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ABSTRACT 

Sequential delivery of biomolecules is very important as many biologics 

underlying injury and disease follow an orderly and sequenced series of events. Here we 

developed and introduced for the first time a dual compartment biomaterial system with 

an outer compartment made of gelatin and inner compartment that is a ferrogel which can 

be magnetically stimulated in order to provide on-demand, sequential delivery of multiple 

bio-instructive payload. We studied the potential application of this dual-compartment 

biomaterial system in different therapeutic contexts that may benefit from on-demand 

sequential deliveries, such as in cancer immunotherapy and in chronic wound healing.  

Chronic wounds can be a result of arrest in the inflammation phase of healing. 

Although inflammation critically initiates repair and helps clear infections, a prolonged 

inflammatory reaction can cause considerable harm to the injury site. After an 

appropriate duration of inflammation, this inflammatory response can be shifted to a 

more pro-healing response through the delivery of cytokines like interleukin 4 (IL-4) and 

interleukin 10 (IL-10). These anti-inflammatory cytokines alter the phenotype of 

macrophages from pro-inflammatory (M1) to anti-inflammatory (M2), suggesting a 

potentially powerful drug delivery strategy if these cytokines can be delivered in a 

delayed manner. We hypothesize that the transition of macrophage phenotype from pro-

inflammatory (M1) to anti-inflammatory (M2) can be controlled through sequenced 

delivery of interferon gamma (IFN-γ), followed by IL-4 and/or IL-10. The goal of this 

research was to develop a wound-healing hydrogel system that initially delivers pro-

inflammatory IFN-γ, followed by magnetically triggered delivery of pro-healing (anti-

inflammatory) IL-4 and/or IL-10. Our biomaterial system was composed of two-



 

compartments: (1) a porous gelatin outer compartment designed to recruit macrophages 

and establish an initial pro-inflammatory (M1) phenotype, and (2) a magnetically 

responsive alginate inner compartment which was designed to deliver IL-4 and/or IL-10 

when magnetically triggered to shift the response to anti-inflammatory by promoting 

(M2) phenotype. We showed that we can have fast release of IFNg (Promotes M1 

phenotype) and MCP-1 (recruits macrophages) initially from the outer compartment 

while holding on to IL4 and IL10 that is loaded in the ferrogel and have them burst 

release when applying the magnetic field. 

Biomaterial-based cancer immunotherapy strategies require materials capable of 

recruiting dendritic cells (DCs) and reprogramming them with cancer antigen and danger 

signal. This strategy requires the implantation of a biomaterial that is loaded with DC 

recruitment factors, danger signals, and cancer antigen. This co-delivery of danger signal 

and antigen results in DC activation and homing of cancer-antigen-presenting DCs to the 

lymph nodes, subsequently triggering an anti-tumor immune response from the host. 

However, danger signals and antigen diffuse out of the biomaterial while DCs are being 

actively recruited to the biomaterial. This may result in lower concentrations of these 

necessary reprogramming agents by the time DCs are recruited and consequently, lower 

quantities of activated DCs, and a reduced anti-tumor immune response. It is possible that 

sequential release of DC recruitment and reprogramming factors will enhance the number 

of reprogrammed DCs over simultaneous release, leading to improved anti-cancer 

immune responses. In order to test this, a material system with unique delivery 

capabilities must be developed. Therefore, we designed a biomaterial system capable of 

first recruiting DCs by initially releasing DC recruitment factors from outer compartment. 



 

This biomaterial can deliver reprogramming agents (i.e., cancer antigen) when 

magnetically stimulated only after a substantial population of DCs has been recruited. 

The results showed that we were able to deliver GM-CSF (DC recruitment factor) 

initially from the outer compartment followed by delivering HSP27 (model cancer 

antigen) when stimulated in the magnetic field
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PREFACE 

This dissertation is presented in manuscript format in accordance with University 

of Rhode Island Graduate School Guidelines. There are five chapters included in this 

dissertation. The first chapter is an introduction and motivation to this work, including a 

detailing of the problems being address, hypotheses, and goals of the work. The second 

chapter is review of the literature on Magnetically responsive drug delivery depots as part 

of an invited review in preparation to be submitted to Acta Biomaterialia. The third 

chapter is published in Advanced Healthcare Materials journal with title of “A 

Magnetically Responsive Biomaterial System for Flexibly Regulating the Duration 

between Pro- and Anti-Inflammatory Cytokine Deliveries”, the Authors are listed in 

order as Anita E. Tolouei, Nihan Dulger, Rosa Ghatee and Stephen Kennedy. The fourth 

chapter is a paper in preparation to submit to ACS Biomaterials Science and Engineering 

titled as “Magnetically Responsive Biomaterial System Enables On-demand, Sequential 

Delivery of Biomolecules for a Variety of Biomedical Applications” and the authors are 

listed as following Anita E. Tolouei, Tania T. Emi, Zahra M. Madani and Stephen 

Kennedy.  The final chapter is a detailing of the primary conclusions of this dissertation 

and perspectives on potential next steps in this line of research. 
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Chapter 1 

Introduction and motivation  

 Many biological processes that underlie injury and disease can be characterized as 

highly choreographed sequences of distinct biological events. When aiming to treat 

injuries and diseases, an overarching strategy is to actively control these sequential 

biological processes. Local delivery of bioactive molecules can be used to direct 

individual biological events. Thus, sequences of biological events can be controlled 

through localized, sequential deliveries of bioactive molecules. While there are previous 

studies demonstrating sequential delivery of multiple bioactive molecules,5–7 these 

studies mainly utilize biomaterials that are preprogrammed to release drug with 

predetermined temporal profiles. That is, they do not provide real-time control over the 

timing and sequence of deliveries. Some active materials provide the ability to trigger 

biomolecular release locally at the implantation site in response to physiological cues 

such as temperature and/or pH.8–12 However, these types of active materials often provide 

slow response times and require stimuli that are not amenable to maintaining in vivo 

homeostasis (i.e., altering temperature and pH in vivo can be disruptive to biomolecules 

and tissues and can be difficult to modulate and maintain). Furthermore, clinically, there 

is need for these deliveries to be adjusted in real time, based on the specifics of each 

patient and their condition, as well as adjustments needed during the course of treatment 
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in response to real-time  patient diagnosis/prognosis. 4,13 Biomaterials that respond to 

externally applied cures have been introduced to meet these requirements. For example, 

biomaterials, studies have shown that materials can be designed to release bioactive 

payloads in response to external signals such as electric fields14, optical signals15, 

ultrasound16–18 and magnetic fields19,20. Magnetically responsive hydrogels (i.e., 

ferrogels) are particularly of interest to us because of their biocompatibility, response to 

benign magnetic signals, and potential flexibility in tuning the timing and rate of the 

deliveries.21–23 Ferrogels can be made by mixing iron oxide particles in the gel matrix, 

allowing the gel structure to deform when exposed to magnetic fields. This deformation 

results in convective purge of the molecules contained in the gel’s matrix.24–26 Biphasic 

ferrogels were later developed with macroporous structures for improving the 

deformation capability of these gels while using a lower concentration of the iron oxide 

particles. This macroporosity improves biocompatibility of the gel with pore sizes that 

are significantly enlarged, enhancing molecular and cellular transport through the gel.27  

While ferrogels have been deployed to provide on-demand, magnetically 

triggered deliveries, regulation of complex biological processes requires the ability to 

deliver multiple bioactive compounds from the biomaterial (e.g., cytokines, proteins, etc., 

often in sequence). Therefore, we developed a dual compartment biomaterial system for 

delivering critical sequences of bioactive compounds in response to externally applied 

magnetic signals. This system is composed of an outer compartment in the shape of a 

hollow cylinder made with porous gelatin and inner compartment which is a cylindrical 

biphasic ferrogel nestled inside the hollow outer compartment. Each compartment of this 

system has different design requirements and release mechanisms. The outer 
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compartment is designed to diffusively release bioactive molecules that are capable of 

actively recruit a cell type of interest. The inner compartment is designed to harbor a 

bioactive molecule, only appreciably releasing it to the cells recruited to the outer 

compartment when instructed to do so in response to an externally applied magnetic 

gradient.  Thus, at its most fundamental, this two-compartment biomaterial system 

provides a means to sequentially recruit and then modify the behavior of cells after 

implantation, with real-time control over the timing of this sequence. This ability to 

flexibly recruit and modify cells to and within a biomaterial structure is of great 

importance in far-reaching biomedical and clinical scenarios. However, this dissertation 

will focus on demonstrating sequential biomolecular release in a few contemporary 

applications:  cancer immunotherapy and wound healing (and the associated regulation of 

the inflammatory response, tissue vascularization, and recruitment and differentiation of 

tissue specific cell types required for properly regenerating wounds).   

 1.1 Cancer immunotherapy 

Cancer is a group of diseases, which is characterized by abnormal and out of 

control cell growth caused by mutated DNA and/or environmental effects. In 2016 about 

595,690 Americans are expected to die of cancer, or about 1,630 people per day. Cancer 

is the second most common cause of death in the US and accounts for nearly 1 of every 4 

deaths28. This emphasizes the necessity of finding new and diverse cancer treatment 

strategies. One promising cancer treatment strategy is biomaterials-based immunotherapy 

in which the immune system of a patient’s own body is programed in order to initiate an 

immunological attack against cancer cells 2. A more traditional (non-biomaterials-based) 

immunotherapy technique involves monocytes that are extracted from the blood (Fig 1A, 
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starting at left and moving clockwise to the top) and are differentiated into dendritic cels 

(DCs) (Fig. 1A, moving from top to right). These immature dendritic cells are then 

presented with cancer antigens that were extracted from the patient’s cancer cells (Fig. 

1A, moving from right to bottom). This causes the immature DCs to become mature and 

active (Fig 1A, bottom). Finally, these activated DCs are re-infused back in to the 

patient’s body (Fig. 1A, moving from bottom to left).  In the body, these activated and 

antigen-presenting DCs travel to the lymph nodes and present those cancer antigens to 

natural killer cells (T cells).  This results in the body mounting an immunological attack 

against the cancer associated with that antigen. 

While yielding some promising results (Fig 1, B, “cell based” survival curve in 

green, 70% survival in cancer-challenged mice after 90 days), there are some 

disadvantages to this ex vivo cell-based approach. One is that systemically administered 

vaccines have short signal duration. Cell-based vaccines they are also very costly and 

shown limited effectiveness29. Furthermore, the vast majority of DCs injected back in to 

the patient rapidly die and few activated DCs (estimated at only ~0.5-2%) are able to 

migrate to the lymph nodes which leads to the need for multiple administrations and 

higher doses. These multiple and higher doses cause systemic toxicity problems in the 

host 2. Moreover, this method requires blood withdrawal, DC cell isolation, tumor biopsy, 

antigen extraction and processing, several DC modifications outside the body, and 

injecting of DCs back into the body. This, in turn, requires two patient procedures, high 

cost, and significant regulatory concerns 2. Because of these disadvantages, indirect 

cancer immunotherapy vaccines have not been particularly successful into causing solid 

tumors to regress or increasing patient survival relative to standard treatments 3. 
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In order to address some of these concerns, biomaterial-based cancer 

immunotherapy was introduced. In this strategy, an infection-mimicking material is 

introduced in vivo, providing a site to attract and activate DCs (Fig 1C, i).2 The 

biomaterial scaffold is implanted and contains DC recruitment factor, danger signal, and 

cancer antigen. The recruitment factor releases, forming a gradient, which causes DCs to 

migrate towards the scaffold (Fig1C, ii). While DCs are in the scaffold, they are 

subjected to the danger signal and cancer antigen left in the biomaterial (Fig1C, iii). This 

results in the activation of some of the DCs (Fig1C, iv) and their homing to the lymph 

node (Fig1C, v). This results in activation of an anti-tumor immunological response from 

the host. This method leads to promising results. For instance, survival rates in mice that 

are challenged with melanoma 14 days after drug-loaded biomaterial implantation 

survive at higher rates (Fig1D, i. blue, red, and dashed black curves) compared to blank 

biomaterial controls (Fig1D, ii. black curve). Notably, when optimized amounts of 

GMCSF, danger signal (CpG-ODN), and antigen (tumor lysates) are loaded into these 

implanted biomaterials, 90% of mice survived after 90 days (Fig1D, i blue curve). 

However, when the biomaterial was implanted with mice that had existing, well 

developed 13-day-old tumors, mouse survival rates were less promising (Fig1D, ii). 

Even though a better survival rate was observed with loaded biomaterials in comparison 

to blank biomaterials, double biomaterial implantation only yielded a 20% survival rate 

after 100 days (Fig3D, ii, comparing the blue curve (Vax,2x) to the black curve (Blank)). 
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Figure 0.1. Cancer immunotherapy strategies aim to program the body to initiate an anti-tumor 

response. A. Schematic highlighting the steps involved in indirect cancer immunotherapy. Part A 

adapted from Kim et al.1  B. Survival rate for cell-based vaccines (Green) vs. no vaccine (Blank).2 

C. Schematic of biomaterial-based cancer immunotherapy. i. The biomaterial contains DC 

recruitment factor, danger signal and cancer antigen. ii. Release of DC recruitment factor attracts 

dendritic cells. iii. While DCs are in the scaffold, they are subjected to the danger signal and 

cancer antigen left in the biomaterial. iv. This results in the activation of some of the DCs (orange 

DCs). These activated DCs home to the lymph node. This results in activation of an anti-tumor 

immunological response from the host. D. Survival rates in an in vivo mouse melanoma model 

for when: (i) the mouse was implanted with biomaterial 14 days before tumor were introduced to 

the mouse and (ii) the biomaterial was implanted in mice with already existing (13 days) tumors. 

Parts B and D(i) adapted from Ali et al.2. Part D(ii) adapted from Ali et al.3 

 

A potential area for improvement includes fine-tuning the timing and rate of DC 

recruitment factor, danger signal and antigen presentations. For example, in the Ali et 

al. system, these three biomolecules begin to diffuse out of the scaffold soon after 

implantation (Fig. 1,C, ii). Therefore once a robust population of DCs has been recruited 
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to the scaffold (Fig. 1,C, iii), there are fewer danger signals and antigens left to activate 

the DCs. This results in even fewer DCs being activated and reporting back to the 

lymph node (Fig. 1,C, iv and v), and therefore a sub-optimal anti-cancer immunogenic 

response may occur. Thus if a biomaterial system were capable of initially releasing DC 

recruitment factors and delaying the presentation of danger signals and antigen 

molecules, enhanced populations of activated DCs could be generated, resulting in 

stronger anti-cancer immunological responses. We will therefore aim to develop and test 

the reprogramming effectiveness of a biomaterial system capable of flexibly controlling 

the timing and rate of these molecular deliveries in response to externally applied 

magnetic fields. This biomaterial will result in a high degree of clinical significance by 

improving cancer survivability and immunity and may be applicable to a wide variety of 

cancer types. It will also provide a high degree of broad investigative significance by 

providing a system for examining how the timing and dose of recruitment and 

reprogramming agents impact immunological responses in general. 

The hypothesis guiding this research is that DC activation can be improved by 

delaying the release of antigens until a vigorous population of DCs has been recruited to 

the biomaterial. Thus, the overarching aim for this research will be to develop an 

implantable biomaterial system capable of first releasing DC recruitment factors from its 

outer compartment, followed by magnetically triggered release of a model antigen. Such 
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a system may be capable of recruiting DCs and only delivering cancer antigen to 

recruited DCs at optimized times when stimulated by externally applied magnetic fields. 

