
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Dissertations 

2018 

BRAIN-BODY SENSORY FUSION: MERGING FNIRS/EEG BRAIN-BODY SENSORY FUSION: MERGING FNIRS/EEG 

NEUROIMAGING AND FULL-BODY MOTION CAPTURE NEUROIMAGING AND FULL-BODY MOTION CAPTURE 

Mohammadreza Abtahi 
University of Rhode Island, mrz.abtahi@gmail.com 

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Abtahi, Mohammadreza, "BRAIN-BODY SENSORY FUSION: MERGING FNIRS/EEG NEUROIMAGING AND 
FULL-BODY MOTION CAPTURE" (2018). Open Access Dissertations. Paper 797. 
https://digitalcommons.uri.edu/oa_diss/797 

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open 
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please 
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/797?utm_source=digitalcommons.uri.edu%2Foa_diss%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


BRAIN-BODY SENSORY FUSION: MERGING FNIRS/EEG NEUROIMAGING

AND FULL-BODY MOTION CAPTURE

BY

MOHAMMADREZA ABTAHI

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

ELECTRICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

2018



DOCTOR OF PHILOSOPHY DISSERTATION

OF

MOHAMMADREZA ABTAHI

APPROVED:

Dissertation Committee:

Major Professor Kunal Mankodiya

Susan E. D’Andrea

Leslie Mahler

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2018



ABSTRACT

Functional connectivity between the brain and body kinematics has not been largely

investigated due to the requirement of being motionless in neuroimaging techniques

such as functional magnetic resonance imaging (fMRI). The importance of investigating

this connectivity arises from the fact that the connectivity is disrupted in many neurode-

generative disorders such as Parkinson’s Disease (PD). PD is a neurological progressive

disorder characterized by movement symptoms including slowness of movement, stiff-

ness, tremors at rest, and walking and standing instability.

Body kinematics are generally divided into two categories of fine and gross motor

tasks. Fine motor movements are referred to small range kinematics of the body such

as finger movements. Gross motor movements are related to bigger range movements

such as limb motion. Unified Parkinson’s Disease Rating Scale (UPDRS) is a protocol

consisting of 42 tasks that the patients need to perform for the neurologists to make a

decision regarding the diagnosis or progression of the disease. 14 of these tasks are

motor exams including both fine and gross movements. In this work, a smart wearable

glove has been developed in order to measure fine motor movements of fingers. The

performance of the glove regarding measuring finger movements has been tested and

reported. The smart glove is tested on a robotic hand and healthy humans performing

finger tapping task. The variability in human subjects compared to the robotic hand is

clear based on the results of the test. The variance of finger tapping frequency on robotic

hand is less than 6.00× e−5 compared to the variance for human participants which is

in the range of 0.001−0.1. A non-optical motion capture system (Mocap) consisting of

inertia measurement unit (IMU) sensors has been utilized to record the gross movements

of the body.

Developing a framework for appropriately collecting simultaneous data from func-

tional near-infrared spectroscopy (fNIRS) neuroimaging system and motion capture sys-



tem is discussed as the first aim. An application protocol interface (API) is developed in

order to call each system’s software and record the data on separate files in milliseconds

accuracy. The performance of this framework is tested at the system level to validate the

data and also tested in real life experiment. A synchrony test is performed in order to

validate if the recorded data from these systems through the API is synchronized. The

results show that the data is acceptably synchronized with a time difference of few mil-

liseconds which is negligible in fNIRS studies. The real life experiment of performing

some gross motor tasks by healthy participants revealed that the brain activity and body

movements detected through these systems are coupled. The promising results suggest

that this framework can be developed for more complicated processing and experiments.

The second aim of this study is to develop algorithms in order to fuse and process

the data recorded from the brain and body through the developed framework, and also

developing a visualization user interface to monitor the brain activity and body kinemat-

ics simultaneously. Algorithms are developed in order to synchronize the recorded data,

compensate the uneven sampling rates, calculate oxygenated hemoglobin levels in the

brain from fNIRS, calculate the acceleration vector from Mocap, and normalize the flex

sensor data from the smart glove.

Validating the developed interface and algorithms in a human study is followed as

the third aim of this study. 11 PD patients and 10 neurotypical (NT) healthy older par-

ticipants were recruited in order to perform 4 of the UPDRS motor tasks including both

fine and gross movements. The tasks include finger tapping, hand flipping, arm move-

ment, and foot stomping on both left and right side limbs. Each task was explained

for the participants and the participants were asked to practice each task. There was no

recording during the practice time. Montreal cognitive assessment test and a question-

naire regarding the history of the disease is given to PD participants for further analysis

by the neurologists. Body kinematics were recorded by the Mocap and smart glove.



fNIRS and electroencephalogram (EEG) have been utilized as the brain neuroimaging

systems. The hypothesis was: "There are differences between older healthy adults and

PD patients which could be detected and distinguished by the fusion of brain activation

and body movements"

The recorded data from each of the modalities have been analyzed individually,

and the processed data has been used for classification between PD and NT group. The

average changes of oxygenated hemoglobin from fNIRS, power spectral density of EEG

in the Theta, Alpha, and Beta bands, acceleration vector from Mocap, and normalized

flex sensor data were used for classification. 12 different support vector machine (SVM)

classifiers have been used on different datasets such as only fNIRS data, only EEG data,

hybrid fNIRS/EEG data, and all the fused data for two scenarios of classifying PD and

NT based on each activity individually, and all the fused data together. The PD and

NT group could be distinguished by the accuracy of more than 85% for each individual

activity. For all the fused data, the accuracy of classification for differentiating PD and

NT groups are 81.23%, 92.79%, 92.27%, and 93.40% for the fNIRS only, EEG only,

hybrid fNIRS/EEG, and all the fused data, respectively. The results show that adding the

data from each modality in the classification increases the accuracy, which implies that

each modality carries useful information that results in a higher rate of distinguishing

PD and NT. The lower accuracy of the fNIRS data only classification is due to the delay

of the hemodynamic response which is variable for each individual subject. This makes

it hard for the classifier to distinguish the two groups.

The promising results show the feasibility of using this brain-body fusion system

to distinguish the differences in PD and NT group regarding the fused information of

brain and body. The future goal is to develop an interface to provide the visualization

of brain activity and body kinematics of the participant simultaneously while the par-

ticipant is performing the motor tasks. This is happening by a visual observance of the



patients by neurologists. The visualization interface can provide a tool for neurologists

to observe both body movements and brain activity simultaneously. Also, adding the

results of the analysis will be provided at the end of the experiment which can be used

as a supporting tool for neurologists to make a decision about diagnosis or progression

of PD. Considering more individual information from the patients such as their UPDRS

scores, type of medication, or dosage of medication in the machine learning analysis can

result in a multi-class classification capable of distinguishing each patient individually.

This approach can be helpful in monitoring the progress of the disease or considering

the effectiveness of the medication. This needs a quantitative evaluation of sample size

calculation and longitudinal data collection in order to generalize the results of this dis-

sertation.
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CHAPTER 1

Introduction

Brain structures change with age, and as the number of elderly people grows (US

Census Data), there is a need to study elderly brains. Studies have shown that brain

volume decreases with age [1, 2, 3, 4, 5], which in turn affects sensorimotor control and

functions, then affecting daily life activities [6]. Studies have shown that the dopamin-

ergic system is affected by aging. In particular, dopamine transmission levels decrease

with age [7, 8, 9] which also happens in Parkinson’s disease (PD) [10]. PD is one

of the most prevalent hypo-kinetic movement disorders and the second most common

neurodegenerative disorder [11]. PD affects patients’ motor functions, with symptoms

including bradykinesia (slowness of movement), rigidity (stiffness), tremor at rest and

action, and walking instability. Therefore, there is a need to examine brain functionality

and brain-body coupling in aging adults and PD patients, both for information about

healthy aging and early stages of PD.

Human brain structures have been explored using brain scanning technologies for

decades [12, 13, 14, 15, 16, 17, 18, 19]. However, the participants need to stay stationary

during scanning with traditional brain imaging methods such as functional magnetic

resonance imaging (fMRI) in order to avoid motion artifacts. In MRI, these usually

appear as ghosting artifacts which obscure useful clinical information [20]. Therefore,

there is a lack of knowledge about human brain processes which are tightly coupled to

body movements. In order to better understand the functional connectivity between the

brain and the body, this doctoral research aims to establish and validate an infrastructure

for fusing neuroimaging and body motion capture data.

1



1.1 Research Innovation

Neuroimaging and body motion capture techniques have been used individually

for people with movement disorders [21, 22, 23, 24, 25, 26, 27, 28, 29]. While this al-

lows for an understanding of neurological activities and movement issues, but functional

connectivity between the two is not yet understood.

Some studies have investigated the coupling between the brain and the body, but

the focus of these studies has been on a few motor tasks related to finger flexion exten-

sion or muscle contractions and small movements. Electroencephalography (EEG) or

magnetoencephalography (MEG) are the most common brain monitoring systems been

used in these combined studies [30, 31, 32, 33, 34, 35, 36, 37]. These systems are very

sensitive to movement artifacts, preventing their use in experiments involving bigger

range movements.

To develop a system which allows larger movements to be combined with neu-

roimaging, a brain monitoring subsystem needs to be chosen that would allow the par-

ticipants to move during the experiment without making motion artifacts. In order to

meet this criterion, functional near-infrared spectroscopy (fNIRS), and EEG have been

chosen to be used as the brain monitoring systems. The fNIRS system captures hemo-

dynamic responses in the brain and has been shown to be less prone to motion artifacts.

The drawbacks of this system are low temporal resolution and the delay in hemody-

namic response. In order to compensate for these drawbacks, EEG is added to this

research which provides a higher temporal resolution (256Hz compared to 10Hz) and

faster electrical activity responses.

Body kinematics are generally divided into gross motor movements and fine mo-

tor movements. A non-optical motion capture system (Mocap) is used to measure and

record gross movements of both upper and lower limbs. The Mocap system captures

full-body movements, but it is limited to gross movements, such as limb movements

2



like hand pronation/supination, arm movements, and foot stomping. This system is not

able to measure fine motor movements such as finger tapping, one of the most common

tests in PD screening. A smart glove integrated with flexible sensors has been developed

in order to measure fine motor finger movements. Hence, adding it to this study can pro-

vide more information about the coupling of brain and body for fine motor movements.

Figure 1 shows an overview of this research proposed fusion system.

Figure 1: Overview of the proposed fusion system.

The initial work in this doctoral dissertation included the development of a smart

glove capable of measuring fine finger kinematics. The development of the infrastruc-

ture for fusing neuroimaging and body motion capture followed. It was then possible

to create simultaneous processing algorithms for brain activity and body movements.

Finally, a human study on PD patients and healthy participants was done to evaluate

the fusion system and associated algorithms with the goal of distinguishing these two

groups based on the recorded fused data.

Overall, the activities of this doctoral dissertation work can be divided into the following

three aims:

Aim 1: Development of a multi-modal brain-body fusion system

3



The first aim of this dissertation is to develop infrastructure for the fusion of multi-

modal brain-body recordings. In general, this system consists of two main components:

brain monitoring and body motion capture. fNIRS and EEG will be used as neuroimag-

ing modalities. A Mocap system and the smart glove will be used in order to record

gross movements and fine motor tasks, respectively.

Each of these systems has their own native data recording software. The EEG data

acquisition system has a trigger input which allows for connection and synchronization

with the other systems, and therefore does not require further development for fusion.

Fusion system development therefore focuses on the fNIRS and Mocap systems which

allows the other systems to be connected and synchronized with. An application pro-

tocol interface is developed in order to connect to each of these systems and record

simultaneous data from these systems.

