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ABSTRACT
Mangrove ecosystems are one of the most diverse and productive marine ecosystems around the 
world, although losses of global mangrove area have been occurring over the past decades. 
Therefore, tracking spatio-temporal changes and assessing the current state are essential for 
mangroves conservation. To solve the issues of inaccurate detection results of single algorithms 
and those limited to historical change detection, this study proposes the detect–monitor–predict 
(DMP) framework of mangroves for detecting time-series historical changes, monitoring abrupt 
near-real-time events, and predicting future trends in Beibu Gulf, China, through the synergetic use 
of multiple detection change algorithms. This study further developed a method for extracting 
mangroves using multi-source inter-annual time-series spectral indices images, and evaluated the 
performance of twenty-one spectral indices for capturing expansion events of mangroves. Finally, 
this study reveals the spatio-temporal dynamics of mangroves in Beibu Gulf from 1986 to 2021. In 
this study, we found that our method could extract mangrove growth regions from 1986 to 2021, 
and achieved 0.887 overall accuracy, which proved that this method is able to rapidly extract large- 
scale mangroves without field-based samples. We confirmed that the normalized difference 
vegetation index and tasseled cap angle outperform other spectral indexes in capturing mangrove 
expansion changes, while enhanced vegetation index and soil-adjusted vegetation index capture 
the change events with a time delay. This study revealed that mangrove changes displayed 
historical changes in the hierarchical gradient from land to sea with an average annual expansion 
of 239.822 ha in the Beibu Gulf during 1986–2021, detected slight improvements and deteriora-
tions of some contemporary mangroves, and predicted 72.778% of mangroves with good growth 
conditions in the future.
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1. Introduction

Mangroves are one of the most productive natural 
ecosystems globally, and are considered to be most 
efficient in carbon sequestration and climate change 
mitigation (Murdiyarso et al. 2015). Mangrove forests 
play an important role in the global C cycle, account-
ing for 10–15% of all coastal C storage despite cover-
ing less than 0.5% of the global coastal areas (Atwood 
et al. 2017). Mangrove conservation and restoration 
are closely related to the implementation of the 
Sustainable Development Goals (SDGs) (Weise et al.  
2020). Recent studies have reported that global man-
grove ecosystems have suffered degradation under 
the dual impacts of climate change and human activ-
ities (Pirasteh et al. 2021; Li et al. 2020). Globally, 
mangroves have declined by 30–50% during the last 

century, and it is estimated that these ecosystems 
may disappear within 100 years (Murdiyarso et al.  
2015). Therefore, accurate and repeatable monitoring 
of historical changes, assessing current status, and 
abrupt changes, and predicting future trends are cru-
cial to achieve the protection and restoration, sustain-
able management, and development of mangrove 
ecosystems.

Remote sensing techniques have become an 
important tool for monitoring dynamic changes of 
mangroves (Zhu 2017; Younes Cárdenas, Joyce, and 
Maier 2017; Thomas et al. 2018), including multi- 
temporal image classifications and time-series trajec-
tory analysis methods (Halabisky et al. 2016). The 
former analyzes the spatio-temporal change patterns 
in mangroves using the change information about 
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the conversion of land cover types from the classifica-
tion results of multi-temporal remote sensing images 
(Navarro et al. 2021; Zhang et al. 2021; Jia et al. 2018; 
Ma et al. 2019). However, this method not only 
requires a large number of training samples from 
different years (Navarro et al. 2021), but also cannot 
track the succession process and obtain the magni-
tude of changes (Woodcock et al. 2020). Trajectory 
analysis methods could accurately detect the minor 
and long-term changes in mangroves without train-
ing samples and numerous classifiers (Baloloy et al.  
2020). However, the rapid extraction of mangroves 
using time-series spectral index images and change 
detection approaches still faces great challenges.

Spectral indices have different capabilities for cap-
turing change events of mangroves, such as growth, 
disturbance, loss, restoration, etc., due to the different 
spectral sensitivities. The normalized difference vegeta-
tion index (NDVI) is a widely used spectral index for 
detecting dynamic changes in mangroves (Awty- 
Carroll et al. 2019; de Jong et al. 2021; Otero et al.  
2017); some popular spectral indices have demon-
strated strong performance in monitoring mangrove 
dynamics, such as the enhanced vegetation index (EVI) 
(Zhu, Liao, and Shen 2021), normalized difference 
moisture index (NDMI) (Aljahdali, Munawar, and Khan  
2021), etc. Moreover, some scholars have proposed 
several novel spectral indices, which are more sensitive 
to mangroves than traditional vegetation indices, for 
the classification and extraction of mangroves. For 
example, the mangrove vegetation index (MVI) and 
enhanced mangrove vegetation index (EMVI) can dis-
tinguish terrestrial vegetation from mangroves (Baloloy 
et al. 2020; Yang et al. 2022). However, the performance 
of different spectral indices for capturing mangrove 
time-series change trajectories still lacks a systematic 
evaluation under the eliminating the effect of tidal 
submergence, especially those vegetation indices sen-
sitive to mangroves.

Currently, different change detection algorithms 
with the time-series remote sensing images have 
been applied to detect gradual and abrupt changes 
in hydrology (Liang et al. 2020; Xia et al. 2021), vege-
tation (Fu et al. 2022), and climate (Yoo et al. 2018). 
Several studies have demonstrated that the 
LandTrendr algorithm represents an important tool 
for monitoring dynamic changes in other wetland 
types (de Jong et al. 2021; Zhu et al. 2019; Fu et al.  
2022). Continuous change detection and classification 

(CCDC) algorithms (Zhu and Woodcock 2014) and 
breaks for the additive season and trend (BFAST) 
algorithms (Verbesselt et al. 2010, 2010) have been 
used to detect change periods of mangrove cutting, 
and the trends in regeneration rates (Awty-Carroll 
et al. 2019; Otero et al. 2017). Mann – Kendall signifi-
cance tests (MKs) and Mann – Kendall mutation tests 
(MKm) have been used to assess the significance of 
the trends and mutation detection in hydrological 
and vegetation time series analysis, respectively 
(Hamed 2008; Figueira Branco et al. 2019; Wu et al.  
2022). However, the different algorithms have their 
own advantages and disadvantages in capturing and 
representing the time series change characteristic 
information. They may only obtain specific change 
information or be limited by the length of the time 
series (Verbesselt, Zeileis, and Herold 2012). In addi-
tion, previous studies have reported that a single 
optimal algorithm may not comprehensively display 
the spatio-temporal changes in mangrove forests, 
and a more reasonable approach should be the 
advantageous trade-off between multiple algorithms 
(Cohen et al. 2017; Bianco, Ciocca, and Schettini 2017). 
Inspired by these ideas, we aim to develop a new 
method that could track dynamic historical changes, 
assess the current status, and predict future trends of 
mangroves by combining the advantages of multiple 
change-detection algorithms.

