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ABSTRACT

Collective synchrony is the simultaneous occurrence of behavior, cognition,

emotion, and/or physiology within a group of three or more people. In this

dissertation, I draw from various literatures to inform exploratory empirical

and methodological investigation of collective synchrony in team sports. These

include physiological synchrony, which has been examined primarily in dyads, and

collective behavior in sports teams.

In Manuscript 1, I present a conceptual framework of collective synchrony

in team sports. I argue that three possible antecedents (copresence, shared task,

and coordination) underlie the interindividual matching of emotion, behavior, and

cognition. This matching contributes to collective behavioral synchrony and/or

collective physiological synchrony. These are conceptualized as a coupled system

due to the relationship between human movement and physiology. Collective

flow, a collective psychological state that may include interindividual matching

of emotion, behavior, and/or cognition, is included in the framework as a possible

outcome of collective synchrony.

In Manuscript 2, I provide a systematic review of 29 studies of collective

synchrony. In this review, I decided to include not only studies on team sports,

but also studies of collectives encompassing a variety of settings, substantive

aims, variables of interest, and analytical methods. My review focuses on several

characteristics of this multidisciplinary pool of articles including the (a) contexts,

populations, and synchrony variables examined; (b) analytical methods used; and

(c) notable findings reported.

In Manuscript 3, I articulate and apply a regime-switching dynamic factor

analytical approach to examine collective synchrony in collegiate men’s and

women’s soccer teams. In Study 1, I analyze collective synchrony in two variables



characterizing women’s soccer players’ movements during competitive games. In

Study 2, I investigate collective synchrony in men’s soccer teammates’ changes

in heart rate during small-sided practice games. Reporting on the results of

these studies, I show how features of substantive interest, such as the magnitude

and prevalence of collective synchrony, can be parameterized, interpreted, and

aggregated. I highlight several key findings of these studies as well as opportunities

for future research, in terms of methodological and substantive aims for advancing

the study of collective synchrony. Results from an applied simulation, through

which I tested the analytical approach on data with characteristics similar to that

analyzed in Studies 1 and 2, supplementary tables and figures, and R software

code are provided in the appendices.
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MANUSCRIPT 1

A Conceptual Framework of Collective Synchrony in Team Sports

Abstract: In this paper, a conceptual framework of collective synchrony in
team sports is introduced. Collective synchrony is the simultaneous occurrence
of behavior, cognition, emotion, and/or physiology within a group of three
or more people. It is argued that three possible antecedents (copresence,
shared task, and coordination) underlie the interindividual matching of emotion,
behavior, and cognition. This matching contributes to collective behavioral
synchrony and/or collective physiological synchrony, which, as a consequence of
the relationship between human movement and physiology, are a coupled system.
Additionally, collective flow, which is a collective psychological state that may
include interindividual matching of emotion, behavior, and cognition, is included
in the framework as a possible outcome of collective synchrony.

1.1 Introduction

During competition, a sports team may collectively experience moments of

failure or success, anxiety or exhilaration, threat or challenge, pressure or relative

comfort. In televised team sports, commentators often draw conclusions, from

visual cues such as players’ body language, about the psyche of an entire team.

For example, they make observations such as, “They really seem to be feeling

the pressure now”. Comments such as this one reflect assumptions about the

contagion of psychological states such as anxiety, not only among teammates, but

also, for example, emanating from the crowd in the stadium to the team itself.

The motivation for this paper is to support the scientific study of a highly related

question: Do teammates exhibit similar behavioral and psychological states in

response to their common experiences during team performance?

When people participate together in shared activities (e.g., sports, performing

arts, social interactions), they may exhibit some of the same behavioral, cognitive,

emotional, and physiological outcomes. The presence of such associations or
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interdependencies between multiple individuals has been referred to as synchrony

[1, 2]. Synchrony in various movement attributes has been of interest to researchers

in the human movement sciences (physical education, sport science, etc.), such as

those seeking to quantify collective behavior in teams [3, 4, 5, 6, 7]. Social and

physiological psychologists have extensively investigated physiological synchrony

during social interactions, in particular with dyads [8].

Examining physiological synchrony in sports teammates may enable some

inferences to be made about their cognition and emotion, but attempts to do

so are certain to be confounded by the metabolic demands of physical exertion.

Therefore, what is needed is a conceptual framework that accounts for relationships

among teammates’ physical movement (i.e., behavior), cognition, emotion, and

physiology. In this paper, I propose a conceptual framework of collective synchrony

in team sports, where “collective” refers to a group of three or more persons. In

pursuit of such a framework, I incorporate ideas spanning multiple disciplines such

as psychology, kinesiology, and business. In so doing, I aim for this framework

to be a platform from which to pursue more comprehensive examination of

collective synchrony, that is, encompassing behavioral, cognitive, emotional, and

physiological signals. To introduce this framework, I include literature from

domains beyond team sports in which groups of people typically engage in shared

activities. Primarily these include contexts in which the shared activity is goal-

directed (i.e., a shared task) such as performing arts, workplace, military, and

academic settings. I also integrate some literature on shared activities that are not

goal-directed such as social interactions among family members.

As I elucidate in greater detail below, central to my conceptual framework

are two broad types of observable collective synchrony: collective behavioral

synchrony and collective physiological synchrony. Although these types are often
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considered separately (i.e., in different disciplines), by unifying them as a coupled

system within this framework, I aim to accommodate possible explanations for why

collective synchrony would occur in team sports. It is sometimes clear what kinds

of indicators can reflect collective behavioral synchrony, such as in the deliberately

practiced voluntary movements of rowing and synchronized swimming. However, it

is not well understood what causes collective synchrony in the physiological systems

of two or more individuals. People have very limited capacity to control, for

example, their cardiovascular systems, and interindividually they are not coupled

in any direct way [9]. Three possible antecedents have been enumerated based

on existing literature on heart rate synchrony [9]. First, copresence, simply being

together in a setting, may bring about behavioral and emotional contagion such as

common facial expressions and affective states, leading to common physiological

arousal. Second, physiological synchrony may be driven by the characteristics of

a shared task, such as whether group members are constrained to be physically

active, cognitively focused, breathing regularly, etc. in similar ways. Third,

physiological synchrony may emanate from deliberate online coordination on the

task, that is, arranging individual behaviors in pursuit of group goals [10]. In sum,

the notions of copresence, shared task, and coordination, which were posited in

previous literature [9], are incorporated in the current framework as antecedents

of collective synchrony.

In addition to these antecedents, in the proposed framework I consider

collective flow as a possible outcome of collective behavioral and physiological

synchrony. Collective flow has been investigated in studies of organizations,

most commonly in business but with some limited coverage in sport psychology

[11, 12, 13]. This reflects the extension of Mihály Cśıkszentmihályi’s notion of

psychological flow [14], often treated as an individual construct, to collectives.
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My decision to incorporate collective flow is predicated on the idea that it may

emanate from synchrony in cognition and emotion, which at present are challenging

to measure directly and/or intensively during most performance settings including

team sports. By contrast, technologies such as wearable sensors and Global

Positioning System (GPS) tracking enable the intensive measurement of athletes’

behaviors and physiology during training and competition.

In the next sections, I elaborate on the above mentioned elements of the

conceptual framework of collective synchrony. This includes the antecedents

copresence, shared task, and coordination (Section 1.2), the coupled system of

collective behavioral and physiological synchrony (Section 1.3), and collective flow

as a possible outcome (Section 1.4). Before proceeding, I issue the caveat that

the terminology “collective synchrony” has been used elsewhere, in studies of

synchrony among soccer teammates’ movements [5, 15], in studies with deliberate

synchronization of movements during a rhythmic task [16, 17], and in studies

of synchrony of brain rhythms [18] and other types of coupled oscillators in

physics [19]. However, the current paper is the first to present a conceptual

framework of collective synchrony that incorporates behavior, cognition, emotion,

and physiology by merging ideas from multiple disciplines.

1.2 Antecedents of Collective Synchrony

There is a hierarchy inherent in the aforementioned antecedents of collective

synchrony. That is, in general the copresence of a group of people is prerequisite

to their engagement in a shared task, which in turn is prerequisite to their

coordination on the task. However, copresence may occur without the others.

For example, a group of friends socializing would be copresent without engaging

in, or deliberately coordinating on, a shared task. Likewise, a work group may

engage in a shared task without deliberate online coordination. However, in
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sports competition, a team is likely to demonstrate all three antecedents. That is,

teammates are copresent in the arena, engaged in a shared task (i.e., competing

against an opponent), and coordinating their individual efforts for the benefit of

the team. In this section, I explain how each of these antecedents may contribute

to interindividual matching of emotion, behavior, and cognition.

1.2.1 Copresence

Copresence, or simply being in the same place together, may account for

some degree of interindividual matching of emotional and behavioral states,

contributing, respectively, to physiological and behavioral synchrony. Among

the variables that are often associated with physiological synchrony, experiencing

a common psychosocial context (e.g., one that is embarrassing, frightening,

jubilant, tense, etc.) is one way that copresence may give rise to physiological

synchrony [8]. Additionally, copresence may engender emotional contagion,

defined as “the tendency to automatically mimic and synchronize expressions,

vocalizations, postures, and movements with those of another person and,

consequently, to converge emotionally” [20]. Hatfield, Cacioppo, and Rapson

[20] have presented evidence in support of the following three propositions.

First, people subconsciously but rapidly mimic, and synchronize with, the facial

expressions, movements, postures, and vocal utterances of copresent others.

Second, emotions can be shaped by one’s own facial expression, movement, and

posture. For example, deliberately making facial expressions of fear, anger,

sadness, or disgust make people likely to feel the emotion in question [21]. Third,

animal researchers, historians, sociologists, and clinical, developmental, and social

psychologists have produced evidence that people tend to “catch” the emotions

of copresent others [20]. In sum, teammates may match each other’s emotions

and behaviors in a performance setting through copresence, perhaps due to the
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psychosocial conditions of the common environment, emotional contagion, and

their feelings toward the task at hand. By extension, this interindividual matching

may contribute to collective physiological and behavioral synchrony.

1.2.2 Shared Task

A shared task may constrain action in such a way that influences the

physiology of multiple individuals in similar ways, simply by virtue of the activity’s

metabolic or cognitive demands or other specific task constraints. For example, one

might consider whether a task promotes physical exertion, synchronized breathing

(e.g., singing or chanting in unison [22]), or turn taking (e.g., in conversation

or anti-phase rowing) [23]. These structural characteristics of a shared task

may bring about physiological synchrony unrelated to emotional or psychosocial

factors. Hence, “shared task” accounts for the fact that interindividual matching

of behavior may confound potential inferences about the role of shared emotion

or psychosocial factors. In the context of team sports, behavior refers primarily

to physical motion, such as players’ direction, speed, acceleration, turning angle,

etc. Due to task constraints, such as the expectation of team members to stay in

formation and to move forward, backward, left, and right as a collective, individuals

are likely to exhibit similar physical exertion at any given time during competition.

For example, soccer teammates often walk, jog, and sprint as a collective. As a

result, a team’s collective behavioral synchrony (i.e., in players’ movements) and

collective physiological synchrony (i.e., changes in heart rate) are bound to be

intertwined, due to the structural characteristics of a shared task.

1.2.3 Coordination

Coordination is defined as arranging individual behaviors in ways intended

to achieve group goals [10]. In team sports, coordination is mostly a product
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of visual perception [24] and communication [25], including verbal and nonverbal

(e.g., eye contact, pointing, body position). This implies that team coordination

involves interindividual matching both of behavior and cognition. According

to the collective behavior literature, particularly that of complex systems in

sports, coordination manifests as the formation of synergies, which are dyadic

couplings between teammates, a notion derived from Hermann Haken’s science of

synergetics [26]. Synergies are said to form as teammates operate within task and

environmental constraints [27, 28, 29] and perceive affordances, or possibilities for

action [30]. Within a sports team, an individual may perceive affordances for a

teammate (i.e., perceiving what the teammate can do), affordances of a teammate

(i.e., perceiving what the teammate allows oneself to do; e.g., the teammate is open

for a pass), or affordances for joint action (i.e., perceiving what multiple teammates

can achieve together; e.g., a “give-and-go” play in many sports) [31]. Coordinated

decision making and action is argued to be driven in large part by perceiving

and acting upon shared affordances [24, 32]. Moreover, experts and novices are

differentiated by the efficiency with which they detect affordances [31]. In sum,

when collective members coordinate, this involves some amount of interindividual

behavioral and cognitive matching, which may contribute to collective behavioral

synchrony.

To summarize, each of these antecedents may bring about interindividual

emotional, behavioral, or cognitive matching. Due to emotional contagion,

copresence may bring about interindividual emotional matching. Interindividual

behavioral matching may emanate from any of the three antecedents copresence,

shared task, and coordination. Interindividual cognitive matching is a product of

coordination as members of a collective communicate and perceive affordances for

action. In the next section, I highlight the two major types of observable collective
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synchrony – behavioral and physiological – which function as a coupled system

within the conceptual framework.

1.3 The Coupled System of Collective Behavioral and Physiological
Synchrony

Collective behavior, particularly in a team sports setting, pertains to physical

movement and cognition (i.e., action and perception). Put another way, collective

behavioral synchrony follows teammates’ interindividual matching of behavior

and/or cognition. On the other hand, physiological synchrony stems, in part,

from interindividual emotional matching. These two forms of synchrony are

inextricably linked to due to the metabolic demands of physical activity. That

is, movement influences physiology, and likewise, physiological systems provide

the resources needed for movement. For this reason, I have rendered collective

behavioral synchrony and collective physiological synchrony as a coupled system

in the framework, which is depicted in Figure 1. In this section, I elaborate on

each of the two broad, observable types of collective synchrony.

1.3.1 Collective Behavioral Synchrony in Team Sports

Collective behavior refers broadly to spontaneously emerging social processes

and events [33]. This includes crowd behavior, swarm behavior (e.g., of

insects, flocks of birds, schools of fish, herds of tetrapods), social behavior in

superorganisms (e.g., division of labor in ants or bees), and situations such as

riots, fads, rumors, and other social contagion. Most relevant to this paper is

the collective synchrony of human movement in team sports, although collective

behavioral synchrony may be pertinent in other domains, for example, synchronous

body sway in a string quartet [34]. In the coverage of collective behavior that

follows, I draw primarily from human movement sciences (physical education, sport

science, etc.), in particular from the literature on teams as complex systems [35].
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Figure 1: Conceptual framework of collective synchrony.
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Central to collective behavior, and to the notion of teams as complex

systems, are self-organization and the role of constraints, which are conditions

or rules governing the task and environment within which a system operates [36].

Constraints may include, for example, the rules of the game; the size, shape, and

other characteristics of the playing area; the number of players and whether there

is a numerical imbalance; and the team formation and other tactical instructions

given by the coach. A self-organizing system is one that reduces in degrees of

freedom of behavior, from a large number to very few, by the formation of synergies.

Within a synergy, one teammate’s action influences the actions of another and vice

versa [37, 38]. Self-organized collective behavior is not predetermined. Rather,

governed by the constraints of the task and environment, a team’s collective

behavior functionally emerges to perform a goal-directed shared task through the

process of self-organization [27, 28, 29]. This process reflects the arrangement of

individual behaviors to meet group goals, that is, coordination. Hence, in team

sports, self-organization may offer a specific explanation for how the antecedents

shared task and coordination may invoke collective behavioral synchrony. In the

following paragraphs, I briefly review studies to underscore the importance of

collective behavioral synchrony to team sport scientists.

Collective behavior in team sports has been the focus of a number of studies

in recent years, in particular with soccer teams during small-sided practice games

[3, 4] or during competition [5, 6, 7]. Studies of small-sided practice games

typically aim to inform coaching best practices and to examine the effects of

manipulating certain constraints such as numerical imbalance. For example, two

studies used GPS data to investigate collective behavior in teams of 4 players

competing in unbalanced small-sided games (i.e., 4v3, 4v5, 4v7) involving amateur

and professional players [3], and professional players only [4]. In both studies, an
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entropy measure was used to quantify the unpredictability of (i.e., exploratory

behavior exhibited by) each 4-person team’s pattern of movements. Entropy

was found to decrease as defensive tactics became more dominant with each

increase in the numerical disadvantage. Additionally, an amateur-professional

difference in entropy was reported, which suggested that amateurs have less regular

positioning patterns and may rely more on additional external feedback (e.g.,

coaching instructions) or additional constraints to facilitate coordination [3].

Synchrony in elite men’s soccer teammates’ movements along the longitudinal

(X) and lateral (Y) axes of the playing field were analyzed in two studies using

GPS data, one including opposing teams competing in an English Premier League

game [5] and one including opposing elite European teams competing in a preseason

friendly game [6]. Each of these studies illuminated changes in collective behavior

in different stages of the game. Investigators reported an increase in collective

synchrony of movement from the first half to the second half [5]. Greater collective

synchrony of movement was observed when teams were defending than when they

were attacking, and synchrony decreased for both teams when the ball was closer

to either goal. In another study, a new soccer team of undergraduate athletes

with playing experience ranging from 0 to 15 years was assembled [7]. The aim

of this study was to investigate changes, across a 15-week season, in synergies

(i.e., dyadic coupling in teammates’ radial distance to the goal) during movements

up and down the field. Small improvements in readjustment delays (i.e., faster

regulation of coordinated team actions) and increases in near-in-phase synchrony

during teams’ forward and backward movements were reported. In sum, collective

behavioral synchrony and its antecedents are of considerable interest to scientists

of team sports.
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1.3.2 Collective Physiological Synchrony

Physiological synchrony is defined as temporal correspondence of multiple

individuals’ physiological systems [39]. This materializes when the intraindividual

signals (e.g., heart rate, breathing rate, cortisol level, electrodermal activity)

emanating from intraindividual physiological systems (e.g., cardiac, respiratory,

glandular) become interindividually matched in time. The emergence of

physiological synchrony is thought to be influenced to some degree by

interindividual emotional matching, for example, due to emotional contagion

among copresent individuals. Physiological synchrony appears in the literature

under many names such as shared physiology or physiological attunement,

coherence, compliance, concordance, coupling, covariation, entrainment, or linkage

[8].

In studies of interpersonal social interaction, physiological synchrony has

been linked to a number of psychosocial concepts such as emotional coregulation

[40, 41, 42, 43], conflict [23, 44, 45], and empathy [46, 47]. Coregulation has been

defined operationally as the “bidirectional linkage of oscillating emotional channels

(subjective experience, expressive behavior, and autonomic physiology) between

partners, which contributes to emotional and physiological stability for both

partners in a close relationship” [41]. Similarly, the “relationships as regulators”

model suggests that synchrony emerges, strengthens, and potentially stabilizes,

in the behavioral, physiological, and biochemical channels of individuals in close

relationships [42]. It has been argued that sexual and other intimate behaviors

(e.g., embracing, cuddling) activate reward systems (i.e., opioid, oxytocin), acting

as an efficient and metabolically cost-effective means by which partners regulate

each other’s affect and synchronize their physiological systems [43]. Ferrer

and Helm [40] have provided a statistical analogue for coregulation in dyads
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by proposing that it manifests as positive associations between dyad members’

physiological signals.

Studies examining interpersonal conflict and physiological synchrony have

reported varied results. In a study with married couples in conversation,

physiological synchrony was greater when marital dissatisfaction was higher, and

greater during conversations higher in conflict [44]. In contrast, during romantic

partners’ discussions about how they influence each other’s health behaviors,

relationship conflict did not predict physiological synchrony in blood pressure,

inter-beat interval, or skin conductance [23]. Rather, physiological synchrony in

blood pressure was found to be negative in magnitude, or anti-phase (as opposed

to positive/in-phase), as a consequence of turn taking during conversation. This

effect, however, was moderated in such a way that the magnitude of physiological

synchrony shifted toward zero in participants reporting a more detrimental affect

of their partner on health behavior. In another study, during conflict-provoking

family discussions involving mother-father-adolescent triads, lagged associations in

family members’ cortisol responses were reported [45]. That is, mothers’ cortisol

predicted fathers’, fathers’ cortisol predicted adolescents’, and adolescents’ cortisol

predicted mothers’, at the next time point.

Empathy is one of the psychosocial constructs that has been most commonly

used to explain physiological synchrony. For example, one study investigated

“empathy as shared physiology” in the context of a performer, a friend, and a

stranger watching a video that was mildly embarrassing for the performer [47].

Dyadic associations in skin conductance and blushing were greater in performer-

friend pairs than in performer-stranger pairs. In a second experiment, strangers

who had also participated in the embarrassing task blushed more than strangers

who had not, presumably because they were better able to empathize with the
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performer. In a study of newly formed psychiatrist-outpatient dyads, synchrony in

skin conductance and patient ratings of perceived empathy were lower when the

psychiatrist minimized eye contact and head nodding (i.e., emotionally distant

condition) [46]. Based on these results, the investigators recommended using

physiological synchrony as a potential marker of empathy in clinical settings.

Although many studies of interpersonal interactions are based on the

assumption of interpersonal causality (i.e., one person’s physiological signal

affects that of another person), physiological synchrony may be a consequence

of third variables such as experiencing a common psychosocial context (e.g.,

danger, embarrassment, empathy) or task (e.g., performing music, solving a

problem, common movement) [8]. This is consistent with the antecedents

copresence and shared task, which may lead to interindividual matching of

emotion and/or behavior. The exact mechanisms underlying the emergence

of physiological synchrony among multiple persons’ physiology remains as an

important unanswered question [8]. Additional questions include whether group

members have the capacity to recognize when physiological synchrony occurs,

and/or to exert control over it [8]. There is some preliminary evidence to suggest

that the latter is possible. For example, Ferrer and Helm [40] found that the

magnitude of synchrony in heart rate and respiration was greater in dyads who

were given explicit instructions to mirror each other’s physiology than in dyads

under other conditions. These authors suggested that under direct instructions to

synchronize their physiology, participants did so by attempting to visually observe

and mimic their partners’ breathing. This example highlights the coupled nature

of collective behavioral and physiological synchrony. In the next section, I define

collective flow and discuss it as a possible outcome of collective behavioral and

physiological synchrony.
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1.4 Collective Flow as a Possible Outcome of Collective Behavioral and
Physiological Synchrony

Flow describes a psychological state of optimal experience that can occur in

the context of many different activities such as creative pursuits (e.g., musical

composition), physical or sensorimotor tasks (e.g., rock climbing, sailing, tennis),

cognitive tasks (e.g., chess, mathematical problem-solving), socializing, and others

[14]. According to Cśıkszentmihályi and his coauthors, flow consists of nine

dimensions [14, 48, 49]. The first three have been proposed as necessary conditions

for flow to occur [49]. That is, flow involves a challenging activity that requires skills

– one in which the challenges of the activity and the skills of the actor are well

balanced. Flow also requires an activity in which there are clear proximal goals for

the actor to pursue, and immediate unambiguous feedback about progress toward

the goals is known to the actor. The remaining six dimensions are said to be

characteristics of the flow experience [49]:

� intense and focused concentration on the present task

� merging of action and awareness ; i.e., full absorption of the actor’s attention

by the activity

� loss of self-consciousness ; i.e., freedom from self-scrutiny and social

evaluation

� sense of control over situations that may emerge during the activity

� transformation of time; i.e., distortion of objective time measurement, which

may be sensing the passage time to be either faster or slower than actual

� autotelic experience; i.e., participation in the activity is enjoyable and

intrinsically rewarding
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Although flow has mostly been considered an individual construct, collective

flow has been examined in business or workplace settings [11, 12] and team sports

[13]. Notably, Quinn [11] examined collective flow in the workplace and outlined

three antecedents, two processes, and two indicators of collective flow. The first

antecedent, minimal structures refer to norms, goals, and rules. This extends

Cśıkszentmihályi’s dimension of clear proximal goals to account for (a) social

norms that may exist within a collective, (b) collective goals that may differ

from individual ones, and (c) rules governing the activity. The second antecedent

suggests that there must be comparable skills among the individuals within a

collective. Third, introducing and embracing variation means that collectives

may intentionally introduce perturbations to keep the task challenging and/or

to keep members engaged. For example, a jazz band may take turns leading. One

process of collective flow is retrospective creation of meaning, which is described

as a process of mutual adjustment, of observing feedback and responding [11, 50].