Aim 2: Algorithm development for Multi-Modal Data Fusion to Quantify

Brain-Body Synchrony

The second aim is to develop algorithms and models to quantify the synchrony

between the brain and the body based on multi-modal data recorded from the fusion

system developed in Aim 1. Algorithm development can be divided into two tasks as

follows:

1. Developing signal processing methods in order to process brain signals from

fNIRS and EEG and body movements from the Mocap and the smart glove. This

includes algorithms to calculate the level of oxygenated hemoglobin from fNIRS

data, the power spectral density of the EEG data, the acceleration vector of the

Mocap, and the normalized voltage of the smart glove.

2. Developing data visualization algorithms in order to visualize neural activation

and body movements together.

Aim 3: Human study to evaluate the brain-body fusion system and associated
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algorithms

This final step of the study is needed to validate the performance of the first two

aims and investigate the hypothesis that “there are differences between older healthy

adults and PD patients which can be detected and distinguished by the fusion of brain

signals and body movements.” In this aim, two experimental groups will be tested for

evaluation and validation of the developed systems. The two groups of participants are

1) 11 individuals with PD and 2) 10 neurotypical (NT) healthy older adults. Body kine-

matics were recorded by Mocap system and smart glove, and brain activity was recorded

by both fNIRS and EEG. The developed algorithms from Aim2 were used to measure

relevant activity from each individual system, and the two groups of participants were

distinguished using support vector machine (SVM) classification method.

This research will have a profound impact on neuroscientists’ ability to understand

brain-body coupling for individuals with neurological disorders. The research activities

will create a framework for simultaneous brain-body sensing, which will provide new

tools and algorithms to the scientific community. In addition, the project will provide

foundational knowledge for future health care devices, new methods of treatment, and

more accurate diagnoses.
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CHAPTER 2

Background

This chapter provides more detailed information about the target population of this

work, people with PD. Since this dissertation involves measuring body kinematics for

fine and gross motor movements and utilizing brain neuroimaging systems, fNIRS and

EEG, each of these procedures is explained more in detail in the following sections.

Each section highlights selected related works.

2.1 Parkinson’s Disease (PD)

Parkinson’s Disease (PD) is the second most common neurodegenerative motor

disorder, affecting 4 million [1] people worldwide. Studies suggest that approximately

0.6% of the total United States population, and 0.8% of the European and Canadian pop-

ulation will be affected by PD by 2050 [2]. PD patients have various movement-related

symptoms including tremor at rest, muscle stiffness or rigidity, slowness of movement,

and gait and balance problems such as shuffling, freezing or falling because of alter-

ations in their brain-body coupling.

PD is commonly diagnosed between age 50 and 70. The pathological hallmark of

PD is the progressive degeneration of dopamine-secreting neurons in the midbrain struc-

ture known as the basal ganglia [3]. The basal ganglia, like other brain areas, manifests

electrical activity that becomes synchronized with connected structures. The basal gan-

glia regulates voluntary movements through connections to the thalamus and the motor

cortex. The degeneration of dopamine neurons in the basal ganglia affects neuron firings

that transfer commands from the brain to the rest of the body. This effect on the motor

pathways results in movement symptoms such as tremors, rigidity, stiffness, dyskinesia

or slowness of movement, and imbalance in body posture as can be observed in PD.

Figure 2 shows the efferent pathway of neural activity from the brain to the limbs.
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Figure 2: Efferent pathway of neurons adapted from [4, 5].

Making an accurate diagnosis of PD, especially during early stages, is difficult

since there is no standard diagnostic test for Parkinson’s. In general, physicians con-

duct screening tests to visually observe the presence or absence of relevant symptoms

[6]. The Unified Parkinson’s Disease Rating Scale (UPDRS) [7] is one of the most

commonly used protocols for PD diagnosis and monitoring disease progression. The

UPDRS protocol includes 42 questions including 14 movement exercises that allow

physicians to determine if someone has PD or not. Functional neuroimaging techniques

such as fMRI are not commonly used in diagnostic screening due to the movement

tasks of the UPDRS and requirement for stillness in fMRI scanning. However, these

neuroimaging techniques are heavily used in research on the neurological processes and

predictors of PD [8, 9].
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PD has been associated with alterations in brain-body coupling, also known as

cortico-muscular coherence (CMC)[10]. Affected neuromuscular pathways result in

problems in transferring signals from the body to the brain and vice versa, affecting

brain-body coupling and measurable with CMC. Coherence is the degree of time-locked

correlation between two signals as a function of frequency [11]. CMC usually refers to

coherence between cortical signals and electromyographic (EMG) muscle contraction

measurements. Movement sensors such as accelerometers can also be used to measure

coherence between cortical signals and body movements, as in cortico-kinematic co-

herence (CKC). Some abnormal patterns of the CMC has been reported in movement

disorders such as PD [12, 13].

2.1.1 Brain-Body Synchrony Related Works

Most studies of CMC have utilized EEG or magnetoencephalography (MEG) as

the brain monitoring technique and EMG in order to record the muscle contractions

[14, 15, 16, 17, 18, 19].

Recently, Sridharan et al. [20] measured the CMC between the MEG and EMG

from six PD patients undergoing deep brain stimulation (DBS) ON and six medicated

PD patients (levodopa) along with ten age-matched healthy controls. The protocol of

the experiment was hand gripping. Sridharan et al. [20] calculated CMC in the beta

range (13− 30Hz). Medication increased CMC values above control levels, but DBS

results in lower CMC values.

The effects of subthalamic nucleus (STN) DBS on the CMC from PD patients is

examined in a study from Airaksinen et al. [21]. The authors used MEG and EMG

simultaneously while DBS was on and off and showed CMC peaks in the frequency

range of 13− 25Hz in 15 out of 19 patients, with a variable effect of DBS on CMC.

Stronger CMC did not necessarily indicate better functionality; however, tremor and

rigidity may have affected the results. The study concluded that DBS would modify the
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CMC in advanced PD patients, but with large inter-individual variability.

Caviness et al. [11] observed an abnormal increase in the CMC of the PD patients

with small amplitude cortical myoclonus. The study involved PD patients with and with-

out myoclonus and controls. Coherence peaks were observed in the 12−30Hz band in

PD patients with myoclonus which were significantly greater than the PD patients with-

out myoclonus and controls. Caviness et al. [11] findings provide evidence that there

are abnormal rhythmic activities in cortical motor areas in PD patients with myoclonus.

Marty et al. [22] measured the CKC between MEG and a 3− axis accelerometer,

while eleven healthy adults executed or observed a goal-directed hand action performed

by an actor in front of them. Statistically significant coherence at the movement fre-

quency and its first harmonic was observed in both conditions. This significant coher-

ence is reported in the visual cortices, right posterior superior temporal gyrus, bilateral

superior parietal lobule, and primary sensorimotor cortex.

Bourguignon et al. [23] presented CKC as a promising method for reliable and

convenient functional mapping of the human motor cortex. Coherence between MEG

and a 3−axis accelerometer on the right index finger showed peaks around 3−5Hz and

6− 10Hz, corresponding to the self-paced flexion-extension of the finger at 3Hz. Co-

herence was significant for all ten subjects in the contralateral hand area of the primary

motor cortex.

In another study by Bourguignon et al. [24], CKC between MEG and a 3− axis

accelerometer on the right index finger during fast repetitive voluntary hand movements

was measured for ten healthy right-handed adults performing the flexion-extension

movement of right-hand finger with and without thumb-finger touching. It was reported

that the coherence values were significantly higher in the touch experiment compared

to no touch, with the main sources of coherent activity in the left primary motor and

sensory hand areas.
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Another report by Bourguignon et al. [25] investigated CKC between MEG

recorded from a participant viewing experimenter motion and the 3−axis accelerometer

on the index finger of the experimenter. It was demonstrated that a significant peak in

the coherence spectra at the flexion-extension frequency of 3Hz and its first harmonic is

observable strongly in the visual areas, and also in the primary motor cortices of both

hemispheres and in the cerebellum.

All these studies examine the coupling between the brain and the body and how

the correlation and coherence between brain activity and body motion are changed in

PD and healthy groups. These studies do not differentiate between the two groups. This

dissertation study focuses on developing a multi-modal brain-body fusion system and

distinguishing PD participants from healthy participants.

2.2 Full Body Motion Capture

Motion capture, a process of recording movements, is used in a variety of appli-

cations including medical, sports, and entertainment [26, 27]. Body movements can be

divided into gross and fine motor movements. Gross movements refer to bigger range

kinematics such as limb movements or walking. Hand flipping, arm movements, and

foot stomping are gross motor tasks. Fine movements refer to small movements such as

finger motion. Finger tapping and fist opening-closing are examples of fine motor tasks.

2.2.1 Fine Motor Movements

Small movements of the body such as finger movements are important to monitor

due to the fact that people with movement disorders such as PD have difficulties in

performing these movements. Motion symptoms of PD affect the performance of some

movement tasks involving fine motions. As an example, tremor and rigidity in PD affect

the performance of smooth finger tapping, which is shown in this study. It also affects

daily life activities such as writing or grasping an object. Finger tapping is a standard
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and well-established method for assessing the state of disease progression or treatment

in patients with PD. The movement requires fine motor control, the ability to keep track

of time and tempo, and the ability to clasp and tap [28, 29, 30, 31, 32, 33].

Measuring these fine motor movements requires special devices capable of record-

ing small movements precisely. Wearable devices integrated with sensors could be a

good tool for this purpose. Given their potential for improving health care, wearable de-

vices have been proposed and used in the treatment of PD. As listed in Table 1, there is

a large body of research works dedicated to wearable technology and its applications in

PD or other movement disorders. The research works can be divided into two categories:

1. Wearable systems design that aims to make the sensing approach more specific to

motor symptoms,

2. Algorithms that use off-the-shelf wearable systems to improve the detection,

quantification, and classification of the symptoms.

A growing number of commercial products are emerging in the market to fill the

gap between the clinical practice and telemedicine.

Smart textiles have earned new consideration in the last decade through a series of

advancements in conductive threads [47], embroidered electronics [48], knitted anten-

nas [49], electric screen-printing [50] and conductive paints [51]. Smart textiles refer to

a broad range of research activities to integrate advanced functionalities such as sensing,

actuation, computing, energy harvesting, communication, and human-computer interac-

tion into textiles [52, 53, 54, 55, 56, 57]. Based on the functionality, smart textiles can

be classified into two subgroups:

1. Passive e-textiles, which have only sensing capabilities for users or environmental

conditions. For example, passive (battery-less) UHF RFID (radio frequency ID)

tags are woven into regular clothing for indoor human motion tracking [58] and

fetal monitoring [59].

14



Table 1: A list of selected publications presenting wearable technologies for Parkinson’s disease.

Domains Devices/Algorithms Descriptions

Research and Developments

Prediction algorithms were developed
Tremor Prediction Algorithms to detect ON-OFF periods of either

[34, 35, 36] medication or deep brain stimulation (DBS)
in patients with PD or essential tremors.
Researchers achieved a high accuracy for
predicting tremors in PD patients.
A sensor node called "Throttle Gyro"

Mercury [37] was developed to provide automated
activity detection at low-energy consumption.
eGaIT is an automated gait (walking)

eGait- Smart Shoes analysis system, consisting of
[38, 39] a shoes pair with embedded inertia sensors.

The shoes pair helps analyze and classify
abnormal strides during UPDRS gait task.
A number of smart gloves have been

Various other Smart Gloves proposed and tested to monitor dyskinesia
[40, 41, 42, 43] or tremors in PD. Some of the projects

have adopted flex sensors to measure
tremors on individual fingers.
Previously, our research group developed
a smartwatch-driven solution to quantify

SPARK the motor symptoms of PD. We studied this
a smartwatch-based system approach on 24 patients with PD in a

[44] clinical focus group study. Although it produced
a higher accuracy, it was not reliable for
fine-motor symptoms which are generally
observed in the finger tapping task.

Products

Kinesia One is a product consisting of
a ring sensor that streams the
finger motion data to a smartphone.

Kinesia Products [45] Kinesia 360 is a multi-sensor system for
patients to wear at home. Physicians
have access to the tremor information for making
informed decision about medication.
The logger looks like a wristwatch

PKG Data Logger [46] and collects movement data remotely
from patients with movement disorders to
assist doctors with the diagnosis and treatment.

