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ABSTRACT 

A sophisticated computational model is developed to consider different interactive 

parts between cells and its components and their local microenvironment. The present 

work is mainly focused on the modeling of the coupling of the stress and 

concentration of the signaling proteins within the cell domain. In this research, the 

fundamental aspects and details of a coupled Contraction-Reaction-Diffusion (CRD), 

is presented. The model accounts for diffusion of the proteins and mechanical 

equilibrium of the cells simultaneously while considering different subunits which are 

affecting the cell migration. For instance, cell-cell interaction, nucleus effects, focal 

adhesion distribution, anisotropic stress fiber formation, membrane tension, 

microtubule structure, and growth and retraction of the cells are considered. 

Collectively, because of the interaction of these different subunits, the cell works as a 

single migratory machine. The model fills the gap in coupled biomechanical and 

biochemical models for the biological cells and predicts both the instantaneous and the 

long-term dynamic behavior of the cells. In order to evaluate the proposed 

computational cell model, biological experiments such as cell migration, durotaxis, 

and collective cell migration has been simulated using the proposed computational 

model. The proposed model presents a simple mechanistic understanding of 

mechanosensing of substrate stiffness gradient at the cellular scale, which can be 

incorporated in more sophisticated mechanobiochemical models to address complex 

problems in mechanobiology and bioengineering. The proposed model and computer 

program is able to simulate long-term interaction of hundreds of cells with each other 



 

 

(e.g. cell-cell contact) and with the elastic substrate on a desktop workstation 

efficiently. 
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PREFACE 

The following studies focuses on the gap in the mathematical modeling for cell 

mechanics and cell motility.  The manuscript formatting has been adopted for this 

dissertation.  

Chapter 1 is an introduction to the subject of cell migration and also this chapter 

provides a brief review of the previous research on mathematical modeling of cell 

migration. 

Chapter 2 seeks to propose a minimal mathematical model for explaining the 

durotaxis, a rigidity driven cell migration. It is shown that how the difference in 

traction can justify the durotaxis. This chapter will follow the formatting guidelines 

specified by Biomechanics and modeling in mechanobiology. 

Chapter 3, focused on developing the model form a static model to a whole-cell 

dynamic model by considering the signaling feedback (i.e. protrusion and retraction). 

Using the model, durotaxis a rigidity driven cell migration has been simulated. This 

chapter will follow the formatting guidelines specified by Biophysical Journal.  

The next study in Chapter 4, focused on developing the model form a single cell 

model to a multicellular dynamic model by considering the cell-cell adhesion module 

and cell-cell interaction. Using the developed model, experimental scenarios such as 

tissue ring cell monolayer has been simulated.  This chapter will follow the formatting 

guidelines specified by PlOS ONE computational biology. 

In Chapter 5 we will discuss the conclusion and the future work of the research.  
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CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

 

Cell morphogenesis is a fundamental process in tissue formation. One of the 

challenges in the fabrication of living tissues in vitro is to recapitulate the complex 

morphologies of individual cells. Nowadays, because of the lack of knowledge for 

building tissues with embedded life-sustaining vascular networks, 3D printing of the 

human tissues more than a millimeter in size is subject to the failure. In 3D 

bioprinting, cells crawl and migrate in engineered microenvironments to form tissues. 

With computational simulations of cell migration and microtissue formation, optimal 

extracellular matrices can be designed to facilitate the recapitulation of micro-

morphologies of tissues at the cellular resolution in 3D bioprinting. Simulations are 

efficient tools for evaluating and optimizing the feasibility of specific designs. 

It has been shown that mechanical and external forces play a key role in 

biological cells and their motility. Lo et al. reported the substrate rigidity-based cell 

migration, they discovered that fibroblast cells make a 90 degree turn at the boundary 

of the soft and rigid zones of the extra cellular matrix (ECM); this is referred to as 

durotaxis [1]. Barnhart et al. showed that the level of adhesion to substrate affects 

morphologies of the cells [2]. Kim et al. observed that a group of endothelial cells tend 

to fill the empty spaces of the substrate by exerting force and pulling out traction in 

the direction of empty spaces, which is called Kenotaxis [3]. All of the above-

mentioned phenomena are a few of many instances of the biomechanical behavior of 
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the biological cells. In general, mechanosensing is an interaction which is involved in 

a variety of biological processes such as cancer metastasis, wound healing, tissue 

formation, and embryological development. 

Advancement of microscopy and cell imaging techniques including 2D and 3D 

force microscopy [4], multiple speckle microscopy [5] and monolayer stress 

microscopy [6] has enabled researchers to evaluate the mathematical models in cell 

mechanics considering the quantitative experimental data as the benchmark. In this 

context, developing a whole-cell mathematical model presents an ongoing challenge 

and has been the topic of intensive researches. For capturing the polarization of the 

cells during the cell migration (i.e., formation of the head and tail); inspiring by 

Turing’s instability; some studies used the reaction diffusion of biochemical molecules 

[7], [8], [9], [10]. Although these models were able to mimic the polarization, they did 

not consider the invisible mechanosensing of the biological cells. Zaman et al. 

considered the cells as a material point and were able to capture the motility behavior 

of a single cell in different stiffnesses of the ECM (i.e., higher stiffness associated with 

lower migration speed and lower stiffness associated with higher migration speed). 

However, their model cannot resolve the spatial distribution of the field variables such 

as traction stress, displacement and protrusion concentration within the single-cell 

domain [11]. Vernerey et al. proposed a static and rigidity sensitive cell model that can 

predict the stress fiber direction successfully [12]. A dynamic multi-cellular model is 

needed to consider the cell-cell interaction, effect of nucleus as well as the dynamic 

growth of the boundary at the front of the cell. Borau et al. presented a one-

dimensional model which focuses on the rigidity sensing of the cells and yet it is 



 

3 

 

unable to consider the membrane tension, polarization, cell-cell interaction, and cell 

growth [13]. While each of the abovementioned models contributes to a better 

understanding of the cells behavior, lack of the studies on the biomechanics and 

biochemistry couplings of cell-microenvironment interactions has been identified, 

particularly computational models and methods that can describe and predict the 

dynamic process of microtissue formation.  

 

Previously, our research was focused on developing a mechanical model for bio-

hybrid cell contractility assays and studying the effect of thermal fluctuation on cell 

adhesion [14], [15]. In this study, an efficient and robust computational biomechanics 

model and software platform will be developed to simulate the dynamics of living 

cells at the whole-cell level. The proposed model establishes a firm link between 

protein distribution pattern and the traction stress in the cells. Specific biomechanics 

phenomenon including cell crawling and morphogenesis of cell monolayer tissues has 

been studied using the computational model. 

The developed model integrates the biochemical and mechanical activities within 

individual cells spatiotemporally and it is mainly composed of four modules: 

mechanics of cytoskeleton, cell motility, cell-substrate interaction, and cell-cell 

interaction. In the cell membrane and cytosol domain reaction-diffusion equations of 

active and inactive diffusive molecules is formulated to model the protrusion and 

retraction protein concentrations. In the cytoskeleton domain elasticity equations is 

developed, and the mechanical stresses experienced by the cell has been solved.  Finite 

element method (FEM) has been used to model the irregular shapes of cells and to 
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solve the resulting system of reaction-diffusion-elasticity equations. The weak 

coupling scheme between traction and protrusion and retraction protein concentrations 

has been adopted for this multiphysics problem. Automated mesh generation has been 

hired for re-meshing and to handle the element distortion in FEM due to the large 

shape changes of the cells. 
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ABSTRACT 

 

Durotaxis refers to the phenomenon in which cells can sense the spatial gradient of the 

substrate rigidity in the process of cell migration. A conceptual two-part theory 

consisting of the focal adhesion force generation and mechanotransduction has been 

proposed previously by Lo et al. to explain the mechanism underlying durotaxis. In the 

present work, we are concerned with the first part of the theory: how exactly is the 

larger focal-adhesion force generated in the part of the cell adhering to the stiffer 

region of the substrate? using a simple elasticity model and by assuming the cell 

adheres to the substrate continuously underneath the whole cell body, we show that 

the mechanics principle of static equilibrium alone is sufficient to account for the 

generation of the larger traction stress on the stiffer region of the substrate. We believe 

that our model presents a simple mechanistic understanding of mechanosensing of 

substrate stiffness gradient at the cellular scale, which can be incorporated in more 

sophisticated mechanobiochemical models to address complex problems in 

mechanobiology and bioengineering.  

 

Introduction 

 

It has been shown that biological cells can sense and respond to a variety of 

mechanical cues of their microenvironment, such as matrix rigidity [1], matrix 

topology [2], matrix dimensionality [3], shear flow [4], interstitial flow [5], cell-cell 

and cell-matrix adhesions [6], and cell shape constraints [7]. These mechanical stimuli 

play a critical regulatory role in many biological functions such as cell proliferation 
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[8], cell motility [1], [7], and differentiation [9]. Understanding the mechanisms 

underlying mechanosensing has become the focus of intensive experimental and 

theoretical studies [10]–[13]. In the present study, we are interested in durotaxis, a 

termed coined by Lo et al. [1], which refers to the substrate rigidity-guided cell 

migration. They showed that (see Fig. 1a) when a fibroblast cell crawled from the 

stiffer side (i.e., the darker region) of the substrate toward the softer side (i.e., the 

brighter region), the cell made a 90-degree turn at the interface.  

 

 

Figure 1 Previous experimental observations on single-cell mechanosensing. (a) 

The phenomenon of durotaxis (reprinted with permission from [1]): a cell crawls from 

the stiffer side of the substrate toward the softer side and turned 90° at the interface 

(the dotted line is an approximation of the rigid-to-soft interface).  (b) Traction stress 

under a circular cell crossing step-rigidity boundary (reprinted with permission from 

[14]) (c) Lamellipodia extension in a square cell (reprinted with permission from 

[15]).   
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Because the importance of durotaxis in physiology and pathology, the molecular 

and subcellular mechanisms underlying mechanotransduction has attracted 

considerable attention [16]–[19]. Biomechanics models where single cells and cell-

substrate linkages were modeled as elastic springs or elasticity theory, have been 

developed to account for rigidity sensing [13], [20], [21]. These models were only 

applied to the scenario where the individual cell was treated either as a point mass [20] 

or an small volume element [21]. In a series of studies [22]–[24], by modeling the 

individual cells or stress fibers as force dipoles distributed in continuum elastic 2D or 

3D substrates, the researchers developed biomechanics models to interpretate 

mechanosensing mechanisms and to study the effect of mechanosensing on cell shape, 

stress fiber orientation, and synchronized beating of cardiomyocytes. On the other 

hand, the effect of durotaxis on cell migration dynamics on the long time have also 

been studied. For example, in the cell migration model by [25], substrate rigidity-

dependence is taken into account by assuming focal adhesions are correlated with 

substrate stiffness. In the single cell migration model by [26], substrate rigidity-

dependence is considered by assuming differential cell-substrate adhesions strengh on 

substrates with different rigidity. Thus, in these durotaxis models, substrate-rigidity-

dependence is used as the assumption in the cell migration models. To the best of our 

knowledge, in previous models, the spatial distribution of the substrate rigidity within 

the single cell domain is constant. The substrate rigidity is either changed for the 

whole cell or changed only when the cell moves from one location to another (during 

migration). The main difference between these models and our model is that we 
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examine how a single cell senses the local substrate rigidity difference within the 

single cell domain. Therefore, our model can provide a more direct interpretation on 

how the cell sense the rigidity gradient.    

 

In their original paper [1], Lo et al. proposed a two-part theory for the detection of 

the spatial gradient of the substrate rigidity as follows. In the first part of their theory, 

the cytoskeleton-focal adhesion-substrate linkages are considered as elastic springs 

(with spring constant k  for the same amount of elastic energy input U from the active 

actomyosin contraction) to pull these springs, the spring force F enerated is larger at 

the stiffer region of the substrate underneath the cell (Because 
2

2
2

F
U F kU

k
    

thus for the same U larger k  results in larger F  In the second part the theory, the 

stronger force leads to a higher level of activation of force-sensitive proteins through 

conformational changes, which in turn leads to migration-related cellular responses 

such as upregulation of lamellipodia extension. The second part of the theory is 

referred to as mechanotransduction [27] in the literature. This two-part theory is 

directly supported by other experimental observations. For example, in a work by 

Breckenridge et al. [14], traction stress under a circular cell crossing step-rigidity 

boundary were measured using elastomeric micropost arrays. They found that the 

traction stress is higher on the stiffer half of the circular island (see Fig. 1b), which 

supports the first part of the theory. In another work [15], the authors found 

lamellipodia grow preferentially from the corners of square cells (see Fig. 1c). The 

corners of convex polygonal shapes are known to be the spots where high traction 

stress is generated when the cell contracts [28]. Together these findings support the 
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second part of the durotaxis thoery that larger focal adhesion force leads to more 

lamellipodia extensions.   

