
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in proximity to the ground can have a significant effect on mean lift and thrust

production. Both Fernandez-Prats et al. [12] and Blevins and Lauder [15] found

that swimming speed increased for given kinematics at very close approaches to

the ground. Using a similar apparatus as Blevins and Lauder [15] but with varying

flexibility of the undulating foil, Quinn et al. [14] found that increased swimming

speed near the wall did not necessarily translate to lower cost of transport. Quinn

et al. [13] found that once close enough to the ground for an effect to be measured,

thrust increased monotonically with ground proximity, with no experimentally

measurable efficiency changes; in addition, a stable equilibrium position with zero

net lift and 40% thrust improvement was identified.

another focus for previous experiments is the effect of the ground on hovering

and vertical take-off dynamics of insects [16], where take-off kinematics are mim-

icked using a dynamically scaled model of a beetle wing, or in the case of Lu et

al. [17], using an oscillating elliptical wing (with nominally infinite aspect ratio)

undergoing linear and rotational motions. Both experiments demonstrate a near

ground effect, although by design, the mean thrust force is oriented perpendicular

to the wall, rather than parallel to the wall as in the present study, so no direct

comparison to the results of the present study is appropriate.

1.1.2 Numerical Studies

Numerical studies of oscillating foils in ground effect have covered a wide

range of applications, largely focusing on undesired airfoil perturbations. Liang et

al. [18] simulated heaving only motion of aircraft wings at Re = 7.0× 104 using a

discrete vortex potential flow approach. Molina and Zhang [19] used an unsteady

Reynolds averaged Navier-Stokes solver to simulate pitching only foil motion for

race car spoilers at Re = 3.9 × 104 while Moryossef and Levy [20] attempted to

isolate inviscid and viscous effects for race car spoilers.
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Wu et al. [21] used an immersed boundary-lattice Boltzmann method to inves-

tigate hovering performance of insects, and used the same techniques for studying

energy extraction from a uniform flow with heaving and pitching foils at Re near

1000 [22, 23].

1.1.3 Contribution

The current work is an experimental characterization of instantaneous and

mean thrust production in ground effect for oscillating foils. It is the first published

effort to measure forces on a two-degree of freedom high aspect ratio foil near a wall

with span-wise flow allowed. In contrast, previous studies have only allowed three-

dimensional flow around the tip for lower aspect ratio foils. In addition, the present

experiments are performed in a towing tank as opposed to a recirculating water

channel. This has a small, but important effect, as experiments may be performed

in ground-effect, very near the wall, without the presence of an existing boundary

layer due to the incoming flow velocity. Finally, the present experiments cover

a range of dynamically scaled parameters which encompass high thrust regimes

typical of operational UUVs. As such, the results are the most directly applicable

to the high aspect ratio foil propulsors that are currently employed on a number

of existing biologically inspired UUVs, such as the Roboturtle [24] and the Razor

platform [25].

1.2 Experimental Methods
1.2.1 Experimental Apparatus

The results reported below were obtained using an extruded aluminum NACA

0012 foil with a chord length of 0.07 m (Vortech Inc. Aluminum NACA 0012 Tail

Rotor Kit). The foil is rigidly mounted to a 6-axis strain gauge dynamometer

(factory-calibrated ATI Gamma SI-65-15) on a towing carriage above the free

surface of a 0.9 m× 0.9 m× 4.3 m glass walled tank. The carriage is pulled down
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the length of the tank by a chain drive attached to a stationary motor. A linear

actuator mounted to the moving carriage generates horizontal (‘heave’) motion

perpendicular to the direction of carriage travel. A rotary actuator mounted to

the output of the linear actuator generates twist (‘pitch’) motion about an axis

normal to the free surface. A rigid false wall was installed on one side of the tank,

reducing the channel width to 0.84 m, to allow the linear actuator to bring the

foil to within 0.01 m of the wall. The dynamometer and foil are mounted to the

output of the rotary motor such that the foil is rotated about an axis located 1
3

of

the chord length from the leading edge. The span (length) of the foil was varied to

allow testing for cases where the foil spans the entire flow channel, and for cases

where the foil ends in the middle of the tank. Figure 1 shows a rendering of the

experimental apparatus with the major components indicated in the figure.

Tank

Foil

Carriage

Pitch Actuator
Heave Actuator

Towing Actuator

Force Sensor

Figure 1: Rendering of the towing tank and carriage apparatus used in exper-
iments. The force sensor is connected between the pitch actuator and the foil.
Drawing shows the heave and pitch actuators along with the carriage and tank.
In the drawing, the test foil is suspended from the carriage such that the foil tip
is not near the tank bottom.
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1.2.2 Foil Kinematics

All tests were performed with the foil undergoing sinusoidal pitch oscillations

and with the foil heave velocity constrained to generate sinusoidal oscillations in

the nominal angle of attack. Following Licht et al. [26], kinematics that gener-

ate a sinusoidal angle of attack were chosen over kinematics that use sinusoidal

pitch and heave trajectories, despite the added computational complexity. Read

et al.[27] demonstrated that this approach achieves higher thrust and efficiency in

high aspect ratio oscillating foils across the entire parameter space investigated in

the present study.

Following the notation detailed in Figure 2, the kinematic and geometric pa-

rameters governing the motion of the foil to be varied are shown in Table 2.

Table 2: List of Geometric and Kinematic Parameters

Heave amplitude h0

Pitch amplitude θ0

Angle of attack amplitude α0

Oscillation frequency ω

Mean heave position H

Tip distance d

Carriage velocity U

Given these parameters and the two kinematic constraints, the foil motion is

then fully defined by five equations. The desired kinematics are described by:

θ(t) = θ0 sin(ωt) (1)

α(t) = α0 sin(ωt) (2)

Equations (1)-(2) impose sinusoidal constraints on the pitch angle and the nominal

angle of attack.
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The nominal angle of attack is defined by the pitch angle and the instantaneous

velocity of the foil through the water. Where the instantaneous velocity of the foil

is decomposed into U and ḣ components, the result is:

α(t) = θ0(t)− arctan(
ḣ(t)

U
) (3)

The instantaneous heave position at time t can be calculated by integrating

heave velocity from time 0 up to time t:

h(t) = H +

∫ t

0

ḣ(t) dt (4)

Finally, the kinematics must satisfy the desired maximum heave excursion:

hmax − hmin = h0 (5)

For any set of parameters (α0, ω,H, h0, U), h(t) is implicitly defined by Equa-

tions (1) - (5). The iterative process described in Licht et al.[26] was used to

determine the value of the constant θ0 which produces the desired maximum heave

excursion, h0, while still satisfying the trajectory constraints on θ(t) and α(t).

To generalize the problem, results are presented as a function of non-

dimensional parameters based on the kinematics, geometry, and fluid properties,

as listed in Table 3.

Table 3: List of Non-Dimensional Parameters and Experimental Values

Reynolds number Re = Uc
ν

2.10× 104

Strouhal number St = hof
U

[0.3, 0.35, 0.4, 0.45, 0.5]

Maximum nominal angle of attack αo [15, 20, 25, 30, 35, 40, 45]

Heave amplitude to chord length h∗ = ho
c

1

Mean heave distance to chord length H∗ = h̄
c

[1.33, 1.66, 2, 3, 4, 5, 6]

Tip clearance to chord length d∗ = d
c

[0.029, 0.74]
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1.2.3 Experimental Procedure

Experiments were performed for varying wall distance, Strouhal number,

and maximum angle of attack. Non-dimensional wall distances of H∗ =

[1.33, 1.66, 2, 3, 4, 5, 6] represent the full range from the closest safe wall approach

in the experimental setup to the center of the flow channel. The maximum angle

of attack, αo, ranged from 15 to 45 degrees in 5 degree steps, and Strouhal number

ranged from 0.3 to 0.5 in steps of 0.05. The selected range of St was constrained by

limitations of the experimental apparatus and force measurement equipment. For

high St, corresponding to higher frequency motions, the acceleration of the trailing

edge of the foil at the free surface produces strong vortices that may entrain air.

The upper limit of St was selected to avoid this air entrainment in the wake. The

lower limit of St was selected based on the resolution of the force sensor. At lower

frequencies, the dynamic variation of hydrodynamic forces is small compared to

the inertia of the test foil. Since the hydrodynamic force is determined as a dif-

ference between the measured total force and inertial force of the foil, increased

uncertainty exists in the measurement of hydrodynamic forces at low frequencies

and low speeds. The lower limit of St was selected to ensure measurable hydro-

dynamic forces with the particular experimental setup. For all dynamic motion

tests, the non-dimensional heave amplitude was held at h∗ = 1. Figure 2 shows a

schematic trajectory of the foil relative to the wall.

Two sets of experiments were performed in order to isolate the effects of span-

wise flow around the tip of the foil. In the first set of experiments, nominally

two dimensional flow was investigated with an average tip clearance, d = 2 mm,

such that d∗ < 0.029. In the second set of experiments, three dimensional flow

was investigated with the average tip clearance distance set at 52 mm, such that

d∗ = 0.74, allowing significant spanwise flow around the tip of the foil. The tip
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distance, d, is illustrated in Figure 2. The submerged span was held constant at

s = 0.343 m by varying the water depth, D, from 0.345 m to 0.395 m for d = 2 mm

and d = 52 mm, respectively.

In all cases, the towing velocity was set to U = 0.3 m/s, resulting in the

chord based Reynolds number Re = 2.10× 104. At the center of the flow channel,

where H∗ = 6, the foil was considered to be in the ‘far-field’ with no ground induced

asymmetry in the lift force present. In order to align the mean foil pitch angle with

carriage travel direction, a series of tests was performed at H∗ = 6, where the foil

was towed with static angles of attack varied at increments of 1 degree. Zero pitch

angle was chosen as the static angle of attack where the minimum absolute value

of mean drag was recorded and mean lift was observed to be zero. A nine minute

tank settling interval was allowed between tests, following validation experiments

indicating that a six minute settling interval was sufficient to avoid measurable

interference between experiments. This observation was made by varying the tank

settling time for a series of repeated motion experiments with St = 0.4 and α0 = 30.

Confidence in the repeatability in the measurement of forces was obtained by

repeating the same experiment 30 times with St = 0.4, α0 = 30, and H∗ = 6. It

was found that the mean lift coefficient had a standard deviation of 0.0034.

1.2.4 Analysis Procedure

Results are presented in terms of lift coefficient, thrust coefficient, and effi-

ciency. The instantaneous lift and thrust coefficients, CL and CT , respectively, are

given by:

CT =
Fx

0.5ρU2A
(6)

CL =
Fy

0.5ρU2A
(7)

where ρ is the fluid density, and A = sc is the planform area of the submerged
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(a)
(b)

Figure 2: (a) Top view of foil trajectory. h is the maximum heave excursion
from the mean heave position, H, where heave position is measured from the wall.
θ0, the maximum pitch angle, is achieved where the foil crosses the mean heave
position. θ = 0 at the maximum and minimum heave excursion. (b) Rear view of
foil in mean heave position. The tip clearance between the foil and the bottom of
the tank is denoted as d, while the depth of the water is D = s+ d. Experiments
were performed with (d,D) = (0.002, 0.345) m and (d,D) = (0.052, 0.395) m.

foil found using the submerged span, s, and chord length c. Fx is the instantaneous

measured force in the direction of carriage travel. Fy is the instantaneous measured

force perpendicular to the direction of carriage travel.

Mean thrust and lift coefficients are reported based on data from whole motion

cycles, i.e.:

C̄T =

∫ nT
0
CT (t) dt

nT
(8)

C̄L =

∫ nT
0
CL(t) dt

nT
(9)

where T is the cycle period given by T = 2π
ω

.

The hydrodynamic efficiency is the ratio of extracted power to the input power

over whole cycles, where input and output power are calculated using measured

foil speed, force, and torque:
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η =
POUT
PIN

=

∫ nT
0

UFx(t) dt∫ nT
0

ḣ(t)Fy(t) + θ̇(t)Mθ(t) dt
(10)

where Mθ is the measured torque about the foil rotational axis. For each set

of (St, Ho
c
, αo) values, the reported values for mean non-dimensional outputs were

calculated based on five cycles of motions, i.e. n = 5 in Eqn. 6-10. Data from

the first two oscillations after the start of motion in each test run are not included

in any analysis, in order to eliminate the effect of start up transients. Based on

cycle-to-cycle comparison, the transient effects disappear after approximately one

full cycle of motion.

Where instantaneous values of CL and CT are reported, they are based on the

ensemble averaged values from those five cycles.

1.3 Results

Detailed results are presented only for a tip clearance to chord length ratio,

d∗, equal to 0.74, which corresponds to the foil tip suspended near the middle of

the tank, far from the bottom, allowing for an unhindered three-dimensional flow

around the foil tip.

1.3.1 Comparison of Near-Wall and Free-Stream Results

As a first indicator for the presence of ground effect, the mean thrust, mean

lift, and efficiency is compared for when the foil is close to the ground (H∗ = 1.33),

and when the foil is in the free stream far from the wall (H∗ = 6). Figure 3(a) shows

the mean thrust coefficient measured for all kinematics tested; differences in mean

lift, thrust, and efficiency between the free-stream and at the closest approach to

the wall for identical kinematics are shown in Figure 3(b)-(c). The contours of

mean thrust are consistent with the results presented in Anderson et al.[28] and

Read er al. [27] for flapping foil thrust production with harmonic oscillation and
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Figure 3: (a) Mean thrust coefficient when operating at the closest approach to
the wall, H∗ = 1.33. (b)-(d) Differences in the lift coefficient, the magnitude of the
thrust force, and the efficiency when the foil is operating at the closest approach to
the wall (H∗ = 1.33) vs. operation in the free stream (H∗ = 6.0). Thrust changes
range from 0% to 12%. Efficiency changes range over ±6%. ∆C̄L ranges from -0.1
to 0.4.
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sinusoidal angle of attack. The thrust gradient is positive with increasing St, with

a ridge of optimal thrust running along 25◦ < α0 < 35◦ for the range of St tested.

Consistent with Blevins and Lauder [15] and Fernandez-Prats et al. [12],

thrust increases in the presence of the wall for almost all cases studied (Figure 38e).

Efficiency changes are small and not uniformly positive (Figure 38f), similar to

observations by Quinn et al. [14], with changes in η ranging over ±6%. Large

mean lift forces are observed, which act to push the foil away from the wall, i.e.

a ground cushion exists in the traditional sense of fixed foil ground effect. This

ground effect is observed primarily for higher α0 over the range of St (Figure 38b).

The maximum angle of attack plays a critical role in the orientation of the lift

force, and for smaller α0, a transition occurs where the mean lift demonstrates a

suction towards the wall, largely at the higher St values. The areas of increased

efficiency and near zero or negative lift overlap over a large region of the studied

parameters, implying that there is a trade-off between increased efficiency and the

presence of a stabilizing ground effect. This is despite the fact that absolute thrust

is increased for almost all kinematics when the foil is oscillated in close proximity

to the wall.

1.3.2 Nonlinear Evolution of Forces as Foil Approaches the Wall

The direct comparison between the closest approach and the free stream case

illustrates a net ground effect in unsteady flow. However a finer variation of H∗

is necessary to show the evolution of the mean forces as the mean position of

the foil is moved closer to the wall with the dynamic motion of the foil otherwise

unchanged. The effect of this decrease in the mean position relative to the wall on

the mean forces exerted on the foil is very non-linear.

The most dramatic changes in the forces exerted on the foil occur almost

entirely within a very small region of H∗, where the foil comes very close to the
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Figure 4: The evolution of (a) mean thrust coefficient, C̄T , and (b) mean lift
coefficient, C̄L), as the foil distance to the wall decreases from H

c
= 6 to H

c
= 1.33,

for the representative case where St = 0.4. Each curve represents a different value
of the nominal angle of attack, α0, with higher α0 producing a plunging motion
with less feathering, and lower α0 producing a more feathered motion with high
pitch amplitudes.

wall. This effect is illustrated in Figure 4, which shows mean lift and thrust as

functions of the mean wall distance (H∗) for a fixed Strouhal number of 0.4 and

fixed non-dimensional heave amplitude of h∗ = 1. Separate curves are given for

each increment of maximum angle of attack.

The proximity of the flapping foil to the solid wall clearly has a strongly non-

linear effect on mean lift. As shown in Figure 4b, both the magnitude and the

sign of the lift force vary with distance to the wall. Far from the wall, at H∗ = 6,

the mean lift over the cycle is near zero. When the foil trajectory is first moved

closer to the wall (6 > H∗ > 3), the mean lift gradually decreases, indicating a

slight suction towards the wall. The suction force is experienced regardless of the

maximum angle of attack. However, as the foil approaches the wall more closely,

i.e for H∗ < 3 the maximum angle of attack plays a critical role in the magnitude

of the lift that develops. At low angles of attack, the foil continues to experience

a slight but lessening suction force even at the closest approach. However, when
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α0 > 25◦ a strong repelling force develops at the closest approaches to the wall,

with C̄L reaching a maximum 0.15 for the most extreme cases (α0 = 40◦).

The mean lift effects shown in Figure 4b are illustrative of the phenomenon

at other Strouhal numbers, where the magnitude of mean lift may change slightly,

but the general trend of a mean repelling force at high angle of attack is still seen.

The suction force far from the wall and reversal to a repelling force near the wall

is consistent with ground effect observations for a fixed wing near a wall, and with

observations by Quinn et al. [13], where a zero lift equilibrium may be achieved

near the wall. In the fixed foil case, the foil is pushed away from the wall if it

moves closer, and pulled back towards the wall if it moves further away. In the

flapping foil case in this study, at St = 0.4, this stable equilibrium point is only

reached for α0 > 25◦, where the closest foil approach was limited to c
3
.

In addition to a change in average lift, the cycle averaged thrust force displays

uniformly positive changes as H∗ decreases. Figure 4a shows the cycle averaged

thrust for the same representative case of fixed Strouhal number 0.4 and h∗ = 1.

The time averaged thrust coefficient, C̄T , gradually increases as the foil gets closer

to the wall for all maximum angles of attack. This change is nearly the same in

magnitude regardless of angle of attack, ranging from a difference in C̄T between

the near wall (H∗ = 1.33) and far wall (H∗ = 6) trajectories of 0.05 to 0.08

depending on the specific angle of attack. The maximum relative change ranges

from 13% (from C̄T = 0.47 to 0.53) at α0 = 15◦ to 4% (from C̄T = 0.89 to 0.93) for

α0 = 40◦, the least aggressive and most aggressive plunging motions, respectively.

An 8% increase (from 0.94 to 1.01) occurs for the maximum thrust producing

condition where α0 = 30◦.
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1.3.3 Evolution of Characteristic Force Vector as Foil Approaches the
Wall

To better illustrate the average vector change in force based on the foil prox-

imity to the wall, the magnitude and direction of the characteristic force coefficient

vector may be defined as:

C̄A =

√
C̄T

2
+ C̄L

2
(11)

γ(St, α0, H
∗) = tan−1(

C̄L
C̄T

) (12)

Figure 5 recasts the results in Figure 4, showing CT on the horizontal and

CL on the vertical axis. The mean force magnitude, C̄A, and characteristic force

angle relative to the wall, γ, are shown for a reference case where (St, h∗, α0) =

(0.4, 1.33, 40◦).) A positive value of γ indicates that the mean force is angled

away from the wall (a repelling force,) and negative values indicate a suction force

towards the wall. Figure 5 highlights the dependence of ground effect on α0, where

each curve follows the total force vector for a single value of α0 as the foil’s mean

trajectory is moved from the far-field into ground effect near the wall. Both the

magnitude and direction of the mean force change as the foil comes closer to the

wall. It is apparent that the direction of these changes are most dramatic for

high angle of attack ‘plunging’ motions, rather than low angle of attack ‘feathered’

motions.

Figure 6 shows the evolution of the characteristic force angle as the foil ap-

proaches the wall at three different St numbers. The ground induced lift is much

more significant at low St numbers; for (St, α0) = (0.3, 40◦) the mean force is

directed away from the wall at an angle of 19.0◦, while for (St, α0) = (0.5, 40◦) the

maximum characteristic angle is only 4.8◦. This sensitivity to St number is not

evident for very low angles of attack, i.e. α0 < 25◦.
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Figure 5: The evolution of total force vector (C̄T , C̄L) for St = 0.4 as the foil
distance to the wall decreases from H

c
= 6 to H

c
= 1.33. Each curve represents

a different value for α0. The circled point in each case is the closest approach to
the wall (H

c
= 1.33). The direction of the mean force is captured in the angle

γ = γ(St, α0,
H
c

), a function of kinematics and distance to the wall. γ is shown
above for (St, α0,

H
c

) = (0.4, 40◦, 1.33)

1.3.4 Ground effect in instantaneous thrust and lift throughout motion
cycle.

The previous results show changes in mean thrust and mean lift averaged over

several oscillatory cycles of motion. Unlike fixed wings, where the flow field and

forcing is nominally steady, the instantaneous force experienced by the oscillatory

wing varies significantly throughout the period of motion. Figure 7 shows the

phase averaged instantaneous forces for the cycle of motion experienced by the

foil near the wall superimposed on the foil trajectory. Results are shown for nine

different cases with α0 = (30◦, 40◦, 50◦) and St = (0.3, 0.4, 0.5), spanning the full

range of kinematics parameters tested. The nine separate cases are marked as A-I

for reference on Figure 9.

As in previous work related to the forces on propulsive flapping foils [29, 26,

11], very large and opposing peak lift forces are experienced during the upstroke
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6. The vectors (∆CT ,∆CL) are superimposed over foil position tracks for nine
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from that of Figure 7. (Cases A-I correspond to parameters values marked on
Figure 9.)
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and downstroke, with net thrust generated due to the slight forward angle of the

net force during both upstroke and downstroke. The peak lift forces are very high

relative to the mean thrust force, and very high relative to the mean ground effect

in thrust and lift, making it difficult to distinguish differences in the instantaneous

force between individual H
c

positions. In order to isolate and visualize the wall

effect in the instantaneous force, the difference in instantaneous lift and thrust

force is shown in Figure 8.