2. Active smart textiles, which have both sensing and actuation capabilities with a

power source on board.

2.2.2 Gross Motor Movements

Gross motor movements refer to larger movements such as limb movement or walk-

ing. People with movement disorders such as PD have difficulties performing gross

motor tasks. Rigidity, bradykinesia, gait and balance problems affect the usual smooth
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performance of gross motor tasks. Gross motor tasks are generally recorded by motion

capture systems.

Generally, motion capture systems fit into two different categories of Optical Mo-

tion Capture (OMC) or Non-optical Motion Capture. In optical motion capture systems,

markers are placed in the desired locations where the movement should be recorded,

which are the joints in the medical human movement studies. Several infrared cam-

eras then collect the movements of the markers and by data fusion techniques, human

movement can be observed [60, 61]. Although optical motion capture systems provide

high accuracy, they have some disadvantages, such as cost and environment dependency

[62, 63].

Non-optical motion capture systems do not use cameras to record movements. A

widely used non-optical system is the inertial system which uses inertia measurement

units (IMUs) to record movement. IMUs utilize a gyroscope, magnetometer, and ac-

celerometer in order to record movement and send data to a computer wirelessly. Figure

3 shows an IMU sensor with three degrees of freedom. In addition to having a lower

cost than OMC systems, IMU systems do not require cameras, allowing them to be used

outside infrared-equipped labs [63].

Figure 3: Person wearing IMU sensors to measure full body motion.
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2.3 Neuroimaging

Non-invasive studies of brain functions are more challenging to conduct in humans

because several current neuroimaging modalities such as fMRI, single-photon emission

computed tomography (SPECT) and positron emission tomography (PET) are costly,

bulky, and immobile. fMRI, one of the most widely used neuroimaging techniques, ob-

serves blood oxygen level dependent (BOLD) signals in the brain and relies on the ob-

servation that the hemodynamic response and neuronal activity are coupled [64]. fMRI

confines patients or study participants into a narrow tunnel where individuals remain

motionless, except possibly for small maneuvers such as finger tapping or ankle rota-

tions. The temporal resolution in fMRI is poor, producing one image per second, while

the brain’s electrical and hemodynamic activities happen at a much faster rate. Figure 4

shows a graphical comparison of the widely used neuroimaging techniques.

Figure 4: A graphical comparison of spatial vs. temporal resolution vs. mobility degree among widely
used neuroimaging techniques.

As investigations of coupling between the brain and body movements require par-

ticipants to be mobile, systems like fMRI are not suited to this purpose. Two portable
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neuroimaging techniques that can provide mobility for the participants, fNIRS and EEG,

have been used in this study. Utilizing these two systems together provides useful infor-

mation about brain activity during movement and incorporates both the good temporal

resolution of EEG and the optimal spatial resolution of fNIRS.

2.3.1 Functional Near-Infrared Spectroscopy (fNIRS)

The feasibility of using near-infrared (NIR) light to illuminate brain tissues has

been demonstrated by experiments on cat heads [65]. These experiments showed the

capability of NIRS to monitor changes in hemoglobin oxygenation of blood. This is

the main chromophore (the light absorber components of tissue) affecting the NIR light

absorption and scattering [65]. Therefore, NIR light is employed in fNIRS systems

because

1. Most human body tissues are almost transparent to NIR light [65, 66],

2. Existence of oxygen in the tissue results in absorption of light [67].

In fNIRS, light emitting diodes (LED) emit NIR light that interacts with the chro-

mophores on a banana-shaped path (like a parabolic path) through the cortex, and a

photodetector receives the attenuated light that reaches the skin [68]. Figure 5 shows

the path of the light through the cortex.

Figure 5: Graphical representation of the NIR light path through the cortical surface .
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Light propagation, in general, depends on the optical properties governing reflec-

tion, scattering, and absorption. The absorption and scattering are influenced by wave-

length. Reflection, on the other hand, is related to the angle of the tissue and the light

[65].

Light scattering is higher for low wavelengths, so NIR light is scattered less in

the body than visible light is. The light within 700nm−1300nm wavelength range has

the best transmission through scalp and skull tissue due to high absorbance of light by

hemoglobin. Scattering increases in wavelengths below 700nm and water absorbs most

light in wavelengths above 1300nm [65].

The energy of the absorbed light is wasted as thermal energy through the absorber

material whose molecular properties determines the specific wavelength at which ab-

sorption occurs [69]. The most important chromophores for fNIRS are oxygenated

hemoglobin (HbO2), deoxygenated hemoglobin (Hb) and cytochrome c oxidase, since

their concentration changes with time and oxygen level [67]. The extinction coeffi-

cient (ε) is a function of the wavelength and shows to what extent the chromophore

absorbs light, and results in different absorption spectrum for each chromophore [70].

Cytochrome c oxidase varies with oxygen level, but its concentration does not com-

pletely depend on changes in oxygen level. It is a mitochondrial enzyme which de-

scribes intracellular oxygenation [71]. Therefore, Cytochrome c oxidase is not used as a

chromophore to monitor the oxygenation of the tissue. For fNIRS, the interest is in Hb

and HbO2 which are responsible for oxygen delivery and carbon dioxide removal in the

body. From Figure 6, the reason for choosing the wavelength of the light in the range

of 650 to 950nm is shown. In this range, Hb and HbO2 have unique spectra, and water

absorption and scattering remain low. Above 950nm the absorption of water increases,

resulting in more scattering. Below 650nm, Hb has a higher absorption rate. Therefore,

in this range, water absorption is low, and almost all the absorption is on Hb and HbO2,
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as desired. Figure 6 shows the absorption coefficients of Hb and HbO2.

Figure 6: Absorption coefficient of Hb, HbO2 and water adapted from [72].

The attenuation of light can be caused by scattering as well as absorption. In the

scattering of the NIR light, photons change direction without energy loss. The change

of the direction depends on different aspects, such as wavelength, the size of the particle

and the refractive indices of the layers which the photon is going through. The structure

of the human head is complex, as it is composed of many layers with varying densities

and thicknesses. These layers scatter NIR light in different ways. The vast majority of

the solid part of the brain tissue is made of red blood cells which is around 1.5% of the

tissue, therefore they are the major source of scattering. Most scattering in the head is

due to skin, bone, or cerebral white matter. [67].

Both absorption and scattering should be considered when using NIRS. The Beer-

Lambert law relates the attenuation of the light to the chromophores concentration:
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A = log(
I
Io
) = ε.C.d (1)

A is the attenuation of the light which is the logarithmic ratio of the intensity of the

received light (I) to the intensity of the source light (Io). ε is the molar extinction coef-

ficient, C is the chromophore concentration and d is the distance between optodes. The

Beer-Lambert law can be expanded to include multiple particles, such as chromophores

in NIRS, as follows:

A = (ε1.C1 + ε2.C2 + ...+ εn.Cn).d (2)

In NIRS studies, it is assumed that d and ε1,ε2, ...,εn are known. The Beer-Lambert

law is then used to find C1,C2, ...,Cn by measuring A. At least as many wavelengths are

required as chromophores in order to accurately calculate the concentration of the chro-

mophores. These wavelengths should be chosen in order to improve the sensitivity of

the estimate, such as by choosing one wavelength to maximize the molar extinction co-

efficient of each chromophore, Hb and HbO2. Therefore, the wavelengths can be found

on either side of 800nm, where Hb and HbO2 have equal molar extinction coefficients

(see Figure 6). This is called the isosbestic point. It is also possible to increase the

number of wavelengths to measure the concentration of other chromophores such as

cytochrome c oxidase and water, or to improve the accuracy of Hb and HbO2 concen-

tration measurements [71, 73].

It is important to notice that if d is not equal to the distance between the source

and detector, it is not possible to quantify the changes in the hemoglobin, and scattering

will change it with no pattern. Assuming this fact, the light travels a greater distance

than d which is called differential path length (DP). DP is the actual distance that light

travels from the source, passing through the tissue and reach the detector. To modify

the Beer-Lambert law, the differential path-length factor (DPF) is introduced [74] as
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follow:

DP = d×DPF (3)

Therefore, the modified Beer Lambert law, using DPF is as follow:

A = log(
I
Io
) = ε.C.d.DPF +G (4)

In the modified Beer-Lambert law, the attenuation is not linearly related to the

extinction coefficient because of the unknown term G which includes the effects of the

shape of the optodes and the scattering factor. Therefore, it is not possible to calculate

the exact concentration of the chromophores using the modified Beer-Lambert law. By

using mathematics including differential equations and the assumption that G is constant

across all chromophores, it is possible to eliminate G from the equation and calculate

changes in the chromophores concentration [73]. The changes in the concentration of

the chromophores can then be found with the assumption that d and DPF are constant

over the experiment.

∆(A) = ε.∆(C).d.DPF (5)

It is feasible to determine NIR wavelengths that can minimize the error in calcula-

tions carried out by this equation, introduced by the assumptions above [75]. The NIR

photons propagation through tissues and therefore optical path length is essential infor-

mation to accurately calculate the HbO2 and Hb concentrations. It is usually estimated

with experimental techniques such as time domain (TD), frequency domain (FD) [76]

methods or mathematical modeling such as Monte Carlo (MC) simulations [77] and fi-

nite element analysis [78]. As fNIRS studies are mostly interested in two chromophores,

Hb and HbO2, by using two different wavelengths and measuring the changes in the at-

tenuation of the light, it is possible to measure the changes in the concentration of the
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chromophores.

2.3.2 Electroencephalography (EEG)

EEG is a non-invasive electrophysiological monitoring method measuring electri-

cal activities from the brain. The electrical activity is the result of the summation of

inhibitory and excitatory postsynaptic potentials at the dendrites of neuron ensembles.

When neurotransmitters activate the ion channels on the cell membrane, ions flow in and

out of the neuron resulting in potential changes, which create electrical fields around the

neuron. Single neuron electrical fields are too weak to be measured by non-invasive

EEG recordings. However, when thousands of neurons have synchronized activities, the

electrical fields will sum and generate strong fields. The electrical conductivity of brain

tissues, skull, and scalp are different, but there is enough conductivity among these tis-

sues to transmit these generated electrical fields to the outer layer of the scalp, where

they can be detected by EEG [79, 80, 81]. However, air has almost no electrical con-

ductivity. Therefore, the EEG electrodes need to be in direct contact with the skin, or

additional conductive material is needed in order to fill the air gap between electrodes

and skin. This material can be electro-conductive gel or paste, which is common in EEG

scalp recordings.

EEG has been used in many different applications such as epilepsy, sleep disorder

diagnosis, brain death, tumors, stroke, and many other disorders [82]. The spatial res-

olution of EEG is lower than that of other neuroimaging techniques, such as CT, PET,

MRI, and fNIRS. However, it’s portability and good temporal resolution are significant

advantages. The high temporal resolution of EEG provides several frequency ranges in

the data. Some common bandwidths in the EEG data are as follows:

• Delta (< 4Hz): Delta waves are low-frequency signals with high amplitude. Delta

waves can be recorded in frontal regions in adults, and posterior regions in chil-

dren. It is related to normal sleeping.
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• Theta (4− 7Hz): Theta waves are slow. It is higher in younger children, and

appears in awake children, but mostly in drowsy adults. It is not common in

awake adults.

• Alpha (8− 15Hz): Alpha waves can be recorded in the posterior regions of the

head, and are related to a relaxed mood, or when the eyes are closed. Alpha waves

can also be detected in people in comas.

• Beta (16− 30Hz): Beta waves are high-frequency signals with low amplitude.

They are usually symmetrically distributed in both hemispheres of the brain, and

are common in active thinking, focusing, and anxiety.

• Gamma (30−100Hz): Gamma waves are high-frequency oscillations in the brain

and can usually be recorded in the somatosensory cortex. They are related to

subjective awareness and short-term memory matching of recognized objects.