Another collective flow process is called negotiating the “feel”, which refers to

“continual negotiation toward dynamic synchronization” [11, 51]. Whereas the

former implies cognition in the mutual creation of something, the latter refers to

feeling (emotionally or intuitively) the rightness or wrongness of that creation,

and adjusting toward rightness (i.e., toward flow). Both of these are processes of

coordination, which Quinn claims is primarily what differentiates collective flow

from individual flow. Indicators of collective flow include feeling of transcendence,

or the sense of being part of something larger than oneself, and total preoccupation

with the task, which is analogous to Cśıkszentmihályi’s dimension of intense and

focused concentration [11].

As collective flow is rendered above, it is highly related to the notion of

interindividual emotional, behavioral, and cognitive matching, which stem from
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the antecedents of collective synchrony introduced previously – copresence, shared

task, and coordination. Hence, I include collective flow in the framework as

a possible outcome of collective behavioral and physiological synchrony. First,

emotional contagion brings about the convergence of affective states [52], which

has been proposed to occur under circumstances of collective flow [11]. Quinn

[11] suggested that the aforementioned process of negotiating the “feel”, or

mutual intuitive adjustment toward a better outcome, may happen through

affective communication such as vocal intonations, raised eyebrows, and other body

language. Quinn also hypothesized that the extent to which a team perceives their

task as challenging should be positively associated with their collective energetic

arousal (i.e., excitement), because this is the psychophysiological mechanism people

use to engage in a challenging task [53]. To feel transcendence, an indicator of

collective flow, is to find the activity intrinsically rewarding. This may be another

source of interindividual emotional matching within a team.

Second, collective flow typically occurs in the context of a shared task, which

influences interindividual behavioral matching and collective behavioral synchrony.

Minimal structures (i.e., norms, goals, and rules) include task and environmental

constraints, which govern collective behavior. Another precursor to collective

flow, introducing and embracing variation, suggests that collectives deliberately

introduce perturbations to maintain the challenge of, and engagement with, a

task. This is analogous to a coach’s manipulation of constraints, either during

competitive games (e.g., tactical changes) or practice games (e.g., to introduce

new situations to promote creative problem solving) [36, 54]. A key component

of embracing variation is the presence of collective goals that outweigh those of

individuals [11], reflecting another intersection with the literature on collective

behavior in sports. For example, a type of division of labor known as functional
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specialization (i.e., having various roles on a team such as starter, substitute,

various positions, etc.) and altruistic cooperation (e.g., unselfishly passing to a

teammate better positioned to score a goal) are characteristics of teams that reflect

the prioritization of collective goals over individual goals. Functional specialization

and altruistic cooperation have been highlighted in a comparison of teams and

superorganisms [25].

Third, coordination is what sets collective flow apart from individual flow

[11]. One of the processes of collective flow, retrospective creation of meaning, is

a cognitive, creative process of mutual adjustment that involves attending to and

responding to feedback [11]. This process of coordination is likely to incorporate

actual communication (verbal or nonverbal) to some extent, but the coregulation

that occurs within synergies is also likely to play a role. That is, shared affordances

influence the actions of multiple teammates, which are coupled in synergies. In

sum, coordination may bring about both interindividual behavioral and cognitive

matching and is an important aspect of collective flow.

A recent contribution specific to the domain of team sports is the development

of the Team Flow State Inventory (TFSI) [13]. Based on a qualitative thematic

analysis of the experiences of athletes, coaches, and sport psychologists, the

TFSI incorporates 14 dimensions of team flow. Of these, seven are similar to

Cśıkszentmihályi’s individual flow dimensions, albeit modified to the context of

team sport performance: challenge-skill balance, merging of action and awareness,

clear goals, unambiguous feedback, concentration on the task at hand, autotelic

experience, and time transformation. The other seven dimensions embedded in

the TFSI are novel team flow dimensions: game plan, optimal arousal, coaching

style, team communication, team confidence, external factors, and team support.

The construct of collective flow and the TFSI need further refinement.
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However, the interindividual matching of emotion, behavior, and cognition,

suggested in particular by Quinn’s model [11], warrants the inclusion of collective

flow as a possible outcome within the proposed conceptual framework of collective

synchrony.

1.5 Conclusion

In this paper, I have introduced a conceptual framework of collective

synchrony, into which I have incorporated ideas from multiple disciplines. The

purpose of this undertaking has been to offer a starting point for investigating

synchrony in team performance settings in a more comprehensive way. That

is, this framework emphasizes the notion that teammates’ physical movement

(i.e., behavior), cognition, emotion, and physiology can become interindividually

matched for a number of reasons. In particular, copresence may influence the

convergence of teammates’ affective states due to the psychosocial conditions

of the setting, emotional contagion, and/or their feelings toward the activity.

This interindividual emotional matching may bring about collective physiological

synchrony to some extent. When a shared activity is goal-directed (i.e., a

shared task), the structural characteristics of the task may yield interindividual

behavioral matching. This may contribute to collective physiological synchrony

indirectly through collective behavioral synchrony due to the metabolic demands

of teammates’ common physical activity, for example. Coordination may explain

some degree of interindividual behavioral and cognitive matching, contributing

to collective behavioral synchrony. Within this framework, I have proposed that

collective behavioral and physiological synchrony are coupled systems. This is

principally due to the fact that physiological systems provide the energy resources

needed for human movement, and hence physiological signals respond to human

movement. Finally, interindividual matching of emotion, behavior, and cognition
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are apparent in the way collective flow has been conceptualized. Although at

present it is not possible to directly observe collective synchrony in emotional

and/or cognitive signals during team sports performance, I have decided to include

collective flow as a possible outcome of collective synchrony. In sum, I posit that

these elements comprise the conceptual foundations of collective synchrony.
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MANUSCRIPT 2

Collective Synchrony: A Systematic Review of the Literature

Abstract: Collective synchrony is the simultaneous occurrence of behavior,
cognition, emotion, and/or physiology within a group of three or more people.
In this paper, 29 studies of collective synchrony are reviewed using the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
These studies resulted after a five-phase search and screening process. They are
numbered consecutively in this paper [1] - [29]. The following characteristics of
these studies were examined and are reported herein: (a) contexts, populations,
and synchrony variables examined; (b) analytical methods used to quantify
collective synchrony; and (c) notable findings reported. Strengths and limitations,
both of the reviewed literature and the review itself, and future directions are
discussed.

2.1 Introduction

In the social and behavioral sciences, collective synchrony refers to the

simultaneous occurrence of behavior, cognition, emotion, and/or physiology within

a group of people. Collective refers to a group of three or more people, in contrast

to dyads and individuals, units which may also demonstrate synchrony. Dyads in

particular have been used extensively in studies of physiological synchrony in the

subdiscipline of psychophysiology. For example, synchrony in skin conductance in

psychiatrist-outpatient dyads [30] and synchrony in cardiac signals of romantic

couples during conversation [31] have been investigated. Synchrony may also

be examined in multiple signals from an individual person. For example,

neuroscientists may focus on synchrony in neural activity from multiple regions

within an individual brain [32]. In contrast, collective synchrony refers to

synchrony in signals of individuals grouped within a collective such as a sports

team, work team, military unit, musical ensemble, dance company, group of

students, family, etc.
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Collective synchrony is relevant in many everyday contexts, and a multitude of

scientific objectives have motivated its scientific study. In performance domains,

collective synchrony in performers’ voluntary movements may directly influence

the quality of a performance. That is, whether dancers move, musicians play or

sing, or sports teammates row, run, skate, etc. in a synchronized manner may

affect an audience’s rating of the performance [27] or the likelihood of victory or

defeat. In sports, the notion of teams as self-organizing complex systems [33, 34]

has generated interest in quantifying the extent to which players exhibit collective

synchrony as they move forward, backward, left, and right on a playing field [6, 15].

Beyond movement, researchers have examined synchrony in physiological

signals during other settings with coordinated tasks, for example using

electroencephalography (EEG) with Navy officers-in-training performing a

submarine piloting and navigation simulation [24] and copilots on a simulated

flight [35]. Others have focused on synchrony in cardiovascular signals during choir

singing [17, 28], during a creative construction task [9], and in research planning

meetings [10]. Other contexts in which collective physiological synchrony has been

investigated include families, such as cortisol response during conflict [20], and

ordinary social settings, such as blushing and skin conductance while viewing an

embarrassing video [21] or discussing topics of varying emotional valence [12].

Compared to voluntary movements, it is less clear what leads to collective

synchrony in physiological systems, which people have very limited capacity to

control and which are not coupled in any direct way. Based on existing literature on

heart rate (HR) synchrony [9], in Manuscript 1 of this dissertation, three possible

antecedents of collective synchrony were highlighted. First, simply being together,

or copresent, in a situation may engender behavioral and emotional contagion

such as common facial expressions and affective states, leading to common
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physiological arousal. Hence, copresence refers to an emotional explanation of

physiological synchrony. Second, the characteristics of a shared task, such as

whether it constrains group members to be similarly physically active, cognitively

focused, stressed, breathing rhythmically, etc., may drive collective physiological

synchrony. In this explanation, it is the structural characteristics of a task that

may, for example, cause team members to move similarly, and subsequently to

exhibit similar physiological responses based on the metabolic demands of physical

movement. Third, deliberate online coordination on the task, defined as arranging

individual actions in ways intended to achieve group goals [36], may give rise

to collective synchrony. This refers to communication, visual perception, and

intentional synchronization of movement. The role of each antecedent (copresence,

shared task, or coordination) is likely to be context-dependent. Understanding

the role of each in various contexts such as team sports, the workplace, military

applications, performing arts, etc. is an issue that merits further investigation.

To inform future studies, this paper’s purpose is to present a systematic

review of collective synchrony, including studies using other terminology in place

of synchrony such as coherence, compliance, entrainment, linkage, and shared; e.g.,

“shared heart rate dynamics” [9]. The review was conducted using the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines

[37]. The aims of the review are to report on (a) the contexts, populations, and

synchrony variables that have been examined in studies of collective synchrony, (b)

the analytical approaches that have been used to quantify collective synchrony,

and (c) notable findings that have been reported in these studies. The review

is organized as follows. In the next section, the methods used to procure and

review the included studies are summarized. Subsequently, results are presented,

including descriptive information about the studies, their contexts, populations,
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variables examined, analytical methods, and notable findings. Finally, strengths,

limitations, and future directions are proposed.

2.2 Method

The search and screening process was carried out in five phases as depicted in

the PRISMA flow diagram (Figure 2). Phase 1 was the initial search, detailed in

the next paragraph. Phase 2 was the removal of redundant search results. Phase

3 was the removal of articles deemed to be off topic or not meeting the inclusion

criteria, detailed below, based on the journal title, article title, or article abstract.

Phase 4 was the removal of articles not meeting the inclusion criteria, based on a

review of the full text. After Phase 4, 17 articles remained for review. Phase 5

brought about the addition of 12 articles citing, or cited in, the 17 articles that

remained from the initial database search. Hence, there was a final tally of 29

articles retained for this literature review. These are numbered consecutively [1]–

[29] in this paper.

Phase 1 included the use of the following databases: Academic Search

Complete, MEDLINE, ERIC, PsycARTICLES, PsycINFO, PubMed, and Science

Direct. Titles, abstracts, and keywords were searched as follows. To ensure that

search results were relevant to finding timed associations (i.e., synchrony, but

possibly under one of several other names), at least one of the following terms

needed to match: attunement, compliance, concordance, coupling, covariation,

entrainment, interdependence, linkage, shared, or synchrony. To focus on studies

using variables most often of interest in studies of synchrony, at least one of the

following terms needed to match: behavioral, behavioural, emotion, movement,

performance, or physiological. To help ensure that search results were relevant

to collectives, at least one of the following terms needed to match: band, choir,

collective, company, crew, group, squad, or team. To focus on articles that
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Figure 2: Flowchart of search strategy and screening.
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encompassed coordinated behavior, at least one of the following terms needed

to match: cooperation, cooperative, coordinated, coordination, goal-directed, or

joint action. Finally, to focus primarily on certain performance settings in which

collective synchrony may be of interest, at least one of the following terms needed

to match: flight, military, music, performing arts, or sport.

The following criteria were used to screen articles in Phases 3 and 4 of the

screening process. In order to be included in this systematic review, articles had

to meet each of the following: (a) the article reported an empirical study, not a

theoretical paper, meta-analysis, systematic review, etc.; (b) the study examined

synchrony; (c) the study incorporated analysis of data streams recorded over many

time points, also known as intensive longitudinal data [38]; and (d) the study

incorporated collectives (i.e., groups of three or more) as the unit of analysis, not

only dyads or individuals.

For each of the 29 studies included in this review, the following characteristics

were examined: the contexts and populations investigated, the variables analyzed

for synchrony, the analytical methods employed, and notable findings. The

rationale for emphasizing these elements in this review was to illustrate the range of

substantive foci of these studies, particularly in terms of the settings, populations,

and variables of interest; to categorize analytical methods that have been used and

identify opportunities for new methods; and to integrate common findings as well

as reveal unique findings. The results of the review are reported next.

2.3 Results

The 29 studies in this review were published in years spanning from 1963

to 2018 (median: 2013, mean: 2010, standard deviation: 10.8 years). The overall

recency of these studies can be attributed in part to the proliferation of technologies

able to track a person’s motion, physiology, and even self-reported information
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(e.g., affective states) intensively over time. In these studies, data were collected

in a variety of locations worldwide, including ten studies from the United States

[7, 10, 13, 14, 16, 18, 20, 21, 23, 24]; five from the United Kingdom [5, 6, 25, 26, 27];

two each from France [1, 2] and Israel [8, 29]; and one each from Canada [3],

Denmark [9], Europe unspecified [15], Finland [12], Germany [17], Italy [4], Japan

[11], New Zealand [19], Portugal [22], and Sweden [28].

2.3.1 Contexts, Populations, and Synchrony Variables Examined

The various contexts reflected by these studies are broadly categorized as

follows: team sports and group exercise, performing arts, work and military

teams, families, and other. Within each of these subheadings, the populations

and synchrony variables examined in each of the 29 studies are summarized next.

Team Sports and Group Exercise

Team sports and group exercise were the focus of eight of the reviewed

studies [2, 5, 6, 11, 15, 18, 22, 25]. Of these, four had participants described

as elite or professional athletes. Two studies focused on synchrony in elite male

soccer players’ movements along the longitudinal (X) and lateral (Y) dimensions

of the soccer field, captured with Global Positioning System (GPS) devices during

competition [6, 15]. One study included opposing teams competing in the English

Premier League [6], while the other included opposing elite European teams

competing in a preseason friendly game [15]. In another study, participants

were professional male cricket players [25]. The substantive focus of this study

was to examine “mood linkage” – synchrony in teammates’ self reported mood

assessed 3 times per day over the course of a four-day competition – and its

relationship with players’ subjective ratings of performance. In a study consisting

of two experiments, participants included elite male university rugby players and
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a mixed gender sample of university student volunteers [5]. In these experiments,

synchrony was not measured, but rather, it was experimentally manipulated as

the independent variable. Each participant was prompted to exercise in time

with a metronome beat set to be the same as (synchrony condition) or different

from (asynchrony condition) that of an exercise partner. The objectives were

to examine the effect of synchronous rowing on social bonding assessed using a

cooperative economic game that followed the rowing task (Experiment 1 with

student volunteers), and to examine the effect of synchronous warm-up exercise on

subsequent performance on a rugby-specific anaerobic endurance test (Experiment

2 with rugby team members).

Two other studies in a team sports context [2, 22] included athletes with lower

levels of expertise. Participants in one study were French male basketball players

on two under-18 youth teams; one at national level deemed to be the “expert team”

and the other at provincial level deemed to be the “novice team” [2]. In this study,

the synchrony variable examined was shared awareness, defined as multiple team

members having a similar awareness of what is happening in the performance

setting. To examine shared awareness, qualitative phenomenological data was

collected from each team member and coded for activity components (i.e., action,

involvement, expectations, and knowledge) and the team member(s) involved. In

another study, participants were members of a newly formed soccer team made up

of undergraduates in a school of sport, whose experience playing organized soccer

ranged from 0 to 15 years [22]. The objective of this study was to investigate

changes, over 15 weeks of weekly practices and games, in synergies in players’

radial distance to the goal during movements forwards and backwards during

competition. The notion of a synergy comes from Hermann Haken’s science of

synergetics [39], which explains the formation of self-organizing systems. Synergies
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were examined as dyadic couplings between teammates (i.e., up to n(n−1)
2

or 45

couplings for the 10 outfield players on a soccer team) [22].

One of the studies described above incorporated group exercise tasks,

including one experiment with elite rugby players [5]. Two other papers were

in the context of group exercise including group walking [11] and Kundalini yoga

and meditation [18]. In the former, coordinated walking groups of healthy, right-

handed students at a Japanese university were randomly assembled [11]. Here, the

variables of interest were stepping synchrony and inter-subject neural synchrony

of prefrontal cortex activity measured using functional near-infrared spectroscopy

(fNIRS). In the study on yoga and meditation, characteristics of the sample were

not made clear, but it was implied that the participants were recruited from

11 yoga groups (4-7 participants per yoga session) over a 10-month period [18].

In this study, it was predicted that coordinated breathing in Kundalini yoga

practice would produce synchrony in participants’ R-R intervals (i.e., time between

heartbeats).

Performing Arts

Performing arts, including music and dance, were the context studied in six

of the reviewed studies [1, 3, 14, 17, 27, 28]. Similar to the studies from sport

and exercise, there existed tremendous variability in expertise apparent in these

studies’ participants. Samples included internationally recognized professional

string ensembles [3], professional dancers [27] and dancers whose level of expertise

was not reported [1], amateur choir singers [17, 28], and elementary school music

classes [14].

In a study of two professional string quartets, the variable of interest was

body sway during performance [3]. The authors sought to answer the question:

do quartet members follow each other in terms of body sway, whether or not
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they see each other, and whether or not one member is designated as the

leader? Both of the studies with dancers [1, 27] were interested not only in

synchrony observed in the dancers themselves, but also in its effect on audience

members. In one of these studies, the objective was to examine how synchrony in

professional dancers’ movements, monitored by wrist-worn accelerometers during

live performance, would affect audience members’ arousal (i.e., HR), aesthetic

evaluation, and enjoyment [27]. In the other study including dancers, the purpose

was to investigate whether synchrony would emerge between audience members

and dancers performing a slow, nonrhythmic dance in duets, both in terms of

respiration rate and heart rate (i.e., physiological entrainment) and time distortion

(i.e., cognitive entrainment) [1]. Both of the studies involving choir singing [17, 28]

investigated synchrony in choir members’ respiration and heart rate variability

(HRV) during singing. Finally, in the context of elementary school music class,

one study included second to sixth grade students, racially diverse and of mixed

gender, who were randomly assigned to 10 groups (2 per grade level) of 8-12

students per group [14]. In these groups, each student rhythmically played a

percussion instrument, constructed specifically for this study, to record a signal

showing when the instrument was struck. It was hypothesized that the ability to

rhythmically synchronize would be correlated with attentional ability measured by

the Strengths and Weaknesses of ADHD Symptoms and Normal Behavior Scale.

Work and Military Teams

Work and military teams were examined in six of the studies [7, 9, 10, 23, 24,

26]. This category encompasses a variety of settings including military training [7,

24], research planning [10], creative construction [9], typical workplace activities of

nurses and accountants [26], and various teamwork contexts including healthcare,

military, and high school science teams [23]. Although the military context could
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be considered as a separate category, the small number of studies and the inclusion

of military alongside other types of teams in one study [23] led to the decision to

treat various workplace settings and military as a single category. Similar to team

sports, group exercise, and performing arts, work and military teams tend to refer

to groups that are engaged in various coordinated, goal-directed tasks.

In one study [7], young adult males with no formal combat or weapons

training completed a military training exercise in randomly assigned teams of

four. The study’s objective was to explore the relationship between synchrony

in team members’ HRV and team performance. Participants in another study

[24] were students in the Submarine Officer Advanced Course at the U.S. Navy

Submarine School, in teams of 11 or 12. The purpose of this study was to examine

cognitive neurophysiologic synchrony in EEG signals during Submarine Piloting

and Navigation simulations. In a study by the same first and second authors, again

the focus was on neurophysiologic synchrony in EEG, this time with military,

healthcare, and high school science teams [23]. However, specific details about

these samples were not reported [23]. In a study examining an academic research

setting, an already existing graduate student research team of two men and two

women were observed during 20 planning meetings of a six-month period to assess

whether HRV synchrony could predict teamwork effectiveness [10]. In another

study [9], a mixed gender sample of university students were randomly assigned to

six teams of 4 or 5 members and given a creative LEGO® construction task. The

objective of this study was to examine synchrony in teams’ HR dynamics and, in

particular, how this would be influenced by manipulating various aspects of the

task and behavioral coordination, and what effect HR synchrony would have on

members’ perceptions of relatedness and group performance. Finally, similar to

the study on mood linkage in professional cricket players described above [25], in
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another study by Totterdell and colleagues [26] mood linkage was investigated in

13 teams of nurses and one team of accountants in their usual workplaces. That

is, the purpose was to examine whether individuals’ moods are influenced by the

collective mood of their work teammates over time.