This proposed biomaterial system consists of two compartments, similarly as 

described before (Fig. 2A, i and ii). Compartment 1 will initially release DC recruitment 

factor (GM-CSF) and will have a functionality to maintain recruited DCs (by having a 

macro-porous structure (Fig. 2A, iii)). This compartment is made from porous gelatin and 

is loaded with GM-CSF recruitment factor. Compartment 2 consists of a magnetically 

deformable porous alginate structure that only appreciably releases a model antigen (Heat 

shock protein 27 (HSP27)) when magnetically stimulated (Fig. 2A, iv and v). This will 

result in the delivery of antigen in an on-demand, delayed manner. This combined system 

will be capable of sequentially releasing DC recruitment factors, followed by releasing 

antigen with magnetic stimuli (Fig.2B). The reason behind choosing these proteins for 

our work is as follows. The cytokine granulocyte-macrophage colony-stimulating factor 

(GM-CSF) has been identified as a stimulator of dendritic cell recruitment.30 Heat shock 

protein 27 (HSP27) is used as cancer antigen and is often a target for cancer therapy 

drugs and the immune system. The massive release of HSP due to widespread tumor cell 

necrosis after cytotoxic drugs can lead to CD8+ T-cell-mediated anti-tumor immune 

responses.31 However, for the purposes of this dissertation, HSP27 will be used as a 

model antigen. Optimizing the effectiveness of cancer antigen is beyond the scope of this 

work.  
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Figure 0.2. Our biomaterial will be designed to initially release DC recruitment factor followed 

by magnetically triggered release of cancer antigen and danger signal. A. (i-ii) This biomaterial 

system will be a dual compartment hydrogel composed of a (1) DC recruitment compartment and 

(2) a magnetically responsive reprogramming delivery compartment. (iii) Compartment 1 initially 

releases DC recruitment factor (GM-CSF). (iv) While DCs are being recruited, compartment 2 

retains antigen (HSP27) and danger signal (single stranded nucleic acids, ssNAs). (v) When 

magnetically stimulated, compartment 2 releases antigen and danger signal. Part A figure key can 

be found in Figure 1’s caption.  B. Desired cumulative release of various molecules from our 

biomaterial vs. time. 

 

1.2 Chronic wound healing 

The proposed two-compartment, magnetically responsive biomaterial system may 

also be of use in the field of chronic wound healing. In the United States, approximately 

6.5 million patients are diagnosed with chronic wounds. The treatment of chronic wounds 

costs more than $25 billion annually and this is expected to grow due to the increasing 

cost of healthcare, an aging population, and a rise in the occurrence of diabetes and 

obesity worldwide.32 The process of wound healing includes four major steps: hemostasis 

(blood clothing), inflammation, proliferation, and tissue maturation.33 Even a slight 

perturbation in this process can disrupt proper healing, leading to chronic wounds. 

Chronic wounds are often a result of arrest in the inflammation phase of healing.33 

Although inflammation critically initiates repair and helps clear infections, a prolonged 

inflammatory reaction can cause considerable harm to the injury site. After an 
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appropriate duration of inflammation, this inflammatory response can be shifted to a 

more pro-healing response through the delivery of cytokines like interleukin 4 (IL-4) and 

interleukin 10 (IL-10). These anti-inflammatory cytokines alter the phenotype of 

macrophages from pro-inflammatory (M1) to anti-inflammatory (M2), suggesting a 

potentially powerful drug delivery strategy if these cytokines can be delivered in a 

delayed manner.  

We hypothesized that the two-compartment biomaterial system described above 

would be capable of (i) initially delivering macrophage recruitment factor and factors that 

would direct recruited macrophages to adopt a pro-inflammatory M1 phenotype and (ii) 

magnetically delaying the release of factors that would transition recruited M1 

macrophages to anti-inflammatory, pro-healing M2 phenotypes. Specifically, we propose 

to design the biomaterial system to initially delivery IFN-γ and MCP-1 from the porous 

outer compartment and retain and magnetically release IL-4 and/or IL-10 from the inner 

ferrogel compartment. The goal of this research is to develop a wound-healing hydrogel 

system that allows for the investigation into how the duration of the inflammatory period 

impacts would healing. Namely, by altering the time at which magnetic stimulation is 

applied, the proposed biomaterial system will be able to regulate the time point at which 

the inflammatory response transitions into a pro-healing response. Critically, this is a 

simple parameter to alter between experiments, enabling rapid investigations into how the 

timing of these biological processes impact regeneration. 
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Chapter 2 

Review of Literature  

2.1 Introduction 

The ability to produce temporally complex delivery profiles in an on-demand 

manner is pervasively needed in a wide range of biomedical and clinical scenarios, 

ranging from cancer treatment to tissue engineering. Stimuli-responsive biomaterials 

provide a potential means of providing on-demand regulation over temporally complex 

delivery profiles.1–4 Some stimuli-responsive materials can be preprogrammed to respond 

to environmental cues such as pH5,6 or temperature7–9 whereas others can be triggered on-

demand via externally applied signals. For example, materials can be engineered to 

release payloads in response to magnetic, electric, ultrasound, and optical signals.10–13  

The focus of this review is to outline and discuss the potential of magnetically 

responsive materials for providing on-demand regulation of complex therapeutic delivery 

profiles. This focus is founded in a number of key factors. First, magnetically responsive 

biomaterials typically contain magnetic particles14–16, which are widely used in 

biomedical applications. For example, magnetic nanoparticles17,18 and magnetic 

liposomes19 can be synthesized and used as drug carriers. The use of iron oxide 

nanoparticles as magnetic imaging contrast enhancers has made its way to clinical 

trials20,21 and are extensively used in magnetic resonance imaging (MRI).22 Magnetic 
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particles are also used for targeting purposes23 and hyperthermia-based treatments (i.e., 

cancer treatment involving heating up the cancer cells to temperature between 43°C to 

46°C when cell viability drops and becomes more vulnerable to chemotherapy and 

radiation). 24–26 Furthermore, magnetic fields similar to those used in these treatments are 

widely used in everyday scenarios (e.g., at airport security, at store exits, in MRIs, and 

even in some children toys) and have been demonstrated to be harmless to the human 

body.22,27 Taken altogether, this well-established track record of using magnetic particles 

and magnetic field stimulation creates a strong precedence for their diagnostic and 

therapeutic use. This suggests that magnetic nanoparticle integration into drug delivery 

systems and remote stimulation using magnetic fields may be a viable option for 

achieving on-demand control over biomolecular deliveries. 

This review will concentrate on hydrogel-based drug delivery systems that are 

integrated with magnetic particles, endowing them with on-demand delivery capabilities 

when subjected to remotely applied magnetic fields. Hydrogels are used significantly in 

drug delivery applications due to a number of desirable features.28,29 For example, they 

can absorb water up to 30% of their dry weight and can be made from biocompatible 

polymers. They can also be chemically and mechanically modified to better interface 

with tissues.30–33  Ferrogels are hydrogels that have been integrated with iron oxide 

particles in their polymeric network and their preparation method is very well 

established.34–36 Here, we will categorize the drug release mechanisms from ferrogels and 

will discuss the tunable parameters effecting each release mechanism. This, in turn, may 

shed light on how magnetically responsive ferrogels can be designed to achieve magnetic 

control over more temporally complex drug delivery profiles. We will then proceed to 
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highlight the importance of producing multi-drug release profiles in an on-demand 

manner and underscore the limited amount of work being done in this area. 

 

2.2       Magnetically triggered release mechanisms 

2.2.1    Inductive heating, agitation, or melting of polymer structures  

Hydrogels can be designed to change phase (e.g., collapse, degrade, or swell) 

when inductively heated or agitated under magnetic stimulation, leading to release of 

payloads.37–39 The super paramagnetic iron oxide nanoparticles (SPIONs) inside these 

hydrogels can absorb energy from high-frequency magnetic fields, which in turn leads to 

swelling or collapse of the hydrogel matrix due to changes in temperature. This inductive 

heating occurs when an alternating magnetic field (AMF) is applied to SPIONs. Heat is 

generated due  to Neel and Brownian relaxation phenomena.40,41 This energy then 

transfers to the hydrogel’s polymer matrix which can lead to conformational changes 

such as polymer collapse or degradation (Figure 1).42 In a study by Hu et al.,43 the authors 

were able to show the pulsatile delivery of vitamin B12 loaded in the polymeric system. 

This system was made by embedding iron oxide nanomagnets with average diameter of 

40 nm within gelatin polymer network crosslinked with genipin. When a high frequency 

magnetic field was applied, the nanoparticles twisted and shaken, causing the polymeric 

network to decompose and release its content. Vibrations of the particles were also shown 

to increase the local temperature of hydrogel as well, which could potentially be 

problematic if this system were used for delivering more sensitive molecules such as 

proteins (which can denature at higher temperatures, rendering them bio-inactive). 
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Figure 0.1. Schematic of heat-inductive release mechanism from hydrogels triggered with 

magnetic field. Figure copied from Brundo et al.44 

 

There are several other notable examples of hydrogel systems that exploit 

inductive heating/agitation from magnetic fields to externally regulate drug delivery 

profiles from hydrogel systems. For example, N-isopropylacrylamide (NIPAAm) is a 

temperature responsive polymer with a lower critical transition temperature (LCST) 

between 30 and 35°C.45 In one study, NIPAAm gels were made in disk shapes (15 mm 

diameter and 0.5 mm thickness) and iron oxide nanoparticles (25 nm in diameter) were 

integrated into the gels. The release of vitamin B12 loaded in these gels was studied in the 

presence of an AMF (2.98 kA/m @ 297 Hz). It was shown that when the AMF was 

applied, heat generation of the magnetic nanoparticles increased the temperature of the 

NIPAAm network above the LCST, leading to gel collapse and excretion of the water out 

of the polymer matrix. This process increased the release rate of the B12 from the 

polymeric matrix.46  In another study done by Hoare et al.47, thermo-responsive 

NIPAAm-based nanogels were incorporated in ethyl cellulose-based membrane made 

containing iron oxide nanoparticles. As in the previous study, this gel formulation was 

used due to its ability to change its volume at different temperatures When an alternating 
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magnetic field was applied to these nanogels, the iron oxide nanoparticles contained in 

the membrane heated up and rose beyond physiological temperatures to 50°C.  This 

heating caused a ~400 nm decrease in the diameter of the nanogels which then led to an 

outward flux of sodium fluorescein from the drug reservoir (Figure 2).  

 

 

Figure 0.2. Schematic of Magnetically responsive membrane triggered for drug release. 

Figure copied from Hoare et. al.47 

 

Elsewhere, Lu et al.48 incorporated the ferromagnetic gold coated cobalt 

nanoparticles inside 5-μm diameter microcapsules made from poly(sodium styrene 

sulfate)/poly(allylamine hydrochloride). When an AMF was applied, the embedded 

Co@Au nanoparticles vibrated and disturbed the structure of the microcapsule wall, 

leading to increases in the permeability of the microcapsule wall. This, in turn, lead to 

enhanced diffusion of FITC-labeled dextran across the capsule wall (Figure 3).  
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Figure 0.3. Illustration of effect of magnetic field on drug diffusion across 

microstructures. Figure adapted from Lu et al.,48 

 

2.2.2 Physical changes in response to magnetic fields 

Magnetic fields can be used to generate forces on magnetic particles and these 

forces can be used to directly impact physical structures in hydrogel that impact payload 

retention and release characteristics.  For example, magnetic particles can be entrapped 

within a hydrogel’s polymer matrix (Figure 4, left). In the presence of a DC magnetic 

gradient (e.g., from a hand-held magnet), forces are exerted on the entrapped magnetic 

particles. This force moves the particles towards the magnet and hydrogel matrix deforms 

due to this particle movement (Figure 4, right). This deformation results in decrease in 

gel volume and convective purging of water and loaded drugs from the gel system 

(Figure 4, right, red dots leaving matrix). For instance, Zhao et al.49 demonstrated that 

while some ferrogel deformation could be achieved by simply incorporating iron oxide 

particles into an alginate hydrogel matrix, generation of a highly macroporous hydrogel 

Co@Au nnoparticles

Polyelectrolyte layer

FITC-dextran
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structure (i.e., through a cryogelation approach) yielded much softer and more 

magnetically compressible ferrogels that were capable of efficiently delivering biological 

payloads (i.e., chemotherapeutics, proteins, DNAs, and even cells) when subjected to 

simple hand-held magnets. Zhao et al.49 went on to demonstrate efficient delivery of 

cellular payloads in vivo using these same macroporous ferrogels. Subsequent 

improvements upon these macroporous ferrogels include a biphasic design which enables 

efficient deformations and payload deliveries using decreased concentrations of iron 

oxide35 Additionally, these biphasic ferrogels exhibited increased porosity (for better 

cellular infiltration) and decreased toxicity (due to lower iron oxide concentrations) for 

tissue engineering and other in vivo applications. In fact, when implanted in vivo, 

periodic magnetic deformation of these biphasic gels where shown to reduce 

inflammation and enhance muscle regeneration.50 

 

 

Figure 0.4. Schematic of hydrogel deformation triggered with DC graded magnetic field. 

Figure adapted from Brundo et al.44 

 

Magnetically actuated movement, aggregation, and/or orientation of iron oxide 

particles can also be used as a means to regulate drug release. For example, magnetically 

actuated aggregation of magnetic particles can be used to decrease drug delivery rates. A 

fundamental example of this was demonstrated by Guowei et al.,51 in which a porous 

membrane was introduced that seals a depot of magnetic nanospheres containing drug. A 
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magnetic field was used to aggregate the magnetic particles in a manner that prevented 

diffusion of the drug through the membrane. In a separate study by Liu et al.,52 a 

poly(vinyl alcohol) hydrogel was fabricated with 150-500 nm Fe3O4  nanoparticles 

incorporated into the gel. This ferrogel was used as a membrane that sealed a drug depot. 

The application of the direct current (DC) magnetic field lead to the aggregation of the 

Fe3O4 nanoparticles in the ferrogel membrane, thus decreasing the porosity of the ferrogel 

membrane and leading to decreased diffusion of the drug through membrane. Similar 

ability to modulate drug release using a magnetic field was observed in another study 

where gelatin ferrogels were used as a membrane.53 In another study, superparamagnetic 

iron oxide nanoparticles were embedded inside the Pluronic F127 micelles with diameter 

around 13 nm. Indomethacin was loaded in another group of micelles and both groups 

were mixed together inside an aqueous environment (Figure 5, i). Upon application of a 

magnetic field, SPIONs orient and approach each other, thus perturbing the micelle 

structures by squeezing them and forcing out the indomethacin drug (Figure 5, ii).54 
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Figure 0.5. Illustrations drug-containing micelles being disrupted in a magnetic field. 

Figure adapted from Qin et al.54 

 

Movement of magnetic particle-laden materials can also be used to modulate drug 

delivery through the use of micropumps. In a study by Wang et. al.,55 a microdevice was 

developed with a drug reservoir placed between two PDMS membranes (Figure 6A, red 

drug reservoir sandwiched between two blue, flexible PDMS membranes). An iron oxide 

PDMS composite disk was placed underneath one of the membranes (Figure 6A, yellow 

composite subjacent to the bottom blue PDMS membrane). This arrangement restricted 

the diffusion of drug when no magnetic field was applied, as the drug reservoir remained 

sealed (Figure 6B). However, when a magnetic field was applied, the magnetic-

nanoparticle-laden composite would be attracted to the magnet, thus deforming the 

PDMS membranes, resulting in an arrangement that would facilitate the release of the 

drug reservoir (Figure 6C). This system was demonstrated successfully both in vitro and 

in vivo. Researchers have developed similar battery-less magnetically responsive drug 

delivery devices for delivering docetaxel for treatment of diabetic retinopathy56 and on-

demand insulin administrations57.  