Figure 7: EEG headcap from [83] and different frequency bands in EEG [84]

In this dissertation, the systems that have been used are as follow:

• Fine Motor Recording: WearUp glove (smart glove) developed in Wearable

Biosensing Lab. The glove consists of flex sensors on the fingers capable of mea-

suring finger movements.
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• Gross Motor Recording: YEI 3-Space Mocap (YEI Technology, Portsmouth, OH,

USA). The system consists of 17 IMU sensors that collect whole body move-

ments. Each sensor provides information from a triaxial gyroscope, magnetome-

ter, and accelerometer.

• fNIRS System: NIRScout system (NIRx Inc., New York, NY, USA). This system

utilizes 8 light sources and 8 light detectors and provides the ability to change the

optode montage setup. The 8 ∗ 8 optode montage can provide up to 20 channels

with the sampling rate of 7.81Hz.

• EEG System: g.USBamp biosignal amplifier from g.tec medical engineering. The

G.USBamp is USB enabled and comes with 16 channels with 24 bits resolution

and capability of recording with the sampling rate of up to 38.4kHz.

The next chapter provides more information about these systems along with the

system level tests and evaluations on the developed devices and interfaces. The human

study experimental design and data analysis approach are also presented.
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CHAPTER 3

Methods & Development

This chapter explains the development of devices and interfaces along with the sys-

tem level tests. This is followed by the human study experimental design, data analysis

approach and classification methods. Figure 8 shows a more detailed schematic of this

research.

Figure 8: Detailed schematic of this research divided in three layers of Body/Brain, Sensing, and Data
Analysis.

The first section explains the development of WearUp glove and the sensors and

microprocessor used in the system. The system level tests used to validate the perfor-

mance of the glove for measuring fine motor movements are laid out in detail. This

section lies in the sensing layer depicted in Figure 8.

The second section describes the systems used for the brain-body fusion interface.

This section concludes with the developed algorithms to synchronize the brain and body

data and the system level tests that were performed to validate interface performance.

This section lies in the Fusion Algorithm block of the data analysis layer illustrated in

Figure 8.

33



The third section provides information about the human study experiment with the

aim to distinguish PD group from the healthy neurotypical (NT) group.

The last section explains the data analysis from each individual system and intro-

duces the techniques that have been used to classify the PD and NT groups. As this

is a multi-modal recording system, some specific features must be extracted from the

data, including brain activity power in certain frequency bands, windowed averages of

the oxygenated hemoglobin, frequency of finger tapping, and movement acceleration.

These features can be used to measure correlations between brain activation and body

movements and in machine learning algorithms to classify subjects into groups. This

section lies in the data analysis layer shown in Figure 8.

3.1 WearUp Glove Development

WearUp is an active smart glove developed to record and detect patient’s hand

movements such as finger tapping. WearUP consists of two flexible sensors woven into

a base fabric, an embedded processor with Bluetooth low energy for wireless communi-

cation of sensor data, and a power management module. The two flex sensors are woven

onto the index finger and thumb. They measure the angular deformation when patients

perform the finger tapping task commonly used in the clinic to screen PD patients. The

sensors used in the WearUp glove are flexible resistive sensors which change their resis-

tance under bending or angular deformation. In other words, by placing the sensors on

the fingers, and bending the fingers, an increase in sensor resistance can be detected.

3.1.1 Flex Sensors

The assessment of hand movements requires the device to sense and compute the

data reliably and accurately. Assessing the hand’s position and movement requires rel-

ative spatial orientation of the fingers and palm. WearUP focuses on the use of single

angle flex sensors. The flex sensors are variable resistors which use conductive ink. The
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resistance of this ink increases with its surface area. The sensors are placed between two

flexible, but conductive traces housed in a clear insulative material. The resistance when

flat is roughly 20kΩ and when bent to a 90° angle increases to roughly 70kΩ. Figure 9

shows the WearUp glove and flex sensor used in development.

Figure 9: WearUp glove and the flex sensor used for development.

Measuring this physical state requires a static state for comparison. This static state

is accomplished with a standard resistor. To measure the relative change in state between

the standard resistor and flex sensor, a simple voltage divider is used to measure changes

in flex sensor voltage. This allows extrapolation of the desired information using Ohm’s

Law. One last challenge on this setup was maximizing the voltage range to increase the

signal to noise ratio. A standard 10kΩ resistor is used, providing a potential voltage

swing of approximately 1v. This range was mapped from 0 to 90 as the flex sensors

resistance reaches its maximum at a 90° angle.

3.1.2 Intel Curie-Based, Low-Power Embedded System

The microcontroller unit (MCU) must be small enough to fit on the back of the

hand, consume minimal power such that the battery life of the glove extends at least

beyond one practice session, and have the processing power to compute the simple

mapping of the analog to angular values near real-time speeds. Currently, the MCU
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being used, Arduino101, meets these requirements. The Arduino101 is a learning and

development board which contains an Intel Curie Module. This board is designed to

integrate the core’s low power consumption and high performance with the Arduino’s

ease-of-use. The Arduino101 also provides 19 channel 12−bit ADCs, Bluetooth Low

Energy capabilities, and power management circuitry to ensure stability in reference to

analog readings.

Figure 10: The glove [1] and the voltage divider circuit schematic along with the MCU used in WearUp.

The setup is built for Bluetooth communication with the computer, but for testing

purposes, a simplified wired setup was also built. Serial output over a USB connection

was streamed at 9600 baud rate with 8− bits and no parity. This provided raw sensor

values (voltage across the flex sensor) at incremental steps sampled based on the CLK,

separated by a tab character. Each line ended in a line-feed to ensure proper handling of

the incoming data stream.

3.1.3 WearUp System Level Testing

The experiment protocol that was used to validate the performance of the glove to

detect finger movements is explained in this section.

WearUp: Experiment Protocol

This section presents the procedure of the preliminary experiment to evaluate the

performance of the WearUp glove regarding the detection of fine movements of fingers

such as finger tapping.
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Robotic Hand Platform for Testing the WearUP Glove

In the first set of the experiments, the performance of the glove with a standard,

specific measurement with no user variability was tested. To achieve this goal, an equiv-

alent right-handed WearUP glove was created and was placed on a 3D printed robotized

robotic right-hand based on the InMoov design as shown in Figure 11. The robotic hand

was set to perform finger tapping tasks at two different speeds. For fast finger tapping,

the goal was to finish a cycle of finger tapping in 1.5seconds. For slow finger tapping,

the goal was to finish a cycle of finger tapping in 3seconds. Since the robotic hand was

set for a specific task with a fixed angle of bending the fingers, it was anticipated that

the results of the robotic finger tapping experiment should have little variation in sen-

sor’s reading from the glove. Therefore, the goal of this experiment was to validate the

performance of the WearUp glove.

Figure 11: Experimental WearUp glove setup; WearUp glove worn by robotic hand (right) and person
(left). The above demonstrates the range of motion available to the test robot versus human participants.

A Pilot Study on Human Participants

In the second set of experiments, nine healthy human participants were recruited

after receiving IRB approval (#1020863-1). As shown in Figure 12, the participants
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were asked to perform the finger tapping task that involves tapping the pointer finger to

the thumb for 15 times at a relatively fast speed. The finger tapping was followed by

resting their hands in the fully-opened position for five seconds. The participants were

then asked to perform the finger tapping for 15 times at a slower speed. This experi-

mental protocol is shown in Figure 12. The data was collected from each participant

for 3 rounds of the experiment. The participants were instructed to perform the task at

their own pace to evaluate the performance of the WearUp glove in detecting variations

in finger tapping velocity.

Figure 12: Preliminary experiment protocol shown in a block diagram.

3.1.4 WearUP: Algorithms & Methods

This section explains the algorithms that have been used to validate the perfor-

mance of WearUp.

Algorithm

This section presents the analysis of algorithms that have been developed to evalu-

ate the performance of the WearUP glove in the preliminary experiment. WearUp Glove

was used on both robotic hand and healthy human participants.

The protocol of the experiment included the finger tapping task, which required the

participants to bend their index finger to complete the task. Therefore, the goal was to

detect peaks in the collected data during finger tapping.

The raw data collected by the sensors contain noise from the environment and

micro-movements of the hand which are not desired for further processing. To reduce

38



the noise from the data, a 4th order lowpass Butterworth filter was applied. The But-

terworth filter, also called maximally flat magnitude filter, is designed to have a flat

frequency response in the passband range. The 4th order Butterworth filter has the roll

off of −24dB per octave in the stopband frequencies. Figure 13 shows a sample of the

raw data, filtered data and depicts the differences regarding the smoothness of data.

Finger Tapping Detection

Since the resistance of the flex sensors increases due to finger tapping movements,

periodic peaks have been observed in the data. A peak detection algorithm that is capa-

ble of detecting the peak angles in finger tapping was developed. A threshold was set

such that if the resistance of the sensor exceeds this value, a potential peak related to the

finger tapping is noted. The resistance of the flex sensor is equal to 20kΩ in the straight

(non-bending) position and above 70kΩ at the bending of 90°. Therefore, the threshold

has been chosen to be 20% bigger than the straight value (1.2∗20k) to enhance the sen-

sitivity of peak detection. Due to the small changes in the sensor value which are not

related to the finger tapping, a temporal threshold has also been set.

This means that if the detected peaks are very close to each other temporally, they

are most likely not two different peaks of interest, and represent an “interruption” which

is seen and rated on the clinical exam, UPDRS. Therefore, the temporal threshold has

been set to be 0.2 seconds. Setting this threshold is reasonable in the sense that healthy

humans cannot volitionally tap the fingers more than 5 times per second. Thus, the

developed algorithms avoid missing any peaks related to the actual finger tapping.

Tapping Rate/Frequency

The speed and amplitude of the finger tapping task are important in the assessment

of PD patients. This information indicates symptom severity and treatment efficacy. In

order to provide this information from the WearUP glove, it is important to find the
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Figure 13: Illustrations of the raw data from the glove (top panel), Lowpass filter characteristics (middle
panel), and the filtered data (bottom panel).

frequency of finger tapping (time interval between each finger tap). To achieve this, the

algorithm was tested for detecting the peaks. By detecting the peaks, and finding the

number of time stamps in between two consecutive peaks, the time in seconds that has

taken for the subject to tap their thumb can be calculated. Knowing the time between
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each finger tap, allow to calculate the instantaneous frequency of finger tapping.

3.2 Application Protocol Interface (API) Development

In this section, the steps and the process for creating the data fusion interface are

explained.

3.2.1 Systems

• Brain Monitoring System: The fNIRS system used in this study is the NIRScout

system (NIRx Inc., New York, NY, USA). This system utilizes 8 light sources

and 8 light detectors and provides the ability to change the optode montage setup.

Therefore, the system can be used in any region of the brain. In this study, the

optodes are set up in the area of the motor cortex. Also, the 8∗8 optode montage

can provide up to 20 channels of the fNIRS data since fNIRS channels are pairs of

nearby sources and detectors. The fNIRS system uses two different wavelengths

in order to measure both HbO2 and Hb. Having 20 channels of fNIRS data with

two wavelengths for each channel results in a total of up to 40 data attributes.
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Figure 14: NIRScout system used in this research from [2].

• Body Motion Capture System: In this study, a non-optical motion capture system

called YEI 3-Space Mocap (YEI Technology, Portsmouth, OH, USA) is used.

The system consists of 17 IMU sensors that are able to record the movements of

different joints of the body. Each YEI 3-Space sensor uses a triaxial gyroscope, an

accelerometer, and compass sensors in conjunction with advanced processing and

on-board quaternion-based Kalman filtering algorithms to determine orientation

relative to an absolute reference in real-time, resulting in 9 data attributes for each

IMU sensor. Therefore, the Mocap system provides a total of 153 data attributes

while recording whole body movement.

Figure 16 shows a participant wearing all the Mocap sensors and the fNIRS cap

loaded with the optodes.
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Figure 15: YEI 3-Space Mocap sensors with straps and holders of the sensors from [3].

Figure 16: Participant wearing the Mocap sensors and the fNIRS cap loaded with the optodes.