 

In this work, we are concerned with the first part of the theory: how exactly is the 

larger focal adhesion force generated in the part of the cell adhering to the stiffer 

region of the substrate? The assumption of Lo et al. that the same energy is provided 

for pulling is not without pitfalls, since it is not straightforward as how the generation 

of the same mechanical energy is ensured at the different sub-regions of the cell by the 

cell’s active contractile apparatus. Another (and easier) approach to calculate the force 

is to consider the static equilibrium of the cell. The migrating speed of fibroblast cells 

is very slow (~1 µm/min), considering the stress fibers are in a state of isometric 

tension, thus the cell at any time instant can be considered to be in a quasi-static 

equilibrium. Therefore, the static equilibrium holds for the whole mechanical system 

composed of the cell and the elastic substrate.  

 

Using the method of static equilibrium, a simple generic model based on active 

matter theory has been devised by Marcq et al. [29], in which the cytoskeleton was 

modeled as two parallel elements (one passive spring and one active contractile 

element), and the 1D cell connects to the substrate springs only at the two ends (see 

Fig. 2a). Their model is sufficient to explain the experimental findings [17], [30] 

where the magnitude of the traction stress increases with the substrate rigidity. 

However, it cannot explain the rigidity gradient sensing (i.e., different traction stress at 

the two ends of the same cell): the static equilibrium implies that the adhesion forces 
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at the two ends of the cell should be the same, regardless of disparate substrate-spring 

stiffness. This is the paradox that was raised in a review by [31].  

 

The assumption that the 1D cell only adheres to the substrate at the two ends 

oversimplifies the problem.  In fact, by dropping this assumption, the abovementioned 

paradox can be resolved. Considering that the cell adheres to the substrate in the whole 

cell domain, in the present study, we show that the static equilibrium of the cell is 

sufficient to yield the rigidity gradient-dependent traction force distribution. The 

remainder of the paper is organized as follows. We first present the simple elasticity 

model for 1D and 2D cell adhering to an elastic substrate. For the 1D cell, we will 

derive analytical solutions and present results from the parametric studies. For the 2D 

cell, we will use the finite element method (FEM) to numerically solve the equilibrium 

equations. We then compare the modeling results with the three experimental 

observations listed in Fig. 1.  
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Figure 2. (a) Schematic representation of a single-cell model by Marcq et al. [29], 

where the cell adheres to the substrate only at the two ends. (b) Schematic 

representation of our single-cell model where the cell adheres to the substrate in the 

whole cell domain. The left half of the cell ahdere to a soft region, while the right half 

of the cell adheres to a stiff region of the substrate. The cytoskeleton is composed of a 

passive spring and an active contractile element. Note that the FA and substrate 

springs, alghouth drawn in a vertical direction, resist displacement in the horizontal 

direction in the 1D and 2D model. 

 

Model description 

 

1D Model 

 

We first present a 1D model of a cell adhering to an elastic substrate. As shown in 

Fig. 2b, the cytoskeleton of the cell is modelled a 1D strip of length L adhering to the 
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substrate through the focal adhesions. The focal adhesions and the substrate are treated 

as linear springs of stiffness 
FAk nd 

ECMk respectively. Note that 
FAk nd 

ECMk enotes the 

stiffness of continuum springs so they are in units of stress per unit length, instead of 

force per unit length. Because the substrate is modeled as isolated springs (i.e., elastic 

interaction within the substrate is neglected), the substrate considered in our model can 

be thought as the elastomeric micropost arrays [14], rather than a conitnouum elastic 

substrate. The active actomyosin contraction shortens the 1D cell and the shortening is 

resisted by the passive compoment of the cytoskeleton and the substrate (see the 

schematic in Fig. 2b).  

 

Constitutive relations of the cytoskeleton have been previously studied 

intensively. Time-dependent constitutive relations based on Hill’s law of muscle 

contraction have been devised previously to capture the dynamic process of 

actomyosin contraction, such as for stress fibers [13], [17], [32] or for myofibrils [33], 

[34]. In this work, for simplicity, the final state of the dynamic models when 

contraction stress reaches isometric tension and strain rate becomes zero is considered, 

which yields a time-independent consituttive relation for the 1D cytoskeleton: 

 (1) 

where  is the overall cytoskeleton stress,  is the Young’s modulus of the 

passive component of the cytoskeleton,  is the isometric tension due to the active 

actomyosin contraction,  is the strain,  is the displacement along the axis of 

the 1D cell (i.e., -axis).  
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The static equilibirum equation of the 1D cell is 

    (2) 

where  is the thickness of the cell and is assumed to be a constant for simplicity, 

 is the traction stress exerted on the substrate by the cell. Because the focal adhesion 

is connected to the substrate spring in series,  is also the stress experienced by the 

focal adhesion. Therefore, we here use the phrases “focal adhesion stress” and 

“traction stress” interchangeably in this paper. Traction stress xT an be calculated as 

      (3) 

where  is the equivalent spring constant of the cell-substrate linkage composed 

of the focal adhesion spring and the substrate spring, as illustrated in Fig. 2b. Because 

the two springs are in series, we have  

           (4) 

To model the rigidity gradient, we define step changes in substrate rigidity by 

            (5) 

where  efines the ratio of rigidities of the two regions, which can be regarded as 

the gradient strength. Without loss of generality, the left half (i.e, 0x  is considered 

to be softer than the right half (i.e., 0x   Therefore, 1   is imposed in our 

parametric studies. The stress-free boundary condition applies at the two ends: 

 / 2 0x x L    where L s the length of the 1D cell. The stress continuity condition 

at the interface between the stiff and soft regions is    0 0x xx x     Equations 

(1)-(5), along with the boundary and interface conditions, can be solved analytically 

for the displacement xu stress x and traction stress xT . 
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2D Model 

 

To apply the model to cells cultured on 2D surface of elastic substrate, we extend 

the 1D model to the 2D. For the 2D model, Eq. (1)-(3) become  

 

 

 

where the indicial notation is used, summation over repeated indices is adopted, 

, , and  are stress tensor, deviatoric strain tensor, strain tensor, respectively,  

and  are shear and bulk moduli of the cytoskeleton. the substrate rigidity gradient is 

modeled by defining  as a function of Cartesian coordinates . The finite 

element method (FEM) [35] is used to numerically solve the differential equations of 

the 2D model, where 3-node triangle element is used for the spatial discretization.  

 

Results 

 

1D cell, when α = 1  

 

When the gradient strength parameter 1  , meaning uniform rigidity 

underneath the cell, the 1D model can be readily solved for the displacement xu  and 

traction xT as follows. Using the strain-displacement and constitutive relations, Eq. (2) 

can be rewritten as an linear second-order differential equation: ,   0x xx cs xhEu k u  . By 

defining csk

Eh
  , the solution can be written as, 

x x

xu ae be    Imposing the 

stress-free boundary condition at two ends (i.e.,  / 2 0x x L    ) and, the two 
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unknown coefficients a  and b  are determined as: 
2

 
1

ca b
E

 

 
   


, where 

2

L

e





 , Traction stress can be found using Eq. (3) as a function of x  is:  

   x 2
 
1

x xc
csT x k e e

E

  

 

  


. The magnitude of  xT x  maximizes at the two 

ends of the cell (i.e., / 2x L  ) . Denoting the magnitude of traction stress located at 

the two ends of the cell by 
ENDT   we have 

2

END 2

1
 
1

c
csT k

E

 

 





     (6) 

where csk is given in Eq. (4). Figure 3a plots ENDT as a function of ECMk  which 

shows that the traction stress reaches a plateau when ECMk    which implies there is 

a saturation value of traction stress or force at large substrate rigidity. This result has 

been previously shown in experiments and models [17], [29], [30] Mathematically, 

this is simply because cs FAk k when ECMk      .Mechanically, this is because 

two springs in series is softer than any of the two springs. Therefore, when the 

substrate becomes rigid, the spring stiffness of the cell-substrate linkage becomes 

equal to the focal adhesion spring. 

 

1D cell, when α >1 

 

When  >1, a step change of rigidity is present underneath the single cell (the left 

half is always softer than the right half). The analytical solution can be derived similar 

to the case of  =1. Figure 3b and 3c show the solutions of traction stress  and 

cytoskeletal stress , respectively. For the traction stress, positive sign means 
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rightward pulling and negative sign means leftward pulling. Clearly, the traction stress 

magnitude is maximal at the cell edge on the stiff region (i.e., at the position 

). With continuous adhesion to the substrate in the whole cell domain, 

traction stress is redistributed so that on the stiffer side the traction stress is within a 

shorter range but higher magnitude on average. On average, the higher cytoskeleton 

stress  is generated in the stiff region compared to the soft region. Note that traction 

stress is discontinuous at the interface (i.e., 0x  ). This is simply because the 

substrate rigidity is assumed to be discontinuous at the interface in our model (see Eq. 

5, there is a step change of rigidity across 0x  ). If we assumed a linear-varying 

rigidity gradient, the traction stress would be continuous.  

 

 

Figure 3.  (a) Traction stress (scaled by c ) reaches a plateau at large substrate 

rigidity (in units of kPa/μm). (b) Analytical solution of traction stress . (c) 

Analytical solution of cytoskeletal stress . Parameter values used: , 

=1 kPa/μm, =0.1 kPa/μm, =3 μm, =4 kPa, , and =4 kPa. These 
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parameter values are used for the remainder of the paper unless specifically 

mentioned. 

 

These results imply that the static equilibrium alone can account for dependence 

of the traction stress on the rigidity gradient of the substrate, which is the first part of 

the rigidity-gradient sensing theory by Lo et al. mentioned previously. With the onset 

of different forces in focal adhesion and cytoskeleton, the positive feedbacks between 

the traction stress and focal adhesion maturation and between the cytoskeleton tension 

and the stress fiber formation can further amplify the differences of these forces, and 

eventually result into disparate cellular responses through mechanotransduction 

pathways. 

 

Parametric studies were conducted to ascertain the sensitivity of the modeling 

results to the parameter values. We define the difference between the traction stresses 

at the left and right ends of the 1D cell as    Δ / 2 / 2x x xT T L T L    where  

denotes the absolute value. Quantity Δ xT  represents the difference between the 

traction stresses on the soft and stiff regions of the substrate. Figure 4 plots the Δ xT as 

a function of   for different values of E and sk  In both Fig. 4a and 4b, we see that 

the traction stress difference increases with   which implies that the gradient strength 

play an important role in durotaxis [36], [37]. In Fig. 4a, we can see that  Δ xT  

increases as E decreases, meaning softer the passive component of the cytoskeleton, 

larger difference of traction stress is produced. When the passive component of the 
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cytoskeleton becomes stiffer, less contractile force is transmitted to the focal adhesion 

and consequently weaker dependence of focal adhesion stress on the substrate rigidity. 

In Fig. 4b, we can see that the ratio between the relative difference of traction stress 

between the soft and stiff regions (i.e.,  , where = )increases 

with decreasing substrate rigidity sk which implies that if the mechanotransduction 

process detects the relative difference of traction stress, then softer substrate promotes 

durotaxis.  

 

Figure 4. (a) Traction stress difference  as a function of  for different values 

of  when =0.1 kPa/μm. (b)   as a function of  for different values of  

when =2 kPa.  

 

Computational results for 2D cells 

 

First, we show in Fig. 5a the FEM simulation results from the 2D cell model for a 

circular cell crossing a step-rigidity boundary (i.e., the upper half of the cell adheres to 

soft micropost arrays, the lower half of the cell adheres to stiff micropost arrays). As 

shown in Fig. 5a, the traction stress is higher on the perimeter of the cell, and it is 
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higher on the lower half (stiff substrate) compared to the upper half (soft substrate). 