B ii)i)
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Figure 0.6. The schematic of the intravitreal implantable magnetic micropump. A) Cross 

section view of the micropump. B) The diffusion of the drug is prevented when there is no 

magnetic field. C) In the presence of magnetic field, drug releases upward. Figure adapted from 

Wang et. al55 

 

2.3       Tunable parameters affecting drug release 

There are several material parameters that impact the retention and magnetically 

stimulated release of payloads from these biomaterial systems such as ferrogel pore size, 

magnetic particle concentration and size. As with other hydrogel-based materials, matrix 

porosity is a critical parameter influencing release characteristics. Generally, a more open 

more structure results in higher levels of release both unstimulated diffusive release and 

magnetically stimulated release. However, in many applications, it is desirable to achieve 

low-levels of unstimulated release and much greater levels of release upon magnetic 

stimulation. Thus, hydrogel porosity must be tuned to achieved desirably low levels of 

unstimulated release and desirably high levels of stimulated release.  Hydrogel 

nanoporosity (i.e., the mesh structure of the polymeric matrix) can be tuned by altering 

polymer and crosslinker concentration.31–33 Hydrogel macroporosity (i.e., large, often 

interconnected disruptions in the pores macrostructure) can drastically increase surface 

area of the gel as well as magnetic compressibility.35,49It was shown by Zhao et al.49that a 

A B C
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freeze-drying method could be used to generate macroporous ferrogels and that the 

macropores of the ferrogel could be controlled by the temperature at which the gel was 

frozen.  

Regarding porosity, the incorporation of iron oxide particles into the hydrogel 

matrix required to endow the hydrogel with magnetic responsiveness has been shown to 

decrease the porosity of the ferrogels. For both ferrogels that rely on magnetic 

heating/agitation vs. deformation/aggregation/alignment, this change in porosity certainly 

impacts release characteristics. Specifically, for magnetically deformable hydrogels, 

higher concentrations of iron oxide reduces hydrogel porosity, thus reducing magnetic 

deformability, thus reducing the amount of drug released when the gel is magnetically 

deformed.35  However, despite this, increased concentrations of iron oxide may provide 

more magnetic force generation on the ferrogel, thus enhancing magnetic deformability. 

Thus, iron oxide concentration is associated with two competing parameters: (i) the 

ability to exert magnetic force for deforming structures and (ii) the inability to deform 

structures due to changes in porosity and/or material stiffness.  For drug deliveries that 

rely on magnetic deformation, Cezar et al.35 demonstrated that optimal concentrations of 

magnetic particles exist for maximum deformation and drug delivery, with too low of 

concentrations not generating sufficient force and too high of concentrations resulting in 

gels that are too stiff. However, Cezar et al. went on to show that these competing 

parameters could be decoupled by partitioning a hydrogel into two regions: (i) a 

magnetic-particle-free region that can be designed to be as porous and deformable as 

possible and (ii) a magnetic-particle-laden region that can be densely packed with 

particles to generate maximum magnetic force. For delivery strategies involving 
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magnetic heating/agitation, while magnetic particle concentration likely impacts 

stimulated and unstimulated diffusion out of the hydrogel58, studies have mostly shown 

that increasing magnetic particle concentration increases the degree of heating/agitation, 

and thus enhances stimulated drug release.37,38,59Magnetic particle concentration also 

impacts the nature by which magnetic fields penetrate and/or are absorbed within the 

hydrogel structure. In a study conducted by Liu et al.60 on controlled permeation of drug 

from ferrogels, sensitivity of PVA-based ferrogels to magnetic fields were studied in 

terms of permeability coefficient (P) and partition coefficient (H). Results showed that 

for optimum magnetization there is a critical parameter of free volume per nanoparticle 

that needs to be met. For their particular gel system, they found 17-34% iron oxide in 

PVA ferrogels was necessary for optimal magnetic sensitivity. 

For both magnetic heating/agitation- and magnetic deformation-based delivery 

strategies, magnetic particle size also impacts release characteristics. For magnetic 

heating, the use of particles smaller than 20 nm reduces eddy currents which in turn 

restricts the heating of the particles.23  Therefore, traditionally, SPIONs with diameters 

between 5-28 nm are used as they heat most efficiently when exposed to AMFs in the 

radio-frequency range (i.e., 100s of kHz), which are simple and relatively inexpensive to 

produce.61 For magnetic deformation-based drug delivery strategies, magnetic particle 

size also plays a key role in determining delivery characteristics. For example, it was 

shown that when subjected to the same graded DC magnetic field, ferrogels made with 

smaller iron oxide particles (less than 50 nm particle size) had significantly lower 

deformation and drug delivery capabilities compared to ferrogels made with larger iron 

oxide particles (less than 5 µm in size).35 Thus, if heating/agitation is desired, 



27 

nanoparticle-sized SPIONs are desirable whereas if force/deformation is desired, larger 

(or aggregated) magnetic particles are desired.  

Beyond material parameters, the parameters associated with the applied magnetic 

field itself play a key role in influencing magnetically stimulated release. Specifically, the 

amplitude, gradient, frequency, proximity, and directionality of the magnetic field can 

impact release profiles from ferrogels. Higher amplitudes can generate more magnetic 

heating/agitation and/or more force generation38,62, though when using larger, 

ferromagnetic particles the gradient of the magnetic field is more critical than the 

amplitude per se. Certainly, proximity of the magnetic source impacts both the amplitude 

and relative gradient of the magnetic signal, so placement of the ferrogel relative to the 

magnetic source is a critical consideration.  

Regarding frequency, its impact on release can be quite complex. At relatively 

low frequencies, graded magnetic fields can efficiently exert forces on ferromagnetic 

particles, thus regulating retention and release characteristics in a number of manners (see 

Section 2.2).2,49–57,63  Kennedy et al.63 demonstrated that even at these relatively low 

frequencies (1 – 550 Hz), the frequency of magnetic stimulation could be used to regulate 

the rate of drug release from magnetically deformable ferrogels. Specifically, it was 

demonstrated that molecules did not efficiently release from ferrogels at too low or high 

of frequencies, but rather, optimally released at some middle frequency (depending on the 

how the molecule interacted with the hydrogel matrix). This was explained in terms of (i) 

low frequencies infrequency purging molecules from the gel structure but (ii) high 

frequencies not efficiently deforming the gel structure due to exceeding the mechanical 

resonance of the gel. Thus, a given molecule will exhibit a release rate vs. frequency 
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signature and that different molecules exhibit different release rate vs. frequency 

signatures. At higher frequencies (< 100 kHz), SPIONs can efficiently adsorb energy 

from AMFs, resulting in a number of different means to thermally or agitatedly engender 

release.2,37–43,47,48,64 However, there is a strong relationship between the frequency of 

magnetic stimulation, the size and type of the SPION, and the efficiency of AMF 

absorption.40,65,66 For example, for a Fe3O4 SPION of a given diameter, its heating is a 

function of AMF frequency, being optimally resonant at a specified frequency. This 

heating vs. frequency signature is different for different sizes and types of SPIONs, but 

generally, larger SPIONs are more efficiently heated at AMFs with longer wavelengths 

(i.e., lower frequencies) and smaller SPIONs are more efficiently heated at AMFs with 

shorter wavelengths (i.e., higher frequencies).  

Finally, the orientation or directionality of the applied magnetic field can impact 

release characteristics. For example, hand held magnets can align or move magnetic 

particles in specified directions based on the field lines emanating from the magnet 

(which is, in turn, based on the way the direction that the magnetic is oriented/held). This 

orientation/alignment can lead to aggregation of the particles or compression of the gel 

matrix in specified directions. This can greatly impact release. For instance, when using 

the system described in Figure 6,55 orientation of the magnet such that the magnetic 

PDMS disk (yellow on schematic) is pulled downward would result in tightening of the 

seal, restricting drug release. Only when pulled upwards would this system provide 

release. Likewise, for a biphasic ferrogel,35 orientation of the magnet gradient must result 

in pulling the iron-oxide-laden region of the gel against the soft, deformable region to 
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appreciably trigger drug release. If the magnetic gradient is aligned otherwise, the iron-

oxide-laden region will not deform the deformable region, thus limiting drug delivery.  

 

2.4       Perspectives on generating temporally complex drug delivery profiles using 

magnetically responsive hydrogels 

2.4.1 Introduction 

While the section above outlines the many number of parameters that can 

influence magnetically triggered release, this parametric abundance provides a wealth of 

strategies for customizing release properties and uncovers the potentiality of generating 

more complex delivery profiles using magnetic fields. The ability to generate more 

complex delivery profiles (e.g., temporally dynamic deliveries that change vs. time and 

delivery profiles that involve more than one drug such as sequential deliveries) is 

pervasively required in modern medicine. Illnesses and injuries are often associated with 

the interruption or distortion of natural sequences of biological events. Thus, 

therapeutically regulating these sequential biological processes requires sequentially 

delivering multiple bioactive therapeutics with the proper dosing, timing, and 

sequence.29,67–70 Beyond sequential deliveries for therapeutic control over sequential 

biological processes, the temporal profile of single drug deliveries can be critical for 

optimizing therapeutic outcome. For example, chronotherapies involve pulsing the 

delivery of anticancer drugs to increase drug concentration when the tumor is 

metabolically active and to decrease it when not metabolically active.29,67,71,72  These 

pulsatile delivery profiles can also help prevent the tumor from developing an adaptive 
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resistance to the anticancer drugs.73,74 Thus, strategies must be developed to generate 

temporally complex delivery profiles (i.e., pulsed deliveries) and multi-drug, sequential 

delivery profiles. This section will explore existing strategies for obtaining these types of 

deliveries and propose potential strategies for obtaining these deliveries moving forward.  

 

2.4.2 Existing strategies   

A key advantage to using magnetically responsive hydrogels is that a magnetic 

field can be applied at times when changes in the delivery profile are desired. Simply put, 

changes in delivery profile can be regulated in an on-demand manner. Therefore, 

magnetically responsive hydrogels are theoretically capable of generating temporally 

complex delivery profiles such as pulsatile deliveries. In a study done by Hu et al,43 the 

pulsatile release of vitamin B12 from a gelatin ferrogel was investigated. Ferrogels were 

exposed to5-minute high-frequency magnetic field (HFMF) pulses with 180 minutes of 

no magnetic field in between each stimulation. A burst increase in the release rate was 

observed during each stimulation period (Figure 7). However, a gradual reduction in the 

release rate was observed over time. 
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Figure 0.7. Pulsatile drug release rate from gelatin loaded with iron oxide nanoparticles 

(40 nm in diameter) under 5 minute period of HFMF every 180 minute. Figure taken from Hu et 

al.43 

 

 

Elsewhere, Satarkar et. al64 also demonstrated pulsatile delivery of vitamin B12 

from (NIPAAm)-based ferrogels. The results showed approximately 6 times increase in 

the release upon AMF magnetic stimulation for 10 minutes every 20 minutes. Again, 

however, while a pulsatile delivery profiles was achieved, a gradual decrease in release 

rate was observed over time upon subsequent pulsing (Figure 8). This may have been due 

to a short recovery period of 20 minutes where the gel structure doesn’t have enough time 

to recover and stay collapsed, thus, limiting diffusive release over time. 
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Figure 0.8. Release of Vitamin B12 from the nanocomposite upon application of AMF (F). 

% represents particle loaded by weight in nanocomposite. (N=3±SD). Figure copied from 

Satarkar et al.64 

 

In another study by Emi et al.,75 magnetically deformable alginate hydrogels were 

used to generate pulsatile mitoxantrone delivery profiles. However, in this study, pulsatile 

profiles were produced that were specifically similar to those demonstrated to be highly 

effective in killing melanoma cells in vitro (one 1-hr pulse of increased mitoxantrone per 

day for 3 days). This required generating pulsatile delivery profiles over days rather than 

hours. However, just as in the studies described above,43,64 over the course of these 3-day 

experiments, the amount of drug released during magnetic stimulation significantly 

decreased each day, resulting in pulsatile delivery profiles with diminishing pulse 

heights. However, to compensate for this, Emi et al. used higher frequencies of magnetic 

stimulation on subsequent days to maintain delivery rates. This progressive increase in 

frequency resulted in pulsatile delivery profiles with uniform pulse heights (Figure 9A).  
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Figure 0.9. A) Demonstration of pulsatile mitoxantrone delivery profiles using magnetic 

stimulation. Adapted from Emi et al. 75   B) Demonstration of sequential delivery of two model 

drugs (dextrans: lower affinity in blue, higher affinity in red) vs. time. Adapted from Kennedy et 

al. 63  

 

 

As mentioned above, generation of multi-therapeutic, sequential delivery profiles 

is also critical in directing biological processes pertinent to injury and disease. While 

little work has been done in using magnetically responsive hydrogels to achieve these 

types of complex delivery profiles, Kennedy et al. 63 demonstrated that different 

molecules with different affinities to a ferrogel’s matrix exhibited different release rate 

vs. frequency (1 – 550 Hz). For instance, this study demonstrated that a dextran with a 

lower affinity to the alginate ferrogel preferentially released from the ferrogel when 

stimulated at 1 Hz, whereas a dextran with a higher affinity preferentially released when 

stimulated at 20 Hz. Thus, a sequential delivery profiles was achieved by first triggering 

the low affinity dextran to release by stimulating at 1 Hz at earlier time points, followed 

by triggered release of the high affinity dextran when stimulating at 20 Hz at later time 

points (Figure 9B).  In another study by Tolouei et al.,76 a dual compartment biomaterial 

system was introduced that was composed of a gelatin outer compartment surrounding a 
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ferrogel inner compartment. This study went on to demonstrate that the outer 

compartment could initially release pro-inflammatory cytokines and the inner ferrogel 

could delay the delivery of anti-inflammatory cytokines (until magnetically triggered to 

do so). This 2-copartment biomaterial system was thus capable of generating sequences 

of pro- and anti-inflammatory cytokine deliveries using the timing of the magnetic 

stimulation to control the duration between these two deliveries.  

 

2.4.3 Prospective strategies  

Despite the importance of developing biomaterials capable of with temporarily 

complex, multi drug delivery capabilities, there are only a limited number of examples of 

magnetically responsive systems demonstrating this ability (section 4.2).  However, as 

mentioned above, there are a wealth of tunable parameters that may be employed in 

future studies that may enable the production of these more complex deliveries. For 

instance, the location, direction, and/or shape of the applied magnetic field could be used 

to independently trigger specified release events if a ferrogel is constructed in a 

compartmentalized manner. If different magnetically compressible compartments are 

loaded with different drugs (Figure 10A, i: Drugs A (red), B (blue), and C (green)) then 

an appropriately shaped magnet can be used to only trigger release from a targeted 

compartment (Figure 10A, ii: only the compartment containing drug B (blue) is 

compressed). Likewise, the compartments containing drugs A and C can be triggered at 

on-demand timepoints. This system could coordinate complex delivery profiles involving 

all three drugs.  Similar arrangements could also be used to control not only the 

selectivity of which drug is being delivery and when, but also some degree of control 
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over the directionality of drug delivery. For example, if the gel is compartmentalized in a 

way where different compartments will be deformed when a magnetic is applied from 

different directions (Figure 10B), then the directionality of drug release can be 

magnetically regulated. This compartmentalized approach can be applied to membrane 

reservoir system as described in Section 2 of this chapter as well to achieve control over 

multiple drug deliveries.  