Families

Families were the focus of three studies [8, 20, 29], each with unique

substantive aims. In one study [8], synchrony was examined in affective states

of 100 mother-father-infant triads, each consisting of an educated, employed,

middle-class, married couple and their first born child. In videotaped interactions,

parents’ and infants’ affective states were coded in one-second frames, and these

data were used to examine mother-infant and father-infant affective synchrony.

In another study [20], participants were a diverse sample of 103 parent-parent-

adolescent triads. The variable of interest was concordance in family members’

stress response (i.e., cortisol levels) during a conflict-provoking family discussion.

Whereas that study was conducted in a laboratory setting, and the videotaped

parent-infant interactions in the study mentioned previously [8] were held during

home visits, in a third study [29] self-reported data from the daily lives of high

school girls, their mothers, sisters, and close friends living in an urban community

were incorporated. This study sought to examine synchrony in menstrual cycles,

in particular to compare the degree of synchrony across particular pairs (i.e., high

school girls paired with a close friend, mother, sister sleeping in the same bedroom,

sister sleeping in a different bedroom) as well as menstrual synchrony within 38

triads of mothers and two daughters.
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Other

Other miscellaneous contexts were investigated in six of the studies [4, 12,

13, 16, 19, 21]. These consisted of randomly assembled groups of participants in

experimental settings engaged together in tasks such as having a conversation,

viewing a video, performing simple movements, etc. Of these studies, all but

one [19] focused on some form of physiological collective synchrony. In that

investigation, similar to one of the studies mentioned previously [5], synchrony was

experimentally manipulated [19]. Randomly assigned groups of adult volunteers,

recruited from the vicinity of a college campus, were asked to perform simple

movements in time with a metronome beat that was either synchronous or

asynchronous to that of other group members. Subsequent cooperative behavior

was measured as the dependent variable.

In one study investigating physiological synchrony, university students of

traditional age were randomly assigned to either a group of ten people tested

together while seated in a circle (“collective group”) or a group of ten people tested

separately (“individual group”) [4]. The purpose of this study was to examine

whether greater synchrony – in heartbeat, respiration, and arm movements –

would emerge in collectives than in individual groups across five conditions:

initial baseline, spontaneous movement, music-associated movement, metronome-

associated movement, and final baseline. In another study [12], physiological (HR)

synchrony was investigated in a mixed gender sample of university students. In

randomly assigned groups of four, each consisting of a dyad seated together and

two other members seated individually in separate rooms, groups viewed and

chatted about short video clips on the topics of religion, poverty, parkour, and

climbing, which were intended to elicit varying emotional valence. Another study

included peer groups of four male medical students having 45-minute conversations
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about medical topics while galvanic skin response (GSR) was recorded for each

participant [13]. The objective of this study was to explore the relationship between

GSR synchrony and members affective orientations to one another (i.e., whether a

member likes, dislikes, or is neutral toward a peer). The focus of another study [16]

was synchrony in skin conductance, HR, respiration rate, and motion, examined

in two randomly assigned audiences of 13 or 14 men aged 25-35 years. This

study’s purpose was to examine whether physiological synchrony in an audience

would differ when viewing a TV commercial out of context versus in the context

of a TV show, and when viewed in the context of a successful or unsuccessful

network comedy. Finally, synchrony in skin conductance and blushing, monitored

by cheek sensors, was investigated in friends and strangers to explore the notion of

empathy as shared physiology [21]. Same-gender performer-friend-stranger triads

of undergraduates were formed, and together they viewed an embarrassing video

of the performer singing the national anthem. A second experiment attempted to

produce a more empathetic physiological response from the stranger by having the

stranger perform the embarrassing task before viewing another performer’s video

together with the performer and his/her friend.

2.3.2 Analytical Methods Used

Various methods were used to analyze collective synchrony in these studies,

owing to the diverse substantive goals of the research summarized in the previous

section and, perhaps, due to different preferences for particular approaches such as

time domain or frequency domain time series methods, methods from dynamical

systems theory, and miscellaneous others. Specific examples are cited within

these subheadings below. Although numerous additional methods were used to

analyze associations between collective synchrony and experimental conditions or

other variables (e.g., chi-square analysis [13], correlation [1], ANOVA [11, 17, 19],



39

MANOVA [4], path analysis [19], linear mixed models [5, 12, 15], regression [10],

Granger causality [27], and entropy [6, 24]), the methods highlighted below are

limited to those used to quantify the extent to which collective synchrony was

present in signals from multiple participants.

Time Domain Time Series Methods

The most common approach was to use bivariate correlations between time

series for each pairwise combination of subjects, or cross-correlation, which was

used in six of the studies [7, 8, 10, 12, 13, 21]. In the study [10] examining

HRV synchrony during planning meetings with a research team of four graduate

students (A, B, C, D), a correlation coefficient was computed for each pairwise

combination (AB, AC, AD, BC, BD, CD). These coefficients were then aggregated

by computing the mean for the entire meeting duration, or for particular time

intervals such as when particular individuals were speaking. For example, when

person C was speaking, a composite score was computed as the mean of only

correlation coefficients including person C (AC, BC, CD). Similar approaches of

computing bivariate correlations for each possible dyad and then aggregating as

a mean value for the collective were used in two of the other studies [7, 12]. In

a further two studies, the substantive focus was on particular dyad combinations

within triads, that is, mother-infant and father-infant dyads [8], and performer-

friend and performer-stranger dyads [21]. Therefore, in each of these studies,

the third possible dyad combination was not considered, nor were the correlation

coefficients aggregated as a composite for the whole collective.

Granger causality was used in two studies [3, 17]. Granger causality [40]

accounts for lagged relationships in interdependent time series. It quantifies how

well one time series predicts a second time series, after accounting for how well a

time series predicts itself (i.e., autocorrelation). Granger causality was well suited
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to determining whether string quartet members followed each other’s body sway,

in particular when one member was designated as the leader [3]. For example, to

assess person A’s influence on person B, Granger causality was computed as the

log-likelihood ratio of the degree to which A predicts B, over and above the degree

to which B predicts itself, conditional upon time series C and D.

Pooled time series analysis was applied to examine mood linkage within

work teams and professional cricket teams, respectively [25, 26]. In pooled time

series analysis, all subjects’ time series (e.g., vectors of self-reported moods) are

concatenated, or stacked, into one “supervector” [41]. In these studies, the mean

mood score for each team, averaged over all days, and the mean mood score for

each day, averaged over all teams, were included as independent variables to test

associations between team and individual mood.

Linear mixed models were used to quantify synchrony in two of the studies [1,

20]. For example, to investigate whether the breathing rates of audience members

were linked to that of dancers, a linear mixed model was run for each spectator

[1]. The breathing rate of the spectator at each time point was regressed on

the breathing rates of the two dancers in the duet at the same time points. In the

study examining conflict in parent-parent-adolescent triads, time-lagged multilevel

models were used to examine whether a family member’s cortisol response was

predicted by the other two family members’ cortisol responses at the previous

time point, while also controlling for autocorrelation in the person’s own cortisol

response [20]. In this study, three separate models for each family were run to

predict time series of cortisol response for the mother, father, and adolescent.

Frequency Domain Time Series Methods

Several examples of frequency domain time series analysis were represented

in these studies. All of these can be considered to fall within the umbrella of
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coherence methods. In one of the articles reviewed [28], coherence is characterized

as a frequency domain statistic summarizing the correlation of two signals at each

frequency. Specific variants of coherence analysis used in these studies include

wavelet coherence analysis, used in three studies [11, 17, 18]; generalized partial

directed coherence (GPDC), used in one study [4]; and simply, coherence, used in

another study [28].

Wavelet coherence analysis enables the decomposition of a time series into

time-frequency space in order to determine both the dominant modes of variability

and how those modes vary in time [42]. It is described as a method for measuring

cross-correlation between time series as a function of frequency [11]. That is, it

allows extracting the local correlation between two time series for each frequency.

Further, it is a way to quantify the time evolution of spectral components of a time

series [18]. Focusing on coherence in participants’ R-R signals during Kundalini

yoga practice, synchrony was analyzed in dyadic combinations of participants

using pairwise wavelet coherence analysis, as well as in collectives using N signals

wavelet coherence analysis [18]. In the study investigating neural synchrony

of the prefrontal cortex in coordinated walking groups [11], pairwise wavelet

coherence values for periods ranging from 10 to 85 seconds (i.e., .012 to .1 Hz)

were calculated for each dyadic combination of participants, then averaged over all

dyads. Similarly, in another study [17], coherence in each variable of interest, HRV

and respiration rate, was computed in the frequency range 0 to 2 Hz, in .002-Hz

steps, for all pairwise combinations of choir members. In that same vein, other

investigators [28] analyzed bivariate coherence in HRV across a range of frequencies

during choir singing, using the cross-spectral densities for each pair of participants,

before taking the mean of all pairwise coherence scores.

GPDC [43], a multivariate coherence method, was utilized to examine
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collective synchrony in arm movements, heartbeat, and respiration among 10 group

members in an experimental setting [4]. These authors describe GPDC as a

frequency domain approach to assess the intensity and direction of information

flow in multivariate time series by decomposing multivariate partial coherences

computed from multivariate autoregressive models. Akin to some of the above

examples, GPDC is used to find relationships in each pairwise combination of

signals. However, it does so in the context of a multivariate model that considers

all participants’ signals simultaneously. That is, the computation of each pairwise

coherence takes into account the influence of the remaining N − 2 signals. GPDC

also considers forward and backward influences between time series, based on the

concept of Granger causality.

Methods from Dynamical Systems Theory

Nonlinear methods often associated with dynamical systems theory were used

in several of these studies. These include methods for analyzing phase synchrony

in oscillating time series (i.e., waves) [44], such as relative phase used in one study

[22], cluster phase used in two others [6, 15], and vector strength used in another

study [14]. Other methods include cross recurrence quantification analysis (CRQA)

used in two studies [9, 27] and Shannon entropy used in one study [23].

Methods based on the phase difference between two waves, expressed in

degrees or radians, that is, the extent to which waves are in phase or out of

phase with each other, were employed in each of the three studies examining

synchrony in the movements of soccer teammates [6, 15, 22]. Relative phase,

widely used in signal processing, considers pairwise combinations of time series

to be the output of coupled oscillators and expresses their synchrony in terms of

their phase difference [44]. This approach was used to identify epochs of near-in-

phase synchrony (i.e., relative phase between -30°and 30°) in dyads’ distance to
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goal measures [22]. At times of near-in-phase synchrony, teammate dyads were

categorized as strongly coupled (i.e., synergies) in this study. Extending phase

synchrony from dyads to collectives is the cluster phase method [45, 46], which

was used to quantify collective synchrony in teammates’ movements along the X

and Y dimensions of the soccer field [6, 15]. Cluster phase method is based on the

Kuramoto order parameter [47] and involves the computation of a relative phase

time series for each individual relative to the group’s “cluster phase”. From these,

the degree of collective synchrony can be aggregated as the “cluster amplitude” at

each time step. Cluster amplitude values can range from 0 to 1, that is, completely

unsynchronized to completely synchronized. Vector strength [48], a computation

similar to relative phase, was used to quantify the synchrony with which elementary

students played percussion instruments [14]. Here again, vector strength for a

participant would be 0 if playing randomly and 1 if playing perfectly in time with

a driving beat.

CRQA [49] is a method for quantifying the shared dynamics of nonlinear

systems. By reconstructing the phase space of two time series, this method helps

identify the rate and length of recurrences in a dynamical system, that is, the

instances in which the two time series display similar dynamics. CRQA was used

to measure collective synchrony of acceleration in dancers during live performance

[27]. The recurrence rate was computed for all dyadic combinations, then averaged

for all pairs to represent the collective synchrony. Similarly, in another study [9]

the recurrence rate was used as a proxy of the level of coordination in all possible

group member pairs’ heart rates during a creative construction task, while the

average length of recurrences was used as a proxy of the stability of coordination.

Information entropy, or Shannon entropy [50], was used in one study [23] to

quantify the degree of regularity in team members’ EEG signals. The lower the
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entropy, the greater the regularity in multiple time series, and hence, the greater

the collective synchrony. In this study, the level of neurodynamic organization in

a team was measured as the entropy in randomized data streams minus the team

entropy. The lower the team entropy, the greater this difference, and the greater

the neurodynamic organization (i.e., synchrony).

Other Approaches

A handful of other approaches were used to examine collective synchrony

in these studies. Dynamic social network analysis was used to describe

patterns of shared awareness in basketball teammates [2]. To explore how

teammates connect and disconnect with one another, changes in social network

characteristics, including centrality, density, reciprocity, and transitivity, were

examined. Unsupervised artificial neural networks, a clustering method, was used

to identify patterns in different combinations of participants (Navy submarine

officers-in-training) showing below average, average, or above average task

engagement based on EEG signals [24]. In another study, focusing on HRV

synchrony during a military training task, several dyadic approaches, in addition

to bivariate correlation noted above, were used [7]. These methods include signal

matching, instantaneous derivative matching, and directional agreement. Signal

matching quantifies the area between the curves of two time series of z-scores, with

less area corresponding to greater synchrony. Instantaneous derivative matching

measures the similarity in time point to time point changes in two time series.

Directional agreement simply captures whether two time series match in terms

of their direction (increasing or decreasing) at each time point. From this, the

percent agreement (out of the total time series length) can be computed. A

similar idea, co-occurrence, was used to quantify the proportion of total time

a parent and infant matched in terms of their affective state [8]. To quantify



45

menstrual synchrony in families and close friends, the mean difference in the date

of menstrual cycle onset was used [29]. Finally, one study [21] used ANOVA and

t-tests on aggregated measures of blushing in performer-friend-stranger triads; one

study [16] did not specify the method used, citing a “proprietary methodology”;

and two studies [5, 19] did not quantify synchrony but rather manipulated it as a

categorical independent variable.

2.3.3 Notable Findings

Having various substantive foci and methodological approaches, numerous

findings were reported in these 29 studies. They are categorized here as findings

that reveal positive relationships between synchrony and other variables, between-

group differences in synchrony, within-group changes in synchrony across time or

changing task conditions, evidence of leader-follower relationships, and expert-

novice differences in synchrony.

Positive Relationships Between Synchrony and Other Variables

It was very common in these studies to report positive relationships between

synchrony and other variables (e.g., performance). Several studies treated

synchrony primarily as an independent variable. For example, string musicians’

collective synchrony in body sway was associated with self-evaluated performance

[3]. A related finding, synchrony in dancers’ movements was reported to

predict spectator enjoyment and HR arousal [27]. Likewise, HRV synchrony

was higher in high performing teams than in low performing teams [7]. In

one study [5], experimentally manipulated synchrony in rugby players’ warm-

up exercise was associated with subsequent anaerobic test performance. Mood

linkage in cricket teams was positively associated with self-reported measures

of performance, engagement in collective activity, commitment to the team,
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susceptibility to emotional contagion, and age [25]. In teams of nurses, mood

linkage was greater for older nurses, for higher self-reported commitment to the

team and team climate, and when fewer hassles with teammates were reported [26].

Children’s ability to synchronize rhythmically with others in music class predicted

their attentional ability [14]. Synchrony in parent-infant affective states was

associated with the complexity of the infant’s symbolic play [8]. Experimentally

manipulated synchrony in simple movements, combined with shared intentionality,

was associated with group members’ level of cooperation [19]. Finally, physiological

synchrony in HR was strongly connected to participants’ self-reported social

presence [12].

Other studies treated synchrony primarily as a dependent variable.

Spectators’ attention to their own and dancers’ breathing during the dance

performance predicted physiological synchrony between spectators and duet

members [1]. Synchrony in medical student peers’ GSR was associated with

the strength of affective orientation [13]. That is, participants exhibited greater

synchrony with individuals they liked or disliked than with peers viewed neutrally.

In a creative construction task, interpersonal speech and building coordination

were shown to predict HR synchrony [9].

Finally, it is worth noting that in one study [10] surprising negative

associations were reported in the context of research planning meetings. HRV

synchrony during intervals in which two graduate students spoke in sequence was

negatively associated with ratings of team productivity, quality of communication,

and ability to work together.

Between-Group Differences in Synchrony

Several studies reported between-group differences in synchrony, primarily

with randomly assigned experimental groups. In one study [11], the experimental
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group walking with an audible steady beat demonstrated greater inter-subject

neural synchrony and stepping synchrony. In another study, HR synchrony was

greater in actual collectives engaged in the creative construction task in than in

virtual pairs [9]. Similarly, participants tested in a group, although they did not

have shared goals and were not given any instructions about synchronization,

coupled their arm movements significantly more than groups of participants

tested individually [4]. Audiences viewing a TV commercial in context (vs.

out of context) and during a successful (vs. unsuccessful) network comedy

exhibited greater engagement, measured in part as physiological synchrony in

skin conductance, HR, respiratory rate, and motion [16]. In a study focusing

on the notion of empathy as shared physiology [21], blushing synchrony while

viewing a performer’s embarrassing video was greater in performer-friend dyads

than in performer-stranger dyads in experiment 1. In experiment 2, strangers who

had participated in the embarrassing task blushed more while watching another

performer’s embarrassing video than strangers who had not; or who had, but were

assigned to watch a neutral video. Finally, in one study with naturally existing

groups, greater menstrual synchrony was reported in mother-daughter-daughter

triads and in dyads of daughters sleeping in the same room, compared to girls and

their close friends not living together [29].

Within-Group Changes in Synchrony

Several studies reported within-group changes in synchrony over time (e.g.,

practice effects) or due to changing task conditions. A practice effect was observed

where groups’ movement synchrony occurred immediately in the presence of a task-

irrelevant metronome cue and extended to an uncued condition the next day [4].

Similarly, HR synchrony increased over repeated trials of a creative construction

task [9]. Another study examined whether a newly formed soccer team would show
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practice effects in synergy formation over 15 weeks of observation with weekly

practices and games [22]. Small improvements in near-in-phase synchrony during

teams’ forward and backward movements and in readjustment delays (i.e., faster

regulation of coordinated team actions) were reported. Each of the other two

soccer team studies [6, 15] highlighted changes in collective movement synchrony

in different parts of the game. In one [6], an increase in the second half, compared

to the first half, was reported. In the other [15], greater collective movement

synchrony was observed when teams were on defense, compared to offense, and

decreases were observed for both teams when the ball was closer to either goal.

Each of the choir studies [17, 28] reported within-group changes in physiological

synchrony in response to changes in song structure. An increase in HRV and

respiration synchrony was observed during singing, compared to rest, and when

singing in unison, compared to singing a song with multiple voice parts [17].

Similarly, there was a clear tendency for HRV synchrony as people chant or sing

in unison [28]. Synchrony in choir members’ HRV was higher while chanting

a mantra with guided breathing than all other conditions, and higher during

hymn singing than in the humming and baseline conditions. Finally, changes in

neurophysiological synchrony in teams of Navy officers-in-training were associated

with changes in the task, such as decreases in synchrony at times when the team

was stressed [24].

Leader-Follower Relationships

Three studies investigated lagged relationships to assess whether leaders and

followers existed within a collective. Dynamic social network analysis of basketball

teammates’ shared awareness revealed that, in each team, one member often

heeded or was heeded by his teammates, suggesting a leadership role in team

coordination [2]. String quartet members who were secretly assigned as leaders
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exerted greater body sway influence on, and were less influenced by, other members,

who were not aware that a leader had been assigned [3]. Finally, there were

lagged associations in family members’ cortisol responses during conflict-oriented

discussions [20]. Mothers’ cortisol predicted fathers’ at the next time point; fathers’

cortisol predicted adolescents’ at the next time point; and adolescents’ cortisol

predicted mothers’ at the next time point. These associations were weaker in

triads with a stepparent.

Expert-Novice Differences in Synchrony

Two studies reported findings that suggested an effect of expertise on collective

synchrony. Compared to a novice basketball team, an expert basketball team

demonstrated lower awareness of teammates, possibly explained by coordination

processes existing more implicitly in expert teams [2]. The expert team also

exhibited less intra-team variability of awareness. The authors offered the possible

explanation that experts are better able to achieve and maintain an optimal level

of awareness during performance. Neurophysiologic synchrony of EEG signals

was lower in experienced military and healthcare teams than in less experienced

teams [23]. This was consistent with the authors’ hypothesis, explained as an

inexperienced team’s need to expend more energy over time restructuring to

minimize uncertainty in the work environment.

2.4 Discussion

In this section, strengths and limitations, both of the 29 studies reviewed

and the review itself, are summarized, and future directions, both substantive and

methodological, are proposed. Tremendous variability is apparent in the reviewed

literature in terms of the elements reported above. This may be considered both a

strength and a limitation of the literature as a whole. The variety of substantive
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foci and methodological approaches is not surprising due to the fact that these

studies span many disciplines including advertising, anthropology, biomedical

engineering, cognitive science, ergonomics, kinesiology, medicine, neuroscience,

performing arts, and several areas within psychology (developmental, health,

organizational, physiological, and social). On the one hand, the multidisciplinary

nature of collective synchrony is a strength because it allows the cross-fertilization

of research questions, study designs, and methods of analysis. On the other hand,

the uniqueness of each study – in terms of context, task, population sampled,

variables studied, methods of data collection and processing, and methods for

quantifying collective synchrony – makes it a challenge to establish findings that

can be generalized more broadly and to achieve consistency in how collective

synchrony is quantified. For example, some investigators prefer the methods of

dynamical systems theory, while others tend to employ time domain or frequency

domain time series techniques.

The underrepresentation of female participants, particularly in team sports

and some other performance settings is another limitation of the 29 studies

reviewed. Of these, sixteen studies had mixed gender samples, and four did not

report the gender composition of their samples, which is a limitation in and of itself.

Of the remaining nine, eight had male participants only, including five studies of

team sports (basketball, cricket, rugby, and soccer), one involving military training,

one with groups of medical students, and one in which a sample of all men viewed

a TV advertisement. The only all-female sample in the articles reviewed was the

one on menstrual synchrony [29]. Apart from this, the only sample that was

predominantly female was the group of nurses [26], with 62 females out of 65.

Another limitation relates to the approach taken by many of the studies

to quantify collective synchrony. As it is apparent in the above subsection on
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analytical approaches, investigators tended to use methods that analyzed pairwise

relationships in dyadic combinations of group members. Although this approach

matched the substantive aims of some studies seeking to examine particular dyadic

combinations (e.g., mother-infant and father-infant dyads [8]), this approach was

also taken in some studies whose sole focus was on synchrony in the collective.

A common strategy was to quantify synchrony in all pairwise combinations of

participants (e.g., six possible combinations in a group of four), and then simply

averaging these values to obtain a composite measure of collective synchrony. This

is perhaps more a limitation of the availability or accessibility of existing methods

for collective synchrony than of the studies themselves.