The essential objectives of this study were as fol-
lows: (1) develop a new method based on multi- 
source inter-annual time-series spectral indices to 
extract historical large-scale mangroves; (2) evaluate 
the performance of twenty-one spectral indices for 
monitoring change periods and intensity, and spatial 
expansion changes in mangroves; (3) propose 
a detect–monitor–predict (DMP) framework of man-
groves to track historical changes, monitor the current 
state and abrupt events, and predict future develop-
ments; (4) reveal spatio-temporal trajectories of man-
groves from 1986 to 2021 in Beibu Gulf, and 
quantitatively evaluate the area changes in different 
regions and at different phases.

2. Study area and data source

2.1 Study area

The Beibu Gulf is located in tropical and subtropical 
regions northwest of the South China Sea (Figure 1), 
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which is the largest remaining mangrove distribution 
area in China (Gan et al. 2013). The mangrove com-
munities in the study area are representative and 
typical of the Pacific West Coast. There are two 
National Nature Reserves (NNR), one Provincial 
Nature Reserves (PNR), and three Local Nature 
Reserves (LNR) in the coastal areas of Beibu Gulf. 
A large amount of estuarine sediment deposition 
provides suitable conditions for mangrove growth; 
the Chinese government has been carrying out 
a range of protection and restoration actions of man-
groves since 1980. However, mangroves in the study 
area have still been suffering from varying degrees of 
damage under the influence of human activities, such 
as land reclamation, mariculture, deforestation, etc. 
(Long et al. 2022). Therefore, the study area repre-
sents great research value in terms of monitoring 

mangrove expansion and disturbance, which could 
provide implications for global mangrove conserva-
tion and management.

2.2 Data acquisition and processing

In this study, we used atmospherically corrected 
multi-source remote sensing images of the Landsat 
5 TM, Landsat 7 ETM+, and Landsat 8 OLI surface 
reflectance from 1986 to 2021 and the Sentinel-2 
multispectral instrument (MSI) from 2018 to 2021 on 
the Google Earth Engine platform (Gorelick et al.  
2017) (Table 1) and coordinated the surface reflectiv-
ity of Landsat TM and ETM +. In order to preserve 
good quality observations, QA60 and CFmask pixel 
QA band were used to mask the cloud and cloud 
shadow in the Sentinel-2 and Landsat images, 

Figure 1. The study area: (a) locations of unmanned aerial vehicle (UAV) sampling areas and mangrove reserves; (b) the number of 
optical images from Landsat 5/7/8, Sentinel-2, and UAV sensors from 1986 to 2021, and the frequency of observations with good 
quality pixels.

Table 1. Summary of time-series remote sensing images from different platforms.
Sensors Bands Resolution(m) Image count Dates

Landsat 5 TM B1, B2, B3, B4, B5, B7 30m 1876 1986–2012
Landsat 7 ETM+ B1, B2, B3, B4, B5, B7 30m 1301 1999–2021
Landsat 8 OLI B2, B3, B4, B5, B7 30m 700 2014–2021
Sentinel-2 MSI 2A B2, B3, B4, B8, B11, B12 10m 3511 2018–2021
SRTM DEM 30m - 2000
UAV RGB/Blue, Green, Red, Red- edge, NIR 0.05m 336694 2020–2021

GISCIENCE & REMOTE SENSING 3



respectively. We counted the number of good quality 
observations in each location of an individual pixel 
and their percentage frequency (Figure 1b). In addi-
tion, The SRTM DEM acts as an assistant to extract 
mangrove wetlands.

We conducted field surveys and UAV images col-
lection of mangroves in the study area on 19– 
25 November, 2020, 8–14 January and 4–16 April, 
2021, 17–24 August, 2021, and 17–28 May, 2022. 
There are two main methods: (1) the longitude and 
latitude coordinates of mangrove plots were recorded 
using a handheld centimeter-level positioning accu-
racy RTK; (2) a multi-spectral camera mounted on 
a DJI Phantom 4 Pro was used for sample aerial 
photography, with a flight height of 30-60 m. The 
UAV images were interpreted to determine mangrove 
vegetation. Meanwhile, the following classification 
products were used to validate the extracted man-
grove regions: (A) Jia et al. (2018) mapped Chinese 
mangrove classification products from 1990, 2000, 
2010, and 2015 with 30 m spatial resolution and 87% 
to 92% overall accuracy (OA); (B) Zhao and Qin (2020) 
extracted the 2017 Chinese mangrove region (resolu-
tion 10 m, OA 92.4%); (C) 10 m global mangrove clas-
sification products of 2018–2020 (OA 92.4%) were 
obtained from Scientific Data Bank (https://www. 
scidb.cn).

3. Methods

The technical workflow of this study is shown in 
Figure 2, including four primary steps. First, Landsat 
and Sentinel-2 satellite images were processed, and 

intra-annual and inter-annual time-series spectral 
indices images from 1986 to 2021 were reconstructed. 
Second, mangrove growth regions (MGRs) in the 
study area were extracted by threshold segmentation 
using the time-series reconstructed spectral indices 
images. Meanwhile, we evaluated the performance 
of twenty-one spectral indices for monitoring man-
grove changes in Beibu Gulf, and selected suitable 
spectral indices to analyze the expansion dynamics 
of mangrove forests. Finally, this study proposes 
a DMP framework to detect historical changes, moni-
tor the current state and abrupt events, and predict 
the future development trends of mangroves. We 
extracted change information using MKm, 
LandTrendr, BFAST, and BFAST Monitor algorithms 
to track the historical change process of mangroves. 
Then, the BFAST Monitor algorithm with stable period 
of history (SPH) observations was used to monitor 
structural changes in mangroves, including minor 
and near-real-time changes. MKs, Sen, and Hurst algo-
rithms were used to assess the significance of trends, 
slope, and persistence of the time series, and predict 
future trends.

3.1 Reconstruction of spectral index time-series 
datasets

This study reconstructed time-series spectral index 
(Table A1) datasets using Landsat and Sentinel-2 
images from 1986 to 2021. To weaken the effect of 
tidal intrusions into the coastal zone on the spectral 
reflection variation of the mangrove canopy, three 
inter-annual time-series images (Equation (1)) were 

Figure 2. The workflow of this study.
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created for each spectral index based on the GEE 
platform using maximum/mean/median spectral 
index composition (Jia et al. 2021). Moreover, we 
used the data correction method (Equation (2)) and 
maximum spectral index value within one year to 
remove tide-influenced observations from the intra- 
annual time series. The inter-annual and intra-annual 
time series images were resampled to 30 m on the 
GEE platform. 

SIAðiÞ ¼
max ðSIiÞ

medianðSIiÞ

meanðSIiÞ

8
<

:
; i 2 1986; 2021½ � (1) 

where SIi and SIA(i) are the time series original spectral 
index and inter-annual spectral index composition 
images, respectively. 

SIIAðiÞ¼fðSIi; k �maxðSIiÞ þ aÞ (2) 

where SIIA(i) is the intra-annual time series spectral 
index in the i-th year, k is the correction coefficient, 
and the value range of k was determined to be 0.6–0.8 
by many repeated experiments. The higher k values 
indicate that Equation (2) removes more tide- 
influenced observations, and fewer high-quality 
observations remain; a is the spectral index correction 
constant, with the specific range shown in Table A1; 
and f(x, y) represents the processing of data correction 
for the intra-annual time series spectral index images 
using the maximum spectral value in a year.