43



3.2.2 Implemented API

Although both the Mocap and fNIRS systems already have their own native soft-

ware, Mocap Studio and NIRStar, respectively, building a custom graphical user in-

terface (GUI) was necessary to provide more control over the synchronization of data

collection from both systems. To make this GUI, mainly two Python wrappers have

been used. The Mocap sensors’ wrapper, named threespace, can be found on GitHub

[4]. This Python wrapper is compatible with YEI 3-space motion-capture devices and

is open-source. The fNIRS wrapper comes as a software add-on to the NIRStar15 that

allows data to be streamed through an API called the Lab Streaming Layer (LSL). The

API is available in several different languages including Python. This module is also

available on Github [5].

Threespace allows the Bluetooth dongles to connect to the wireless motion cap-

ture sensors through USB. This allows for data streaming from the sensors through this

API. The main interest is with streaming the raw accelerometer, gyroscope, and mag-

netometer data, each with 3 degrees of freedom (X ,Y , and Z). Given the significant

number of sensors (up to 17), collecting the data sequentially would not be optimal;

for the following sample of every sensor would only be collected after all other sensors

have been collected from first. This is overcome by the API through the option of batch

data collection. This batch data collection records data simultaneously from all sensors

involved. The data collected is written to a comma-separated value (CSV ) file.

Due to the fact that it might not always be desirable to collect data from all the

sensors, each sensor has been linked to a Boolean value that is stored in a Python dic-

tionary. Using this method, data is collected from the sensor only when this value is set

to True. This feature will come in handy in the construction of the GUI.

The LSL API for fNIRS enables the corresponding module connects to the

NIRStar15 software and detects the available fNIRS channels before finally collect-
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ing the readings from all those channels. Most of the setup is thus done on the native

software and the API simply collects the data and writes to a text file. Figure 17 shows

an overview of the APIs in this study.

Figure 17: Overview of the Brain-Body Fusion software (BBM API) developed.

3.2.3 Data Synchronization

After motion capture and fNIRS data are collected and exported, the data is im-

ported into MATLAB for analysis. The sampling rates for the motion sensors and fNIRS

system vary depending on the number of sensors or channels. With the experimental

set-up, the approximate sampling rates for the motion sensors and fNIRS system are

20−30Hz and 7.81Hz, respectively. However, the Mocap sends data wirelessly, and so

both the increments between samples and the number of samples per second vary over

time. To correct the uneven sampling rate, each data set is interpolated in MATLAB

using a one-dimensional interpolation function to up-sample to an even sampling rate

of 50Hz. It is noteworthy that because of the variable sampling rate of the Mocap, the

interpolation is performed based on 1second windows. Therefore, starting from the be-
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ginning of the data, based on the timestamps that the API provides, which is reading

the clock of the recording computer in milliseconds, the first 1second of both Mocap

and fNIRS data are taken, interpolated to 50 samples per second, and move to the next

1second of the data to be interpolated. This is repeated for the whole duration of the

data recording. Figure 18 shows an example of 2seconds data, divided into two 1second

windows with different samples per second and interpolated to an even 50 samples per

second.

Figure 18: An example of the synchronization method. 2 seconds of the MOCAP and fNIRS are shown.
Each 1 second window of the data is interpolated to 50 samples separately.

3.2.4 BBM API System Level Testing

This section explains the experiments that have been done at the system level in

order to test the performance of the BBM API and the accuracy of the fusion procedure.

There have been two different tests:

Mocap-fNIRS Synchrony Test

The first objective is to observe the synchrony between the Mocap and fNIRS data

while the data is recorded through the developed interface. The first part of the exper-

iment is to use a single Mocap sensor and only one pair of the fNIRS optodes, for a

single channel of data. In this experiment, both the Mocap sensor and the pair of fNIRS
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optodes are placed on the arm of the subject and the subject is asked to tap on the desk

every 25 seconds. The goal of this experiment is to observe the synchronization between

the Mocap and fNIRS data, as tapping on the desk would make a remarkable noise on

the data which would be easy to detect.

Brain-Body Sensor Fusion Test

The second objective of this part is to test the developed interface using all of the

sensors for both fNIRS and Mocap, collecting the motion and brain responses while

the subject is wearing all of the Mocap sensors and the fNIRS cap. At this time, the

goal is to determine if it is possible to detect the movement on the Mocap device and

the corresponding brain activity through the fNIRS data at the same time. In order to

achieve this goal, healthy participants were asked to wear all the Mocap sensors and

the fNIRS cap, performing some movement exercises while BBM API is collecting the

data. The exercises included in this study are

1. Pronation and supination (Hand Flipping) of both the right and left hand,

2. Moving arms up and down for both the right and left arms,

3. Foot stomping for both the right and left legs

The order of the tasks is the same as the order mentioned above starting with hand

flipping and finishing with foot stomping. The process of performing the task was ex-

plained for the participants, but there was no practice recording before the experiment.

The protocol of the experiment starts with 20seconds of rest (no movement) followed by

10seconds of activity, repeated for 5 times. Therefore, for each activity, the experiment

lasts for 2:30 minutes, and for all the six different activities, the experiment takes a total

of 15 minutes. Figure 19 shows the experimental protocol. The participants were asked

to follow the provided visual cues and perform the activity at their own pace. After data
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collection, the same method as explained earlier is used to upsample the fNIRS and Mo-

cap data to correct for uneven time increments in each data set. The Mocap data will be

checked to detect the timings of the movement and compare it with the timing of brain

activation.

Figure 19: The protocol of the Brain-Body Sensor Fusion experiment: 20 seconds of rest followed by 10
seconds of activity (Hand Flips, Arm movements, and Leg movements for the left and right side).

3.3 PD vs. NT Experimental Design

This section describes the experiments on PD patients and healthy neurotypical

(NT) participants in order to measure the synchrony and correlation between brain ac-

tivity and body movement. fNIRS neuroimaging and body motion capture have been

recorded through the BBM API developed in Aim 1 of this study. This allows access to

fully synced data from these systems. EEG data has simultaneously been recorded as

well. The EEG system is from g.tec Inc. and the synchrony of the EEG and the API is

provided through a trigger output from the amplifier of the EEG system.

Sample size calculation has not been performed as this experiment was an initial

study for testing the feasibility of using brain-body fusion system to distinguish PD

group from NT group. Instead, the target was to recruit 10 participants from each group.

Advertisements about the experiment was sent out to the community and the YMCA
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groups.

11 PD patients without deep brain stimulation (DBS) and 10 healthy NT partici-

pants were recruited. The criteria for recruiting PD participants were to be diagnosed

with PD and not have DBS implants. The criteria for NT group recruitment was having

no known neurological disorders. All the participants were consented prior to the exper-

iment according to the IRB requirements and approval (#HU1718-185). The Montreal

Cognitive Assessment (MOCA) was performed for PD patients prior to the experiment.

Further information about the time of diagnosis, initial symptoms, current symptoms,

and medications have been collected from the PD group as well in order to be provided

to neurologists along with the recorded data.

Due to technical problems and some data loss, the data from subjects NT10, PD10,

and PD11 have been excluded. Therefore, the remaining of this dissertation is based

on the data from 9 PD and 9 NT participants. Table 2 shows the information about the

participants.

Table 2: Information about participants of the experiment.

Group PD Gender Age Right Handed Year of Diagnosis Group NT Gender Age Right Handed
PD1 F 72 Y 2002 NT1 M 71 Y
PD2 F 78 Y 2017 NT2 M 70 Y
PD3 F 73 Y 2017 NT3 F 62 Y
PD4 M 67 Y 2013 NT4 F 81 Y
PD5 F 76 Y 2015 NT5 M 65 Y
PD6 M 56 Y 2015 NT6 F 62 Y
PD7 M 80 Y 2008 NT7 F 66 Y
PD8 F 76 Y 2005 NT8 F 56 Y
PD9 F 79 Y 2008 NT9 F 56 Y

PD10 M 87 Y 2017 NT10 F 72 Y
PD11 M 76 Y 2018

The protocol of the experiment consists of 8 different motor tasks related to the UP-

DRS motor examination as shown in Table 3. The tasks are as follow and the experiment

is conducted by performing the tasks in the order mentioned here:

1. Right Hand Finger Tapping
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2. Left Hand Finger Tapping

3. Right Hand Flipping

4. Right Arm Movement

5. Left Hand Flipping

6. Left Arm Movement

7. Right Foot Stomping

8. Left Foot Stomping

Table 3: UPDRS screening protocol and motor exams conducted by neurologists.

UPDRS Assessment Protocol Motor Exams

Observer Part Domain Tasks
18. Speech 25. Rapid altering hand movement

1 Behaviors 1-4
19. Facial expression 26. Leg agility

Patients & 20.Tremor at rest 27. Arising from chair
Caregivers

2 Activity of daily life 5-17
21. Postural tremor hands 28. Posture
22. Rigidity 29. Gait

3 Motor exams 18-31
23. Finger Taps 30. Postural stability

Physicians 24.Hand Movements 31. Body brady-/hypo-kinesia

4 Complications 32-42

Finger tapping kinematics were recorded by the smart glove developed through this

research and the other movements were recorded by the Mocap system. fNIRS and EEG

neuroimaging optodes have been set on motor cortex area to capture the brain activity re-

lated to the movements. The placement of fNIRS optodes produces 18 channels of data.

Unfortunately, one of the light sources malfunctioned in the middle of the study, and two

channels of fNIRS data were excluded from processing. 13 EEG electrodes have been

used in the locations of FC3,FC4,C1,Cz,C2,C3,C4,CP1,CP2,CP3,CP4,P3, and P4

on the 10− 20 map. The montage of fNIRS optodes and EEG electrodes is shown in

Figure 20
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Figure 20: Montage of the fNIRS optodes and the channels created along with 13 EEG electrode locations.

Each activity and how to perform them was explained to the participants in details

prior to the experiment. The participants could practice before starting, but no data was

collected during the practice time. The participants were asked to follow the visual cues

on the screen in order to perform each task for 5 trials. Each trial consists of 10seconds

activity followed by 10seconds rest. The participants were instructed to perform each

task at their own pace. A green circle on the screen indicates participants should perform

the task, and a blank white screen commands to stop and rest. Figure 21 shows the

protocol of the experiment.

3.4 Data Analysis and Classification

This section explains the steps that have been taken in order to analyze the data

recorded from PD patients and healthy NT group.
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Figure 21: The protocol of the PD vs. NT experiment. 10 seconds of activity followed by 10 seconds of
rest makes one trial. Each activity consists of 5 trials.

3.4.1 fNIRS Analysis

As mentioned in the previous chapter, the fNIRS system utilizes two different NIR

wavelength light in order to measure the HbO2 and Hb based on the Beer-Lambert

Law. The raw fNIRS data contains some environment noise and physiological noises

such as heart rate and respiration rate which need to be removed from the data before

calculating the HbO2 and Hb. This can be done by applying a band-pass filter with

cutoff frequencies of 0.1− 0.4Hz [6, 7]. Therefore, a 4th order band-pass Butterworth

filter has been applied to the raw data of fNIRS first. For calculating the HbO2 and

Hb based on Beer-Lambert Law, it is important to define the extinction coefficient of

hemoglobin. There are some small differences in the reported extinction coefficients

of hemoglobin in the literature [8, 9, 10, 11, 12, 13, 14]. The reported values in [10]

have been used in order to calculate the HbO2 and Hb as suggested by NIRx. Yet

another parameter setting is DPF that takes into account the additional average distance

light travels due to scattering beyond the linear distance between a source and receiver.

Values representative of reports described in the literature [15, 16, 17] have been chosen

as follow:
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• DPF for WL1: 7.25

• DPF for WL2: 6.37

It deserves noting that the true value will depend on head shape, skull thickness,

and properties of underlying tissues which is out of the scope of this study. After setting

all the parameters and calculating the HbO2 and Hb concentrations, the upsampling and

synching methods described earlier are applied to the fNIRS data.