The difference is computed for instantaneous force vectors between the near-

wall (H
c

= 1.33) and far-field (H
c

= 6) cases. Thus an upward pointing vector

indicates an increase in repelling force due to proximity to the wall. The shaded

regions in the figure indicate phases in the cycle where the total instantaneous

lift force in the near-field experiment is positive, resulting in a net repelling force

away from the wall, while the unshaded region indicates where the total lift force

is negative, resulting in a net suction force towards the wall. The vectors show

the change in the magnitude and direction of the total force resulting from moving

the foil trajectory near the wall. In a shaded region, if the change in force points

upward, the instantaneous lift is enhanced, resulting in an increased repelling force

from the wall. If the vector points downward in the shaded region, there is still a net

repelling force, but the force magnitude is reduced by the presence of the wall. A

similar argument holds for the net suction regions, where an upward pointing arrow

corresponds to a decrease in suction and a downward pointing arrow corresponds to

an increase in suction. This interaction is complex and dependent on the phase of

a particular motion. For example, in Case B, upward pointing vectors in nearly all

of the shaded region indicates that the cycle dependent repelling force is enhanced

throughout the cycle, although there is some loss in suction at the peak of the

motion, where the total lift force is very small. As another example, Case A shows
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difference vectors that point upward throughout the cycle of motion, while the

shaded region indicates a net repelling during the first half of the cycle and a net

suction during the second half of the cycle. For this condition, the repelling force

is consistently amplified in the downstroke, while the suction force is consistently

reduced in the upstroke.

The observed difference in instantaneous force vectors over the cycle also helps

to illustrate the presence of a cycle averaged mean repelling force or suction. Where

the lift force changes more on the downstroke (e.g. Case B) there is a net force

away from the wall, and where the lift changes more on the upstroke (e.g. Case

H) there is a net suction force towards the wall. Where these opposing changes in

the lift force are of nearly equal magnitude (e.g. Case E) there is minimal change

in the mean lift force (γ ≈ 0), indicating that a ground effect can be present even

when no net cycle averaged change is found.

1.4 Discussion

The dynamic forces associated with a flapping foil in proximity with a wall

are inherently different than the case of a static wing near the wall due to the

constantly changing distance between the foil and the wall. This dynamic motion

results in a very different flow field, altering both time averaged mean forces and

phase averaged instantaneous forces acting on the wing. In the context of a ma-

neuvering body using foils for propulsion in the presence of a solid boundary, these

effects may be utilized to detect the presence of a wall, and to provide altitude

stabilization. General observations from the present experiments are made which

may be understood in the context of potential applications. In the presence of a

wall, the present experiments show:

• Time averaged mean forces are insufficient indicators of the presence of

ground effect.
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• Foil kinematics may be adjusted to modulate the strength of ground effect

for any achievable thrust level.

• Increased hydrodynamic efficiency in the presence of the solid boundary is

inversely correlated to the strength of repulsion caused by ground effect.

• Ground effect is an inherently three-dimensional phenomenon, even for un-

steady, dynamic flows.

1.4.1 Mean force results are insufficient indicators for the presence of
ground effect.

In a steady flow, time averaging of the fluid force is commonly used as a

method to simplify the characterization of the fluid dynamics, such as in the defi-

nition of a drag coefficient or lift coefficient. In periodic dynamic processes, such

as a propulsive flapping foil, mean thrust and mean lift may be used for general

maneuvering purposes, allowing for these types of forces to be built into a dy-

namic model for a particular vehicle. When a bias angle [30] is used in flapping

foil propulsion, the bias of the pitching angle introduces an asymmetry in the flow

field which can provide a reproducible offset to the mean lift force and adjustment

to the mean thrust force, leading to time averaged maneuvering forces.

The presence of the wall in the present experiments also introduces an asym-

metry to the flow field, however this asymmetry does not always result in a non-zero

mean lift. As seen in Figure 8, the presence of the wall has a strong impact on the

instantaneous forces acting on the foil, however the time averaged mean lift may

not be significantly changed. This effect is both a function of Strouhal number and

of the maximum angle of attack, hence it is necessary to to evaluate the orienta-

tion of the wake in order to further understand this lack of a mean bias despite the

presence of flow asymmetry. Since the mean force is an unreliable indicator of the

presence of ground effect, the mean force should not be used alone as a mechanism
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Figure 9: Contours of characteristic angle of force near the wall are overlaid on
contours of thrust coefficient. All thrust contours are positive. Positive character-
istic angles represent a mean force pushing the foil away from the wall, negative
angles represent a mean force pulling the foil in towards the wall.

for wall or bottom sensing and phase dependent forces may be more relevant in a

wall sensing application.

1.4.2 Foil kinematics can be adjusted to modulate the strength of the
ground effect for any achievable thrust level.

Using the characteristic force angle, one can directly compare results across all

cases, despite the widely varying force magnitudes, as in Figure 9, where contours

of angle at the closest approach to the wall are superimposed over contours of mean

thrust for all kinematics investigated. The contours of thrust and the contours of

characteristic force angle are nearly perpendicular for all kinematics with positive
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deflection, i.e. wherever the ground effect tends to repel the foil from the solid

boundary. Using the deflection angle of the mean force as a proxy for the ‘strength’

of the ground effect, one may independently select the amount of thrust and the

strength of ground effect simply by varying foil kinematics.

This is especially significant from the perspective of an animal or a man-

made vehicle attempting to operate near a solid boundary. The mean thrust

generated through flapping correlates with mean vehicle speed in a viscous medium.

A positive ground effect implies that there will exist some distance away from the

wall at which the vehicle is in a stable equilibrium. The strength of the ground

effect will be correlated with increased stability of that equilibrium. Thus, given

the independence of thrust magnitude and ground effect strength, kinematics can

be chosen at any speed to enhance stability and provide a passive ground avoidance

mechanism.

The passive (i.e. not explicitly actuated) nature of this ground avoidance

mechanism is critical for cases where accurately sensing the distance to the bottom

is difficult or impossible; it also increases the viability of simplified control schemes

where the kinematics may only be adjusted at discrete phases within the stroke,

as in e.g. [24].

1.4.3 Increased hydrodynamic efficiency in the presence of the solid
boundary is inversely correlated the strength of repulsion caused
by ground effect.

A comparison of Figure 38b and Figure 38f makes it clear that increases in

propulsive efficiency, which occur only at angles of attack below 35◦ are generally

associated with a negative mean lift coefficient. A > 10% increase in thrust coeffi-

cient at (St, α0) = (0.4, 25◦) results in nearly 4% efficiency improvement. However,

this comes at the cost of incurring a suction force on the foil, pulling it in towards

the wall.
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There is a narrow range of α0 in which a positive ground effect occurs without

efficiency loss. For lower St, lower thrust conditions, a positive 10◦ deflection of the

force vector can be achieved with zero efficiency change, by choosing α0 = 30◦. As

St number and thrust coefficient increase, the maximum positive deflection of the

force vector that can be achieved is reduced. For the most aggressive kinematics

tested, St = 0.5, net zero change in efficiency corresponds to net zero change

in force vector. This implies that increased efficiency can only be achieved by

incurring suction force, or that the benefits of a positive ground effect can only be

achieved at the expense of reduced efficiency.

1.4.4 Ground effect as an inherently three-dimensional flow phenom-
ena.

Previous studies with high-aspect ratio foils, both numerical [21, 17] and ex-

perimental [13], have considered a two-dimensional representation of the problem

of wall interaction. Ground effect is fundamentally different in a two-dimensional

flow field compared with a three-dimensional flow field, as the three-dimensional

flow around the tip of the foil plays a critical role in determining the direction of lift

experienced by the foil. For a three-dimensional foil geometry with relatively low

aspect ratio, flow forced around the tip in the presence of the ground may generate

increased suction on the upper side of the foil resulting in a repelling force in the

presence of the ground. In contrast, a two-dimensional flow cannot exhibit this

out of plane flow around the tip, hence the presence of the ground may result in

accelerated flow below the foil, leading to an increased suction on the underside of

the foil and an attraction force towards the wall. This conceptual simplification is

not perfect for all flow conditions, but illustrates some of the inherent differences

between a 3-D and 2-D foil experiencing effects from proximity to the ground.

Experiments were performed in which the same foil was oscillated with its tip
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very close to the tank bottom, approximating the 2-D condition and limiting flow

around the tip. Figure 10 compares the two dimensional and three dimensional flow

cases for (St, α0) = (0.35, 15) and (St, α0) = (0.35, 40). As the foil approaches the

ground with high α0, the ground effect is greatly reduced in the two dimensional

case. With low α0, a large suction force is experienced in the two dimensional case.

These preliminary results suggest that fundamental differences can be observed

between the two dimensional case with flow restriction at the tip and the three

dimensional results presented in detail above. This difference is important for

modeling of ground effect, as two-dimensional simulations on a flapping foil will

incorrectly predict the resulting forces.

1.5 Conclusions

A detailed series of experiments were performed to study the effect of wall

proximity on the forces exerted by the fluid on a propulsive flapping foil. The

prescribed flapping foil motion followed a sinusoidal heave and sinusoidal angle of

attack. The maximum angle of attack, mean distance from the wall, and Strouhal

number of the motion were varied, while the amplitude of the motion was held

constant. It was found that the mean distance from the wall has a significant

impact on the measured mean lift and mean thrust acting on the foil, however

the mean force is not always indicative of the presence of a wall. For a range of

kinematics, the instantaneous force profile may change significantly, but in such a

way that increases in the strength of repulsion on the downstroke and suction on

the upstroke effectively cancel one another in the mean. Additionally, propulsive

foil kinematics may be adjusted appropriately to modulate the strength of the

ground effect without sacrificing thrust.

One important area of further research is an investigation of how span-wise

flow around the tip of the foil affects these results. Preliminary results collected
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at a few locations within the parameter space show that blocking span-wise flow

on the foil may play an important role in reducing or even reversing the net ef-

fect of operating near a solid boundary. Future efforts are expected to include

a comprehensive investigation of the effect of blocking the span-wise flow (i.e.

approximating 2-D motion) across the same parameter space examined here in

order to provide context to experimental and numerical results using 2-D fluid

flow. In much of the literature, it appears that computational constraints make

the inclusion of span-wise flow calculation unattractive, as this implies successfully

simulating a three-dimensional fluid domain at high Reynolds numbers. Where

numerical approaches struggle to add span-wise flow, experimental approaches

struggle to eliminate span-wise flow if not desired. Three dimensional effects and

span-wise flow will likely be present, and be significant, in real world applications

of oscillating foils in ground effect, both for animals and UUVs. As a result, it is

expected that experimental studies or computational studies incorporating a full

three-dimensional flow field will be the more fruitful path towards understanding

and quantifying ground effect in the near future.
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Abstract We report on recent developments of a 3D hybrid model for naval

hydrodynamics based on a perturbation method, in which velocity and pressure

are decomposed as the sum of an inviscid flow and a viscous perturbation. The far-

to near-field inviscid flows are solved with a Boundary Element Method (BEM),

based on fully nonlinear potential flow theory, accelerated with a fast multipole

method (FMM), and the near-field perturbation flow is solved with a Navier-Stokes

(NS) model based on a Lattice Boltzmann Method (LBM) with a LES modeling of

turbulent properties. The BEM model is efficiently parallelized on CPU clusters

and the LBM model on massively parallel GPGPU co-processors.

2.1 Introduction

We present the hybrid model formulation and latest developments, in partic-

ular regarding the improvement and validation of the BEM-FMM model for naval

hydrodynamics applications. We show that the BEM-FMM can accurately solve

a variety of problems while providing a nearly linear scaling with the number of

unknowns (up to millions of nodes) and a speed-up with the number of processors

of 35-50%, for small (e.g., 24 cores) to large (e.g., hundreds of cores) CPU clusters.

The hybrid model formulation and its latest developments and implementation,

in particular, regarding the improvement and validation of the model for naval

hydrodynamics applications, are presented in a companion paper by O’Reilly et.

al (2017) [1], in this conference. In this paper, we concentrate on the BEM model

aspects and show that the BEM-FMM can accurately solve a variety of problems

while providing a nearly linear scaling with the number of unknowns (up to mil-

lions of nodes) and a speed-up with the number of processors of 35-50%, for small

(e.g., 24 cores) to large (e.g., hundreds of cores) CPU clusters.

The simulation of the dynamic response of maritime structures in waves and

wave-induced forces is typically based on linear wave models, such as AEGIR [2],
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or in case of large motions and/or steep waves, on using nonlinear wave models

based on potential flow theory (PFT), usually solved with a higher-order Bound-

ary element method (BEM). For structures with a forward speed, semi-empirical

corrections are often made to account for viscous/turbulent effects in the total

resistance. While standard Computational Fluid Dynamics (CFD) models based

on the full Navier-Stokes (NS) equations can also be used to simulate such prob-

lems, their computational cost is typically too prohibitive and their accuracy for

long-term wave modeling usually less than that of PFT-BEM models. However,

in some cases, the viscous/turbulent flow around the structure’s hull and possible

breaking waves and wakes require to be more accurately modeled to capture the

salient physics of the problem.

Here, instead of using a CFD-NS method to solve the complete problem, we

present a fully three-dimensional (3D) hybrid method for solving the hydrodynamic

problem based on perturbation method, in which the total velocity and pressure

fields are decomposed into inviscid and viscous (perturbation) parts (e.g., [3, 4]).

Further, in the hybrid model, the perturbation flow component is only solved in

the near-field, using a NS model based on a Lattice Boltzmann Method (LBM;

e.g., [5, 6, 7]) with Large Eddy Simulation (LES) of the turbulence (e.g.,[8] );

and the far- to near-field inviscid flow component is solved with a BEM model,

based on Fully Nonlinear PFT (FNPF). The latter model is also referred to as a

“Numerical Wave Tank” (NWT; [9]), since it has the typical functionalities of a

physical wave tank (i.e., wave generation, propagation, and absorption). The free

surface representation in the LBM is based on a VOF method, with piecewise linear

interpolation (PLIC) (e.g.,[10]) and in the NWT on an explicit time updating.

More specifically, in the hybrid model, the NWT solution is computed over

the entire domain, for the incident wave field, including diffraction around the
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structure and radiation due to its possible motions (for floating-surface piercing

structures). The NWT solution results are then used to force the LBM solution,

which as indicated is only computed in the near-field of the marine structures,

in a domain overlapping with that of the NWT. Hence, the hybrid approach can

be much more computationally efficient than traditional CFD solutions, in which

the NS solver must be applied to the entire domain.This concept had already

been demonstrated for instance by Reliquet et al.[11], based on different types of

numerical models; see O’Reilly et al. (2016)[10] and O’Reilly et al. (2017) [1] in

this conference, for details of the hybrid model characteristics and efficiency.

The LBM has proved to be accurate and efficient for simulating a variety of

complex fluid flow and fluid-structure interaction problems and, when implemented

on a massively parallel General Purpose Graphical Processor Unit (GPGPU) co-

processor, it has also been shown to achieve very high efficiency (over 100 million

node updates per second on a single GPGPU; e.g.,[6, 7, 12]). In this respect, LBM

developments in this work are based on the highly efficient, GPGPU-accelerated,

Lattice Boltzmann solver ELBE ([13]; www.tuhh.de/elbe), developed at the Ham-

burg University of Technology (TUHH), which features various LBM models, an

on-device grid generator, higher-order boundary conditions, and the possibility

of specifying overlapping nested grids. ELBE also includes the earlier LBM per-

turbation model based on Janssen et al.[7] approach. Simple validations of the

hybrid LBM and hybrid LBM-LES approaches, for viscous and turbulent oscilla-

tory boundary layers, were reported by O’Reilly et al. [10], Janssen et al. [13],

and in greater details in O’Reilly et al.(2017) at this conference.

For the NWT part of the hybrid model, which is the focus of this paper,

we use a 3D-BEM-FNPF model based on the same approach as the wave model

of Grilli et al. [9], which was successful at modeling many wave phenomena, in-
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cluding landslide generated tsunamis, rogue waves, surface effect ships, and the

initiation of wave breaking caused by bathymetry (also see Grilli et al., 2010[14]).

For the types of applications considered in earlier work, Grilli et al. were able to

use structured grids made of quadrilaterals, which enabled simpler approaches for

setting up higher-order (cubic) elements. In order to tackle more complex geome-

tries and grids, as well as accommodating surface-piercing fixed or floating bodies,

an implementation of Grilli et al.’s model for unstructured triangular grids was

developed in recent years e.g., Harris et al.,[15]). Additionally, the efficiency of the

BEM solution in the model for large grids was improved by using a parallelized

Fast Multipole Method (FMM; Greengard and Rokhlin,1987[16]), that was effi-

ciently implement on large computer clusters [15] [Note, Grilli et al.’s NWT was

accelerated with less efficient scalar FMM; Grilli et al., 2010].

The NWT was initially validated for wave propagation as well as radiation and

diffraction from vertical cylinders (Harris et al., 2016). More recent improvements

were made to increase the accuracy of such results, for instance, when computing

the internal solution within the NWT domain (which is required for coupling to the

LBM models). Indeed, the numerical integration of the BEM boundary integrals

typically has increasingly large errors for points approaching the domain boundary,

such as the free-surface or a maritime structure’s hull. Adaptively subdividing the

integration over BEM elements in this case (as proposed by Grilli and Subramanya

(1994) [17] in 2D and extended by Guyenne and Grilli (2006)[18] in 3D), allows

maintaining a constant accuracy of the solution throughout the domain. An adap-

tive integration method was implemented in the new BEM-FMM-NWT, which

also allowed for a more accurate solution near corners and considering elements

with larger aspect ratios.

Initially, to represent the solution at corners/edges located at intersections
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between various part of the BEM boundary (e.g., sidewall-bottom, free surface-

structure, sidewall-free surface,...), the NWT used a multiple-node representation

in which, following Grilli and Svendsen (GSV; 1990)[19] and Grilli and Subra-

manya (GSU; 1996)[20], individual nodes were specified on the various intersecting

boundaries, having the same coordinates but different outwards normal vectors.

Individual BEM equations were expressed at all nodes of a multiple-node, and

continuity conditions were specified for the velocity potential in order to have

a non-singular algebraic BEM system (see GSV for details of corner continuity

conditions at double-nodes, for a variety of 2D Dirichlet-Neumann problems).

To more accurately solve for the flow near strongly moving solid structures

intersecting the free surface, such as a wavemaker, GSU formulated and imple-

mented extended compatibility at double nodes in their 2D BEM model, where

they also specified that, besides a continuous potential, the flow velocity vector

should also be unique at double nodes. In this paper, we extend the latter

method to the multiple-nodes occurring in our 3D-BEM NWT, in various mixed

boundary condition cases and assess its accuracy through systematic numerical

benchmarking.

2.2 Mathematical and Numerical Model
2.2.1 Governing Equations and Boundary Conditions

The 3D-BEM-NWT assumes an incompressible, inviscid and irrotational flow

represented by a velocity potential φ(x, t), in Cartesian coordinates, with x =

(x, y, z) and z pointing vertically upward. The governing equation is a Laplace’s

equation for the velocity potential,

∇2φ = 0 , with u = ∇φ in Ω(t) (13)

expressed over the domain Ω(t) with boundary Γ(t), where u is the veloc-
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ity vector. Using Green’s second identity, this equation is solved as a Boundary

Integral Equation (BIE),

α(xl)φ(xl) =

∫
Γ(x(t))

{
∂φ

∂n
(x)G(x,xl)− φ(x)

∂G

∂n
(x,xl)

}
dΓ(x(t)) (14)

in which x = (x, y, z) and xl = (xl, yl, zl) are points on the boundary, n =

(nx, ny, nz) is the unit outward normal vector on the boundary, and α(xl) is a

geometric coefficient function of the interior angle of the boundary at xl. In this

BIE, the 3D free space Green’s function and its normal derivative are defined as,

G(x,xl) =
1

4πrl
and

∂G

∂n
= −rl · n

4πr3
(15)

in which rl = |rl| = |x−xl| is the distance between any point x from collocation

point xl, both on the boundary Γ(t).

On the free surface Γf (t),φ satisfies the nonlinear kinematic and dynamic

boundary conditions,

DR

Dt
= u = ∇φ on Γf (16)

Γr1

Γr2

Γb

ΓB

L

h

w

LAB

Figure 11: Definition sketch of NWT computational domain for wave interaction
with a rigid body (in this paper a Karman-Trefftz foil) (length L by width w
by depth h). The no flow condition has been defined for the bottom (Γb) and
lateral (Γr2) boundaries; waves are generated on the leftward boundary (Neumann
boundary condition for known velocity and acceleration) and are damped on the
far end of the NWT over an absorbing beach (AB) of length LAB.
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Dφ

Dt
= −gζ +

1

2
∇φ · ∇φ− pa

ρ
on Γf (17)

respectively, with R the position vector of nodes on the free surface, g the acceler-

ation due to gravity, ζ the vertical elevation of the free surface (referred to z = 0,

denoting the still water level), pa the atmospheric pressure, ρ the fluid density, and

the material derivative being defined as,

D

Dt
=

∂

∂t
+ u.∇ (18)

In the NWT, waves can be generated by simulating a piston wavemaker motion

on the “open sea” boundary of the computational domain, Γr1(t). In this case,

wavemaker motion and velocity are specified over the wavemaker paddle as,

x = xp; up = −∇φ · n = −∂φ
∂n

on Γr1(t) (19)

respectively, where the overline denotes a specified value (see Grilli et al., 2001

for detail). Along the stationary bottom Γb and on other fixed boundaries Γr2, a

no-flow condition is prescribed as,

∂φ

∂n
= 0 on Γb, Γr2 (20)

The boundary condition along a rigid surface piercing maritime structure,

which moves with velocity VB would be define as,

∂φ

∂n
= VB · n on ΓB (21)

To prevent wave reflection at open boundaries of the NWT domain an ab-

sorbing beach (AB) is specified by adding terms: −ν(x)ζ and −ν(x)φ to the

right side of the kinematic and dynamic boundary conditions, respectively, where

ν = 0 for all of the domain except for points with abscissa x ≥ xAB, where

ν(x) = ν0((x− xAB)/LAB)2 (Grilli and Horrillo, 1997 [21]).
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2.2.2 BIE for internal velocities

Based on the BIE (77), another BIE can be derived that directly computes

the internal velocity as a function of boundary values of the velocity potential and

its normal derivative,

u = ∇φ(xi) =

∫ [
∂φ

∂n
(x)Q(x,xi)− φ(x)

∂Q

∂n
(x,xi)

]
dΓ (22)

where xi is a point inside domain Ω and (Guyenne and Grilli, 2006 [18]),

Q(x,xi) =
ri

4πr3
i

∂Q

∂n
(x,xi) =

1

4πr3
i

{
n− 3(ri · n)

ri
r2
i

}
(23)

Eqs. (22) and (23) are explicit (i.e., they do not include any new unknown),

and can be evaluated with the same discretization as that used to compute the

the boundary solution with BIE (77) (see next Section). However, as pointed

out by Guyenne and Grilli [18], these are potentially hypersingular equations for

ri → 0, as they have highly varying kernels for very small ri values as compared

to the equivalent boundary element length. Hence, as indicated in introduction,

an adaptive integration method was implemented; details are given later.