3.2 Rapid extraction of mangrove growth regions 
using threshold segmentation method

This study proposes a threshold segmentation 
method based on the GEE platform using multi- 
source inter-annual time-series spectral indices 
images to implement mangrove region extraction. 
The process is divided into three main steps: (1) MVI 
time-series images were reconstructed using 
Equation (1) from Landsat and Sentinel-2 images; (2) 
the potential mangrove regions were extracted 
each year using the MVI time-series images based 
on Equation (3), then we further used the NDWI and 
DEM data to remove the inland marshes in the poten-
tial mangrove regions; (3)We stacked potential man-
grove regions without inland marshes from 1986 to 
2021, counted the frequency of each pixel identified 
as mangroves in all regions, and extracted the final 
mangrove growth regions (MGRs) using Equation (4). 

PMRsensor ;i ¼ FðMVIAðiÞ > T;DEM< 8;NDWIAðiÞ > 0:3ÞT 2 ½3; 4�

(3) 

MGRs ¼
X2021

i¼1986

PMRLandsat;i > 4;
X2021

i¼2018

PMRSentinel;i > 1

( )

(4) 

where MVIA(i) and NDWIA(i) are the spectral values of 
MVI and NDWI in the i-th year through maximum/ 
mean/median spectral index composition, respec-
tively; T is the threshold value; F(·) represents the 
filtering of the pixels that satisfy the condition; 
PMRsensor, i is the potential mangrove regions 
extracted in the i-th year using Landsat and 
Sentinel-2 images; and MGRs is the regions where 
had existed mangroves or have been existing 
mangroves.

3.3 Monitoring the spatio-temporal dynamics of 
mangroves

To obtain more accurate spatial and temporal infor-
mation on mangroves and to monitor mangrove 
dynamics, this study proposes a DMP framework 
(Equation (5)) through the combination of 
LandTrendr (Kennedy, Yang, and Cohen 2010), MKs 

(Hamed 2008), MKm (Wu et al. 2022), BFAST 
(Verbesselt et al. 2010), BFAST Monitor (Verbesselt, 
Zeileis, and Herold 2012), Sen (Jiang et al. 2015), 
and Hurst (Zhu, Liao, and Shen 2021) algorithms to 
detect historical changes, monitoring near-real-time 
status, and predicting future trends in mangrove 
areas in Beibu Gulf. This study summarizes the algo-
rithm components and change information in the 
DMP framework (Table A2) and provides the final 
parameter values of the LandTrendr algorithm 
(Table A3). 

S ¼ SD y tð Þ; c1 tð Þ; c2 t1ð Þð Þ þ SM y tð Þ;M t2ð Þð Þ þ SP P t3ð Þð Þ

(5) 

where S is the detection results of the DMP framework 
in the spatial domain; SD represents the detection of 
historical changes in the spatial domain; SM repre-
sents the near-real-time monitoring in the spatial 
domain; SP represents a future prediction in the spa-
tial domain; t represents the time series of the pixel in 
the entire region; t1 and t2 represent the time series of 
pixels in the detection results of the LandTrendr algo-
rithm that change drastically and have large detection 
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errors, respectively; t3 represents the time series of the 
prediction period; t1, t2, and t3∈t. y denote the 
change information in the time domain obtained 
using the LandTrendr algorithm; c1 represents the 
comparison of change information between different 
algorithms in the time domain; and c2 represents the 
correction of detection results with large errors.

The DMP-based dynamics of mangroves were 
mainly covered in three parts in this study (Figure 3):

(1) The LandTrendr algorithm and MKm were used 
to determine the expansion years (mutations) 
(y) and clarify the spatial trends (c1) of man-
groves. Then, the BFAST algorithm was further 
used to correct the error change information 
detected by the LandTrendr algorithm, and 
analyze the change characteristics (c2) of the 
time series to track the historical spatio- 
temporal gradient changes in mangroves (SD).

(2) BFAST Monitor was used for detecting struc-
tural changes and monitoring near-real-time 
changes in the mangrove forest (SM) based on 
the intra-annual monitoring periods provided 
by the BFAST algorithm.

(3) A combination of MKs, Sen, and Hurst methods 
was used to obtain the time series change 
information (significance, slope, and sustain-
ability) of mangroves, and further predict the 
spatial distribution (SP) and percentage of the 
different trends in mangroves in the future.

3.5 Accuracy assessment

Expansion Analysis. This study applied the urban 
expansion index to quantitatively assess the rate 
and intensity of mangrove expansion from 1986 to 
2021. Annual expansion (AE) represents the yearly 

area of mangrove expansion in a certain period 
and enables the comparison of different periods 
of expansion in a region (Terfa et al. 2019). The 
intensity index of urban expansion (UERi) could 
indicate the stage change rate of the mangrove 
area of each spatial unit (Wang et al. 2020). AE and 
UERi are calculated using Equation (6) and 
Equation (7). 

AE ¼
At2 � At1

t2 � t1
(6) 

where At1 and At2 are the mangrove areas at times t1 

and t2, respectively. 

UERi ¼
Ut2

i � Ut1
i

Ut1
i � Δt

(7) 

where UERi is the intensity index of mangrove expan-
sion, Ut1

i and Ut2
i are the mangrove area of the spatial 

unit, i, at times t1 and t2, respectively. Δt is the dura-
tion of the research.

To perform an accurate assessment of extracting 
mangroves, this study evaluated the accuracy of 
extracting MGRs from 1986 to 2021 using validation 
points. Meanwhile, we conducted accuracy valida-
tion for the potential mangrove regions by interval 
of 5 year. The validation points were derived from 
multiple datasets: (1) field measurements and man-
ual selection from UAV images during 2020–2021; 
(2) randomly producing from mangrove classifica-
tion products and removing misclassified sample 
points; (3) visual interpretation and manual selection 
from Landsat and Sentinel-2 historical images. We 
established a validation dataset, including 1523 
mangrove points and 1037 non-mangrove points 
(Figure 4).

Figure 3. The DMP framework for detecting the dynamics of mangroves: LT, LandTrendr; BF, BFAST; BFM, BFAST Monitor.
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4. Results

4.1 Accuracy assessment of mangrove extraction

This study verified the extraction accuracy of mangroves 
in the ten typical regions of Beibu Gulf. As detailed in 
Tables 2 and A4, our method finely extracted the MGRs 
of Beibu Gulf from 1986 to 2021 and produced an overall 
accuracy of 0.887. The MGRs of Zhenzhu Bay presented 
the highest overall accuracy of 0.953, whereas Beihai Bay 
obtained the lowest accuracy of 0.857. The overall accu-
racy of the potential mangrove areas extracted by the 
interval of 5 years was above 0.86, with the highest 
accuracy in 2021, indicating that the addition of 
Sentinel 2 images allowed our method to identify poten-
tial mangroves more accurately. Moreover, the area of 
potential mangroves extracted by our method was 
slightly larger than the previous classification products 
in the same year (Figure 5). However, the area of the 

potential mangrove, consistent with the area change of 
classification products, showed a trend in the significant 
increase from 1990 to 2015 and a slowdown in expan-
sion from 2015 to 2020 in mangroves. Two datasets had 
similar area changes for each typical region at the same 
interval of time. In addition, our method could quickly 
identify and map the mangrove regions without training 
samples, which was easy to implement on the GEE plat-
form. The MGRs obtained by our method could be 
further used to detect the long-term dynamics of 
mangroves.