3.4.2 EEG Analysis

The EEG signals were collected using the software BCI2000 [18] at the sampling

rate of f s = 256Hz. The data analysis starts with detrending the data, or removal of

the mean value or a linear trend from the signal. Detrending is done on the normalized

signal using the z-score. The z-score is calculated by z = (X − µ)/σ , where z is the

z-score, X is the value of the element, µ is the population mean, and σ is the standard

deviation Epochs of the desired length are taken.

After detrending the signal, a Finite Impulse Response (FIR) band-pass filter with

the order of 3 ∗ f s and the cutoff frequencies of 1 and 99Hz have been applied on the

data. In the next step, the power spectral density (PSD) of the signal has been calculated.

PSD provides information regarding when the average power is distributed as a func-

tion of frequency. It can be calculated as the Fourier transform of the autocorrelation

function:

Sx( f ) =
∫ T

−T
Rx(τ).e(− j.2.π. f .t).dt (6)

Rx(τ) = E{x(t).x∗(t + τ)} (7)

After calculating the PSD for the EEG signal, the power in the frequency bands of

Theta, Alpha, and Beta are calculated as follow:
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PT heta =
∫ 7

4
Sx( f ).d f (8)

PAl pha =
∫ 15

8
Sx( f ).d f (9)

PBeta =
∫ 30

16
Sx( f ).d f (10)

The power in these bands has been used to observe the brain activity in two groups

of participants.

The spectrogram of the EEG data with a moving Gaussian window of length

1second with no overlap has been calculated as well. The time course of power modu-

lation (TCPM) [19] has been calculated for each frequency band of Theta, Alpha, and

Beta for the whole duration of the data.

3.4.3 Mocap Analysis

Mocap data has been recorded from 3 sensors. The locations of the sensors are as

follow based on the activity.

• Sensor 1: Around Hand, or around foot

• Sensor 2: Lower arm (below elbow), or lower leg (below the knee)

• Sensor 3: Upper arm, or upper leg

Each sensor provides three degrees of freedom of acceleration, gyroscope, and

magnetometer. The data has been normalized and detrended as previously mentioned,

and the normalized mocap data will be synched and upsampled based on the methods

mentioned earlier, and the acceleration vector has been calculated from the three axes of

it as follows:
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~Acc =
√

acc2
x +acc2

y +acc2
z (11)

3.4.4 Glove Analysis

Flex data was collected from the glove at a variable sampling rate of approximately

50Hz. A resampling method has been used to match the sampling frequency of the glove

to the EEG, which is 256Hz. Standard preprocessing steps such as z-score normalization

and detrending the data have been performed as well.

3.4.5 Classification

Support Vector Machine (SVM) is a supervised learning model which uses a non-

linear mapping to transform the original training data into a higher dimension. It

searches for the linear optimal separating hyperplane in this new dimension (that is,

a "decision boundary" separating the tuples of one class from another). With an appro-

priate nonlinear mapping to a sufficiently high dimension, data from two classes can

always be separated by a hyperplane [20].

The general concept of the SVM is that the system uses a training dataset which

can be a part of the original dataset that is labeled into different categories. Then, after

the system is trained, it will be tested on the other part of the original dataset to predict

the labels of the data, and by comparing the predicted labels and the original labels, the

accuracy of the system can be found.

In this study, several learning algorithms have been implemented in the support

vector machines. By applying the Lagrangian optimization theory to a linear support

vector machine, and using the Kernel functions, one can classify datasets which are

not linearly separable, while the nonlinear support vector machines retain the efficiency

of finding linear decision surfaces while allowing them to be applied to non-linearly

separable datasets. It is also possible to change the margins of the classifiers and change
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the complexity and accuracy of the systems. In general, large margins make the system

less complex by letting the system make more errors and resulting in less accuracy. This

can be achieved by changing a variable called Cost constant in the classifier models.

Figure 22 shows a concept of the SVM and its supporting hyperplanes that divide two

different classes and introduces the margin. Larger margin (lower Cost constants) would

allow some data points between the decision surface and the supporting hyperplanes,

which generally results in false classifications and reduced accuracy.

Figure 22: A concept of SVM and the terms of decision surface, supporting hyperplane and margins
adapted from [21]

Table 4 shows different learning algorithms that have been used in this study with

their complexity index which we will refer to them later in the results section.

The main goal of this study was to distinguish the PD and NT group based on the

brain-body fused data. To achieve this goal, the data from all the devices have been fused

together for classification. Due to the fact that this dataset is big data and performing the

classification on this big data needs exceptional computing, the data size has reduced

by averaging all the data in one-second intervals. Therefore, all the data points in a

one-second window of the data have been averaged and treated as a single data point.

Considering the duration of the experiment for each activity is 100 seconds, the number
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Table 4: Different methods of classification used in this study.

Index Kernel Name Kernel Function Degree Cost Constant

1 Linear Kernel k(~x,~y) =~x ·~y – 1

2 Linear Kernel k(~x,~y) =~x ·~y – 10

3 Linear Kernel k(~x,~y) =~x ·~y – 100

4 Polynomial Kernel k(~x,~y) = (~x ·~y+ c)d 2 1

5 Polynomial Kernel k(~x,~y) = (~x ·~y+ c)d 2 10

6 Polynomial Kernel k(~x,~y) = (~x ·~y+ c)d 2 100

7 Polynomial kernel k(~x,~y) = (~x ·~y+ c)d 3 1

8 Polynomial Kernel k(~x,~y) = (~x ·~y+ c)d 3 10

9 Polynomial kernel k(~x,~y) = (~x ·~y+ c)d 3 100

10 Radial kernel k(~x,~y) = e−(|~x−~y|
2/2σ2) – 1

11 Radial kernel k(~x,~y) = e−(|~xx−~y|2/2σ2) – 10

12 Radial Kernel k(~x,~y) = e−(|~x−~y|
2/2σ2) – 100

of data points for each activity performance per subject was originally 100∗256= 25600

for a single channel of data. Therefore, for each individual subject and all the 8 activities,

there are 8∗25600 = 204800 data points. For all of the subjects together (18 subjects),

there are 18 ∗ 204800 = 3686400 data points for each channel of data. The averaging

method reduces this size to 100∗8∗18 = 14400 for each channel of data.

The averaging method is applied on the HbO2 data of all the 16 channels from

fNIRS (total of 16 attributes), power spectrum of all the 13 channels of EEG for each

Theta, Alpha, and Beta frequency band (total of 13 ∗ 3 = 39 attributes), and the accel-
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eration data from Mocap or the flex data from the glove based on the activity (total

of 1 attribute). Fusing all the data together provides a dataset with 16+ 39+ 1 = 56

attributes.

Participants were asked to perform each of the 8 activities for 5 trials. The first 3

trials of each activity have been selected in order to create the training dataset for the

classifier, and the last 2 trials are left for testing the performance of the classifier. The

classification between PD and NT group has been performed in two different scenarios:

1. Classifying the two groups for each individual activity. This means that all the data

from all of the participants related to a specific task has been merged together in

order to create the training and testing datasets, and all of the classifiers mentioned

in Table 4 have been applied on them.

2. Classifying the two groups for all the activities together. This means that all the

data from all the participants for all the activities have been merged together in or-

der to create the training and testing datasets and the classifiers have been applied

to the data.

The classifier performance results are usually shown in confusion matrices. Con-

fusion matrices show how many of the samples in each class are predicted correctly,

and how many of the samples in each class are misclassified. Table 5 shows a sample

confusion matrix.

Table 5: A sample confusion matrix.

hhhhhhhhhhhhhhhhhhClassifier Predicted
Actual Label

Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)
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In this study, the PD and NT groups have been assigned with the Positive label and

Negative label, respectively. Three metrics based on the confusion matrix are reported

in the results as follow:

• Accuracy: The proportion of correct predictions to the total number of samples.

Accuracy =
T P+T N

T P+FP+FN +T N
(12)

• Sensitivity: The proportion of actual positives that are correctly predicted (the

percentage of PD samples that are correctly predicted)

Sensitivity =
T P

T P+FN
(13)

• Specificity: The proportion of actual negatives that are correctly predicted (the

percentage of NT samples that are correctly predicted)

Speci f icity =
T N

T N +FP
(14)
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CHAPTER 4

Results

This chapter presents the results of this study. Each section of the previous chapter

introduced a part of this study and some experiments in order to validate that part. This

chapter is organized as follow:

• Section 4.1 represents the results of the finger tapping test on WearUp glove. The

developed algorithms which were explained in the previous chapter have been

applied to the recorded data and the results are illustrated.

• Section 4.2 provides the results regarding the system level test of the developed

BBM API. The tests were divided into two sets of Mocap-fNIRS Synchrony test,

and Brain-Body Sensor Fusion test. The results of each test are presented.

• Section 4.3 illustrates the results of the data analysis and classification methods

on the human study experiment data. This section provides the results of each

individual system of the experiment which are fNIRS, EEG, Mocap, and Glove.

This section concludes with the results of the classification to distinguish between

PD and NT groups.

4.1 WearUp: Finger Tapping Test Results

This section presents the results of the preliminary analysis of the data collected

when using the robotic hand and from healthy participants. Figure 23 shows the results

of the peak detection algorithm on the data from the robotic hand. The red markers

are the peaks detected by the algorithm. Since we are operating a robotic machine

with defined angles and flexions, we observed that the amplitude [see Figure 23] and

frequency [see Figure 25] of the finger tapping activity were almost identical at each

consecutive tap.
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Figure 24 shows the results of the algorithm applied to the data recorded from a

healthy participant, with the detected peaks marked in red. It is apparent that each finger

tap is represented with one peak, and the variation of human movements can be seen by

the magnitude of the peaks and the width (duration) of each finger tap.

Figure 23: Results of the peak detection algorithm on the data from the robotic hand. Detected peaks are
shown with red markers.

Figure 24: Results of the peak detection algorithm on the data from a healthy participant. Detected peaks
are shown with red markers.

After applying the peak detection algorithm, and finding the location of the peaks,

we calculated the frequency of finger tapping by finding the number of samples between

each two adjacent peaks and dividing the sampling rate with that difference as follow:
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f =
fs

N
(15)

Where f is the frequency in Hz, fs is the sampling rate, and N is the number of samples

between two adjacent peaks:

N = peak(i)− peak(i−1) (16)

The consistency of the performance can be revealed by the results of peak detection

and frequency calculation. Looking at the resistance value of the sensor at the peaks (the

magnitude) reveals whether or not the subject has performed the finger tapping task in a

similar way each time or if the position and the angle of the finger was different at each

single finger tap. As an example, we can see that the first finger tap of the slow speed

has a significantly lower peak compared to the other finger taps (see Figure 24). On the

other hand, by looking at the frequency of finger tapping for fast or slow speed task, we

can understand how consistently the subject pursued the task. A good measure of this

consistency is the mean and variance of the finger tapping frequency. The mean of the

frequencies reveals how fast or slow the subject has been performing the finger tapping

task, and the variance reveals the magnitude of fluctuation in frequencies. The smaller

variance means more similarities of the frequencies or more consistency in the speed of

finger tapping.

Table 6 shows the mean and variance (σ2) of the finger tapping for the three rounds.

Due to the fact that the robotized hand is operated by a computer with specific param-

eters, a very small variation should be observed in the frequencies compared to the

healthy subjects that show higher error because of hand micro-movements or human

error.

