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ABSTRACT

The simulation of many naval hydrodynamics problems, such as a ship’s motions in waves,

is often performed using potential flow solvers which are usually based on a Boundary Element

Method (BEM) that use semi-empirical corrections to account for viscous/turbulent effects. How-

ever in some cases, viscous/turbulent flows near the ships hull and breaking waves must be ac-

curately modeled to capture the salient physics. Navier-Stokes (NS) solvers can and have been

used to model such flows, but they are computationally expensive, often requiring several orders

of magnitude more computational resources relative to potential flow methods, rendering them

impracticable for many engineering applications. The overall goal of this work is to develop a

naval hydrodynamics solver that leverages a medium-fidelity potential flow solver to model the

entire domain combined with a high-fidelity Navier-Stokes (NS) solver to model the flow within a

smaller region, where better accuracy is required. This hybrid solver provides improved simula-

tion fidelity relative to a potential flow solution alone while a significant computational efficiency

improvement relative to a NS solver alone is gained.

Within the NS domain both the velocity and pressure are expressed as the sum of an inviscid

(I) and viscous perturbation (P) components. The underlying inviscid solution serves to drive the

perturbation component, which in turn provides a correction so that the total solution reproduces

the NS equations. Considering that most naval hydrodynamics flows occur at high Renyolds

numbers, the viscous region of the flow is often small, and can be applied to a reduced domain

around a hull or to localized regions within the flow. Outside of these regions the salient viscous

effects will become small and the inviscid solver provides the full NS solution.

In this work the NS domain is simulated using the particle based Lattice Boltzmann Method

(LBM). This relatively new computational tool has proved to be accurate and efficient for simulat-

ing a variety of complex fluid flow and fluid-structure interaction problems. It shows the potential

for a competitive advantage over traditional finite volume NS solvers when implemented in par-

allel on Graphics Processing Units (GPUs). The LBM is well suited for the GPU architecture

because its kernel is simple and local, so at each time step relatively small number of operations

is required at each node and nodes only communicate with their neighbors. This is opposed to fi-

nite volume solvers which typically require high order derivatives and a global pressure correction

step, where all nodes need to communicate and more complex memory access is required. Using

the LBM our hybrid method can make efficient use of a computer’s resources by simulating the



BEM using the central processing unit (CPU) nodes and simulating the LBM using a relatively

inexpensive GPU addition, allowing for simulations that would otherwise require a large and

expensive CPU cluster.

The goal of this thesis is to develop a LBM that can solve for the perturbation component of

our hybrid method, which requires a modification to the LBMs governing equations, boundary,

and initial conditions. The first chapter describes the fundamental developments towards this goal

of developing what we refer to as a perturbation LBM (pLBM) and presents several low Reynolds

number validations of the method’s accuracy and convergence. The second chapter focuses on

higher Reynolds number applications of the method. Since the LBM is far less established than

other methods, this required that we develop an accurate turbulent wall boundary condition for

standard LBM, which is currently an active area of research in the LBM community. Next the

turbulent wall model and a large eddy simulation (LES) turbulent closure schemes are expressed

for the pLBM by using the standard LBM methodology as a foundation and a validated for

turbulent applications is presented. The third chapter focuses on the hybrid modeling of the

nonlinear free surface and adapting the pLBM tool to simulate ship geometries. A hybrid volume

of fluid (hVOF) free surface capturing scheme is developed which models the total free surface

using a combination of the inviscid and perturbation flow within the pLBM. Finally, pLBM is

coupled to a BEM solver to simulate the steady flow around a ship and the hVOF is used to

simulate nonlinear and breaking waves.
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PREFACE
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Computers and fluids. The second, titled “A hybrid lattice-Boltzmann method and potential

flow solver applied to high Reynolds number incompressible flows” will be submitted for review

to the Journal of Computational Physics. Finally the third manuscript, titled “Free surface

modeling using a hybrid lattice-Boltzmann and potential flow model”, will be submitted for
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Abstract

In this work, we report on the development and initial validation of a new hybrid numerical

model for the simulation of complex wave-structure interactions. A kinetic Lattice Boltzmann

method (LBM) model using a reduced domain is nested within an inviscid flow field to provide

increased simulation fidelity where desired, while leveraging the computational efficiency of in-

viscid solutions. We formulate a fully (or strongly) coupled approach, in which a Helmholtz

decomposition is applied to the flow, separating the inviscid and viscous perturbation parts. The

latter component is driven by the inviscid field through nonlinear inviscid-perturbation interac-

tion terms that, in conventional Navier-Stokes solvers, would be expressed as volume forces. In

the present work an equivalent LBM approach is presented where, as opposed to a body-force

coupling, a strong coupling within the LBM collision operators is presented. The resulting hybrid

LBM is applied to validation cases for a wave driven boundary layer and the flow past a cylinder.

1.1 Introduction

Numerical models simulating the irrotational motion of an incompressible, inviscid fluid,

based on potential flow theory, are computationally efficient and sufficiently accurate to simulate

many engineering fluid problems, such as those involving free surface waves and wave-structure

interactions (e.g., [16]). However, potential flow models cannot be used in applications where

viscous effects are important, for instance, in the boundary layer near solid boundaries, or the

ocean bottom, in the wake of bluff bodies, or to simulate surface wave breaking. Standard

Computational Fluid Mechanics (CFD) Navier-Stokes (NS) solvers, such as based on a finite

volume (e.g., [26]) or Lattice Boltzmann (LBM) method (e.g., [25, 10, 33, 13, 27, 28]), can model

these types of flows, but are computationally costly. Additionally, for free surface flows, NS

solvers often use a dissipative numerical scheme to capture the free surface boundary conditions,

which is often too numerically dissipative to model wave propagation over long distances [6].

To more efficiently solve a broad class of hydrodynamics problems of interest to many engi-

neering disciplines, in this work, we detail the development of a high-fidelity but low cost hybrid

numerical model, that combines potential flow and NS models, and applies each model in the

region where it is most effective. This hybrid model is based on a perturbation method pro-

posed in earlier work, but for different numerical methods and problems [1, 15]. For instance,

it was successfully used to model turbulent flows, using a finite volume method, and validated

for turbulent channel and wave induced boundary layer flows [24] or for linear ship seakeeping
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([47]). Unlike one- or two-way coupled models applied over separate regions of the computational

domain (e.g., [6, 22]), in this method, both the velocity and pressure fields are expressed as the

sum of inviscid/irrotational (I) and viscous perturbation (P ) components, each solved using dif-

ferent numerical models in separate but overlapping computational domains. This method is

sometimes referred to in fluid mechanics as the Helmholtz decomposition. More specifically, the

I fields are solved with a potential flow model typically over a larger size domain extending to

the far-field, whereas the P fields are solved based on a modified (perturbed) NS equation, here

with a LBM model, in a smaller near-field domain in which viscous effects are deemed important

based on the considered problem (this will be made more clear later). Thus, the more compu-

tationally demanding perturbation LBM model, referred to as pLBM, is only used in the smaller

near-field domain where viscous/turbulent effects matter, with its solution forced by results of

the potential flow model applied to the larger domain. Hence this hybrid approach is much more

computationally efficient than applying a LBM model to the entire domain, while ensuring that

the complete NS solution is solved where the physics calls for it.

In engineering applications involving complex boundary conditions and/or bound-

ary/structure geometry, the model solving potential flow equations over the entire computational

domain must itself be an optimized generic numerical solver, such as based on the higher-order

Boundary Element Method, and feature fully nonlinear free surface boundary conditions if appli-

cable [29, 24]. Such cases, however, are not considered here but left out for follow-up publications

[42, 43]. The present paper instead concentrates on detailing the development of a novel pLBM

model and validating it on a series of applications for which there are analytical solutions of the

potential flow fields I that can be used in the hybrid model to force the pLBM solution.