2.2.3 Boundary discretization and standard algebraic system

The BIE (77) is discretized and solved by a BEM, using NΓ collocation nodes

(equal to the number of unknowns) and MΓ boundary elements, defined over

boundary Γ(t). In this NWT, in past work, linear isoparametric triangular and

quadrangular elements were mostly used, with spline elements being used in a more

limited way; future applications, however, will make increasing use of the latter

more accurate elements. Given the BEM discretization, BIE (77) is transformed

into a sum of integrals over each element, which are computed by numerical inte-

gration after transforming each element k, of boundary Γke , from the physical space

43



to a standard 2D reference element of domain Γξ,η defined with curvilinear coordi-

nates (ξ, η), by way of a Jacobian matrix Jk. Polynomial shape functions Nj(ξ, η),

which interpolate both the geometry and field variables over each isoparametric

elements, are defined over the reference element. Therefore the integrals in Eq.

(77) read, ∫
Γ(x)

∂φ

∂n
(x)G(x,xl)dΓ =

MΓ∑
k=1

∫
Γke

∂φ

∂n
(x)G(x,xl)dΓ

=

NΓ∑
j=1

{
MΓ∑
k=1

∫
Γξ,η

Nj(ξ, η)G(x(ξ, η),xl)|Jk(ξ, η)| dξdη

}
∂φ

∂n
(xj)

=

NΓ∑
j=1

{
MΓ∑
k=1

Dk
lj

}
∂φj
∂n

=

NΓ∑
j=1

Kd
lj

∂φj
∂n

(24)

and, ∫
Γ(x)

φ(x)
∂G

∂n
(x,xl)dΓ =

MΓ∑
k=1

∫
Γke

φ(x)
∂G

∂n
(x,xl)dΓ

=

NΓ∑
j=1

{
MΓ∑
k=1

∫
Γξ,η

Nj(ξ, η)
∂G

∂n
(x(ξ, η),xl)|Jk(ξ, η)| dξdη

}
φ(xj)

=

NΓ∑
j=1

{
MΓ∑
k=1

Ek
lj

}
φj

=

NΓ∑
j=1

Kn
ljφj (25)

in which l = 1, ..., NΓ, Dk
lj and Ek

lj denote the local Dirichlet and Neumann element

matrices, and Kd
lj, K

n
lj the corresponding global (assembled) matrices, respectively;

note that j refers to local nodal values of element k, but is expressed in the global

node numbering, by way of assembling.

Eqs. (10) and (11) yield the algebraic form of Eq. (2) as,

αlφl =

NΓ∑
j=1

{
Kd
lj

∂φj
∂n
−Kn

ljφj

}
(26)
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Boundary conditions are expressed with Eqs. (82) to (84) and the final alge-

braic system is assembled by moving unknowns to the left hand side and knowns

to the right hand side of the equation (see Grilli et al., 2001 [9]for a detailed

description of the method.)

Evaluating Eqs. (10) and (11) matrix terms Dk
lj and Ek

lj requires integrat-

ing complex kernels over each boundary element k, which become singular when

rl → 0 in the Green’s functions. For triangular elements, the weakly singular in-

tegrals are desingularized using Dunavant’s (1984) rule [22], and for quadrangular

elements by way of a tensor product of Gauss integration. For linear triangular

elements, singular integrals can then be analytically integrated. Although analyti-

cal solutions of non-singular integrals exist for linear triangular elements, to allow

using the same formulation for higher-order elements, we compute these integrals

numerically; and likewise for quadrangular elements (e.g., Grilli et al. 2001, 2010

[9, 14]). Coefficients α in the BIE are found by applying the rigid mode method

(e.g., Grilli et al. 1989[23]), which expresses that for a Dirichlet problem with a

homogeneous φ = 1 value specified over the entire boundary, the discretized BIE

solution must yield ∂φ/∂n = 0; the α coefficients are then found as the residuals

of this Dirichlet problem. The discretized algebraic BEM system is solved with

BiCGSTAB, a Krylov iterative solver.

In the non-singular integrals, as the free space Green’s function Eq. (78) varies

rapidly when collocation point l is specified close to the considered element (i.e.,

rl → 0), an adaptive integration technique is used, both for collocation points

belonging to the boundary discretization or for internal points where the internal

velocity is computed with Eqs. (22) and (23). The method used is similar to

that described by Grilli et al.(2001) [9] for the same purpose, but here we consider

a simpler distance criterion: when the point under consideration is closer to the
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center of the element than twice the maximum element edge length, the element

is recursively divided into four smaller elements, and this recursive process is done

up to 16 times.

2.2.4 Fast Multipole Method

In the FMM, the free space Green’s function is approximated for “distant”

points by a truncated (order P ) multipole expansion,

G(x,xl) ≈
mx+my+mz=P∑
mx=my=mz=0

(x− xl)mx(y − yl)my(z − zl)mz
mx!my!mz!{(

∂

∂x

)mx( ∂

∂y

)my( ∂

∂z

)mz
G(x,xl)

}
(27)

In this approach, both interactions that are “distant enough” are neglected (yield-

ing a sparse algebraic system matrix) and the full system matrix of the BIE does

not have to be assembled and solved, which is typically one of the most time con-

suming part of the NWT solution, as it has a O(N2
Γ) numerical complexity. More

specifically, to decide how to approximate (or even neglect) interactions, the FMM

uses a divide-and-conquer strategy based on the distance between two points. Im-

portantly, by assigning intermediate points (e.g., at the centers of groups of nodes

or elements of the boundary mesh) and applying the binomial theorem, one is able

to manipulate multipole coefficients that only need to be computed once, instead

of directly evaluating the BIE between each element and node (see Harris et al.,

2016 [24] for details).

Theoretically, if efficiently implemented and assuming NΓ is more than a few

thousand, the computational time of the FMM should scale with O(NΓ) or so.

This is much faster than the solution of the complete BEM system with the best

iterative solvers (which is O(N2
Γ)). Several variations have been proposed for the

implementation of the FMM on parallel clusters [25], which generally rely on do-

main decomposition, whereby the FMM is first applied on each processor over some
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region of space and then results are combined. Harris et al. [24] implemented this

domain decomposition parallel FMM approach and studied the scaling of the two

main phases of the FMM-BEM, using an iterative solver : (i) the assembling of the

global system (sparse) matrix, and (ii) the matrix-vector products involved in the

FMM. They showed good scaling of the FMM-BEM assembling and matrix-vector

products for a mesh with quadrangular elements and NΓ = 79, 202 nodes, with

varying numbers of CPUs, up to a few hundreds, over a simple parallelipipedical

domain, typical of modeling of nonlinear waves (e.g., Fig. 1). The grid was par-

titioned into 1,024 sub-domains and a 15th-order FMM expansion was used, with

100 integration points were used on each element.

While this approach permits good scaling, up to hundreds of processors and

a billion unknowns [26], for BEM problems solved on small desktop computer

clusters, that may only have O(105) unknowns and less than 100 processors, a

simpler approach referred to as single-level FMM was found to scale much more

efficiently. This was pointed out by Waltz et al. (2007), who compared this

approach to many other parallelization attempts of the FMM-BEM and showed

that this is due to the fact that while the number of unknowns is large enough for

the FMM to be efficient, the number of unknowns per processor is low. The FMM

scaling of the present NWT will be studied later in applications.

2.2.5 Curvilinear coordinate transformation

A local non-orthogonal curvilinear coordinate system is used, following

Fochesato et al. [27], to represent the geometry of higher-order BEMs, and field

variables and their derivatives at each collocation node on the boundary, which

extends the orthogonal coordinate assumption made by Grilli et al. [9]. Thus, at

any point x within a n-node isoparametric BEM element k, the geometry and local

47



non-orthogonal unit tangential vectors are defined as,

x =
n∑
j=1

Nj(ξ, η)xkj and s =
∂x

∂ξ
/

∣∣∣∣∂x

∂ξ

∣∣∣∣ , m =
∂x

∂η
/

∣∣∣∣∂x

∂η

∣∣∣∣ (28)

where xkj are the element k nodal coordinates. The unit vectors of a corre-

sponding local orthogonal coordinate system (s,m′,n) are then defined as,

m′ =
1√

1− κ2
m− κ√

1− κ2
s with κ = s ·m (29)

the cosine of the angle between the unit tangential vectors. The normal vector

to the (s,m) plane (pointing outwards depending on proper number of element

nodes) completes this orthogonal coordinate system and can be calculated as,

n = s×m′ (30)

The Jacobian of the transformation between element k, in the global coordi-

nate system, to the reference element is defined as,

|Jk(ξ, η)| =
{∣∣∣∣∂x

∂ξ

∣∣∣∣ , ∣∣∣∣∂x

∂η

∣∣∣∣ ,n} , (31)

which can be computed at any point x of element k with Eqs. (14-16).

Similarly, the gradient of the velocity potential, i.e., flow velocity, is expressed

as [27],

∇φ =
1

1− κ2

(
∂φ

∂s
− κ ∂φ

∂m

)
s +

1

1− κ2

(
∂φ

∂m
− κ∂φ

∂s

)
m +

∂φ

∂n
n (32)

which can also be computed based on Eqs. (14-16), assuming the tangential

and normal derivatives of the potential are known. The normal derivatives of the

potential are obtained from BIE (2)’s solution and the computation of tangential

derivatives is detailed below.

As for the geometry, the potential φ over an isoparametric element k is defined

as the sum of nodal values multiplied by shape functions defined over the reference
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element,

φ =
n∑
j=1

Nj(ξ, η)φkj (33)

The tangential derivatives of the potential over each element (i.e., tangential

velocities) can thus be calculated by direct differentiation of Eq. (33) with the

operators,

∂

∂s
=

∂

∂ξ
/

∣∣∣∣∂x

∂ξ

∣∣∣∣ and
∂

∂m
=

∂

∂η
/

∣∣∣∣∂x

∂η

∣∣∣∣ (34)

Hence, the tangential derivatives at point xl = x(ξl, ηl) of element k read,

∂φ

∂s
=

n∑
j=1

∂Nj(ξ, η)

∂ξ

1∣∣∣∂xk

∂ξ

∣∣∣φkj =
n∑
j=1

S k
j φ

k
j (35)

∂φ

∂m
=

n∑
j=1

∂Nj(ξ, η)

∂η

1∣∣∣∂xk

∂η

∣∣∣φkj =
n∑
j=1

M k
j φ

k
j (36)

Higher-order derivatives of the geometry and the potential on the boundary

can be defined in the same manner, in the local orthogonal coordinate system (see

[27]).

2.2.6 Treatment of corners in global system matrix

As mentioned in the introduction, following Grilli et al. [19, 20, 9], corners

and edges of the BEM discretization, which mark intersections of different parts

of the boundary of the computational domain, in general have different normal

directions and boundary conditions. These are represented by multiple nodes,

for which multiple BIEs are expressed based on different values of the normal

derivative of the potential, but using a single value of the potential, as the latter

must be unique (i.e., continuous) at the same location. This condition is enforced

in the BEM solution by modifying all but one of the assembled algebraic equations

for each multiple node, to satisfy a potential continuity condition. This assumes
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that initially (for t = 0) the boundary conditions at all corners are prescribed in a

way that does not cause a mathematical singularity in the problem.

In a 3D space there are both double (e.g., between the wavemaker and the

free surface) and triple (e.g., where the wavemaker and free surface boundaries

meet with a sidewall boundary) nodes. Thus, for double/triple nodes, there are

2/3 discretized BIEs expressed at each multiple node. To ensure uniqueness and

well-posedness of the solution, however, and in particular a single potential at

any given location, 1 (in case of a double node) or 2 (in case of a triple node) of

these BIEs must be modified in the final algebraic system to ensure that both the

global matrix is not singular and the solution yields a single (continuous) potential.

For the simple domain shown in Fig. 28, the multiple nodes can be categorize

based on their boundary conditions as : (i) Dirichlet-Neumann (DN) double nodes

(e.g., wakemaker and free surface boundary); (ii) Neumann-Neumann (NN) double

nodes (e.g., bottom and sidewall boundaries); (iii) Neumann-Neumann-Neumann

(NNN) triple nodes (e.g., where the wavemaker, bottom and sidewall boundaries

meet); and (iv) Drichlet-Neumann-Neumann (DNN) (e.g., where the wavemaker,

free surface and sidewall boundaries meet).

In a NWT with a moving free surface, possibly moving maritime structure(s),

and a moving wavemaker, Grilli and Subramaniya [20] showed in their 2D work

that, to ensure a stable and accurate solution near multiple-nodes, the velocity

vector should also be unique at such nodes, particularly on the free surface. Besides

achieving an accurate solution, this will also ensure that individual nodes on the

free surface, that are part of multiple nodes, move to an identical location through

time updating. These authors indeed showed that if velocity is not explicitly

enforced to be unique at multiple nodes, by modifying the algebraic BIE system in

a proper way, large numerical errors will occur at and near such nodes in the BIE
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solution, which will grow even larger through time updating and, eventually, lead

to instability of the solution, particularly close to strongly moving rigid boundaries.

Hence, following Grilli and Subramanya [20], in the 3D-NWT, we extended

the simple potential continuity condition at multiple nodes used in earlier work to

also enforce uniqueness of the velocity (i.e., gradient of the potential) at individual

nodes of multiple nodes. This was done for all cases of mixed boundary conditions

(e.g., DN, NN, NNN, DNN) by replacing all but one of the assembled equations

of a multiple node in the algebraic system, by a so-called velocity compatibility

condition, which also includes the potential continuity condition; in the following,

we only present one example for a DN double-node case. These extended multiple-

node conditions, in fact, make the representation of the solution compatible (i.e.,

consistent) on both sides of a corner and effectively eliminate the occurrence of

(numerical) singularities in the discretized solution. When using compatibility

conditions at corners when solving mixed boundary value problems in simple rect-

angular domains, Grilli and Subramaniya [20] showed that numerical errors at

corners could be reduced to almost arbitrarily small values in their 2D-NWT.

For instance, at a DN double node located at the intersection between a piston

wavemaker and the free surface, the compatibility condition forced the BIE solution

to compute a (corrected) value of the tangential velocity on the free surface node

l = f (of the double node), ∂φf/∂s, as a function of both the normal velocity

∂φf/∂n obtained from the solution of the BIE (25) at the current time step, and

the (specified) wavemaker velocity on the wavemaker node l = p (of the double

node), ∂φp/∂n = −up (see Eq. (82)). Here, expressing this compatibility condition

at a similar DN double nodes, defined at the intersection between the free surface

and a wavemaker/maritime structure boundary in the 3D-NWT, we specify that
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up = uf , i.e.,

∂φf
∂s

sf +
∂φf
∂m′

m′f +
∂φf
∂n

nf =
∂φp
∂s

sp +
∂φp
∂m′

m′p +
∂φp
∂n

np (37)

in which the overlines indicate known/specified values. Note that the tangen-

tial derivatives of the specified potential on the free surface (Dirichlet boundary)

are computed by way of the tangential derivative operators defined in Eqs. (35)

and (36), assuming l = f or l = p.

Moving the unknowns to the left-hand-side and projecting the equation in the

direction of unit vector i, we find,

− ∂φp
∂s

(sp · i)−
∂φp
∂m′

(m′p · i) +
∂φf
∂n

(nf · i) =

− ∂φf
∂s

(sf · i)−
∂φf
∂m′

(m′f · i) +
∂φp
∂n

(np · i) = ui (38)

Assuming that element k is on the free surface boundary and element m

is on the wavemaker/maritime structure boundary, and replacing the tangential

derivatives into Eq. (38), while specifying the potential continuity condition φm1 =

φk1, we find

−
n∑
j=2

{S m
j − κmMm

j }Cspi + {Mm
j − κmS m

j }Cmpi
1− κ2

m

φmj +
∂φf
∂n

Cnf i =

−
n∑
j=1

{S k
j − κkM k

j }Csf i + {M k
j − κkS k

j }Cmf i
1− κ2

k

φkj +
∂φp
∂n

Cnpi

+
{S m

1 − κmMm
1 }Cspi + {Mm

1 − κmS m
1 }Cmpi

1− κ2
m

φk1 = u′i (39)

in which the C coefficients are the cosines of the angles between the unit vectors

indicated as lower indices. For a DN wavemaker boundary, such as considered in

this example, direction i can be individually selected at each double node, as the

horizontal projection of the local normal vector to the wavemaker boundary np.
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Note that in Eq. (39) there are n unknowns in the left-hand side, n− 1 potential

values at the non-multiple nodes of element m on the wavemaker boundary and 1

normal derivative of the potential on the free surface node of the multiple node in

element k; the right-hand side of the equation u′i is built with specified or known

values at the current time. Eq. (39) is substituted for 1 of the two BIE equations

assembled in the BEM algebraic system for this DN double node.

In case of orthogonal elements (i.e., when κ = 0) and with m · i = 0 for 2D

problems, Eq. (39) simplifies to the equation developed by Grilli and Subramanya

[20] and used as extended compatibility condition in their 2D-NWT.

For triple nodes, such as DNN, for instance at the intersection between a

wavemaker l = p, free surface l = f , and sidewall l = q boundary, 2 equations such

as Eq. (37) would be derived, expressing up = uf = uq, leading to 2 equations

similar to Eq. (39), based on projections of each of these in directions i and j,

for instance pointing in the direction of the horizontal projections of the local

normal vectors to the wavemaker and sidewall boundaries, respectively (np and

nq). These 2 equations would then replace 2 of the 3 BIE equations assembled

in the BEM algebraic system for this DNN triple node. Doing this, in the BEM

solution, the value of the normal velocity at the free surface node of the triple

node would depend upon both distributions of potential along the 2 intersecting

Neumann boundaries.

2.3 Applications
2.3.1 Scaling of the FMM-BEM solution on parallel CPU clusters

We performed the same scaling study as Harris et al. [24], but on a small

desktop CPU cluster with shared memory, of the solution of a mixed boundary

condition Laplace problem over the domain of Fig. 15; the domain was discretized

with NΓ = 54, 000 nodes, and the problem solved with 1,2,4,8 or 16 CPUs. In

53



NΓ MAX RMS(∂φ
∂n

) RMS(φ) MAX RMS(∂φ
∂n

) RMS(φ)
with CC with CC with CC without CC without CC without CC

54 5.2984e-07 5.2938e-07 5.7738e-07 1.8131e-05 8.3901e-06 5.2273e-07
150 8.2993e-06 5.4940e-06 4.4905e-07 4.8857e-05 2.0582e-05 4.8828e-07
726 6.8341e-06 1.51491r-06 2.7939e-07 1.0558e-05 1.0558e-05 3.5162e-07

2,646 4.3483e-06 1.1496e-06 2.6854e-07 6.9098e-05 1.9098e-05 3.4782e-07
10,086 1.7760e-06 1.1326e-06 2.3885e-07 3.1012e-05 1.3773e-05 3.2742e-07

Table 4: Numerical errors (maximum (MAX); and root-mean-square (RMS) of the
3D-NWT solution over a unit size cube domain, with and without multiple-node
compatibility conditions (CC), as a function of the number of nodes NΓ.

the FMM, the grid was partitioned into 32 sub-domains, and 10 integration points

were used on each element. Fig. 12 shows the speed-up of the system matrix

assembly, total 3D-FMM-BEM solution, and internal velocity, computational time

as a function of the CPU time on a single core. We see that on this small system,

while a significant speed up, almost optimal, of the complete solution is achieved up

to 4 CPUs, the marginal gain in speed-up is much smaller when further increasing

the number of CPUs. This is related to the internal architecture and CPU to CPU

communications within the small desktop cluster.

Next, on the same system and for the same Laplace problem, we studied

the scalability of the 3D-FMM-BEM complete solution for 1 and 8 CPUs, as a

function of the number of nodes NΓ = 5, 000 to 100,500. Results in Fig. 13 show

an O(N1.05) scaling for 1 and O(N1.09
Γ ) scaling for 8 CPUs, which both are quite

close to the optimal theoretical scaling O(NΓ).

2.3.2 Compatibility conditions at multiple nodes

To assess the accuracy of the new velocity compatibility conditions (CC) im-

plemented at multiple nodes in the 3D-NWT, we performed a convergence test of

the solution of a mixed boundary value problem over a unit size cube, which has a

simple analytical solution, as a function of the number nodes, NΓ = 54 to 10,086

(note, 54 nodes is the minimum number for a cube to contain both double and

triple nodes).