As an example, Subject 1 has performed the fast finger tapping task at a higher

speed in the first round (average frequency of 3.76 Hz) compared to the second and
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Table 6: Mean and variance of finger tapping frequency. Data collected in 3 rounds from 5 healthy
participants.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Robot

Mean σ2 Mean σ2 Mean σ2 Mean σ2 Mean σ2 Mean σ2

Round 1
Fast 3.76 0.052 2.78 0.149 2.90 0.029 2.81 0.049 3.01 0.022 0.654 6.00.e−5

Slow 1.54 0.022 1.59 0.027 0.94 0.013 1.31 0.008 1.39 0.001 0.327 1.95.e−6

Round 2
Fast 3.05 0.018 2.49 0.034 2.58 0.010 3.12 0.042 2.62 0.009 0.653 1.79.e−5

Slow 1.49 0.025 1.39 0.012 1.00 0.003 1.36 0.008 1.10 0.002 0.327 1.20.e−6

Round 3
Fast 3.04 0.054 2.42 0.087 2.20 0.007 2.74 0.017 3.20 0.028 0.654 2.91.e−5

Slow 1.58 0.014 1.51 0.010 1.01 0.004 1.34 0.009 1.29 0.009 0.327 1.20.e−6

third round which the average frequency is 3.05 and 3.04Hz respectively. Regarding

the variability of the participants, the variance (σ2) provides the information. As an

example, Subject 2 in the fast finger tapping of round 1 was not very consistent and

had variability in performing the task (σ2 is 0.149 which is slightly high). On the other

hand, a good example of consistency with small variability is Subject 5 in the slow finger

tapping of round 1, which the variance is 0.001. The robotized hand, as discussed,

should have a steady speed in performing the task. Table 6 shows that the average

frequency of finger tapping is consistent for different rounds as 0.654 and 0.327 for fast

and slow finger tapping respectively. Also, the variation of the task is negligible in the

range of 10−5 for the robotized hand.

Figure 25 shows the boxplot of the frequencies of the fast finger tapping from five

participants and the robotic hand. All of the participants have been very consistent in

performing the task but there is variability between subjects. On the other hand, the

frequency of finger tapping by the robotic hand is consistent and there is no variation

in performing the task, thus these results provide the validation of the WearUp glove’s

hardware design , textile design, and algorithmic model.
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Figure 25: Fast finger tapping frequencies of five subjects and the robotic hand for three different rounds.
It is clear that the finger tapping with Robotic hand is very precise without any variations.

4.2 BBM API System Level Testing Results

In this section, the results of the experiments explained in the previous section are

provided.

4.2.1 Mocap-fNIRS Synchrony Results

In this test, one pair of the fNIRS optodes and a single Mocap sensor were placed

on the arm of the participant while the participant was asked to tap on the desk every

25seconds. After upsampling and synchronizing the data, a peak detection algorithm

was applied in order to find the location of the peaks which represent the hand tappings.

Figures 26, 27 show the accelerometer data, the fNIRS data, and the time difference

between the peaks in the accelerometer and fNIRS data for all the 10 repetitions of

tappings.
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Figure 26: Accelerometer (top panel) and fNIRS (bottom panel) data with the peaks showing the hand
tappings.

Figure 27: Time difference between the peaks of the accelerometer and fNIRS data for all the hand
tappings.

It can be seen that the average time difference between Mocap and fNIRS data

is in the range of milliseconds. Although the results show that these systems are not

completely synchronized, considering the slow response of fNIRS which is in the range
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of a few seconds, makes this time difference negligible and acceptable.

4.2.2 Brain-Body Sensor Fusion Results

In this section, we present the results of the second objective of this part. As men-

tioned earlier, the data has been collected from 18 control participants, and the partic-

ipants were asked to follow the visual cues in order to perform different tasks. After

calculation of the HbO2 and Hb from the fNIRS data, and also calculating the acceler-

ation from its three vectors, the goal is to test the performance of the developed system

in recording the data and syncing the data. Figure 28 shows the HbO2 and accelerom-

eter signals for the 20seconds of rest followed by the 10seconds of right leg activity.

The accelerometer signal is coming from the IMU sensor placed on the right foot, and

the HbO2 is from the fNIRS channel set by placing the light source at C1 location on

10−20 map, and the detector on FC1.

Figure 28: Accelerometer (Blue), and OxyHemoglobin (Red) data for 20 seconds rest followed by 10
seconds right leg activity.

It can be seen from figure 28 that by starting the movement which can be observed

by the accelerometer sensor, the level of HbO2 increases as well. Figure 29 shows the

detection of the increase in HbO2 level for different activities of right leg movement,

left-hand flipping, and both arms movements. It is clear from the figure that the level

of the HbO2 increases by performing the movement activities, and it is happening con-

tralateral to the moving side of the body.
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Figure 29: Hemodynamic maps of the brain based on different movement activities. The increase in the
level of OxyHemoglobin is observed on the contralateral side of the brain from the movement on the
motor cortex area.

4.3 PD vs. NT Experiment Results

This section presents the results of the experiment conducted On PD patients and

NT participants. A brief representation of the results of each individual system is shown,

and the section concludes with the results of classification between PD and NT group.

4.3.1 fNIRS Results

The changes of HbO2 levels are shown here. The HbO2 levels have been calculated

and after upsampling and synchronizing the data, the changes of HbO2 level have been

calculated based on the difference between the maximum of HbO2 level during the task

period, and the minimum of HbO2 level during the rest period. The differences were

averaged over all the 5 trials for each subject. Figure 30 shows the changes of HbO2

levels for one of the NT participants for each activity.
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Figure 30: Average changes of HbO2 level for each of the 8 activities from NT participant #6

4.3.2 EEG Results

EEG data require neither upsampling nor synchronization. The PSD of the data for

each activity and participant has been calculated in different frequency bands of Theta,

Alpha, and Beta.

Figures 31, 32, 33 show the PSD of each activity from one participant in the Theta,

Alpha, and Beta band, respectively.

70



Figure 31: EEG PSD of Theta band for each of the 8 activities from PD participant #6
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Figure 32: EEG PSD of Alpha band for each of the 8 activities from PD participant #6
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Figure 33: EEG PSD of Beta band for each of the 8 activities from PD participant #6

4.3.3 Mocap Results

The Mocap system records the triaxial data of accelerometer, gyroscope, and mag-

netometer. After the data is upsampled and synchronized, the acceleration vector is

calculated from the three-axis accelerometer components to be used for the classifica-

tion.

Figure 34 shows the Cartesian x-axis component of the accelerometer (top panel),

and the acceleration vector (bottom panel) for a cycle of rest period followed by the

activity of hand flipping.
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Figure 34: Mocap data. Top panel shows the x-axis of accelerometer, and bottom panel shows the accel-
eration vector for a cycle of rest followed by hand flipping.

4.3.4 Glove Results

The data recorded from the flex sensor is upsampled, synchronized, detrended and

normalized in order to be used for the classification. Figure 35 shows a cycle of rest

period followed by finger tapping for a participant of the NT group (top panel) and PD

group (bottom panel).
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Figure 35: Flex sensor data of the smart glove for a cycle of rest followed by finger tapping. Top panel
shows the data from NT group, bottom panel shows data from PD group.

4.3.5 Classification Results

All the analyzed data described earlier have been fused together for classification

in order to distinguish between the PD and NT group. 12 different SVM classifiers have

been used in this study which are introduced in Table 4. The index of the classifiers will

be used in this section. The classification has been performed in two different scenarios.

One is to distinguish PD and NT group based on each of the 8 activities separately, and

the second is to distinguish PD and NT group based on all the data together.

Activity Based Classification

Table 7 reports the accuracy, sensitivity, and specificity of the 12 classifiers to dis-

tinguish PD and NT group based on each activity separately.

It can be seen that for each activity, the PD and NT group can be distinguished by
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Table 7: The performance of different SVM classifiers on the fused data based on each activity.

SVM Index Report A1 A2 A3 A4 A5 A6 A7 A8
Accuracy 76.80% 80.69% 79.86% 83.33% 82.08% 81.94% 77.36% 78.75%

1 Sensitivity 82.50% 87.5% 80.27% 89.72% 87.50% 84.72% 79.72% 89.44%
Specificity 71.11% 73.88% 79.44% 76.94% 76.66% 79.16% 75% 68.05%
Accuracy 76.80% 81.25% 79.72% 82.91% 82.22% 81.80% 77.50% 79.58%

2 Sensitivity 82.22% 88.05% 79.44% 89.16% 86.66% 84.44% 79.16% 89.44%
Specificity 71.38% 74.44% 80% 76.66% 77.77% 79.16% 75.83% 69.72%
Accuracy 76.66% 81.25% 79.86% 83.05% 81.66% 82.08% 76.94% 79.30%

3 Sensitivity 82.22% 88.05% 79.44% 89.44% 86.38% 84.72% 78.05% 88.88%
Specificity 71.11% 74.44% 80.27% 76.66% 76.94% 79.44% 75.83% 69.72%
Accuracy 83.19% 84.02% 80.27% 83.61% 85.69% 84.58% 81.66% 86.52%

4 Sensitivity 90.27% 81.38% 72.22% 91.66% 95.55% 88.88% 88.88% 86.11%
Specificity 76.11% 86.66% 88.33% 75.55% 75.83% 80.27% 74.44% 86.94%
Accuracy 86.94% 87.77% 87.50% 85.27% 88.61% 88.33% 85.13% 89.72%

5 Sensitivity 90.27% 90.27% 90% 91.11% 96.11% 92.22% 85.55% 88.61%
Specificity 83.61% 85.27% 85% 79.44% 81.11% 84.44% 84.72% 90.83%
Accuracy 85.69% 88.75% 87.77% 85% 88.61% 86.11% 85.27% 90.83%

6 Sensitivity 88.33% 91.38% 88.61% 89.72% 94.72% 88.05% 83.33% 88.61%
Specificity 83.05% 86.11% 86.94% 80.27% 82.50% 84.16% 87.22% 93.05%
Accuracy 79.44% 82.36% 78.61% 78.19% 76.80% 79.02% 79.30% 83.19%

7 Sensitivity 95% 79.44% 71.38% 98.88% 98.33% 96.66% 97.22% 97.77%
Specificity 63.88% 85.27% 85.83% 57.50% 55.27% 61.38% 61.38% 68.61%
Accuracy 74.72% 83.33% 84.58% 82.63% 82.50% 82.08% 80.55% 86.52%

8 Sensitivity 91.11% 94.44% 85% 96.94% 93.33% 91.94% 95.83% 95.83%
Specificity 58.33% 72.22% 84.16% 68.33% 71.66% 72.22% 65.27% 77.22%
Accuracy 73.75% 83.47% 80.97% 80.55% 81.94% 80.83% 77.91% 87.77%

9 Sensitivity 90.27% 94.16% 87.22% 94.16% 91.94% 91.66% 93.33% 96.38%
Specificity 57.22% 72.77% 74.72% 66.94% 71.94% 70% 62.50% 79.16%
Accuracy 85.13% 89.58% 87.22% 90.27% 88.19% 88.75% 88.47% 90.27%

10 Sensitivity 86.38% 88.05% 86.94% 93.33% 94.44% 91.66% 90.55% 90.27%
Specificity 83.88% 91.11% 87.50% 87.22% 81.94% 85.83% 86.38% 90.27%
Accuracy 85.55% 91.25% 88.75% 91.38% 90.83% 90.13% 90% 92.63%

11 Sensitivity 85.27% 88.61% 86.94% 93.33% 93.05% 91.94% 90.83% 92.22%
Specificity 85.83% 93.88% 90.55% 89.44% 88.61% 88.33% 89.16% 93.05%
Accuracy 83.61% 90.55% 87.77% 91.66% 90% 91.11% 88.61% 92.50%

12 Sensitivity 80.83% 86.94% 85% 94.16% 92.50% 93.88% 90% 91.66%
Specificity 86.38% 94.16% 90.55% 89.16% 87.50% 88.33% 87.22% 93.33%

at least 85% accuracy. It is also noteworthy to observe that by using a more complex

classifier (higher index), the sensitivity and specificity percentages merge and get closer,

which means that there are equal number of FP and FN predictions. This reveals the

optimum performance of the classifier.
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All Data Classification

In this section, the data from all the 8 activities have merged together to determine

if the PD and NT group could be distinguished based on the data from all different

activities. The classification has been applied to four different datasets:

1. Dataset including all the activities for only fNIRS.

2. Dataset including all the activities for only EEG.

3. Dataset including all the activities for hybrid fNIRS/EEG.

4. Dataset including all the activities for all fused data.

Figure 36 shows the performance of all the 12 classifiers on the dataset containing

only fNIRS data.