The displacement is slightly higher on the upper half than the lower half. Our 

modeling results in Fig. 5a are in good agreement with in the experimental results [14] 

shown in Fig. 1b (if we neglect the random noise in the experiment). Therefore, both 

the experiment and our model show that the cytoskeleton contraction in the single cell 

generates higher traction stress on the stiffer region of the substrate underneath the 

cell.  

Second, we show in Fig. 5b the model prediction of traction stress for the square 

cell.  The traction stress concentrates to the edge of the square cell, and maximizes at 

the corners. This modeling result is correlated with the experimental data by [7], [15] 

shown in Fig. 1c where the lamellipodia extensions were localized to the corners of 

square-shaped cells. This correlation supports the durotaxis theory proposed by [1]: 

larger focal adhesion forces at the corners of the square cell are converted into 

protrusion signals via molecular mechanisms of mechanotransduction, which 

eventually lead to stronger lamellipodia extension. In the case of durotaxis, higher 

traction stresses are in the rigid side of the substrate and essentially the protrusion 

signals will be amplified in the rigid side rather than in the soft side. 
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Figure 5. Finite element model predictions for 2D cells. (a) Displacement and 

traction stress of a circular cell crossing a step-rigidity boundary. (b) Traction stress 

for the square cell. (c) Traction stress distributions of the cell shown in Fig. 1a at the 

sequential time instants. (Parameter values used: =2.3 kPa, =5 kPa, cell area is 500 

μm2, other parameters are the same as 1D analytical model given in Fig. 3) 

 

We then apply the 2D model to Lo et al.’s experiment (Fig. 1a) to calculate the 

traction stress distribution. A vertical line is picked (approximately based on the 

brightness change in the image) in Fig. 1a to be the interface between the soft and stiff 

sides of the substrate. Figure 5c shows the traction stress distributions corresponding 

to the experimental images of Fig. 1a at the different time instants. One can see that 

the traction stress for the lamellipodia on the rigid side (solid arrowhead) is larger than 

that of the lamellipodia on the soft side (hollow arrowhead). If the larger force is 
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converted into more protrusion signal, the lamellipodia on the right side (solid 

arrowhead) will become the dominant one, which eventually leads to the turning of the 

cell at the step-rigidity boundary. Note that the highest traction stress spot at the tail of 

the cell at the beginning (see Fig. 5c) does not result in a leading head is probably 

because the memory (in the molecular constitutes) of the head-to-tail polarization [38], 

i.e., the new head will most likely to form near the original head. 

 

Conclusions 

 

In this work, we use a simple elasticity mechanics model to predict the traction 

stress (i.e., focal adhesion stress) for single adherent cells on the elastic substrate with 

rigidity gradient. The model predicts larger traction stress (i.e., larger focal adhesion 

stress because the traction stress is equal to the force experienced by the focal 

adhesion) on stiffer region of the substrate underneath a single cell. This minimal 

mechanics model provides a plausible answer for the first part of the durotaxis theory 

proposed by Lo et al. [1]: how exactly is the larger focal adhesion force generated in 

the part of the cell adhering to the stiffer region of the substrate? We found that the 

principle of static equilibrium alone provides a mechanistic explanation to this 

question. We think our model has resolved the paradox that was raised in a review by 

[31], which states that a static model cannot explain the rigidity sensing of a cell. Our 

model can be incorporated in more sophisticated mechanobiochemical models to 

address complex problems in mechanobiology and bioengineering.  
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ABSTRACT 

 

Cell migration is a fundamental biological process involved in tissue 

morphogenesis and cancer metastasis. To understand how cell migration works at the 

whole cell level, biomechanical and biomechanical models have been developed but 

were mainly independent of each other. In this work, by integrating biomechanics and 

biochemistry of the cell, we developed a contraction-reaction-diffusion model for cell 

migration at the whole-cell scale. The mechanics of cytoskeleton contraction generates 

distributed forces for the cell to sense the mechanical properties of itself and its 

microenvironment. The mechanosensing is coupled with the reaction and diffusion of 

biomolecules in the cell to model the cell migration. The simulation results show that 

the model can simulate cell polarization (head-to-tail formation), the localization of 

protrusion signal to the corners of the square cell, and cytoskeleton asymmetry-

dependent persistent migration. In addition, this dynamic model of cell migration can 

recapitulate durotaxis in silicon and simulate cellular morphogenesis. The single cell 

model can be extended to multicellular model for understanding microtissue 

formation. 

 

Keywords: Cell migration, cytoskeletal contraction, durotaxis, virtual-cell 

simulation, reaction-diffusion  

 

Introduction 

 

Cell migration, an intriguing phenomenon involved in tissue formation and cancer 

metastasis, has long been the subject of intensive investigation in the fields of 
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biophysics and cell biology [1]. The machineries that drive migration, and the 

signaling networks that control the migration machineries have been studied 

intensively [2]. In vitro 2D cell migration experiments revealed that cells of different 

types, such as fibroblasts, keratocytes, and neurons, exhibit different 

migration/spreading behaviors [3]. On the other hand, different types of cells share 

some fundamental characteristics. In general, single cell migration can be described as 

a coordinated and integrated process of different modules (Fig. 1): cell polarization 

(i.e., front-and-rear formation), protrusion of lamellipodia/filopodia/lobopodia, 

invadopodia formation and proteolysis of surrounding ECM, formation of new 

adhesions in the front, releasing of aging adhesions at the rear, and 

cytoskeleton/membrane skeleton contraction to move the rear forward [2], [4]. 

Inspired by Turing’s reaction-diffusion model of diffusive biochemical 

molecules, mathematical models were developed to study cell polarization [5], [6], 

and cell morphogenesis in migration [3], [7]. Particularly, the reaction and diffusion of 

intracellular signaling molecules have been interpreted as to form networks [8], [9]. 

Cells with this internal network system are able to spontaneously polarize and make 

persistent random walks in the absence of external cues [3], and to carry out directed 

movement when biased by external signal gradients (i.e., chemotaxis).  

On the other hand, biomechanics has been shown to play a critical role in many 

biological functions such as cell motility [10]–[12]. It has been postulated that the 

mechanosensitive proteins change their conformations when stretched by mechanical 

forces, and the conformational changes open up hidden active sites for binding with 

other molecules, which in turn results in specific chemical reactions. For example, 
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stretching of talin protein resulting in the increased binding of vinculin to talin [13], 

which may be a molecular mechanism underlying the force-dependent focal adhesion 

maturation [14], [15], [16]. Similarly, stretching of α-catenin has been shown to 

induce enhanced vinculin binding in cell-cell adhesion [17], [18].   Mechanical forces 

also regulate the actomyosin stress fiber formation [19]. Therefore, mechanical and 

geometrical properties of cells and their microenvironments are not merely passive 

consequence of biochemistry. In steady, they are important regulators of biological 

processes such as cell migration.  

Biochemical models based on reaction-diffusion equations lack the consideration 

of mechanotransduction thus cannot capture mechanosensing in cell migration. 

Biomechanics models lack consideration of biochemical signaling and thus fail to 

account for biochemical processes. A thorough understanding of cell migration will 

require the elucidation of how the mechanical and biochemical events are 

spatiotemporally integrated at the cellular scale. In this work, we develop a 

contraction-reaction-diffusion model for cell migration by integrating the mechanical 

force generation and reaction-diffusion of biochemical molecules at the whole-cell 

scale. Our overarching hypothesis is the following: the biomechanical and biochemical 

signals form mechanobiochemical feedback loops. Through the mechanobiochemical 

feedback loop, cell migration and cell shape can be regulated by a variety of 

mechanical cues, such as cell shape  [20] and substrate rigidity gradient [21].  
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Figure 1. Schematic illustrations of cell migration on a 2D surface. A) Side view, 

B) Top view. C) Physical domains defined in the cell model. 

 

Model Description 
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The present computational model is concerned with cells spreading and migrating 

on the surface of the substrate. Cells are modeled as a two-dimensional (2D) 

continuum, which reflects the flatness of the lamellipodia for cells cultured on 2D flat 

substrates. As illustrated in Fig. 1C, four physical domains are defined for the cell: 

cytoskeleton domain , cytosol domain , membrane domain , and 

substrate domain . In the cell membrane domain , reaction-diffusion 

equation of protrusion signaling molecules are formulated. In the cytosol domain 

, reaction-diffusion equation of retraction-related molecules are formulated. In 

the cytoskeleton domain , solid mechanics equations are formulated, and the 

mechanical stresses in cytoskeleton are solved. Because 2D model of the cell is 

adopted, the physical domains  , , , and   can be described by the 

same mathematical domain, denoted by . The single-cell model is composed of five 

modules: cytoskeleton mechanics, reaction-diffusion of molecules, cytoskeleton 

asymmetry, protrusion and retraction of cell body, and cell-substrate interaction, 

which will be described below. 

 

Cytoskeleton module 

 

The elasticity model of the cytoskeleton 

 

A rather simple mechanics model of cytoskeleton is adopted here. Because the 

migration of biological cells in their solid or fluid microenvironment is at the low 

Reynolds number [22], the inertia force can be neglected. At each time instant, the cell 

can be considered in a quasi-static equilibrium. The equilibrium equation of the 
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cytoskeleton in the domain  are written by using Cartesian tensor notation 

(summation over repeated indices is adopted hereinafter) as 

  (1) 

where  is the Cauchy stress tensor of the cytoskeleton (  and  takes values of 1 

and 2 in 2D),  is the thickness of the cell, which is assumed to be uniform 

throughout the cell. Denoting  the area of the cell, the volume of the cell is 

calculated as 

          (2) 

The cell volume is assumed to be conserved in the present study, so  varies 

with time when the cell area changes. Here  is the traction stress exerted on the 

substrate by the cell. At the cell edge (denoted by ) where there is no cell-cell 

adhesion, the stress-free boundary condition holds: , where  is the normal 

direction at the cell edge. In the present model, the cytoskeleton is composed of 

passive and active networks. For the sake of simplicity, a simple elastic constitutive 

relation is adopted,  

 (3) 

where  is the strain tensor,  is the displacement, 

 is the deviatoric strain tensor,   and  are shear and bulk modulus 

of the passive network,  is the active isometric tensile stress (ITS) tensor from the 

active part of the cytoskeleton, which will be defined later in Eq. (6). Use of the small-

strain Hooke’s law in Eq. (3) for the large deformation that occurs during cell motility 

deserves some explanations here. In this model, when solving the elasticity problem 

for a migrating cell, at each time instant we treat the current configuration as the 
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stress-free state, and displacement  and strain  are measured from the current 

stress-stress configuration, rather than the reference state at an initial time of the whole 

migration process. Note that the displacement and strain concepts here are different 

than those in the conventional finite-strain elasticity theory. This is an ad hoc 

treatment based on the assumption that the dynamic bonds that forms the passive 

network of the cytoskeleton remodels fast enough to release the passive stress in the 

cytoskeleton. The traction stress is assumed to be linearly proportional to the 

“instantaneous” displacement  of the cell  

    (4) 

where  is the spring constant of the cell-substrate linkage that will be defined 

later in Eq. (18).  

 

Stress-fiber structure tensor 

To account for the anisotropic fiber formation, a previously defined mathematical 

model for myofibril orientation in cardiomyocytes is used [20]. A second-order tensor 

, referred to as the stress-fiber structure tensor, is defined and its time evolution is 

described by  

    (5) 

where  and  are the stress fiber activation and deactivation rates, 

respectively. Here,  is a model parameter,  is the cytoskeletal tension, 

 denotes Heaviside function and is defined as: =1 when  and =0 

when . Denoting the maximal eigenvalue and the corresponding eigenvector of 

 by  and , respectively, the ITS tensor  is defined as 
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      (6) 

where , , and  denotes the baseline, retraction signal-associated, and 

stress fiber-associated contractility,  is the concentration of retraction signal that will 

be introduced below. The dyadic product of unit vector  produces the tensor , 

which has its only non-zero-principle-value principle direction along . This 

anisotropic cytoskeleton model has been used to explain the pattern formation of 

myofibrils in single cardiomyocytes [19]. 

 

Cell motility module 

 

In this work, we adopt a similar modeling concept as Satulovsky et al. [3] where a 

few phenomenological variables are used to represent the concentration of various 

proteins involved in cell migration.  