Strengths and limitations of this review relate primarily to the search and

screening process, which, as an advantage, returned a wide range of synchrony

studies in terms of context, substantive focus, synchrony variables examined, and

methods used. As a disadvantage, the strict terms of the database search, that

is, requiring at least one match from each of five keyword sets, may have resulted

in not including some studies that may have been relevant despite the absence of

these terms. However, the 17 studies remaining from the initial database search

were supplemented by 12 others that had cited, or were cited in, these articles.

This process returned studies reflecting a wide range of synchrony investigations

in terms of the attributes emphasized in this review.

A priority for future research, substantively, should be to identify mechanisms

underlying collective synchrony, particularly in group members’ physiological

signals, an issue that was raised in this paper’s Introduction. That is, an important

future direction would be to control for copresence, shared task characteristics,

and/or online coordination, in order to parse the effect of each. For example,

to what extent is collective synchrony in physiology a product of interindividual
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emotional or cognitive matching, and not simply an outcome of the metabolic

demands of physical exertion? This would be valuable in helping to understand

why collective synchrony materializes in various contexts.

In terms of methodology, multivariate approaches are needed to enable

quantifying collective synchrony in a more elegant way than simply averaging

bivariate relationships. Methods that quantify collective synchrony on a moment-

by-moment basis, generating a time series of values, as opposed to extracting a

single value per time interval, would allow investigating how collective synchrony

itself can evolve over time. The cluster phase method used in two of the studies in

this review [6, 15] offers each of these advantages. Phase synchrony is quantified

between each participant and the phase of the group (i.e., its cluster phase)

instead of doing so in dyad pairs. This method results in a time series of cluster

amplitudes, which quantify collective synchrony as a value between 0 and 1 at each

time point. Dynamic factor analysis [51, 52, 53, 54] offers another possibility for

future applications. Dynamic factor analysis is a generalization of classical (cross-

sectional) factor analysis to intensive longitudinal data that captures common

dependence among multiple time series. Using this approach, the collective would

be treated as the unit of analysis, and collective synchrony would be operationalized

as the latent structure that drives multiple time series (i.e., one univariate time

series per member of the collective). Moreover, the framework of regime-switching

state space models [55] could be applied to account for discrete shifts into and out

of low and high synchrony states.

2.5 Conclusion

In summary, 29 studies of collective synchrony have been reviewed in this

paper. Representing scholarship from a number of disciplines, this literature

varies extensively on several attributes that were highlighted in this review. The
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contexts of these studies were categorized broadly as team sports and group

exercise, performing arts, work and military teams, families, and others. Numerous

populations were studied such as elite and novice athletes, dancers and musicians of

varying expertise, medical students, graduate students, undergraduates, submarine

officers-in-training, nurses, accountants, parents, and children. Data streams

that were analyzed for collective synchrony included motion (acceleration, body

sway, GPS position, playing an instrument, stepping), functional neuroimaging

(EEG, fNIRS), cardiovascular signals (HR, HRV, respiration rate), other indicators

of autonomic arousal (blushing, cortisol, skin conductance), affective state,

menstrual cycles, and shared awareness. Methods for quantifying collective

synchrony included time domain and frequency domain approaches to time series

analysis, dynamical systems approaches, and other various methods. Reported

findings were categorized as positive relationships between collective synchrony

and other variables, between-group differences, within-group changes in synchrony,

leader-follower relationships, and expert-novice differences. In future studies,

it is recommended to ensure that female participants are better represented,

particularly in sports and other performance settings; to focus on mechanisms

explaining why physiological synchrony emerges in collectives; and finally, to

introduce methods that capture collective synchrony as opposed to averages of

dyadic synchrony and account for the possibility that collective synchrony may

change on a moment by moment basis.
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MANUSCRIPT 3

Collective Synchrony in Soccer Players’ Movement and Physiology: A
Regime-Switching Dynamic Factor Modeling Approach

Abstract: Collective synchrony refers to the simultaneous occurrence of
behavior, cognition, emotion, and/or physiology within teams of three or more
persons. It has been suggested that collective synchrony may emanate from
the copresence of team members, from their engagement in a shared task, and
from coordination enacted in pursuit of a collective goal. In this paper, a
regime-switching dynamic factor analytical approach is taken to examine collective
synchrony in collegiate soccer teams. First, the analytical approach is presented
didactically, including the state space modeling framework in general, followed by
the regime-switching dynamic factor model in particular. In Study 1, collective
synchrony in women’s soccer teammates’ running cadence and distance covered
during competitive games is examined. In Study 2, collective synchrony is
investigated in men’s soccer teammates’ changes in heart rate during small-sided
possession games. Reporting on the results of these studies, I show how features of
substantive interest, such as the magnitude and prevalence of collective synchrony,
can be parameterized, interpreted, and aggregated. Finally, I highlight several
key findings of these studies, as well as opportunities for future research, in
terms of methodological and substantive aims for advancing the study of collective
synchrony.

3.1 Introduction

During team sports performance, teammates will at times exhibit similarities

in various behavioral, cognitive, emotional, and physiological states. Such

simultaneous occurrences are known as synchrony [1, 2]. Synchrony within

a group of three or more persons, which typically applies in team sports, is

referred to as collective synchrony. Teams have three key characteristics that may

help explain why collective synchrony can occur. That is, during competition

members of a team are copresent in the performance setting, they are engaged

in a shared task, and they coordinate with one another to achieve a common

goal. Copresence means that team members are proximal to each other and

are susceptible to emotional contagion, defined as “the tendency to automatically
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mimic and synchronize expressions, vocalizations, postures, and movements with

those of another person and, consequently, to converge emotionally” [3]. While

engaging in a shared task, team members may match each other’s behaviors due

to specific task constraints. For example, rowing either in-phase or anti-phase

(essentially, turn taking) may be a task constraint in the context of crew. Similarly,

the expectation of team members to move up and down a basketball court together

as a team is a structural feature of the game which will inevitably produce some

degree of collective synchrony in speed, direction of movement, and by extension

due to the metabolic demands of this action, physiological outcomes such as heart

rate. Finally, teammates may exhibit collective synchrony in part due to their

coordination, that is, their arrangement of individual actions to achieve group

goals [4]. Coordination in team sports stems primarily from visual perception [5]

and both verbal and nonverbal communication such as eye contact, pointing, and

body position [6]. This may also contribute to collective synchrony.

In Manuscript 1 of this dissertation, I introduced a conceptual framework

proposing that the above mentioned antecedents (copresence, shared task, and

coordination) each may partially explain why collective synchrony in behavior

(e.g., running speed) and physiology (e.g., heart rate) materializes during team

sports performance. In an actual performance setting, more than one of these

elements is likely to be at play. For example, collective synchrony in teammates’

heart rates may reflect common emotions to some extent, but this effect is certain

to be confounded by the metabolic demands of the (shared) physical activity.

A long-term aim may be to parse each antecedent in order to examine the role

of each in team sports performance. The current studies are focused primarily on

developing an analytical approach to investigating collective synchrony, along with

substantive aims of an exploratory nature.
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In this paper, I report on two empirical studies. In Study 1, I use movement

data from a collegiate women’s soccer team during competition to examine the

extent to which team members demonstrate collective synchrony in running

cadence (a measure of steps taken per unit time) and distance covered within

defined time intervals. Both of these measures can be considered indicators of

players’ speed. Collective synchrony in these variables is useful to analyze in the

context of soccer because the tendency of players to move about the playing field

similarly (in terms of direction, speed, etc.) is a crucial part of team performance.

In addition to investigating collective synchrony on a game by game basis, an

objective is to explore whether change occurs over the course of an 18-game season

(e.g., whether a practice effect materializes). In Study 2, I examine collective

synchrony in heart rate using data from triads of collegiate men’s soccer players

engaged in 3v1 or 3v2 practice games. The purpose is to examine the extent

to which moment-to-moment changes in heart rate exhibit collective synchrony

among triad members. Here, it is also of interest to examine longitudinal changes

in collective synchrony in triads over three distinct study sessions spaced several

weeks apart. Another objective of Study 2 is to examine whether the increased

cognitive demands of the 3v2 task bring about a difference in collective synchrony

by comparison to a less rigorous (3v1) task. Beyond the substantive aims of these

studies, the methodological objective is to explore the use of regime-switching

dynamic factor analysis, within a state space modeling framework, in order to

quantify collective synchrony and identify a team’s discrete changes between high

and low collective synchrony states. This approach enables quantifying collective

synchrony’s prevalence, that is, the proportion of time spent in a state of high

collective synchrony, and the magnitude, or extent, of collective synchrony. In this

paper, I demonstrate how these features may be interpreted from the results of a
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regime-switching dynamic factor analysis.

The methodological aim of this paper is significant for several reasons. First,

although studies in various disciplines have focused on synchrony in bivariate

time series (e.g., from dyads), relatively few have examined synchrony in groups

of three or more persons. As a result, there are several available statistical

methods for dyadic applications, but there is a shortage of multivariate options

that would apply to collective synchrony. The current studies are a step toward

understanding collective synchrony in teams of various sizes. Second, although

synchrony has been acknowledged as a transient state which necessitates statistical

methods accounting for changes in synchrony over time [7], it is most common

for researchers to aggregate information about synchrony in a way that ignores its

temporal dynamics. In the current research, I use an approach that accommodates

temporal changes between high and low collective synchrony states. Third, team

sport scientists have called for methods that enable weighting each player’s unique

influence on collective team variables, citing emerging approaches such as cluster

phase, dominant region, and self-propelled particle models, which have been used

to study collective behavior in schools of fish and crowds of people [6]. As I

demonstrate in this paper, the use of dynamic factor analysis allows this type of

weighting by producing a factor loading that quantifies the proportion of variation

in each player’s signal explained by variation in a collective variable.

This paper is organized as follows. In the next section, I give an introduction

to the state space modeling framework, followed by coverage of regime-switching

dynamic factor analysis in particular. Subsequently, I report Studies 1 and 2 (each

with Method, Results, and Discussion), followed by the Conclusion section, in

which I highlight the important findings and future research directions associated

with this paper. An applied simulation, in which I had previously tested the
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analytical approach on data generated to have characteristics similar to the

empirical data, as well as supplementary tables, figures, and R computer code

are included in appendices.

3.2 Analytical Approach
3.2.1 State Space Modeling Framework

State space modeling is a framework for analyzing intensive longitudinal data

(ILD), which arise when measurement occasions number in the tens, hundreds,

thousands, etc. [8]. To define state space modeling, three key characteristics

are notable. First, state space models are useful for modeling system dynamics,

including the relationships among variables and their changes across time. Second,

state space models are primarily useful when there are a large number of repeated

observations across time, that is, ILD or time series data. Third, state space

models refer not to a particular statistical model but rather to a framework that

can be applied flexibly to deploy many types of statistical models. State space

models have been described as a unified methodology for a wide range of problems

in time series analysis [9] and a general model that encompasses many special

cases of interest [10]. This is not unlike structural equation modeling, a framework

with which state space modeling has been compared [11]. In fact, recent software

advances have enabled the implementation of state space models within a structural

equation modeling environment [12].

State space modeling offers several advantages over competing approaches.

First, state space models can handle multiple observed and unobserved variables,

much like structural equation modeling, but the former is better suited to modeling

intraindividual dynamics, especially when measurement occasions (T ) outnumber

subjects (N) [11]. Second, many ILD models, such as time-varying regression,

ARMA models, linear mixed models, and dynamic factor models, can be deployed
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in state space form [13]. Third, the methods enabled by state space models are

able to address a wider range of problems than more traditional approaches to

time series analysis (e.g., the Box-Jenkins ARIMA method) [9]. Fourth, state

space models require a lower computational burden than Laird-Ware linear mixed

models, efficiency which is valuable when analyzing ILD with large T [13, 14].

Fifth, state space modeling handles three issues common in ILD applications, that

is, unevenly spaced data, missing data, and forecasting.

In the name “state space modeling”, “state” refers to an unobserved, or

latent, variable that characterizes a dynamic system, and “space” refers to a

vector space, or a collection of vectors. Put together, “state space” reflects the

central component of the model, that is, a set of state vectors, one per time point,

containing the latent state variables. In state space modeling it is assumed that

a dynamic system’s evolution over time is characterized by these state vectors,

denoted in this paper as ηt. These are associated with vectors of the observed

variables (Yt), and the nature of this relationship is defined by a loading matrix

(Λ). The relationship among state variables, from one time point to the next, is

defined by an autoregression matrix (Φ). Paramount to the framework, the state

vector (ηt) appears in both equations used to specify a state space model, namely

the observation equation and the state equation, which are, respectively

Yt = Ληt + εt, εt ∼ N(0,Θ) (1)

ηt = Φηt−1 + ζt, ζt ∼ N(0,Ψ) (2)

where

� Yt is a p× 1 vector of observations at the current time t

� ηt and ηt−1 are k × 1 state vectors at the current and previous times,
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respectively

� Λ is a p×k loading matrix relating the state variables to the observed values

� εt is a p × 1 vector of measurement errors with zero mean and covariance

matrix Θ

� Φ is a k × k autoregression matrix reflecting the dependence of the current

state vector on the previous one

� ζt is a k×1 vector of innovation errors with zero mean and covariance matrix

Ψ.

Owing to the flexibility of state space modeling mentioned above, Equations

1 and 2 can be customized by defining the contents of the model matrices, in

particular Λ and Φ. These equations can also be extended in order to estimate

intercepts and regression coefficients relating a vector of covariates to either the

observation vector or state vector.

The unknown parameters of a state space model are estimated using a

recursive procedure called the Kalman filter [15]. In this algorithm, information

about the system state vector (ηt) is updated at each time step, as a vector of

observed data (Yt) is introduced. The Kalman filter is initiated with user-defined

starting values for the state vector and its covariance matrix at t = 0 (i.e., η0|0 and

P0|0, respectively). The Kalman filter’s steps are as follows:

ηt|t−1 = Φηt−1|t−1 (3)

Pt|t−1 = ΦPt−1|t−1Φ
′ + Ψ (4)

et = Yt −Yt|t−1 = Yt −Ληt|t−1 (5)
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Dt = ΛPt|t−1Λ
′ + Θ (6)

Kt = Pt|t−1Λ
′D−1t (7)

ηt|t = ηt|t−1 + Ktet (8)

Pt|t = (I−KtΛ)Pt|t−1 (9)

The Kalman filter proceeds at each time step by computing one-step-ahead

predictions of the state vector and its covariance matrix (Equations 3 and 4), a

vector of one-step-ahead prediction errors and its covariance matrix (Equations 5

and 6), and a matrix called the Kalman gain (Equation 7). Those five equations

make up the “prediction step” of the Kalman filter. In Equations 8 and 9, the

state vector and its covariance matrix are updated based on the one-step-ahead

prediction errors and the Kalman gain matrix (note: I is an identity matrix). These

two equations make up the “update step” of the Kalman filter. The byproducts

et and Dt, which are the one-step-ahead prediction error vector and its covariance

matrix, respectively, are passed to a likelihood function known as the prediction

error decomposition function [16] (Equation 10). Optimizing this function returns

the model parameter estimates:

1

2

T∑
t=1

[−p log(2π)− log |Dt| − e′tD
−1
t et] (10)

Next, I demonstrate how a regime-switching dynamic factor model (RSDFM)

can be represented as a state space model.

3.2.2 Regime-Switching Dynamic Factor Analysis

Regime-switching state space models [17] are useful for applications in which

a dynamic system transitions (i.e., “switches”) between two or more discrete stages

(i.e., regimes). For example, this approach has been used to detect switches
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between regimes of high and low pain, abrupt mood changes during a major

depressive episode, and changes between high and low performance in basketball

field goal attempts [18]; as well as between regimes of facial electromyography

activation and nonactivation [19]. In the current studies, I use a regime-

switching state space modeling approach to analyze transitions between high and

low collective synchrony in soccer teammates’ movement and physiology during

performance.

Equations 1 and 2 can be modified as follows to reflect regime dependency,

where the subscript Rt indicates matrices that may contain regime-varying

parameters:

Yt = ΛRtηt + εt, εt ∼ N(0,ΘRt) (11)

ηt = ΦRtηt−1 + ζt, ζt ∼ N(0,ΨRt) (12)

Within a regime-switching paradigm, the state space framework remains

flexible to fit many special cases of statistical models. Dynamic factor analysis

[13, 20, 21, 22] generalizes conventional multi-subject cross-sectional factor analysis

to ILD in order to capture common dependence among multiple time series.

Here, the collective is treated as the unit of analysis, with collective synchrony

operationalized as the latent structure that drives multiple time series (i.e., one

time series per individual). A regime-switching approach is used to account for

transitions between a regime of “high” collective synchrony, that is, one in which

the observed time series are driven by a common latent factor; and “low” collective

synchrony, that is, a regime in which there is assumed to be no correlation among

the multiple time series.
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The RSDFM used in the current investigations is written


y1t
y2t
...
ypt

 =




0 0
0 0
...

...
0 0


[
Ct
Ct−1

]
+


ε1t
ε2t
...
εpt

 , Θ =


θ11

θ21
. . .

θp1

 ; if Rt = 1


1 0
λ2 0
...

...
λp 0


[
Ct
Ct−1

]
+


ε1t
ε2t
...
εpt

 , Θ =


θ12

θ22
. . .

θp2

 ; if Rt = 2

(13)[
Ct
Ct−1

]
=

[
φ1 φ2

1 0

] [
Ct−1
Ct−2

]
+

[
ζt
0

]
, Ψ =

[
ψ 0
0 0

]
(14)

where the observation vector [y1t y2t . . . ypt]
′ is a multivariate time series

consisting of data from p persons1. Regime 1 (Rt = 1) is defined as the “low”

synchrony regime, and Regime 2 (Rt = 2) is defined as the “high” synchrony

regime. This is apparent in the disparate loading matrices (ΛRt) in Equation 13.

Whereas in Regime 1 the loadings are set to zero signifying that the observations

are not driven by a latent collective process, in Regime 2 the loadings are estimated

parameters, with the exception of the first one being set to 1 for the purpose of

scaling. Additionally, Equation 13 reflects that the measurement error variance

matrix (ΘRt) is estimated separately for each regime.

In Equations 13 and 14, for illustration, a second-order autoregressive process,

or AR(2), is specified for the collective state variable (Ct). However, these

equations can be modified to specify any chosen order of process. In the studies

reported in this paper, AR(1) and AR(2) models are used. To re-formulate the

model depicted in Equations 13 and 14 as an AR(1) process, the state vector

1Although in multivariate applications the symbols p and n conventionally refer to the number
of variables and persons, respectively, in this model formulation the number of time series (p) is
equal to the number of persons in the collective (i.e., one time series per person). I have decided to
keep with the convention of the state space modeling framework, in which the observation vector
is p× 1, and hence throughout this paper, p refers to the number of persons in the collective.
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would become simply [Ct]; Φ and Ψ would become 1 × 1 matrices (i.e., [φ1] and

[ψ], respectively) in Equation 14; and the second column (of zeros) in each regime-

dependent Λ matrix in Equation 13 would be omitted.

In order to infer the regime in which a system resides at each time point (i.e.,

Rt), it is necessary to specify a transition probability matrix (Π), which contains

values indicating the probability that the system (e.g., collective) is in a particular

regime conditional upon the regime at the previous time point. This is a square

matrix whose dimensions equal the number of regimes. For a two-regime model,

to which the scope of this paper is limited, the transition probability matrix can

be written as [
π11 π12
π21 π22

]
(15)

where each πij is the probability of Regime j at time t, given Regime i at time

t− 1, or expressed in notation, πij = Pr[Rt = j|Rt−1 = i]. For example, π11 is the

probability of staying in Regime 1, while π12 is the probability of switching from

Regime 1 to Regime 2. Hence, these values must sum to 1, and more generally, all

row sums of Π must equal 1.

Estimation of the state vector and regime at each time step, as well as the

model parameters, is performed using the Kim filter [17] and maximum likelihood

estimation. The Kim filter is a combination of the Kalman filter [15] and the

Hamilton filter [23]. In a regime-switching model, the Hamilton filter enables the

probabilistic inference of the regimes, which are also unobserved, based on the

behavior of the observed time series. The Kim filter deploys these algorithms in

three steps. First, the Kalman filter is used to generate an estimate of the state

vector and its covariance matrix. Second, the Hamilton filter is used to obtain

the joint probability of Regime i at time t − 1 and Regime j at time t (i.e.,

Pr[Rt−1 = i, Rt = j|Yt]), as well as the probability of Regime j at time t (i.e.,
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Pr[Rt = j|Yt]). Third, a so-called collapsing process combines the estimates from

the first two steps. Prediction errors are obtained as byproducts of the Kim filter

and passed to the prediction error decomposition function (Equation 10), which

is entered into an optimization step to obtain the parameter estimates. For each

iteration of the optimization routine, the Kim filter is carried out recursively for all t

(1, 2, . . . , T ) so that the state vector and regime probabilities have been estimated

at each time step. Although a full and detailed coverage of these algorithms is

beyond the scope of this paper, details can be obtained from other sources [17, 19].

The estimated parameters of the RSDFM include the factor loadings for Regime 2

(λ2, . . . , λp), measurement error variances for each regime (θ11, . . . , θp1, θ12, . . . , θp2),

one or two autoregression coefficients for the latent collective variable (φ1, φ2), the

innovation error variance (ψ), and the natural log odds of the regime transition

probabilities (ln(
πij

1−πij )).

3.2.3 Interpreting the Parameters of the RSDFM

It may be of substantive value to researchers to quantify the magnitude and

prevalence of collective synchrony. Magnitude is the extent to which the individuals

in a collective are synchronized in terms of the variable of interest. Within the

RSDFM approach, magnitude may be interpreted from the effect sizes attributed

to the individuals in a collective. Effect size refers to the proportion of variance

in each observed time series explained by the collective state variable, and as

such, its value may range from 0 to 1. In the current formulation of the RSDFM,

effect size for each individual is equal to 1 minus the unexplained variance (i.e.,

measurement error variance) in Regime 2, which is also equal to the Regime 2

standardized factor loading squared. Regime 1 is formulated with zero factor

loadings (i.e., no collective process driving the observed time series), and hence,

should have 100% unexplained variance. That is, the confidence intervals of the
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Regime 1 measurement error variances should all include 1. In sum, an effect

size between 0 and 1 will be estimated for each individual for Regime 2, and

this will quantify the magnitude of collective synchrony, or extent to which each

individual’s time series reflects the collective, within the high collective synchrony

regime. Individual effect sizes can be averaged to obtain an aggregate measure

of magnitude for the collective. As an alternative approximation of magnitude,

and/or for comparison, the researcher may assess the correlation coefficients for all

pairs of collective members (e.g., teammates) separately for each of the predicted

regimes.