In our work, we use a LBM to solve NS equations, instead of a finite volume solver as in

earlier work, in part because the data locality and kernel simplicity of the LBM allow for a very

efficient parallel implementation of the model on a “General Purpose Graphical Processor Units”

(GPGPU) [30, 51, 52]. While a single GPGPU still has a limited memory, a multi-GPGPU

implementation of the LBM may achieve a higher computational efficiency, for an identical ac-

curacy, than traditional CFD solvers implemented on a massively parallel CPU cluster. In the

hybrid method context, for many engineering applications, the reduced-size pLBM computa-

tional domain can often be simulated using a single GPGPU [43], allowing simulation to be run

on a desktop computer equipped with a relatively inexpensive GPGPU co-processor. When the

potential flow is also solved with a numerical model (e.g., BEM based) its solution may then
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be calculated using the computer’s often parallelized CPUs, with limited conflicting resource re-

quirements. If a traditional NS solver were to be used in place of the LBM, a significant number

of CPU nodes would be required to run it at an accuracy equivalent to that of the LBM, leading

to competing computational resources when combined with the potential flow solver.

The coupling between continuum mechanics-based equations (or models), such as potential

flow, and the kinetic-based LBM is less straightforward than the earlier implementation of the

hybrid method based on a volume of fluid NS solver [24]. In particular, one must derive a pLBM

equivalent to the nonlinear I − P coupling terms that appear in the perturbation NS equations

(see details below). To assess the ability of the LBM to simulate strongly nonlinear free surface

flows, Janssen et al. [28, 29, 30] simulated the two-dimensional (2D) “weak coupling” wave

breaking results reported in earlier work [6, 22], using a LBM in combination with a Volume Of

Fluid (VOF) interface tracking method. In such cases, the LBM model was simply initialized

with potential flow results for waves that had been propagated up to the breaking point in a

potential flow BEM model [18, 19, 20]. Next, the same authors computed similar results with

the hybrid method, in which the I − P coupling terms were represented as LBM body force

terms, using the pre-computed I fields to force the P field solution through these terms. This

approach, while proven effective, required computing spatial derivatives of both the I and P

fields using finite difference approximations that yielded a compact but non-local LBM kernel.

Additional analyses showed that this approach both caused higher truncation errors in the pLBM

than in the original LBM collision operator and reduced the overall efficiency of the parallelized

GPGPU solution. Therefore, Janssen [28] suggested instead to introduce the nonlinear I − P

coupling terms directly into the LBM equilibrium probability distribution functions (EPDFs),

hence, to develop perturbation EPDFs or pEPDFs. The latter were incrementally developed,

implemented, and validated as part of the development of a pLBM model component to a hybrid

naval hydrodynamic solver, in which the potential flow solution, with fully nonlinear free surface

boundary conditions (FNPF), was computed using a higher-order BEM model [41, 42, 43].

In this paper, we fully report on the rigorous development, and mathematical and numerical

validation of the pEPDFs in an efficiently parallelized pLBM, implemented on a GPGPU as a

component of a hybrid hydrodynamic solver. Janssen’s original approach [28] may be considered

as a “top down” method, because the EPDFs were empirically derived based on the desired

macroscopic quantities, i.e., the perturbation NS equations they were meant to represent. Here,

instead, a “bottom-up” derivation of the collision operators is carried out to derive the pEPDFs,
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through applying the Helmholtz decomposition directly to the PDFs. While we recover the same

pEDPFs as in [28], we also provide a rigorous proof that these indeed solve the perturbation NS

equations, through a Chapman-Enskog expansion. The appropriate initial conditions, boundary

conditions, and grid refinement considerations for the pLBM are then discussed, and the three-

dimensional (3D) method is validated, but here only for standard 2D applications, for which

accuracy and convergence properties are demonstrated; three-dimensional applications will be

reported elsewhere.

1.2 Lattice Boltzmann Method (LBM)

In part due to its efficiency, models based on the LBM have become increasingly widely

used for solving a variety of complex fluid dynamics and multi-fluid multi-physics problems (e.g.,

[2, 3, 4]). By contrast with classical CFD solvers that model the macroscopic NS equations

on a continuum basis, the LBM simulates CFD problems on a mesoscopic scale, in which the

fluid is represented by the PDFs of discrete particles moving on a fixed lattice. Macroscopic

hydrodynamic quantities are obtained from low-order moments of the PDFs. He and Luo, [25],

Lallemand and Luo [34], and d’Humieres et al. [10] discuss the LBM theory.

Besides its numerical efficiency, significant advantages of the LBM are that it exactly sat-

isfies mass conservation and, being a pseudo-compressible method, for a single fluid there is no

need to solve a pressure Poisson equation, which is typically the most time consuming part of

CFD solvers. A disadvantage is the LBM low order of convergence of numerical errors (second-

order), consistent with the Chapman-Enskog expansion, which requires using smaller spatial and

temporal discretization sizes than for standard CFD solvers, to achieve a similar numerical accu-

racy. This, however, is typically compensated for by the LBM’s excellent scalability on massively

parallel computer hardware [11]; GPGPU implementations of the LBM have achieved remark-

able performances [51, 52, 30]. Geller et al. [13] present a study of transient laminar flows,

as compared to solutions of standard CFD solvers, and Krafczyk et al. [33] discuss Large Eddy

Simulations (LES), both demonstrating the efficiency and accuracy of the LBM in these contexts.

1.2.1 LBM fundamentals

The primary variable of microscopic kinetic approaches is the PDF f(t,x, ξ), which specifies

the normalized probability to encounter a particle at position x at time t, with velocity ξ. The

5



PDF evolution is described by the Boltzmann equation,

Df

Dt
=
∂f(t,x, ξ)

∂t
+ ξ · ∂f(t,x, ξ)

∂x
= Ω +B, (1)

whose left-hand side is an advection-type expression, the collision operator Ω describes particle

interactions at the microscopic scale, and B represents body force effects.

A computationally efficient 3D model based on the Boltzmann Eq. (1) is first obtained

by introducing a discretization in the velocity space ξ, and the resulting discrete Boltzmann

equations,

Dfα
Dt

=
∂fα(t,x)

∂t
+ ξα ·

∂fα(t,x)

∂x
= Ωα +Bα. (2)

In this work we solve Eq. (2) on the commonly used D2Q9 and D3Q19 lattices. The former uses

9 lattice vectors or lattice links, to model 2D flows by connecting a node to its neighbors with

eα = {0, 0} , {±c, 0} , {0,±c} , {±c,±c} , α = 0, . . . , 9 and the latter, a 3D model, contains 19

vectors eα = {0, 0, 0} , {±c, 0, 0} , {0,±c, 0} {0, 0,±c} , {±c,±c, 0} , {±c, 0,±c} , {0,±c,±c} , α =

0, . . . , 18 [45], with a constant velocity c representing the speed of particle propagation on the

lattice. Eq. (2) is now discretized in space and time using a standard first-order finite difference

scheme, which yields the lattice Boltzmann equations,

fα(t+ ∆t,x+ eα∆t)− fα(t,x) = Ωα +Bα (3)

with ∆t, the temporal resolution. In the LBM, this equation is divided into a nonlinear collision

step, which drives the PDFs towards a local equilibrium, and a non-local linear propagation step,

where the post-collision PDFs (f̄α) are advected to neighboring nodes as,

f̄α(t,x) = fα(t,x) + Ωα +Bα and fα(t+ ∆t,x+ eα∆t) = f̄α(t,x) (4)

respectively. For numerical efficiency a mesh Courant number of Co = 1 is chosen to remove

the need for finite differencing after the propagation step, and a relationship between the spatial

(∆x) and temporal discretization is found as ∆x = eα∆t. It has been well-established in the

literature that, with the proper choice of the collision operator (see next section), the solution

of the lattice Boltzmann Eqs. (3) converge to that of the incompressible NS equations to within

O(∆x2) and O(Ma2) [12, 31].