Reaction-diffusion of protrusion and retraction signals 

 

Previous studies indicated that the active forms of protrusion and retraction 

signals are membrane-bound proteins [7], [23]. Two phenomenological variables  

and  are defined in the physical domain of the membrane  to account for the 

area concentration of active form of protrusion (e.g., Rac, Cdc42) and retraction (e.g., 

ROCK) signals, respectively [3]. Here variables and  are normalized by their 

saturation values respectively thus are in units of µm-2 and with the maximal value of 

1 µm-2. Their time evolution equations are defined as 

   (7) 

      (8) 
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where  represents the material time derivative (the cytosol is assumed to be 

moved with the cytoskeleton, convection of cytosol is not considered here), 

 is the Laplace operator,  and  are the protrusion and retraction 

diffusion constants in the membrane,  , , and  are the rate constants for the 

spontaneous, auto-activation, and stress-mediated protrusion signal activations,  is 

the spontaneous activation rate for retraction signal,   and  are the decay 

constants for the protrusion and retraction signals, respectively. Here, , , , 

 are model parameters describing the auto-inhibition relation between the protrusion 

and retraction signals,  and  denote strength of random noise for protrusion and 

retraction signals, respectively,  is a Gaussian random process of mean zero and 

variance unity and ,  and  are the volume concentration of 

the inactive forms of protrusion and retraction signaling molecules in the cytosol, 

which are in units of µm-3. The diffusion of inactive protrusion and retraction 

signaling molecules in the cytosol are considered much faster than in the membrane. 

To be simple,  and  are assumed to be uniform in the cytosol and are calculated by 

the following two equations, respectively, 

         (9) 

         (10) 

where  and  are model parameters denoting the total volume concentrations 

of both active and inactive forms for protrusion and retraction signals, respectively,  

and  are the spatial mean values of  and , respectively. In Eq. (9), multiplying  by 

cell thickness  to convert a volume concentration to an area concentration is based 
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on the assumption that the cell is flat and the diffusion in the cell thickness direction is 

instantaneous.     

 

Movement of the cell (i.e., protrusion and retraction) 

 

The movement of the cell consists of the cell protrusion caused by the actin 

polymerization at the leading edge of the lamellipodia and the passive retraction as a 

result of active cytoskeleton contraction. A protrusion velocity  is defined as a 

function of the protrusion signal at the cell edge  as 

 (11) 

where model parameter  represent the intrinsic level of membrane protrusion 

speed, parameter  is the threshold of protrusion signal above which membrane 

protrusion occurs, parameter  sets an upper limit of the cell area,  is the 

outward normal unit vector at the cell edge. The retraction velocity is assumed to be 

proportional to the instantaneous displacement  of the cytoskeleton as, 

       (12) 

where 
 
c

r
 is a model parameter.  

 

Cytoskeletal asymmetry 

 

Experimental studies have revealed that the cell polarity (i.e., head-and-tail 

pattern) is maintained through the long-lived cytoskeletal asymmetries including 

microtubules [24]. To incorporate the cytoskeletal asymmetries in the model, a vector 

 is defined to represent the polarity of the asymmetric cytoskeleton and its time 

evolution equation is defined as,  
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      (13) 

where  is a model parameter, vector  is a vector defined based on the 

protrusion signal, 

      (14) 

Where  is a model parameter,  is a unit vector and  is the 

position vector of the edge points relative to the center of the cell,  is the length of 

,  is the differential angle corresponding to the differential arc length, where  is 

the angle coordinate of the edge point in the polar coordinate system with the cell 

center as the origin. As implied by Eq. (13), in the steady-state ( =0), the 

cytoskeleton asymmetry vector  is equal to the vector . The cytoskeleton-

asymmetry function  in Eq. (7) is defined with the angle  of the vector  as, 

      (15) 

where  is a model parameter. 

 

Cell-substrate interaction module 

 

To incorporate the dynamic remodeling of focal adhesion, a phenomenological 

variable  is defined to describe the density distribution of focal adhesion-associated 

proteins (e.g., integrins, talins, vinculins, etc.). Variable  is normalized by the 

saturation value, thus ranges from zero (no integrin-mediated cell-substrate adhesion) 

to one (mature FAs). The time evolution of  is described by 

,  (16) 
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where , , , and  are the rate constants for the spontaneous, auto-

activation, protrusion signal-dependent, and stress-mediated focal adhesion formation, 

respectively,  is a decay constant,  denotes the magnitude of the traction stress, 

 and  are model parameters, and  is the strength of random noise. Here the 

redistribution (e.g., via active transportation and passive diffusion) of unbound focal 

adhesion proteins is assumed to be faster than other time scale of focal adhesion 

formation, the unbound focal adhesion protein density  in the membrane is simply 

computed as 

      (17) 

where  is the mean value of    in the membrane domain, and  represents the 

average density of the total amount of bound and unbound focal adhesion proteins. 

Denoting  and  the equivalent spring constants of the focal adhesion and the 

substrate, respectively, the spring constant of the cytoskeleton-substrate linkage is 

given as 

    (18) 

The mechanics of the cell is coupled to the dynamics of focal adhesion 

remodeling through the spring stiffness  by the following relation 

  (19) 

where  is the maximal stiffness when the focal adhesion density  = 1 µm-2  

(i.e., mature focal adhesion).  

Numerical implementation of the model 

 

The cell monolayer model is implemented in an in-house code using the finite 

element method, where Lagrangian mesh is adopted and 3-node triangle element is 
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used. In the simulations of the movement of the cell, the nodal spatial coordinates are 

updated based on Eq. (11) and Eq. (12). An auto mesh-generating algorithm based on 

Delaunay triangulation is utilized to perform re-meshing when mesh distortion occurs. 

Mesh transfer for the field variables is performed between the old and new mesh.  

 

Mechanosensing at the whole-cell scale 

 

As illustrated in Fig. 2, the coupling of different modules in our model are 

illustrated in Fig. 2. Starting from the lower right block, cell contraction generates 

mechanical stresses in the cell. These forces are converted into biochemical activities 

through mechanosensors, which in turn regulate the assembly/disassembly of 

macromolecular entities (lower left block) and the cell protrusion/retraction (upper left 

block).   The macromolecular assembly/disassembly alter the structural, geometrical, 

and material properties of the cell, which, according to the continuum/structural 

mechanics theory, will subsequently change both the internal stress (cytoskeleton 

stress) and stress at the boundary (i.e., cell-matrix adhesion stress). Thus, mechanics of 

the cell, biochemical activities, and macromolecular assemblies are coupled through 

mechanobiochemical feedback loops.   
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Figure 2. Block diagram for the model, note that numbers in parentheses are 

equation numbers. 

 

 

Simulation results 

 

Establishment of polarity of the cell with the reaction-diffusion submodel 

 

Cell polarization (i.e., forming head and tail) is critical in cell migration to 

achieve directed movement. The spontaneous polarization has been thought as a 

pattern formation in reaction-diffusion systems [3], [23], [25]. We here define the 

system of equations consisting of Eq. (6)-(9), where  and  are set to be zero, as 

the reaction-diffusion submodel. In this reaction-diffusion submodel, which were 

previously proposed by Maree et al [7], the protrusion signal  and retraction signal  

inhibit each other through the  and  terms, respectively. As studied by Maree et 
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al, this simple mutual-inhibition model can induce spontaneous polarization. Figure 3 

shows the simulation result of the reaction-diffusion submodel. As shown in Fig. 3A 

(top row), starting with a randomly perturbed initial state, the protrusion signal  in a 

circular cell spontaneously polarizes, i.e., spatially separates into two zones: high and 

low regions. Because of the auto-inhibition, retraction signal distribution also 

polarizes. 
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Figure 3. Establishment of polarity of the cell with the reaction-diffusion 

submodel. (A) In a circular cell, protrusion signal  polarizes spontaneously with 

random initial perturbation. (B) The effect of cell shape on the spatial patterns of 

protrusion signal in an elliptical cell. (C)-(F) Effect of modal parameters , , , 

and  on the steady-state distribution of protrusion signal . Note that all the panels 

share the same color bar. 

 

As previously showed by Maree et al. [23], the cell shape (i.e., the shape of the 

mathematical domain of the reaction-diffusion equations) has an important effect on 

the spatial patterns formed. They concluded that at the steady state, the length of the 

interface that separates the high and low regions is minimized. Our simulation results 

agree with their conclusion. As shown in Figure 3B, the interface in the elliptic cell is 

initially setup to be parallel to the longer axis of the ellipse (i.e., the initial distribution 

of the protrusion signal is a gradient from high in the left to low in the right). Over 

time, the interface rotates and eventually aligns with the shorter axis of the ellipse. To 

see how various model parameters, influence the steady-state protrusion and retraction 

distributions in the reaction-diffusion submodel, a rectangular (with an aspect ratio of 

1:3) cell shape is used to simulate approximately a quasi-1D domain. The simulation 

results for parameter , , , and  are plotted in Fig. 3C-F. One can see that 

change of these parameters can all shift the position of the interface and the peak value 

of  at the steady state.  
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Focal adhesion stress-dependent protrusion signal distribution 

 

The reaction-diffusion submodel described above can account for the polarization 

of the protrusion signal, but it cannot explain the phenomenon observed in the 

previous study [15] in which the membrane protrusion localized to the four corners of 

the square cell. As shown in Fig. 4A, the reaction-diffusion submodel alone predicts a 

polarized pattern for the protrusion signal distribution in a square cell.  

Our previous studies showed that localization of the traction stress (which is equal 

to the focal adhesion stress) at the corners of the square cell is simply due to the 

mechanics principle of static equilibrium of an elastic body [19]. Based on that, we 

argue that protrusion signal and focal adhesion assembly can be enhanced by the 

mechanical stress in the focal adhesion. This hypothesis is implemented in our model 

by introducing the  term in Eq. (6) and the  term in Eq. (16). 
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Figure 4. The effect of mechanobiochemical coupling to the protrusion signal.  

(A) Protrusion signal  forms gradient pattern spontaneously with random initial 

perturbation. (B) Traction stress contour, with coupling protrusion signal. (C) 

Protrusion signal  forms circular pattern, with coupling traction stress, (i.e., turning 

on stress dependent activation parameter, ) 

 

We define the system of equations consisting of Eq. (1)-(9) and  Eq. (16)-(19), 

where   and  are set to be zero, as the contraction-reaction-diffusion submodel. 

Simulations results of the contraction-reaction-diffusion submodel for the square 

shape are presented in Fig. 4B-C, showing the localization of high traction stress (Fig. 

4B), and protrusion signal (Fig. 4C) at the corners of the square cell. In a dynamic 

process, the localization to the corners is due a positive feedback loop in the 

contraction-reaction-diffusion submodel: larger traction stress  leads to bigger  (Eq. 

(16)), larger  leads to bigger  (Eq. (18) and (19)), bigger  results in larger 

traction stress  (Eq. (4)).  

 

The role of the cytoskeleton asymmetry to the persistent migration 

 

In this model, we introduce a cytoskeleton-asymmetry function  to be able 

to explicitly control the directional persistence of migration. Figure 5 illustrates the 

role of function  in cell migration, in which the first two rows correspond to the 

simulation results of the protrusion signal and traction stress when the cytoskeleton 
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asymmetry is turned off (i.e., setting = =0), while the bottom two rows 

correspond to the simulation when the cytoskeleton asymmetry is on. Both simulations 

start with a circular cell and polarized protrusion signal (i.e., we initialize a spatial 

gradient for the distribution of the protrusion signal within the cell domain). When the 

cytoskeleton asymmetry is turned off (see the top two rows), the cell first becomes an 

elliptic shape due to the protrusion on the front of the cell and the retraction on the 

back of the cell. The interface line that divides the high and low protrusion signal 

regions is parallel to the longer axis of the ellipse. Then the cell front turns due to the 

turning of the interface line towards the shorter axis of the ellipse. On contrary, when 

the cytoskeleton asymmetry is turned on (bottom two rows), the cell shape becomes 

elongated in the dynamic equilibrium of the process of protrusion and retraction, and 

the cell preserves migration direction.  
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Figure 5. The role of the cytoskeleton asymmetry to the persistent migration. The 

first and third rows: protrusion signal. The second and fourth rows: traction stress. For 

the first 2 row the Microtubule effect is simply turned off by setting the  and 

 For the third and fourth row, we just simply turned on the microtubule by 

setting   and . 