It may also be useful to quantify collective synchrony’s prevalence, which I

define as the proportion of time in which a collective resides in Regime 2 (i.e., the

high collective synchrony regime). The RSDFM approach yields a prediction of

Regime 1 or Regime 2 at every time point, making it straightforward to assess the

prevalence of high collective synchrony. This can be easily computed as the number

of time points at which Regime 2 was predicted, divided by the total number of time

points. This proportion (or percentage, if reported as such) is often referred to as

the dwell time of a system within a particular state, in this case the high collective

synchrony regime. In the next sections, dwell time will be reported as the main

metric of the prevalence of collective synchrony. The estimated regime transition

probabilities (πij) can also indicate whether Regimes 1 and 2 are well balanced

or one regime is relatively dominant over an analyzed time interval. For example,

if π11 is estimated to be .75 and π22 is estimated to be .99, this suggests that

Regime 2 is dominant. That is, Regime 2 is so prevalent that when the collective

resides in this high collective synchrony state, there is only a .01 probability of

switching to Regime 1 at the next time point. In contrast, when the collective is

classified as residing in Regime 1, there is a .25 probability of switching to Regime
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2. These approaches to examining and reporting the magnitude and prevalence

of collective synchrony are demonstrated in the empirical studies reported in the

next two sections.

Before using the RSDFM to analyze the observed time series obtained for

Studies 1 and 2, I tested this method of analysis on simulated multivariate time

series of known AR order and regimes. Time series were generated to show a high

degree of collective synchrony within certain intervals and to have characteristics

similar to the empirical data collected for Studies 1 and 2. Details of the

applied simulation are provided in Appendix A. The simulation demonstrated that

the RSDFM is a highly worthwhile approach for analyzing collective synchrony.

The RSDFM was able to categorize the true regimes very accurately overall.

Additionally, the parameter estimates returned by the analyses were as expected.

In the Regime 2 intervals, the individual effect sizes were consistent with

the bivariate correlations among the time series. In the Regime 1 intervals,

the proportion of unexplained variance was estimated with confidence intervals

containing 1 (i.e., 100% unexplained variance, as anticipated). Additionally, the

estimated regime transition probabilities were consistent with the frequency of

actual regime switches that were built into the simulated data. Taken together,

these results demonstrate that the RSDFM is a promising approach for categorizing

high and low collective synchrony and estimating parameters quantifying the

magnitude and prevalence of collective synchrony present in multivariate time

series. The RSDFM approach was utilized in the exploratory empirical studies

(Study 1 and Study 2), which are reported in the next two sections.
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3.3 Study 1: Collective Synchrony in Women’s Soccer Players’
Movement Behaviors

3.3.1 Method
Participants, Procedures, and Materials

Varsity women’s soccer players were recruited from a National Collegiate

Athletic Association (NCAA) Division I team in the United States. The

university’s Institutional Review Board approved the study protocol detailing the

recruitment of participants and data collection procedures. The number of players

who gave informed consent to participate in the study was 25. Data were collected

during the team’s competitive 2017 season, including all 18 regular season home

and away games. Only outfield players were included in the study; goalkeepers were

excluded. For each game, participants who started the game and played without

substitution until halftime were included. Therefore, out of the ten outfield players

starting each game, some were excluded due to first half substitutions and the fact

that some starters may not have been consenting participants. The actual sample

size for each of the 18 games ranged from 3 to 9 participants (median = 6). Data

from the second half of games were not used due to practical issues such as the

halftime break and the prevalence of second half substitutions.

In this study, the collective is the unit of analysis, and data were collected in

the team’s natural competitive setting without any researcher interference. That

is, in each game it was solely the team’s coaching staff who determined which

individuals played, so the study participants vary from game to game. A unique

identification code was randomly assigned to each participant for the purpose of

recording which individuals started each game. However, for the purposes of the

analyses performed, identities of the individuals participating in each game and

their playing positions (e.g., defender, midfielder, forward) are not of interest. In

terms of how the analyses were carried out, the individual participants can be

assumed to be interchangeable. For example, the symbol used to represent player
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4 (i.e., y4) may, in different games, refer to different individuals. Likewise, data

from the same individual may be denoted as y1 in one game and y3 in another

game.

Data were collected using the Polar® Team Pro system (Polar Electro, Inc.,

Kempele, Finland). This system consists of a chest strap monitor worn by each

participant and a tablet computer application with an interface that enables

real-time performance tracking. The wearable devices include GPS tracking,

accelerometers, and heart rate monitoring, and the data are delivered to the online

application using Bluetooth technology. The system was owned and used regularly

by the team during training and competitive games. Team members each had their

own numbered device, and at the outset of the study all participants already had

training and experience wearing the monitors properly. Data streams including

acceleration, running cadence, cumulative distance, and heart rate were available

for download after each game. In this study the variables of interest are cadence

and distance. Data sets were downloaded following each game, then processed and

analyzed, as detailed next.

Data Processing and Analysis

Running cadence data streams were recorded at a rate of 1 Hz in units of

revolutions per minute (rpm), where one revolution equals two steps (e.g., 80

rpm = 160 steps per minute). Cumulative distance was recorded at 10 Hz in

units of yards. The cumulative distance time series were converted to distances

covered within defined time intervals, or bins, by differencing the cumulative values.

Similarly, cadence time series were aggregated by taking the mean cadence within

each bin. Time series were examined for order of ARMA process using plots

of the autocorrelation function (ACF) and partial ACF (PACF) and by running

univariate ARMA models on individual time series. The R [24] functions acf, pacf,



75

and arima were used to perform these diagnostics. If the ACF has a significant

autocorrelation persisting over many lags (i.e., decays gradually as in the left-

hand column of plots in Figure B.1 in Appendix B), and the PACF becomes

non-significant abruptly after a smaller number of lags (i.e., as in the right-hand

column of the same figure), then this is indicative of an AR process [25]. Most

of the individual time series, both for cadence and distance, exhibited ACFs and

PACFs similar to those illustrated in Panels B, H, J, and L of Figure B.1 with

the PACF significant at the first two lags (i.e., an AR(2) process). Others were

identified as AR(1) due to the PACF being non-significant at the second lag as in

Panels D and F. It is for this reason that both AR(1) and AR(2) models were used

in this study and in the analyses on test data reported in Appendix A.

Determining an appropriate sampling rate (i.e., bin size) for the data requires

balancing a tradeoff between scientific and practical considerations. In terms

of scientific considerations, it is desirable to sample data frequently enough to

reflect the time scale of interest to examine changes in the observed variables

[26, 27, 28]. In terms of practical considerations, data sampled very close together

may have features such as repetition of the same or very similar values (i.e.,

high autocorrelation) and may therefore exhibit nonstationarity. Ultimately, both

cadence and distance time series were aggregated in bins of 3 seconds due to issues

with nonstationarity that became apparent when using bins of 1 or 2 seconds.

This was evident in part by the large number of models that failed to converge.

Of the models that did successfully converge, the estimated AR coefficients were

very close to, and their confidence intervals covered, the boundaries of stationarity

conditions. That is, for AR(1) models, the parameter φ1 estimates were close to 1,

and for AR(2) models, the sums of the parameter φ1 and φ2 estimates were close

to 1. These problems were no longer apparent after reducing the sampling rate by
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increasing the bin size to 3 seconds. Given that observations were taken from the

first half (45 minutes) of each soccer game, using a bin size of 3 seconds yielded

time series each with 900 observations. Finally, before analysis each time series

was standardized, that is, converted to z-scores, which enables straightforward

interpretation of each measurement error variance estimate as the proportion of

variance in the observations not explained by the latent collective variable.

When analyzing the simulated test data reported in Appendix A, a two-regime

RSDFM was assumed because the low and high synchrony regimes were introduced

by design. In this study, it is also considered that a one-regime model, that is, a

non-switching (high synchrony only) dynamic factor model (DFM), may provide

better fit than the RSDFM. For all analyses, I used the dynr R package [29]; see

Appendix C for sample R code. The variables cadence and distance were analyzed

separately for each of the 18 games (i.e., 36 unique data sets). For each data set, the

best fitting model was selected by comparing Akaike Information Criterion (AIC)

[30] and Bayesian Information Criterion (BIC) [31] fit indices. When comparing

AIC or BIC values for models fit to a given data set, smaller values indicate better

model fit. In sum, one best fitting model (AR(1) DFM, AR(2) DFM, AR(1)

RSDFM, or AR(2) RSDFM) was selected for each game/variable combination

based on the lowest AIC/BIC value (see Tables B.1 and B.2 in Appendix B). There

were some models that converged but had non-positive definite Hessian matrices,

which meant that the standard errors were computed using a nearest positive

definite approximation to the Hessian matrix, and hence were not trustworthy.

These models were discarded and not considered for selection.

3.3.2 Results

In general, AIC and BIC were in agreement of the best fitting model for each

data set, so only AIC values are displayed in Appendix B in Tables B.1 and B.2.
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One exception was the analysis of cadence data from Game 17, where the AR(2)

RSDFM produced the smallest AIC, while the AR(2) one-regime model produced

the smallest BIC. In that case, the RSDFM was selected as indicated in Table

B.1. In these tables, missing AIC values indicate models that were discarded due

to untrustworthy standard errors. Examining Tables B.1 and B.2, it is clear that

AR(2) models were more commonly selected than AR(1) models for both variables

analyzed. One striking difference between the analyses for cadence and distance

is the number of regime-switching models (RSDFMs) selected over one-regime

models (DFMs). Out of the 18 selected models used to analyze cadence, there

were 9 RSDFMs and 9 DFMs. Out of the 17 selected models for distance (for

Game 15, no model was selected), 14 were RSDFMs and 3 were DFMs.

Next, I present detailed results of one exemplar analysis each for cadence and

distance. These include the Game 7 cadence data and Game 12 distance data.

In both of the examples, the AR(2) RSDFM was the selected model. Parameter

estimates from the AR(2) RSDFM fit to the Game 7 cadence data can be found

in Table 1. Some individual differences are apparent in the magnitudes (effect

sizes) associated with individual players. That is, the collective state variable

explains a higher proportion of variance in some individuals’ cadence compared to

others. This is reflected by the standardized loadings, which can be squared to

obtain effect sizes. For example, the standardized loading associated with y2 is .20

(i.e., effect size of .04, unexplained variance of .96 in Regime 2), which may point

to this individual lacking in synchrony, in terms of cadence, with the rest of her

teammates. This is also evident in Table 2, which displays the bivariate correlations

in cadence time series during predicted Regime 1 (“Low”; Panel a) and predicted

Regime 2 (“High”; Panel b) intervals. In Panel b, it is clear that correlations

including y2 tend to be smaller than others. As expected, the coefficients displayed
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Parameter Symbol Est. SE t 95% CI p

L1 fixed (std.) λ1 1.00 (.81) - - - -
L2 unstd. (std.) λ2 .30 (.20) .05 6.6 (.21 , .39) <.001
L3 unstd. (std.) λ3 .75 (.62) .04 16.7 (.66 , .83) <.001
L4 unstd. (std.) λ4 .90 (.70) .04 21.1 (.82 , .98) <.001
L5 unstd. (std.) λ5 1.10 (.90) .04 29.4 (1.03 , 1.18) <.001
L6 unstd. (std.) λ6 .60 (.54) .04 13.9 (.52 , .68) <.001
L7 unstd. (std.) λ7 .92 (.77) .04 22.5 (.84 , 1.00) <.001
MEV1 reg. 1 θ11 .87 .14 6.4 (.61 , 1.14) <.001
MEV2 reg. 1 θ21 .86 .15 5.8 (.57 , 1.15) <.001
MEV3 reg. 1 θ31 1.09 .18 6.1 (.74 , 1.44) <.001
MEV4 reg. 1 θ41 .65 .11 5.8 (.43 , .87) <.001
MEV5 reg. 1 θ51 .91 .14 6.7 (.64 , 1.17) <.001
MEV6 reg. 1 θ61 1.28 .22 5.7 (.84 , 1.72) <.001
MEV7 reg. 1 θ71 1.24 .19 6.6 (.87 , 1.61) <.001
MEV1 reg. 2 θ12 .34 .02 14.0 (.29 , .39) <.001
MEV2 reg. 2 θ22 .96 .05 18.9 (.86 , 1.06) <.001
MEV3 reg. 2 θ32 .61 .04 15.8 (.54 , .69) <.001
MEV4 reg. 2 θ42 .51 .03 16.4 (.45 , .57) <.001
MEV5 reg. 2 θ52 .19 .02 11.5 (.16 , .23) <.001
MEV6 reg. 2 θ62 .71 .04 16.2 (.62 , .80) <.001
MEV7 reg. 2 θ72 .40 .03 14.5 (.35 , .46) <.001
AR1 coefficient φ1 1.30 .05 27.8 (1.21 , 1.39) <.001
AR2 coefficient φ2 -.49 .04 -12.5 (-.57 , -.41) <.001
IE var. ψ .12 .01 8.4 (.09 , .15) <.001
Log odds 1→1 ln( π11

1−π11 ) 1.23 .28 4.5 (.69 , 1.78) <.001

Log odds 2→1 ln( π21
1−π21 ) -3.38 .28 -11.9 (-3.94 , -2.82) <.001

Note: CI = confidence interval; Est. = estimate; IE = innovation error; L = loading; MEV =
measurement error variance; p = p-value; reg. = regime; SE = standard error; std. = standardized;
t = Student’s t test statistic; unstd. = unstandardized; var. = variance

Table 1: Parameter estimates from AR(2) RSDFM fit to Game 7 cadence data in
Study 1.
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y1 y2 y3 y4 y5 y6

y2 .19
y3 -.20 .10
y4 -.06 -.11 .35
y5 .45 .08 -.38 -.10
y6 .16 .19 -.06 -.11 .00
y7 -.27 -.25 .34 .22 -.13 -.39

(a) “Low” synchrony intervals (predicted Regime 1)

y1 y2 y3 y4 y5 y6

y2 .19
y3 .39 .18
y4 .51 .20 .51
y5 .74 .17 .48 .63
y6 .42 .11 .34 .36 .43
y7 .56 .16 .54 .49 .67 .33

(b) “High” synchrony intervals (predicted Regime 2)

Table 2: Correlations in cadence in Study 1 Game 7, by predicted regime.
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in Table 2 tend to be higher in predicted Regime 2 intervals, compared to their

Regime 1 counterparts in Panel a, which tended to be smaller and, in some cases,

negative.

The log odds of the regime transition probabilities suggest that Regime 2

was dominant, according to the AR(2) RSDFM. The estimated value of -3.38 for

ln( π21
1−π21 ) equates to a probability of switching from Regime 2 to Regime 1 of only

.034, and therefore, the probability of staying in the high collective synchrony

Regime 2 is estimated to be .966. On the other hand, the estimated value of 1.23

for ln( π11
1−π11 ) in Table 1 would convert to π11 = .774, which is not a very high

probability of staying in the low collective synchrony Regime 1. The prevalence of

Regime 2 is quite apparent in the top panel of Figure 3, which shows the Game

7 cadence time series superimposed on the predicted regimes. In this analysis,

the team was predicted to reside in the high collective synchrony regime with a

dwell time of .91 (i.e., 820 out of the 900 time points). In the bottom panel of

Figure 3, the plot is zoomed in on 30 time points to show what the data look like

in one predicted regime or the other. The individual time series appear to vary

independently of one another when Regime 1 is predicted (white region) and show

more similar patterns of variation when Regime 2 is predicted (shaded region).

Results of the analysis of Game 12 distance data, using an AR(2) RSDFM,

can be found in Table 3. Unlike in the previous example, the standardized loadings

are all relatively high, ranging from .57 to .87 (.32 to .75 when squared to evaluate

effect size, or magnitude). This suggests a large proportion of variance in players’

distance explained by the collective state variable, that is, a large magnitude

of collective synchrony. The smallest of the standardized loadings (.57, or 32%

explained variance) is consistent with the slightly lower correlation coefficients

including y5 in Table 4(b), although this individual difference is not as striking as
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Figure 3: Study 1 Game 7 cadence data superimposed on predicted regimes; full
time series (top panel) and zoomed in (bottom panel).
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Parameter Symbol Est. SE t 95% CI p

L1 fixed (std.) λ1 1.00 (.71) - - - -
L2 unstd. (std.) λ2 .94 (.81) .05 19.7 (.84, 1.03) <.001
L3 unstd. (std.) λ3 1.15 (.84) .05 22.6 (1.05, 1.25) <.001
L4 unstd. (std.) λ4 .94 (.81) .05 2.2 (.85, 1.04) <.001
L5 unstd. (std.) λ5 .81 (.57) .05 16.0 (.71, .91) <.001
L6 unstd. (std.) λ6 1.03 (.86) .05 21.9 (.93, 1.12) <.001
L7 unstd. (std.) λ7 .99 (.87) .05 21.8 (.90, 1.08) <.001
MEV1 reg. 1 θ11 .69 .14 5.0 (.42, .96) <.001
MEV2 reg. 1 θ21 1.97 .31 6.3 (1.36, 2.59) <.001
MEV3 reg. 1 θ31 .67 .13 5.3 (.43, .92) <.001
MEV4 reg. 1 θ41 1.85 .30 6.2 (1.26, 2.43) <.001
MEV5 reg. 1 θ51 .61 .13 4.8 (.36, .85) <.001
MEV6 reg. 1 θ61 2.14 .35 6.0 (1.44, 2.83) <.001
MEV7 reg. 1 θ71 2.26 .36 6.3 (1.56, 2.96) <.001
MEV1 reg. 2 θ12 .49 .03 17.3 (.43, .54) <.001
MEV2 reg. 2 θ22 .35 .02 16.0 (.31, .40) <.001
MEV3 reg. 2 θ32 .30 .02 15.2 (.26, .34) <.001
MEV4 reg. 2 θ42 .35 .03 13.1 (.29, .40) <.001
MEV5 reg. 2 θ52 .68 .04 18.1 (.60, .75) <.001
MEV6 reg. 2 θ62 .26 .02 15.1 (.23, .30) <.001
MEV7 reg. 2 θ72 .25 .02 14.8 (.21, .28) <.001
AR1 coefficient φ1 1.26 .04 29.4 (1.18, 1.34) <.001
AR2 coefficient φ2 -.50 .04 -12.4 (-.58, -.42) <.001
IE var. ψ .12 .01 8.8 (.10, .15) <.001
Log odds 1→1 ln( π11

1−π11 ) .32 .24 1.3 (-.15, .79) .091

Log odds 2→1 ln( π21
1−π21 ) -2.91 .19 -15.3 (-3.28, -2.53) <.001

Note: CI = confidence interval; Est. = estimate; IE = innovation error; L = loading; MEV
= measurement error variance; p = p-value; reg. = regime; SE = standard error; std. =
standardized; t = Student’s t test statistic; unstd. = unstandardized; var. = variance

Table 3: Parameter estimates from AR(2) RSDFM fit to Game 12 distance data
in Study 1.
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y1 y2 y3 y4 y5 y6

y2 .01
y3 .03 .14
y4 .22 .15 .10
y5 .16 -.37 -.24 .19
y6 .10 -.11 -.02 -.23 .00
y7 .18 .27 .15 .26 -.04 .07

(a) “Low” synchrony intervals (predicted Regime 1)

y1 y2 y3 y4 y5 y6

y2 .48
y3 .61 .64
y4 .52 .55 .63
y5 .48 .35 .48 .47
y6 .56 .62 .71 .57 .39
y7 .52 .66 .65 .73 .42 .62

(b) “High” synchrony intervals (predicted Regime 2)

Table 4: Correlations in distance in Study 1 Game 12, by predicted regime.
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in the previous example. In other words, there is some indication that y5 may not

be synchronized to her teammates as well as they are to each other, in terms of

distance covered in Game 12. As expected, the correlation coefficients in Table

4(a) are low and/or negative, but their counterparts in Panel b are higher and

entirely positive.

As in the previous example, transition probabilities predicted by the AR(2)

RSDFM for the Game 12 distance data (π11 = .579; π22 = .946), and the predicted

regimes themselves (see Figure 4, top panel), show that the high collective

synchrony Regime 2 is far more prevalent than Regime 1. In this example, the

team was predicted to reside in Regime 2 for 857 out of 900 time points (i.e.,

dwell time = .95). In the bottom panel of Figure 4, the plot is zoomed in on 30

time points to juxtapose the behavior of time series in predicted Regime 1 against

Regime 2. Again, the time series appear to behave more similarly in the shaded

region and less so in the area with a white background.

Having inspected the results of two models in detail, next I present aggregate

information about the magnitude and prevalence of collective synchrony reflected

by the selected model results, across the entire season. In particular, to summarize

the magnitude of collective synchrony, I focus on mean effect sizes (i.e., proportion

of variance explained by the collective state variable) and bivariate correlations

between teammate pairs (i.e., in low vs. high predicted regimes). To summarize

the prevalence of collective synchrony, I present dwell time proportions in the

high collective synchrony regime. In Figure 5, overlapping histograms depict the

distribution of bivariate correlations between teammate pairs for selected regime-

switching models. The histograms represent bivariate correlations from all 9 of

the selected RSDFMs analyzing cadence data and all 14 of the selected RSDFMs

analyzing distance data. As expected, the distributions of correlation coefficients
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Figure 4: Study 1 Game 12 distance data superimposed on predicted regimes; full
time series (top panel) and zoomed in (bottom panel).
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for Regime 1 are approximately centered on zero, and the distributions for Regime

2 are approximately centered on .5, with only positive values.

The purpose of Figure 6 is to examine whether a trend emerged over the course

of the season in terms of the prevalence of collective synchrony (i.e., in the Regime

2 dwell time proportions for selected RSDFMs only). For the distance analyses,

there appears to be an initial increase in dwell time over roughly the first half of

the season. However, it would be advisable not to read too much into this trend,

due to the fact that Regime 2 was overwhelmingly prevalent in all of the analyses

(i.e., greater than .88 dwell time for all 23 of the selected RSDFMs). A possible

explanation for the dominance of Regime 2 is addressed in the Discussion section.

Figure 7 displays the magnitude of collective synchrony, summarized as the mean

effect sizes, that is, the means of the squared standardized loadings for all selected

models, both DFMs and RSDFMs. Here again, there appear to be no particular

trends, with the mean effect sizes mostly in the .4 to .6 range throughout the

season.

3.3.3 Discussion

The analysis of cadence and distance data sets from college women’s soccer

produced several important outcomes worthy of discussion, both at the level

of specific analyses and at the aggregate level. To exemplify the substantively

relevant details that can be extracted from each analysis, I presented two sets of

results using the RSDFM approach (Game 7 cadence and Game 12 distance). One

characteristic of a team’s collective synchrony that is likely to have scientific and

practical value is the magnitude of collective synchrony. In particular, standardized

loadings, when squared equal the effect size, the proportion of variance in each

observed time series explained by the collective state variable. This can be

interpreted as the extent of each individual’s synchrony with the collective. In
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Figure 5: Overlapping histograms of bivariate correlations between all teammate
pairs; low vs. high collective synchrony regimes for selected RSDFMs only (Study
1).
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Figure 6: Proportion dwell time in high collective synchrony regime, over 18 games
(Study 1).
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Figure 7: Mean effect sizes, over 18 games (Study 1).
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the Game 7 example, it was noted that one individual’s cadence (y2) was not

as well synchronized to the collective as the cadences of the other six members.