4.2 Evaluation of the effect of spectral indices on 
monitoring mangrove changes

As shown in Figure 6, the mangroves displayed 
a prominent characteristic of hierarchical spatial 
expansion. The detection results of the traditional 

Figure 4. Distribution of sample points in four typical regions of the study areas: (a) Zhenzhu Bay; (b) Beihai Bay; and (c) Tieshan Port; 
(d) Maowei Sea.

Table 2. The Overall accuracy and kappa coefficient of extracting MGRs in ten typical regions of Beibu Gulf from 
1986 to 2021.

Regions Overall accuracy Kappa Regions Overall accuracy Kappa

Zhenzhu Bay 0.953 0.896 Tieshan Port 0.871 0.734
Fangcheng Bay 0.927 0.848 Dandou Sea 0.897 0.774
Maowei Sea 0.906 0.811 Yingluo Bay 0.859 0.659
Dafeng River 0.909 0.813 Anpu Port 0.881 0.752
Beihai Bay 0.857 0.708 Danzhou 0.865 0.730
Beibu Gulf 0.887 0.776
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spectral indices were generally better than the sensi-
tive spectral indices for mangroves. In the former, NIR 
could not accurately identify young mangroves 
expanding in 2016–2021. The detection results of 
NDVI, EVI, TCA, WAVI, SAVI, TCG, and WFI exhibited 
minor differences in their detection results over time. 
However, they could obtain accurate years and trends 
of mangrove expansion. Among the latter, CMRI, MVI, 
and MI were the more effective in identifying man-
grove expansion, and other spectral indices could not 
significantly map the dynamic of mangroves. We fil-
tered the best indices for further comparison.

In this study, we randomly selected 845 mangrove 
points based on historical images and previous classi-
fication products of the study area, and visually inter-
preted their expansion years. As shown in Figure 7(a), 
we found that the annual expansion curves of man-
groves from the ten spectral indices displayed similar 
trends to the reference curves. MI, TCG, WAVI, and WFI 
detected mangrove expansion less frequently than 
the reference in 1990–1998 and produced higher 
peaks in 2012 or 2018, indicating a significant bias in 
accurately detecting expansion events. From 
Figure 7(b), it can be seen that the deviations in the 
NDVI and TCA were within five years of each other, 
which could accurately map the spatial expansion of 
mangroves. In contrast, deviations in the other four 
spectral indices in 10–20 years had a higher 
frequency.

We selected four typical areas to examine the accu-
racy of detecting mangrove expansion between the 
NDVI and TCA. As can be seen from the frequency 

percentage curves in Figure 8, trends in the frequency 
percentage of expansion (mutation) events detected 
by the TCA and NDVI were similar, demonstrating 
high confidence in the results. However, the TCA 
detected a much lower frequency of expansion 
events in 1987, with a peak during 1986–1990. This 
indicated that the TCA failed to accurately differenti-
ate between mangroves before 1987 and those that 
expanded in 1987–1990. Therefore, the NDVI is more 
suitable for monitoring the dynamics of mangroves 
than the TCA.

4.3 DMP-based spatio-temporal dynamics of 
mangroves

4.3.1 Tracking historical changes
Quantitative assessment. Tables 3, 4, and Figure 9 
indicate a general increasing trend in the inter- 
annual gain of mangroves from 1988 to 2020. The 
expansion of mangroves could be divided into two 
periods. From 1988 to 2009, the expansion was 
slow, while from 2010 to 2020, the expansion was 
more rapid. The AE exhibited an “up – down” trend, 
with an AE of 239.822 ha/year from 1988 to 2020. 
The overall trend of UERi was similar to that of AE, 
but its magnitude was lower. (1) There were signifi-
cant differences in the expansion rate between the 
fastest and slowest regions during the study period. 
The Maowei Sea was the fastest expanding region 
with an AE of 47.808 ha/year and UERi of 0.046, 
whereas the AE in Dandou Sea was the lowest 
with 10.413 ha/year. (2) The fastest period of 

Figure 5. The potential mangrove area obtained by the threshold segmentation method in comparison with Jia et al. and Yang et al. 
classifications from 1990 to 2020. (a) Changes in mangrove area in ten typical regions: I-i, mangrove area in the i-th year based on 
classification products; II-i, potential mangrove area in the i-th year based on the method; A, Zhenzhu Bay; B, Fangcheng Bay; C, 
Maowei Sea; D, Dafeng River; E, Beihai Bay; F, Tieshan Port; G, Dandou Sea; H, Yingluo Bay; I, Anpu Port; J, Danzhou. (b) Changes in 
mangrove area in Beibu Gulf.
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expansion was from 2011 to 2015, with an AE of 
499.893 ha/year. During this period, The gain area of 
136.573 in Maoweihai and 66.869 ha/year in Beihai 
was much higher than in other regions.

Temporal and spatial mangrove expansion. The dis-
tribution of expansion years displayed a pattern of 
hierarchical change, showing the process of man-
grove forests formation from nonexistence to exis-
tence. The mangroves in Zhenzhu Bay (Figure 10(b)) 

and Beihai Bay (Figure 10(e)) showed a radial spread, 
with the existing mangroves as the center. Initially, 
small patches emerged and subsequently merged 
with other patches, forming larger patches that con-
tinued to expand outward. The narrowly distributed 
mangroves in Maowei Sea (Figure 10(c)) and Tieshan 
Port (Figure 10(d)) were expanding from land to sea. 
We found that the spatial change in mangroves was 
influenced by mudflats and seawater height, which 

Figure 6. The change detection results of twenty-one spectral indices based on the LandTrendr algorithm in the major mangrove area 
of Golden Bay Mangrove Reserves of Beihai Bay.
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caused changes in expansion direction and a decline 
in the expansion rate.