 

Comparison with experimental data  

 

To validate the cell migration model and to help estimate the modal parameters, 

live-cell imaging and traction-force microscopy experiments were conducted with 

MDA-MB-231 breast cancer cells. The quantitative experimental data for the cell 

shape and traction stress distribution during the cell migration process were obtained 

(Fig. 6, rows 1 and 3).  The traction forces obtained in the micro-post experiment has 

been converted to traction stress by dividing the force on each post by an area , 

where  is the surface area per post. The cell shape at each time snapshots were 

extracted and used in the model simulations as the input. In the simulations, the 

protrusion/retraction movement of the cell was turned off. The model parameters 

associated with the mechanical properties of the cytoskeleton and cell-substrate 

adhesion were manually tuned such that both the pattern and magnitude of the 

predicted traction stress distribution best match the experimental results (see Fig. 6).  

As a result, we found that one set of model parameters can be found to yield good 

matching for the most of the time frames in the whole course of migration period 

presented in Fig. 6.  
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Note that in one of the experimental image (indicated by the arrow head), the high 

traction stress was not located at the margin of the cell, which is different than the 

corresponding model calculation. this discrepancy is interpreted as follows. The 

modeling results were from the steady state of the dynamic simulations, under the 

assumption that the time scale of cell shape change is much slower than other time 

scales in the dynamic model. The model also lacks the consideration of spatial and 

temporal heterogeneities in the cell. As a result, our present mathematical model will 

always predict higher traction stress at the edge of the cell because of the principle of 

static equilibrium.  In the experiment, the upper-right region of the cell at t = 165 mins 

is the tail that was retracting. The tail may not retract in a normal speed, leaving a tail 

with weak adhesion and thus small traction stress.   
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Figure 6. Experimental results using micropillar test. The scale bars in the 

experimental figures are 10 um. The upper limit for the color bar for both 

experimental and simulation figures are 1 nN. 

 

For the experiments in Fig. 6 center to center distance for microposts are 2 um, 

center to center is the distance from all the adjacent microposts (i.e., one side of the 

hexagon shape). The boundaries are determined manually based on phase images. The 

post has 4.77 um height, 0.8 um diameter, and thus spring constant = 1.389 nN/um, 
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and effective modulus is 2.44 kPa. Images intervals are 15 mins. migration of MDA-

MB-231 breast cancer cells.  

 

Simulation of durotaxis 

 

Durotaxis is a term coined by Lo et al. [10], which refers to the substrate rigidity-

guided cell migration. They showed in the in vitro experiment where a fibroblast cell 

crawls from the stiffer side of the substrate toward the softer side, the cell made a 90-

degree turn at the interface to avoid migrating into the softer region. A conceptual 

two-step theory consisting of the force generation and mechanotransduction has been 

proposed previously by Lo et al. to explain the durotaxis. A simple mechanics model 

has been presented by us previously to explain how exactly the larger focal adhesion 

stress is generated at the stiffer region of the substrate [14]. We showed that static 

equilibrium of the adherent cell along can yield the disparate traction stress on regions 

of different rigidity. In this study, we integrate the elasticity model with the reaction-

diffusion equations to form a contraction-reaction-diffusion system. 

Here the dynamic model of single-cell migration is used to reproduce durotaxis 

phenomenon in silico. Cells started as a polarized circular shape and placed on the 

stiffer region of the substrate. The cell then crawls toward the softer region (i.e., left 

side). The results from two simulations are presented in Fig. 7. The only difference 

between these two simulations is the stress-dependent protrusion signal parameter : 

relatively high for the simulation I (top three rows) and low for the simulation II 

(bottom three rows). Note that parameter  regulates the level of force-dependent 

activation of protrusion signal. At relatively low value of  (top three rows), the cell 
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crosses the interface with a slight change of cell shape. At high value of , the cell 

makes a turn at the stiff-to-soft interface and then crawls along the interface. The 

turning of the cell at the interface is caused by the positive feedback loop mentioned 

previously in Fig. 4: larger substrate stiffness leads to larger traction stress, larger 

traction stress leads to higher level of focal adhesion and protrusion signal, which 

results in change of migrating direction at the interface. These simulation results show 

that our model can successfully simulate durotaxis phenomenon.  

Our simulations demonstrate that the cell can sense the non-specific mechanical 

cues of its microenvironment through a mechanobiochemical system (see Fig. 2).  The 

key and the starting part of this system is the active contraction of the cell. Without the 

actomyosin contraction, no forces will be generated and the mechanosensors will not 

be activated.   
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Figure 7. Simulation of durotaxis. The first and third rows: protrusion signal. The 

second and fourth rows: traction stress. Top two rows: higher stress dependent 

parameter, =0.6, durotaxis happens. Bottom two rows: lower stress dependent, 

=0.4, cell passes the interfaces.  
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Cell shape 

Cell shape is an emergent property of a cell during cell spreading and migration. 

Here we demonstrate how the cell shape can be changed by varying the model 

parameters. The parameter space of the model was searched to identify the cells of 

different shapes. To quantitatively characterize the cell shape, we define two 

dimensionless numbers: the roundness and branchness numbers. The roundness 

number, denoted by , was defined as  where  is the area of the cell, 

 is the radius of the circle that circumscribe the cell boundary [3]. The roundness 

number  takes maximal value of 1 when the cell shape is a perfect circle and is 

smaller than 1 for any other shapes. It is useful in distinguish between elongated and 

rounded shapes, but may fail to distinguish between the elongated and dendritic 

shapes. The branchness number  is defined as , where  is the 

perimeter of the cell. The branchness number  has a lower bound of  

when the cell shape approaches a strip with zero width, and becomes large when the 

cell shape is dendritic.  

Both the brute-force search and genetic algorithm were used for the parametric 

study. As shown in Table 1, three characteristic shapes were identified in the 

parameter space search: elongated, rounded, and dendritic shapes, with their roundness 

and branchness numbers listed. The values of some key model parameters that 

corresponds to these three characteristic shapes are also listed in the table. Note that 

the parameter values are given as ranges, indicating the regions of the parameter space 

where these characteristic shapes emerge.   
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Table 1. Characteristic cell shape simulated by the cell model 

   Cell Shape 

 

 

 

 

 

Parameters 

 

  

Roundness = 0 .47 

Branchness = 0.78 

 

 

Roundness = 0.76 

Branchness = 0.93 

 

 

Roundness = 0.1 

Branchness = 1.43 

 

 
0.06 - 0.15 0 – 0.01 0.13 – 0.38 

 
0.11 – 0.27 0.6 – 0.77 0.56 – 0.93 

 
0.03 – 0.08 0.03- 0.04 0.01- 0.14 

 
0.06 – 0.15 0.28 – 0.41 0.01 – 0.66 

 
0.06 – 0.15 0.22 – 0.31 0.36 – 1.44 

   0.39 – 0.51 0.24 – 0.35 0.29 – 1 

 
0.07 – 0.15 0.01 – 0.02 0.01 – 0.44 

 

One of the most common observation from analyzing the simulation results was 

that the total focal adhesion is an important parameter and plays crucial role in cell 

morphology. Altering the focal adhesion, changes the cell shape drastically. 
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Conclusions 

 

In this work, we developed a computational model that integrates the 

biomechanics and biochemistry of the cell spatiotemporally at the whole-cell scale. 

Biomechanical and biochemical events and processes were treated as modules, 

between which cross-talks are defined.  We have shown that the reaction-diffusion 

submodel can simulate cell polarization (head-to-tail formation), the contraction-

reaction-diffusion submodel can simulate the localization of protrusion signal to the 

corners of the square cell, and the cytoskeleton-asymmetry module can simulate the 

persistent migration. Importantly, by coupling the mechanosensing with membrane 

protrusion signals, we demonstrated that this mechanobiochemical model can simulate 

substrate rigidity-guided cell migration (i.e., durotaxis). Finally, the full model, when 

applied to dynamics of cell migration, can predict cell shape formation, i.e., cellular 

morphogenesis.  

Our computational model incorporates the reaction-diffusion equations with 

continuum mechanics equations, thus enabling in silico studies of the coupling 

between the biochemistry and mechanobiology. The computational model and the 

computer program developed here can be used to test hypothesis and gain 

understandings of the complex system of living cells and tissues. The finite element 

method-based numerical implementation of the model makes the computational model 

accurate and efficient in simulating cells with irregular shapes. The modular approach 

of the development of this phenomenological model makes it easy to be extended to 

incorporate more biophysical principles. The extension of this single-cell migration 
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model to microtissues or monolayers will be discussed in detail in a forthcoming 

paper.  
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Abstract 

Cell morphogenesis is a fundamental process involved in tissue formation. One of 

the challenges in the fabrication of living tissues in vitro is to recapitulate the complex 

morphologies of individual cells. Despite tremendous progress in understanding 

biophysical principles underlying tissue/organ morphogenesis at the organ level, little 

work has been done to understand morphogenesis at the cellular and microtissue level. 

In this work, we extend the previously developed 2D computational model for 

studying cell morphogenesis in monolayer tissues. We have added the cell-cell 

interaction module and nucleus module to the model. The model integrates the 

biochemical and mechanical activities within individual cells spatiotemporally. The 

computer program can simulate tens to hundreds of cells interacting with each other 

and with the elastic substrate on desktop workstations efficiently. The simulations 

demonstrated that our computational model can be used to study morphogenesis in 

cell monolayers.  

Keywords: Cell monolayer, Cell motility, Collective cell migration, Virtual-Cell 

simulation, reaction-diffusion  

 

Introduction 

 

Tissue/organ morphogenesis is a complex process occurring at multiple scales. 

Focusing on the whole organ scale, considerable research has been devoted to 

elucidation of the physical principles underlying the formation of the overall 

morphologies of organs [1]–[3], as well as the nutrient consumption and transport in 
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bioreactors [4] for tissue engineering. In these whole-organ level studies, information 

at the individual cell level has been homogenized or ignored. At the other extreme of 

the length scale, the genetic and molecular causes that dictate the tissue/organ 

formation have been intensively studied [5]. There is gap between our understanding 

of how phenotypic morphologies at the organ level emerge from genetic information. 

Studies at the cellular and microtissue level play an indispensable role to bridge these 

two scales.  

The phenotypic morphologies of cells including cell shape and cytoskeleton 

architecture, cell-ECM and cell-cell adhesions, can be best seen by comparing four 

types of tissues: muscle tissue, nerve tissue, epithelial tissue, and connective tissue. 

Each of these different tissues exhibit characteristic morphologies in cell shape and 

cytoskeleton architecture. These four basic types of tissues are arranged spatially in 

various patterns (e.g., sheets, tubes, layers, bundles) to form organs. Gene expression 

only dictates what proteins to make and subsequently what biochemical reactions to 

carry out, the emergence of spatial morphologies must be determined by 

biomechanical principles and the coupling between biomechanics and biochemistry  

[6]–[8]. Mechanobiochemical coupling is exemplified by the recent discoveries in the 

field of mechanobiology. Cellular functions including cell migration and cytoskeletal 

dynamics that are closely related to cell morphogenesis, have been shown to be 

regulated by various mechanical cues such as matrix elasticity [9], matrix topology 

[10]–[15], matrix dimensionality [16]–[20], cell-ECM/cell-cell adhesions [21], and 

cell shape constraints [22]–[25]. Therefore, mechanical and geometric properties of 
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cells and their microenvironments at the length scale comparable to single cells can 

have a dominant effect on the microscopic tissue morphology. 

Mathematical models based on reaction-diffusion equations at the cellular scale 

were developed to understand spatial pattern formation in the context of cell 

migration, such as cell polarization [26], [27] and cell morphogenesis [28], [29]. 

However, biochemical models lack the consideration of mechanotransduction thus 

cannot adequately capture cell morphogenesis. Biomechanics models were developed 

to interpret specific aspects of cell spreading, for example, the distribution patterns of 

traction force [30], cell adhesion [31], and cytoskeleton dynamics [32]–[36]. In 

contrast, biomechanics models lack consideration of biochemical signaling and thus 

fail to account for biochemical regulations. A thorough understanding of cell and 

microtissue morphogenesis will require the elucidation of how the mechanical and 

biochemical events are spatiotemporally integrated at the cellular scale. 

In this work. We extended the single-cell model (See Chapter 3) to multicellular 

monolayer model by adding a module of the cell-cell interaction. Finite element 

method is used to solve the resulting system of partial differential equations and the 

model was implemented in an in-house MATLAB code.  