 

 

Figure 0.10. A) Illustration of a 3-compartment system for independently triggered deliveries of 3 

different drugs. B) Illustration of a compartmentalized hydrogel that can deform, releasing drugs 

in different directions, depending on from what direction the magnet is applied. 

 

Another way by which magnetic control over multiple deliveries can be achieved 

is to combine independent mechanisms to independently trigger release. That is, high-
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frequency AMFs typically trigger release by heating or physical agitation or disruption 

and most efficiently influence nano-scale SPIONs. Low-frequency, graded magnetic 

fields typically trigger release by exerting forces on or aggregating relatively large 

magnetic particles embedded in the gel. A hydrogel can potentially be constructed by 

combining these separate elements. One drug (Figure 11, i: red dots) can be loaded into a 

region of the gel that can deform in response to a graded, low-frequency magnetic field, 

and a second drug (Figure 11, i: orange lines in blue bubbles) can be loaded into 

structures that heat, melt, or are disrupted by high-frequency AMFs. Thus, an AMF can 

be used to independently trigger release of one drug (Figure 11, ii: orange payloads 

released from blue bubbles) and DC graded magnetic fields can be used to independently 

trigger release of the other drug (Figure 11, iii: deformation and release of red dots).  

 

 

Figure 0.11. Illustration of hydrogel system with the ability to release different drugs when 

stimulated using different magnetic signals. 

 

Finally, when using SPIONs and AMFs, the efficiency of 

heating/agitation/disruption is dependent on both the frequency of the AMF and the 

diameter of the SPION. As mentioned before, generally, smaller SPIONs are more 

efficiently influenced by higher frequency AMFs whereas larger SPIONs are more 

efficiently influenced by lower frequency AMFs. This can be exploited in a system where 
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different structures containing different drugs are preferentially disrupted at different 

frequencies. Specifically, structures/depots containing drug 1 can be integrated with 

smaller SPIONs that preferentially respond to higher-frequency AMFs (Figure 12, 

bubbles decorated with small black dots, containing red drug). Other structures/depots 

containing a different drug can be integrated with larger SPIONs that preferentially 

respond to lower-frequency AMFs (Figure 12, bubbles decorated with larger black dots, 

containing blue drug). Therefore, when stimulated using a relatively low-frequency 

AMF, the structures decorated with larger SPIONs will preferentially be disrupted, 

releasing their payloads (Figure 12, middle). When stimulated using a relatively high-

frequency AMF, structures decorated with larger SPIONs will preferentially release their 

payloads (Figure 12, left).  

 

Figure 0.12. Illustration of system containing drug depots that differentially respond to AMFs of 

different frequencies. This enables frequency-dependent control over what drug is being delivered 

when.
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3.1       Abstract 

While inflammation can be problematic, it is nonetheless necessary for proper 

tissue regeneration. However, it remains unclear how the magnitude and duration of the 

inflammatory response impacts regenerative outcome. This is partially due to the 

difficulty in temporally regulating macrophage phenotype at wound sites. Here, a 

magnetically responsive biomaterial system potentially capable of temporally regulating 

macrophage phenotypes through sequential, on-demand cytokine deliveries is presented. 

This material system is designed to (i) rapidly recruit proinflammatory macrophages 

(M1) through initial cytokine deliveries and (ii) subsequently transition macrophages 

toward anti-inflammatory phenotypes (M2s) through delayed, magnetically triggered 

cytokine release. Here, the ability of this system to initially deliver proinflammatory 

cytokines (i.e., monocyte chemoattractant protein-1 and interferon gamma), recruit, and 

harbor an expanding macrophage population, and delay deliveries of anti-inflammatory 

cytokines (i.e., IL-4 and IL-10) until the application of magnetic fields from simple hand-

held magnets is demonstrated. Critically, the timing and rate of these delayed deliveries 

can be remotely/magnetically controlled. This biomaterial system can provide a powerful 

tool in (i) understanding the relationship between inflammation and regenerative outcome, 

(ii) developing optimized cytokine delivery strategies, and (iii) clinically implementing 

those optimized delivery strategies with the on-demand versatility needed to alter the 

course of therapies in real time. 

 



51 

3.2       Introduction 

It has been estimated that 1 to 2% of the population in developed countries will 

experience a chronic wound over their lifespan.[1] Occurrence of chronic wounds are 

particularly common in growing elderly populations and those who are suffering from 

diabetes and obesity.[2] While there are several phases in wound healing (i.e., coagulation, 

inflammation, proliferation, and remodeling),[3–6] chronic wounds are typically the result 

of prolonged and/or uncontrolled inflammation.[2,7]  Despite this, inflammation is an 

indispensable step in the wound healing process and sets the stage for proper regeneration 

by staving off infection, clearing the wound site of debris, and recruiting cells to the 

wound that play critical roles in tissue remodeling and re-vascularization.[3,6,8,9]  In fact, 

studies have shown that suppressing the inflammatory response actually hinders proper 

wound healing.[4,10] Macrophages play a key role in regulating the inflammatory response 

and in directing the transition to later stages of the wound healing process.[11–17]  We and 

others believe that regulating the time at which macrophages transition from coordinating 

an inflammatory response (Figure 1.a, Phase 1 (red)) to coordinating later pro-healing 

stages of the wound healing process (Phase 2 (blue)) may be key to understanding the 

role of inflammation in wound healing and in developing improved treatment 

strategies.[18–20] For example, it is apparent that proper healing requires an inflammatory 

phase that eventually transitions into anti-inflammatory, pro-healing phases.[21,22] 

However, it remains unknown how the duration of this inflammatory phase (Tih) impacts 

or can be used to optimize wound healing outcome. Moreover, optimal durations are 

likely different for different wounds and for different patients. This motivates the need 

for biomaterials that enable flexible control over the duration of this inflammatory period, 
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as both an investigative and clinical tool.  

Here, we propose a biomaterial system designed to deliver immunomodulatory 

cytokines in a manner that can potentially regulate the inflammatory period’s duration in 

a flexible and on-demand manner. The inflammation phase can be initiated by 

establishing a population of pro-inflammatory M1 macrophages through the delivery of 

proteins that recruit macrophages and polarize them towards M1 phenotypes (Figure 1.b, 

M0 to M1): for example, Monocyte Chemoattractant Protein-1 (MCP-1),[23,24] and 

Interferon Gamma (IFN-γ).[25] Transition from inflammatory to healing phases requires 

establishing a population of anti-inflammatory M2 macrophages (e.g., alternatively 

activated M2a, Mb, and Mc phenotypes). This can be triggered through the delivery of 

other proteins at the wound site: for example, Interleukin-4 (IL-4),[26,27] and Interleukin-

10 (IL-10),[26,27] (Figure 1.b, M0/M1 to M2).  
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Figure 0.1. Regulating the inflammatory period requires initial delivery of pro-inflammatory 

cytokines followed by delayed delivery of anti-inflammatory cytokines. (a) Schematic describing 

the cytokines that regulate the inflammation phase (I, red) and healing phase (II, blue). (b) 

Schematic describing how M0 macrophages can be polarized into M1 (Pro-inflammatory) and/or 

M2 (Anti-inflammatory) phenotypes when exposed to different cytokines.  (c) Illustration of the 

desired cumulative release profile: initial release of macrophage recruitment and pro-

inflammation cytokines (red), followed by delivery of anti-inflammatory cytokines (blue). (d) 

Illustration of the proposed biomaterial system (top) with illustration key (bottom). 

 

Thus, it may be possible to regulate the duration of the inflammatory response 

(Tih) through initial deliveries of pro-inflammatory cytokines, such as MCP-1 and IFN-γ 

(Figure 1.c, red curve), followed by delayed deliveries of anti-inflammatory cytokines, 

such as IL-4 and/or IL-10 (Figure 1.c, blue curve). Here, we will describe a two-
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continue until, (iii) a magnetic gradient is applied that deforms the inner compartment, 

releasing anti-inflammatory cytokines, which would (iv) direct macrophages to take on 

pro-healing phenotypes. Such a material system could enable control over the 

inflammatory period’s duration simply by applying a magnetic gradient (from simple 

hand-held magnets or electromagnets) at the time point at which one wishes 

inflammation to transition into an anti-inflammatory phase.   

 

3.3      Materials and methods 

3.3.1 Fabrication and imaging of the biomaterial system 

The outer compartment gelatin scaffolds used in these studies were purchased as 2 

x 12 x 7 mm GelFoam™ sponge sheets (Pfizer, Groton, CT) and cut into hollow disks (2-

mm tall, 8-mm OD, 4-mm ID) using 8-mm and 4-mm biopsy punches. Note that biopsy 

punches and GelFoam sponges were packaged sterile for cell experiments. Additionally, 

they were packaged in lyophilized form, allowing them to be sputter-coated (30 seconds 

in gold) and imaged under Scanning Electron Microscopy (SEM) on a Zeiss SIGMA VP 

Field Emission-SEM with cryogenic capability and Energy-dispersive X-ray 

Spectroscopy (EDS) for elemental mapping.   

The inner ferrogel compartments were made similarly to those described in Cezar 

et al.[28] Briefly, alginate was dissolved in MES buffer (100 mM MES and 500 mM NaCl 

at pH = 6.0) containing HOBT and AAD crosslinker and was cast with iron oxide 

particles and EDC (100 mg mL-1) between two Sigmacote-treated glass plates that were 

separated by 2-mm spacers. During casting (~ 1 hour), a magnet was placed against one 
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glass plate as to pull the iron oxide particles towards one side of the gel, yielding a 

biphasic structure. Individual biphasic ferrogels were cut into 4 x 2 mm disks using a 

biopsy punch and then washed in 50 mL deionized water for 3 days (with water being 

exchanged twice a day) so that they would fully swell and become void of residual 

reagents. Ferrogels were then frozen at -20 ºC overnight and lyophilized. Lyophilized 

ferrogels were prepared for imaging by cross sectioning them using a sharp razor, sputter-

coating in gold, and imaging as described above for the outer gelatin scaffolds.  

3.3.2  Macrophage recruitment studies 

 In their culture flasks, RAW 264.7 mouse macrophages were rinsed in PBS, 

resuspended in fresh DMEM, scraped off, collected, and plated at 10,000 cells per well 

on sterile 12-well plates. Macrophages were submerged in serum-containing DMEM and 

allowed to grow for 24 hours. A sterile gelatin scaffold (cut into a hollow disk) was then 

placed on top of the 2D culture in well plates (fully submerged in media) and left to 

recruit macrophages for 10 days. Macrophage-populated gelatin scaffolds were analyzed 

by fixing them in 4% PFA for 10 minutes and washed for 5 minutes in PBS, 3 times.  

Scaffolds were then soaked in a 0.2% Triton X-100/PBS solution for 5 minutes to 

permeabilize cell membranes, then washed for 5 minutes in fresh PBS, 3 times. 

Macrophage nuclei were DAPI-stained by soaking scaffolds in a 2 μg/mL solution of 

DAPI in PBS for 5 minutes and then washing for 5 minutes in fresh PBS, 3 times. Finally, 

macrophage actin cytoskeletons were stained by soaking scaffolds in a 0.5 μg/mL 

solution of FITC-phalloidin in PBS for 5 minutes and then washing for 5 minutes in fresh 

PBS, 3 times.  

3D fluorescent image reconstructions were obtained by taking a green/blue 
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confocal slice every 10 μm from the bottom of the scaffold to a depth of 170 μm within 

the scaffold using a Nikon TE2000E inverted confocal microscope and its associated 

NIS-Elements software package. Macrophage cell density counts were taken by inverting 

the gels in a fresh 12-well plate so that the top of the gels faced down against the plate. 

Well plates were then loaded into a BioTek Cytation 3 Cell Imaging Multi-Mode Reader 

which was set to capture a blue-channel image 200 μg into the scaffold (which was 1800 

μm away from the side of the scaffold originally near the 2D macrophage culture). 

BioTek Gen5 software was used to quantify DAPI-nuclei count from these blue-channel 

images.  

3.3.3 Magnetic stimulation of ferrogels 

Ferrogels were magnetically stimulated using 0.5” x 0.5” x 0.5” (1.32 x 1.32 x 

1.32 cm) cylindrical neodymium magnets (K&J Magnetics, Pipersville, PA) that were 

integrated into a custom stimulation apparatus that enabled repetitive and prolonged 

magnetic field exposures. The custom stimulation apparatus consisted of an array of 

cylindrical neodymium magnets place on the teetering edge of a variable-speed 

laboratory rocker’s platform (4 magnets on one edge and 4 on the opposite edge, see 

MovieS2 in supporting information).  This arrangement allowed 8 magnets to oscillate up 

and down (proximally and distally to 8 ferrogel samples) at a rate prescribed by the 

rocker’s speed. These studies all utilized the maximum rate of 1.4 Hz (i.e., one magnetic 

compression every 0.71 seconds). Ferrogels were placed in Sigmacote-treated 

scintillation vials and suspended above our custom stimulation apparatus with aluminum 

clamps. This arrangement allowed ferrogel samples to be in close proximity to the 

magnetics when the magnets were raised (though the magnets did not physically touch 
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the vials) and far enough away from the magnets (~10 cm) when the magnets were 

lowered, allowing the ferrogels to fully compress and conform back to their original un-

compressed thickness between each cycle.  

3.3.4 Cytokine time course release studies  

Outer compartment gelatin scaffolds were unpacked and punched to shape in a 

lyophilized state. Thus, to load them with cytokine, concentrated solutions of protein 

were prepared and added dropwise directly to the dehydrated scaffolds. It was determined 

beforehand that when adding liquid to these scaffolds in this manner, they could fully 

absorb no more than 40 μL of solution. Thus, when loading the scaffolds, concentrated 

solutions were prepared such that the desired amount of protein to be loaded in the 

scaffold be contained in 40 μL volumes (e.g., 1000 ng MCP-1 loading required 

preparation of a concentrated solution of 1000 ng MCP-1 in 40 μL of PBS). So, scaffolds 

were placed in Sigmacote-treated scintillation vials (to limit protein adsorption to the 

surfaces of the vials) and loaded dropwise with concentrated protein solutions (MCP-1 or 

IFN-γ, prepared at concentrations as described above). Scintillation vials were then 

capped and the scaffolds were left overnight at room temperature to fully absorb the 

protein. Time-course release studies began after overnight protein absorption when 

scaffolds were submerged in 1 mL PBS with 1% BSA (t = 0). 1 mL samples were 

collected periodically from the vials and reserved for analysis by freezing in 1.5 mL 

centrifuge tubes. After sample removal, fresh 1 mL of PBS with 1% BSA was gently 

added back to the vial until the next sample was taken. After all samples were collected 

(168 hours), they were thawed and quantified for cytokine content using ELISA.  

 



58 

Release studies from ferrogels followed a similar procedure. As described above, 

ferrogels were prepared with the final step being lyophilization, thus producing 

macroporous and dehydrated samples. Dried ferrogels were placed in scintillation vials 

with the Fe3O4-free region facing up. It was determined beforehand that when adding 

liquid to these ferrogels that they could fully absorb no more than 20 μL of solution. 