The small standardized loading (.20) and small bivariate correlations between y2

and each other time series in predicted Regime 2 supported this finding. Hence,

with this analytical approach it is possible to identify individuals who contribute

more or less than others to collective synchrony, which has practical value to those

affiliated with teams such as coaches, performance analysts, sport psychologists,

and/or the athletes themselves. Additionally, presenting specific examples made

it possible to show didactically how the bivariate correlations among time series

can be inspected separately for the two predicted regimes for comparison, and how

the estimated regime switching probabilities (πij) and proportion of dwell time

reflect the prevalence of each regime. Plotting the predicted regimes is also useful

to visualize the prevalence of each regime.

Other important outcomes of Study 1 can be examined at the aggregate

level. This is useful, as in the case of this study, when analyzing collective

synchrony within many measurement epochs (e.g., games) spanning a longer

time period (e.g., a sports season). First, to aggregate information about the

magnitude of collective synchrony over all games in which a regime-switching model

was selected, I generated overlapping histograms to compare the distribution of

bivariate correlations in the predicted Regime 1 versus Regime 2. This confirmed

what one might expect, that is, smaller correlations centered on zero in Regime 1,

and larger positive correlations centered on .5 in Regime 2. Second, the mean effect

sizes, computed by averaging the squared standardized loadings from each selected

model, can be plotted for the 18-game season to visually assess temporal trends.

This allows considering the question: does the average magnitude of a team’s

collective synchrony change over the course of a season? Although after visual
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inspection I deemed it not worthwhile to conduct further analyses with these values

(e.g., examining whether a longitudinal trend emerged over the 18-game season),

it may be useful to do so in other applications. Third, I emphasized the proportion

of time spent in each regime (i.e., dwell time) as a substantively valuable outcome

to assess the prevalence of high collective synchrony when using RSDFMs. At the

aggregate level, dwell time proportions can be plotted, for example, for all games

in a season to check for changes over time.

Although no temporal pattern in dwell time was apparent in Study 1, what

is clear for both of the variables analyzed is the large percentage of time spent in

the high collective synchrony regime (i.e., greater than 88%). This finding is likely

due to the constraints of competitive soccer. That is, particularly at the highest

levels of competitive sport, the movements of teammates are often constrained

to be highly similar. The observed variables cadence and distance could each

be considered a sort of proxy for speed of movement. In competitive soccer, in

which team members are typically arranged in and trained to maintain a particular

formation, it would be expected, and beneficial to performance, for teammates to

move in similar directions and at similar speeds in response to events in the game

such as the position of the ball and the team in possession. Indeed, it is difficult to

envision a team achieving success with some players standing still, others walking,

others jogging, and others sprinting. Put another way, it would be detrimental to

the team’s overall performance if individuals’ speeds were uncorrelated, that is, if

collective synchrony was not high, for a large proportion of time points. Given the

context of NCAA Division I competition, it is appropriate that the proportions of

dwell time in the high collective synchrony regime were so high. In other contexts

or at other levels of expertise, it may be of substantive interest to rigorously test

whether a collective can show improvements over time, in terms of dwell time in a
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high collective synchrony state.

3.4 Study 2: Collective Synchrony in Men’s Soccer Players’ Heart
Rates

3.4.1 Method
Participants and Materials

Varsity men’s soccer players were recruited from a NCAA Division I team

in the United States. The university’s Institutional Review Board approved the

protocol detailing the recruitment of participants and data collection procedures

for Study 2. Seven players gave informed consent to participate in the study.

Six participants were randomly assigned to teams of three (Triad A and Triad

B), while one participant was designated as an alternate in case of attrition due

to injury or otherwise. The membership of each triad was kept the same across

three separate dates of data collection, except at Session 3, when the alternate

participated in place of an injured member of Triad A. The study sessions were

scheduled approximately 3-5 weeks apart at team practices during the competitive

2017 season. Outfield players only (goalkeepers excluded) were recruited for Study

2. The equipment used for data collection was the same Polar® Team Pro system

(Polar Electro, Inc., Kempele, Finland) used in Study 1. The men participating in

Study 2 had not been previously trained on how to properly wear the chest strap

monitor, so this was demonstrated at Session 1 and reviewed at Sessions 2 and

3. Data were passively recorded during each session and available for download

afterward.

Design and Procedure

This study has a repeated measures design, and two experimental conditions

were tested at each of the three study sessions. Each trial consisted of a 6-minute

small-sided training game in which one triad’s objective was to keep possession of

the ball for as long as possible within a confined space (known as “keep away”)
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from one defender (3v1) or two defenders (3v2). Triads A and B were each tested

as the team in possession twice per study session, once in a 3v1 game (low time

pressure condition) and once in a 3v2 game (high time pressure condition). While

a triad was being tested (i.e., was the team in possession), defenders were drawn

from the other triad. Defenders were rotated into the game in regular intervals,

every minute in 3v1 games and every 2 minutes in 3v2 games. When the ball went

out of play or was taken by a defender, a coach immediately rolled a new ball to

the triad for play to resume. The chronological order of the small-sided games is

listed below. The 3v1 games preceded 3v2 games at each session, and the order

of Triad A or Triad B starting in possession was alternated as much as possible,

given only three sessions.

� Session 1

– AvB (3v1)

– BvA (3v1)

– AvB (3v2)

– BvA (3v2)

� Session 2

– BvA (3v1)

– AvB (3v1)

– BvA (3v2)

– AvB (3v2)

� Session 3

– BvA (3v1)

– AvB (3v1)

– AvB (3v2)

– BvA (3v2)

Time markers were entered using the Polar® system’s tablet computer

application to mark the start and end of each trial. The wearable devices were

numbered and records were kept to ensure that data were accurately attributed

to participants and triads. The identities of the individual participants were

maintained for each triad over the course of the study (y1, y2, y3 in Triad A;

y4, y5, y6 in Triad B) except for one substitution for an injured participant (y2)

in Session 3. In this study, the variable of interest is heart rate. Data sets were

downloaded following each session, then processed and analyzed as detailed next.
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Data Processing and Analysis

Heart rates were recorded at a rate of 1 Hz in units of beats per minute (bpm).

To remedy nonstationarity due to repetitive values, data were downsampled to .5

Hz and differences between adjacent observations were computed to obtain the

change in heart rate over each 2-second interval. Using a 2-second interval for

heart rate has also been cited as a common and appropriate interval length in

the developmental psychophysiology literature [32]. Additionally, I truncated each

time series to discard the first minute of every 6-minute game. My rationale

for doing so was to eliminate the initial steep incline in players’ heart rates as

their bodies acclimated to the physical demands of the task. The resulting time

series were each approximately 150 observations in length, representing 5 minutes

of activity. Each time series was standardized (converted to z-scores) prior to

analysis.

As in Study 1, data streams were examined for order of ARMA process using

ACF and PACF plots and by running univariate ARMA models. Most of the

individual time series exhibited ACFs and PACFs similar to those illustrated in

Figure B.2 (Appendix B) with the PACF significant at the first two lags (Panels

B, H, J, and L), or at the second lag only (Panels D and F). Again, it was these

checks that informed the use of AR(1) and AR(2) models in this study.

Out of the 12 data sets from small-sided games, five had problems with a

participant’s time series exhibiting large numbers of missing values and/or outliers.

These problems were attributed to issues with the device, such as not achieving

good contact between the sensors and skin. As a result, these data sets were

discarded, and only the 7 data sets from the whole collective (triad) were used.

The small-sided games used in the analysis are numbered as follows:

1. Triad A 3v1, Session 1
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1. Av1 (1) 2. Av2 (1) 3. Av1 (3) 4. Bv1 (1)
y1 y2 y1 y2 y1 y2 y1 y2

y2 .26 .03 .20 .46
y3 .23 .30 .04 .13 .15 .28 .30 .49

5. Bv1 (2) 6. Bv2 (2) 7. Bv2 (3)
y1 y2 y1 y2 y1 y2

y2 .12 .17 .16
y3 .23 .14 .09 .00 .14 .17

Table 5: Correlations in change in heart rate data, for all 7 games in Study 2.

2. Triad A 3v2, Session 1

3. Triad A 3v1, Session 3

4. Triad B 3v1, Session 1

5. Triad B 3v1, Session 2

6. Triad B 3v2, Session 2

7. Triad B 3v2, Session 3

The dynr R package [29] was used for all analyses. AIC and BIC values were

used to select one best fitting model for each small-sided game. Here, I used the

same four models that I ran in Study 1 (i.e., AR(1) DFM, AR(2) DFM, AR(1)

RSDFM, and AR(2) RSDFM). Nearly all of the regime-switching models, except

for the AR(2) RSDFM from Game 4, either did not converge or had non-positive

definite Hessian matrices resulting in untrustworthy standard errors. These models

were discarded and not considered for selection.

In Table 5, it is apparent that the bivariate correlations in each data set were

generally small by comparison to the coefficients computed in Study 1. After an

initial run of the same four models used in Study 1, the AR(1) DFM (one-regime
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model) was selected for all but Game 4. The fact that bivariate correlations are

greater in Game 4 may explain why a regime-switching model was able to detect

intervals of high and low collective synchrony for this data set alone. Given the

overall smaller bivariate correlations in the heart rate data, another one-regime

model was formulated and run on each data set. Whereas the DFM was intended to

model the multiple time series as being driven by a common latent factor (i.e., high

collective synchrony only), this model accounts for the possibility that teammates’

changes in heart rates may be characterized by low collective synchrony for the

game’s duration. Hence the following vector autoregressive first-order, or VAR(1)

model, which assumes no associations among the multiple time series, was applied:

y1ty2t
y3t

 =

1 0 0
0 1 0
0 0 1

y?1ty?2t
y?3t

 (16)

y?1ty?2t
y?3t

 =

φ1 0 0
0 φ2 0
0 0 φ3

y?1,t−1y?2,t−1
y?3,t−1

+

ζ1tζ2t
ζ3t

 , Ψ =

ψ1 0 0
0 ψ2 0
0 0 ψ3

 (17)

where each y? is a state variable that simply acts as a proxy of the observation

itself; each φ is a person-specific AR1 coefficient; and each ψ is a person-specific

error variance. VAR(1) was the only order of process considered here, due to

the fact that AR(1) DFMs were selected over all AR(2) DFMs run prior to the

introduction of this model. AIC and BIC values were compared with other models

to assess relative fit.

3.4.2 Results

AIC values and selected models are indicated in Table B.3 in Appendix B.

AIC and BIC were in agreement that the best fitting model was the AR(1) DFM

(one-regime model), except for Game 4, where the AR(2) RSDFM produced the

smallest AIC, while the AR(1) DFM produced the smallest BIC. Similar to my
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Parameter Symbol Est. SE t 95% CI p

L1 fixed (std.) λ1 1.00 (.69) - - - -
L2 unstd. (std.) λ2 1.38 (.87) .17 8.1 (1.05, 1.71) <.001
L3 unstd. (std.) λ3 1.03 (.70) .16 6.5 (.72, 1.34) <.001
MEV1 reg. 1 θ11 1.40 .48 2.9 (.46, 2.34) .002
MEV2 reg. 1 θ21 .65 .23 2.9 (.21, 1.09) .002
MEV3 reg. 1 θ31 1.10 .47 2.3 (.17, 2.02) .011
MEV1 reg. 2 θ12 .53 .10 5.4 (.34, .72) <.001
MEV2 reg. 2 θ22 .24 .07 3.6 (.11, .37) <.001
MEV3 reg. 2 θ32 .51 .08 6.6 (.36, .66) <.001
AR1 coefficient φ1 .43 .13 3.2 (.17, .69) .001
AR2 coefficient φ2 .53 .13 4.0 (.28, .79) <.001
IE var. ψ .12 .03 3.3 (.05, .18) .001
Log odds 1→1 ln( π11

1−π11 ) 1.26 .71 1.8 (-.12, 2.65) .038

Log odds 2→1 ln( π21
1−π21 ) -3.20 .73 -4.4 (-4.62, -1.77) <.001

Note: CI = confidence interval; Est. = estimate; IE = innovation error; L = loading; MEV
= measurement error variance; p = p-value; reg. = regime; SE = standard error; std. =
standardized; t = Student’s t test statistic; unstd. = unstandardized; var. = variance

Table 6: Parameter estimates from AR(2) RSDFM fit to Game 4 change in heart
rate data in Study 2.

presentation of Study 1 results, here I show two specific examples of analyses before

summarizing results at the aggregate level. The two examples include Game 4

(RSDFM results) and Game 6 (AR(1) DFM and VAR(1) results).

Parameter estimates from the Game 4 AR(2) RSDFM can be found in Table 6.

The effect sizes, or proportions of variance in y1, y2, and y3 explained by the latent

collective variable, are .47, .76, and .49, respectively. The bivariate correlations in

analyzed time series within predicted low synchrony intervals were -.07, -.45, and

-.17, compared to .58, .48, and .60 within predicted high synchrony intervals (i.e.,

for y1-y2, y1-y3, and y2-y3, respectively). The prevalence of Regime 2 is apparent in

its proportion dwell time of .83 (i.e., 125 out of 150 time points as shown in the top

panel of Figure 8) and in the disparate estimated regime transition probabilities

(π11 = .779, π22 = .959). The bottom panel of Figure 8 is zoomed in on 30 time

points to show what the data look like in one predicted regime or the other.
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Figure 8: Study 2 Game 4 change in heart rate data superimposed on predicted
regimes; full time series (top panel) and zoomed in (bottom panel).
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Figure 9: Study 2 Game 6 change in heart rate data.

Next, results from the analysis of Game 6 data are presented. Change in

heart rate time series from Triad B in Game 6 are plotted in Figure 9. Parameter

estimates from this analysis can be found in Table 7. In Panel a, results of the

selected model, AR(1) DFM, are presented. Owing to the overall low collective

synchrony in players’ changes in heart rate in Game 6, the estimated measurement

error variances are high, in particular for persons 1 and 3, for the AR(1) DFM

(consistent with low bivariate correlations in Table 5). For illustration, in Panel b of

Table 7, I present the results of the VAR(1) model fit to the Game 6 data. The error

variance (ψi) estimates, standard errors, and confidence intervals shown in Panel b

are comparable to those of θ1 and θ3 shown in Panel a. However, the estimate for

θ2 reflects 71% unexplained variance in y2. These results suggest that the AR(1)

DFM was deemed a better fitting model than the VAR(1) presumably due to the

29% of variance in y2 explained by the latent collective variable incorporated in



100

Parameter Symbol Est. SE t 95% CI p

L1 fixed (std.) λ1 1.00 (.22) - - - -
L2 unstd. (std.) λ2 2.15 (.54) .92 2.3 (.35, 3.95) .010
L3 unstd. (std.) λ3 .68 (.20) .46 1.5 (-.22, 1.59) .070
MEV1 θ1 .95 .11 8.6 (.73, 1.16) <.001
MEV2 θ2 .71 .13 5.6 (.46, .96) <.001
MEV3 θ3 .96 .12 8.3 (.74, 1.19) <.001
AR1 coef. φ1 .73 .10 7.2 (.53, .93) <.001
IE var. ψ .02 .02 1.3 (-.01, .06) .104

(a) AR(1) DFM results (AIC = 1277)

Parameter Symbol Est. SE t 95% CI p

AR1 coef. person 1 φ1 -.14 .08 -1.7 (-.30, .02) .045
AR1 coef. person 2 φ2 .13 .08 1.7 (-.02, .29) .048
AR1 coef. person 3 φ3 -.10 .08 -1.2 (-.26, .06) .107
Error var. person 1 ψ1 .98 .11 8.6 (.76, 1.20) <.001
Error var. person 2 ψ2 .96 .11 8.6 (.74, 1.18) <.001
Error var. person 3 ψ3 .96 .11 8.6 (.74, 1.17) <.001

(b) VAR(1) results (AIC = 1291)

Note: CI = confidence interval; coef. = coefficient; Est. = estimate; IE = innovation
error; L = loading; MEV = measurement error variance; p = p-value; SE = standard
error; std. = standardized; t = Student’s t test statistic; unstd. = unstandardized; var.
= variance

Table 7: Parameter estimates from models fit to Game 6 change in heart rate data
in Study 2.

the DFM. This perhaps gives a hint as to why the VAR(1) model was not selected

(did not have the lowest AIC/BIC) for any of the seven data sets. I expand on this

point further in the Discussion. Next, Study 2 results are presented in aggregate.

Figure 10 shows, for the selected model from each game in Study 2, the mean

effect sizes, that is, the mean proportion of variance in the observed variables

explained by the collective state variable. For DFMs and RSDFMs, this provides

a metric of the magnitude of collective synchrony in the time series. The Game

4 data set (Triad B 3v1, Session 1), which was the only one for which a regime-
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Figure 10: Mean effect sizes in each of 7 games (Study 2); dashed line represents
the AR(1) DFM for Game 4.

switching model was selected, clearly exhibits the greatest magnitude of collective

synchrony. RSDFMs tend to exhibit greater explained variance in Regime 2, in

comparison to one-regime DFMs. For this reason (i.e., to compare “like with like”),

the mean explained variance for the Game 4 AR(1) DFM, which was the preferred

model for all other data sets, is indicated with a dashed line at .45 in Figure 10.

This value still far exceeds the others and is consistent with the relatively larger

correlation coefficients computed for this data set (see Table 5). Moreover, there

appears to be a tendency for the data sets from high time pressure (3v2) games

(i.e., Games 2, 6, and 7) to produce smaller values of explained variance than data

sets from low time pressure (3v1) games. Possible explanations for this are offered

in the Discussion section next.
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3.4.3 Discussion

In this study, collective synchrony was examined in NCAA men’s soccer

players’ change in heart rate during 3v1 and 3v2 practice games. Study 2 offers

a number of interesting, novel methodological findings. The results from Game

4, involving Triad B playing 3v1 at the first study session, demonstrate one

example in which the magnitude of collective synchrony in heart rate changes

was high by comparison to other games in Study 2. Referring to Manuscript 1 of

this dissertation, one could cite the teammates’ shared cognitive, emotional, and

behavioral experiences as possible explanations of heightened collective synchrony

in their heart rate changes. However, it is unclear why this would be true of this

particular game but not, for example, of Game 5, which was Triad B’s 3v1 game in

Session 2, played several weeks later. That disparity in and of itself is interesting

as it suggests that there was possibly an influential third variable differentiating

Games 4 and 5.

The fact that the RSDFM was useful for modeling the Game 4 data, but not

other data sets in Study 2, points to the possibility that, when there is a greater

overall magnitude of collective synchrony (i.e., greater correlation and greater

variance explained by the collective state variable), an RSDFM seems to be better

able to detect when periods of low or zero collective synchrony occur. In other

words, it is easier to categorize periods of high and low collective synchrony as two

distinct regimes. Intuitively, this makes sense that it would be more challenging to

distinguish between regimes when the magnitude of collective synchrony is small

overall (i.e., low vs. lower or none), which was the case in most of the data sets in

Study 2. Under these conditions, a one-regime model seems to perform better.

In this study, I introduced a one-regime VAR(1) model intended to mimic

Regime 1 of the RSDFM, as a counterpart to one-regime DFMs, which reflect
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Regime 2 of the RSDFM. In all of the data sets analyzed, DFMs were selected

over VAR models. This suggests that a one-regime model accounting for collective

synchrony (i.e., DFM) fits better than a one-regime model assuming the individual

time series to be uncorrelated (i.e., VAR), even when the magnitude of collective

synchrony is quite low. For Game 6, which involved Triad B playing 3v2 at the

second study session, the results from both the AR(1) DFM as the selected model

and the VAR(1) for illustration and comparison were reported. There, I noted

that the 29% explained variance in y2, and in the same vein a significant estimate

for λ2, was likely why the DFM was deemed a better fitting model than the VAR

model.

Another interesting outcome of Study 2 was the apparent tendency for 3v2

games to produce lower collective synchrony in heart rate changes than 3v1 games.

This trend can be inspected in Figure 10 (i.e., mean effect sizes lower for 3v2 games

compared to 3v1 games), and is also reflected in the smaller bivariate correlations

for Games 2, 6, and 7 listed in Table 5. Although this conclusion is based on visual

inspection and not tested rigorously, it is valuable to discuss possible reasons why

collective synchrony might be of a lower magnitude under conditions of high time

pressure (3v2) compared to low time pressure (3v1). This may be a consequence

of elevated physical exertion required during the 3v2 task, which produces higher

and, crucially, less varied heart rates. Specifically, participants’ overall mean (and

standard deviation) heart rate in the 3v2 condition was 182 (8.4) bpm, compared

to 173 (10.9) bpm in the 3v1 condition. The limited variability in heart rate from

time point to time point, spaced 2 seconds apart, is evident in the raw difference

data. The relative frequency tables of these data are compared for the 3v1 and

3v2 conditions in Table 8. Here it is clear that the proportion of zeros is higher,

and the proportion of nonzero values lower, in the 3v2 condition. The relatively
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-3 -2 -1 0 1 2

3v1 <.01 .01 .18 .61 .19 <.01
3v2 .11 .72 .16 <.01

Table 8: Relative frequencies of raw changes in heart rate, by condition.

limited changes in heart rate make it inherently less likely that there would be

strong correlations between teammates’ time series.

The following are limitations of Study 2. First, heart rates were recorded by

the Polar® devices as integer values. As a consequence, changes between them

were also integers, primarily -1, 0, and 1, with a large proportion of zeros. This

lack of continuous data and the limited changes in heart rate were unfavorable for

examining collective synchrony among multiple time series. This likely contributed

to the low magnitude of collective synchrony reported in this study, especially in

3v2 data. Second, instrumentation issues led to discarding five out of the 12 data

sets that had been collected. As a result, it was not possible to explore certain

comparisons such as within-triad changes in collective synchrony across multiple

study sessions, within-triad differences comparing the 3v1 and 3v2 conditions, and

between-triad differences. Third, the scope of Study 2 was small in terms of the

number of triads and time points, and the fact that Triad A played with a substitute

participant in Session 3 due to an injury. This exacerbated the difficulties with

making within- and between-triad comparisons that may have been substantively

valuable. However, several findings unique to Study 2 are highly valuable from a

methodological standpoint.