 

Model Description 

Physical and mathematical domains 

Four physical domains are defined for the cell: solid phase cytoskeleton domain 

, fluid phase cytosol domain , membrane domain , and nucleus domain 

 (See figure 1A). The elastic substrate (underneath the cell) domain is denoted by 
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. In the cell membrane domain  and cytosol domain , reaction-diffusion 

equations of diffusive molecules are formulated to model the protrusion and retraction 

signals. In the cytoskeleton domain , solid mechanics equations are formulated, 

and the mechanical stresses experienced by the cell are solved. The present 

computational model is concerned with the cell monolayer adhering to a flat substrate. 

Each cell is modeled as a two-dimensional (2D) continuum, which reflects the flatness 

of the lamellipodia for cells cultured on 2D flat substrates. Because 2D model of the 

cell is adopted, the physical domains  , , , and  can be described by 

the same mathematical domain, denoted by .  

A 

 

B 
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C 

 

Figure 1. Schematic illustrations of the cell model. (A) Schematic of cytoskeleton 

of the cell and main components of the cell’s structure. (B) Schematic illustrations of 

the physical domains in the cell model and cell–cell interaction. (C) The 

mechanobiochemical coupling and feedback loops in the cell morphogenesis model.  

Nucleus deformation and movement 

 

The nucleus is modelled as an elastic structure that deforms upon the compression 

of the cell membrane and moves with the cytoskeleton. In the present model, there are 

no mechanotransduction associated with the nucleus. Rather, the nucleus is a passive 

material and can resist deformation and contribute to the shape of the cell in cases cell 

are elongated or compressed. In the finite element-based numerical implementation, 

the nucleus is discretized into networks of nonlinear springs connected at the nodes. 

The configuration of the network is updated using Newton’s equation of motion of the 

nodes. The numerical implementation concerning the passive nucleus model will be 
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presented in a later publication where the numerical algorithm and software package is 

described in detail.  

 

Cell-cell interaction module 

 

In cell monolayers where cells are connected mechanically by cell-cell adhesion, 

the static equilibrium of the cells depends on the cell-cell contact [37]–[40] in addition 

to cell-substrate adhesions. To simulate the dynamic process of formation and 

dissociation of cell-cell adhesion, a stochastic model is used to determine the binary 

state of the cell-cell adhesion as follows. When cell-A and cell-B is in close contact, 

the state of the cell-cell adhesion can be either “on” or “off”. The “on” state indicates 

that the cell-cell adhesion is established. The “off” state indicates that although two 

cells are in close contact, they do not adhere to each other. The probability of the “off” 

state per unit edge length and unit time is denoted by cell-cell break rate parameter . 

when the cell-cell adhesion state is “on”, the stress between cell-A and cell-B, , is 

calculated as 

 (1) 

where  and  are the displacement of cell-A and cell-B at their edges (where 

the cell-cell adhesion is formed), respectively, and  is the spring constant of the 

cell-cell linkage.  

 

Mechanobiochemical coupling 

These different modules are coupled through the mechanics of the tissue. As 

illustrated in Figure. 1B, through molecular scale mechanotransduction pathways, 
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mechanical stresses in the cell are converted into biochemical activities, which in turn 

regulate the assembly/disassembly of macromolecular of the cell. The macromolecular 

assembly and disassembly alter the structural, geometrical, and material properties of 

the cell, which, according to the continuum/structural mechanics theory, will 

subsequently change both the internal stress (cytoskeleton stress) and stress at the 

boundary (cell-matrix and cell-cell adhesion stress). Thus, mechanics of the cell, 

biochemical activities, and macromolecular assemblies are coupled through 

mechanobiochemical feedback loops as depicted by the arrows in Figure. 1B. 

 

 

Numerical Implementation 

 

The cell monolayer model has been implemented in an in-house code. Finite 

element method has been used to solve partial differential equations resulted from 

reaction-diffusion and elasticity equations. Explicit Euler scheme has been used for 

the time integration. Due to extremely large deformation experienced by the cells 

during the cell migration, Lagrangian mesh has been adopted and 3-node triangle 

element has been used. 

In terms of the algorithm implementation, we have 4 major part; data input, main 

function, cell migration, remeshing. Figure 3 shows a detailed algorithm that being 

used for the proposed model.  The flowchart shows the main flow of the algorithm on 

the left side and on the right side it shows the main tasks within every loop. The 

flowchart introduces the core operations and almost each core operation itself consists 

of several subroutines (there is a list of major subroutines in the Appendix A).  We 
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also use a flags-based coding, meaning different modules of the code can be either 

turned on /off or switched based on the scenarios. An example for the former is 

turning the cell migration on or off and an example for the latter is switching between 

initial distribution of the signals from random to constant or gradient pattern. 

First, a data structure name para is used for the parameters input (see table 1 in 

appendix B for the parameters used in this study), the data structure will be initialized 

for feeding into the main function. Note that for simulating different scenarios (e.g., 

static cell, moving cell, cell pair, multi cell, etc.) different drivers are being used for 

variables initialization. While the main computational core of the algorithm is the 

same for all scenarios, different postprocessing algorithms associate with each 

scenario has been utilized to extract and visualize the results. Driver calls the main 

function and time integration begins in the main function. Within the time integration 

loop, the first procedure at every time step is storing the data from current workspace 

and if the flag.plot_result is on, results will be plotted during the simulation. Next step 

is updating the microtubule vector since it will be used for updating the signals 

concentrations (i.e., protrusion, retraction, focal adhesion), after that we solve and 

update for the reaction-diffusion equations (protrusion and retraction signals) and a 

rate equation for updating the focal adhesion. Also, we will update the Substrate 

boundary condition and apply adhesive island for different scenarios (i.e., assigning 

zero focal adhesion to the different zones of the substrate that we do not want the cells 

to attach). Here, if the flag. Update_mechanics is on, solver elasticity solves for 

displacement resulted from contraction. Next, we will update the stress fiber.  
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Second, algorithm decides whether enters into the migration or not. At this level, 

For a moving cell simulation, if the flag.cell_migration is on and the time is bigger 

than equilibrium time, the algorithm enters the migration and cell starts to move. The 

equilibrium time is necessary since the signals distribution initially are random and it 

must reach to a steady state and cell polarization, this in turn will facilitate the cells to 

move around. Now, within the migration loop, the first stage is updating the nucleus. 

Second procedure is updating the nodal coordinates by updating the growth and 

retraction displacement of the nodes. Note that in the simulations of the movement of 

the cell, the nodal spatial coordinates are updated based on protrusion equation and 

retraction equation. Consequently, updating other variables such as element area, and 

cell area, etc. is the next task.  

Third, algorithm decides about the remeshing. There are two different criteria to 

check whether the resulted deformation from the growth and retraction causing 

significant distortion to the triangular elements or not. Therefore, if the criteria for 

remeshing satisfies, automatic mesh generation algorithm runs and creates high quality 

and optimized triangular meshes for the deformed cell. At the end of the remeshing, 

since the elements and nodal coordinates for the elements has been changed after the 

remeshing, algorithm needs to update all the variables previously defined on the old 

elements and nodes to the new set of elements and nodes. This updating is being 

performed using the scattered interpolation functions. Therefore, mesh transfer for the 

field variables will be performed between the old and new mesh. Second task after 

remeshing is updating the Mass (M) matrix and the stiffness (K) matrix since the 

connectivity matrix for the elements has been changed due to remeshing. Here, 
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avoiding the remeshing and calculation of the mass (M) and stiffness matrix (K) was 

considered to increase the execution speed of the algorithm. At this point we also 

update the list for the nucleus and cell edge contact. We also update the cell-cell 

contact (i.e., updates the cell neighbors list) and adhesion list using a Monte Carlo 

based model.   

 

 

Figure 2. Detailed flow chart of the cell monolayer algorithm. 
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Case study: Collective cell migration in monolayer tissue 

 

Collective cell migration has been studied in vitro where a confluent monolayer 

of cells crawls on a flat 2d substrate [41], [42]. Here we conduct the in-silico modeling 

of cells crawling in monolayers, as shown in Fig. 3. Total of 26 cells are confined in 

an adhesive region of a circular shape with a hole in the middle. The inner and outer 

radius of the adhesive region are 30 um and 83 um, respectively.  To study the role of 

intercellular adhesion in collective cell migration, we performed two simulations: 

case-I (cell-cell adhesion is turned off) and case-II (cell-cell adhesion is on). The 

dynamic simulations start with circular cells seeded onto the adhesion region. 

Overtime, cells polarize, spread, and migrate. 
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Figure 3. Collective cell migration in confluent monolayers. (A) Simulation 

snapshots of cells in confluent monolayers without cell-cell adhesion, (B) Simulation 

snapshots of cells in confluent monolayers with cell-cell adhesion. Four subfigures in 

each row show protrusion signal, focal adhesion, traction stress, and stress fiber, 

respectively. In the stress fiber figures, fourth column, circles on the cells are the 

nucleus. Parameter value used:   .  

 

Figure 3A and 3B show the simulation snapshots of cells in the confluent 

monolayers for case-I and case-II, respectively, where the migration direction of each 

cell can be seen in the protrusion subfigures. The cell-cell adhesion stress is zero for 

case-I (Fig. 3A) since it is turned off. In case-II, because of the presence of the cell-

cell adhesion, cell contraction is balanced by the cell-cell adhesion, rather than purely 

by the cell-substrate adhesion.  

 

Conclusions 

In this work, we developed a 2D computational model for studying cell 

morphogenesis in monolayer tissues. Because of the complex nature of the living cell, 

the model, despite being phenomenological, is still sophisticated. Conceptually, we 

divide the full model into modules, and studied the behaviors of the submodels, as 

well as the couplings between modules. We have showed that the reaction-diffusion 

submodel can simulate cell polarization (head-to-tail formation), the contraction-

reaction-diffusion submodel can simulate the localization of protrusion signal to the 

corners of the square cell, and the cytoskeleton-asymmetry module can simulate the 
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persistent migration. We also demonstrated that this mechanobiochemical model can 

simulate durotaxis and cell morphogenesis in monolayers.  

Our computational model incorporates the reaction-diffusion equations with 

continuum mechanics equations, thus enabling in silico studies of the coupling 

between the biochemistry and mechanobiology. The finite element method-based 

numerical implementation of the model makes the computational model efficient in 

simulating cell monolayers with tens to hundreds of cells on desktop workstations 

[43][44], [45]. In the future, The model can be further developed and extended to a 

3Dimensional model meshless methods such as material point methods or 

peridynamics model can be also used to deal with the remeshing in 3D [46], [47]. The 

computational model and the computer program can be used to test hypothesis and 

gain understandings of the complex system of living cells and tissues. The model can 

be further developed to study the effect of various external cues such as modulated 

and tailored acoustic wave on biological cells, which has been recently reported to be 

used as a cancer cell separation technique [48][49] .   

 

Acknowledgments 

H.Y. acknowledge funding support from the ASME Haythornthwaite Research 

Initiation Grant Award.  

References 

[1] M. A. Wyczalkowski, Z. Chen, B. A. Filas, V. D. Varner, and L. A. Taber, 

“Computational Models for Mechanics of Morphogenesis,” vol. 152, no. Part C, pp. 

132–152, 2012. 



 

81 

 

[2] M. S. STEINBERG, “Reconstruction of tissues by dissociated cells. Some 

morphogenetic tissue movements and the sorting out of embryonic cells may have a 

common explanation.,” Science, vol. 141, no. 3579, pp. 401–8, Aug. 1963. 

[3] A. F. M. Marée, P. Hogeweg, and A. F. M. Mare, “How amoeboids self-

organize into a fruiting body: Multicellular coordination in Dictyostelium 

discoideum,” Proc. Natl. Acad. Sci., vol. 98, no. 7, pp. 3879–3883, 2001. 

[4] L. Geris, Ed., Computational Modeling in Tissue Engineering. 2013. 

[5] E. H. Davidson, J. P. Rast, P. Oliveri, A. Ransick, C. Calestani, C. Yuh, T. 

Minokawa, G. Amore, V. Hinman, C. Arenas-Mena, O. Otim, C. T. Brown, C. B. 

Livi, P. Y. Lee, R. Revilla, A. G. Rust, Z. jun Pan, M. J. Schilstra, P. J. C. Clarke, M. 