They were therefore loaded using desired weights of protein dissolved in 20 μL of PBS 

(e.g., 1000 ng IL-4 in 20 μL PBS). Ferrogels were left to absorb the protein overnight in 

capped vials. Ferrogels were then rinsed in PBS with 1% BSA for 3 days to remove 

excess unincorporated protein, which reduced unstimulated baseline release.  Ferrogels 

were then periodically sampled as described with the gelatin scaffolds, with sample 

media being fully removed and replaced with fresh media at each timepoint. Collected 

samples were quantitatively analyzed for IL-4 or IL-10 release using ELISA.  

3.3.5 Statistical analyses  

All quantitative data presented in this communication are represented as a mean ± 

standard deviation with 4 replicates (N = 4).  Because only one-to-one statistical 

comparisons were made in this study (i.e., no multiple comparisons), student t-tests (two-

tailed distributions, heteroscedastic) were used to calculate p-values with p < 0.05 being 

our benchmark for significance (Microsoft Excel).  

3.4       Results and discussion 

This two-compartment biomaterial system comprises an outer gelatin scaffold and 

an inner biphasic ferrogel (Figure 2.a). The outer compartment exhibited an 

interconnected macroporous structure designed to permit rapid cell infiltration (Figure 
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2b). Also, by virtue of being made from gelatin (a hydrolyzed form of collagen), this 

gelatin scaffold presents binding motifs for cell binding, motility, and spreading.[28,29] For 

the inner compartment, we utilized a biphasic ferrogel with an Fe3O4-laden region on the 

top half of the cylindrical gel and an Fe3O4-free, porous, and deformable region on the 

bottom (Figure 2.c).  

 

 

Figure 0.2. Two-compartment biomaterial system comprises a magnetically responsive biphasic 

ferrogel nested within an outer macroporous gelatin scaffold. (a) Photographs of the 2-

compartment biomaterial system at an angle (top) and from the top (bottom). (b) Cross-sectional 

photograph (i) and SEM micrographs (ii) of the outer porous gelatin compartment. (b) Cross-

sectional photograph (i) and SEM microgarphs (ii) of the inner biphasic ferrogel compartment. 

Elemental map reveals the location of iron (red) and carbon (yellow-green). 
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Figure 0.3. The outer macroporous gelatin scaffold can recruit and harbor macrophages and can 

rapidly release pro-inflammatory cytokines. (a) Schematic detailing how macrophages were 

recruited to the gelatin scaffold and where in the scaffold different images and measurements 

were taken. (b) Left: 3D z-stack detailing DAPI- (blue) and Phalloidin- (green) stained 

macrophages in the bottom 170 μm of the scaffold on day 5. Right: collage image of DAPI-

stained macrophages (blue) taken 1800 μm from the bottom of the gel (200 μm from the top). (c) 

Quantification of macrophage density vs. time recorded 1800 microns from the bottom of the 

scaffold. (d) Cumulative release vs. time for scaffolds loaded with 1000 ng (solid) and 100 ng 

(dashed) of MCP-1. (e) Cumulative release vs. time for scaffolds loaded with 1000 ng (solid) and 

100 ng (dashed) of IFN-γ. Inset: zoomed-in cumulative release vs. time for scaffold loaded with 

100 ng IFN-γ. Parts (c)-(e), N = 4.   

 

 

These biphasic ferrogels were designed to efficiently deform in the presence of a 

graded magnetic field (i.e., in the presence of fields emanating from simple hand-held 
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magnets or electromagnets). When magnetically deformed, these gels would release 

molecular payloads stored in the Fe3O4-free region in a magnetically triggered manner. 

The particular ferrogel formulation adopted here (1 wt% alginate, 7 wt% Fe3O4, 2.5 mM 

adipic acid dihydrazide cross-linked, freeze-dried at -20ºC) was previously shown to be 

optimal in terms of providing magnetically triggered deliveries.[30,31]  

The outer porous gelatin scaffold was designed to provide initial deliveries of pro-

inflammatory cytokines and to recruit and permit the residence of macrophages. To test 

this compartment’s ability to recruit and establish macrophage populations, RAW 264.7 

macrophages were seeded at 10,000 cells per well in a 12-well plate on Day -1 and 

allowed to establish themselves for 24 hours as a 2-dimensional (2D) colony. Then (at 

Day 0), gelatin scaffolds (compartment 1, Figure 2.b) were placed on top of 2D 

macrophage colonies and left for 10 days so that macrophages could infiltrate the volume 

of the scaffold (Figure 3a). On Day 5, some scaffolds were removed, fixed, and stained 

for f-actin (FITC-Phalloidin) and nuclei (DAPI), revealing that macrophages had 

infiltrated and spread within the bottom volume of the gel (Figure 3.b (left) and 

MovieS1.mov in Supporting Information). Also, by Day 5, some Macrophages had 

reached the top of the gel (Figure 3.b (right))). DAPI-stained macrophages residing 1800 

μm from the bottom of the gel (i.e., 200 μm from the top of the 2-mm gel) were 

quantified using fluorescence microscopy on days 5 and 10 (Figure 3.c). This 

demonstrated that the macrophage populations could establish themselves and increase in 

population through the volume of these scaffolds over the course of 10 days in vitro. It 

must be noted that these in vitro studies utilized RAW macrophages which are more 

proliferative than the native macrophages that would be recruited to this material in vivo. 
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Thus, there is no way of knowing if macrophage population increase vs. time is due to 

migration through the material, proliferation, or some combination thereof. Additionally, 

the cell densities vs. time observed here (Figure 3.c) are likely higher than what would be 

expected in vivo. However, to enhance macrophage populations, these scaffolds could 

also be loaded with cytokines that could potentially expedite macrophage recruitment, as 

well as polarize them towards M1 phenotypes at early timepoints after implantation (e.g., 

MCP-1 and IFN-γ, respectively). These cytokines released rapidly at early time points 

(Figure 3.d & 3.e) due to excess cytokine being added to the outer compartment without 

rinsing off that excess cytokine prior to use. The total amount of cytokine delivered could 

be dictated simply by loading the scaffold with more or less cytokine (Figure 3.d & 3.e, 

comparing solid and dashed curves). Independent of loading, pro-inflammatory cytokine 

release ceased after roughly 12 hours (Figure S1), well before the times at which 

magnetic stimulation would be applied to trigger subsequent deliveries of anti-

inflammatory cytokines.  
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Figure 0.4. The inner ferrogel compartment can produce delayed, magnetically triggered anti-

inflammatory cytokine delivery profiles. (a) Illustration (left) and photographs (right) of a 

biphasic ferrogel before (top) and during (bottom) magnetic compression. (b) Schematics of the 

two magnetic stimulation profiles used in these studies: (top, green) a cyclic magnetic field of 1.4 

compressions per second continuously over 3 hours and (bottom, red) the same exposure but 

pulsed so that gels are cyclically compressed for 5 minutes every hour. (c) Amount released after 

3 hours of stimulation profile A (green) vs. B (red). (d) Cumulative IL-4 release vs. time from 

ferrogels that were either magnetically stimulated on day 3 (dashed) or day 5 (solid). (e) 

Cumulative IL-10 release vs. time from ferrogels that were magnetically stimulated on days 4, 5, 

and 6. (f) Release rates over the indicated times when magnetically stimulated (red) vs. 

unstimulated (gray). For parts (c)-(f), ** and *** indicate statistically significant differences with 

p < 0.01 and 0.001, respectively (N = 4). 

 

The inner compartment of this biomaterial system (Figure 2.c) was designed to 

provide delayed, on-demand, and magnetically triggered delivery of anti-inflammatory 

cytokines (e.g., IL-4 and IL-10). These biphasic ferrogels were designed so that cytokines 

could be loaded in their Fe3O4-free regions and released in earnest when magnetic 

gradients were used to compress the Fe3O4-free regions (Figure 4.a, white region of 

ferrogel compresses when a hand-held magnetic is subjacently applied). See 
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MovieS2.mov in Supporting Information for a movie of a biphasic ferrogel being 

magnetically compressed repeatedly at 1.4 Hz. Cytokine release rates prior to magnetic 

stimulation were kept at low levels by thoroughly rinsing ferrogels, as to remove excess 

cytokines that were not well-incorporated. Additionally, cytokine retention prior to 

magnetic stimulation was likely aided by the use of alginate as the polymeric constituent 

of these ferrogels. Alginate is heparin-mimicking, and heparin is known to bind strongly 

to a wide variety of cell-secreted proteins. In these studies, magnetic gradients were 

applied over the course of 3 hours, but with different temporal profiles (Figure 4.b): (i) 

one where a magnetic gradient was applied at a rate of 1.4 Hz continuously over 3 hours 

(Stimulation Profile A, top, green) and (ii) one where a magnetic gradient was applied at 

a rate of 1.4 Hz intermittently, lasting for 5 minutes every hour for 3 hours (Stimulation 

Profile B, bottom, red). The intermittent Profile B actually yielded higher rates of 

cytokine delivery compared to the continuous Profile A (Figure 4c). This is possibly due 

to the fact that magnetic compression results in release of molecules primarily contained 

in the macropore space and not contained in the gel’s matrix (note that the Fe3O4-free 

region of these ferrogels are highly macroporous (Figure 2.c)). Thus, continuous 1.4 Hz 

stimulation (Profile A) may initially purge these more available molecules from the pore 

space but may prohibit the molecules in the gel from equilibrating (i.e., molecules that 

were purged from the macropore space cannot be replaced by molecules contained in the 

matrix space due to constant 1.4 Hz gel compression). This would result in a relatively 

low rate of release when averaged over 3 hours. However, intermittent stimulation (i.e., 

Stimulation Profile B) likely permits this re-equilibrium of molecules in the 1 hour 

between subsequent magnetic compressions, resulting in a distribution of molecules from 
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the matrix to the pore space. When magnetic stimulation continues, these relocated pore-

space-molecules are efficiently purged. This may result in higher release rates when 

averaged over 3 hours. While these dynamics are outside the scope of this study, 

Stimulation Profile B has significant practical advantages in that it both produces higher 

rates of release and would be easier to implement in vivo. That is, 5 minutes of 1.4 Hz 

stimulation every hour can be implemented by manually brining a hand-held magnet 

close to the implant site whereas 3 hours of continuous 1.4 Hz stimulation could be tiring 

if performed manually. Nevertheless, neither magnetic stimulation profile resulted in 

statistically significant changes in gel mechanics (Figure S2), suggesting that magnetic 

stimulation does not overly damage the gels. This leaves open the possibility of 

magnetically stimulating at later time points for subsequent release busts.  

Even though, Stimulation Profile A produced lower rates of release than 

Stimulation Profile B, it was nonetheless sufficient to significantly impact an anti-

inflammatory cytokine’s release profile. When loaded with 500 ng of IL-10, ferrogels 

released baseline levels of IL-10 prior to day 3 but dramatically increased release rates on 

day 3 when stimulated using Magnetic Stimulation Profile A (Figure 4.d, dashed curve). 

If this delayed IL-10 release was desired on day 5 rather than 3, magnetic stimulation 

could be applied on day 5 rather than day 3 (Figure 4.d, solid curve). This ability to 

control the time at which anti-inflammatories are earnestly released could provide a 

powerful tool for investigating how the duration of the inflammatory response impacts 

wound healing outcome. Magnetic stimulation can also potentially be used to repetitively 

deliver anti-inflammatory cytokines on subsequent days to prevent an inflammatory 

response from resurging. For example, when loaded with 1000 ng of IL-4, baseline levels 
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of IL-4 were released prior to magnetic stimulation. But, release rates were dramatically 

enhanced when stimulated on day 4 using Stimulation Profile B (Figure 4.e, compare 

slope of curve before 96 hours to the slope from 96 to 99 hours). The rate of IL-4 release 

could be subsequently enhanced on days 5 and 6 when magnetically stimulated on those 

days (Figure 4.e, enhanced slopes at 120 and 144 hours). These magnetically stimulated 

release rates on days 4, 5, and 6 were significantly higher than control gels upon which 

no magnetic stimulation was applied (Figure 4.f). These studies demonstrate our ability to 

control the timing and rate of these anti-inflammatory cytokine deliveries in an on-

demand, magnetically prescribed manner. 

The described biomaterial system could improve control over the inflammatory 

response in wound healing applications by locally regulating macrophage phenotype 

through carefully timed immunomodulatory cytokine deliveries. There is a growing 

preponderance of evidence suggesting that regulating macrophage phenotype vs. time is 

critical to achieving desired outcomes in wound healing and regenerative therapies,[32–36] 

and that sequenced deliveries of immunomodulatory cytokines can provide a means for 

this temporal regulation.[26,37] In fact, previous studies have designed scaffolding 

materials to release pro- and anti-inflammatory cytokines at different rates in an attempt 

to temporally control macrophage phenotype.[19,38–41] While these studies yielded 

promising results in their ability to influence macrophage phenotype in vivo, statistically 

significant improvements in regeneration were not observed (e.g., larger or more well-

organized vessels/tissues). This could have been due to the inability to explicitly alter and 

optimize the timing of different cytokine deliveries (i.e., having the delay time of anti-

inflammatory cytokines be a variable parameter between conditions). The biomaterial 
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system described here could enable explicit control over the timing of these deliveries, 

without having to alter the chemistry or structure of the implantable scaffold material 

between experiments. It should be noted, however, that with this material system’s 

current formulation, macrophages initially recruited to the outer compartment may be 

exposed to baseline levels of anti-inflammatory cytokines diffusing out of the inner 

ferrogel (Figure. 4.d & 4e, IL-10 and IL-4 release is non-zero prior to magnetic 

stimulation).  Even though magnetically stimulated release is significantly higher than 

diffusive release (Figure 4.d & 4.e, comparing slopes of curves with and without 

magnetic stimulation), if diffusive release establishes a bioactive concentration of anti-

inflammatory cytokines, macrophages may begin to polarize towards pro-healing 

phenotypes prior to magnetic stimulation. Thus, fine-tuning of the biomaterial system 

will be required so that rates of release prior to magnetic stimulation result in sub-

bioactive anti-inflammatory cytokine concentrations and release rates during magnetic 

stimulation result in bioactive concentrations. Such fine tuning can be achieved by 

modifying cytokine loading and ferrogel formulation (e.g., porosity, polymer 

concentration, polymer type, crosslinking density). Such a tuned biomaterial system will 

need to be tested in order to verify that this material system is capable of temporally 

regulating macrophage phenotype through magnetic stimulation.  

In sum, we have developed a biomaterial system capable of initially delivering 

pro-inflammatory cytokines (MCP-1 and IFN-γ) from a macroporous gelatin structure 

capable of facilitating macrophage infiltration and growth. The amount of inflammatory 

cytokine release was dependent on the amount of cytokine loaded in the structure. This 

biomaterial system was also integrated with a biphasic ferrogel that was capable of 
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delivering anti-inflammatory cytokines (IL-4 and IL-10) in a delayed and magnetically 

triggered manner, using common hand-held magnets. The rate of magnetically stimulated 

delivery could be regulated by using different magnetic stimulation profiles and the 

timing of delivery could be regulated simply by choosing when to apply magnetic 

stimulation. This biomaterial system thus has the potential to enable experimental 

investigations into how the rate and timing of pro- and anti-inflammatory cytokine 

deliveries impact biological process critical in wound healing applications. Finally, this 

material system could also provide the material means to therapeutically implement 

optimized sequential cytokine deliveries, while retaining a high degree of clinical 

adaptability by enabling real-time alterations in delivery profiles.  