Figure 36: Performance of all the 12 classifiers on the dataset containing only fNIRS data.

It is clear that by using more complex classifier (higher index), the performance of

the classifier regarding the accuracy, sensitivity, and specificity converges, which means

the optimum performance. The highest accuracy of distinguishing between PD and NT
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group by using only fNIRS data is 81.23% with 83.57% and 78.89% sensitivity and

specificity, respectively by using the SVM with index 12.

Figure 37 shows the performance of all the 12 classifiers on the dataset containing

only EEG data.

Figure 37: Performance of all the 12 classifiers on the dataset containing only EEG data.

The highest accuracy of distinguishing between PD and NT group by using only

EEG data is 92.79% with 93.12% and 92.46% sensitivity and specificity, respectively.

Figure 38 shows the performance of all the 12 classifiers on the dataset containing

only fNIRS and EEG data.
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Figure 38: Performance of all the 12 classifiers on the dataset containing hybrid fNIRS/EEG data.

The highest accuracy of distinguishing between PD and NT group by using only

fNIRS and EEG data is 92.27% with 91.35% and 93.19% sensitivity and specificity,

respectively.

Figure 39 shows the performance of all the 12 classifiers on the dataset containing

all the recorded data.

Figure 39: Performance of all the 12 classifiers on the dataset containing all the fused data.

The highest accuracy of distinguishing between PD and NT group by using all the
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data is 93.40% with 93.78% and 93.02% sensitivity and specificity, respectively.

It can be observed that adding more modalities to the dataset for the classifier in-

creases the accuracy of distinguishing PD and NT group. This reveals the importance

and critical role of each modality that has been used in this study.
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CHAPTER 5

Conclusion & Discussion

This study is focused on fusing the brain neuroimaging and body motion data.

Body kinematics were recorded for both fine and gross motor tasks using a smart glove

and Mocap system, respectively. fNIRS and EEG were the two non-invasive portable

modalities that were used as brain neuroimaging tools.

To assess fine motor movements related to UPDRS tasks, there was a demand to

develop a device capable of measuring fine motor movements precisely. WearUp glove

was developed in order to meet the requirements. WearUP is an e-textile glove inte-

grated with sensors on the fingers, which can monitor fine movements of the fingers.

The WearUp Glove has the potential to be used for remote assessments of movement

disorders such as PD. The preliminary experiments with WearUP showed promising re-

sults. The most challenging part of this development was the design of the glove, which

required many iterations. One particularly difficult design issue involved the identifi-

cation of a stable stitching line which kept the sensors in the appropriate places on the

finger joints while fitting well on the hand during movement.

To measure the gross movements of the body, a full body motion capture suit con-

sisting of 17 IMU sensors has been utilized. The sensors were connected to dongles

wirelessly in order to record the triaxial information of accelerometer, gyroscope, and

magnetometer from each sensor. 3 sensors were used in this work covering each limb

separately.

The main objective of this work was to establish a cyberinfrastructure to simul-

taneously collect the multi-channel data from a portable brain monitor (fNIRS) and a

full-body motion capture system (Mocap). The project was aimed to assist the interven-

tions of PD.
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For this objective, the project outcomes are summarized in three parts:

1) Integration of Brain and Body Monitoring Systems: A data acquisition system

that could collect multi-channel sensor signals from commercial devices - fNIRS brain

monitor and inertia-based full-body motion capture system, was developed, validated,

and tested. Each of these systems provides an individual separate data recording soft-

ware, and creating a framework in order to record the data simultaneously from these

two systems was the most fundamental challenge. Therefore, an API that reads the data

from all the sensors in the systems, and saves it on separate files, all with the times-

tamps provided by the clock of the recording computer with milliseconds accuracy was

developed. The data acquisition system was designed after a thorough investigation in

the area of system integration and software engineering. The latest software is a one-

click interface taking care of connecting, initializing, and gathering the data from two

complex systems.

2) Integration of Brain and Body Data: When the data from two systems are cen-

tralized and stored, they need to be analyzed for the measurement of how the body and

brain are synchronized. The data arriving from both systems are inconsistent because

the sensors are sampled at different speed. Signal processing algorithms to synchronize

the data were developed in order to overcome this issue.

The performance of the acquisition system and developed algorithms was tested by con-

ducting two sets of experiments. In the first set of experiments, the goal was to deter-

mine if generally the recorded data are synchronized or not. And the results of the first

experiments show that the data is acceptably synced. Although there is a time delay

between fNIRS and Mocap data based on the results of this test, considering the fact

that the hemodynamic response of the brain usually have a delay of several seconds,

few milliseconds delay in the recording of the Mocap and fNIRS data is acceptable and

negligible.
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The goal of the second set of experiments was to determine the performance of the de-

veloped system in real experimental situations and testify if the methods used in this

study are able to detect the increase in HbO2 levels of hemodynamic response related

to the movements of the body that can be detected by the Mocap system. The results

of the experiment reveal that the body movement detected by the Mocap system is in

synchrony with the brain activation demonstrated by the increase in the HbO2 level.

3) The last objective of this study was to perform an experiment on PD patients

and NT group aiming to distinguish between PD and NT. The brain imaging systems

used for this experiment were fNIRS and EEG. Body kinematics were measured by

Mocap system and smart glove. 9 PD patients and 9 NT participants were recruited to

perform 8 motor tasks on upper and lower limbs of both sides of the body. The data

were recorded through the developed API and were synchronized using the developed

algorithms. HbO2 from the fNIRS data, and PSD in the frequency bands of Theta,

Alpha, and Beta were extracted from EEG data. The acceleration vector was calculated

based on the triaxial accelerometer measures of the Mocap, and the flex sensor voltage

was used from the smart glove. The data from all these modalities have been fused and

averaged by a moving window of 1 second length. The final processed data were used

for classification. The goal of classification was to distinguish PD and NT group.

12 different SVM classifiers were trained based on the first three trials of the data,

and the performance of the classifier was tested on the last two trials. The classification

was performed in two different scenarios of activity based, and the full data.

In activity based classification, the data from each activity were used separately

to train and test the classifiers, and the results show that the PD and NT group can be

distinguished with at least 85% accuracy for each activity.

Full data classification has been performed on four different scenarios: fNIRS only,

EEG only, hybrid fNIRS and EEG, and all the fused data. The most optimum accuracy

83



of distinguishing PD and NT group has been 81.23%, 92.79%, 92.27%, and 93.40% for

the four scenarios, respectively.

The lower accuracy of the fNIRS only classification might be due to the nature of

this data. fNIRS measures the changes of HbO2 levels which is carried by the blood.

This is a hydraulic system and there are delays in transportation of blood. The delay

of hemodynamic responses, that is based on changes of HbO2 level can be seen by

calculating the cross-correlation of the fNIRS data and Mocap data. Cross-correlation

is a measure of similarity of two series as a function of the displacement of one relative

to the other. Therefore, the time of the peak in cross-correlation of two series shows the

delay of the signal. Figure 40 shows the cross-correlation of fNIRS and Mocap data.

It can be seen that the peak of the cross-correlation is happening at 3-6 seconds. This

means that the fNIRS HbO2 levels are having this specific delay. This delay in the

response of fNIRS which is different within subjects prevents the classifier to find an

optimum path for discriminating the two classes, which results in lower accuracies.

Figure 40: Cross-correlation of fNIRS HbO2 and Mocap data for all the channels.

Many studies have been done individually on measuring the kinematics of the body

in people with movement disorders [1, 2, 3, 4, 5, 6], or monitoring the brain activity in
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movement disorders or discriminating different activities based on the brain activity

[7, 8, 9, 10, 11, 12, 13]. This study merges these separate studies together in order to

provide clear insight about the synchrony between brain and body. Some studies have

been done on measuring the synchrony of brain and body, but they usually utilize one

modality of brain monitoring such as EEG or MEG, and one modality of body kinematic

recording related to gross motor tasks or muscle contractions by electromyogram (EMG)

[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

This study is among few studies, if not the only study, in fusion of brain and body

data with two different modalities of brain imaging and measuring both fine and gross

movements. The promising results show the feasibility of using all different recording

modalities.

5.1 Outlook

This dissertation demonstrated the research and development of a brain-body fusion

system and evaluation tests of the system. Experimental results on the PD and NT group

showed the feasibility of using this system to distinguish PD from NT groups. It is

observed that the two groups could be distinguished by more than 85% accuracy for each

individual activity. The results of classification for all the data demonstrated that each of

the modalities adds more information to the study which is shown by the increase of the

accuracy while more data was used for classification. A quantitative evaluation needs to

be performed based on sample size calculations in order to generalize the results of this

dissertation for distinguishing PD from the NT group.

Adding more information about the disease history of each individual PD patient

to the analysis such as the time of diagnosis, medications, dosage of medications, and

UPDRS score from neurologists, along with performing a longitudinal study can provide

a measuring tool about the progress of the disease or effectiveness of the medication. As

an example, adding the UPDRS scores for each patient along with the type and dosage of
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medication they are taking into the analysis, and performing a multi-class classification

can distinguish each patient separately.

The results of multi-class classification accuracies could be merged in a visualiza-

tion interface to be used by neurologists. Figure 41 shows the overall concept of the

proposed idea of developing the visualization user interface.

Figure 41: Overall concept of the visualization interface system consisting of two subsystems: fNIRS,
and Mocap.

The purpose of the visualization interface is to provide a tool to monitor the brain

activity and body kinematics at the same time while the patient is performing the tasks.

Currently, this happens by visual inspection of the body kinematics while the patients

perform the tasks and neurologists observe and score the patients based on UPDRS

criteria and make the decision for diagnosis or progression monitoring. Adding the pro-

cessing algorithms and results to the visualization interface can be served as a supporting

tool helpful in the diagnosis of PD, or monitoring of the disease progression.

Figure 42 shows the first step toward developing such a visualization interface.

Each circle on the brain represents a channel of the fNIR data and color gradient shows

the changes of HbO2 level in the channel. The avatar replicates the movements of the
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subject based on the chosen sensors during the initiating process of the visualization

interface.

Figure 42: The developed visualization interface as a first step toward providing a supporting tool for
decision making.

More detailed analysis on the data and adding the results to this interface could be

a supporting tool for decision making regarding the diagnosis of PD.
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herence with time lag with application to delay estimation,” IEEE Transactions on
Biomedical Engineering, vol. 64, no. 3, pp. 588–600, 2017.

90



APPENDIX A

Abbreviation List

ADC: Analog to Digital Converter

API: Application Protocol Interface

BOLD: Blood Oxygen Level Dependent

CKC: Cortico-Kinematic Coherence

CLK: Clock

CMC: Cortico-Muscular Coherence

CSV: Comma Separated Value

DBS: Deep Brain Stimulation

DP: Differential Path length

DPF: Differential Path length Factor

EEG: Electroencephalography

EMG: Electromyography

FD: Frequency Domain

FIR: Finite Impulse Response

fMRI: Functional Magnetic Resonance Imaging

FN: False Negative

fNIRS: Functional Near-Infrared Spectroscopy

FP: False Positive

GUI: Graphical User Interface

Hb: Deoxygenated Hemoglobin

HbO2: Oxygenated Hemoglobin

IMU: Inertia Measurement Unit

LED: Light Emitting Diode
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LSL: Lab Streaming Layer

MC: Monte Carlo

MCU: Microcontroller Unit

MEG: Magnetoencephalography

NIR: Near Infrared

NT: Neurotypical Control

OMC: Optical Motion Capture

PD: Parkinson’s Disease

PET: Positron Emission Tomography

PSD: Power Spectral Density

SPECT: Single Photon Emission Computed Tomography

STN: Subthalamic Nucleus

SVM: Support Vector Machine

TCPM: Time Course of Power Modulation

TD: Time Domain

TN: True Negative

TP: True Positive

UPDRS: Unified Parkinson’s Disease Rating Scale

USB: Universal Serial Bus
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