I. Arnone, L. Rowen, R. A. Cameron, D. R. McClay, L. Hood, and H. Bolouri, “A 

genomic regulatory network for development.,” Science, vol. 295, no. 2002, pp. 1669–

1678, 2002. 

[6] L. V. Beloussov, The Dynamic Architecture of a Developing Organism: An 

Interdisciplinary Approach to the Development of Organisms. 1998. 

[7] L. A. Taber, “Theoretical study of Beloussov’s hyper-restoration hypothesis 

for mechanical regulation of morphogenesis,” Biomech. Model. Mechanobiol., vol. 7, 

pp. 427–441, 2008. 

[8] J. Howard, S. W. Grill, and J. S. Bois, “Turing’s next steps: the 

mechanochemical basis of morphogenesis,” Nat Rev Mol Cell Biol, vol. 12, no. 6, pp. 

392–398, 2011. 

[9] C. M. Lo, H. B. Wang, M. Dembo, and Y.-L. Wang, “Cell movement is guided 

by the rigidity of the substrate,” Biophys. J., vol. 79, pp. 144–152, 2000. 



 

82 

 

[10] P. Uttayarat, G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, 

“Topographic guidance of endothelial cells on silicone surfaces with micro- to 

nanogrooves: Orientation of actin filaments and focal adhesions,” J. Biomed. Mater. 

Res. Part A, vol. 75A, no. 3, pp. 668–680, 2005. 

[11] E. T. Den Braber, J. E. De Ruijter, L. A. Ginsel, A. F. Von Recum, and J. A. 

Jansen, “Quantitative analysis of fibroblast morphology on microgrooved surfaces 

with various groove and ridge dimensions,” Biomaterials, vol. 17, no. 21, pp. 2037–

2044, 1996. 

[12] C. Oakley, N. A. F. Jaeger, and D. M. Brunette, “Sensitivity of fibroblasts and 

their cytoskeletons to substratum topographies: Topographic guidance and 

topographic compensation by micromachined grooves of different dimensions,” Exp. 

Cell Res., vol. 234, no. 2, pp. 413–424, 1997. 

[13] F. van Delft, F. C. van den Heuvel, W. A. Loesberg, J. T. Riet, P. Schon, C. G. 

Figdor, S. Speller, J. van Loon, X. F. Walboomers, J. A. Jansen, F. C. M. J. M. Van 

Delft, F. C. Van Den Heuvel, and P. Scho, “Manufacturing substrate nano-grooves for 

studying cell alignment and adhesion,” 2008, vol. 85, pp. 1362–1366. 

[14] E. T. denBraber, J. E. deRuijter, L. A. Ginsel, A. F. vonRecum, and J. A. 

Jansen, “Quantitative analysis of fibroblast morphology on microgrooved surfaces 

with various groove and ridge dimensions,” Biomaterials, vol. 17, no. 21, pp. 2037–

2044, 1996. 

[15] P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, C. D. W. Wilkinson, P. 

Clarke, and P. Connolly, “Topographical Control of Cell Behavior .2. Multiple 

Grooved Substrata,” Development, vol. 108, no. 4, pp. 635–644, 1990. 



 

83 

 

[16] J. S. Harunaga and K. M. Yamada, “Cell-matrix adhesions in 3D,” Matrix 

Biol., vol. 30, no. 7–8, pp. 363–368, 2011. 

[17] F. Grinnell, C.-H. Ho, E. Tamariz, D. J. Lee, and G. Skuta, “Dendritic 

Fibroblasts in Three-dimensional Collagen Matrices,” Mol. Biol. Cell, vol. 14, no. 2, 

pp. 384–395, Feb. 2003. 

[18] F. Grinnell, “Fibroblast biology in three-dimensional collagen matrices,” 

Trends Cell Biol., vol. 13, no. 5, pp. 264–269, 2003. 

[19] B. M. Baker and C. S. Chen, “Deconstructing the third dimension - how 3D 

culture microenvironments alter cellular cues,” J. Cell Sci., vol. 125, no. July, pp. 

3015–3024, 2012. 

[20] A. D. Doyle, F. W. Wang, K. Matsumoto, and K. M. Yamada, “One-

dimensional topography underlies three-dimensional fi brillar cell migration,” J. Cell 

Biol., vol. 184, no. 4, pp. 481–490, 2009. 

[21] C. S. Chen, J. Tan, and J. Tien, “MECHANOTRANSDUCTION AT CELL-

MATRIX AND CELL-CELL CONTACTS,” Annu. Rev. Biomed. Eng., vol. 6, no. 1, 

pp. 275–302, 2004. 

[22] K. K. Parker, A. L. Brock, C. Brangwynne, R. J. Mannix, N. Wang, E. Ostuni, 

N. A. Geisse, J. C. Adams, G. M. Whitesides, and D. E. Ingber, “Directional control of 

lamellipodia extension by constraining cell shape and orienting cell tractional forces,” 

Faseb J, vol. 16, no. 10, pp. 1195–1204, 2002. 

[23] A. Grosberg, P.-L. Kuo, C.-L. Guo, N. A. Geisse, M. A. Bray, W. J. Adams, S. 

P. Sheehy, and K. K. Parker, “Self-Organization of Muscle Cell Structure and 

Function,” PLoS Comput Biol, vol. 7, no. 2, p. e1001088, 2011. 



 

84 

 

[24] K. K. Parker, J. Tan, C. S. Chen, and L. Tung, “Myofibrillar architecture in 

engineered cardiac myocytes,” Circ Res, vol. 103, no. 4, pp. 340–342, 2008. 

[25] M. A. Bray, S. P. Sheehy, and K. K. Parker, “Sarcomere alignment is regulated 

by myocyte shape,” Cell Motil. Cytoskeleton, vol. 65, pp. 641–651, 2008. 

[26] M. D. Onsum and C. V Rao, “Calling heads from tails : the role of 

mathematical modeling in understanding cell polarization,” pp. 74–81, 2009. 

[27] R. Wedlich-Soldner, S. Altschuler, L. Wu, and R. Li, “Spontaneous cell 

polarization through actomyosin-based delivery of the Cdc42 GTPase,” Science (80-. 

)., vol. 299, no. 5610, pp. 1231–1235, 2003. 

[28] J. Satulovsky, R. Lui, and Y. Wang, “Exploring the Control Circuit of Cell 

Migration by Mathematical Modeling,” Biophys. J., vol. 94, no. 9, pp. 3671–3683, 

2008. 

[29] A. F. M. Marée, A. Jilkine, A. Dawes, V. A. Grieneisen, and L. Edelstein-

Keshet, Polarization and movement of keratocytes: A multiscale modelling approach, 

vol. 68, no. 5. 2006. 

[30] I. L. Novak, B. M. Slepchenko, A. Mogilner, and L. M. Loew, “Cooperativity 

between cell contractility and adhesion,” Phys. Rev. Lett., vol. 93, no. 26 I, p. 268109, 

2004. 

[31] X. Zeng and S. Li, “Multiscale modeling and simulation of soft adhesion and 

contact of stem cells,” J. Mech. Behav. Biomed. Mater., vol. 4, no. 2, pp. 180–189, 

2011. 

[32] V. S. Deshpande, R. M. McMeeking, and A. G. Evans, “A bio-chemo-

mechanical model for cell contractility,” Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 



 

85 

 

38, pp. 14015–14020, 2006. 

[33] S. Walcott and S. X. Sun, “A mechanical model of actin stress fiber formation 

and substrate elasticity sensing in adherent cells,” Proc. Natl. Acad. Sci. U. S. A., vol. 

107, no. 17, pp. 7757–7762, 2010. 

[34] J. Kang, R. L. Steward, Y. T. Kim, R. S. Schwartz, P. R. LeDuc, and K. M. 

Puskar, “Response of an actin filament network model under cyclic stretching through 

a coarse grained Monte Carl approach,” J. Theor. Biol., vol. 274, no. 1, pp. 109–119, 

2011. 

[35] A. Pathak, V. S. Deshpande, R. M. McMeeking, and A. G. Evans, “The 

simulation of stress fibre and focal adhesion development in cells on patterned 

substrates,” J. R. Soc. Interface, vol. 5, pp. 507–524, 2008. 

[36] H. Yuan, B. Marzban, and K. K. Parker, “Myofibrils in Cardiomyocytes Tend 

to Assemble Along the Maximal Principle Stress Directions,” J Biomech Eng, vol. doi: 

10.11, 2017. 

[37] M. L. McCain, H. Lee, Y. Aratyn-Schaus, A. G. Kléber, and K. K. Parker, 

“Cooperative coupling of cell-matrix and cell–cell adhesions in cardiac muscle,” Proc. 

Natl. Acad. Sci., vol. 109, no. 25, pp. 9881–9886, 2012. 

[38] Y. Aratyn-Schaus, F. S. Pasqualini, H. Yuan, M. L. McCain, G. J. C. Ye, S. P. 

Sheehy, P. H. Campbell, and K. K. Parker, “Coupling primary and stem cell–derived 

cardiomyocytes in an in vitro model of cardiac cell therapy,” J. Cell Biol., vol. 

February 8, 2016. 

[39] A. Chopra, E. Tabdanov, H. Patel, P. a Janmey, and J. Y. Kresh, “Cardiac 

myocyte remodeling mediated by N-cadherin-dependent mechanosensing,” Am. J. 



 

86 

 

Physiol. - Hear. Circ. Physiol., vol. 300, no. 4, pp. H1252–H1266, Apr. 2011. 

[40] J. Y. Sim, J. Moeller, K. C. Hart, D. Ramallo, V. Vogel, A. R. Dunn, W. J. 

Nelson, and B. L. Pruitt, “Spatial distribution of cell-cell and cell-ECM adhesions 

regulates force balance while main taining E-cadherin molecular tension in cell pairs,” 

Mol. Biol. Cell, vol. 26, no. 13, pp. 2456–2465, 2015. 

[41] C. G. Rolli, H. Nakayama, K. Yamaguchi, J. P. Spatz, R. Kemkemer, and J. 

Nakanishi, “Switchable adhesive substrates: Revealing geometry dependence in 

collective cell behavior,” Biomaterials, vol. 33, no. 8, pp. 2409–2418, 2012. 

[42] D. T. Tambe, C. C. Hardin, T. E. Angelini, K. Rajendran, C. Y. Park, X. Serra-

Picamal, E. H. Zhou, M. H. Zaman, J. P. Butler, D. A. Weitz, J. J. Fredberg, and X. 

Trepat, “Collective cell guidance by cooperative intercellular forces,” Nat. Mater., vol. 

10, no. 6, pp. 469–75, 2011. 

[43] M. Tahersima and P. Tikalsky, “Finite element modeling of hydration heat in a 

concrete slab-on-grade floor with limestone blended cement,” Constr. Build. 

Mater., vol. 154, pp. 44–50, 2017. 

[44] A. Mehrvarz, M. J. Khodaei, W. Clark, and N. Jalili, “Modeling and Dynamics 

Analysis of a Beam-Hoverboard Self-Transportation System,” no. 51913. p. 

V003T32A008, 2018. 

[45] M. J. Khodaei, A. Mehrvarz, N. Candelino, and N. Jalili, “Theoretical and 

Experimental Analysis of Coupled Flexural-Torsional Vibrations of Rotating 

Beams,” no. 51913. p. V003T42A004, 2018. 

[46] S. Jafarzadeh and M. Kadkhodaei, “Finite element simulation of ferromagnetic 

shape memory alloys using a revised constitutive model,” J. Intell. Mater. Syst. 



 

87 

 

Struct., vol. 28, no. 19, pp. 2853–2871, 2017. 

[47] S. Jafarzadeh, Z. Chen, and F. Bobaru, “Peridynamic Modeling of 

Repassivation in Pitting Corrosion of Stainless Steel,” Corrosion, vol. 74, no. 4, 

pp. 393–414, 2018. 

[48] R. Ghaffarivardavagh, J. Nikolajczyk, R. Glynn Holt, S. Anderson, and X. 

Zhang, “Horn-like space-coiling metamaterials toward simultaneous phase and 

amplitude modulation,” Nat. Commun., vol. 9, no. 1, 2018. 

[49] P. Li et al., “Acoustic separation of circulating tumor cells,” Proc. Natl. Acad. 