 

Supporting Information: Appendix A 

Additional experimental details and supplemental figures are provided in 

Supporting Information in Appendix A. 
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4.1       Abstract 

Sequential protein release is required in regulating many biological processes that 

underlie injury and disease. A magnetically responsive dual-compartment biomaterial 

was therefore designed and successfully applied to provide on-demand sequential release 

of proteins relevant to specific therapies that would benefit from sequential release. The 

composition of this biomaterial system consists of a gelatin outer compartment and a 

ferrogel inner compartment. Three pairs of relevant proteins were incorporated in the 

biomaterial system: (1) Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF, 

a dendritic cell recruitment factor) and Heat Shock Protein 27 (HSP27, as a model cancer 

antigen) for use in cancer immunotherapy; (2) Vascular Endothelial Growth Factor 

(VEGF, an angiogenic sprouting factor) and Platelet Derived Growth Factor (PDGF, a 

factor that aids in maturing vascular sprouts) for tissue vascularization; and, (3) Stromal 

cell Derived Factor-1α (SDF-1α, a bone progenitor cell recruitment factor) and bone 

morphogenetic protein 2 (BMP2, a osteo-differentiation factor) for bone regeneration. It 

was demonstrated that proteins loaded in the outer compartment (GM-CSF, VEGF, SDF-

1α) released rapidly within the first 24 to 100 hours and that the amount released was 

dependent on how much protein was loaded in the compartment. timing and rate of 

release of these proteins can be controlled via magnetic stimulation. Proteins loaded in 

the inner ferrogel (HSP27, PDGF, BMP2) could be magnetically triggered to provide 

delayed enhancements in release rate where the timing (between days 1 and 8) and rate of 

release (0.2 to 1 ng/hr) were externally controlled through the temporal profile of magnet 

application and the frequency of that application.  This biomaterial system can be used to 

investigate how the timing and sequence of protein deliveries impacts the biological 
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processes that underlie cancer immunotherapy, tissue vascularization, and bone 

regeneration (and potentially in many other therapeutic areas) and can be used to 

experimentally optimize deliveries in these therapies. 

4.2       Introduction 

Hydrogels have been commonly used as biomaterials in drug delivery and tissue 

engineering applications due to their biocompatibility and versatility. 1–3 These drug 

delivery materials can potentially control important biological processes that need to be 

regulated to treat injury and disease. However, most biologies are sequential in nature 

and require sequential presentations of bio-instructive factors for proper regulation. For 

example, cancer is the second most common cause of death in the United States and 

accounts for nearly 1 of every 4 deaths.4 This emphasizes the necessity of finding 

effective cancer treatment strategies. One promising cancer treatment strategy is 

biomaterials-based immunotherapy in which the immune system of the patient’s own 

body is reprogramed in order to initiate an immunological attack against cancer cells.5–7 

In this approach, first, dendritic cells (DCs) need to be recruited to the biomaterial by 

releasing a DC recruitment factor (Factor I) (Fig 1.A.i, ii). Once a large number of DCs 

are resident in the biomaterial (Fig 1.A.iii), they can become activated when presented 

with a cancer antigen (Factor II) (Fig 1.A.iv). Activated DCs would then migrate out of 

the biomaterial towards lymph node (Fig 1.A.v), triggering an immunological attack 

against cancer. Therefore, sequential release of recruitment factor followed by release of 

activating factor could potentially improve control over regulating the biological 

processes pertinent to biomaterial-based cancer immunotherapies.  
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 Beyond cancer treatments, regulation of vascular growth can be of great potential in 

the treatment of different cardiovascular diseases (CVDs), which are the most common 

cause of death in the United States and worldwide.8 It has been reported that CVD was 

the main cause of more than 50% of deaths in 2010.9 Additionally, regeneration of tissues 

after surgery or injury often involves regulating the growth of new vascular networks.10–

12 Pericyte cells play a key role in vessel formation and presentation of several growth 

factors can regulate this process.13 For example,  growth of new blood vessels can be 

initiated by an initial presentation of angiogenic factors (Factor I) which instructs pericyte 

cells to detach from the endothelium of nearby vasculature. This detachment destabilizes 

the endothelium and allows small vascular sprouts to grow away from the existing blood 

vessel (Fig 1.B.i, ii). These nascent sprouts are thin, unorganized, and not mature enough 

to efficiently perfuse blood through them (Fig 1.B.iii). Hence, an additional maturation 

factor (Factor II) is subsequently released to recruit pericyte cells back to neovessels (Fig 

1.B.iv), which in turn helps neovessels mature into a thicker and more interconnected 

network (Fig 1.B.v). 
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Figure 0.1. Sequential delivery of multiple factors is essential for improved outcome in multiple 

therapies. A) Schematic showing how sequenced deliveries could be beneficial for biomaterial-

based cancer immunotherapy B) tissue vascularization and C) bone regeneration. 

 

Finally, sequential delivery of bio-instructive factors can be of potential value in 

regenerating bone tissues. Each year more than 6 million bone fractures occur in the 

United States, leading to approximately 900,000 patient hospitalizations.14 Biomaterial 

scaffolds can be promising substitutes for traditional autogenic and allogenic grafting 

since they can decrease the problems associated with donor site sensitivity, morbidity, 

and limited availability of these grafts.15,16 Bone regeneration also is naturally regulated 

by a sequence of growth factor presentations.17 First, osteoprogenitor cells need to be 

recruited to the scaffold by releasing a bone progenitor recruitment factor (Factor I) (Fig 

1.C.i, ii). After establishing a population of these progenitor cells in the biomaterial (Fig 
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1.C.iii), they can be differentiated down the osteogenic lineage by exposing them to a 

osteo-differentiation factor (Factor II) (Fig 1.C.iv). Differentiated bone cells would then 

start secreting their own robust bone matrix, which is a vital step in regenerating new 

bone tissues (Fig 1.C.v).Therefore, in order to better regulate these regenerative 

processes, sequential delivery of bone progenitor recruitment and differentiation factors 

is necessary. 

In previous studies, hydrogels were demonstrated to have sequentially protein 

release capabilities using formulations containing phases with different degradation rates. 

However, the timing between these two deliveries was not capable of being regulated 

after implantation or injection of these biomaterials.18–20 Additionally, these delivery 

profiles can more aptly be described as dual deliveries with different rates and not 

sequential release per se (i.e., on burst release followed by a second, delayed burst 

release). The biomaterial system presented here was specifically designed to provide 

sequential delivery profiles where there is an initial burst release of one factor followed 

by a magnetically triggered, delayed release of a second factor. This was achieved by 

composing the biomaterial with two compartments (Fig 2.A.i, ii). Compartment 1, 

initially releases Factor I and has a functionality to maintain recruited cells (Fig 2.A.iii, 

iv). Compartment 2 is capable of releasing Factor II in an on-demand manner when 

remotely stimulated with a magnetic field (Fig 2.A.v).  This study aimed to demonstrate 

the ability to generate these sequential delivery profiles for specific recruitment factors 

(GM-CSF, VEGF, SDF-1α) followed by magnetically triggered delivery of programming 

factors (HSP27, PDGF, BMP2) (Figure 2.B), which are relevant to regulating sequential 



82 

biologies in cancer immunotherapy, generation of new vascular networks, and in 

regenerating bone tissues, respectively (Fig 2.C).  

 

Figure 0.2. New Biomaterial system is designed to improve sequential delivery of several factors 

in an on-demand manner. A) Schematic of the multi-compartment biomaterial system shows how 

delivery of multiple factors can be accomplished in a controlled sequenced manner B) Desired 

cumulative release of factor I and II. C) Table shows different therapies and factors mediating 

these processes. 

 

4.3       Materials and methods 

4.3.1    Materials 

High guluronate content sodium alginate (Protonal LF 20/40) with molecular 

weight of ~ 250 kDa was provided by Pronova Biopolymers (Olso, Norway).  Other 

chemicals such as Adipic Acid Dihydrazide (AAD), 1-ethyl-3-(dimethylaminopropyl) 
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carbodiimide (EDC), compound 2-(N-morpholino)ethanesulfonic acid (MES), 1-

hydroxybenzotriazole (HOBt), iron (II,III) oxide powder (< 5 micron), Phosphate 

Buffered Saline (PBS), Sigmacote®, and Bovine Serum Albumin (BSA) were all 

purchased from Sigma-Aldrich (St. Louis, MO). Granulocyte Macrophage Colony 

Stimulating Factor (GM-CSF), Heat shock Protein 27 (HSP27), Vascular Endothelial 

Growth Factor (VEGF), Platelet Derived Growth Factor (PDGF), Stromal Cell-derived 

Factor 1-α (SDF-1α), Bone Morphogenetic Protein 2, and all Enzyme-linked 

Immunosorbent Assay (ELISA) kits and kit reagents were purchased from R&D Systems 

(Minneapolis, MN). Lyophilized gelatin sponges (GelFoam™ sponge sheets) were 

purchased from Pfizer (Groton, CT).  

4.3.2 Fabrication and characterization of biomaterial system  

The outer compartments of these two-compartment biomaterial systems were 

made from GelFoam™ gelatin sponges.  The 2 x 12 x 7 mm GelFoam™ lyophilized 

sheets provided by the manufacturer were shaped into hollow cylinders with biopsy 

punches (2 mm thick, 8 mm outer diameter-OD, 4 mm inner diameter-ID). In order to 

image the gel’s porous structures, they were sputter-coated with gold for 30 seconds and 

imaged under the Scanning Electron Microscopy (SEM) on a Zeiss SIGMA VP Field 

Emission-SEM and Energy-dispersive X-ray Spectroscopy (EDS) for elemental mapping.  

The inner compartment ferrogels were made of alginate according in a similar 

manner to the biphasic ferrogels described elsewhere.21–23 Briefly, alginate (at 1%wt) was 

dissolved in MES buffer (100 mM MES and 500 mM NaCl at pH = 6.0) with AAD and 

HOBt. This mixture was then mixed with iron Oxide particles (Fe3O4 < 5 μm) and 100 

mg/mL EDC. Next, the mixture was cast between two sigmacote-treated glass plates 
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separated by 2 mm spacers. During casting (~ 30 minutes), a magnet was placed on top of 

the glass plate to pull the iron oxides to the top of the ferrogel, resulting in a biphasic 

design. Ferrogels were then cut into 4 x 2 mm (diameter- thickness) disks using 4-mm 

biopsy punches. Gels were then washed in deionized water for 3 days with water being 

changed 2 to 3 times a day, this was done in order to remove residual reagents and let 

them swell. Next, to achieve a porous structure, gels were frozen overnight at -20 °C and 

lyophilized. For SEM imaging, ferrogels were cut with a sharp razor, exposing their cross 

section and prepped for SEM imaging following the same protocol as described above for 

gelatin outer compartments. 

4.3.3 Magnetic stimulation of ferrogels 

Two different set up were used to magnetically stimulate the Ferrogels, both 

involving the use of 0.5”x0.5” cylindrical neodymium magnets (K&J Magnetics, 

Pipersville, PA). In one apparatus, magnets were incorporated on a variable-speed 

laboratory rocker where magnets were placed on the edges of its platform (4 magnets on 

one edge and 4 on the opposite edge). Sigmacote-treated scintillation vials containing 

gels were placed on top of these magnets with aluminum clamps and suspended using 

standard aluminum laboratory scaffolding. The rocker platform positioned magnets close 

(~ 1 mm) to ferrogels contained in the suspended scintillation vials when in the upward 

position and positioned the magnets far from the ferrogels when in the downward 

position, thus magnetically stimulating the ferrogels in a cyclic manner. The frequency of 

the applied magnetic stimulation was thus dependent on the oscillation speed of rocker 

with 1.4 Hz being the maximum frequency produced from this apparatus (i.e., magnetic 

compression of the ferrogel at a rate of 1.4 Hz under a ~ 5 kGauss magnetic field). While 
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somewhat limited in the frequency of magnetic stimulation, this stimulation apparatus 

was capable of continuously stimulating 8 ferrogels simultaneously continuously for 

days.  

 A second apparatus was used for exposing ferrogels to slightly higher frequencies 

(up to 14 Hz) but for relatively short periods of time (see Emi et al. for a more thorough 

description23). This second setup consisted of a crankshaft driven by a programmable 

electric motor. The crankshaft was connected via cams to four pistons (much like a car 

engine) that would move up and down in a sinusoidal manner as the crankshaft was 

turned by the electric motor. Each piston contained a neodymium magnet and a 

scintillation vial containing a ferrogel could be suspended directly above each of the four 

pistons. Thus, when the piston was in the up position, a ferrogel would be exposed to a 

strong magnetic field (measured to be 5 kGauss). When the piston was in the down 

position, the magnetic field was weak (measured to be < 10 Gauss). Thus, the speed of 

the motor dictated the magnetic stimulation frequency.  It was determined that this 

apparatus could magnetically stimulate ferrogels at frequencies up to 14 Hz.  

4.3.4 Protein release studies 

In order to load proteins to these gels, concentrated solutions of proteins in PBS 

were made. It was determined that each outer gelatin compartment had the capacity to 

absorb 40 ml of solution which was used as the basis to calculate protein loading 

concentrations (i.e., loading of 1000 ng protein would require preparation of a solution 

containing 1000 ng GM-CSF in 40 ml PBS). Sigmacote-treated scintillation vials (to 

prevent protein adsorption to the surface of the vials) were used as containers for these 

gels. Protein carrying solutions were added dropwise to these outer compartments for 



86 

loading. Vials were capped, and gels were left at room temperature overnight for full 

absorption of the protein into the gels. Release studies began the next day when gels were 

submerged in PBS with 1% BSA (t = 0). 1 ml samples were collected periodically and 

replaced with fresh media each time. Collected samples were stored in 1.5 ml low-

adsorption tubes in the freezer. After collecting all samples, samples were thawed and 

quantified for protein content (i.e., GM-CSF, VEGF, SDF-1α) using ELISA. 

Inner compartment fabrication resulted in lyophilized alginate biphasic gels with a 

layer of iron-oxide-free porous alginate on one side of the gel and an iron-oxide saturated 

layer with smaller pores on the other side of the gel. The loading of these ferrogels and 

release studies from them were similar to those described for the outer gelatin 

compartments above. However, the absorption capacity of these ferrogels were 20 ml. 

Ferrogels were placed in scintillation vials with their iron-oxide free region facing up. 

Next, a 20 ml solution containing protein was added to them dropwise. Vials were capped 

and left in order for gels to absorb the proteins overnight. Ferrogels were flipped over so 

that their iron-oxide-saturated regions faced upwards (so that a magnet applied under the 

vial would deform the ferrogel in a downward motion) and then rinsed in PBS with 1% 

BSA for between 1 to 4 days to remove proteins that were not well integrated in the gel 

structure. Samples were then taken at different times and fresh media was replaced at 

each time point. During these time course release experiments, ferrogels were 

magnetically stimulated at a number of time points and at various frequencies, depending 

on the experiment. ELISA was performed on the collected samples to quantify the 

concentration of the released proteins from ferrogels (HSP27, PDGF, BMP2). 
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4.3.5 Data representation and statistical analysis 

Analysis of variance (ANOVA) with post-hoc Tukey HSD (Honestly Significant 

Difference) test was performed in order to determine statistically significant differences 

when multiple conditions and comparison were made. The numerical values presented in 

the graphs were represent means ± standard deviations from 4 independent replicates (N 

= 4). P-values less than 0.05 were considered significant.  