Macroscopic values of the hydrodynamic pressure p = c2sρ (assuming an ideal gas and speed

of sound, cs) and fluid velocity u are then found from hydrodynamic moments of the PDFs as,

p (x, t) = c2sρ (x, t) = c2s

Q∑
α=0

fα (x, t) and u (x, t) =
1

ρ

Q∑
α=0

eαfα (x, t) (5)
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with Q = 9, 18 for our 2D and 3D lattices, respectively.

Before continuing we first consider the lattice scaling and discrete lattice effects associated

with our numerical scheme. To enforce isotropy, lattice dependent weighting factors wα (seen

in Eq. (10)) are introduced as a result of using different lattice lengths eα [35]. For the D2Q9

model these are

w0 =
4

3
, w1..4 =

1

9
and w5..8 =

1

36
(6)

and for the D3Q19 model [25],

w0 =
1

3
, w1..6 =

1

18
and w7..18 =

1

36
. (7)

Both of these choices give the relationship between the speed of sound, cs, and particle velocity,

c, as c2s = c/3.

We now consider the scaling of our physical variables to non-dimensional lattice variables

(denoted by prime variables in the following) using spatial, temporal, and mass scales λ, τ , and

$, respectively. In LBM, with Co = 1, one typically assumes, ∆x′ = ∆x/λ = 1, ∆t′ = ∆t/τ = 1,

c′ = cτ/λ=1, and m′ = m/$ = 1. Accordingly, our physical variables are scaled based on the

flow Mach number Ma = u/cs = u′/c′s and Reynolds number, Re = u`/ν = u′`′/ν′ (with ` a

representative length scale of the flow) and our physical length scale, λ, becomes λ = ∆x/`.

Inserting c′s = c′/
√

3 = 1/
√

3 into the Mach number equation gives u′ = Ma
√

3 and τ is found as

τ = λu/u′. Hence, the non-dimensional fluid viscosity reads, ν′ = ντ/λ2. For simplicity, in the

following, we will drop the prime notation for non-dimensional variables unless stated otherwise.

1.2.2 Collision operators

For modeling interactions between fluid particles, different collision operators Ωα have been

proposed. In the single relaxation time (SRT) model [5], the PDFs are driven towards an equi-

librium state (denoted by an eq superscript) based on a single relaxation time τ = 3ν/c2 + ∆t/2,

for which particle collisions are modeled as,

Ωα = −∆t

τ
{fα(x, t)− feqα (ρ,u)} (8)

with,

feqα (ρ,u) = wαρ

(
1 +

(
3

(u · eα)

c2
+

9

2

(u · eα)2

c4
− 3

2

u2

c2

))
. (9)
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To ensure that the LBM solution will converge towards that of the incompressible NS equations,

our equilibrium is modified to

feqα (ρ,u) = wα

(
ρ+ ρo

(
3

(u · eα)

c2
+

9

2

(u · eα)2

c4
− 3

2

u2

c2

))
(10)

with variables ρo and ρ now representing the average fluid density and a small density pertur-

bation, respectively. This modification allows convergence to the incompressible NS equations

provided that the simulation Mach number is sufficiently small, Ma = u′/c′s � 1 [25] (primes

denote LBM scaled variables here). This removes the requirement that Ma = u/cs = u′/c′s which

is important for an efficient hydrodynamic simulation, where physical Mach numbers are often

very small, as physical time step ∆t = ∆t′/τ increases with an increasing simulation Ma.

In the more advanced and accurate MRT model [10], the PDFs and EPDFs are transformed

into moment space, where the PDFs are relaxed using several different relaxation rates (and

times). MRT was shown to increase the stability of LBM models, particularly when applied

to high Reynolds flows, which are of greater practical interest, and at the same time to enable

the development of more accurate boundary conditions [14]. The moments used in the MRT

m = M · f are labeled as,

m = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz)
T
,

and denote the following: mass density m0 = ρ; the part of kinetic energy independent of density

m1 = e; the part of kinetic energy square independent of density and kinetic energy m2 = ε;

momentum m3,5,7 = jx,y,z; m4,6,8 = qx,y,z are related to heat flux; m9,11,13,14,15 are related to

the symmetric traceless viscous stress tensor; m16,17,18 are third-order moments; and m10,12 are

fourth-order moments. The collision operator for the MRT model is defined as,

Ω = M−1 · S · (M · f −meq) (11)

where M denotes the transformation matrix from distribution functions to moments (m = M · f

and f = M−1 ·m), meq
α are equilibrium moments that are calculated from Eq. (10), and S = sα,α

is a diagonal collision matrix of relaxation parameters. The parameters,

s9,9 = s11,11 = s13,13 = s14,14 = s15,15 = −∆t

τ
= sω (12)

are related to the kinematic viscosity ν via the relaxation time τ as,

τ = 3
ν

c2
+

1

2
∆t. (13)
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The remaining relaxation parameters,

s1,1 = sa, s2,2 = sb, s4,4 = s6,6 = s8,8 = sc,

s10,10 = s12,12 = sd and s16,16 = s17,17 = s18,18 = se.

can be tuned to improve the model stability [34]. While the optimal values of these parameters

depend on the specific system under consideration (geometry, initial and boundary conditions),

reasonable values are given in [10]. Here, we use sa = sb = sc = sd = se = −1.0.

1.3 Perturbation Lattice Boltzmann Method (pLBM)

Before developing the pLBM and perturbation EPDFs (pEPDFs), we first derive the macro-

scopic perturbation NS equations that we seek to solve with the pLBM. As a canonical target

application for the pLBM, we consider the viscous perturbation caused by a solid body boundary,

occurring in a localized region with an otherwise inviscid and incompressible flow region. In this

paper, we only consider the direct NS simulation (DNS) of low Re problems, which eliminates

the additional complexity of introducing a turbulence model to simulate high Re flows. However,

the pLBM can and has been extended to include a LES subgrid-scale model [42, 43]; this will

be detailed in a follow-up paper. Generally as Re increases the region where viscous effects are

significant decreases, e.g., along a solid boundary, allowing to use a smaller simulation domain

for the pLBM model and yielding an increased efficiency of the hybrid solver.

1.3.1 Coupling approach through the hybrid NS equations

Following, for instance the developments in [24], in the region where viscous effects are

important, the pressure and velocity fields are decomposed into the inviscid part (pI , uIi ) and the

viscous perturbation (pP , uPi ) (tensor notation with its summation convention is used thereafter)

as,

ui = uIi + uPi and p = pI + pP (14)

In the hybrid method, (pI , uIi ) are obtained from the solution of potential flow equations, while

the LBM is applied to solve the resulting perturbation NS equations for the perturbation fields

(pP , uPi ). Inserting the decomposition Eqs. (14) into incompressible NS equations,

∂ui
∂t

+ uj
∂ui
∂xj

= gi −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(15)
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with gravitational acceleration gi, and removing Euler’s equations for the I fields, which they

exactly satisfy, yields the perturbation momentum equations,

∂uPi
∂t

+ uPj
∂uPi
∂xj

+uIi
∂uPi
∂xj

+ uPj
∂uIi
∂xj︸ ︷︷ ︸

Additional forcing terms

= −1

ρ

∂pP

∂xi
+ ν

∂2uPi
∂xj∂xj

(16)

in which additional convection-like interaction terms between the uIi and uPi fields appear.