Sci., vol. 112, no. 16, pp. 4970–4975, 2015. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

88 

 

 

CHAPTER 5 :   

 

Conclusions and Future Work 
 

Conclusions 

 

An efficient and robust computational biomechanics model and software platform has 

been developed to simulate the dynamics of living cells at the whole-cell level. 

Specific biomechanics phenomenon including cell crawling and morphogenesis of cell 

monolayer tissues has been studied using the computational model. It has been shown 

that mechanical and external forces play a key role in biological cells and their 

motility using this bottom up mathematical model. 

Nowadays, there are plenty of the real world systems that researchers need to replicate 

them digitally. This works provides an insight to the digital twin of the biological cell 

models.  From the technological point of view, this project will pave the way for a 

deeper understanding of the mechanobiochemical mechanisms in cell-

microenvironment interactions that regulate microtissue morphogenesis, enabling 

computer-aided rational design of the cell microenvironment in tissue engineering 

such as 3D bioprinting.  

 

Future Work 

 

The developed computational model can be applied to different cells types (e.g., 

fibroblasts, endothelial cells, smooth muscle cells, and neurons). To further extend the 
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boundaries of this current research, the following research directions are 

recommended:  

 Extending the model to 3Dimensional model and mimic the 3D tissue in vivo.  

 Conducting a full parameter space search 

 

Extending the Model to 3Dimensional Model 

 

In order to mimic the 3D tissue in vivo, the model should be utilized and be 

formulated for the 3Dimensional simulation. In 3D, remeshing is the most expensive 

computational. Using meshless methods can be useful to deal with computational cost 

of the remeshing. For future direction we propose develop a 3Dimensional finite 

element-based computational model and parallelized software toolbox to simulate 

cells and ECM so that microtissues in millimeter scales can be simulated with high 

fidelity. This computational model will be used to elucidate and understand the 

morphological pattern formations in the microtissues that consist of many cells. 

 

Parameter space search 

 

The parameter space and mathematical formulations will be searched to identify 

the sub-spaces in which the computational model predicts characteristic behaviors of 

each type of differentiated cells, as well as the characteristic microscale morphologies 

of each type of tissues (e.g., bundling in muscle tissue, branching in nerve tissue, 

polarization in epithelial tissue).  
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The genetic algorithm will be used to estimate the parameter values and search 

for mathematical formulations with which the behavior of the model best matches that 

of experiments. With automated high-resolution life-cell imaging techniques, large 

amounts of experimental data are being collected in cell biology labs worldwide. To 

accelerate the search, the numerical program of this optimization in a large 

multidimensional space will be parallelized and performed on the high-performance 

computers with hundreds of computer nodes. As shown in the flowchart in Fig. 1, 

different sets of model parameters and model equations are used as the input set.  The 

first generation of the sets will be evaluated by their fitness and each computer node 

runs calculations for each individual in a population by using distributed parallel 

computing. Characteristic of cell migration, such as cell shape, cytoskeleton 

architecture, migration speed, etc., will be extracted from the simulations and used to 

compare with the metrics calculated from the experimental observations.  Following 

that, if the convergence criteria is met, the search will stop, and if not, the calculation 

will be continued by producing the second generation using evolutionary methods; for 

example, crossover, mutation, etc. The second generation will be evaluated according 

to their fitness and so on.   The proposed model allows one to identify which set of 

parameters and equations (i.e., assumptions or hypotheses) will match the specific cell 

migration behavior. 
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Figure 1. Flowchart of the genetic algorithm for parameter space search. 

 

The model and the computer simulation program, once developed and validated, 

will be used in computer-aided design in tissue engineering. For example, it will be 

used to design suitable biomaterials with optimal mechanical properties, the optimal 

topology of ECM, and the 3D spatial placement of cells, to facilitate microtissue 

formation.  In tissue-engineering applications, biological and chemical parameters are 

frequently considered, while the equally important physical/mechanical design 

variables have often been neglected. For a rational design of tissue engineering, 

however, all variables influencing cell function and tissue morphogenesis must be 

considered. This proposed computational model on microtissue formation will enable 

the integration of chemical, mechanical, and topographical aspects of the problem and 

can have a powerful impact on the rational design in 3D bioprinting. 
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APPENDICES 

 

Appendix A (Major subroutines) 

 

a_para_basic.m  

Input variables for the model parameters. 

 

a_driver_durotaxis.m 

This driver will set the other required parameters for the durotaxis simulation and 

within the driver we can either choose to run a simulation or plot the previous 

simulation results. Therefore the driver calls either a_multicellular_system.m or the 

plot_simulation_results.m. Note, that there are different drivers for different 

scenarios. 

 

a_multicellular_system.m 

This is the main function of the program, it will call the initialization subroutine and 

starts the time integration loop, follows the detailed flowchart in Figure 3, and calls for 

the solvers. It will end the simulation whenever the simulation time reaches.  

 

calc_delta_t.m 

This subroutine calculates the time step dt . 

The algorithm adopts an adjustable time step to make sure that the time integration is 

stable. It estimates the maximum possible time step for numerical integration based on 

the following two criteria: 
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1.  dt  < 1/10 * min{time scales of decay for all time-dependent variables} 

2.  dt  < (1/4 * (smallest element size) ^2/min{Diffusion constants}  

After the estimation if the input time step is bigger than the estimated time step. It 

assigns the estimated time step to the time step variable dt  to make sure that we have 

an stable time integration.  

 

a_multicellular_initialization.m  

This subroutine initializes the matrix/tensors/vectors we are using for the finite 

element simulation. It will call following subroutines:  

 

mesh_a_cell_m.m 

This subroutine is for discretizing the 2D cell domain based on the initial cell shape 

and the element type. Based on the para.initial_cell_shape input, we can switch 

between several cell shapes and element type. This algorithm also returns the edge 

segments of the domain.   

 

 mesh_find_and_sort_cell_edge.m 

The input for this algorithm is the nodal coordinates and the connectivity matrix from 

the mesh_a_cell_m.m subroutine. And the output is the edge segments.  

 

mesh_brand_new_remeshing.m 
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this subroutine is for the automatic mesh generation. It creates initial distribution in 

bounding box, add more points near the edge, add some random noise to the 

coordinates in case the algorithm does not converge well, remove points outside the 

region, applies Delaunay triangulation to create elements. 

 

mesh_remove_narrow_membrane_tub.m 

remove narrow and tube elements. This happens when cells become too narrow at 

some zones.  

 

mesh_fix_delaunay_mesh.m 

this algorithm fixes the meshes after the Delaunay triangulation. Several problems 

may occur after the default Delaunay triangulation: multiple loops, interior nodes 

come to edge, and also check if multiple loops exist due to Delaunay triangulation, 

keep the biggest one. 

 

mesh_clear_singular_node.m 

This algorithm removes the singular nodes. In a regular good topology, simple 

topology, each edge node has two edge segments. Singular nodes have 4 edge 

segments; we use this rule to find singular nodes 

 

mesh_find_cell_edge_only.m 

This subroutine assumes the element nodal numbering is counter clockwise.  

 



 

95 

 

mesh_find_edge_normal.m 

Finds the normal to the boundary/edges of cell on the nodes. 

 

mesh_Laplacian_smoothing.m 

Without changing the connectivity matrix of mesh, optimize the nodal positions to 

obtain high quality mesh.   

 

apply_zero_FA_condition.m 

This subroutine applies adhesive island boundary condition by setting the focal 

adhesion of those region of the substrate equal to zero. 

 

update_microtubule.m 

This subroutine updates the vector associated with microtubule.  

 

update_Stress_Fiber.m 

This subroutine updates the stress fiber based on the model.  

 

solver_reaction_diffusion.m 

This subroutine solves the system of equations resulted from the finite element model 

of the reaction diffusion equation. It also has option to switch for different type of the 

elements. 

 

solver_elasticity.m 
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This is a two-dimensional finite element model for solving the elasticity and finding 

the displacement. It’s include assembly of the mass and stiffness matrix and solving 

the system of equations.  

 

solver_rate_equation.m  

This subroutine is for solving the rate equation. For example, the focal adhesion rate 

equation.  

 

solver_FEA_K_M.m 

This solver pre-calculates the mass (M) and stiffness (K) matrix to avoid calculating 

that in each time steps.   

 

update_cc_adhesion_bond.m 

updates the cell-cell adhesion bond in each iteration.  

 

calc_cell_retraction.m 

calculate retraction of the cell using the Eq. (12)  

 

get_cell_neighbors.m 

update the neighbors cell list based on a cut off distance. 

 

calc_P_source.m 
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this subroutine is for calculating the source term of the reaction diffusion equation for 

the protrusion. 

 

update_variables_after_growth.m 

This subroutine updates the variables after the growth happened. 

 

update_variables_after_remeshing_m.m 

This subroutine transfers the field variables to the new sets of elements after 

remeshing.  

 

calc_cell_growth_node_based.m 

this subroutine updates the protrusion displacement of the cells based on Eq. (11) 

 

Appendix B (Variables) 

 

The parameter values for the simulations will be chosen from the available 

experimental data in the literature, the rest of the parameters will be chosen in a 

fashion to obtain similar results to experimental studies in the literature. Following are 

the parameter values used for the simulations in this study unless specifically 

mentioned.  

 

 



 

98 

 

Table 1. Parameter used in the simulations. Some of the variables derived from 

the literature and the rest are the estimated parameter.  

Symbol Variable Value 

 
cA  Cell initial area  

2900 μm  

 
maxA  Cell area upper limit  

21800 μm  

 
minA  Cell area lower limit  

2110 μm  

 cellV  Cell volume  
32000 μm  

 E  Young modulus of the cell  4 kPa  

 ν  Poisson ration of the cell  0.3  

 ECMk  Equivalent spring constant of the substrate 0.5  / μmkPa  

 c0σ  Baseline contractility  0.6 kPa  

 c1σ  Retraction signal-associated contractility  0 kPa  

 cfσ  Stress fiber-associated contractility  2 kPa  

 mσ  Model parameter for stress fiber   2 kPa  

 S

onK  
Stress fiber activation rate  0.03  

 S

offK  
Stress fiber deactivation rate  0.03  

 max

FAk  
Maximal stiffness corresponds to maximum focal adhesion  1 

 aρ  Average density of the total amount of bound and unbound focal 

adhesion proteins 
 0.16  

 ρ

0K  
Rate constants for the spontaneous focal adhesion formation  0.03  

 ρ

ξK  
Rate constants for protrusion signal-dependent  0  

 ρ

offK  
Decay rate constant for focal adhesion formation  0.03  

 ρ

TK  
Rate constants Stress-mediated focal adhesion formation  0  

 ρ

MK  
Rate constant for auto-activation focal adhesion formation  0.1  

 0T  Model parameter for the focal adhesion  0.36  

 4n  Model parameter for the focal adhesion  2  

 ζD  Diffusivity constant of retraction active proteins in membrane  0.5  

 ξD  Diffusivity constant of protrusion active proteins in membrane 0.5 

 aξ  Total concentrations of both active and inactive form of the 

protrusion signal 
 0.1  

 aζ  Total concentrations of both active and inactive form of the 

retraction signal 

0.1 

 ξ

0K  
Rate constants for the spontaneous activation of protrusion signals  0.14  

 ξ

TK  
Rate constants for the stress-mediated activation of protrusion 

signals 
 0.45  

 ξ

MK  
Rate constants for the auto-activation of protrusion signals  0.1  

 0ξ  Model parameters describing the auto-inhibition  0.1  
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0ζ  Model parameters describing the auto-inhibition  0.1  

 ξ

offK  
Decay constant for the deactivation of the protrusion signals  0.14  

 ξR  Strength of random noise for protrusion signals  0.0001  

 ζ

0K  
Rate constants for the spontaneous activation of retraction signal  0.14  

 ζ

offK  
Decay constant for the deactivation of the retraction signal  0.07  

 
1n  Model parameter for protrusion RD model  4  

 
2n  Model parameter for protrusion RD model  2  

 
3n  Model parameter for retraction RD model  4  

 pc  Model parameter for cell growth  0.25  

 pξ  Protrusion threshold for cell growth  0.3  

 rc  Model Parameter for retraction velocity  0.01  

 MK  Rate constant for the microtubule model   0.02  

 ec  Model parameter for the microtubule vector  1 

 n  Model parameter for microtubule  4  
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