54



Figure 12: Speed-up of the 3D-FMM-BEM solution of a mixed-boundary condition
Laplace problem over the domain of Fig. 28, as a function of the number of CPUs
on a small desktop cluster, for: (i) matrix assembling (•); (ii) internal velocity
calculation (as a vector product sample) (•); and (iii) complete solution (•). A
grid of quadrangular linear elements is used with NΓ = 54, 000 collocation points.

Figure 13: Same case as 12. CPU time of the 3D-FMM-BEM solution for NΓ =
5, 000 to 100,500 nodes, using 1 (•) and 8 (•) CPUs on a small desktop cluster.
The red line shows an O(NΓ) scalability, whereas it is O(N1.05

Γ ) for 1 CPU.

55



Both maximum (MAX) and root-mean-square (RMS) errors (over the entire

grid) of the solution were computed, with and without compatibility conditions,

based on values of the normal velocity ∂φ/∂n or potential φ. These are listed in

Table 1. In all cases, the potential continuity conditions were specified at multiple

nodes. Although RMS errors are only slight smaller with compatibility conditions

than without, the maximum errors on normal velocity, which occur at multiple

nodes, are much reduced when specifying compatibility conditions, particularly

for the larger discretization. We verified that differences are much larger between

the two methods for a domain with complex geometry and, based on earlier work

(Grilli and Subramanya [20]), we expect these to be even larger once we will be

updating the free surface geometry and or the position of wavemaker/maritime

structures as a function of time, since this will cause cumulative error effects.

2.3.3 Computation of internal velocities

As discussed in introduction, this work is part of broader project to develop a

hybrid solver for naval hydrodynamics problem, based on an coupling an efficient

BEM-FNPF model, i.e., the 3D-BEM-FMM NWT discussed here, and a LBM

solution of Navier-Stokes (NS) equations, through a perturbation approach. In

the hybrid solver, the potential flow solution is used to force the LBM-NS solution

for the viscous perturbation flow (see, Harris and Grilli (2012) and O’Reilly et al.

(2017), in this conference). This requires computing the internal velocity field at

many points within the NWT domain, at each time step.

Here, we validate the computation of the internal velocity field in the 3D-NWT

by computing the flow around a symmetric Karman-Trefftz foil (see Abbot and

Von Doenhoff,[28]), for a free flow velocity U in the x-direction. Specifying the 3D-

NWT boundary conditions to solve a 2D problem (using no-flow conditions on the

sidewalls in the y-direction and upper and bottom boundaries in the z-direction),

56



Figure 14: Analytical solution for the scaled module of velocity u/U of the (uni-
form) flow around a symmetric Karman-Trefftz foil.

Figure 15: Computational domain for the computation of the (uniform) flow
around a symmetric Karman-Trefftz foil, using MΓ = 15, 488 linear quadrangu-
lar elements.
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(a)

(b)

Figure 16: Case of Fig. 15. Zoom-in on relative errors of velocity module computed
using: (a) linear, or (b) B-spline quadrilateral elements.
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an analytical solution of the flow around the foil can be expressed based on a

conformal mapping in the complex plane ζ = x+ iy,

Z(ζ) = nλ
(1 + λ

ζ
)n + (1− λ

ζ
)n

(1 + λ
ζ
)n − (1− λ

ζ
)n

(40)

which maps a cylinder of radius R centered at ζ = x = s, for which the

complex potential is the trivial superposition of a uniform flow of velocity U and

a dipole: W (ζ) = U(ζ + R2/ζ), to the symmetric foil, where n = 2 − β/π, with

β the angle at the foil trailing edge, and λ = R + s. Selecting R = 1 and the foil

center at s = −0.045 we find β = 8o. The 2D analytical solution for the scaled

module of velocity u/U around this foil is shown in Fig. 14.

We consider a rectangular domain, with extension −100 < x < 100, −100 <

z < 100, and solve this 2D flow in 3D using a transverse direction y extending

from, −15 < z < 0. The computational domain boundary is discretized with

MΓ = 15, 488 quadrangular elements with increasing resolution towards the foil

(Fig. 15), which are either: (i) linear isoparametric; or (ii) cubic B-spline elements;

in the FMM, 15th-order expansions are used in the BEM solution of Eq. (2).

Compatibility conditions are specified here at all multiple nodes. We then compute

the velocity field with Eq. (22) at 10,000 internal points xi, most of these being

located near the foil surface, and compare it with the analytical solution. In

Fig. 16a, we find that for case (i), maximum errors in velocity reach 0.45% near

the foil leading and trailing edges, while the L2-error is 10−6 over the entire set of

internal points. For case (ii), however, in Fig. 16b, these errors are about 10 times

smaller confirming the well known property and importance of using higher-order

elements in the BEM.

2.4 Conclusion

In this paper, we reported on recent improvements in the implementation of a

3D-NWT solving FNPF with a free surface. The NWT is based on a BEM, using
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linear or cubic B-spline elements, and the solution is accelerated with an efficient

FMM, showing nearly linear scaling in both scalar and parallel computations. The

NWT is a component of a hybrid model, in combination with a Navier-Stokes LBM

model with Large eddy simulation, aimed at solving naval hydrodynamic problems

(e.g., ship sea-keeping).

We showed, in particular, a good scaling of the FMM-BEM numerical solu-

tion with problem size NΓ near the theoretical optimal (O(NΓ)) and reasonable

additional speed-up with the number of processors in a parallel implementation.

Well-posed velocity compatibility conditions were developed and implemented for

multiple nodes at the corners and edges of the 3D domain, which extend earlier

2D formulations by Grilli and Svendsen (1990), Grilli and Subramanya (1996), and

Grilli et al. (2001). These were shown to reduce errors in the numerical solution

for various discretizations and cases.

We presented results for a uniform flow past a submerged symmetric foil and

showed that internal velocities could be both efficiently and accurately computed

by applying the same FMM-BEM approach. Such internal velocity fields are used

in the hybrid model to force the viscous perturbation LBM solution based on the

inviscid flow results in the NWT (e.g., O’Reilly et al., 2016, 2017, the latter paper

at this conference).

By extending the NWT formulation to a moving coordinate systems and

(later) to arbitrary geometries, we will be able to handle a broader range of more

complex applications of particular interest to Naval Hydrodynamics and ocean

engineering. The extension of the BEM to higher-order B-spline elements (e.g.,

Maestre et al.[29] 2016; Harris et al. paper at this conference), which was achieved

without fundamental changes in the FMM-NWT formulation, already demon-

strated for the foil that numerical errors can be significantly reduced. This will be
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very important in naval hydrodynamics applications, when modeling submerged

or floating bodies of complex geometry.
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Abstract

A 3D fully nonlinear Numerical Wave Tank (NWT), accelerated with Fast

Multipole Method (FMM), is extended to include spilling breaker model, which

utilize an absorbing surface pressure that is specified over region where breaking

wave exist. A spilling breaker generated due to an advancing submerged hydrofoil

is modelled to to demonstrate the method. The instantaneous power dissipated

for each breaking wave by the absorbing pressure is specified proportional to the

average dissipation of steady spilling breakers found by Duncan [1, 2]. The method

is implemented by applying a wave tracking algorithm to the free surface. A

geometrical breaking criteria of maximum surface slope (for long low frequency

waves) and maximum curvature (for short high frequency waves) is used to identify

breaking waves on the surface. Computations for a wave breaking induced by

towed foil is compared with experiment with the goal of stabilizing the simulation

of NWT. The agreement with experiments is good, and model is extended to

demonstrate applications with more complex free surface breaking.

3.1 Introduction

In the past few decades, numerical models based on irrotational (and thus

kinematically inviscid) potential flow theory, with fully nonlinear free surface

boundary conditions, have proved very accurate (as compared to experiments)

for simulating steep waves in two- or three-dimensions (2D/3D) and in deep/inter-

mediate or shallow water, up to the point of breaking, without or in the pres-

ence of fixed or moving surface-piercing structures. When using an Eulerian-

Lagrangian (EL) free surface time updating, these models could also accurately

simulate wave overturning up to the time a breaker jet impacted the free surface

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. In most of these studies, the

so-called Fully Nonlinear Potential Flow (FNPF) equations were solved using a
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higher-order Boundary Element Method (BEM), combined with a high-order time

updating algorithm (EL or Eulerian). A BEM was deemed more accurate and

efficient to use for this problem than domain discretization methods, particularly

since the main results of interest often were located on boundaries. For 3D prob-

lems, however, to overcome the penalizing numerical complexity of standard BEM

methods–usually N2, for N boundary nodes–fast multipole methods (FMM) were

introduced that yielded a nearly order N solution [19, 20, 13, 14, 15, 21, 22, 23].

Despite their accuracy and efficiency, FNPF-BEM simulations have the im-

portant limitation that both the modeled physics and computations break down

whenever a wave reaches the breaking point and/or overturns, which can happen

anywhere in the domain for complex/irregular sea states, due to wave-wave in-

teractions or the bathymetry, as well as around surface piercing fixed or moving

structures (e.g., breaking bow waves of advancing ships). Nevertheless, many im-

portant properties of waves near and at the onset of breaking were and are still

studied with such models [24, 9, 10, 12, 18], as they often provide more accurate

and efficient results near and at the free surface (both geometry and flow fields)

than full Navier-Stokes (NS) CFD codes. However, the occurrence of breaking

prevents performing longer term or practical engineering FNPF simulations, which

requires implementing a method for identifying and suppressing wave breaking in

these models. The latter can be achieved by removing energy from waves that are

deemed to be at the onset of breaking, but as there is no physical dissipation mech-

anism in potential flow theory, this can only be achieved by specifying dissipation

terms in the free surface boundary conditions, which govern the wave kinematics

and dynamics. Such methods have been extensively applied in earlier studies to

specify so-called absorbing beaches (AB; or sponge layers), for instance to dissipate

all waves at the end or on the sides of a Numerical Wave Tank (NWT) [25, 26].
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NWTs, which are equipped with the same functionality as physical wave tanks, i.e.,

wave generation by a variety of wavemakers or other methods and wave absorption

in ABs [26, 27], have increasingly become standard design tools in ocean/offshore

engineering and naval hydrodynamics, to study wave-structure interactions (see

[15] for a review of NWT).

In earlier work the authors implemented an AB in their 2D- and 3D-NWT, by

specifying a damping surface pressure pAB in the dynamic free surface boundary

condition, which they defined as proportional and opposite to the local normal

particle velocity; it can be shown that this always yields a negative work against

waves and thus causes energy absorption (see details in [26]). To better absorb

long wave energy they also modeled an active piston absorber at the end of the

AB, as suggested in [28]. This ad hoc approach works well when the physics of the

problem (e.g, nearshore wave shoaling) makes it clear in which area wave breaking

will occur (e.g., a well-delimited surfzone), and one is not seeking to accurately

model the physics of steep wave trains, within which some individual waves could

break. By contrast, to study individual shoaling and breaking surfzone waves,

Guignard and Grilli [29] implemented a local spilling breaker (SB) model in their

2D-NWT, based on the same principle as the AB, in which impending breaking

waves were first identified based on a maximum front slope criterion (37 deg in

this case), and then had their energy gradually absorbed by specifying a Gaussian

distributed absorbing pressure in the area of the wave crest. Assuming a roller

model, the rate of energy dissipation was adjusted to match that of an inverted

hydraulic jump having the same height and crest celerity, which other work has

shown is a good proxy for energy dissipation in spilling breaking waves [30, 31, 32].

With this approach, Guignard and Grilli (2001) were able to simulate the decay

of periodic wave elevations and the related wave set-up in a surfzone, in good
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agreement with laboratory experiments.

Here we report on the development, implementation, and validation of a sim-

ilar local wave breaking identification and absorption method, in the 3D-FNPF-

FMM-BEM NWT developed in our earlier work [11, 33, 15, 22, 23, 17]. Although

this method is general, in this paper, we target ocean and naval engineering ap-

plications, in which one seeks to accurately compute motions and induced forces

on structures due to steep waves, as a function of time, without simulations being

interrupted by wave breaking in the wake or near structures. As we are not inter-

ested in estimating near breaking wave properties, although the amount of energy

absorbed in the model to prevent breaking should be calibrated to be physically

meaningful, the details of energy absorption and in particular of its distribution

around wave crests are not key to the result accuracy. An algorithm is first ap-

plied to identify areas of impending breaking waves in instantaneous free surface

elevations. For complex sea states that are possibly strongly affected by the pres-

ence of structures, this is not a trivial problem. The algorithm works in three

stages: (i) A Hilbert transform method first identifies wave crest and trough loca-

tions [34]; then, (ii) based on local wave properties, breaking criteria are applied,

based on maximum slope and/or curvature thresholds to identify near breaking

wave areas [29, 35]; finally, (iii) absorbing pressure patches are distributed over

these areas.For the later stage, calibration of the dissipation rate is necessary to

be physically meaningful.

Perlin et al. [36] gave a review to date of breaking criteria for waves in deep

to intermediate depth. Deep water breaking criteria have typically been based

on maximum wave steepness thresholds, such as Miche’s criterion for 2D periodic

waves, S = ka > 0.443 (with a the wave amplitude, k = 2π/λ the wavenumber,

and λ the wavelength), which corresponds to the wave crest having a 120 deg.
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angle. Such criteria have been adapted to irregular sea states by using the total

steepness, St =
∑

i kiai (in which a large number of wave harmonics i are used).

As S or St increases, so does nonlinearity, causing the geometry of individual

waves to become increasingly horizontally asymmetric, with narrower and steeper

crests and longer shallower troughs; additionally waves exhibit an increasing fore-

aft asymmetry, which can be enhanced by the presence of a sloping bottom. In the

latter case, as depth decreases, breaking criteria have more typically been of the

form of a maximum breaker index, γ = a/h whose value is usually function of the

wave incident steepness in deep water S0 and the local bottom slope [9]. In deep

water, maximum steepness values used in breaking criteria have typically been in

the 0.31-0.7 range, depending on wave type, with 0.35 being most often selected

[36]. Hence, there does not seem to be a unique limiting wave steepness.

This fact was confirmed in recent studies, which showed that single S, St,

or γ threshold values do not uniquely separate breaking and non-breaking waves

[37, 38, 18]. In an attempt to unify these approaches, these studies proposed

a kinematic breaking criterion, a function of the local particle velocity at the

crest uc and celerity c, of the form B = uc/c > 0.85 − 0.86, which they showed

appeared to be universal for many different types of waves, in 2D or 3D and for

a variety of depth regimes [37, 38, 18]. More specifically, unlike the traditional

breaking criteria, waves do not break when reaching this threshold B value, but

instead, any wave that crosses it will end up breaking, whereas those that do not,

while first steepening, will recover without breaking. Additionally, using a NS

model, the same work showed that the total energy dissipation in breaking waves

is proportional to dB/dt calculated for the threshold value and to a relevant time

scale. Hence, the steeper the rise of B towards its threshold, the larger the eventual

wave dissipation.
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As indicated before, it is not our purpose here to investigate the physics of

near-breaking waves, but instead to develop and apply the ad hoc algorithm intro-

duced above for wave breaking suppression in FNPF-NWT simulations. However,

we still want the absorbed breaking wave energy to be physically realistic. Kine-

matic breaking criteria, such as those based on B, while being most accurate,

require computing instantaneous values of the horizontal particle velocity at the

crest uc as well as the crest phase speed, c. While the horizontal particle velocity

on the free surface U = (u, v) is locally computed in the NWT, and can then be

projected in the direction normal to a wave crest that has been identified in the

algorithm, the crest celerity is non local and requires tracking crest trajectories as

a function of time for long enough to be able to accurately compute the local phase

velocity by time differentiation. In their 2D-FNPF-NWT, Grilli and Guignard [29]

tracked the motion of individual waves in their simulations of shoaling periodic

waves. Based on these wave kinematics, they could apply a simple shallow water

breaking criterion–in their case a maximum front slope reaching 37 deg–to detect

impending breaking waves. Using the individual wave properties, such as c, and

crest/trough elevation, the energy dissipation for each individual breaking wave

was estimated and an absorbing pressure pd was accordingly applied in the BEM

code.

In the more complex 3D situations considered in present paper, we elected to

apply simpler local breaking criteria in our ad hoc algorithm, based on the wave

crest front slope and/or curvature reaching a maximum value. Details will be

provided later, but in past work, Subramani et al. [35] had demonstrated using a

breaking criterion in their 3D-FNPF model based on the local wave curvature κ

of the form κba > 0.35. Surface curvature can easily be computed in curvilinear

BEM elements [33]. Regarding energy dissipation rates, the energy extracted by
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the damping pressure from waves identified to break in the model will be calibrated

based on the parameterization derived by Duncan [1, 2] from results of experiments

for steady breaking waves induced by a submerged towed hydrofoil. He found that

the energy dissipation rate per unit width of crest in each breaking wave varied as,

εb = bρ c5
b/g (in Watts), where ρ is water density, g is the gravitational acceleration,

and cb is the breaking wave crest celerity. Based on these experiments, Duncan

derived values of the non-dimensional breaking parameter b ∈ [0.036− 0.052], as a

function of the front slope of breaking waves in the range [10-14.7] deg.

In the following, in section 2 we briefly describe the FNPF model governing

equations and boundary conditions, and the mathematical formulations associated

with the breaking suppression model, including breaking criteria, wave energy

absorption, and wave crest/track identification and tracking algorithms. In section

3, we briefly summarize the numerical model implementation and methods, which

have all been detailed elsewhere, in Section 4, we present results of numerical

simulations and their validation with Duncan’s experiments for steady breakers,

and we conclude with a discussion and conclusions in Section 5.

3.2 Model equations
3.2.1 Governing Equation and Boundary Conditions

We model irrotational flows of an incompressible and inviscid fluid, for which

flow velocity is given by u =∇φ, with φ(x, t) the velocity potential. In Cartesian

coordinates, the position vector is defined as x = (x, y, z), in which z is pointing

vertically upwards and gravity is pointing downward, with acceleration g. Such po-

tential flows are governed by mass conservation, which yields a Laplace’s equation

for the velocity potential,

∇2φ = 0 in Ω(t) (41)
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over domain Ω(t) with boundary Γ(t). In the context of the BEM, using Green’s

second identity, this governing equation is transformed into a Boundary Integral

Equation (BIE),

α(xl)φ(xl) =

∫
Γ(x(t))

{
∂φ

∂n
(x)G(x,xl)− φ(x)

∂G

∂n
(x,xl)

}
dΓ(x(t)) (42)

in which x and xl = (xl, yl, zl) are points on boundary Γ(t), n = (nx, ny, nz) is the

unit outward normal vector on the boundary, and α(xl) is a geometric coefficient

function of the interior angle of the boundary at xl. The 3D free space Green’s

function and its normal derivative are defined in the BIE as,

G(x,xl) =
1

4πr
and

∂G

∂n
= − r · n

4πr3
(43)

in which r = x− xl and r = |r|.

On the free surface Γf (t), φ satisfies the nonlinear kinematic and dynamic

boundary conditions,

δζ

δt
=
∂φ

∂z
−∇Hφ ·∇Hζ −U(t) ·∇Hζ on Γf (44)

δφ

δt
= −gζ − 1

2
∇φ ·∇φ− pa

ρ
+
∂ζ

∂t

∂φ

∂z
−U(t) ·∇Hφ on Γf (45)

Γr1

Γr2

Γb

ΓB

L

h

w

LAB

Figure 17: NWT computational domain. Waves, if any, are generated on Γr1
and damped in the absorbing beach (AB) over length LAB, and on Γr2 using an
absorbing piston.
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respectively, with ζ the vertical position vector of nodes on the free surface (referred

to z = 0 and measured upward), pa the atmospheric pressure, ρ the fluid density,

and the horizontal derivative,∇H = ∂
∂x

i+ ∂
∂y

j (i and j are unit vector in directions

x and y, respectively).

Eqs. 79 and 80 have been expressed in a semi-Lagrangian form [39, 40, 14],

assuming that the coordinate system advances at velocity U(t), and the semi-

Lagrangian derivative is defined as,

δ

δt
=

∂

∂t
+
∂ζ

∂t

∂

∂z
−U(t) ·∇H (46)

In the NWT, waves can be generated by simulating a wavemaker motion or

incident wave kinematics on boundary Γr1(t) and damped in an absorbing beach

(AB) over length LAB, and/or on Γr2 using an absorbing piston (Fig. 28) [26].

For instance, a simple piston wavemaker motion could be specified by its time

dependent stroke and velocity (xp, up) as,

x = xp(t); up(t) = −∇φ ·n = −∂φ
∂n

on Γr1(t) (47)

respectively, where the overlines denote specified values. Along the stationary

bottom Γb and on other fixed boundaries, a no-flow condition is prescribed as

(Fig. 28),

∂φ

∂n
= 0 on Γb, Γr2 (48)

The boundary condition along a rigid submerged or surface piercing ocean/naval

structure, moving with velocity VB, would be specified as,

∂φ

∂n
= VB ·n on ΓB (49)

As indicated before, incident waves are damped at the far end of the NWT by

dissipating their energy in an absorbing beach (AB) of length LAB (Fig. 28), over

which a damping pressure term pd is added to the dynamic free surface boundary

73



Figure 18: Definition of local non-orthogonal (s,m,n) and orthogonal (s,m′,n)
curvilinear coordinate systems used to compute tangential derivatives at collo-
cation node xj on the domain boundary; the transformation to intrinsic coordi-
nates (ξ, η) by way of Jacobian J(ξ, η) is illustrated. The boundary is interpolated
piecwise by cubic quadrilateral B-spline boundary elements. Symbols (o) mark
collocation nodes and the thicker line a domain edge.

conditions; for long waves, an absorbing piston can also be specified over boundary

Γr2 [26, 28]. A similar damping pressure approach is used to absorb energy in

individual waves that are identified to be near breaking. Details of the AB and local

absorption methods are provided in a following section. Finally, small free surface

oscillations that could appear upstream of a structure, as a result of the semi-

Lagrangian time updating, are damped in a sponge layer specified near boundary

Γr1, over which −ν(x)ζ and −ν(x)φ terms are added to the right hand side of the

kinematic and dynamic boundary conditions, respectively [25]; within the sponge

layer, the shape function ν(x) gradually increases with distance squared.