As shown in Figure 11, we used the DMP frame-
work to analyze the spatial expansion process of 
mangroves and selected points P1, P2, and P3 to 
reflect the temporal profiles from 1986 to 2021. In 
the spatial domain, the result of the LandTrendr 
algorithm (Figure 11(a)) showed a hierarchical 
change in mangroves in Anpu Port, which was con-
sistent with that of MKm (Figure 11(b)). However, 
deviations were observed in the results using the 
LandTrendr algorithm in Figure 11(A1), and after 
correction, the expansion which occurred in this 
region from 1991 to 2000 presented a more evident 
pattern of hierarchical change without any noise. In 
the time domain, the year of expansion detected by 
the LandTrendr algorithm at P1 exhibited a delay 

deviation, whereas that identified by the BFAST and 
BFAST Monitor algorithms identified the actual 
change year. The consistent expansion years were 
detected at P2 and P3 by LandTrendr, BFAST, and 
BFAST Monitor algorithms. The above results 
showed that MKm could corroborate the expansion 
trend in space, and the BFAST and BFAST Monitor 
algorithms effectively confirmed and corrected the 
change information (years, magnitude, and dura-
tion) with deviations from the results of the 
LandTrendr algorithm.

The trend component fitted by the BFAST algo-
rithm showed that the expansion process exhib-
ited obvious features in the time series. Before the 
expansion, the spectral index values of the time 
series were consistently low, and the region was 
a mudflat at this time; after the expansion, the 

Figure 7. The detection change results of mangroves using ten spectral indices. (a) Frequency of expansion years. The reference is the 
frequency of expansion years based on visual interpretation. (b) Deviation distribution of the expansion years detected by the six 
spectral indices (normalized difference vegetation index, enhanced vegetation index, tasseled cap angle, soil-adjusted vegetation 
index, combined mangrove recognition index, and mangrove vegetation index) and visual interpretation.
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values increased rapidly, indicating that the man-
groves started to grow; finally, the values fluctu-
ated and stabilized, indicating a steady growth of 
the mangroves. Moreover, after the apparent 
improvements in P1, P2, and P3 (UFk>1.96), UFk 

showed a monotonic upward trend, indicating 
that the mangroves were still maintaining their 
growth during the study period.

4.4.2 Monitoring the current changes
Knowledge of the study area was provided based on 
historical detection; therefore, this study selected 
regions B (Figure 11(B)) and C (Figure 11(C)) for near- 
real-time monitoring. These regions had earlier 
expansion years and longer SPH. As shown in 
Figure 11(a), we determined the start of the monitor-
ing period for regions B and C based on the expansion 

Table 3. Annual expansion (AE) of mangroves for ten typical regions during 1988–2020 (ha/year).
Regions 1988–1990 1991–1995 1996–2000 2001–2005 2006–2010 2011–2015 2016–2020 1988–2020

Zhenzhu Bay 5.663 8.485 15.747 8.018 5.276 20.339 16.610 11.799
Fangcheng Bay 6.713 15.860 11.904 4.280 3.172 24.024 34.581 14.826
Maowei Sea 7.464 15.810 15.929 20.728 36.772 136.573 85.242 47.808
Dafeng River 5.668 13.620 18.262 16.517 20.943 34.838 37.243 21.943
Beihai Bay 12.418 12.724 19.366 18.988 33.701 66.869 63.888 33.786
Tieshan Port 4.010 8.318 19.031 25.750 8.491 19.882 16.096 15.148
Dandou Sea 9.123 12.478 9.705 10.722 5.186 16.540 8.625 10.413
Yingluo Bay 13.686 14.118 8.121 8.553 4.502 25.739 7.545 11.635
Anpu Port 7.174 11.310 11.742 20.818 15.871 34.145 7.924 16.078
Danzhou 10.172 10.029 5.977 9.344 17.716 35.359 20.793 15.958
Beibu Gulf 96.330 139.480 155.509 170.988 191.951 499.893 367.202 239.822

Table 4. Evaluating the intensity of change in mangroves for all typical regions from 1988 to 2020 using the expansion index (UERi).
Regions 1988–1990 1991–1995 1996–2000 2001–2005 2006–2010 2011–2015 2016–2020 1988–2020

Zhenzhu Bay 0.008 0.011 0.020 0.009 0.006 0.022 0.016 0.020
Fangcheng Bay 0.023 0.051 0.030 0.010 0.007 0.049 0.057 0.117
Maowei Sea 0.011 0.022 0.020 0.024 0.037 0.117 0.046 0.100
Dafeng River 0.007 0.017 0.021 0.017 0.020 0.030 0.028 0.032
Beihai Bay 0.011 0.011 0.016 0.014 0.024 0.042 0.033 0.035
Tieshan Port 0.011 0.022 0.046 0.050 0.013 0.029 0.021 0.085
Dandou Sea 0.012 0.016 0.011 0.012 0.005 0.017 0.008 0.017
Yingluo Bay 0.018 0.018 0.009 0.009 0.005 0.027 0.007 0.019
Anpu Port 0.013 0.020 0.019 0.031 0.020 0.040 0.008 0.037
Danzhou 0.007 0.006 0.004 0.006 0.010 0.020 0.011 0.012
Beibu Gulf 0.010 0.014 0.014 0.015 0.016 0.037 0.023 0.031

Figure 8. The frequency percentage of expansion events each year was calculated based on the LandTrendr algorithm and MKm with 
NDVI and TCA time series datasets: (a) Beihai Sea, (b) Maowei Sea, (c) Zhenzhu Bay, and (d) Tieshan Port.
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years and magnitudes obtained by the LandTrendr 
and BFAST algorithms. Figure 12 indicates that the 
magnitudes monitored by the BFAST Monitor algo-
rithm at B and C ranged from −0.32 to 0.19 and −0.15 
to 0.14, respectively, much smaller than those during 
growth, showing that the BFAST Monitor algorithm 
could detect the drastic changes in magnitude after 
mangrove expansion and the minor changes in adult 
mangroves. In the time domain, the monitoring 
results for the BFAST Monitor algorithm showed that 
the time series of P1 started to stabilize earlier and 
had a long SPH, and it monitored a structural change 
on day 305 of 2018; the time series of P2 had a short 
SPH due to instability before 2018, but the BFAST 
Monitor algorithm still exhibited a slight recession. 
Therefore, when the time series was sufficient and 
stable, the start of the monitoring period could be 
shifted back close to when new observations were 
provided for near-real-time monitoring. The above 
results show that slight improvements and deteriora-
tions of some of the mangroves were currently occur-
ring in Beibu Gulf.

4.4.3 Predicting future trends
MKs, Sen, Hurst, and time series data from 2013 to 
2021 were used for predicting the future trends of 
mangroves in Beibu Gulf, which were classified into 
nine types (Table 5), and the proportion of each type 
in the typical regions was counted (Table 6 and 
Figure 13).

According to Table 6 and Figure 13, we found that 
72.778% of areas in Beibu Gulf showed sustainable 
improvements in mangroves, while only 7.464% of 
areas demonstrated sustainable deterioration. This 
indicates that mangroves in Beibu Gulf would sustain-
ably improve in the future. The Maowei Sea, Dafeng 
River, and Beibu Bay, which are adjacent and distrib-
uted in the northern part of the Beibu Gulf, had the 
highest percentages of sustainable and significant 
improvements in mangroves, with 75.349%, 
63.482%, and 59.340%, respectively. The distribution 
of different trend types had some notable features. 
The unsustained slight improvement and degradation 
mainly occurred in areas inside the mangroves (B1, 
B2, C2, D2, E1, E2, F2, H1, and H2). Sustained and 

Figure 9. The inter-annual gain area from 1988–2020 (a); annual expansion (AE) (b); and the expansion index (UERi) (c) for all typical 
regions from 1988 to 2020.
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degenerated regions were near land (C1, F1, G1, and 
H3), which were impacted by human activities; these 
may continue to experience a decline. The trend types 
were complex in D1, G2, and H2, but the areas of 
sustained significant change were small, suggesting 
that non-obvious changes may occur in these regions.