  

4.4      Results 

4.4.1    Characterization of the two-compartment biomaterial system 

The two-compartment biomaterial system was made of an outer gelatin 

compartment and an inner biphasic ferrogel nested within the outer gelatin compartment 

(Fig 3. A). The gelatin outer compartment was highly porous (Figure 3. B), which would 

be desirable for allowing fast diffusive release of load proteins (due to high surface area) 

and potentially efficient penetration of recruited cells. Additionally, by virtue of being 

made from gelatin, this outer compartment contained cell-binding integrins needed to 

have recruited cells attach the scaffold and proliferate within the scaffold. The inner 

biphasic ferrogel compartment contained a Fe3O4 saturated region on the one side of the 

gel and a highly porous Fe3O4-free region on the opposite side of the gel (Fig 3. C. i). 

This biphasic structure was capable of deforming in the presence of magnetic field (Fig 3. 

C. ii).  
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Figure 0.3. Dual Compartment biomaterial system with porous outer compartment and 

magnetically responsive inner compartment. A) Photographs of the whole system B) 

Characterization of the outer compartment with SEM imaging. C) i. SEM with elemental 

mapping (bottom) differentiates between Iron (yellow) and carbon (blue) parts of the gel. ii. 

Ferrogels before (top) and after (bottom) stimulating with magnet. 

4.4.2 Release characteristics of the outer gelatin scaffold  

The outer compartment’s porous gelatin scaffold was capable of initially releasing 

proteins (proteins described herein as “Factor I”) in a rapid manner. Specifically, DC 

recruitment factor (GM-CSF) released mostly within the first 24 hours (Figure 4. A). The 

total amount of GM-CSF release was dependent on the amount loaded in the outer 

compartment (Figure, 4. A: higher loadings resulted in higher amounts of cumulative 

release). This rapid and adjustable initial release of DC recruitment factor may be useful 

in rapidly recruiting DCs to the scaffold for biomaterials-based cancer immunotherapy 

applications. Similarly, pro-angiogenic factors (VEGF) rapidly released from the gelatin 

scaffold, depleting from the gel within the first 12 hours (Figure 4. B). VEGF cumulative 

release was also dependent on the amount loaded into the scaffold (Figure 4. B: higher 

loadings plateaued at higher levels of cumulative release). This rapidly release of VEGF 

may be useful in rapidly initiating vascular sprouting into the scaffold in applications that 
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demand neo-vascularization (e.g., treating CVDs, wound healing and tissue engineering 

applications). Finally, bone progenitor recruitment factor (SDF-1a) released in a 

relatively rapid manner, plateauing 200 hours (Figure 4. C). Again, the final cumulative 

release values were a function of the amount of protein loaded (Figure 4. C: higher 

loadings yielded higher plateau values).  This relatively rapid release profile may enable 

rapid recruitment of bone progenitor cells to the scaffold for bone regeneration 

applications.  

 

Figure 0.4. The outer compartment can rapidly release initial factors pertinent to cancer 

immunotherapy, tissue vascularization, and bone regeneration. A) Cumulative release versus time 

of GM-CSF, B) VEGF, and C) SDF-1α from outer compartment when loaded with different 

amounts of proteins (Colors represent different protein concentrations). 

 

4.4.3 Release characteristics of the inner ferrogel  

The inner compartment provides magnetically triggered, delayed, and on-demand 

release of proteins that can be used to direct the behavior of (i.e., program) cells recruited 

to the outer compartment. For example, a model cancer antigen’s (HSP27’s) release rate 

drastically increase when ferrogels inner compartments are magnetically stimulated on 

days 4 (Figure 5. A, slope of blue curve increases in the blue shaded region of the curve) 

0

50

100

150

200

250

300

0 50 100 150

C
u
m

u
la

ti
v
e
 V

E
G

F
 R

e
le

a
s
e
 (

n
g
)

Time (hr)

1000 ng

500 ng

250 ng

VEGF
0

500

1000

1500

2000

0 50 100 150 200

C
u
m

u
la

ti
v
e
 G

M
-C

S
F

 R
e
le

a
s
e

 (
n
g
)

Time (hr)

3000 ng

100 ng

1000 ng

GM-CSF
0

20

40

60

80

100

0 50 100 150 200 250

 C
u
m

u
la

tiv
e

 S
D

F
-1

R

e
le

a
s
e
 (

n
g
)

Time (hr)

1000 ng

250 ng

SDF-1α

A B C



90 

or on day 7 (slope of red curve increases in the red shaded region), depending on when 

the magnetic stimulation is applied (i.e., on day 4 or 7, respectively). Note that the 

magnetic stimulation used in these studies was at constant 1.4 Hz for 4 hours using the 

rocker. These on-demand, delayed enhancements in release rate could be used to 

optimize the timepoint at which recruited DCs are earnestly presented with cancer 

antigen for biomaterials-based cancer immunotherapy applications.  

 

Figure 0.5. Timing of the delivery from ferrogels can be controlled by stimulating at different 

time points. A) Cumulative release of HSP27 when stimulated on days 4 (blue) and 7 (red). B) 

PDGF on days 1 (blue), 4 (red), 8 (green), and C) BMP2 on days 7 (blue). 

 

Likewise, the rate of pro-vascular-maturation factor (PDGF) release could be 

greatly enhanced when these ferrogel inner compartments were magnetically stimulated 

(Figure 5. B). And again, the time at which magnetic stimulation was applied enabled this 

enhanced release to occur at specific times (Figure 5. B: magnetic stimulation on days 1 

(blue), 4 (red), or 8 (green) yielded enhancements in release rates on days 1, 4, or 8, 

respectively). These magnetically triggered delays in pro-vascular-maturation factors 

could help optimize the time allotted for inducing vascular sprouting before re-stabilizing 

the nascent vascular network.  
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Finally, the rate of osteo-differentiation factor (BMP2) release could also be 

enhanced when these ferrogels were magnetically stimulated (Figure 5. C: increased 

slope of the blue curve in the blue shaded region). Though the specific timing of this 

magnetically triggered enhancement in release rate was not demonstrated as was with 

PEGF and HSP27, it is likely that enhancements in release would be generated at 

different time points upon magnetic stimulation at different time points. The ability to 

magnetically trigger enhancements in osteo-differentiation factors to recruited bone 

progenitors may allow for optimizations in how much time is provided to build bone 

progenitor populations in the scaffold prior to instructing them to differentiate.  

4.4.4 Strategies for magnetically controlling the rate of delayed release 

While the delayed release capabilities outlined above may be of use in improving 

the timing of deliveries in cancer immunotherapies, re-vascularization therapies, and 

bone regeneration, the rate of release when magnetically stimulated is also a critical 

parameter for optimization. Here, strategies were explored for using alterations in the 

magnetic stimulation profile to regulate the release rate during magnetic stimulation. A 

previous study demonstrated that periodically turning on and off sinusoidal magnetic 

stimulations could actually improve triggered release rates compared to continuous 

sinusoidal magnetic stimulation.24 Here, this principle was investigated further by 

adjusting parameters associated with pulsing the magnetic stimulation regiment. Namely, 

ferrogel inner compartments were exposed to pulsed magnetic stimulation regiments 

where the frequency and duration of magnetic stimulation pulses were changed vs. time.   

It was demonstrated that applying different pulsed magnetic stimulation regiments 

could be used to control the rate of protein release during magnetic stimulation. For 
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example, after 3 days of diffusive release, ferrogels containing HSP27 were magnetically 

stimulated using one of two different pulsed regiments: either a regiment switching 

between (i) 10 minutes of magnetic stimulation at 5 Hz followed by 50 minutes at 1 Hz, 

repeated over 4 hours (Figure 6.A.i: Mag-a), or (ii) 10 minutes stimulation at 10 Hz 

followed by 20 minutes at 2 Hz, repeated over 4 hours (Figure 6. A.i: Mag-b). These two 

pulsed stimulation profiles resulted in statistically higher release rates on day 3 compared 

to controls (Figure 6. A. ii and iii).  While these two pulsed stimulation profiles produced 

slightly different stimulated release rates on day 3 from each other, there was no 

statistically significant difference between them (Figure 6. A. iii: comparing Mag-a to 

Mag-b release rates). Statistical differences may be achieved in future studies by fine-

tuning the material makeup of the ferrogel as well and the magnetic stimulation profile 

(e.g., different frequencies at different times for different durations and different 

magnetic field intensities).    

The use of different pulsed magnetic stimulation regiments was more effective in 

regulating the rate of PDGF release. For example, PDGF-loaded inner compartment 

ferrogels were magnetically stimulated on day 3 using either a pulsed regiment that 

switched between (i) 10 minutes of magnetic stimulation at 5 Hz followed by 50 minutes 

at 1 Hz, repeated over 4 hours (Figure 6.B.i: Mag-a), or (ii) 30 minutes stimulation at 5 

Hz followed by 30 minutes at 10 Hz, repeated over 4 hours (Figure 6. B.i: Mag-b). 

Results indicated that both pulsed stimulation profiles enhanced PDGF release rates on 

day 3 compared to controls (Figure 6.B. ii and iii).  Additionally, one magnetic 

stimulation profile enhanced release rates compared to the other stimulation profile 

(Figure 6.B. iii: Mag-a is statistically higher than Mag-b).  
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Based on the differences in magnetically stimulated release rates between HSP27 

and BMP2, it is apparent that different proteins have different stimulated release 

characteristics and that these differences are likely influenced by the interactions between 

the proteins and the ferrogel’s alginate matrices. For example, BMP2 interacts highly 

with alginate (i.e., BMP2 is heparin-binding and alginate is heparin-mimicking). In fact, 

when loaded with BMP2, these inner compartment ferrogels had difficulty in releasing 

BMP2 at rates that were statistically different than controls. For instance, when loaded 

with BMP2 and stimulated on day 3 using either a pulsed regiment that switched between 

(i) 10 minutes of magnetic stimulation at 5 Hz followed by 50 minutes at 1 Hz, repeated 

over 4 hours (Figure 6.C.i: Mag-a), or (ii) 10 minutes stimulation at 14 Hz followed by 

20 minutes at 2 Hz, repeated over 4 hours (Figure 6. c.i: Mag-b), the were no observed 

differences in BMP2 release rates compared to controls (Figure 6.C. ii and iii). Again, 

however, it may be possible in future studies to demonstrate magnetically triggered 

releases rates that are statistically higher than controls when optimizing the material 

makeup of the ferrogel and the magnetic stimulation profile (e.g., different frequencies at 

different times for different durations and different magnetic field intensities).    
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Figure 0.6. Rate of the delivery of proteins from ferrogels can be controlled by applying various 

frequencies. A,B,C. i) Illustration of the magnetic stimulation used. A,B,C. ii) Cumulative release 

versus time for HSP27 when not stimulated (grey when stimulated with magnetic profile-a (red) 

and magnetic profile-b (blue) A,B,C. iii) Release rate from 72 to 76 hours for gels stimulated with 

nothing, magnetic profile-a and magnetic profile-b. 

 

4.5       Discussion 

These two-compartment biomaterial systems may provide improvements in a 

wide range of biomedical applications, including biomaterial-based cancer 

immunotherapies, therapies involving regeneration of vascular networks, and in bone 

regeneration. For example, the sequential deliveries of DC recruitment factors followed 
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by flexibly timed and delayed delivery of cancer antigen may enable specific 

improvements in biomaterial-based cancer immunotherapies. While biomaterial-based 

cancer immunotherapy has shown promising results (90% mouse survival after 3 months 

after being challenged with xerographic melanoma if biomaterial cancer vaccines were 

implanted 14 days prior to cancer challenge),25  when the biomaterial vaccine was 

implanted in mice with existing melanomas (well-developed 13-day-old tumors) mouse 

survival rates were less promising.26 A potential area of improvement for these strategies 

lies in the timing of DC recruitment and the presentation of cancer antigen to recruited 

DCs. In the biomaterial melanoma vaccine described above,25,26 DCs are presented with 

activation factors (cancer antigen and danger signal) as they enter the scaffold. This may 

result in (i) diffusive loss of activation factors while DCs are in transient during 

recruitment and (ii) activation of DCs being distributed over time (i.e., not all DCs arrive 

in the scaffold and are presented with activation factors at the same time). Both of these 

may result in a less intense anti-tumor response from the host. The two-compartment 

magnetically responsive biomaterial system presented could enable recruitment of DCs to 

the outer compartment and then delivery of activation factors to recruited DCs only after 

a strong population of DCs has been recruited to the scaffold. In this manner, a strong 

population of DCs can be activated, enabling a high number of activated DCs to home to 

the lymph nodes, initiating a potent anti-cancer immunogenic response. Moreover, the 

biomaterial system described here could enable (i) optimizations in regard to the timing 

of recruited DC activation and (ii) could provide repeated/subsequent release of 

activation factors through subsequent magnetic stimulations (i.e., injection-less boosters).   
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The biomaterial system described here may also provide improvements for therapies 

where new vasculature needs to be developed. Due to the biology outlined in Fig 1.B, 

sequential release of pro-angiogenic (VEGF) and pro-maturation (PDGF) factors is 

necessary for growth of new vasculature. In light of this, Richardson et al.27 created a 

biomaterial capable of delivering both VEGF and PDGF, ostensibly in sequence, by 

composing a scaffold with different degradation rates. While delivery of PDGF alone 

improved vessel maturation (as measured by the distribution in vessel diameter) 

compared to VEGF delivery alone, combined release of VEGF + PDGF did not improve 

average vessel diameter with statistical significance over PDGF delivery alone. This may 

have been due to the specific temporal profiles of VEGF and PDGF delivery from the 

system. The differential degradation approach adopted by Richardson et al. yielded 

VEGF and PDGF release profiles that were more of different rates as opposed to 

sequential per se.  That is, there was not a drastic (albeit slight) increase in PDGF release 

at later time points (i.e., dramatically delayed PDGF increases in release rate, as observed 

here in using magnetically responsive ferrogels). This lack of sequential delivery may 

have not property coordinated the sequence of pericyte detachment, vascular sprouting, 

vascular invasion, pericyte re-recruitment and attachment, and sprout maturation required 

to generate mature vasculature. The delivery profiles achieved by the two-compartment 

biomaterial system described here may more properly coordinate these sequential 

biological events. Furthermore, the on-demand capabilities of this two-compartment 

system may enable critical optimization in the timing allowed for sprouting and sprout 

infiltration prior to initiating vascular maturation.  
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Finally, the two-compartment magnetically responsive biomaterial system 

described here might be beneficial for optimizing deliveries in treating bone defects, 

injuries, and diseases. Regenerating bone requires coordinated sequence recruitment, 

proliferation, and differentiation events, which can each potentially be coordinated 

through protein deliveries. In an attempt to coordinate these events, Lee et al.28 developed 

a biomaterial that contained two factors with the goal of enhancing the number of 

calcium phosphate matrix-producing osteoblasts: TGFβ (to enhance the population of 

bone progenitors resident in the regenerative scaffold) and BMP2 (to differentiate those 

bone progenitors into osteoblasts). While this strategy demonstrated that BMP2-loaded 

scaffolds yielded significantly higher amounts of bone-matrix than controls, dual-loaded 

BMP2/TGFβ scaffolds did not produce more bone matrix than only BMP2-loaded 

scaffolds (and may in fact have yielded less bone matrix). Again, this result may have 

been due to the timing of how and when these proteins were presented to bone 

progenitors as they entered the scaffold from surrounding tissues. For example, while 

TGFβ is known to enhance cell proliferation, it is also known that differentiated cells do 

not proliferate well.28 Thus, if cells are instructed to osteo-differentiate by being 

presented with BMP-2 upon entering the scaffold, they may not proliferate well despite 

receiving instruction to proliferate through TGFβ presentation. This set of simultaneous 

and conflicting instructions may have limited the number of osteo-differentiate cells in 

the Lee et al. studies. However, if presented in sequence (i.e., first to proliferate to a 

strong population while retaining their stem-like ability to proliferate through TGFβ 

signaling; and then to differentiate down the osteogenic lineage through BMP2 

signaling), it may be possible to generate a more robust population of bone-matrix-
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producing osteoblasts. The dual-compartment material system presented here may afford 

coordination of this sequence and furthermore be capable of optimizing the timing of this 

sequence for maximized bone matrix production.  