3.2.2 Boundary representation and curvilinear coordinate transforma-
tion

As will be detailed later, given N collocation nodes on the 3D-NWT bound-

ary where problem unknowns are computed, the boundary geometry and field
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variables are piecewise-interpolated in between those using cubic B-spline bound-

ary elements, which ensure inter-element continuity of the surface slope. For the

purpose of numerical integration in the BIE, these elements, whose shape functions

are defined in the physical space (x, y, z) are each locally expressed using intrinsic

coordinates (ξ, η), by way of a curvilinear coordinate transformation with Jacobian

J(ξ, η) (Fig. 29).

Additionally, to apply some boundary conditions and specify energy absorp-

tion in the model, tangential derivatives and curvature need to be computed at

collocation points. This is done in a local curvilinear coordinate system (s, m,

n), which is not necessarily orthogonal and whose tangential vectors are defined

as [11, 33] (Fig. 29),

s =
1

h1

∂x

∂ξ
and m =

1

h2

∂x

∂η
, (50)

with,

h1 =

∣∣∣∣∂x

∂ξ

∣∣∣∣ , h2 =

∣∣∣∣∂x

∂η

∣∣∣∣ . (51)

Following Fochesato et al. [33] orthogonal tangential vectors (s, m′) are de-

fined (Fig. 29) and used to compute both tangential derivatives. We have,

m′ =
1√

1− χ2
m− χ√

1− χ2
s , (52)

with χ = s ·m ∈ [−1, 1], so that s ·m′ = 0. With these definitions, the unit

normal vector is defined as (Fig. 29),

n = s×m′ =
1√

1− χ2
s×m , (53)

and the Jacobian of the curvilinear coordinate transformation (x, y, z)→ (ξ, η) as,

J(ξ, η) =

{
∂x

∂ξ
,
∂x

∂η
,n

}T

, (54)

with | J(ξ, η) |= h1h2.
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In this local orthogonal curvilinear system, the gradient operator is given by,

∇ ≡ ∂

∂s
s +

∂

∂m′
m′ +

∂

∂n
n (55)

with,

∂

∂s
=

1

h1

∂

∂ξ
;

∂

∂m
=

1

h2

∂

∂η
(56)

and

∂

∂m′
=

1√
1− χ2

∂

∂m
− χ√

1− χ2

∂

∂s
(57)

Hence,

∇ ≡
(
∂

∂s
− χ ∂

∂m

)
s +

(
∂

∂m
− χ ∂

∂s

)
m +

∂

∂n
n (58)

3.2.3 Criteria to trigger wave breaking suppression in the NWT

As detailed in the introduction, many breaking criteria have been proposed in

past studies, with most of these focusing on identifying wave characteristics at the

breaking point. For the purpose of suppressing wave breaking in our FNPF-NWT,

however, once wave parameters reach values defined in such a criteria, it is usually

too late to absorb enough energy in the model to prevent wave breaking. There-

fore, we have developed simpler and more conservative, yet physically meaningful,

breaking criteria based on geometrical properties of the free surface. As discussed

in the introduction these are based on surface slope, curvature, or a combination

of both of these. Details are provided in the following.

Curvature-based criteria

Based on the piecewise cubic B-spline representation of the model boundary,

the free surface curvatures can be computed at each collocation point in the local

orthogonal curvilinear coordinate system defined earlier (s, m′, n) (Fig. 29) as,

κs =

∣∣∣∂2xj
∂s2

∣∣∣(
1 +

∣∣∣∂xj∂s ∣∣∣2) 3
2

, κm′ =

∣∣∣ ∂2xj
∂m′2

∣∣∣(
1 +

∣∣∣ ∂xj∂m′

∣∣∣2) 3
2

(59)
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in which the s− and m′−derivatives are expressed based on the transformation

introduced above (Eqs. 92 and 93).

Given an arbitrary direction e, for instance orthogonal to an identified wave

crest, using Eq. 94 one can compute the directional derivative as ∂/∂e ≡ ∇· e

and the second derivative by applying this operator to itself [33]. As they are not

defined within the surface, the n-derivative terms in this equation can be eliminated

by also selecting e such that e ·n = 0, with n given by Eq. 89. The curvature

κe can then be computed with an equation similar to those in Eq. 59 in which

e is subsituted for s or m′. [One would as easily compute the local maximum

(principal) curvature.] Estimating the local wave amplitude a, one can then check

whether κea > κba = 0.35 and deem the wave to be about to break or not.

While this maximum curvature criterion has been shown to work well for short

steep waves [35], for long waves, it may not be sufficiently conservative to allow

enough time for suppressing wave breaking in the model. In this case, a maximum

front slope criterion is more appropriate [29].

Slope-based criteria

Guignard and Grilli [29] used a 37 degree maximum slope criterion on the

wave front face to identify whether long shoaling waves were about to break and

trigger wave breaking suppression in their 2D-NWT. To apply a similar criterion in

the present 3D-NWT, one needs to calculate the free surface slope in an arbitrary

direction e (for instance orthogonal to an identified wave crest).

As detailed above, the surface slope in direction e can be calculated for any

collocation point as, |∂xj/∂e| ≡ |∇xj · e|, with the gradient operator given by

Eq. 94 and the tangential s− and m/m′−derivatives calculated with Eqs. 92 and

93 based on the B-spline basis functions. If e is further selected within a plane

orthogonal to the local normal vector n (given by Eq. 89), the n−derivative terms
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cancel and one can easily compute the surface slope |∂xj/∂e| only based on the

surface geometry; the latter can then be corrected with respect to the horizontal

plane.

3.2.4 Wave energy absorption

In the model, the same method is used for damping waves in the absorbing

beach (AB; Fig. 29) and in local areas where waves are deemed to be about to

break, based on the breaking criteria detailed before. This is done by absorbing

part of the wave energy by specifying a counteracting or damping surface pressure,

pAB or pd, respectively, in the dynamic free surface boundary condition Eq. 80,

δφ

δt
= −gη − 1

2
∇φ ·∇φ+

∂η

∂t

∂φ

∂z
−U(t) ·∇Hφ−

pa + pAB + pd
ρ

on Γf (60)

proportional to the normal particle velocity on the free surface [26],

pAB = νAB(x)
∂φ

∂n
; pd = νd(x)

∂φ

∂n
. (61)

In the AB, pAB is smoothly ramped up at the beginning of the beach using the

spatially varying function, νAB(x) = ν0((x − xAB)/LAB)2 (Fig. 29), where ν0 is

the AB calibration coefficient, and is zero otherwise [26].

Likewise, in local wave breaking areas,

νd(x) = νb0ρ
√
gh0 Sb(x) (62)

where h0 is a reference depth, given a small ε value (e.g., 1%),

Sb(x) =
sech2(µ|x− xb|)− ε

1− ε
; µ = acosh

√
1/ε (63)

is an axisymmetric Gaussian-like function [29] smoothly decreasing from 1 to 0

over distance |x−xb|, from the location where breaking is identified xb (where the

wave curvature/slope exceeds the defined threshold), and Sb = 0 beyond distance

lb.
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Coefficient νb0 is a calibration constant, which is calculated piecewise (i.e., for

each breaking wave) based on matching the power dissipated over a single breaking

wave area with that computed in Duncan’s experiments for steady breakers, εb =

bρ c5
b/g [1, 2] (see introduction). Thus, using Eqs. 62 and 63, the power dissipated

by the damping pressure in a single breaking wave can be calculated as [26],

Pd =

∫
Ab(x)

pd
∂φ

∂n
dA = νb0ρ

√
gh0

∫
Ab(x)

Sb(x)
∂φ

∂n
dA = εb (64)

where Ab(x) denotes the area where the damping pressure is specified around

location xb and the breaking wave crest celerity cb in the expression of εb is found

from model results (details are provided later). Hence,

νb0 =
b c5

b

g
√
gh0

1

Ib
(65)

where Ib denotes the last integral in Eq. 64. Note, in practice, there are typically

multiple neighboring collocation nodes where the breaking criterion is met for a

given wave and, hence, this integral is computed over the sum of these areas and for

the sum of the corresponding pressure shape functions Sb. Additionally, once the

breaking criterion is met and a given area is identified to be applied the damping

pressure pd, calculated based on Eqs. 61 to 65, to prevent triggering numerical

instabilities the pressure is ramped up over 5 time steps, from 0 to its target value

using a tanh function.

In these experiments for steady breakers, based on measured dissipation, Dun-

can [1, 2] parameterized, b = 0.009/ sin(βb), with βb ∈ [10o, 14.7o] the average angle

of the breaking wave front face. Hence, in these results b ∈ [0.036−0.052], an inter-

val which will be the basis for calibrating νb0 with Eqs. (64) and 65 in the present

applications.
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3.2.5 Wave crest/trough identification and tracking algorithm

At each time t, an algorithm is applied to identify areas of impending breaking

from instantaneous free surface elevations, which works in three stages: (i) a Hilbert

transform method is applied to identify wave crest and trough locations, as well

as compute crest celerity [34]; (ii) near breaking wave areas are identified based

on local wave properties: maximum slope and/or curvature criteria (as detailed

above); and (iii) absorbing pressure patches are distributed over these areas (as

also detailed above). In the following, we detail stage (i) of this algorithm.

Stansell et al. [34] used spatial and temporal Hilbert transforms to calculate

local wave phase speeds, based on computed wavenumbers k and frequencies ω.

In the present algorithm, at each time t, locations of wave crests and troughs are

identified by applying a spatial Hilbert transform to instantaneous surface eleva-

tions ζ(x, t). A temporal Hilbert transform is also applied over the last τ time

step (here 30 time steps) of nodes on the free surface which has been saved during

the simulation. This allows computing wave crest celerity at the determined crest

location over the free surface.It should be noted that for the non-global extrema,

this value will be negative, resulting in negative phase speed which is not physical.

For avoiding such abnormalities, only global exterma have been considered for cal-

culating the temporal Hilbert transform. In 1D, both of these Hilbert transforms,

in direction x and time t are defined as,

Hx[ζ(x, t)] =
1

π
P

∫ ∞
−∞

ζ(x
′
, t)

x− x′
dx
′

; Ht[ζ(x, t)] =
1

π
P

∫ ∞
−∞

ζ(x, t
′
)

t− t′
dt
′

(66)

in which, P stands for the Cauchy principal value of the integral. [Note that small

local extrema that occur above and below the still water level are filtered out.]

Wave phases are then expressed as,

ϕx(x, t) = atan

{
Hx[ζ(x, t)]

ζ(x, t)

}
; ϕt(x, t) = atan

{
Ht[ζ(x, t)]

ζ(x, t)

}
, (67)
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for the spatial and temporal transformations, respectively. The roots of ϕx will

yield locations of wave crests (or troughs), while crest celerity will be found as,

cc =
∂ϕt
∂t

{
∂ϕx
∂x

}−1

(68)

which can be expressed as a function of ζ, Hx, Ht, and their spatial and time

derivatives, respectively [34].

Eqs. 66 are equivalent to convolutions of functions 1/(πx) or 1/(πt) and

ζ(x, t), which provides an efficient means of computing Hilbert transforms. For

instance, considering the spatial Hilbert transform, the convolution in Eq. 66 is

expressed in the wavenumber domain k using a discrete Fast Fourier Transform

(FTT),

F{Hx[ζ(x, t)]} = −iF{ζ(x, t)} sgn(k) (69)

where F{1/x} = −i sgn(k) has been used. Then an inverse discrete FFT is applied

to calculate the Hilbert transform as,

Hx[η(x, t)] = F−1{−iF{η(x, t)} sgn(k)} . (70)

A similar method can be applied to computing Ht. [Note, a Hilbert transform is

similar to a low pass filter and, hence, its cutoff frequency must be set to satisfy

the Nyquist limit, to avoid aliasing, which would result in the false identification

of wave crests. This can be done by zero padding the free surface elevation signal

used in the Hilbert transform,which has the effect of increasing the number of

frequncy bins in the Fourier transform.] This 1D method is extended to 2D as

detailed below.

In the 3D-NWT, since the Hilbert transform is a 1D operator, at each time

t the free surface elevation ζ(x, y, t) is divided into Ns slices (e.g., with Ns the

number of nodes in the NWT width direction), to which the Hilbert transforms

of Eq. 66 are applied. The roots of the phase function ϕx thus provide locations
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(a) (b)

(c) (d)

Figure 19: Evolution of Free surface elevation ζ(x, t) in the wake of advancing twin
pressure patches computed in the 3D-FNPF-NWT at times of t

√
g/h for (a) 5;(b)

10;(c) 15 and (d) 20; location of extrema in wave free surface elevation identified
using Hilbert transform method. The crests are marked by (•) and the troughs
are marked by (•).
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(a) (b)

Figure 20: Application of the wave tracking CDS algorithm to the computed wake
of advancing twin pressure patches. (a) Normal velocity ∂φ/∂n; and (b) identified
wave crests (•) and troughs (•). As expected at the location of extrema in the
wake the values of ∂φ/∂n = 0

of troughs (zero up-crossing) and crest (down-crossing) in each free surface slice.

[Note, besides identifying locations of free surface extrema, this method allows

computing local values of the wave crest and trough elevations.] Figs. 19 and 20

show an example of applying this method to identifying wave crests and troughs

in the computed wake of advancing twin pressure patches, an application that is

detailed later in the paper. In Fig. 20b, the identified locations of crests and

troughs are consistent with the areas where ∂φ/∂n = 0 shown in Fig. 20a (white

areas in between red and blue areas), which is to be expected [29].

The phase speed of breaking wave crests cb, which is required to quantify the

dissipated energy (Eq. 65), is first computed in the direction of each slice using

Eq. 68 and then projected in the direction normal to the local wave crest. To

do so, wave crests are identified in the 2D free surfaces with an algorithm based

on a divide and conquer strategy (DCS). When the breaking criteria is met at a

given location xb, the algorithm first identifies other nodes that are also breaking

on or near the same crest in the computational grid, which allows defining the
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spatial variation of the damping pressure pd (i.e., the shape functions Sb(x) used

for energy absorption; Eq. 63), and the local breaking area to be integrated over to

compute Ib (Eq. 64). Then, neighboring crest points xic (i = 1, ...) that are close

to xb are located by applying the DCS algorithm to results of the spatial Hilbert

transform (e.g., Fig. 19b), allowing identification of the normal direction to the

local crest and computation of cb.

In the application of the damping pressure, when the damping regions of

neighboring points overlap, the absorbing pressure patch of the closest breaking

point is used. A given absorbing patch is then kept active until the breaking

criteria is no longer locally met.

3.3 Numerical methods

In the 3D-NWT, Eq. (77) is solved by a higher-order Boundary Element

Method (BEM) [11], in which N collocation nodes are defined on the boundary

and M boundary elements are used to interpolate in between these nodes. In the

present model, cubic quadrilateral B-spline elements are used on each part of the

boundary [41, 42, 43, 44, 45, 23, 17], which ensures continuity of the inter-element

slope (Fig. 29); this property is key to accurately simulate steep nonlinear waves

on the free surface [8, 12]. In B-spline elements, both geometry and field vari-

ables are interpolated for each quadrilateral using the bi-linear combination of two

one-dimensional 4-node cubic B-splines, defined around each pair of nodes along

each horizontal direction. Expressions of BEM integrals for higher-order elements

(regular, singular, quasi-singular) and details of their numerical integration can be

found in [11]. Multiple nodes (double, triple) are specified at corners and edges

of the computational domain (Fig. 28) [46], over which the velocity potential and

the uniqueness of the velocity vector is specified. Grilli and Subramanya [8] intro-

duced and validated this method in their 2D-NWT and showed it was important
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to ensure a good accuracy of the FNPF solution as well as prevent sawtooth in-

stabilities near solid boundaries. Mivehchi et al. [47] extended this method to 3D

in the context of the B-spline representation of the geometry.

The 3D-NWT solution is accelerated by using an efficiently parallelized Fast

Multipole Method (FMM) that allows achieving a numerical complexity ' O(N)

and a good scalability on medium or large multi-CPU computer clusters. With

the FMM, when assembling the BEM algebraic system [11], the Green’s functions

in BIE integrals performed over boundary elements that are “distant enough”

from the considered collocation point are approximated by polynomial functions,

of decreasing order with distance, that only depend on an average distance to the

element. Hence, this both simplifies integrations and contributions of boundary

parts beyond some cutoff distance yielding a sparse algebraic system matrix. With

the FMM, the full system matrix of the BIE does not have to be assembled,

which is typically one of the most time consuming parts of the BEM solution, as

it has O(N2) numerical complexity similar to that of the best iterative solvers.

More specifically, to decide how to approximate (or even neglect) contributions of

specific elements, the FMM uses a DCS based on the distance between two points.

Importantly, by assigning intermediate points (e.g., the centers of groups of nodes

or elements of the boundary mesh) and applying the binomial theorem, one is able

to manipulate multipole coefficients that only need to be computed once, instead

of directly evaluating the BIE between each element and node (see Harris et al.

[22, 23, 17]). Theoretically, if efficiently implemented and assuming N is more

than a few thousand, the computational time of the FMM scales with ' O(N)

[48],[49].

At any given time, the BEM solution provides both the velocity potential and

its normal derivative on the computational domain boundary, as discrete values at
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the N collocation points. This solution (both geometry and boundary condition)

is then advanced in time on the free surface by integrating the two free surface

boundary conditions, Eqs. (79) and (80). Here, a semi-Lagrangian approach is used

on the free surface [39, 14], in which points are fixed in the horizontal direction

and, although more complex schemes have been used in past work [11], a simple

third-order Runge-Kutta scheme is used for time updating of φ and ζ, which can

be written compactly as,

f (1) = f (n) + ∆t(δtf
(n))

f (2) =
3

4
f (n) +

1

4

(
f (1) + ∆t(δtf

(1))
)

f (n+1) =
1

3
f (n) +

2

3

(
f (2) + ∆t(δtf

(2))
)

(71)

with ∆t the time step. One advantage of this semi-Lagrangian approach is that for

vertical walled structures (e.g., cylindrical), there is no complex remeshing required

as the free surface is updated (see [17] for details).

At each time step, global accuracy of computations can be assessed by comput-

ing errors in total volume and, in some case, energy for the generated wave train.

In their Eulerian-Lagrangian time updating method, Grilli and Subramanya [8] in

2D and Grilli et al. [11] in 3D showed that these errors are function of both the size

(i.e., distance between nodes) and the degree (i.e., quadratic, cubic,...) of boundary

elements used in the spatial discretization, and of the size of the selected time step.

They proposed a method for adaptively selecting the optimal time step, based on

a mesh Courant number Co(t). For the MII(Mid Interval Interpolation) elements,

they showed that the optimum value of Co is around 0.45. This value is also used

in the present applications and, since nodes are not free to move horizontally, this

value is essentially maintained constant throughout computations.
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(a) (b)

Figure 21: Simulation of Duncan experiment in the 3D-NWT for d = 0.159 m,
which causes steady breaking of the first (largest) wave in the train. (a) Boundary
grid with values of ∂φ/∂n plotted on the free surface as color scale (red positive
and blue negative); (b) Same grid with values of damping pressure pd plotted on
the free surface as color scale (red negative and blue positive).

3.4 Applications
3.4.1 2D breaking induced by an advancing submerged hydrofoil

The breaker model is first validated by comparing numerical simulations to

results of Duncan’s [1, 2] laboratory experiments. In these quasi-2D experiments

a NACA 0012 hydrofoil (of chord length C = 0.203 m) was submerged at depth d,

angled at 5 deg, and towed from rest up to a maximum speed VBm = 0.8 m/s in a

tow tank, 24 m long, 0.61 m deep and 0.61 m wide (Fig. 21). Upon reaching steady

state, the hydrofoil caused the generation of a stationary decaying wave train. For

small enough submergence d, the first (larger) wave broke as a stationary spilling

breaker.

For simplicity in the numerical simulations, the geometry was scaled with

characteristic length C, yielding the dimensional and non-dimensional (primed)

variables [14],

x′ = x
C
, y′ = y

C
, z′ = z

C
, t′ = t

√
g
C
, g′ = 1

Fr = VBm√
gC
, φ′ = φ φ

C
√
gC
, p′ = p

ρgC
, ρ′ = 1 (72)

where Fr denotes the Froude number. Based on the problem parameters, Fr =
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0.567. Two foil submergences were tested using this value, one non-breaking with

d = 0.261 m (d′ = 1.2857) and one breaking with d = 0.159 m (d′ = 0.7832).

Computations are performed in a coordinate system moving with the foil speed

U(t) = VB(t) i (see Eqs. 79 and 80), which is ramped up from 0 to VBm over 2

s, using a tanh function. In relative axes, the computational domain length and

NWT width can be significantly reduced as compared to that of the physical tank;

as these are quasi-2D simulations. Thus,the NWT dimensions were 15C×C×h in

length, width and height, respectively, with the foil submergence d′ varying for the

two different test cases (Fig. 21). The coordinate system is positioned on the free

surface, on the NWT axis above the foil center of mass; based on this, the NWT

extends from x′ = [−3, 12], y′ ∈ [−0.5, 0.5] and z′ ∈ [0,−h′] and the foil center is

positioned at (0,−d′, 0).

A L′AB = 3.5 long AB is specified for x′ ∈ [8.5, 13] onward (see Eqs. 61 and

65, with h′0 set to 1). A sponge layer was also specified upstream in the domain

for x′ ∈ [−3, 1.2] with a tanh like shape function, to absorb small instabilities

associated with the semi-Lagrangian time updating. In the local breaker model,

waves are assumed to break when their maximum front slope on the free surface

β > βb = 14 deg or κxa > 0.35, with κx the axial curvature.