Figure 14 shows the pixel-based prediction results 
in different typical regions. (1) During the prediction 
period, the trend slopes of the time series of the pixels 
in B1 and C2 were 0.0036 and 0.0162, respectively. 
This suggests a possible decline in the mangrove 
population in these regions, whereas mangroves at 
pixels E2 and H1 would continue to improve. (2) The 
time series of pixel points in D1 varied to within 0.01 
in magnitude during 2013–2021, and the trend slope 

was close to 0, indicating that the mangroves in the 
region are likely to remain stable. (3) The mangrove 
forest at the pixel in G1 showed a significant and 
sustainable decline trend from 2013 to 2021, indicat-
ing that it would continue to degrade or even die out.

5. Discussion

The selection of spectral indices and the reconstruc-
tion of their time series are important for detecting 
dynamic changes in mangroves. This study found that 
the NDVI was more accurate in detecting mangrove 
expansion, and the TCA followed. Some scholars have 
reached similar results (Zhu et al. 2019; Nguyen et al.  
2020), but the TCA has certain noise in detecting 

Figure 10. Spatio-temporal characteristics of mangrove forests in Beibu Gulf: (a) Beibu Gulf; (b) Zhenzhu Bay; (c) Maowei Sea; (d) 
Tieshan Port; and (e) Beihai Sea.
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Figure 11. Historical change process of mangroves detected based on MKm, LandTrendr, BFAST, and BFAST Monitor algorithms: (a) the 
expansion years of mangroves gained by the LandTrendr algorithm in Anpu Port; (b) information for the year corresponding to the 
intersections of UFk and UBk; (A1) region with deviated expansion years obtained by LandTrendr algorithm; (A2) region after correction 
of the expansion year by BFAST algorithm. PI, point of intersection; LT, LandTrendr; BF, BFAST; BFM, BFAST Monitor; BFM, BFAST 
Monitor; AF, algorithm fitting; SI, significant improvement; CL, confidence level; PI, point of intersection.
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changes in wetland dynamics (Fu et al. 2022). 
However, some researchers have demonstrated that 
the EVI and NDMI are more suitable for analyzing the 
dynamic changes in mangroves, such as Zhu, Liao, 
and Shen (2021) and Aljahdali, Munawar, and Khan 
(2021). Nevertheless, we found that the EVI was inade-
quate in capturing expansion events, and the NDMI 
time series did not show a pattern of vegetation 
growth (Figure 15). In addition, different spectral com-
position methods yielded the optimal detection result 
for each spectral index. The reasons for this may be 
related to the tide, the outlier values of the spectral 
index, and cloud pixels. Although the manual selec-
tion of high-quality images can weaken the tidal 

influence (Zhu, Liao, and Shen 2021), it may not be 
practical for study areas with long temporal scales 
and large spatial scales. Spectral index composition 
methods have been proven to apply to the study of 
mangrove change detection (de Jong et al. 2021) but 
may cause outliers. Cloud bands are not always suc-
cessful in cloud detection, which may affect the inter- 
annual and intra-annual detection results to some 
extent. Finally, the results for LandTrendr, BFAST, 
and BFAST Monitor consistently show that intra- 
annual time series reconstructed by data correction 
can be used for BFAST and BFAST Monitor algorithms 
and are robust. However, cloud-containing pixels and 
mangrove phenology changes may be factors in the 

Figure 12. Monitoring results of the structural changes in the mangroves in regions B and C (Figure 11(a)) where the expansion years 
were earlier and there were longer SPH.

Table 5. Classification of spatio-temporal trends in mangrove areas.
H |Z| Slope Trends TypeID

>0.5 >1.96 >0.0005 Sustainability and significant improvement Trends-1
>0.5 <1.96 >0.0005 Sustainability and slight improvement Trends-2
>0.5 >1.96 <-0.0005 Sustainability and significant degradation Trends-3
>0.5 <1.96 <-0.0005 Sustainability and slight degradation Trends-4

−0.0005–0.0005 stability Trends-5
<0.5 >1.96 >0.0005 Anti-sustainability and significant improvement Trends-6
<0.5 <1.96 >0.0005 Anti-sustainability and slight improvement Trends-7
<0.5 >1.96 <-0.0005 Anti-sustainability and significant degradation Trends-8
<0.5 <1.96 <-0.0006 Anti-sustainability and slight degradation Trends-9

Table 6. Summary of area percentages of each trend type in ten typical regions, and Beibu Gulf overall.
Regions Trends-1 Trends-2 Trends-3 Trends-4 Trends-5 Trends-6 Trends-7 Trends-8 Trends-9

Zhenzhu Bay 47.245% 36.161% 0.411% 2.119% 0.765% 1.692% 9.401% 0.056% 1.603%
Fangcheng Bay 47.912% 35.243% 0.978% 4.614% 1.266% 0.771% 6.800% 0.012% 0.782%
Maowei Sea 75.349% 15.291% 0.126% 1.631% 0.395% 0.782% 5.268% 0.016% 0.798%
Dafeng River 63.482% 23.626% 0.307% 1.512% 0.461% 1.483% 7.645% 0.030% 1.046%
Beihai Bay 59.340% 20.210% 1.199% 5.164% 1.124% 1.000% 6.547% 0.227% 4.176%
Tieshan Port 31.355% 42.618% 1.933% 5.318% 1.693% 1.170% 9.842% 0.219% 4.221%
Dandou Sea 33.336% 29.299% 3.452% 8.009% 2.778% 1.779% 14.629% 0.187% 5.337%
Yingluo Bay 27.276% 28.372% 1.651% 10.209% 5.335% 1.326% 14.527% 0.365% 9.637%
Anpu Port 29.299% 31.346% 1.353% 12.907% 3.679% 0.990% 10.573% 0.304% 7.722%
Danzhou 25.372% 26.307% 2.111% 10.635% 3.273% 1.683% 19.556% 0.235% 9.127%
Beibu Gulf 46.023% 26.755% 1.238% 6.226% 1.850% 1.381% 10.806% 0.160% 4.449%
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minor changes detected by the BFAST Monitor 
algorithm.