Inserting the decomposition Eqs. (14) into the mass conservation equation yields.

∂ui
∂xi

=
∂uIi
∂xi

+
∂uPi
∂xi

= 0 (17)

With the I fields satisfying a divergence free equation, the perturbation NS equations read,

∂uPi
∂xi

= 0

∂uPi
∂t

+
∂

∂xj

[
uPi u

P
j + uIi u

P
j + uPi u

I
j

]
= −1

ρ

∂pP

∂xi
+ ν

∂2uPi
∂xj∂xj

. (18)

These equations are solved by a perturbation LBM method, as detailed in the next section.

Thus, at each time step, the velocity uIi and its gradient obtained from the inviscid solution (i.e.,

potential flow model or analytical solution) are used to force the perturbation NS equations, and

the perturbation velocity uPi and its gradient are locally obtained from the moments of the LBM

PDFs.

1.3.2 Derivation of pLBM collision operators

In deriving the pLBM equations, two approaches have been considered to incorporate the

additional I − P forcing terms of Eq. (16) into the standard LBM solution of NS equations.

First, as detailed in [28, 29, 30] these terms can be represented as momentum sources in the form

of space- and time-dependent body forces, by way of Bα terms in Eq. (3), that are driving the

simulation. Here, however, a second approach is developed to incorporate these terms directly

into a modified collision operator Ωα.

In the first approach, the I field contributions are directly added at every time step to

the PDFs fα, together with other contributions, such as from gravity and other volume forces.

However, this approach was found not to converge well, or even to be unstable, when using

the simplest Bα formulation corresponding to assuming spatially homogeneous body forces (e.g.,

such as gravity) [28]. For transient volume forces, as in the present hybrid model, an enhanced

momentum source term should be used, that also considers effects of viscosity [23]. By contrast,

the new formulation uses a modified momentum flux tensor, which as we shall see will have
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the significant advantage of representing effects of the inviscid-viscous coupling terms without

the need for spatial derivatives of the uIi or uPi fields, thus eliminating the associated numerical

errors.

In the following, the bottom-up derivation of a pLBM collision operator equivalent to the

perturbation NS Eqs. (18) is detailed. In contrast to our earlier attempts [28], this derivation

does not consider the macroscopic equations to deduce the necessary modifications in the LBM,

but instead starts from a perturbation of the PDFs at the mesoscopic scale. The LBKG model

will be discussed first, followed by a MRT formulation applicable to 2D and 3D flows.

The LBM PDFs are first divided into viscous and inviscid components as,

fα(t,x) = f Iα(t,x) + fPα (t,x) (19)

By definition, the inviscid part is assumed to be in equilibrium state with zero non-equilibrium,

f Iα(t,x) = feqα (ρI ,uI) (20)

Hence,

fα(t,x) = feqα (ρI ,uI) + fPα (t,x) (21)

with ρI = c−2s pI(t,x) and uI = uI(t,x).

LBKG model

According to the discrete SRT approach, the relaxation is modeled by a single relaxation

time. Inserting the inviscid-viscid perturbation into Eqs. (8), we find,

Ωα =
1

τ
[fα − feqα (ρ,u)] (22)

=
1

τ

[
f Iα + fPα − feqα (ρ,u)

]
(23)

=
1

τ

[
feqα (ρI ,uI) + fPα − feqα (ρ,u)

]
(24)

=
1

τ

[
fPα − (feqα (ρI + ρP ,uI + uP )− feqα (ρI ,uI))

]
(25)

Due to nonlinearities in the definition of equilibrium PDFs in Eq. (10), the superposition of

I and P fields does not yield a simple linear superposition of the feqα , but nonlinear interaction

terms have to be considered. Thus,

feq,Pα = wα

(
ρP + ρo

(
3
uP · eα
c2

+
9

2

(eα · uP )2 + 2(eα · uP )(eα · uI)
c4

− 3

2

(uP )2 + 2uP · uI

c2

))
.

(26)
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Based on this definition of the perturbation equilibrium PDFs, the first- and second-order mo-

ments of the equilibrium PDFs fα yield,

Q∑
α=1

feq,Pα = ρP (27a)

Q∑
α=1

eαif
eq,P
α = ρou

P
i (27b)

Q∑
α=1

eαieαjf
eq,P
α = pP δij + ρou

I
i u
P
j + ρou

P
i u

I
j + ρou

P
i u

P
j = Π

(0)
αβ (27c)

with Π(0) being the new leading order part of the momentum flux tensor Π.

MRT model

The corresponding MRT collision operator Ω of the pLBM, to use with Eq. (11), includes

modified equilibrium moments for the momentum advection,

meq
2 = eeq = 3 ρ0 ((uPx )2 + (uPy )2 + 2uPx u

I
x + 2uPy u

I
y)− 2 ρ, (28a)

meq
3 = εeq = −3 ρ0 ((uPx )2 + (uPy )2 + 2uPx u

I
x + 2uPy u

I
y) + ρ, (28b)

meq
8 = peqxx = ρ0 ((uPx )2 − (uPy )2 + 2uPx u

I
x − 2uPy u

I
y), (28c)

meq
9 = peqxy = ρ0 (uPx u

P
y + uPx u

I
y + uPy u

I
x) (28d)

for 2D cases, and,

meq,P
1 = eeq = ρ0((uPx )2 + (uPy )2 + (uPz )2 + 2uPx u

I
x + 2uPy u

I
y + 2uPz u

I
z) (29a)

meq,P
9 = 3peqxx = ρ0(2(uPx )2 − (uPy )2 − (uPz )2 + 4uPx u

I
x − 2uPy u

I
y − 2uPz u

I
z) (29b)

meq,P
11 = peqzz = ρ0((uPy )2 − (uPz )2 + 2uPy u

I
y − 2uPz u

I
z) (29c)

meq,P
13 = peqxy = ρ0(uPx u

P
y + uPx u

I
y + uPy u

I
x) (29d)

meq,P
14 = peqyz = ρ0(uPy u

P
z + uPy u

I
z + uPz u

I
y) (29e)

meq,P
15 = peqxz = ρ0(uPx u

P
z + uPx u

I
z + uPz u

I
x) (29f)

for 3D cases. [Note that subscripts x, y, z here correspond to subscripts i = 1, 2, 3 elsewhere.]

The remaining moments correspond to the standard MRT moments.

1.3.3 Recovering the perturbation NS equations from the pLBM

By applying a Chapman-Enskog (CE) expansion, the macroscopic behavior of a LBM model

formulation can be found from a multi scaling analysis. An expansion parameter ε is introduced,

which is proportional to the ratio of the lattice grid ∆x to a characteristic macroscopic length
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(e.g., `). In the following, the CE scaling analysis is applied to the pEPDFs (26), by way of a

perturbation expansion, which shows that these indeed recover the perturbation NS Eqs. (18).