The boundary discretization has 6, 092 nodes uniformly distributed on the

boundary, with a free surface spacing such that there are at least 20 points per

wavelength in the generated wave train, to accurately simulate properties of the

downstream wake (Fig. 21). The time step is initially set to ∆t′ = 0.05 and, as

simulations proceeded, based on 0.45 Courant number, ∆t gradually reduces to

an average ∆t′ = 0.039 value. Quasi-steady state is reached in simulations after

about 800 time steps. Fig. 21 shows, for the breaking wave case (d = 0.159), that

a well developed decaying oscillatory wave train has been generated downstream
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(a) (b)

Figure 22: Relative errors in volume with respect to the foil volume (a) and total
energy with respect to the maximum kinetic energy of the foil (b), in the 3D-NWT
simulation of Duncan’s towed hydrofoil experiment (Fig. 21) for the non-breaking
test case (d = 0.261). The volume error stabilizes after 250 time steps. The energy
error reaches 8× 10−4 after 800 time steps.

of the foil, with the expected alternating outwards and inwards normal velocity

(Fig. 21a). Fig. 21b also shows the damping pressure distribution around the first

“breaking” wave, based on using a maximum front slope criterion with critical

angle βb = 14 deg, slightly below that measured in experiments (14.7 deg).

With these grid parameters, Fig. 22a shows, in the non-breaking case (d =

0.261), the relative error on 3D-NWT volume with respect to the volume of the foil

|εV | stabilizes to 4×10−5 after 250 time steps, which is quite small considering the

fairly coarse discretization of the foil (Fig. 21). As is typical in such simulations

[11], Fig. 22b shows that the relative error on total energy |εE|, scaled by the

maximum kinetic energy of the foil , is about 10-20 times larger than |εV | and never

quite stabilizes, reaching 8 × 10−4 after 800 time steps. Both of these maximum

errors are small enough to allow for a comparison with experiments.

Figure 23 shows the quasi-steady free surface elevations simulated in the 3D-

NWT (Fig. 21) for the non-breaking (d = 0.261 m) and breaking (d = 0.159 m)

cases, as compared to results of Duncan’s towed hydrofoil experiments. In the non-

breaking case, Fig. 23a shows that numerical results agree well with experiments in
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(a) (b)

Figure 23: Quasi-steady free surface elevations simulated in the 3D-NWT (solid
lines; Fig. 21) for the non-breaking (a) (d = 0.261 m) and breaking (b) (d = 0.159
m) cases in Duncan’s towed hydrofoil experiments (dashed line).

the central part of the measurement area, from x = 40−140 cm downstream of the

foil; the agreement is less good upstream and downstream of this area. In Duncan’s

experiments [1, 2], however, the free surface elevation was measured by a camera

with a 10 mm lens centered on the first wave (at about x = 70 cm), located 0.15

m above still water level and 1.1 m out to the tank side, moving at the same speed

as the foil and looking slightly downward through the transparent side of the tank.

With this set-up, it is expected that the measured surface elevations would be

increasingly distorted as one looks away from the camera axis on either side of the

camera. Note, in their recent 2D-FNPF-BEM simulations of Duncan’s experiments

for non-breaking waves, Hu et al. [50] also observed a similarly reduced agreement

of measured and simulated surface elevations upstream and downstream of the

camera axis.

In the breaking case, Fig. 23b shows that the simulation does not quite match

the experiments although the predicted wavelengths, the locations of troughs and

crests, and the first wave height are in fairly good agreement. Again considering

Duncan’s experimental results, one sees that the breaking wave case is a very tur-

bulent undular bore, with many irregularities, foam, and bubbles on and near the

free surface, whose precise elevation should be even harder to estimate with this
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(a) (b)

Figure 24: Simulation in the 3D-NWT of Duncan’s breaking case (d = 0.159
m): (a) time evolution of cumulative energy dissipated during wave breaking sup-
pression (solid line; integral of Ed = Pd∆t from Eq. 64), compared to Duncan’s
parameterization (dashed line) (integral of εb∆t, with b = 0.0372, for βb = 14 deg,
used in Eq. 65), both in non-dimensional form; (b) time evolution of breaking
wave front slope angle β after the breaking criterion is first met.

experimental set-up than in the non-breaking case. Additionally, the first “break-

ing” wave in simulations appears to be higher on the surface than in experiments,

which could result from the lack of circulation on the foil and, hence, incorrect

lift. With circulation, the increased negative pressure on the upper part of the

foil would force the free surface downward. This is confirmed in Hu et al.’s [50]

work; as they were performing 2D-FNPF simulations, they could introduce a cir-

culation around the foil that yielded results in better agreement for the first wave

mean vertical location (i.e., the wave was pulled downward), for a barely breaking

case with d = 0.193; Hu et al. however, did not use a breaker model but simply

applied smoothing and regridding to eliminate numerical instabilities. Note that

circulation is a 2D concept and could not be introduced in the 3D-FNPF model.

In simulations of the breaking case, the slope breaking criterion was set slightly

smaller at βb = 14 deg, than the experimental value of the steady breaker front

face of 14.7 deg. Using this value, the dissipation constant was computed at

b = 0.0372, and used to compute the damping pressure calibration constant with

Eq. 65. In this equation, the characteristic velocity cb was chosen to be that of

the location where the breaking criterion β > βb was met. With these parameters,
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Fig. 24a shows that the time history of the cumulative energy dissipated by the

pressure patch matches Duncan’s experimental value well. When the damping

pressure patch has absorbed enough energy in the breaking wave, the front slope

angle decreases to below βb and the pressure is gradually reduced, down to zero,

using a temporal decrease similar to the tanh ramp-up. This on-off process causes

small fluctuations in both the breaking wave and its front slope angle around the

threshold βb = 14 deg, which can be seen in Fig. 24b.

3.4.2 3D breaking in the wake of advancing twin pressure patches

The same approach as applied above to the quasi-2D breaking case of Dun-

can’s experiments is now used to suppress breaking waves in the complex 3D wake

generated by advancing twin pressure patches accelerated from a state of rest to

a constant velocity U0 (Fig. 20). As before, the problem is solved with the semi-

Lagrangian updating formalism, in a system of axis moving with the advancing

pressure patches velocity U(t). Non-breaking wakes generated by a single advanc-

ing pressure patch had been modeled by Sung and Grilli [39, 40, 14]. As in the

latter study, the pressure distribution in each patch has an approximate footprint

a by b, in the x and y directions, respectively, and a smooth Gaussian-like shape

given by [51],

pa(x, y) = M(t)
p0

4
{tanhα(x− xi + a)− tanhα(x− xi − a)}

{tanh γ(y − yi + b)− tanh γ(y − yi − b)} (73)

in witch (xi, yi) is the central position of the pressure patch and M(t) is a tanh

time ramping up function, to avoid triggering instabilities in the NWT. Here, non-

dimensional variables are scaled using the reference length C = 2a in Eqs. 72.

Here, For validating the proposed BEM-FMM model, the corresponding wave

resistance of non breaking nonlinear wave, caused by a pressure patch of Eq. 73
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(a) (b)

Figure 25: The wave making Resistance of the single surface air cushion in compare
to linear theory. a) the wake of the SAC with p

′
o = 0.025,a = b = 0.5 and

Fr = Umax
B /

√
2ga = 1;b) the linear theory by Doctor and Sharma[51]( ) and

current result( ). the new model slightly under predict the values of wave making
resistant.

specified on the free surface and accelerating from a state of rest to a steady state

has been studied. Wave resistance due to the motion of the disturbance is obtained

as the pressure force on the disturbed free surface within the cushion,

Rw = −
∫
SAC

pnxds (74)

where SAC denotes the air-cushion surface area. This physical quantity is

made dimensionless as Rc = (Rw/W )(ρga/po) where W = 4ρgap is the weight

supported by the pressure patch. For correct comparison to [51] the parameters

of Eq. 73, b/a = 0.5,αa = βa = 5. The computational domain is 18 dimensionless

units long and 10 wide, and there are 81 and 15 node points in the x and y

directions, respectively, yielding an initial grid size of about 0.22 unit in each

direction. The water depth is d = 1. Throughout the simulations, the time step

keep constant δt = 0.05 The non-dimensional wave making force Rc in different

Froud numbers has been shown in Figure 25 in compare to the analytic result of
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(a) (b)

Figure 26: Relative errors in volume with respect to the displacement volume
of the twin pressure patch (a) and total energy with respect to the maximum
kinetic energy of moving pressure patch (b), in the 3D-NWT simulation of breaking
suppression in the wake of twin surface pressure patch. The energy error reaches
2.2× 10−3 after 400 time steps.

Doctors and Sharma [51].The Values of the wave making resistance are slightly

under-predicted due to limitation of vertical updating scheme of free surface which

cause oscillations in the values of the measured wave making force. This also has

been observed in other literature (see [39]).

For the Twin pressure patch simulations, the computational domain spans

x′ ∈ [0, 20], y′ ∈ [−5, 5] and z′ ∈ [0,−2] in each direction, respectively. With

an initial grid size of 0.2 units in each direction, the time step is kept constant

at ∆t′ = 0.05, since with vertical updating nodes, the size of boundary elements

stays nearly constant. No flow boundary condition conditions are applied on the

downstream, upstream and sidewall boundaries, which are all moving with the

same velocity as the pressure patch. On the upstream part of the free surface,

as before, an artificial absorbing patch is specified with a tanh shape to absorb

unwanted sawtooth oscillations due to the semi-Lagrangian time updating. The

twin pressure patches are positioned at (x1, y1) = (4.5,−2) and (x2, y2) = (4.5, 2),

and for both a = 0.5, b = 0.5, αa = γb = 5, and Fr = 1.0. After 320 time

steps, the numerical error on the computation domain volume is εV = 6.36× 10−5,

showing that the solution is accurately computed.
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The algorithm described above is applied to dynamically identify the crests

and troughs, and compute the wave phase velocity over the free surface rest points

(Fig. 20). By tuning the combination of strength and velocity of the pressure

patch to p′0 = 0.075 for Fr = 1.0, as steady state is reached, a single breaking

wave forms along the middle axis of the two interacting single patch wakes. The

breaking criterion (βb > 37o , κba > 0.35) is met approximately at (xb, yb) =

(9.5, 0), which allows defining the area of the absorbing pressure patches and absorb

energy in the breaking wave to suppress breaking and stabilize it. When the

breaking detected, an algorithm based on divide and conqueror strategy will search

the closest neighboring crest and troughs of the breaking point in two ortogonal

direction (e.g. x and y) for defining the damping region between to consecutive

crest surrounding the breaking point xb. For defining the damping pressure of

Eq.61. The final damping region would be defined based on multiplying the two

1D Gaussian like function similar to Eq. 62.

Sb(x, y) = Sb(x)Sb(y) (75)

which in this form and based on type of breaker the shape function can be modified

accordingly.

3.5 Discussion and conclusions

Results reported in this paper on the detection and suppression of wave break-

ing in a 3D-FNPF-NWT, indicate that the spilling breaker model implemented by

way of a distribution of absorbing pressure, calibrated based on a physical criterion,

is an effective method for allowing to pursue long-term simulations of nonlinear

wave-structure interactions, in ocean or naval engineering. Although the two ap-

plications presented above were for steady breakers in the permanent surface wake

of advancing disturbances, the method could be extended to suppressing unsteady
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(a) (b)

Figure 27: Simulation in the 3D-NWT of twin pressure patch breaking case: (a)
time evolution of cumulative energy dissipated during wave breaking suppression
(solid line; integral of Ed = Pd∆t from Eq. 64), compared to Duncan’s parame-
terization (dashed line) (integral of εb∆t, with b = 0.0149, for βb = 37 deg, used
in Eq. 65), both in non-dimensional form; (b) time evolution of breaking wave
maximum curvature κa after the breaking criterion is first met.

breakers [52, 36] provided a relevant energy dissipation value is used. Some recent

numerical work could be used to this effect, that parameterizes the amount of en-

ergy dissipated in individual breakers [37, 38, 18]. Alternately, in the context of the

hybrid model that motivated this work, the energy dissipation could be provided

from the viscous part o the solution [47, 53].

An efficient wave tracking algorithm based on a Hilbert transform was devel-

oped to identify the locations of wave crests and troughs in simulation results, to

verify the breaking criterion and specify both the area and strength of the damping

(absorbing) pressure pd. This algorithm also allowed calculating the characteristic

breaking velocity cb, the breaking crest phase speed, which is needed to compute

the energy dissipation rate εb. As this required storing some of the history of the

breaking wave crest location, instead, cb was set equal to the particle velocity at

the crest, assuming both are equal at breaking.

With this spilling breaker model, simulation results were found in good agree-

ment with Duncan’s experimental results for a submerged towed hydrofoil [1, 2].

As a semi-Lagrangian time updating is used in the NWT, wave overturning is not

observed, but in any case this would be too late to allow for the wave dissipation
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by the absorbing pressure. Hence, instead, a conservative breaking criterion based

on a maximum wave front face angle βb was used as a breaking criteria to simulate

Duncan’s experiments, based on the observed experimental value (about 14 deg).

Nevertheless, for the reported case, breaking may still occur too soon and it may

be of interest to try and increase βb further. A limitation however is that, with

too large a βb value, it may not be possible to absorb the wave energy and sup-

press the occurrence of breaking fast enough. Clearly more work needs to be done

on the sensitivity of results to this important parameter. Likewise, for the twin

cushion wake, an additional criterion based on surface curvature was successfully

used, which also would require some additional calibration and verification.

Additional future work will concentrate on setting the correct b value for the

energy dissipation rate. Numerical simulation showed that the values defined by

Duncan slightly underpredict the amount of dissipation. Perhaps the new param-

eterization proposed in recent work could be adopted [37, 38, 18].

In conclusion, the 3D-FNPF-NWT, with the addition of a simple breaker

model, can be used as an efficient and accurate tool to perform realistic simulations

of strongly nonlinear wave generation by an advancing surface disturbance, such as

a submerged or emerged structure (or ship), or a surface pressure patch (cushion

or SES vehicle). One should, however, keep in mind the limitations of this ad hoc

method of breaking wave detection and suppression, for modeling details of the

flow in breaking waves.
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Abstract

A 3D fully nonlinear Numerical Wave Tank (NWT) accelerated with the Fast

Multipole Method (FMM) with Semi-Lagrangian (SL) free surface updating is ex-

tended to include compatibility conditions at corners, to improve the numerical

accuracy and avoid numerical instabilities that can propagate due to the non-

linear free surface boundary condition. The corners and edges of the fluid domain

are modeled with a double node representation [1] and an additional constraint

including a velocity compatibility condition is defined at these double nodes [2]

at each time step. Nonlinear wave generation, propagation, reflection and absorp-

tion is demonstrated with this model, showing a stable solution with these corner

treatments and non-physical instabilities at the free surface without the corner

treatments. Additionally, the global accuracy of the NWT is improved by the ad-

dition of a stable geometry representation at the free surface using cubic B-splines

and integrating the velocity compatibility condition to provide auxiliary equations

required to update the surface geometries . The treatment of the intersection of

an arbitrary three dimensional surface piercing object is discussed in the context

of semi-Lagrangian time updating. Global accuracy of computations with the new

corner treatment is evaluated by modeling a non-linear propagating wave in a 3-D

domain. Applications with known exact numerical shapes (solitary and stream

function waves) are shown, demonstrating good agreement with the theoretical

values and literature.

4.1 Introduction

In the past few decades, numerical models based on irrotational (and thus

kinematically inviscid) potential flow theory, with fully nonlinear free surface

boundary conditions, have proven to be very accurate (as compared to experi-

ments) for simulating steep waves in two- or three-dimensions (2D/3D) in deep,
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inter- mediate or shallow water, up to the point of breaking, without or in the

presence of fixed or moving surface-piercing structures. When using an Eulerian-

Lagrangian (EL) free surface time updating, these models can also accurately

simulate wave overturning up to the time a breaker jet impacts the free surface

[3, 4, 5, 6, 7, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In most of these studies,

the so-called Fully Nonlinear Potential Flow (FNPF) equations were solved using

a higher-order Boundary Element Method (BEM), combined with a high-order

EL time updating algorithm. In 3D problems, the BEM method suffers from

numerical complexity with order N2 computational time due to the construct of

the method. The Fast multipole Method (FMM) has been developed to alleviate

this problem to help speed up computations, yielding a nearly order N solution

[18, 19, 12, 13, 14, 20, 21, 22].

A well known and common problem in solution to the boundary element

method is the loss of accuracy at the corners (in 2D) and edges (in 3D). Due

to the intersection of nodes or surfaces at these locations, special treatment is

required. A corner or edge is defined where the tangent to the boundary has a

sharp discontinuity (e.g. intersecting walls of a numerical wave tank). This loss of

accuracy is due to the existence of two or more normal potential derivatives over the

corners edges which result in an under-constrained system . Special treatment is

required to achieve a stable numerical result. Without proper treatment of corners

and edges, the BEM solution can exhibit large errors that propagate through the

solution domain from the problematic corners and edges. In the context of waves

generated by a wavemaker or rapidly moving body, a poor numerical solution at

the corner will have the appearance of a singularity, and over time, it will lead to

instability of the numerical solution [2]. This is critically important in the solution

of non-linear phenomena, such a solving the fully non-linear potential flow (FNPF)
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dynamic free surface conditions, where even small errors in the solution at these

corners can propagate and magnify throughout the domain.

There have been many solutions to this mathematical problem for 2D-BEM

in solid mechanics, electrostatics and acoustics involving physics that often don’t

involve large movement at corners[23, 24, 25, 26, 27, 28, 29]. In wave mechanics

applications, Grilli et al.[1] proposed specific numerical treatments to eliminate

numerical errors using double-nodes at corners and defining continuity conditions

for the potential. They specified the uniqueness of the fluid velocity at corners

using compatibility conditions between the normal and tangential derivatives of

the potential. They also improved accuracy of (non-singular but potentially quasi-

singular) numerical integration at corners, using adaptive numerical integration

techniques. Using such treatments, they calculated the solution of various mixed

boundary value problems, in computational domains with sharp corners, with ex-

tremely small errors [30, 31, 7, 8, 32]. Based on the same methods, Grilli and

Subramanya [2] developed extended corner compatibility conditions which pro-

vided further improvements of the corner solution in the case of rapidly moving

boundaries (e.g. a wave making paddle, heaving or pitching floating body, etc.).

In the following, we briefly describe the FNPF model governing equations

and boundary conditions, and the mathematical formulations associated with dis-

critization of the boundary using a cubic uniform B-Spline, auxiliary equations

as end conditions for such B-splines, and corner treatment and briefly summarize

the numerical model implementation and methods, which have all been detailed

elsewhere[1, 14, 22, 16]. Finally, we present results of numerical simulations and

their validation with earlier works on solitary wave propagation, reflection, wave

generation and wave absorption in a numerical wave tank.
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4.2 Model equations
4.2.1 Governing Equation and Boundary Conditions

We model irrotational flows of an incompressible and inviscid fluid, for which

the flow velocity is given by u = ∇φ, with φ(x, t) the velocity potential. In

Cartesian coordinates, the position vector is defined as x = (x, y, z), in which z is

pointing vertically upwards and gravity is pointing downward, with acceleration g.

Such potential flows are governed by mass conservation, which yields the Laplace

equation for the velocity potential,

∇2φ = 0 in Ω(t) (76)

over domain Ω(t) with boundary Γ(t). In the context of the BEM, using Green’s

second identity, this governing equation is transformed into a Boundary Integral

Equation (BIE),

α(xl)φ(xl) =

∫
Γ(x(t))

{
∂φ

∂n
(x)G(x,xl)− φ(x)

∂G

∂n
(x,xl)

}
dΓ(x(t)) (77)

in which x and xl = (xl, yl, zl) are points on boundary Γ(t), n = (nx, ny, nz) is the

unit outward normal vector on the boundary, and α(xl) is a geometric coefficient

function of the interior angle of the boundary at xl. The 3D free space Green’s

function and its normal derivative are defined in the BIE as,

G(x,xl) =
1

4πr
and

∂G

∂n
= − r · n

4πr3
(78)

in which r = x− xl and r = |r|.

On the free surface Γf (t), φ satisfies the nonlinear kinematic and dynamic

boundary conditions,

δζ

δt
=
∂φ

∂z
−∇Hφ ·∇Hζ −U(t) ·∇Hζ on Γf (79)

δφ

δt
= −gζ − 1

2
∇φ ·∇φ− pa

ρ
+
∂ζ

∂t

∂φ

∂z
−U(t) ·∇Hφ on Γf (80)

107



respectively, with ζ = r · k the vertical position vector of nodes on the free sur-

face (referred to z = 0 and measured upward), pa the atmospheric pressure, ρ

the fluid density, ∇H = ∂
∂x

i + ∂
∂y

j the horizontal derivative (i and j are unit vec-

tor in directions x and y, respectively) and (∂ζ/∂x, ∂ζ/∂y) can be expressed as

a function of the outward normal vector on the boundary, n = (nx, ny, nz), as

(−nx/nz,−ny/nz).

Eqs. 79 and 80 have been expressed in a semi-Lagrangian form [33, 34, 13],

assuming that the coordinate system advances at velocity U(t), and the semi-

Lagrangian derivative is defined as,

δ

δt
=

∂

∂t
+
∂ζ

∂t

∂

∂z
−U(t) ·∇H (81)

In the NWT, waves are generated by simulating a wavemaker motion or in-

cident wave kinematics on boundary Γr1(t) and damped in an absorbing beach

(AB) over length LAB, and/or on Γr2 using an absorbing piston (Fig. 28) [30].