3.5 Conclusion

This paper featured didactic presentation of a regime-switching dynamic

factor analytic approach and two empirical studies. This inquiry produced several

important developments in the study of collective synchrony. First, unlike most
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other synchrony applications, which tend to focus on dyads, here I have employed

a multivariate approach to enable the examination of synchrony in groups of

three or more (i.e., collective synchrony). Studies 1 and 2 incorporated teams

of various sizes ranging from three to nine. Second, as opposed to studies that

have used metrics to quantify synchrony over the duration of a time interval

as a single aggregate value, I used a regime-switching approach to account for

temporal changes between states of high and low collective synchrony. Third, the

dynamic factor modeling approach used in these studies enabled the weighting of

each individual player’s unique influence on the synchrony of the collective. These

weights, or factor loadings, can be squared to obtain effect sizes (i.e., proportions of

explained variance), which quantify the magnitude of collective synchrony. These

can be examined on an individual basis and summarized for all team members

by computing the mean of their values, for example. Fourth, by categorizing

time intervals as residing within either a high or low collective synchrony regime,

this modeling approach allows the researcher to extract information about the

prevalence of collective synchrony. That is, what proportion of time (i.e., dwell

time) is spent in the high collective synchrony regime over a given time interval

analyzed? I have shown how these features, magnitude and prevalence, can be

aggregated and depicted graphically in order to summarize multiple epochs of

observation over a longer time period.

In terms of the methodological aim, this series of investigations has been

largely a success at demonstrating the value of the RSDFM approach to analyzing

collective synchrony. In both empirical studies, it was apparent that the parameter

estimates and predicted regimes can be useful to directly interpret about a single

time interval (e.g., dwell time within one game; magnitude of synchrony of one

player’s behavior with that of the collective), and to aggregate for a larger set
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of events (e.g., many games within a season). Study 2 demonstrated that a one-

regime DFM tends to be favored when collective synchrony is low overall across a

multivariate (i.e., multi-person) time series.

Substantively, three findings are particularly noteworthy. First, each player’s

unique contribution to collective synchrony can be detected in the form of a

standardized factor loading. The practical significance of this cannot be overstated.

This implies that stakeholders interested in team performance (e.g., coaches,

analysts, players, support staff) could use this information to identify and address

possible weaknesses in terms of collective synchrony. Second, the large dwell time

proportions of the high collective synchrony regime observed in college women’s

soccer players’ running cadences and distances is notable. In earlier text, I

suggested that this is likely due to the task constraints of high-level competitive

soccer. Third, it is interesting that the collective synchrony in men’s soccer

teammates’ heart rates was overall low, except in one game.

The above methodological and substantive findings are salient in the fledgling

science of collective synchrony, and they point to multiple avenues for future work.

Regarding the methodological approach, first, simulation studies are needed to

systematically evaluate the RSDFM approach under varying conditions such as

number of persons, number of time points, frequency of regime switching, and

other model parameters. Second, more application is needed with multivariate time

series exhibiting greater balance between high and low collective synchrony, unlike

in Study 1 where the high collective synchrony regime dominated. Third, it would

be worthwhile to assess the value of approaching the regime-switching framework

as a continuous time model [33]. This may be particularly advantageous when

observations are not equally spaced and/or when individuals within a collective are

observed over the same time period but not at the exact same time points. Fourth,
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multifactor models may be useful to assess whether there are “sub-collectives”

within a team. In other words, are there subgroups within a team that demonstrate

collective synchrony such as attackers/defenders or left/central/right positions?

Fifth, beyond magnitude and prevalence, which I highlighted as two important

features of collective synchrony, it may be worthwhile to explore the stability of

collective synchrony. That is, for what duration does a team typically reside in one

regime before switching to the other? Finally, from a methods perspective, one of

the outcomes of Study 2 raises the question of whether a RSDFM can be formulated

to effectively detect more subtle regime changes (e.g., low collective synchrony vs.

none). It may be advantageous to establish guidelines for determining absolute

cutoffs to differentiate between low synchrony and no synchrony. In this paper, I

have used effect size (explained variance) and correlation to quantify the magnitude

of collective synchrony. Leveraging null hypothesis significance testing (i.e., p-

values and confidence intervals) is a possibility for establishing a cutoff between

low and no synchrony. For example, one possibility is to create pseudo-collectives

by randomly drawing time series from different games, then computing confidence

intervals of correlations among these unrelated time series, in order to characterize

a state of no collective synchrony.

There are numerous possible substantive directions for future research. More

studies are needed to understand the relationship between team performance and

collective physiological synchrony, for example. This has been the focus of a few

studies [34, 35, 36], but this relationship is still not well understood. As it was

suggested in the Introduction of this paper, an important future direction will be

to control for copresence, characteristics of the shared task, and/or coordination,

in order to tease out the effect of each on collective behavioral and physiological

synchrony. Understanding the unique role of each antecedent in the context of
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team performance would have tremendous scientific and practical importance.

For example, to what extent is collective synchrony in physiology related to

interindividual matching of emotion, and not simply a byproduct of the metabolic

demands of physical exertion? It would also be useful to investigate collective

synchrony in other variables not included in this paper such as players’ direction

of movement (i.e., change in longitudinal and lateral position). Another critical

question that remains is whether collective synchrony in a given variable can

be developed within a team. That is, can a team gain expertise in collective

synchrony? If so, a subsequent aim would be to identify whether and how it

is possible to train collective synchrony. Finally, another important remaining

issue for future research is to clarify what specifically is the relationship between

collective synchrony and collective flow. If collective flow is an outcome of collective

synchrony as I have rendered in Manuscript 1 of this dissertation (Figure 1),

then it is plausible that regime changes in collective synchrony may reflect the

emergence/departure of collective flow states. Although there is still much to

uncover about how collective synchrony manifests during team sports performance,

this paper has taken some very important steps to establish a framework for

scholarly inquiry in the field.
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APPENDIX A

Applied Simulation Study

A.1 Overview and Method

To test the regime-switching dynamic factor model (RSDFM), I simulated

multivariate time series of known regimes. That is, I generated time series to show

a high degree of collective synchrony within certain predetermined intervals, and

lack collective synchrony otherwise. The simulated data sets were intended to have

characteristics similar to the movement data collected from women’s soccer players

for Study 1, and the heart rate data collected from men’s soccer players for Study

2. Characteristics of these test data sets are listed in Table A.1. Each univariate

time series was simulated in R [1] using the arima.sim function by allowing the

AR coefficient(s) to be randomly sampled from a uniform distribution bounded at

the values shown in Table A.1. The R code used in this simulation is provided at

the end of this appendix. To ensure representativeness of the empircal data, the

ranges of AR1 and AR2 coefficient values were selected based on what was typical

of the data collected for Studies 1 and 2. This was assessed by inspecting the

partial autocorrelation function (PACF) plots of individual observed time series

(see Figures B.1 and B.2 in Appendix B). That is, although an AR(2) generating

function was used in this simulation, the Study 1 test data was simulated such

that the AR2 coefficient was negative but for some individual time series may have

been close enough to zero to be non-significant (effectively, an AR(1) process, as

was characteristic of some of the observed time series). Similarly, the Study 2

test data was simulated such that the AR1 coefficient was positive but possibly

non-significant for some individual time series (again, consistent with the observed

time series).

Following the initial generation of time series, the virtual collective lacked
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Study 1 Study 2

Number of persons (p) 6 3
Number of time points (T ) 900 150
Length of regime intervals 90 25
Range of AR1 coefficient (.50, .70) (.00, .40)
Range of AR2 coefficient (-.20, .00) (.20, .40)

Table A.1: Characteristics of simulated test data sets intended to reflect empirical
data from Study 1 and Study 2.

any synchrony, that is, the time series were uncorrelated. Synchrony was

then introduced in certain intervals by adding a collective process, a set of

randomly sampled values that would cause each time series to increase or decrease

uniformly. Finally, each time series was standardized, that is, converted to z-

scores. Standardizing the data allows each measurement error variance to be easily

interpreted as the proportion of variance not explained by the latent collective

variable.

As shown in Tables A.2 and A.3, bivariate correlations in the time series were

smaller in the simulated “low” synchrony intervals (Panel a), larger in the “high”

synchrony intervals (Panel b), and moderate overall (Panel c). A subset of the

simulated data intended to parallel that of Study 1 is shown in Figure A.1 where

the collective behavior of the time series is apparent in the first 90 time points, but

subsequently the time series appear to scatter randomly and adhere to no particular

pattern. The R package dynr [2] was used to fit the RSDFM to the data. For each

test data set, both AR(1) and AR(2) models were used. The better fitting model

was selected by comparing Akaike Information Criterion (AIC) [3] and Bayesian

Information Criterion (BIC) [4] fit indices for each model. When comparing AIC

and BIC, smaller values indicate better model fit. Estimated parameters include

the factor loadings for Regime 2 (λ2, . . . , λp), measurement error variances for

each regime (θ11, . . . , θp1, θ12, . . . , θp2), one or two autoregression coefficients for
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y1 y2 y3 y4 y5

y2 -.02
y3 -.09 .01
y4 -.08 .01 .03
y5 .04 .06 .02 .02
y6 -.08 -.02 .03 .04 -.01

(a) “Low” synchrony intervals

y1 y2 y3 y4 y5

y2 .53
y3 .51 .53
y4 .49 .56 .55
y5 .47 .48 .46 .40
y6 .40 .49 .50 .48 .37

(b) “High” synchrony intervals

y1 y2 y3 y4 y5

y2 .25
y3 .21 .27
y4 .20 .28 .29
y5 .25 .27 .25 .21
y6 .15 .23 .27 .25 .19

(c) Overall

Table A.2: Correlations in simulated test data (Study 1, p = 6).
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y1 y2

y2 .09
y3 .03 .00

(a) “Low” synchrony intervals

y1 y2

y2 .62
y3 .53 .64

(b) “High” synchrony intervals

y1 y2

y2 .38
y3 .31 .36

(c) Overall

Table A.3: Correlations in simulated test data (Study 2, p = 3).

the latent collective variable (φ1, φ2), the innovation error variance (ψ), and the

natural log odds of the regime transition probabilities (ln(
πij

1−πij )).

A.2 Results

For both test data sets, the AR(1) model was selected over the AR(2) model

based on comparisons of AIC and BIC. For the models fit to the test data emulating

Study 1, the AR(1) model was selected based on both a smaller AIC value (14491,

compared to 14493) and a smaller BIC value (14592, compared to 14598). For the

models fit to the Study 2 test data, the AIC values were approximately equal (both

1242), but a smaller BIC value favored the AR(1) model (1278 vs. 1281). Figures

A.2 and A.3 illustrate each simulated data set superimposed on the predicted and

actual regimes. The plot regions indicated by dashed lines denote the actual high

synchrony regime. The shaded regions denote time intervals categorized by the
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Figure A.1: First 180 time points of simulated test data illustrating “high” and
“low” collective synchrony regimes (Study 1, p = 6).

model as the high synchrony regime, whereas the white background reflects the

low synchrony regime as predicted by the model. In Figure A.2 it is clear that the

model performed very well at categorizing the regimes accurately, as indicated by

the predicted “high” regime (shaded region) coinciding almost entirely with the

actual (dashed line region). However, in Figure A.3 it is apparent that the model

did not perform quite as well with the second test data set. This is evident in

the shaded regions falling outside of the dashed line regions (i.e., “high” regime

predicted within the actual “low” regime).

Parameter estimates from RSDFMs fit to the simulated test data can be found

in Tables A.4 and A.5. Having converted the data to z-scores, the estimated

measurement error variances can be directly interpreted as the proportion of

variance not explained by the latent collective variable. This is why all of the
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Figure A.2: Simulated test data superimposed on predicted and actual regimes
(Study 1, p = 6).

measurement error variances estimated for Regime 1, in which the model assumes

no collective process driving the observations, have confidence intervals spanning

1 (i.e., 100% unexplained variance). The smaller estimates for the measurement

error variances in Regime 2 reflect that some proportion of the variance is explained

by the collective state variable (Ct). Conversely, the standardized loadings, shown

in parentheses in the “Est.” column of Tables A.4 and A.5, when squared, equal

the proportion of explained variance (i.e., 1 minus the Regime 2 measurement

error variance; or, 1 minus the unexplained variance). For the Study 1 test data,

the explained variance ranges from .35 to .58, values which are comparable to the

bivariate correlations among the time series in Regime 2; see Table A.2(b). In the

same vein, for the Study 2 test data, the explained variance ranges from .42 to .60,

similar to the correlations in Panel b of Table A.3.
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Parameter Symbol Est. SE t 95% CI p

L1 fixed (std.) λ1 1.00 (.71) - - - -
L2 unstd. (std.) λ2 1.08 (.76) .08 13.7 (.93, 1.24) <.001
L3 unstd. (std.) λ3 1.10 (.73) .08 13.6 (.94, 1.26) <.001
L4 unstd. (std.) λ4 1.04 (.71) .08 13.0 (.88, 1.19) <.001
L5 unstd. (std.) λ5 .91 (.59) .08 11.6 (.75, 1.06) <.001
L6 unstd. (std.) λ6 .90 (.68) .08 11.8 (.75, 1.05) <.001
MEV1 reg. 1 θ11 1.03 .07 14.9 (.90, 1.17) <.001
MEV2 reg. 1 θ21 1.03 .07 14.8 (.89, 1.16) <.001
MEV3 reg. 1 θ31 .96 .06 14.9 (.83, 1.08) <.001
MEV4 reg. 1 θ41 1.00 .07 14.7 (.86, 1.13) <.001
MEV5 reg. 1 θ51 .96 .06 14.8 (.83, 1.09) <.001
MEV6 reg. 1 θ61 1.07 .07 14.4 (.93, 1.22) <.001
MEV1 reg. 2 θ12 .49 .04 11.5 (.41, .57) <.001
MEV2 reg. 2 θ22 .42 .04 11.0 (.34, .49) <.001
MEV3 reg. 2 θ32 .47 .04 11.4 (.39, .55) <.001
MEV4 reg. 2 θ42 .49 .04 11.9 (.41, .57) <.001
MEV5 reg. 2 θ52 .65 .05 13.0 (.55, .74) <.001
MEV6 reg. 2 θ62 .54 .05 11.7 (.45, .63) <.001
AR1 coefficient φ1 .03 .06 0.6 (-.08, .14) .279
IE var. ψ .48 .06 7.7 (.35, .60) <.001
Log odds 1→1 ln( π11

1−π11 ) 4.24 .44 9.5 (3.37, 5.11) <.001

Log odds 2→1 ln( π21
1−π21 ) -4.24 .45 -9.4 (-5.13, -3.35) <.001

Note: CI = confidence interval; Est. = estimate; IE = innovation error; L = loading; MEV
= measurement error variance; p = p-value; reg. = regime; SE = standard error; std. =
standardized; t = Student’s t test statistic; unstd. = unstandardized; var. = variance

Table A.4: Parameter estimates from the AR(1) RSDFM fit to simulated test
data (Study 1, p = 6).
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Figure A.3: Simulated test data superimposed on predicted and actual regimes
(Study 2, p = 3).

Parameter Symbol Est. SE t 95% CI p

L1 fixed (std.) λ1 1.00 (.75) - - - -
L2 unstd. (std.) λ2 1.11 (.77) .22 5.1 (.68, 1.54) <.001
L3 unstd. (std.) λ3 .99 (.65) .20 5.0 (.60, 1.37) <.001
MEV1 reg. 1 θ11 1.02 .22 4.7 (.60, 1.45) <.001
MEV2 reg. 1 θ21 .89 .19 4.7 (.52, 1.26) <.001
MEV3 reg. 1 θ31 .82 .20 4.2 (.44, 1.20) <.001
MEV1 reg. 2 θ12 .43 .15 2.9 (.14, .73) .002
MEV2 reg. 2 θ22 .40 .13 3.1 (.15, .65) .001
MEV3 reg. 2 θ32 .58 .16 3.7 (.27, .90) <.001
AR1 coefficient φ1 .06 .11 0.5 (-.16, .28) .310
IE var. ψ .53 .17 3.1 (.20, .87) .001
Log odds 1→1 ln( π11

1−π11 ) 2.31 .75 3.1 (.85, 3.77) .001

Log odds 2→1 ln( π21
1−π21 ) -2.79 .72 -3.9 (-4.20, -1.37) <.001

Note: CI = confidence interval; Est. = estimate; IE = innovation error; L = loading; MEV
= measurement error variance; p = p-value; reg. = regime; SE = standard error; std. =
standardized; t = Student’s t test statistic; unstd. = unstandardized; var. = variance

Table A.5: Parameter estimates from the AR(1) RSDFM fit to simulated test
data (Study 2, p = 3).
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The natural log odds of the regime transition probabilities (e.g., in Table A.4,

ln( π11
1−π11 ) = 4.24) can be converted to probability values. For example, exp(4.24)

1+exp(4.24)
=

.986 = π11 is the estimated probability of staying in Regime 1 from one time point

to the next. Knowing this, the probability of switching from Regime 1 to Regime

2 (π12) can be computed by subtracting from 1 (i.e., 1 − .986 = .014). Hence,

the fact that the rows of the transition probability matrix must sum to 1 makes

it possible to estimate only one log odds parameter per row of the transition

probability matrix. The RSDFMs were also specified to estimate the log odds of

switching from Regime 2 to Regime 1, or ln( π21
1−π21 ), such as -4.24 in Table A.4.

Converting this estimate to a probability as in the above example yields .014, the

same as the probability of switching regimes in the reverse direction. Therefore,

the probability of staying in Regime 2 is also .986. These probability estimates

are consistent with the fact that the data were simulated to exhibit Regime 1 and

Regime 2 for an equal number of time points, switching every 90 time points or

approximately a .011 probability of switching in either direction (i.e., close to the

estimated probability of .014).

A.3 Discussion

The analyses performed on the test data sets demonstrate the RSDFM as a

highly worthwhile approach for analyzing collective synchrony. By deliberately

introducing collective synchrony in the simulated time series within known

intervals, it was possible to inspect the model’s ability to correctly categorize

low and high synchrony regimes and return parameter estimates consistent with

expectations. Several findings are noteworthy. First, the RSDFM was able to

identify the true regimes quite accurately overall. This was especially true with

the Study 1 data, somewhat less so with the Study 2 data. Second, the Regime

2 parameter estimates quantifying the magnitude of collective synchrony, that
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is, the explained variance in individual time series that can be attributed to

the collective state variable, are consistent with the bivariate correlations among

the simulated time series in Regime 2 intervals. Third, the Regime 1 parameter

estimates quantifying the unexplained variance (i.e., measurement error variance)

are consistent with the notion that in Regime 1, there is no latent collective

process driving the individual time series. As such, the confidence intervals of those

estimates should, and do, include 1 (i.e., 100%). Fourth, the parameter estimates

of the natural log odds of the regime transition probabilities are consistent with

the frequency of actual regime switches that were built into the simulated data.

These findings are crucial in demonstrating that the RSDFM is a promising

approach for categorizing time periods of high and low collective synchrony and

quantifying features such as the strength (magnitude) of collective synchrony

present in multivariate time series.

Two limitations should be noted. First, the RSDFM showed some inaccuracies

at categorizing the regimes in the Study 2 data. This may be explained

by the smaller number of time points, smaller number of time series (i.e.,

“persons”), smaller length of regime intervals, or some combination of these

factors. Systematically testing the effects of these and possibly other factors using

a Monte Carlo simulation study will be an important next step in establishing the

RSDFM as a bona fide method for investigating collective synchrony. Second, in

the simulated time series, regime intervals were uniform in length, and switches

happened in a patterned way (i.e., after every 90 or every 25 time points), which

would likely not be the case in actual performance settings. Nevertheless, the data

sets were generated to mirror particular features of the empirical data including

the number of persons, number of time points, and AR order/coefficients. Overall,

this simulation demonstrated the promise of the RSDFM approach.
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A.4 R Code for the Applied Simulation

##### Generate Study 1 Test Data #####

N <- 900

ny <- 6

test <- matrix(0, N, ny)

set.seed(02881)

for(i in 1:ny){

test[,i] <- arima.sim(list(order=c(2,0,0),

ar=c(runif(1, .5, .7), runif(1, -.20, 0))),

n=N, rand.gen=rnorm)

}

shocks <- runif(N/2,-2,2)

beg <- seq(181,N,180)

indices <- 1:90

for(i in beg){indices <- c(indices,i:(i+89))}

for(i in 1:ny){ # Introduce the "High synchrony" regime

test[indices,i] <- test[indices,i] + shocks

test[-indices,i] <- test[-indices,i] + runif(N/2,-2,2)

}

for(i in 1:ny){ # Convert to z-scores

test[,i] <- scale(test[,i])

}

##### Generate Study 2 Test Data #####

# N <- 150

# ny <- 3

# test <- matrix(0, N, ny)

# set.seed(02881)

# for(i in 1:ny){

# test[,i] <- arima.sim(list(order=c(2,0,0),

# ar=c(runif(1, 0, 0.4), runif(1, 0.2, 0.4))),

# n=N, rand.gen=rnorm)

# }

# shocks <- runif(N/2,-2,2)

# beg <- seq(51,N,50)

# indices <- 1:25

# for(i in beg){indices <- c(indices,i:(i+24))}

# for(i in 1:ny){ # Introduce the "High synchrony" regime

# test[indices,i] <- test[indices,i] + shocks

# test[-indices,i] <- test[-indices,i] + runif(N/2,-2,2)

# }

# for(i in 1:ny){ # Round to integers and convert to z-scores

# test[,i] <- round(test[,i])
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# test[,i] <- scale(test[,i])

# }

test <- as.data.frame(test)

names(test) <- paste0("y",1:ncol(test))

ny <- ncol(test)

test$id <- rep(1,nrow(test))

test$time <- 1:nrow(test)

##### Two-Regime Model AR(2) #####

library(dynr)

ns <- 2

t_data <- dynr.data(test, id = "id", time = "time",

observed = names(test)[1:ny])

q1start <- .2

r1start <- runif(ny,1,2)

r2start <- runif(ny,0,.8)

recNoise <- prep.noise(values.latent =

list(diag(c(q1start,0), ns),

diag(c(q1start,0), ns)),

params.latent = list(diag(c(paste0("Q",1),0), ns),

diag(c(paste0("Q",1),0), ns)),

values.observed = list(diag(r1start, ny, ny),

diag(r2start, ny, ny)),

params.observed = list(diag(paste0("R",1:ny,1), ny, ny),

diag(paste0("R",1:ny,2), ny, ny)))

l2start <- runif(ny-1,.5,1.5)

recMeas <- prep.measurement(values.load = list(matrix(0, ny, ns),

matrix(c(1,l2start,rep(0,ny)), ny, ns)),

params.load = list(matrix(0, ny, ns),

matrix(c(0,paste0("L",2:ny),rep(0,ny)), ny, ns)),

obs.names = names(test)[1:ny],

state.names = c("C","Clag1"))

recReg <- prep.regimes(values = matrix(c(5, -4, 0, 0), 2, 2),

params = matrix(c("c11", "c21", "fixed", "fixed"), 2, 2))

recDyn <- prep.matrixDynamics(values.dyn =

list(matrix(c(.2,1,.1,0), ns, ns),

matrix(c(.2,1,.1,0), ns, ns)),

params.dyn = list(matrix(c("F1",0,"F2",0), ns, ns),

matrix(c("F1",0,"F2",0), ns, ns)),
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isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, ns, 1),

params.inistate=matrix(0, ns, 1),

values.inicov=diag(1000, ns, ns),

params.inicov=diag(0, ns, ns),

values.regimep=c(5, -5),

params.regimep=c(0, 0))

rsmod <- dynr.model(dynamics = recDyn,

measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = t_data,

outfile = "t_dynr.c")

t_dynr <- dynr.cook(rsmod, debug_flag=T)

summary(t_dynr)