This study proposes a threshold segmentation 
method for the rapid extraction of mangroves differ-
ing from classification. Our method could extract the 
regions where had historically existed mangroves or 

have been existing mangroves, rather than mapping 
mangrove regions at a particular time point. Multi- 
temporal classifications can accurately map man-
groves at multiple time points, but this may lose 
areas that disappear after mangrove growth during 
the interval period. Our method extracts mangrove 

Figure 13. Predicted results using MKs, Sen, Hurst, and 2013–2021 time series data in each typical region: (a) Beibu Gulf; (b) Zhenzhu 
Bay; (c) Fangcheng Bay; (d) Yingluo Bay; (e) Anpu Port; (f) Tieshan Port; (g) Dandou Sea; (h) Danzhou Port; (i) Maowei Sea; (j) Dafeng 
River; and (k) Beihai Bay.
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using multi-source spectral indices, and does not 
require training samples. Compared with other meth-
ods, a threshold method of SMRI has been proposed 
to extract submerged mangroves (Xia et al. 2020; 
Yancho et al. 2020), but it cannot distinguish between 
terrestrial and mangrove vegetation. Yancho et al. 
(2020) proposed a GEEMMM method with multiple 
spectral indices that are sensitive to mangroves for 
classification, but this method requires a lot of train-
ing samples. The differences between MGRs and clas-
sification product area may be caused by the spatial 
resolution of remote sensing images and 

misclassification. Besides, the increasing mangrove 
areas calculated by the classification products in 
2015–2020 were much lower than those in 2000– 
2015 and our extraction for the same period, which 
indicated that there are still differences in mangrove 
regions between different scholars.

Mudflats and water depths influence the hierarch-
ical changes in mangroves. Mudflats provide physical 
space for mangroves, but the relative height of mud-
flats to sea level influences the rate of their expansion 
(Swales et al. 2019; Lovelock et al. 2015, 2017). 
However, with global sea level rises, mangroves in 

Figure 14. The slope, significance, and sustainability of time series in regions B2, C2, D1, E2, G1, and H1 (Figure 13) from 2013 to 2021. 
Y1, sustainability; Y2, significance.

Figure 15. Time series of the NDVI, EVI, and NDMI reconstructed based on maximum/mean/median spectral index composition 
methods and their results using the LandTrendr algorithm. P1, P2, and P3 are located in mangroves that expanded during different 
periods, and P4 is located in mudflats. A/B/C, maximum/mean/median spectral index composition method.
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Beibu Gulf still expand offshore, probably because: (1) 
these are less affected by sea level rise here; and (2) 
sediment deposition weakens the effect of sea level 
rise on the expansion (Long et al. 2022). A gradient 
change pattern has been demonstrated for man-
groves in the Nanliu River Delta of Beihai; the expan-
sion rate was highest in 2010–2020 (Long et al. 2022). 
Similarly, de Jong et al. (2021) discovered the pattern 
that offshore mangroves expanded and the trend that 
near-land mangroves declined toward the ocean, but 
no naturally occurring degradation of them was 
detected in this study. Furthermore, future trends of 
mangroves may still maintain good growth as pre-
dicted by the DMP framework, but they may still be 
under threat. Since the mangrove forests in Beibu Gulf 
are close to zones such as fishponds and farmlands, 
their changes are influenced by natural conditions 
and human activities.

The DMP framework for mangrove expansion 
detection is more consistent with actual condi-
tions than a single change detection algorithm. 
MKm could map the trend in mangrove spatial 
expansion, but could not obtain the exact muta-
tion. The spectral trajectories segmented based 
on the LandTrendr algorithm may not be optimal 
due to large fluctuations in the time series or 
observed outliers (Zhu et al. 2019). The BFAST 
algorithm requires time series observations with 
equal time intervals. Despite these limitations, the 
results obtained by those algorithms could be 
compared and complemented each other to 

obtain detailed dynamics of the mangroves. In 
near-real-time monitoring results, SPH and the 
start of the monitoring period are usually defined 
manually based on knowledge of the study area 
(Schultz et al. 2018) or detected automatically by 
the algorithm. However, due to the need for more 
knowledge about the study area, some studies 
can only monitor changes based on 
a hypothetical SPH (Kanjir, Đurić, and Veljanovski  
2018; Wanyama, Moore, and Dahlin 2020). 
Therefore, it is a rapid and feasible solution to 
provide knowledge of the study area for the 
BFAST Monitor algorithm using other algorithms. 
In future trend prediction results, MKs, Sen, and 
Hurst, although they have been used to deter-
mine the sustainability of the time series. 
However, some studies have chosen a predicted 
period of 20 years or longer (Tran et al. 2021; 
Guan et al. 2021; Tong et al. 2018). In this study, 
2013–2021 was chosen as the predicted period 
based on the time series of mangroves with 
stable – growth–stable trends in Figure 11 
because this period’s predicted result is more rea-
listic than others. In Figure 16, the prediction 
results are different in the three periods. The 
longer the forecast period, the stronger the sus-
tainability of the time series. The reason is that 
the longer prediction period includes phases of 
mangrove expansion and stabilization, and the 
time series may be monotonically increasing (or 
decreasing).

Figure 16. Predictions of future trends in mangroves at D1 and G1 (Figure 13) from 1986 to 2021, 2000 to 2021, and 2013 to 2021. Y1, 
sustainability; Y2, significance.
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6. Conclusions

Tracking spatio-temporal changes and assessing the 
current state are essential for mangrove conservation. 
Previous efforts have focused on monitoring the histor-
ical changes, and lack the tracking of real-time changes 
and predicting future trends in mangroves. Moreover, 
the problem of a change-detection algorithm does not 
provide enough evidence to evaluate the historical, 
current, and future changes in mangroves.

To address these issues, we proposed a novel DMP 
framework for detecting time-series historical 
changes, monitoring the near-real-time abrupt 
events, and predicting future trends in mangroves in 
Beibu Gulf, China, through the synergetic use of mul-
tiple detection change algorithms. Then, we further 
developed a threshold segmentation method for 
extracting mangroves using time-series spectral 
indices images and evaluated the performance of 
twenty-one spectral indices for capturing expansion 
events of mangroves. As a result, this study reveals 
the spatio-temporal variation patterns of mangroves 
in Beibu Gulf from 1986 to 2021.

Our method of mangrove extraction developed 
based on GEE platform could rapidly map the MGRs 
in the Beibu Gulf from 1986 to 2021. The overall 
accuracy reached 0.887. The NDVI and TCA accurately 
captured the year of mangrove expansion and deli-
neated their dynamic patterns, although the MVI and 
MI are not suitable for monitoring time-series man-
grove expansion. During 1986–2021, mangroves in 
Beibu Gulf exhibited a hierarchical change pattern 
from land to sea. The AE of mangroves is 239.822  
ha/year and the UERi is 0.031 from 1988 to 2020. The 
DMP framework provides a comprehensive tool to 
track the spatio-temporal changes in mangroves, 
and effectively evaluates the change process and per-
sistent status of mangroves in the past, present, and 
future. This study can provide guidance for the scien-
tific monitoring and sustainable management of 
mangroves.
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Appendix A. Supplementary data

Table A1. Calculation formula for the spectral index in the study.
Spectral Index Name Formula Correction constant