For instance, a simple piston wavemaker motion is specified by its time dependent

stroke and velocity (xp, up) as,

x = xp(t); up(t) = −∇φ ·n = −∂φ
∂n

on Γr1(t) (82)

Γr1

Γr2

Γb

ΓB

L

h

w

LAB

Figure 28: NWT computational domain. Waves, if any, are generated on Γr1
and damped in the absorbing beach (AB) over length LAB, and on Γr2 using an
absorbing piston.
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respectively, where the overlines denote specified values. Along the stationary

bottom Γb and on other fixed boundaries, a no-flow condition is prescribed as

(Fig. 28),

∂φ

∂n
= 0 on Γb, Γr2 (83)

The boundary condition along a rigid submerged or surface piercing ocean/naval

structure, moving with velocity VB, can be specified as,

∂φ

∂n
= VB · n on ΓB (84)

As indicated before, incident waves are damped at the far end of the NWT by

dissipating their energy in an absorbing beach (AB) of length LAB (Fig. 28), over

which a damping pressure term pd is added to the dynamic free surface boundary

conditions; for long waves, an absorbing piston can also be specified over bound-

ary Γr2 [30, 35]. Finally, small free surface oscillations can appear upstream in

simulation as a result of the semi-Lagrangian time updating. These simulations

are damped in a sponge layer specified near boundary Γr1, over which −ν(x)ζ

and −ν(x)φ terms are added to the right hand side of the kinematic and dynamic

boundary conditions, respectively [36]. Within the sponge layer, the shape function

ν(x) gradually increases with distance square.

4.2.2 Time integration in the NWT

At any time t, given well-posed boundary conditions, the BEM solution pro-

vides both the velocity potential and its normal derivative on the computational

domain boundary, as discrete values at the N collocation points. This solution

(both geometry and boundary condition) is then advanced in time on the free sur-

face by integrating the two free surface boundary conditions, Eqs. (79) and (80).

Here, a semi-Lagrangian approach is used on the free surface [33, 13], in which

points are fixed in the horizontal direction and, although more complex schemes
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Figure 29: Definition of local non-orthogonal (s,m,n) and orthogonal (s,m′,n)
curvilinear coordinate systems used to compute tangential derivatives at collo-
cation node xj on the domain boundary; the transformation to intrinsic coordi-
nates (ξ, η) by way of Jacobian J(ξ, η) is illustrated. The boundary is interpolated
piecwise by cubic quadrilateral B-spline boundary elements. Symbols (o) mark
collocation nodes and the thicker line a domain edge.

have been used in past work [10], a simple third-order Runge-Kutta scheme is used

for time updating of φ and ζ, which can be written compactly as,

f (1) = f (n) + ∆t(δtf
(n))

f (2) =
3

4
f (n) +

1

4

(
f (1) + ∆t(δtf

(1))
)

f (n+1) =
1

3
f (n) +

2

3

(
f (2) + ∆t(δtf

(2))
)

(85)

with ∆t the time step. One advantage of this semi-Lagrangian approach is

that for vertical walled structures (e.g., cylindrical), there is no complex remeshing

required as the free surface is updated (see [16] for details). For structures with

curved walls (e.g. Wigley hull), however, both a different material derivative and

remeshing should be used [13, 37](detailed later).

Evaluating the various terms in Eqs. 85 requires, in addition to having the

potential function and its normal derivatives, also knowing time derivative of the
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potential. As indicated before, in the NWT, the latter are obtained by solving a

second Laplace equation for the time derivative of the potential ∂φ/∂t, as a BIE

similar to Eq. 77. Additionally, values of the first- and second-order tangential

derivatives of most of these fields must be computed on the moving parts of the

boundary (i.e., the free surface and moving rigid bodies if any). As indicated in

earlier work [10], the accurate computation of these derivatives is as important as

that of the BEM solution, to reduce overall numerical errors (e.g., on mass and

energy conservation). Details of the higher-order free surface representation used

in the NWT are given in the next section, as well as expressions of tangential

derivatives.

4.2.3 Boundary representation and curvilinear coordinate transforma-
tion

A standard approach in many ocean and naval engineering applications has

been to use B-spline elements to represent boundary surfaces [38, 39] The boundary

geometry and field variables are piecewise-interpolated in betweencollacation nodes

using cubic B-spline boundary elements, which ensure inter-element continuity of

the surface slope. For the purpose of numerical integration in the BIE, these

elements, whose shape functions are defined in the physical space (x, y, z) are

each locally expressed using intrinsic coordinates (ξ, η), by way of a curvilinear

coordinate transformation with Jacobian J(ξ, η) (Fig. 29).

Additionally, to apply boundary conditions and specify corner conditions in

the model, tangential derivatives and curvature must be computed at collocation

points. This is done in a local curvilinear coordinate system (s, m, n), which is not

necessarily orthogonal and whose tangential vectors are defined as [10, 40] (Fig.

29),

s =
1

h1

∂x

∂ξ
and m =

1

h2

∂x

∂η
, (86)
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with,

h1 =

∣∣∣∣∂x

∂ξ

∣∣∣∣ , h2 =

∣∣∣∣∂x

∂η

∣∣∣∣ . (87)

Following Fochesato et al. [40] orthogonal tangential vectors (s, m′) are de-

fined (Fig. 29) and used to compute both tangential derivatives. We have,

m′ =
1√

1− κ2
m− κ√

1− κ2
s , (88)

with χ = s ·m ∈ [−1, 1], so that s ·m′ = 0. With these definitions, the unit

normal vector is defined as (Fig. 29),

n = s×m′ =
1√

1− κ2
s×m , (89)

and the Jacobian of the curvilinear coordinate transformation (x, y, z)→ (ξ, η) as,

J(ξ, η) =

{
∂x

∂ξ
,
∂x

∂η
,n

}T

, (90)

with | J(ξ, η) |= h1h2.

In this local orthogonal curvilinear system, the gradient operator is given by,

∇ ≡ ∂

∂s
s +

∂

∂m′
m′ +

∂

∂n
n (91)

∂

∂s
=

1

h1

∂

∂ξ
;

∂

∂m
=

1

h2

∂

∂η
(92)

∂

∂m′
=

1√
1− κ2

∂

∂m
− χ√

1− κ2

∂

∂s
(93)

∇ ≡
(
∂

∂s
− κ ∂

∂m

)
s +

(
∂

∂m
− κ ∂

∂s

)
m +

∂

∂n
n (94)

4.2.4 Cubic B-spline representation of BEM

In the present NWT, bi-cubic B-spline are used to interpolate all the field vari-

ables on the boundary (coordinates,velocity potential and it’s normal derivative).

The goal of this interpolation is to obtain a smooth representation with continuous

first- and second-derivatives, both on the surface of each element Γke and at each
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Figure 30: Tabulated coefficients of 2D B-Splines for a variety of cases and end
conditions as input to the matrix of control point coefficients Mp,m

ij . The numeric
set is defined in a way in which one of the corners of the 2D plane is in the center
of the i − j axis and activated patch control point coefficients are marked by •;
(a) with assumption of partial derivative known in the direction of “i”; (b) with
assumption of partial derivative known in the direction of “j”; (c) regular element
coefficients (d) not-a-knot condition at the corners (e) not-a-knot condition at
edges. For the physical parameters ∂φ/∂n and x, not-a-knot condition has been
set as auxiliary equations, while for the field variable φ, the values of the tangential
derivatives are known in the corners and edges of the boundary (Specifically on
Dirichlet/Neumann boundaries) and the end known derivative conditions has been
used as Auxiliary equations.
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collocation node xj. This approach was first used in a 2D-BEM-NWT by Liu et

al. [41].

For structured curvilinear grids made of quadrilateral elements, a bi-cubic B-

spline interpolation can be defined over each element based on the product of two

1D cubic B-splines specified in directions ξ (p) and η (m), respectively In 1D, a B-

spline patch [39], Bm(µ) (n = 1, . . . , 4) is defined, e.g., along grid line m connecting

Nm nodes in between two grid edges of boundaries, as

Bn(µ) =
2∑

l=−1

Cnl µ
2−l with, Cnl =


−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

 and µ ∈ [−1, 2].

(95)

The spline approximation of each property is expressed within each two-node

segment of grid line m, i = 1, ..., Nm − 1 (marked as superscript i) as,

f i(µ) =
2∑

m=−1

Bm(µ) qi+m with µ ∈ [0, 1] , (96)

where qi denote Nm + 2 control point values (i.e., spline coefficients). [It is easy

to verify that the definition of 1D B-splines in Eq. 95 enforces, by construction,

the continuity of the first-derivative of the property in between each two-node

segment, i.e., f ′i−1(1) = f ′i(0).] Expressing Nm Eqs. 96 at each segment extremity

(i.e., for µ = 0/1), noting from Eq. 95 that B−1(0/1) = 1/6 or 0, B0(0/1) = 4/6

or 1/6, B1(0/1) = 1/6 or 4/6, B2(0/1) = 0 or 1/6, and assembling the resulting

equations into a matrix form yields (subscript i = 1, ...Nm now denoting nodes on

the considered grid line m),

fi =
Nm+1∑
j=0

Mm
ij qj with Mm

ij =
1

6


1 4 1 ... 0

1 4 1
...

. . . . . . . . .
... 1 4 1
0 ... 1 4 1

 (97)
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where Mm
ij is of size Nm × (Nm + 2).

Hence, given nodal values of property fi (i = 1, ..., Nm) along grid line m, two

additional equations are needed to solve this system of equations for coefficients

qj (j = 0, ..., Nm+1), to specify values of q0 and qNm+1 and make the matrix square

with dimension (Nm + 2). As detailed later, these will be provided by boundary

conditions prescribed at each extremity of the considered grid line.

In 2D, each quadrilateral boundary element Γke , is given its nodal values f i,j

(i = 1, . . . , Nm; j = 1, . . . , Np) over a 2D regular grid. Thus we have,

fk(ξ, η) =
2∑

p=−1

2∑
m=−1

Bp(µ(ξ, ξ0))Bm(µ(η, η0)) qi+m,j+p (98)

where µ ∈ [0, 1] ; ξ, η ∈ [−1, 1]; Bm(µ) and Bp(µ) are 1D B-splines given by Eq.

95, qij are (Nm×Np) control points, element k is defined within a 16-node B-spline

patch based on the value of its lower left corner coordinates (ξ0, η0) (Figs. 30) and,

accordingly, µ is given by,

µ(χ, χo) = χo +
χ+ 1

2
(99)

with χ = ξ or η, in each of the curvilinear direction of the reference element Γξ,η,

and χo = ξo or ηo = 1/2, -1/2 or 3/2, depending on which of the 9 quadrilaterals

defined is selected(Figs. 30).

Proceeding as in 1D, we find for the central quadrilateral in the patch and

µ = 0 in both directions (i.e., node (i, j) = (1, 1) in Fig. 30c),

fij =
2∑

p=−1

2∑
m=−1

Bp(0)Bm(0) qi+m,j+p for i = 1, . . . , Nm; j = 1, . . . , Np , (100)

Combining Eqs. 98 to 100, the 2D shape functions for bi-cubic B-splines to

use in Eq. 77 for interpolating property f , of nodal values fka over element k, can

formally be expressed as,

Sa(p,m)(ξ, η) = Bp(µ(ξ, ξo))Bm(µ(η, ηo))M
p,m−1

al (101)
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with m, p = −1, . . . , 2; a(m, p) = 4 (m+ 1) + p+ 2 = 1, ..., Ne = 16 (see numbering

in Fig. 30) , and Mp,m−1

al denoting the inverse of the matrix of dimension (Ns×Ns),

with Ns = ((Nm+2)× (Np+2)), resulting from applying Eq. 100 to express nodal

values of the interpolated property fl over the 2D grid, as a function of those of

the control points ql, given l = (j− 1)(Np + 2) + i = 0, ..., Ns, for (i = 0, ..., Np + 1)

and (j = 0, ..., Nm + 1). Note that, as in 1D, 2 more control points (and property)

values are used for each line m or p, qm,p0 and qm,pNm,p+1, which are related to the

boundary conditions at each extremity of these lines ( 2∗Nm+ 2∗Np+ 4 auxiliary

equations are needed to solve the system of matrix M).

Finally, to compute the s− and m−derivatives of property f over element

k (including at grid nodes) using Eq. 95, one needs the ξ− and η− derivatives

of the shape functions given by Eq. 101, which are proportional to B′p(µ)Bm(µ)

and Bp(µ)B′m(µ), respectively, where the dash indicates the derivative of the 1D

B-spline of Eq. 95 with respect to µ,

∂Bn

∂µ
(µ) =

2∑
l=−1

(2− l)Cnl µ1−l (102)

with, based on Eq. 99, ∂µ/∂(ξ, η) = 1/2. Figs. 30 a and b show values of coeffi-

cients B′p(0)Bm(0) and Bp(0)B′m(0).

4.2.5 Auxiliary equations for matrix of control point coefficients

As mentioned before, the interpolating condition in matrix Mp,m
ij in Eq. 101

is not sufficient to determine the B-spline Curve(in 2D) or surfaces (in 3D). This

usually happen by imposing properties (determined or undetermined) related to

S(ξ, η), S
′
(ξ, η), S

′′
(ξ, η) and S

′′′
(ξ, η) at the end points of B-spline curves (sur-

faces). A detail study of such auxiliary equations are discussed in Behforouz et al.

[42] and Barskey [43].

For any type of spline, typically the end tangential value of such a curve is
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used for an auxiliary equation. This has been shown to have the most accurate

representation of interpolating property f . However in the NWT, the calculation

of the tangential derivative of property f (e.g. ∂φ/∂n and x) at each time step is

not trivial.

An easy and commonly used approach to solve this problem is to consider

the second derivatives at the ends points as zero. In wave mechanics, this will not

be an ideal condition since the second derivative of the wave profile at boundaries

would not necessarily be equal to zero. Another approach is to consider the third

derivative at the first or last two end segments of a spline are equal.This is refered

to as the not-a-knot. This condition reads as

fi =
Nm+1∑
j=0

Mm
ij qj with Mm

ij =
1

6



1 −4 6 −4 1 ... 0

1 4 1
...

1 4 1
. . . . . . . . .

... 1 4 1
0 ... 1 4 1
0 ... 1 −4 6 −4 1


(103)

De-Boor shown that cubic spline interpolation with the not-a-knot side condi-

tion converges to any C2 without any mesh-ratio restriction as the mesh size goes

to zero [44]. This method is widely used for problems where there are no informa-

tion about the end points of the B-splines. Most CAD softwares use this method

for defining B-Spline segments. The coefficients for not-a-knot are shown in Fig. 30

for corners(d) and edges(e). These auxiliary equations are used for interpolating

parameter x and ∂φ/∂n where the information of their derivatives are not known

prior to solution of the BIE in Eq. 77.

Although, these auxiliary equation definition are required for evaluating some

fluid properties at the boundary, where f = φ, the values of the tangential deriva-

tives can be extracted using the definition of the velocity compatibility condition

117



(see Fig. 31 for a simple 2D example) at corners and edges of the 3D domain

[1, 2, 45]. This condition reads as known auxiliary equations of end tangential

derivatives and can be used to describe the interpolating B-spline φ at each time

step. In 1D, the matrix of coefficient Mm
ij read as

fi =
Nm+1∑
j=0

Mm
ij qj with Mm

ij =
1

6



−1/2 0 1/2 ... 0

1 4 1
...

1 4 1
...

. . . . . . . . .

0 ... 1 4 1
0 ... 1/2 0 −1/2


(104)

with f0 and fNm+1 replaced by tangent values at corresponding ends of the B-

spline. The coefficients of end slopes in directions s and m of the local coordinate

system, over element k located on edges of domain is shown in Fig. 30a,b.

4.2.6 Treatment of corners and edges in BIE

Following Grilli et al. [1, 2, 10], we define multiple nodes at corners and edges

of the BEM discretization, which mark intersections of the boundary region in the

computational domain, where the values of normal velocities are discontinuous and

the boundary integral equation of 77 in undetermined (see Figure 31). Multiple

BIEs are expressed at these locations where multiple nodes are defined, based on

different values of the normal derivatives of the potential, but using a single value

of potential, which must be unique at these locations. The latter condition is

enforced in the BEM solution, by modifying all but one the assembled equations

of a multiple node in a way that does not cause a mathematical singularity in the

problem.

In a 3D space, there are both double (e.g., between the wavemaker and the

free surface) and triple (e.g., where the wavemaker and free surface boundaries

meet with a sidewall boundary) nodes. Thus, for double/triple nodes, there are

2/3 discretized BIEs expressed at each multiple node. To ensure uniqueness and
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well-posedness of the solution, however, and in particular a single potential at a

given location, 1 (in case of a double node) or 2 (in case of a triple node) of these

BIEs must be modified in the final algebraic system to ensure that both the global

matrix is not singular and the solution yields a single potential.

The multiple nodes can be categorize based on their boundary conditions

as (see Figure 28 for reference): (i) Dirichlet-Neumann (DN) double nodes (e.g.,

wakemaker and free surface boundary); (ii) Neumann-Neumann (NN) double nodes

(e.g., bottom and sidewall boundaries); (iii) Neumann-Neumann-Neumann (NNN)

triple nodes (e.g., where the wavemaker, bottom and sidewall boundaries meet);

and (iv) Dirichlet-Neumann-Neumann (DNN) (e.g., where the wavemaker, free

surface and sidewall boundaries meet).

In a NWT with a moving free surface (e.g. paddle wavemaker,forward mov-

ing ship, etc.), Grilli and Subramania [2] showed that the velocity vector must be

unique at double/triple nodes on the free surface, not only to obtain an accurate

solution, but also for free surface multiple nodes to move to an identical location

through time updating. These authors showed that if velocity is not explicitly

enforced to be unique at multiple nodes, by modifying the algebraic BIE system

in a proper way, large numerical errors will occur at and near such nodes in the

BIE solution, which will grow even larger through time stepping and, eventually,

will lead to instability of the solution, particularly close to strongly moving rigid

boundaries. Following Grilli and Subramania’s work[2], we extend the simple po-

tential continuity condition at multiple nodes, used in earlier work, to also enforce

that the numerical solution yield a unique velocity (i.e., gradient of the potential)

at multiple node locations. This is done by replacing all but one of the assem-

bled equations of a multiple node in the algebraic system, by so-called velocity

compatibility conditions, which also include the potential continuity condition.
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Following Grilli and Subramania [2], we derive discretized relationships ex-

pressing the uniqueness (compatibility) of the velocity at multiple nodes for all

cases of mixed boundary conditions (e.g., DN, NN, NNN, DNN). In the following,

for brevity, we only present one example of these for a DN double-node case. These

relationships make the representation of the solution compatible on both sides of

a corner in the sense of the study by Gray and Lutz [27] and effectively eliminate

numerical singularities in the discretized solution. When using compatibility con-

ditions at corners for solving mixed boundary value problems in simple rectangular

domains, Grilli and Subramaniya [2] showed that numerical errors at corners of

their 2D-NWT could be reduced to arbitrarily small values. For instance, let us

choose a DN double node, located at the intersection between a piston wavemaker

(denoted in BIE 77 by l = p) and the free surface(l = f). the compatibility con-

dition forced the BIE solution to compute a (corrected) value of the tangential

velocity on the free surface, ∂φf/∂s, as a function of both the normal velocity

∂φf/∂n, obtained from the solution of the BIE (77) at the current time step, and

the (specified) wavemaker velocity on the wavemaker node l = p , ∂φp/∂n = −up

(see Eq. (82)) (see Figure 31).

In the current BEM, we use this velocity compatibility condition to describe

the end conditions for B-spline surfaces in 3D BIE. Mivehchi et. al [45] describes

the concept of using compatibility conditions for curvilinear coordinates, which can

be applied to a variety of discretization models with Lagrangian time updating.

However, further investigation on the semi-Lagrangian time updating employed in

this model shows, at least in one tangential direction of local coordinate system

(s or m), the curvilinearity effect at edges are very small in compare to the com-

putational cost of adding the curvilinear equations to the system of equations 77.

We will use the property of Equation 98 to describe the end surface elements in
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Figure 31: sketch of corner conditions over an arbitrary double nodes between
Dirichlet boundary Γf at the point l = f ( ) and Neumann boundary Γr1 at the
point l = p( ) in a one dimensional B-spline description of the geometry and field
variables, respective elements and local coordinate system. ψ is the angle between
the double nodes corresponding elements local coordinate system.

system of matrix (see also Figure 30). Note that only the field variable of φ is

modified based on the velocity compatibility condition and for other variables, the

not-a-knot condition is used.

In the BIEs, for imposing the compatibility condition , for double corner nodes,

where each node is related to a different B-spline patch, there are 3 sets of B-spline

control polygons (in 2D) or surfaces (in 3D) that must be defined.

For calculating the tangential derivatives on each one of these B-spline sur-

faces, the calculated or predetermined field variables of φ are used. For the Neu-

mann boundary conditions , this value is calculated in the BIE, while for a Dirichlet

boundary condition, this value has been predefined, thus this predefined value have

a large effect on the result of the BIE. Back to out double node example between

free surface point l = f and wavemaker point l = p, one can define the corner

compatibility condition as [1]

∇φf = ∇φp (105)

Based on Figure (31) , one can define the tangential velocities as
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φfs = −nf · np
np · sf

φfn +
1

np · sf
φpn (106)

φps =
1

nf · sp
φfn −

nf · np
nf · sp

φpn (107)

these are equivalent to knowing the first derivative of endpoints of B-splines for

interpolated field variable φ. Therefore, one can use these values in the auxiliary

equations used to define the matrix of B-spline coefficients Mm
ij (for 2D patch

coefficients see Figure30).

−1

12
f−1 +

1

12
f1 = φfs (108)

For Surface elements, the number of additional equations for solving the sys-

tem of matrix similar to 104 is equal to 2Ni+2Nj+8. To do this, an algorithm was

developed to reorient all elements over each surface in a way that the local s and

m derivatives are set to be initially in the same direction in the global coordinate

system. In that way, over the edge of a B-spline surface, the compatibility con-

dition is imposed using Equation 108. Based on the double node implementation

of corners, we prescribe 2Ni + 2Nj + 4 compatibility conditions. On the corners,

4 additional equations are required to couple the two directional derivatives is s

and m directions. If these local coordinates are orthogonal, using ∂2

∂s∂m
= 0 is the

most suitable case to be used. After solution of system of equation descritized with

specified end condition, tangential velocities can be updated using the matrix form

of equation (105) at the extremities of the free surface and thereafter, re-griding

will be applied to the free surface nodes.