CE expansion

Let us first consider the following quantities and scales. For convenience of notations, time

derivatives ∂/∂t are denoted as ∂t and spatial derivatives as ∂/∂xi as ∇i. With ε = ∆x/`� 1,

the PDFs are expanded as follows,

fα = f (0)α + εf (1)α + ε2f (2)α +O(ε3) with ∂t = ε∂t1 + ε2∂t2 +O(ε3) and ∇i = ε∇i

(30)

With these definitions, the Taylor series expansion of the first term on the LHS of Eq. (3) reads,

fα(t+ ∆t, xi + eαi∆t) = fα(t, xi) + ∆tε(∂t1 + eαi∇i)fα(t, xi)

+
∆t2

2
ε2(∂t1 + eαi∇i)(∂t1 + eαj∇j)fα(t, xi) +O(ε3), (31)

Defining Dα = ∂t1 + eαi∇i, and collecting terms up to different orders yields,

O(1) : 0 = −∆t

τ
(f (0)α − feqα ) (32)

to first order [23, 28] and thus f0α = feqα .

The PDF components of O(ε) or smaller are then defined as the non-equilibrium components

of the PDFs (fneqα ), i.e.,

O(ε) : Dαf
(0)
α = −1

τ
f (1)α (33)

O(ε2) : ∂t2f
(0)
α +

∆t

2
∂t1Dαf

(0)
α +

∆t

2
eαi∇iDαf

(0)
α +Dαf

(1)
α = −1

τ
f (2)α . (34)

Substituting Eq. (33) into Eq. (34) yields,

O(ε2) : ∂t2f
(0)
α +

(
1− ∆t

2τ

)
Dαf

(1)
α = −1

τ
f (2)α . (35)

PDF moments

Computing the zeroth-order moment of Eq. (33) and considering the pEPDFs (26) recovers

the conservation of mass equation for the perturbation NS equations,

n∑
α=1

∂t0f
(0,P )
α +

n∑
α=1

eαi∂if
(0,P )
α = −1

τ

n∑
α=1

f (1,P )
α

∂tρ
P + ρo∇iuPi = 0, (36)

13



while the inviscid mass conservation equation is recovered when the inviscid form of the EPDFs

of Eq. (10) are used,

ρo∇iuIi = 0. (37)

Taking the first-order moment of Eq. (33) and considering the pEPDFs (26) recovers the leading

order terms of the perturbation NS equations,

n∑
α=1

eαi∂t0f
(0,P )
α +

n∑
α=1

eαieαi∇if (0,P )
α = −1

τ

n∑
α=1

eαif
(1,P )
α

∂tρou
P
i +∇i(pP + ρou

I
i u
P
j + ρou

P
i u

I
j + ρou

P
i u

P
j ) = 0, (38)

and the inviscid momentum conservation equations (Euler equations) are recovered when the

inviscid form of the EPDFs of Eq. (10) are used,

∂tρou
I
i +∇i(pI + ρou

I
i u
I
j ) = 0. (39)

The latter confirms that Euler equations are exactly represented in the LBM when using the

inviscid form of the EPDFs in Eq. (10), feq,Iα . This is unlike NS or perturbation NS equations,

in which non-equilibrium components of the EPDF’s must be included to represent viscous effects.

Therefore, in the hybrid modeling context, this implies that an inviscid potential flow field

satisfying Euler equations can be exactly mapped to the LBM variables using feq,Iα . Finally,

this confirms that the decomposition method used to derive Eqs. (26) does not need to consider

fneq,Iα or its moments, since these are zero by definition.

Based on these conclusions, one may infer that the numerical kinematic viscosity of the

pLBM can be selected as identical to that of the standard LBM. This is confirmed by taking the

first-order moment of Eq. (35), and then applying Eq. (26),

n∑
α=1

eα∂t2f
(0,P )
α +

n∑
α=1

eα

(
1− ∆t

2τ

)
(∂t0 + eαi∇i)f (1,P )

α = −1

τ

n∑
α=1

eαeαf
(2,P )
α

(40)

where the first moment of f
(1,P )
α is zero in the absence of a body force, and its second moment

found by considering, εΠ(1,P ) = Π−Π(0,P ), with,

Π(1,P ) =

n∑
α=1

eαieαjf
(1,P )
α = −c2sτ(∂iρou

P
j + ∂jρou

P
i ) (41)

and giving

∂t2ρou
P
i −∇i

(
τ − ∆t

2

)
c2s(∇jρouPk +∇kρouPj ) = 0. (42)
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The perturbation momentum conservation equations can now be recovered by considering Eqs.

(38) and (40) to within O(ε2) and O(Ma2) as,

∂tρou
P
i + ρo∇j(uiPujP + ui

Puj
I + ui

Iuj
P ) = −∇jpP + ν∇2

ju
P
i (43)

when the viscosity is defined as

ν =

(
τ − ∆t

2

)
c2s. (44)

This confirms that the relaxation time of Eq. (13) is suitable for use in the pLBM.

1.3.4 Implementation of the pLBM

In addition to modifying the collision operator as detailed above, implementing the pLBM

requires adapting both initial and boundary conditions for the PDFs, such that the sum of the

I and P EPDFs satisfy that of the complete NS equations given by Eq. (10). In NS simulations

with the LBM, the initial PDFs are typically specified by applying Eq. (10) to the initial values

of the macroscopic flow velocity. In the pLBM, these EPDFs are replaced by the pEPDFs of Eq.

(26), which can be used to specify initial PDFs, given initial values of the I and P macroscopic

velocity fields. These and other modifications of the standard LBM scheme that are required to

perform pLBM simulation are further detailed in the following subsections.

Boundary conditions

On a solid wall boundary, the inviscid flow velocity uIw must satisfy a no-flow condition in

the normal direction to the wall, uIw · n = 0, while the total velocity uw must satisfy both this

condition and a no-slip condition along the wall, so that uw = 0 at the wall. Hence, given Eq.

(14), we have at the wall [24],

uPw = −uIw (45)

In the LBM, this boundary conditions is expressed within the near-wall boundary layer (BL),

using a standard bounce-back scheme for the post-collision PDFs [7, 14, 30]. For the pLBM, a

modified bounce-back scheme is implemented for the PDFs as,

fPα′(x1, t+ ∆t) = fPα (x1, t)− 2ρ0wα
eα · (−uIw)

c2
(46)

in velocity directions α, crossing the wall boundary, and their opposite counterpart α′, at lattice

nodes of coordinate x1 adjacent to the wall. This approach may be applied to more advanced
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bounce back schemes, for instance considering curved walls that are not lattice coincident [39].

Note, in the hybrid model, it is important to ensure that uIw is calculated on the solid boundary,

i.e., at each intersection between the actual body surface and lattice links connecting body and

fluid nodes.

Nested lattice grids

In the standard LBM, computational efficiency can be increased by using nested lattice grids

of increasing resolution towards the solid boundary/body of interest. Information on PDFs is

exchanged between grids along the nested lattice boundaries, following an acoustic scaling method

that scales PDFs based on the corresponding grid and time step sizes [28]. In this method the

speed of sound and Ma value are kept constant in all sub-grids, which yields grid-level-dependent

relaxation times. For instance, a bisection of grid spatial resolution yields a sub-cycling of 2 in

time step, since c = const. = 1 (in LBM scaled variables) and ∆t = ∆x/c, respectively.