4.6      Conclusions 

In this study, a biomaterial system was developed and its ability to sequentially 

release two different proteins pertinent to three therapies was demonstrated. This system 

was capable of rapidly releasing initial factors (GM-CSF, VEGF, or SDF-1a) from a 

porous gelatin outer compartment that was designed to facilitate cell infiltration. The 

amount of this delivery depended on the amount of the factor that was loaded into the 

outer compartment. Additionally, this biomaterial system contained a magnetically 

responsive ferrogel inner compartment, which was able to produce enhanced delivery of 

its payload (HSP27, PDGF, or BMP2) at a time dictated by an externally applied 

magnetic signal. It was also demonstrated that the rates of these delayed and magnetically 

triggered protein deliveries could potential be regulated by altering the frequencies and/or 

temporal profile of the magnetic stimulation itself. 
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Chapter 5 

Summary and Prospective Research 

5.1       Primary goals 

The research described in this dissertation was to investigate magnetically 

responsive drug delivery systems and develop a biomaterial system capable of controlling 

the rate and timing of different biomolecular deliveries in response to a remotely applied 

magnetic fields.  More specifically, this doctoral research aimed to (1) develop a dual 

compartment biomaterial system capable of generating sequences of biomolecular 

deliveries in response to low-frequency, spatially graded magnetic fields, and (2) to 

investigate the applications of this developed biomaterial for delivering critical 

biomolecules in several therapeutic applications that may be enhanced through sequential 

deliveries. 

5.2       Summary of individual chapters 

While Chapter 1 broadly motivated the work that is contained in this dissertation, 

Chapter 2 elaborated on this motivation by discussing existing hydrogel-based 

magnetically responsive biomaterials with some highlighted examples and in terms of 

mechanisms of magnetically triggered release and parameters that influence release 

characteristics.  A few case studies were examined where magnetically responsive 
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hydrogels were used to generate temporally complex and multi-drug delivery profiles. 

However, Chapter 2 in fact underscored how not many magnetically responsive 

biomaterials had been introduced that demonstrated the capability of regulating 

temporally complex, multi-drug deliveries. This underscores the urgency for novel 

biomaterial systems with these capabilities. Thus, in Chapters 3 and 4, a novel 

biomaterial system was described that was specifically designed to generate temporally 

complex, multi-drug delivery profiles in response to remotely applied magnetic stimuli.  

Chapter 3 focused on developing and demonstrating novel delivery capabilities 

for a biomaterial system possibly capable of regulating the inflammation response in 

wound healing applications. This two-compartment biomaterial system was designed to 

initially release factors that could recruit a population of pro-inflammatory macrophages 

(i.e., by delivering MCP-1 and IFNg from an outer compartment that was porous and 

presented integrins for macrophage binding). Magnetically triggered release of anti-

inflammatory factors (i.e., IL4 and/or IL10 from a magnetically deformable ferrogel as 

the inner compartment) was designed to switch off the inflammation and the promote 

healing processes. 

Chapter 4 explored the use of this two-compartment biomaterial system in 

additional applications where remote regulation of the timing of sequential biomolecular 

deliveries may be of high clinical value. Specifically, the dual compartment biomaterial 

system was loaded with biomolecules pertinent to cancer immunotherapy, tissue 

vascularization, and bone regeneration. Biological processes relevant to these three 

applications can each benefit sequential regulation of biosocial events through sequenced 

biomolecular deliveries.  For instance, in biomaterial-based cancer immunotherapy 
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applications, a goal for potentially improving these therapies is to increase the number of 

the activated dendritic cells. This possibly can be done by releasing DC recruitment 

factor while holding on to the activating factor inside the ferrogel and have it be released 

to recruited DCs only when the DC population is relatively high. This would lead to 

increased numbers of activated immune cells and a stronger anti-cancer immune 

response. Indeed, the two-compartment biomaterial system developed was demonstrated 

to sequentially deliver DC recruitment factors (i.e., GM-CSF) followed by magnetically 

triggered delivery of DC activation factors (i.e., single stranded DNA and a model protein 

antigen, HSP-27). In tissue vascularization applications, the aim was to demonstrate 

sequential deliveries that could direct the sprouting of immature vascular sprouts, 

followed by coordination of events that lead to maturation of those vascular sprouts. 

Indeed, the two-compartment biomaterial system was demonstrated to sequentially 

deliver pro-angiogenic sprouting factors (i.e., VEGF) followed by magnetically triggered 

pro-maturation factors (i.e., PDGF). In bone regeneration applications, the aim was to 

demonstrate sequential deliveries that could first recruit bone progenitor cells followed 

by differentiation of those recruited progenitor cells down the osteogenic lineage. Again, 

this work successfully demonstrated the ability to first release a bone progenitor 

recruitment factor (SDF-1a) followed by magnetically triggered release of an osteo-

differentiation factor (BMP-2).  

5.3       Impact and importance of this work  

The biomaterial system developed and demonstrate in this dissertation can 

potentially be used to help scientists better understand how the dosing, sequence, and 

timing of the drug release can impact the outcome in wound healing, cancer 
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immunotherapies, and tissue engineering (i.e., neo-vascularization of and establishing 

populations of tissue-specific cell types within defect sites). This can help scientists 

optimize different drug delivery regiments before moving on to clinical trials and 

implementing the dosing on patients. Also, the on-demand nature of these magnetically 

responsive materials will help enable rapid optimizations since the material itself does not 

need to be altered between experiments (i.e., the same material system is capable of 

producing a wide variety of delivery profiles whereas a traditional biomaterial must be 

reformulated to produce different delivery profiles). Furthermore, the on-demand nature 

of these magnetically responsive biomaterials would enable real-time alterations in 

delivery schedules, which would provide a high degree of flexibility for clinicians to alter 

the course of therapy in real time according to updates in patient prognosis. Finally, from 

a practical standpoint, the magnetic stimulations needed for these triggered deliveries 

involve benign fields from simple, inexpensive, hand-held magnets.  

Another significant aspect of this project involves the fact that this developed 

drug delivery system can be made with variety of biomaterials in different shapes and 

sizes and can be loaded with many different bioactive molecules, depending on the 

desired application. For example, the porosity of the outer compartment can be adjusted 

for controlling the diffusion rate of the drug as well as the chemistry of the polymer 

which can be easily modified to attach different molecules to it. Also, these biomaterials 

can be designed to degrade in body within a desired timeframe, which holds up the need 

to take out the biomaterial once it is no longer required. This is particularly desirable in 

tissue engineering applications where the body will replace the scaffold with its own 

native extracellular matrix.  
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5.4       Future directions 

While some very critical developments, characterizations, and demonstrations 

were performed in this dissertation, the biomaterial system developed here needs to be 

further examined in vitro and in vivo in order to truly uncover its ability to 

therapeutically regulate key biological processes. For example, for demonstrating the use 

of the dual compartment system in controlling macrophage phenotype change vs. time in 

vitro, RAW 264.7 (ATCC(R) TIB-71™) could be seeded in 12 well plates. The dual 

compartment biomaterial system would be loaded with factors so that M1 (inflammatory) 

macrophages would be rapidly recruited to the outer compartment. Factors that could 

transition those M1 macrophages into pro-healing (anti-inflammatory) M2 macrophages 

would be loaded in the inner compartment (where they would remain until magnetically 

triggered to release). This loaded biomaterial would be placed on top of the seeded 

macrophages and they would be allowed to infiltrate the outer compartment where they 

would establish a population of M1 macrophages. Over the course of several days, the 

biomaterial could be magnetically stimulated at different times, releasing anti-

inflammatory factors (IL4 and/or IL10) to trigger an anti-inflammatory response in the 

macrophages (i.e., transition them from M1 to M2 phenotypes) at different times. The 

phenotype of macrophages resident in the biomaterial can be quantified vs. time by using 

common antibody staining (anti-mouse CCR7 for M1 macrophages and anti-mouse 

CD206 for M2) or by measuring the proteins secreted by macrophages (VEGF for M1 

macrophages and PDGF for M2 macrophages). In this manner, the biomaterials system’s 

ability to regulate macrophage phenotype vs. time can be tested/verified. 
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For testing its application in cancer immunotherapy, JAWSII (ATCC® CRL-

11904™) that are immature dendritic cells (DCs) could be seeded in 12 well plates. 

Biomaterial system can be loaded with DC recruitment factor in the outer compartment 

and DC activating factor in the inner ferrogel. The dual compartment system then can be 

placed on top of the seeded dendritic cells. With release of the recruitment factor from the 

outer compartment (GM-CSF), DC cells will populate the gelatin part of the system, after 

few days ferrogel can be triggered to release activating factors such as cancer antigen 

(i.e., Heat shock protein 27 (HSP27) or danger signal, single stranded nucleic acid 

(ssNA)). Activation of the dendritic cells can be validated by antibody staining the cells 

for both “anti-mouse CCR7” and “anti-mouse MHCII” marker on the cells. We can 

collect the histogram for stained cells using Nexcelom cellometer. Also cell studies need 

to be done in regulating sprouting and pericyte/endothelial cell co-localization in vascular 

models. A co-culture of independently stained endothelial cells (red) and pericytes (blue) 

is required. In order to do that we plan on seeding the Human dermal microvascular 

endothelial cells (HMVECs) that are stained with octadecyl rhodamine B chloride, (R18, 

Molecular Probes O-246-blue) along with Pericytes stained with CMFDA (red). These 

two cell lines will be co-cultured on a fibrin laden 6-well plate. Biomaterial system will 

be placed on top of the culture with media. Diffusive release of VEGF from the gelatin 

triggers pericyte detachment and forming of the vessel sprouts. The stimulated PDGF 

release helps pericyte attachment and initiates vessel maturation. The number of vessel 

sprouts and number of attached and detached pericytes will be manually counted using 

confocal microscopy technique. Moreover, for in vitro model in improving oseto-

differentiation in bone regeneration, mesenchymal stem cells (MSCs) can be seeded in 
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well plates. Dual compartment system loaded with stromal cell derived factor 1 (SDF-1α) 

in outer section for recruiting MSCs and bone morphogenetic protein-2 (BMP-2) loaded 

inner ferrogel can be placed on top of the cells. After stem cell recruitment to the 

biomaterial, stimulated release of BMP-2 from the ferrogel will differentiate the MSCs to 

bone lineage. For counting the recruited cells, we can fix and stain the gel holding the 

cells with DAPI for cell nuclei and Phalloidin to stain the F-actin and images were taken 

using confocal microscope. For osteo-differentiation, the culture media can be collected 

on daily basis and analyzed using ELISA for “osteocalcin” secretion as indicator of early 

stage osteo-differentiation and for “Alizarin Red” to stain calcium phosphate as an 

indicator of late stage osteo-differentiation. 
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Supporting Information  
 

for Adv. Healthcare Mater., DOI: 10.1002/adhm.201300260  

 

A Magnetically Responsive Biomaterial System for Flexibly 

Regulating the Duration Between Pro- and Anti-Inflammatory Cytokine 

Deliveries  

By Anita E. Tolouei, Nihan Dülger, Rosa Ghatee, Stephen Kennedy* 

 

 

 

Materials: Sodium alginate was donated from Pronova Biopolymers (Oslo, 

Norway) with an average molecular weight of ~250 kDa and with high guluronate 

content (Protoanal LF 20/40). Adipic acid dihydrazide (AAD), 1-ethyl-3-

(dimethylaminopropyl) carbodiimide (EDC), MES, 1-hydroxybenzotriazole (HOBT), 

iron (II,III) oxide powder (< 5 micron), Phosphate Buffered Saline (PBS), Sigmacote®, 

bovine serum albumin (BSA), paraformaldehyde (PFA), Triton X-100, fluorescein 

isothiocyanate (FITC) labeled phalloidin, and 2-(4-Amidinophenryl)-6-

indolecarbamidine dihydrochloride (DAPI)  were all purchased from Sigma-Aldrich (St. 

Louis, MO). Mouse Monocyte Chemoattractant Protein-1 (MCP-1), Interferon Gamma 

(IFN-γ), Interleukin-4 (IL-4), Interleukin-10 (IL-10), and all Enzyme-linked 

Immunosorbent Assay (ELISA) kits and kit reagents were purchased from R&D Systems 

(Minneapolis, MN).  

Macrophage culturing: RAW 264.7 mouse macrophages (ATCC, Manassas, VA) 

were used in these studies. Macrophages were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM, Sigma) containing 10% fetal bovine serum (FBS, Sigma) and 1% 

penicillin-streptomycin (Sigma) in 75 cm2 flasks at 37ºC and 5% CO2 and split every 2-3 
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days at a 1:3 to 1:6 ratio, as recommended by the manufacturer.  

Mechanical characterization of biphasic ferrogels before and after magnetic 

stimulation: Biphasic ferrogel (inner compartments) stiffness (Young’s modulus) before 

and after magnetic stimulation was quantitatively measured in compression using an 

Instron Model 3345 (Norwood, MA). Prior to magnetic stimulation, biphasic ferrogels 

were placed between the plates of the Instron and compressed (at 2 mm/min) until 

reaching 50% strain in order to produce a well-define elastic region on the stress-strain 

curve. Note that this compression resulted in deformation of only the iron-oxide-free 

region of the ferrogels and not the much stiffer/denser iron-oxide-laden region. Recorded 

stress-strain curves were analyzed using the Instron’s Bluehill software package to 

extract moduli. Because this compression test could have damaged the gels, separate sets 

of gels were magnetically stimulated and mechanically tested after being exposed to 

magnetic stimulation profiles. 
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Figure 0.1. S1. Outer porous gelatin scaffolds rapidly released MCP-1 and IFN-γ in the first 12 

hours. (a) Cumulative MCP-1 release during the first 12-hours of experimentation for gelatin 

scaffolds loaded with 1000 ng (solid red) and 100 ng (dashed red) MCP-1. (b) Cumulative IFN-γ 

release during the first 12-hours of experimentation for gelatin scaffolds loaded with 1000 ng 

(solid red) and 100 ng (dashed red) IFN-γ. Inset: zoom-in of cumulative release for 100 ng-loaded 

scaffolds. For parts (a) and (b), N = 4. 

 

 

Figure 0.2. S2. Ferrogel mechanics did not significantly change due to magnetic stimulation. (a) 

Schematics of the two stimulation profiles used: continuous stimulation at 1.4 Hz for 3 hours 

(top) and periodic stimulation at 1.4 Hz for 5 min every hour on the hour for 3 hours. (b) Young’s 

modulus of ferrogels before stimulation (black), after stimulation profile A (green), and after 

stimulation profile B (red). N = 4.  
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<< MovieS1.avi >> 

Movie S1. 3D z-stack reconstruction of macrophages recruited to the bottom 170 

μm of a porous gelatin scaffold. Scaffold and macrophages were stained to identify f-

actin (green) and cell nuclei (blue).  

 

 

<< MovieS2.mov >> 

Movie S2. Biphasic ferrogel being cyclically compressed at 1.4 Hz using a 

magnet on our custom rocker setup.  
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