4.2.7 Treatment of intersection with surface piercing object

The BEM-NWT solution for SL time updating is defined in way that nodes on

the free surface are restricted to move vertically. This is generally fine if boundaries
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z(u)

x(u)
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A′ A′

VA

A′

C(u)

du

a b c

Figure 32: Method of updating intersection node (here node A) with free surface
over an arbitrary structure. The nodes over free surface are marked by (•) and
nodes and curve over structure are marked with (•), : (a) node A is moving with
velocity VA to its new location A′; (b) since this node should satisfy kinematic
free surface boundary condition, and from Equation 109, the travel length du is
calculated; (c) The value of du and it’s projection is used for time advancing of
free surface nodes.

that pierce the free surface only include vertical walls. In this case, we have

the traditional kinematic free surface boundary condition which can be written

compactly as Eq. 79. If we have an object with a curved wall however, we no longer

want to track η(x, y, t), but a point which moves along the hull (i.e., with a changing

(x,y) coordinate). To accommodate this requirement we use the Arbitrary Eulerian

Lagrangian Method (ALE) [37]. If point A is the intersection point between the

free surface and the body , this point must physically always stay on both the body

surface and free surface assuming connectivity of the elements does not change.

The KFSBC is satisfied with the constraint that the velocity of point A must be

parallel with the tangent vector on the body surface (i.e. VA ·nA = 0). Defining

a local coordinate system e = (ex, ey, ez), on the body, we can define a series of

curves with coordinate x = C(u) over the body, where u(t) is the corresponding

parametric instantaneous motion of point A. The corresponding velocity of point

A then can be calculated as

VA =
du

dt
e (109)

Since the point A should also satisfy kinematic free surface boundary condi-
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tions, we substitute Eq. 109 into Eq. 79 and solve for du/dt

du

dt
= (

∂φ

∂z
−∇φ · ∇η)/(Zu −Xuηx − yuηy) (110)

Solving for u in equation 35 allows one to determine coordinate x. By assuming

the unit normal vector at point A is equal to φn/e · n we have

VA =
du

dt
e =

φn
e · n

e (111)

substituting this expression into in Eq, 80 yields

δφ

δt
= −gη − 1

2
∇φ ·∇φ+ e ·∇φdu

dt
(112)

and therefore this equation can be used for time advancing the free surface

node correspond to point A. The last modification is to find the position of the

rest of nodes over free surface. By knowing the value of du/dt and by describing

the curve C(u) over the body ,the time derivative position vector dx/dt in global

coordinate can be found and finally, the new position of points over the free surface

can be updated by this value. Zhang and Kashiwagi [37] showed a variety of

applications of this method.

4.2.8 BEM solution of Laplace’s equation with FMM

In the standard BEM discretization, the BIE is transformed into a sum of

integrals over each element[10, 6, 46], which are computed by numerical integration

after transforming each element k, of boundary Γke , from the physical space to a

standard 2D reference element of domain Γξ,η defined with curvilinear coordinates

(ξ, η), by way of a Jacobian matrix Jk. Substituting B-spline shape functions

Sj(ξ, η), into Equation 77, gives the linear algebraic system of equations (i and
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j = 1, ...NΓ),

α(xi)φ(xi) =

=

MΓ∑
k=1

∫
Γke

[
∂φ

∂n
(x)− φ(x)

∂

∂n

]
G(x− xi) dΓ (113)

=

MΓ∑
k=1

∫
Γξ,η

[
Sφnj (ξ, η)

∂φj
∂n
− Sφj (ξ, η)φj

∂

∂n

]
G(x(ξ, η)− xi) |Jk(ξ, η)| dξdη (114)

= Kd
ij

∂φj
∂n
−Kn

ijφj (115)

where the summation on repeated indices j is implicit and either the potential or its

normal derivatives are specified as Dirichlet (D) or Neumann (N) or complementary

boundary conditions. For B-splines, shape functions differ for each property that is

interpolated (Eqs. 101), and variation in properties is denoted by the superscript.

The solution of the algebraic system of Eqs. 115 can efficiently be computed

using GMRES [47], a Krylov iterative solver with a O(N2
Γ) numerical complex-

ity. Typically, the most computationally intensive part in such a standard BEM

solution is the computation and assembling of the fully populated Neumann and

Dirichlet system matrices, [Kn
ij] and [Kd

ij], respectively, which has a similar numer-

ical complexity.

Using the Fast Multipole Method (FMM), the BIE influence coefficients in

matrices [Kn
ij] and [Kd

ij] are only integrated for small r values (based on a FMM

distance criterion), these are referred to as local or near-field FMM computations.

For larger distances of r, a multipole approximation of the Greens function is

applied, which both simplifies and accelerates computations; these are referred to

as distant or far-field FMM computations [18, 48]. The Green’s function in the

multipole expansion is defined as
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G(xi − xj) =

P−1∑
mx=0

P−mx−1∑
my=0

P−mx−my−1∑
mz=0

([xi − xΛ] + [xM − xj])mx([yi − yΛ] + [yM − yj])my

([zi − zΛ] + [zM − zj])mz
∂

(mx)
x ∂

(my)
y ∂

(mz)
z G(xΛ − xM)

mx!my!mz!
+O(θP ). (116)

in which P is the order of expansion and the distance between to point xi and xj can

be decomposed into xi−xj = (xi−xΛ)+(xΛ−xM)+(xM−xj). More specifically, to

decide how to approximate (or even neglect) interactions, the FMM uses a divide-

and-conquer strategy based on the distance between two points. Importantly, by

assigning intermediate points (e.g., the centers of groups of nodes or elements of

the boundary mesh) and applying the binomial theorem, one is able to manipulate

multipole coefficients that only need to be computed once, instead of directly

evaluating the BIE between each element and node (see Harris et al., 2018 [16] for

details). By using this method, the BIE Equations of 77(or in matrix form 115)

are converted to the form

α(xi)φ(xi) =

(
[Kd

ij]near
∂φ

∂n

∣∣∣
j
− [Kn

ij]near φj

)
+

(
[Kd

ij]far
∂φ

∂n

∣∣∣
j
− [Kn

ij]far φj

)
(117)

in which the near-field BEM influence coefficients are computed the classical way by

direct integration of the Green’s function and the far-field ones are approximated

based on using Eq. 116.

If efficiently implemented and assuming NΓ is more than a few thousand, the

computational time of the FMM should scale with O(NΓ). This is much faster

than the solution of the complete BEM system with the best iterative solvers.

Several variations have been proposed of the implementation of the FMM on par-

allel clusters [48, 49], which generally rely on domain decomposition, whereby the
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(a) (b)

Figure 33: Numerical Wave Tank (NWT) setup for (a) propagation of exact solitary
wave; (b) numerically exact stream function wave generated by a paddle wavemaker
and absorbing beach (AB). values of ∂φ/∂n are plotted on the free surface as color
scale with red positive and blue negative values.

FMM is first applied on each processor over some region of space and then results

are combined. Here, we make use of the ExaFMM library developed by Yokota

and Barba [50], which uses Cartesian multipole expansions of the Green’s function,

and the dual-tree traversal approach of Dehnen [51] (see Harris et.al. [16]).

Evaluating the BIE of Eq.115 and matrix terms [Kd
ij]near and [Kn

ij]near requires

integrating complex kernels over near-field boundary element k, which can become

singular when rl → 0 in the Green’s functions. For quadrangular elements,the

weakly singular integrals are desingularized by way of a tensor product of Gauss

integration.

The coefficients α in the BIE are found by applying the rigid mode method

(e.g., Grilli et al. 1989), which expresses that for a Dirichlet problem with a

homogeneous φ = 1 value specified over the entire boundary, the discretized BIE

solution must yield ∂φ/∂n = 0; the α coefficients are then found as the residuals

of this Dirichlet problem.
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4.3 Application
4.3.1 Solitary wave propagation over constant depth: investigating the

global accuracy of the solution

To demonstrate and validate our development compatibility conditions, we

simulate the generation and propagation of a solitary wave over constant depth h,

inside a numerical wave tank (NWT),and comparing result to [10]. To demonstrate

convergence, we measure the the values of mass and energy error in the domain

over a range if Courant numbers. Such a solitary wave should keep a constant form

in celerity, volume m above z = 0 and total energy e while propagating. Hence,

numerical errors in the computations give a measure of discretization and time

step effects on the global numerical accuracy.

Figure 33a shows a nwt domain of the three-dimensional model set-up. The

domain length (L′) is 15 times the depth h0 and its width (W ′) is set to 2h0. Two-

dimensional solitary waves are generated using the fully non-linear method by

Tanaka [52]. These are made three-dimensional by specifying the two-dimensional

profiles for each vertical cross-section of domain in width of three-dimentional

NWT. Waves are initially defined by their shape η, potential φf and ∂φ
∂n

on the free

surface, at time t = 0. A strongly non-linear wave of height H0 = 0.6h is initially

specified, with its crest located at x
h

= 5.5, and propagated in various spatio-

temporal discretizations. For this wave, Tanakas method provides, m0 = 3.87765

and e0 = 1.58547.

At each time step, the numerical error on the global conservation of mass and

total energy of the solitary wave is computed. During propagation, both mass and

energy of the solitary wave should theoretically stay constant, as there is no mass

or energy input or output into the NWT. Hence, we define the numerical error

on wave volume as: εm = |(m(t)−m0)/m0|, with the instantaneous solitary wave
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Figure 34: Propagation of a very steep solitary wave. The solitary wave profile
and its initial potential and normal velocity on the free-surface are computed using
Tanakas method [52]. The crest is initially located at x

′
= x/d = 0 and propagate

with celerity c =
√
gd.Similar to Grilli et.al. [10] we asses the convergence of Energy

and Mass error for a solitary wave with non-dimensional height of H
′
= H/d = 0.6

and the numerical wave tank dimensions of 15 length to depth and 2 width to
depth and for duration of t′ = t

√
g/d = 4.
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volume being computed in the NWT as:

m(t) =

∫
Γf

z nz dΓ (118)

with Γf denoting the free surface boundary, and m0 the theoretical value obtained

with Tanaka’s method. Similarly, we define the numerical error on total wave

energy as εe = |(e(t)− e0)/e0|, with the instantaneous total energy being computed

as the sum of kinetic and potential energy, as:

e(t) =
1

2
ρ

∫
Γ

φ
∂φ

∂n
dΓ +

1

2
ρg

∫
Γf

z2nz dΓ (119)

and e0 being the theoretical value obtained with Tanaka’s method. In both equa-

tions, integrals are evaluating only over the free surface, which allows computing

the part of the volume and potential energy error corresponding to the wave only,

which is a stricter condition than computing relative errors with respect to the

entire NWT mass and energy and thus avoids underestimating errors for large

NWTs in which much of the water is not in motion.

Three different spatial discretizations are used in the computations, with ini-

tial distances between nodes Dx
h0

= 0.25 ,0.33 ,and 0.50 respectively (Mx = 60

,45 , and 30), and Dy
h0

= 0.50 (My = 4) on the free surface Γf and bottom Γb;

Dz
h0

= 0.25(Mz = 4) on the lateral boundaries Γr1 and Γr2. Ten Gauss points

are used per direction in the integrations (NL = 10) and adaptive integration is

specified in corner/edge elements. Then expansion terms are used for the FMM

representation of distance functions.

Computational errors on mass and energy conservation: m(t) and e(t) (Equa-

tions (118) and (119) ) are calculated as a function of time for the propagation

of the wave over four time units, t′ = t
√
g/h = 4, representing a varying number

of time steps in each case based on Courant number. This also corresponds to a

horizontal distance about five times the depth.
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Computational errors are shown in Figures 35 and 36 and compared with

three different discritization methods of MII from Grilli et al.[10], B-spline with

only not-a-knot treatment from Harris et al.[16] and a B-spline with treatments of

end slope for variables φ and not-a-knot for variables x and ∂φ/∂n with velocity

compatibility condition (VCC) in this study. Maximum error curves are given as a

function of Courant number and for different spatial discretization with the opti-

mized Courant number of 0.5. We first see that the smaller Dx/h0, the smaller the

numerical errors. This indicates the convergence of results in the 3D-NWT with an

increased resolution of the discretization (i.e., with NΓ or MΓ). More specifically,

we see that there is more than one order of magnitude gain in accuracy in energy

error when Dx/h0 is divided by two. The B-spline element is shown to have bet-

ter representation of the geometry on the free surface, leading to higher accuracy

(almost two order of magnitude for treatment of B-spline with only not-a-knot

and one order of magnitude for treatment of corners with velocity compatibility

condition), compared to MII elements used by Grilli et al [10]. However for energy

error, there is no significant benefit between MII and B-spline with VCC,but the

method shows a better convergence with one one order of magnitude when com-

pared to the B-spline with only not-a-knot treatment. Further investigation shown

that the not-a-knot method has a weekly convergence in its derivatives values [53].

This will cause lack of accuracy in calculation of local coordinate system (s,m, n),

therefore numerical inaccuracy in calculation of ∂φ/∂n at edges and corners. It is

to believe, this will cause more numerical error in total energy error in compare to

total volume error in B-splines.

4.3.2 Solitary wave reflection over the vertical wall

One of the test cases for investigating the effect of corner conditions on the

accuracy of calculating the tangential derivatives, is the behavior of the numerical
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Figure 35: Convergence of Energy error for the three different grid spacing of
dx = 0.50 ( ) , dx = 0.33 ( ) and dx = 0.25 ( ); The Maximum energy and mass
error for 3 different method is presented. Grilli et.al.[10] with ( ); Harris et.al.[16]
with dotted line ( ); and current simulations with ( ); Current method shown
better convergence in compare to not-a-knot method used by Harris et al.[16] and
no significant improvement in compare to MII [10].
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Figure 36: Convergence of Mass error for the three different grid spacing of dx =
0.50 ( ) , dx = 0.33 ( ) and dx = 0.25 ( ); The Maximum energy and mass error
for 3 different method is presented. Grilli et.al.[10] with ( ); Harris et.al.[16]
with ( ) and current simulations with ( ); not-a-knot condition despite is poor
convergence in Energy error, has better convergence in volume error.
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wave tank with reflection of a solitary wave at a vertical wall. There is no way

of comparing the treated and untreated B-spline end conditions for the reflection

of a solitary wave since the stability of the numerical simulation in corners causes

the untreated model to fail with a maximum numerical error of energy equal to

7.61 × 10−1. This error appears as a very steep , non-physical rise of the wave

elevation in corners as seen in Figure 38.

The size of the domain is slightly modified in-order to capture the nonlinear

reflection tail of the solitary wave.The exact waves are generated, at the location

x′ = −4.0 of a tank with length L′ = 20 (xL ∈ [−10, 10])and width W ′ = 2 with

dx′ = 0.25. This result is obtained with 1024 elements with 1229 nodes on the

boundary. The time step dt′ is initially set to be 0.03 and adaptively changed

with the Courant number of Co = 0.4. The two non-dimensional wave heights of

H ′ = 0.2 and 0.6 is used for comparison with 2D results in Grilli and Svendsen [32].

Similar to the previous example the mass and energy error is used as a check of

accuracy for the simulation (see Figure 39). As expected , the volume and energy

error changes during the reflection process, but converges almost to the same error

value after reflection.

H ′I H ′R Ru Current Ru [32]
0.2 0.1913 0.423 0.42920
0.6 0.5365 1.675 1.67100

Table 5: Comparing the incident wave height with wave height due to reflection.
After reflection , due to nonlinearity , the exact solitary wave loose almost 10% of it
amplitude.The maximum run-up calculated in current simulation is also compared
with Grilli and Svendsen [32]

4.3.3 Periodic wave

A stream function wave (SFW) [54] is a numerically exact periodic solution of

a FNPF problem in depth h, in a coordinate system which moves with the speed
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Figure 37: Reflection of Tanaka Solitary wave of the vertical wall in a fully non-
linear potential flow regime. After the reflection, the solitary wave looses 10% of
its height while generating a trail due to nonlinearities. Dotted line shows the
incident wave with H ′ = 0.6 and the solid line shows the reflected wave.
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(a) (b)

(c) (d)

(e) (f)

Figure 38: Reflection of solitary wave of vertical wall , with and without the
end condition for the second reflection of the solitary wave with wave height of
H
′

= 0.6. (a) ,(c) and (e) are the progression of reflection of solitary wave with
no corner Condition for the values of field variable φ, (b),(d) and (f) are for the
same numerical simulation with special treatment of the filed variable φ based on
velocity compatibility condition. as Solitary wave propagate toward the vertical
wall the numerical error for the tangential derivatives increases and without proper
treatment of edges and corners the simulation will fail.
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Figure 39: The maximum energy and mass error for a reflection of solitary wave
of H ′ = 0.6 with Courant number of Co = 0.4 of a vertical wall.The solitary wave
enters the reflection zone at t′ = 7.79 and exit the reflection zone at t′ = 10.62.
The reflection zone is shown with two vertical black lines. as expected during the
reflection process the maximum energy and volume error will change and after
the complete reflection, the energy and mass error converge to almost it’s incident
values.

of the wave (C = L/T ). Using the 2D version of Grilli and Horrillo [30] of stream

function with zero mass flux, SFW can be modeled as :

Ψ(θ, z) =
n∑
j=1

(jk)2X(j)cosh(jk(h+ z))sin(jθ)− (U − c)z (120)

in which θ = k(x − ct) and X(j) is a set of n numerical coefficients calculated

iteratively to satisfy the free surface boundary conditions for a specified wave height

and period. The horizontal velocity is obtained from Eq.(120)) in the original

coordinate system as

u(θ, z) = −
n∑
j=1

(jk)X(j)cosh(jk(h+ z))cos(jθ) + U (121)

and knowing that ∂θ
∂t

= −ck, we can calculate the local horizontal acceleration as

∂u

∂t
= −c

n∑
j=1

(jk)2X(j)coshjk(h+ z)sinjθ (122)

These equations are used to specify the kinematics of an incident SFW over a ver-

tical wave maker boundary at each point through the width of the tank boundary.
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Figure 40: Generation of numerically exact nonlinear periodic wave similar to
Grilli et. al. [30]. A ramp up time equal to to two wave period is being use at the
beginning of the simulation for avoiding the singularities due to a hard start of the
simulations.

The numerical simulation similar to Grilli and Horrillo’s [30] in performed in

a tank with length 10 times the depth (L′ = 10) and width 2 times the depth

(W ′ = 2). The domain is discretized with dx′ = 0.25 in length and depth and

dx′ = 0.5 in width. We simulate wave propagation with 832 quadrilateral cubic B-

spline elements (1,070 nodes) with the absorbing beach (AB) starting at xAB = 6.5,

with a strength ν = 0.63.

Incident waves are generated on the leftward boundary of the tank as (zero-

mass-flux) streamfunction waves, with height H ′ = 0.15, and period T ′ = 3.5515.

With these values, we find a wavelength L′ = 2.07 and steepness H ′/L′ = 0.072.

These are nearly deep water waves with significant nonlinearity. In order to prevent

an unstable shock from appearing at the wavemaker boundary at the beginning

of the simulation, the velocity field is multiplied by a tanh-like tapering function,

D(t), similar to Grilli and Horrillo [30], where we take the startup time, T ′start to

be two wave period.

In order to test the accuracy of the waves generated, a wave gauge is positioned

at x′ = 4.0, approximately two wavelengths away from the wavemaker, and one

138



Figure 41: implementation of absorbing beach in Numerical wave tank for avoiding
the reflection from the end of the tank into the computational domain.

Figure 42: Comparing the theoretical value of stream function wave with the
measured wave profile on a wave gauge in the middle of the tank. The cycles
average RMSE between the theoretical wave maker and measured wave in the
middle of the tank is equal eRMSE = 8.73× 10−2.
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wavelength away from the start of the absorbing beach. The time-step is initially

set to be t′ = T ′/30 and is adaptive to maintain a constant Courant number

(Co = 0.4). The cycle averaged root mean square error between the theory and

measurement at the wave gauge measured for t′ > 8T ′ and for 5 wave periods and

found to be equal to 8.73×10−2. It is believed that the reflection of long wave from

the imperfect absorbing beach, cause this numerical error , while the energy error

and volume error are in orders of 10−4 and 10−5 respectively for t′ = 50 showing a

good numerical accuracy.

4.4 Conclusion

A corner treatment condition was developed for solving BEM problems in

fully non-linear potential flow applications at the free surface, where properties at

the free surface are defined based on a cubic B-spline element representation. The

corner treatment defines multiple nodes at locations where there are intersections

of lines or surfaces, which will result in singular values within the matrix system of

equations. By applying compatibility conditions at these locations (i.e. forcing the

potential to be single valued and forcing velocity conditions to be single valued),

these singularities are removed and replaced with compatibility equations that

force a single solution at these double or triple nodes. This results in a unique

solution and helps to alleviate instabilities in the solution that occur at these

corner locations.

The given examples demonstrate how this special treatment of corners improve

the solution in a variety of examples focused on wave propagation, with the express

purpose of developing a stable, numerical wave tank for use in naval hydrodynamic

applications with surface piercing bodies. Future work will include implementation

of this NWT with a hybrid decomposition method that involve a simultaneous

solution of the BEM system of equations with a Navier-Stokes (NS) solver, hence
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the proper treatment of corner conditions will play a critical role in maintaining a

stable solution that does not break down due to numerical instabilities over long

computational times, which may occur in the case of simulating long time history

irregular sea states.

Future work is necessary to demonstrate the method in applications with

arbitrarily shaped surface piercing bodies, which may require multiple B-Spline

patch definitions for the body geometry and at the free surface. Previous work (cite

Grilli et al, [1, 2]) has demonstrated that a multiple patch definition at the free

surface also introduces instabilities in non-linear wave problems at the intersection

of patches if continuity of the patch properties does not exist, hence treatment

using MII is necessary in these applications.
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