Nested grids can also be used in the pLBM, provided some modifications are made to enforce

the conservation of mass and momentum along the nested lattice boundaries. Assuming that, by

construction, the forcing inviscid fields smoothly vary across nested grid boundaries, continuity

of the perturbation NS equations is expressed at grid interfaces by dividing the PDFs entering a

specific grid into their equilibrium and non-equilibrium components. The equilibrium components

are calculated with Eq. (26) using values of the macroscopic fields ρP , uPi , and uIi calculated

before the PDFs are exchanged between two different grids. The non-equilibrium parts of the

PDFs, fneqα = fneq,Pα = fPα − feq,Pα , are then rescaled so that the PDFs entering a nested grid

are defined as,

fPα,f = feq,Pα + scf (fPα,c − feq,Pα ) and fPα,c = feq,Pα + sfc(f
P
α,f − feq,Pα ) (47)

in which subscripts f and c denote the fine and coarse grids, respectively, and scf and sfc are

obtained by equating the total derivative of the PDFs [28],

scf =
6ν + ∆tf
6ν + ∆tc

and sfc =
6ν + ∆tc
6ν + ∆tf

. (48)

In addition to this scaling, an accurate interpolation of the PDFs in space and time must be

performed to reconstruct hanging nodes in the fine lattice. This part of the nested grid method

is not modified for the pLBM, for which further details can be found in [28].
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1.4 Applications

The accuracy and convergence properties of the novel pLBM approach are assessed in the

following, on the basis of a series of simple but meaningful applications. Although the model

is implemented in 3D, for the sake of validating the hybrid approach, only 2D applications are

considered in this paper. More complex fully 3D cases will be presented in follow-up papers

[41, 42, 43].

To assess the basic convergence and accuracy properties of the proposed pLBM, we first

consider two oscillatory laminar boundary layer (OLBL) problems in an incompressible, Newto-

nian (viscous) fluid, over a plane solid boundary, in which the inviscid forcing flow velocity is

analytically defined as: (i) wall-parallel, uniform, and harmonic in time (Stokes OLBL problem);

(ii) time- and space-dependent based on linear wave theory (Steady streaming problem in OL-

WBL). Then the viscous flow past a circular cylinder is simulated in the LBM and pLBM, where

the pLBM is forced by a steady inviscid flow and the hybrid result of the inviscid and pLBM

solutions produce a nearly exact agreement with the LBM.

1.4.1 Oscillatory boundary layers over a plane solid wall
Stokes boundary layer problem

Stokes’ second problem [50] provides an exact solution of NS equations for the horizontal

velocity profile within an oscillatory laminar boundary layer (OLBL) over a plane solid wall in

an incompressible Newtonian fluid, of density ρ and dynamic viscosity µ, forced by a periodic

uniform wall-parallel inviscid velocity,

u′1(z, t) = u0

(
sin (ωt)− e−

z
δs sin

(
ωt− z

δs

))
(49)

with u0 the free-stream velocity magnitude, ω = 2π/T the angular frequency, T the period, and

δs =
√

2ν/ω the Stokes-layer thickness, with ν = µ/ρ the kinematic viscosity. A key feature of

this OLBL velocity profile is that there is a 45◦ phase lag between the free-stream velocity and

the shear stress at the wall, τw = µ∂u1/∂z, for z = 0 (this is easily verified with Eq. (49)).

Harris and Grilli [24] solved this problem with a similar hybrid modeling approach, but

using a finite volume solution of the perturbation NS equations, in which the I−P forcing terms

were represented as body forces. Here, we solve this problem with the pLBM model, using the

modified collision operator based on the pEPDFs. Fig. 1 shows the numerical problem set-up

and parameters. The hybrid domain height, in the cross-wall z−direction, is H = 10δs and its

horizontal dimensions are W = B = 20δs in the x− direction, which is quite small but adequate
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No-slip b.c.

Zero gradient b.c. 10 δs

Param. Value

Domain height H = 10δs
Upper boundary condition Zero-gradient
Wall boundary condition No-slip

Initial condition uPi (xi, 0) = 0
Forcing flow period T = 1
OLBL Stokes length δs = 1
Kinematic viscosity ν = π
Reynolds number Reδ = 1, 2, 3, 10, 100

Figure 1: (a) Domain setup for the Stokes OLBL simulation. The far-field periodic potential flow
velocity is specified in the Inviscid domain, while the pLBM model is applied within the Hybrid
domain. (b) Parameters used in numerical model applications

since the velocity is wall-parallel and spatially uniform [24].

The inviscid velocity specified in the hybrid model is,

uI1(t) = u0 sin (ωt) with uI2 = uI3 = 0. (50)

with the complete solution given by,

u(z, t) = uI + uP = u0 sin (ωt) + uP (51)

A no-slip boundary condition for the complete velocity is specified on the wall (z = 0), and

perturbation velocity is assumed to vanish at the top of the domain (z = zmax) (Fig. 1). Hence,

uP (0, t) = −uI(t) and ∂zf
P
α (zmax, t) = 0. (52)

Periodic boundary conditions for the PDFs are specified on lateral boundaries (in the x and y

directions).

Simulations are run for 5 different free-stream velocity values, corresponding to Reynolds

numbers Reδ = u0δs/ν = 1, 2, 3, 10, 100, up to tmax = 50T , for which steady state was achieved

in all cases. In each of these cases, to assess the convergence properties of the pLBM, the solution

is computed for 5 different hybrid domain discretizations, with Nz = 10, 20, 40, 80 or 160 nodes

in the z−direction and 2Nz nodes in the x− direction. Diffusive scaling was used to determine

the simulation Mach number for each Nz, meaning that a second order rate of convergence is

expected when ∆Ma ∝ ∆x2 [25] [35]. The corresponding Mach number values are Ma = 0.2 in

the coarsest mesh to 0.0125 in the finest mesh.

Fig. 2a shows velocity profiles based on the analytical solution of Eq. (49) at phase angles

Φ = ωt = 0◦, 90◦, 180◦, and 270◦. In all cases, the accuracy of the numerical solution is assessed
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by computing the maximum L1 norm of differences between the numerical and analytical solution

over the entire hybrid domain, among these 5 phase angles, with

L1 =

Nz∑
i

|uni − u′(zi, tn)|
|u′(zi, tn)|

, (53)

vertical node i, time step n, and ui averaged over all nodes in the x-direction. Results are shown

in Fig. 2b for each case, as a function of the respective discretization size Nz. The figure shows

that for each Nz value the maximum numerical error decreases with the Reynolds number, while

for each Reynolds number numerical errors decrease with Nz; as expected for the LBM, the

convergence rate is second-order with 1/Nz ∝ ∆x. This indicates that, to achieve a fixed error

threshold (e.g., 5× 10−3), a finer discretization must be used, the larger the Reδ values.

Note that, in this simple application, due to the wall-parallel velocity field, the nonlinear I−P

convective terms in the left-hand-side of the perturbation NS Eq. (18) vanish by construction.

Therefore, the same results should be obtained if the standard EPDFs of Eq. (10) are used

instead of the pEPDFs of Eq. (26). This was verified in the OLBL results but will no longer be

the case in other applications presented hereafter.
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Figure 2: (a) Analytical horizontal velocity profile u(z, t) within an OLBL [50], from Eq. (49);
each line corresponds to a different phase angles Φ = ωt (see Fig. 1 for physical parameters). (b)
Maximum numerical error of the pLBM or LBM OLBL solution as a function of the Reynolds
number Reδ and the discretization Nz; note the quadratic convergence rate with 1/Nz.