Near-Infrared (NIR) - 0
Ratio Vegetation Index (RVI) RVI ¼ NIR=R 0–1
Normalized Difference Vegetation Index (NDVI) NDVI ¼ ðNIR � RÞ=ðNIRþ RÞ 0
Soil-Adjusted Vegetation Index (SAVI) SAVI ¼ 1:5� ðNIR � RÞ=ðNIRþ Rþ 0:5Þ 0
Enhanced Vegetation Index (EVI) EVI ¼ 2:5� ðNIR � REDÞ=ðNIRþ 6� RED � 7:5� BLUE þ 1Þ 0
Water-Adjusted Vegetation Index (WAVI) WAVI ¼ 1:5� ðNIR � BLUEÞ=ðNIRþ BLUE þ 0:5Þ 0
Rice Growth Vegetation Index (RGVI) RGVI ¼ 1 � ðBþ RÞ=ðNIRþ SWIR1þ SWIR2Þ 0
Wetland Forest Index (WFI) WFI ¼ ðNIR � RÞ=SWIR2 0–1.5
Tasseled Cap Greenness Index (TCG) TCG ¼ � 0:1603� BLUE � 0:2819� GREEN � 0:4934� RED

þ 0:7940� NIR � 0:0002� SWIR1 � 0:1446� SWIR2

0–0.015

Tasseled Cap Brightness Index (TCB) TCB ¼ 0:2043� BLUE þ 0:4158� GREENþ 0:5524� RED

þ 0:5741� NIRþ 0:3124� SWIR1þ 0:2303� SWIR2

-

Tasseled Cap Wetness Index (TCW) TCW ¼ 0:0315� BLUE þ 0:2021� GREEN þ 0:3102� RED

þ 0:1594� NIR � 0:6806� SWIR1 � 0:6109� SWIR2

-

Tasseled Cap Angle (TCA) TCA ¼ arctanðTCG=TCBÞ � 180=PI 0–5
Mangrove Index (MI) MI ¼ 10000 � ðNIR � SWIR� SWIR=NIRÞ 0
Combined Mangrove Recognition Index (CMRI) CMRI ¼ NDVI � NDWI 0
Modular Mangrove Recognition Index (MMRI) MMRI ¼ ð MNDWIj j � NDVIj jÞ=ð MNDWIj j þ NDVIj jÞ –
Mangrove Vegetation Index (MVI) MVI ¼ ðNIR � GREENÞ=ðSWIR1 � GREENÞ -*
Enhanced Mangrove Vegetation Index (EMVI) EMVI ¼ ðGREEN � SWIR2Þ=ðSWIR1 � GREENÞ -*
Mangrove Discrimination Index 1 (MDI1) MDI1 ¼ ðNIR � SWIR1Þ=SWIR1 –
Mangrove Discrimination Index 2 (MDI2) MDI2 ¼ ðNIR � SWIR2Þ=SWIR2 0
Mangrove Recognition Index (MRI) MRI ¼ ð TCGL � TCGHj jÞ � TCGL � ð TCWL þ TCWHj jÞ –
Submerged Mangrove Recognition Index (SMRI) SMRI ¼ ð NDVIL � NDVIHj jÞ � ð NIRL þ NIRHj jÞ=NIRH –
Normalized Difference Mangrove Index 1 (NDMI1) NDMI1 ¼ ðSWIR2 � GREENÞ=ðSWIR2þ GREENÞ –
Normalized Difference Moisture Index (NDMI) NDMI ¼ ðNIR � SWIR1Þ=ðNIRþ SWIR1Þ –
Normalized Difference Water Index (NDWI) NDWI ¼ ðGREEN � NIRÞ=ðGREENþ NIRÞ -
Modified Normalized Difference Water Index (MNDWI) NDWI ¼ ðGREEN � SWIR1Þ=ðGREENþ SWIR1Þ -

IndexL and IndexH represent the observations obtained at low and high tide, respectively. 
- represents spectral indices not used for detecting the spatio-temporal changes in mangroves. 
- indicates that the spectral index cannot effectively detect the spatio-temporal changes in mangroves, and the correction constant cannot be confirmed. 
-* indicates that there are abnormally high observations in the time series of the spectral index, and the correction constant cannot be confirmed.

Table A2. Summary of the DMP framework and its monitoring change information.
DMP Algorithms Change information Functions

Detecting historical 
changes

LandTrendr Expansion year Monitoring the spatial expansion of mangroves, and tracking its change years
MKm* Mutation, obvious 

trend changes
Analyzing the spatial distribution of mutations and mangrove development trends (UFk 

>1.96)
BFAST 

Monitor
Change year Validating the year of mangrove expansion

BFAST** Expansion year, 
duration, 
magnitude

Correcting the bias of the year of mangrove expansion from the LandTrendr algorithm and 
providing intra-annual monitoring periods for fitting a model based on BFAST Monitor, 
and determining the duration and magnitude of expansion events

Monitoring near-real 
-time changes

BFAST 
Monitor

Change year, 
magnitude

Monitoring near-real-time and minor changes in mangroves

Predicting future 
changes

MKs Significance Determining significant changes and spatial distribution of mangroves
Sen Slope (Trend) Analyzing the trends in mangrove growth and decline
Hurst Sustainability Evaluation of the sustainability of mangrove changes

* Only the regions where the UBk and UFk curve of MKm had a unique intersection were retained, with significance levels, α, of 0.01 and 0.05. 
**The BFAST algorithm required enough data; therefore, this study supplemented the data of the intra-annual time series by linear interpolation.
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Table A4. The Overall accuracy extracting the potential mangrove of ten typical regions of Beibu Gulf in 
1991,1996,2001,2006,2011,2016 and 2021.

1991 1996 2001 2006 2011 2016 2021

Zhenzhu Bay 0.931 0.883 0.924 0.893 0.887 0.886 0.919
Fangcheng Bay 0.700 0.975 0.871 0.913 0.933 0.919 0.957
Maowei Sea 0.791 0.898 0.845 0.888 0.897 0.870 0.902
Dafeng River 0.880 0.981 0.926 0.850 0.891 0.852 0.913
Beihai Bay 0.813 0.806 0.814 0.818 0.813 0.837 0.868
Tieshan Port 0.833 0.744 0.900 0.884 0.909 0.919 0.901
Dandou Sea 1.000 0.948 0.942 0.930 0.901 0.920 0.905
Yingluo Bay 0.778 0.928 0.888 0.897 0.855 0.908 0.882
Anpu Port 0.857 0.852 0.903 0.916 0.874 0.858 0.904
Danzhou 0.877 0.869 0.897 0.917 0.906 0.832 0.939
Beibu Gulf 0.868 0.886 0.892 0.886 0.884 0.868 0.901

Table A3. Parameter values for the LandTrendr algorithm applied in this study.
Parameters Values

maxSegments 6
spikeThreshold* 0.25
vertexCountOvershoot 6
preventOneYearRecovery true
recoveryThreshold 0.25
pvalThreshold 0.1
bestModelProportion 0.75
minObservationsNeeded 6

* Due to the possible effect of tides on the time series, we restrained the effect of peaks on the fitted model by setting a lower 
threshold of spikeThreshold.
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