##### Two-Regime Model AR(1) #####

library(dynr)

ns <- 1

t_data <- dynr.data(test, id = "id", time = "time",

observed = names(test)[1:ny])

q1start <- .2

r1start <- runif(ny,1,2)

r2start <- runif(ny,0,.8)

recNoise <- prep.noise(values.latent = list(diag(c(q1start), ns),

diag(c(q1start), ns)),

params.latent = list(diag(c(paste0("Q",1)), ns),

diag(c(paste0("Q",1)), ns)),

values.observed = list(diag(r1start, ny, ny),

diag(r2start, ny, ny)),

params.observed = list(diag(paste0("R",1:ny,1), ny, ny),

diag(paste0("R",1:ny,2), ny, ny)))

l2start <- runif(ny-1,.5,1.5)

recMeas <- prep.measurement(values.load = list(matrix(0, ny, ns),

matrix(c(1,l2start), ny, ns)),

params.load = list(matrix(0, ny, ns),

matrix(c(0,paste0("L",2:ny)), ny, ns)),

obs.names = names(test)[1:ny],
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state.names = c("C"))

recReg <- prep.regimes(values = matrix(c(5, -4, 0, 0), 2, 2),

params = matrix(c("c11", "c21", "fixed", "fixed"), 2, 2))

recDyn <- prep.matrixDynamics(values.dyn =

list(matrix(c(.2), ns, ns),

matrix(c(.2), ns, ns)),

params.dyn = list(matrix(c("F1"), ns, ns),

matrix(c("F1"), ns, ns)),

isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, ns, 1),

params.inistate=matrix(0, ns, 1),

values.inicov=diag(1000, ns, ns),

params.inicov=diag(0, ns, ns),

values.regimep=c(5, -5),

params.regimep=c(0, 0))

rsmod <- dynr.model(dynamics = recDyn,

measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = t_data,

outfile = "t_dynr.c")

t_dynr <- dynr.cook(rsmod, debug_flag=T)

summary(t_dynr)
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APPENDIX B

Supplementary Tables and Figures

Game N AR(1)
DFM

AR(2)
DFM

AR(1)
RSDFM

AR(2)
RSDFM

Selected Model

1 8 17105 16969 - - AR(2)DFM
2 6 12702 12586 12634 12530 AR(2)RSDFM
3 9 - 19116 19168 - AR(2)DFM
4 5 10956 - - - AR(1)DFM
5 5 10286 10204 10211 10125 AR(2)RSDFM
6 6 11808 11674 11761 - AR(2)DFM
7 7 15258 15162 - 15098 AR(2)RSDFM
8 9 19396 19262 - - AR(2)DFM
9 7 - 15144 - - AR(2)DFM
10 6 12995 12872 12956 14580 AR(2)DFM
11 8 - - - 17591 AR(2)RSDFM
12 7 14240 14116 14104 13984 AR(2)RSDFM
13 4 7798 7727 7791 7667 AR(2)RSDFM
14 6 12934 12816 12891 - AR(2)DFM
15 7 - 15179 - - AR(2)DFM
16 5 11400 11284 11342 11238 AR(2)RSDFM
17 4 8566 8483 8556 8468 AR(2)RSDFM
18 3 - 6666 6674 6596 AR(2)RSDFM

Note: The selected model for each data set (table row) is that with the smallest AIC value;
missing AIC indicates that the model failed to converge during estimation or was discarded

Table B.1: Study 1 cadence models: sample sizes (N), AIC, selected model.
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Game N AR(1)
DFM

AR(2)
DFM

AR(1)
RSDFM

AR(2)
RSDFM

Selected Model

1 8 17026 16934 16651 16565 AR(2)RSDFM
2 6 12656 12590 12517 12440 AR(2)RSDFM
3 9 18934 18837 18745 - AR(1)RSDFM
4 5 - 10822 10753 - AR(1)RSDFM
5 5 10115 10066 10004 9958 AR(2)RSDFM
6 6 11935 11874 11778 11687 AR(2)RSDFM
7 7 14935 14877 - 14755 AR(2)RSDFM
8 9 18809 18687 18699 - AR(2)DFM
9 7 - 14918 14892 14804 AR(2)RSDFM
10 6 13159 13044 12948 12828 AR(2)RSDFM
11 8 17263 17141 17147 - AR(2)DFM
12 7 14319 14193 14087 13965 AR(2)RSDFM
13 4 7742 7695 7621 7567 AR(2)RSDFM
14 6 - 13302 13228 - AR(1)RSDFM
15 7 - - - - None
16 5 11399 11265 11307 - AR(2)DFM
17 4 - 8634 8235 8200 AR(2)RSDFM
18 3 6703 6628 6598 6532 AR(2)RSDFM

Note: The selected model for each data set (table row) is that with the smallest AIC value;
missing AIC indicates that the model failed to converge during estimation or was discarded

Table B.2: Study 1 distance models: sample sizes (N), AIC, selected model.

Game/Triad
(Session)

AR(1)
DFM

AR(2)
DFM

VAR(1) AR(1)
RSDFM

AR(2)
RSDFM

Selected
Model

1. Av1 (1) 1209 1211 1276 - - AR(1)DFM
2. Av2 (1) 1268 1270 1289 - - AR(1)DFM
3. Av1 (3) 1283 1285 1323 - - AR(1)DFM
4. Bv1 (1) 1134 1136 1236 - 1128 AR(2)RSDFM
5. Bv1 (2) 1281 1283 1330 - - AR(1)DFM
6. Bv2 (2) 1277 1281 1291 - - AR(1)DFM
7. Bv2 (3) 1329 1333 1352 - - AR(1)DFM

Note: The selected model for each data set (table row) is that with the smallest AIC value;
missing AIC indicates that the model failed to converge during estimation or was discarded

Table B.3: Study 2 models: AIC and selected model.
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Figure B.1: Plots of ACF and PACF of cadence (upper 3 rows) and distance (lower
3 rows) time series data from Study 1; each row shows ACF (left) and PACF (right)
side-by-side for a randomly selected participant; dashed lines indicate p = .05
significance limits.
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Figure B.2: Plots of ACF and PACF of change in heart rate from Triad A (upper
3 rows) and Triad B (lower 3 rows) time series data from Study 2; each row shows
ACF (left) and PACF (right) side-by-side for a participant; dashed lines indicate
p = .05 significance limits.
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APPENDIX C

R Code for Study 1 and Study 2 Analyses

##### Study 1: cadence analysis #####

# note: code for distance analysis is comparable

library(dynr)

cadlist <- list(w1.cad,w2.cad,w3.cad,w4.cad,w5.cad,w6.cad,w7.cad,

w8.cad,w9.cad,w10.cad,w11.cad,w12.cad,w13.cad,w14.cad,w15.cad,

w16.cad,w17.cad,w18.cad)

for(i in 1:18){

rm(list=setdiff(ls(), c("i","cadlist","t1")))

# Extract data set and prep it for dynr routines

data <- cadlist[[i]]

data <- data[,-1]

p <- ncol(data)

T <- nrow(data)

names(data) <- paste0("y",1:p)

for(j in 1:p){

data[,j] <- scale(data[,j]) # turn observations to z-scores

}

data$id <- rep(1,T)

data$time <- 1:T

w_data <- dynr.data(data, id = "id", time = "time",

observed = names(data)[1:p])

tryCatch({

### AR1 RSDFM ###

k <- 1

qs <- runif(1)

r1s <- runif(p,.8,1.2)

r2s <- runif(p,0,.8)

recNoise <- prep.noise(values.latent = list(diag(c(qs), k),

diag(c(qs), k)),

params.latent = list(diag(c(paste0("psi")), k),

diag(c(paste0("psi")), k)),

values.observed = list(diag(r1s, p, p),

diag(r2s, p, p)),

params.observed = list(diag(paste0("theta",1:p,1), p, p),

diag(paste0("theta",1:p,2), p, p)))

ls <- runif(p-1,.5,1.5)

recMeas <- prep.measurement(values.load = list(matrix(0, p, k),

matrix(c(1,ls), p, k)),
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params.load = list(matrix(0, p, k),

matrix(c(0,paste0("lambda",2:p)), p, k)),

obs.names = names(data)[1:p],

state.names = c("C"))

recReg <- prep.regimes(values = matrix(c(5, -4, 0, 0), 2, 2),

params = matrix(c("log11", "log21", "fixed", "fixed"), 2, 2))

recDyn <- prep.matrixDynamics(values.dyn =

list(matrix(c(.4), k, k),

matrix(c(.4), k, k)),

params.dyn = list(matrix(c("phi1"), k, k),

matrix(c("phi1"), k, k)),

isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, k, 1),

params.inistate=matrix(0, k, 1),

values.inicov=diag(1000, k, k),

params.inicov=diag(0, k, k),

values.regimep=c(5, -5),

params.regimep=c(0, 0))

ar1rsdfm <- dynr.model(dynamics = recDyn,

measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = w_data,

outfile = "ar1rsdfm.c")

ar1rs <- dynr.cook(ar1rsdfm,verbose=F)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

### AR2 RSDFM ###

k <- 2

qs <- runif(1)

r1s <- runif(p,.8,1.2)

r2s <- runif(p,0,.8)

recNoise <- prep.noise(values.latent = list(diag(c(qs,0), k),

diag(c(qs,0), k)),

params.latent = list(diag(c(paste0("psi"),0), k),

diag(c(paste0("psi"),0), k)),

values.observed = list(diag(r1s, p, p),

diag(r2s, p, p)),

params.observed = list(diag(paste0("theta",1:p,1), p, p),

diag(paste0("theta",1:p,2), p, p)))

ls <- runif(p-1,.5,1.5)

recMeas <- prep.measurement(values.load = list(matrix(0, p, k),

matrix(c(1,ls,rep(0,p)), p, k)),



132

params.load = list(matrix(0, p, k),

matrix(c(0,paste0("lambda",2:p),rep(0,p)), p, k)),

obs.names = names(data)[1:p],

state.names = c("C","Cprev"))

recReg <- prep.regimes(values = matrix(c(5, -4, 0, 0), 2, 2),

params = matrix(c("log11", "log21", "fixed", "fixed"), 2, 2))

recDyn <- prep.matrixDynamics(values.dyn =

list(matrix(c(.6,1,-.2,0), k, k),

matrix(c(.6,1,-.2,0), k, k)),

params.dyn = list(matrix(c("phi1",0,"phi2",0), k, k),

matrix(c("phi1",0,"phi2",0), k, k)),

isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, k, 1),

params.inistate=matrix(0, k, 1),

values.inicov=diag(1000, k, k),

params.inicov=diag(0, k, k),

values.regimep=c(5, -5),

params.regimep=c(0, 0))

ar2rsdfm <- dynr.model(dynamics = recDyn,

measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = w_data,

outfile = "ar2rsdfm.c")

ar2rs <- dynr.cook(ar2rsdfm,verbose=F)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

### AR1 DFM (Non-switching, i.e., one regime) ###

k <- 1

qs <- runif(1)

rs <- runif(p,0,.8)

recNoise <- prep.noise(values.latent = diag(c(qs), k),

params.latent = diag(c(paste0("psi")), k),

values.observed = diag(rs, p, p),

params.observed = diag(paste0("theta",1:p), p, p))

ls <- runif(p-1,.5,1.5)

recMeas <- prep.measurement(values.load = matrix(c(1,ls), p, k),

params.load = matrix(c(0,paste0("lambda",2:p)), p, k),

obs.names = names(data)[1:p],

state.names = c("C"))

recReg <- prep.regimes(values = matrix(c(0), 1, 1),

params = matrix(c(0), 1, 1))

recDyn <- prep.matrixDynamics(values.dyn = matrix(c(.4), k, k),
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params.dyn = matrix(c("phi1"), k, k),

isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, k, 1),

params.inistate=matrix(0, k, 1),

values.inicov=diag(1000, k, k),

params.inicov=diag(0, k, k),

values.regimep=c(10),

params.regimep=c(0))

ar1_dfm <- dynr.model(dynamics = recDyn,

measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = w_data,

outfile = "ar1_dfm.c")

ar1non <- dynr.cook(ar1_dfm,verbose=F)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

### AR2 DFM (Non-switching, i.e., one regime) ###

k <- 2

qs <- runif(1)

rs <- runif(p,0,.8)

recNoise <- prep.noise(values.latent = diag(c(qs,0), k),

params.latent = diag(c(paste0("psi"),0), k),

values.observed = diag(rs, p, p),

params.observed = diag(paste0("theta",1:p), p, p))

ls <- runif(p-1,.5,1.5)

recMeas <- prep.measurement(values.load =

matrix(c(1,ls,rep(0,p)), p, k),

params.load = matrix(c(0,paste0("lambda",2:p),rep(0,p)), p, k),

obs.names = names(data)[1:p],

state.names = c("C","Cprev"))

recReg <- prep.regimes(values = matrix(c(0), 1, 1),

params = matrix(c(0), 1, 1))

recDyn <- prep.matrixDynamics(values.dyn =

matrix(c(.6,1,-.2,0), k, k),

params.dyn = matrix(c("phi1",0,"phi2",0), k, k),

isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, k, 1),

params.inistate=matrix(0, k, 1),

values.inicov=diag(1000, k, k),

params.inicov=diag(0, k, k),

values.regimep=c(10),

params.regimep=c(0))
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ar2_dfm <- dynr.model(dynamics = recDyn,

measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = w_data,

outfile = "ar2_dfm.c")

ar2non <- dynr.cook(ar2_dfm,verbose=F)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

### Save Environment ###

save.image(paste0("w",i,"c.RData"))

}

##### Study 2: change in heart rate analysis #####

library(dynr)

hrlist <- list(m1,m2,m3,m4,m5,m6,m7)

for(i in 1:length(hrlist)){

rm(list=setdiff(ls(), c("i","hrlist","t1")))

# Extract data set and prep it for dynr routines

data <- hrlist[[i]][,-1] # remove column 1 (timeofday)

data <- data[seq(1,nrow(data),10),] # remove repeated values

data <- data[seq(61,nrow(data),2),] # remove 1st min.; thin to .5 Hz

data <- data.frame(y1=scale(diff(data[,1])),

y2=scale(diff(data[,2])),

y3=scale(diff(data[,3])))

p <- ncol(data) # always 3 for Study 2 data

T <- nrow(data)

data$id <- rep(1,T)

data$time <- 1:T

m_data <- dynr.data(data, id = "id", time = "time",

observed = names(data)[1:p])

tryCatch({

### AR1 RSDFM ###

k <- 1

qs <- .1

r1s <- runif(p,.8,1.2)

r2s <- runif(p,.4,.8)

recNoise <- prep.noise(values.latent = list(diag(c(qs), k),

diag(c(qs), k)),

params.latent = list(diag(c(paste0("psi")), k),

diag(c(paste0("psi")), k)),

values.observed = list(diag(r1s, p, p),

diag(r2s, p, p)),

params.observed = list(diag(paste0("theta",1:p,1), p, p),
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diag(paste0("theta",1:p,2), p, p)))

ls <- runif(p-1,.5,1.5)

recMeas <- prep.measurement(values.load = list(matrix(0, p, k),

matrix(c(1,ls), p, k)),

params.load = list(matrix(0, p, k),

matrix(c(0,paste0("lambda",2:p)), p, k)),

obs.names = names(data)[1:p],

state.names = c("C"))

recReg <- prep.regimes(values = matrix(c(2, -4, 0, 0), 2, 2),

params = matrix(c("log11", "log21", "fixed", "fixed"), 2, 2))

recDyn <- prep.matrixDynamics(values.dyn = list(matrix(c(.7), k, k),

matrix(c(.7), k, k)),

params.dyn = list(matrix(c("phi1"), k, k),

matrix(c("phi1"), k, k)),

isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, k, 1),

params.inistate=matrix(0, k, 1),

values.inicov=diag(1000, k, k),

params.inicov=diag(0, k, k),

values.regimep=c(-5, 5),

params.regimep=c(0, 0))

ar1rsdfm <- dynr.model(dynamics = recDyn,

measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = m_data,

outfile = "ar1rsdfm.c")

ar1rs <- dynr.cook(ar1rsdfm,verbose=FALSE,debug_flag=TRUE)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

### AR2 RSDFM ###

k <- 2

qs <- .1

r1s <- runif(p,.8,1.2)

r2s <- runif(p,.4,.8)

recNoise <- prep.noise(values.latent = list(diag(c(qs,0), k),

diag(c(qs,0), k)),

params.latent = list(diag(c(paste0("psi"),0), k),

diag(c(paste0("psi"),0), k)),

values.observed = list(diag(r1s, p, p),

diag(r2s, p, p)),

params.observed = list(diag(paste0("theta",1:p,1), p, p),

diag(paste0("theta",1:p,2), p, p)))



136

ls <- runif(p-1,.5,1.5)

recMeas <- prep.measurement(values.load = list(matrix(0, p, k),

matrix(c(1,ls,rep(0,p)), p, k)),

params.load = list(matrix(0, p, k),

matrix(c(0,paste0("lambda",2:p),rep(0,p)), p, k)),

obs.names = names(data)[1:p],

state.names = c("C","Cprev"))

recReg <- prep.regimes(values = matrix(c(2, -4, 0, 0), 2, 2),

params = matrix(c("log11", "log21", "fixed", "fixed"), 2, 2))

recDyn <- prep.matrixDynamics(values.dyn =

list(matrix(c(.3,1,.4,0), k, k),

matrix(c(.3,1,.4,0), k, k)),

params.dyn = list(matrix(c("phi1",0,"phi2",0), k, k),

matrix(c("phi1",0,"phi2",0), k, k)),

isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, k, 1),

params.inistate=matrix(0, k, 1),

values.inicov=diag(1000, k, k),

params.inicov=diag(0, k, k),

values.regimep=c(-5, 5),

params.regimep=c(0, 0))

ar2rsdfm <- dynr.model(dynamics = recDyn,

measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = m_data,

outfile = "ar2rsdfm.c")

ar2rs <- dynr.cook(ar2rsdfm,verbose=FALSE,debug_flag=TRUE)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

### AR1 DFM (Non-switching, i.e., one regime) ###

k <- 1

qs <- .1

rs <- runif(p,.4,.8)

recNoise <- prep.noise(values.latent = diag(c(qs), k),

params.latent = diag(c(paste0("psi")), k),

values.observed = diag(rs, p, p),

params.observed = diag(paste0("theta",1:p), p, p))

ls <- runif(p-1,.5,1.5)

recMeas <- prep.measurement(values.load = matrix(c(1,ls), p, k),

params.load = matrix(c(0,paste0("lambda",2:p)), p, k),

obs.names = names(data)[1:p],

state.names = c("C"))
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recReg <- prep.regimes(values = matrix(c(0), 1, 1),

params = matrix(c(0), 1, 1))

recDyn <- prep.matrixDynamics(values.dyn = matrix(c(.7), k, k),

params.dyn = matrix(c("phi1"), k, k),

isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, k, 1),

params.inistate=matrix(0, k, 1),

values.inicov=diag(1000, k, k),

params.inicov=diag(0, k, k),

values.regimep=c(10),

params.regimep=c(0))

ar1_dfm <- dynr.model(dynamics = recDyn,

measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = m_data,

outfile = "ar1_dfm.c")

ar1non <- dynr.cook(ar1_dfm,verbose=FALSE,debug_flag=TRUE)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

### One-regime VAR model ###

k <- 3

qs <- runif(k)

recNoise <- prep.noise(values.latent = diag(c(qs), k),

params.latent = diag(c(paste0("psi",1:k)), k),

values.observed = diag(0, p, p),

params.observed = diag(0, p, p))

recMeas <- prep.measurement(values.load = diag(1, p, k),

params.load = matrix(0, p, k),

obs.names = names(data)[1:p],

state.names = c("e1","e2","e3"))

recReg <- prep.regimes(values = matrix(c(0), 1, 1),

params = matrix(c(0), 1, 1))

recDyn <- prep.matrixDynamics(values.dyn = diag(c(.7,.6,.8), k, k),

params.dyn = diag(c("phi1","phi2","phi3"), k, k),

isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, k, 1),

params.inistate=matrix(0, k, 1),

values.inicov=diag(1000, k, k),

params.inicov=diag(0, k, k),

values.regimep=c(10),

params.regimep=c(0))

wndfm <- dynr.model(dynamics = recDyn,
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measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = m_data,

outfile = "wndfm.c")

wnnon <- dynr.cook(wndfm)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})

tryCatch({

### AR2 DFM (Non-switching, i.e., one regime) ###

k <- 2

qs <- .1

rs <- runif(p,.4,.8)

recNoise <- prep.noise(values.latent = diag(c(qs,0), k),

params.latent = diag(c(paste0("psi"),0), k),

values.observed = diag(rs, p, p),

params.observed = diag(paste0("theta",1:p), p, p))

ls <- runif(p-1,.5,1.5)

recMeas <- prep.measurement(values.load =

matrix(c(1,ls,rep(0,p)), p, k),

params.load = matrix(c(0,paste0("lambda",2:p),rep(0,p)), p, k),

obs.names = names(data)[1:p],

state.names = c("C","Cprev"))

recReg <- prep.regimes(values = matrix(c(0), 1, 1),

params = matrix(c(0), 1, 1))

recDyn <- prep.matrixDynamics(values.dyn =

matrix(c(.3,1,.4,0), k, k),

params.dyn = matrix(c("phi1",0,"phi2",0), k, k),

isContinuousTime = FALSE)

recIni <- prep.initial(values.inistate=matrix(0, k, 1),

params.inistate=matrix(0, k, 1),

values.inicov=diag(1000, k, k),

params.inicov=diag(0, k, k),

values.regimep=c(10),

params.regimep=c(0))

ar2_dfm <- dynr.model(dynamics = recDyn,

measurement = recMeas,

noise = recNoise,

initial = recIni,

regimes = recReg,

data = m_data,

outfile = "ar2_dfm.c")

ar2non <- dynr.cook(ar2_dfm,verbose=FALSE,debug_flag=TRUE)

}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})
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# Save Environment

save.image(paste0("m",i,"h.RData"))

}
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