19



Steady streaming problem in OLWBL

Here we consider an OLBL problem similar to that of the previous section, as sketched in

Fig. 3a, but where the horizontal inviscid flow velocity forcing in the x− direction is that of a

linear periodic wave [9],

uI1(x, z, t) =
Agk

ω

cosh k(z − h)

cosh kh
cos(kx− ωt) with uI2 = 0; uI3 ' 0, (54)

a wave amplitude A, wavenumber k = 2π/L, wavelength L, angular frequency ω = 2π/T , wave

period T , for a water depth h. Moreover, these parameters are related by the linear dispersion

relationship,

ω2

g
= k tanh kh (55)

The horizontal x−velocity uI1 varies in both the x− and z−directions and, for long-crested waves

propagating in the (x, z) plane, the y−velocity uI2 = 0. In a linear ocean wave, the vertical

velocity uI3 is non-zero away from the solid wall representing the seafloor. However, to derive an

analytical solution within the BL, this velocity, which vanishes at the wall (z = 0), is assumed

to be negligible within the BL and here also within the Hybrid domain. A non-zero velocity uI3

could of course be specified in the pLBM model, but there would no longer be an exact solution to

compare the numerical results to. Unlike in the previous application, due to the spatial variation

of uI1 with x and z, the I − P nonlinear coupling terms in the perturbation NS Eq. (18) are

non-zero. Therefore, this application is a true test of the accuracy of the pLBM solution, based

on the pEPDFs of Eq. (26), computed based on the velocity field of Eq. (54).

As a more demanding test of accuracy of the hybrid model than just considering instan-

taneous velocity profiles as in the previous application, here we compute the steady streaming

velocity within the OLWBL. This velocity is that of the period-averaged horizontal (wall-parallel)

current that occurs within an OLWBL and was analytically derived by Longuet-Higgins [37] as,

ū1(ξ) =
A2ωk

sinh2 kh

[
3

4
− e−ξ cos ξ +

1

2
e−ξ sin ξ +

1

4
e−2ξ − 1

2
ξe−ξ cos ξ − 1

2
ξe−ξ sin ξ

]
and ū2 = ū3 = 0 (56)

with ξ = (z−h)/δs the non-dimensional distance to the wall. Note that additional contributions

to the steady streaming velocity could also result from nonlinear effects, such as Stokes drift

resulting from wave asymmetry.

As before, a no-slip bottom boundary condition, a zero vertical perturbation gradient at the

upper boundary, and periodic lateral boundary conditions, are specified in the hybrid model (see
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x

z
Inviscid domain uI

Hybrid domain uP

16 δs

(b)

Param. Value

A 0.012 m
g 9.81 m/s2

(L, k) (2 m, 3.142 m−1)
(T, ω) (1.94 s, 3.241 s−1)
h 0.113 m

Domain length W = L = 2.0 m
Domain height H = 16 δs = 0.05 m

Lattice (Nx ×Nz) 1,000x26, 2,000x51,
4,000x101, 8,000x201

Figure 3: (a) Domain setup for the steady streaming OLWBL simulation. The far-field periodic
potential flow velocity is specified in the Inviscid domain, while the pLBM model is applied within
the Hybrid domain. (b) Parameters used in numerical model applications

Eqs. (52)). The domain set-up and simulation parameters are shown in Fig. 3 and the latter are

selected such that a laminar flow is created in the BL. Specifically, with these parameters and

assuming the fluid kinematic viscosity is set to ν = 1.6× 10−5 m2/s, we find δs = 3.125× 10−3

m, 16δs = 0.05 m, as stated, and with the maximum flow velocity umax = Agk/ω = 0.114

m/s we find Reδ = 22.6, which confirms that the BL flow is within the laminar regime. All

simulations are run until a steady-state streaming velocity is achieved, based on a L1 norm

threshold ∆L1 < 0.0025uA, where uA is the vertical average of the analytical steady streaming

solution, and ∆L1 is found by comparing the L1 relative error norm of the calculated streaming

velocity at times t and t− 10T , thus ∆L1 = |Lt1 − Lt−10T1 |. In this application Eq. (53) is used

to calculate L1, with ū replacing u′.

Numerical results are computed with the pLBM for the physical parameters listed in Fig.

3b, using 4 different spatial discretization in which both the horizontal (Nx) and vertical (Nz)

number of nodes in the lattice are increasing. Additionally, for each discretization, 4 different

values of the Mach number are successively used, Ma = 0.01, 0.02, 0.04, 0.08, which affects the

time step. The steady streaming velocity profile is computed in each case and compared in

normalized form to the analytical profile from Eq. (56), in 4. For each Ma value, except the

largest, the figure shows that numerical results converge towards the analytical solution as grid

resolution is increased. Convergence appears nearly identical and is fastest for the two lowest

Ma values, whereas results diverge for the largest Ma value. Using the finest spatial (Nz = 201)

and temporal (Ma = 0.01) discretizations, numerical results are in very close agreement with the

analytical results, with a relative error in terms of the L1 norm of 0.57%. Fig. 5 shows more
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Figure 4: Normalized steady streaming velocity profile (i.e., period-averaged) u∗ =

ū1

(
A2ωk

sinh2 kh

)−1
in the OLWBL, for 4 different pLBM grids with vertical resolution Nz = δs/∆x =

26(•), 51(•), 101(•), 201(•) and Mach Number Ma (as indicated), compared to the analytical so-
lution given by Eq. (56).
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Figure 5: Convergence of numerical errors of the normalized period-averaged steady streaming
velocity u∗, in the results of Fig. 4, in terms of the L1 (Eq. (53)) norms of the relative errors.
Results shown are for successively increasing spatial and time resolutions as (Nz,Ma) = (26, 0.08),
(51, 0.04), (101, 0.02), and (201, 0.01).

detailed results of the convergence of numerical errors as a function of the spatial and temporal

discretization, in terms of the L1 norms of the errors. As before, convergence is second-order

with the discretization ∆x ∝ 1/Nz.

Considering that the steady streaming velocity profile is an average over the wave period of

much larger instantaneous velocities, this close agreement indicates that highly accurate results

were achieved in the pLBM model.

1.4.2 Viscous flow past a circular cylinder

We consider the flow past a circular cylinder of diameter D caused by a steady current, with

spatially uniform free stream velocity uI1 = U , in an incompressible Newtonian fluid of kinematic
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viscosity ν, at a Reynolds number Re = UD/ν = 100, for which a von Kármán vortex street

occurs. As there is no analytical solution for this case, both the LBM and pLBM results will

be compared with each other and with previously published results. The flow induces a mean

drag force but, due to the von Kármán vortex street, an oscillatory lift force of zero mean. This

application will demonstrate the ability of the pLBM model to perform DNS for highly separated

flows, where the perturbation component of the flow P is large compared to the inviscid forcing

I and also significantly unsteady. This application also features large spatial gradients of both

the inviscid and hybrid solutions and curved boundaries over which the hybrid no-slip boundary

condition is applied. Finally the ability of the pLBM to accurately predict forces on an solid

body will be assessed.

x

y

Grid 0

Grid 1

Grid 2

# Min. Extent Dimensions Expansion
(x, y)/D (x, y)/D Ratio

0 (-50.0,-50.0) (100.0,100.0) 8
1 (-7.5,-7.5) (30.0,15.0) 2
2 (-2.0,-3.0) (8.0,6.0) 1

Figure 6: Nested domain set-up for the LBM and pLBM simulations of the viscous flow past a
circular cylinder of diameter D, and associated geometric parameters for each grid; the expansion
ratio indicates how the mesh size ∆x changes from one grid to the other. The cylinder center is
located at (0,0).

The LBM and pLBM domains are shown in Fig. 6. In this application, to achieve a

higher efficiency, a series of refined nested grids are used, whose geometric characteristics are

provided in the figure. The maximum extents of the domain is 50D away from the center of

the cylinder, which earlier work has shown is sufficient to make non-physical effects that the far-

field boundaries might cause negligible [36, 49]. In the LBM simulations, a specified free-stream

velocity boundary condition is specified (U) at the inlet of the larger domain (x = −50D) and on

its sides (y = ±50D), while a zero gradient boundary condition for the PDFs in the x−direction

is specified at the outlet boundary (x = 50D); finally, a no-slip boundary condition is specified on

the cylinder body based on Eq. (155), without the inviscid term. A uniform free-stream velocity
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LBM Hybrid pLBM
∆x/D CD C ′L St CD C ′L St

1/70 1.341 0.235 0.165 1.389 0.240 0.162
1/140 1.334 0.232 0.164 1.360 0.236 0.163
1/210 1.333 0.232 0.164 1.347 0.232 0.164
1/280 1.333 0.232 0.164 1.342 0.233 0.164
1/350 - - - 1.339 0.232 0.164

Table 1: Convergence test results of the mean drag coefficient CD, RMS of the lift coefficient
C ′L, and Strouhal number, as a function of the spatial resolution ∆x/D (in nested Grid 2) , in
the LBM and Hybrid pLBM simulations of a viscous flow past a circular cylinder of diameter D.

and zero density fluctuation are used to initialize the PDFs.

In the hybrid model, equivalent boundary conditions are specified in the pLBM. The inviscid

flow field is first calculated analytically based on the free-stream boundary condition uI1 = U ,

using a conformal mapping method, and the perturbation PDFs are initialized assuming a zero

perturbation flow field [43]. A zero gradient boundary condition of the perturbation PDFs is

specified in the x−direction at the outlet boundary and Eq. (155) is used to specify the no-slip

boundary condition on the cylinder body.

In the LBM simulations, the momentum exchange method is used to calculate forces on the

cylinder [28]. In the hybrid model, the force acting on a solid body is decomposed into inviscid

and perturbation components, F = FI + FP . However, D’Alembert’s paradox implies that

inviscid forces are zero on the cylinder and only the perturbation component must be calculated,

which is also done using the momentum exchange method. Based on this force, standard drag

and lift coefficients are defined on the cylinder as, CD = Fx/(0.5ρDU
2) and CL = Fy/(0.5ρDU

2),

respectively, assuming a unit length of cylinder.

Fig. 7 shows typical results of computations with the LBM model and the pLBM hybrid

model. Visually, both solutions agree well with each other (subplots (a) and (b)). Tables 1 and 2

show numerical results as a function of the discretization, where ∆x/D represents the resolution

of Grid 2 (Fig. 6). In all cases, steady state is reached and convergence of the solution is assessed

in terms of the mean drag coefficient CD, RMS of the lift coefficient CL, referred to as C ′L , and

Strouhal number St = fD/U where f is the frequency of oscillation in CL. Convergence with the

spatial discretization (grid size) is investigated using a Mach number 0.1, while convergence in

Mach number is investigated using ∆x/D = 1/210 and ∆x/D = 1/350 for the LBM and hybrid

pLBM models, respectively.

Table 1 results indicate a quick and clear convergence of the LBM solution at ∆x/D = 1/210
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LBM hybrid pLBM
Mach CD C ′L St Mach CD C ′L St

0.2 1.334 0.237 0.163 0.2 1.342 0.237 0.163
0.1 1.333 0.232 0.164 0.1 1.339 0.232 0.164
0.05 1.333 0.232 0.165 0.05 1.339 0.232 0.164

Table 2: Convergence test results of the mean drag coefficient CD, RMS of the lift coefficient
C ′L, and Strouhal number, as a function of the Mach number, in the LBM and Hybrid pLBM
simulations of a viscous flow past a circular cylinder of diameter D.

(with Ma= 0.1), but a significantly slower rate of convergence with the spatial resolution is

observed for the hybrid pLBM results, particularly for CD. This is likely the result of an imperfect

cylinder boundary condition Eq. (155) in the pLBM. While the term 2ρ0wαeα · (−uI)/c2 does

not increase the truncation error of the standard LBM wall boundary condition [7], an additional

truncation error is introduced in the hybrid pLBM body boundary condition because here the

inviscid velocity uIi is calculated at each wall boundary node. Instead the inviscid velocity should

more accurately be calculated at each lattice link to body surface intersection. Furthermore

relatively large inviscid velocities occur at the top and bottom of the cylinder which must be

corrected by the perturbation solution (Fig. 7c,d), which further increases numerical errors and

slows down the convergence of the hybrid pLBM simulation. Nevertheless, given a fine enough

grid (∆x/D = 1/350), accurate results are also achieved in the pLBM model.

This is further confirmed in Table 3, which compares the present LBM and hybrid pLBM

results to previously published work. Specifically, the Table lists the experimental results of

Wieselsberger [53], the LBM results using a volumetric approach and a no-slip cylinder boundary

of Li [36], results of a fourth-order in space and second-order in time finite difference method

by Stalberg [49], and the 2D and 3D finite volume results of Rajani [46]. Overall, both of

the present solutions agree well with these results. The converged hybrid pLBM results are in

excellent agreement with the LBM results in terms of C ′L and St, while predicting 0.45% more

drag, likely due to inaccuracies introduced in specifying the body boundary condition discussed

earlier. The CD value computed with the hybrid pLBM model, however, falls well within the

spread of CD results reported in the Table.
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Author(s) (year) CD C ′L St

Wieselsberger (1932) 1.34 - -
St̊alberg et al. (2006) 1.32 0.233 0.166

Li et al. (2009) 1.336 - 0.164
Rajani et al. (2D) (2009) 1.3353 0.1792 0.1569
Rajani et al. (3D) (2009) 1.3349 0.1802 0.1569

present LBM 1.333 0.232 0.164
present hybrid LBM 1.339 0.232 0.164

Table 3: Comparison of flow quantities with earlier results, for a viscous flow past a circular
cylinder of diameter D.

(a) Standard LBM (b) Hybrid LBM uI
i + uP

i

(c) Inviscid velocity uI
i (d) Perturbation velocity uP

i

Figure 7: Instantaneous velocity magnitude normalized by the flow free-stream velocity U around
a cylinder of diameter D, at Re = 100 during steady state vortex shedding. Total velocity
calculated with the LBM (a) and hybrid pLBM (b) are compared at a similar phase of the steady
state vortex shedding cycle. The Inviscid velocity uIi driving the hybrid LBM solution (c) and
perturbation velocity uPi (d) are shown, representing the decomposed components of the hybrid
pLBM model (b).
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1.5 Conclusions

In this paper we show a rigorous validation of the fundamentals of the hybrid LBM approach,

choosing to build from simple tests in order to isolate and identify sources of error as simulation

complexity is increased. While these applications validate the accuracy, consistency, and con-

vergence of the hybrid LBM approach these simple tests are unable to show the benefits of the

hybrid approach. In subsequent papers we will extend the hybrid approach to model turbulent

flows around curved bodies using a hybrid LES scheme and turbulent wall model. The latter of

which is a novel approach to LBM wall modeling which is then extended to the hybrid LBM.

These are validated first for a turbulent channel simulation then extended to capture lift and drag

in a high Reynolds number foil validation. We then show that the perturbation LBM component

can be used to capture lift on the foil, replacing the typical Kutta condition that is applied in

potential flow solutions. This demonstration shows the method’s potential as an engineering tool

and is particularly useful during scenarios when a potential flow solution alone begins to fail

such as large angle of attacks or when 3D effects become important. Furthermor with the hybrid

approach this can be done using a significantly reduced numerical domain relative to traditional

NS solvers alone, reducing the overall computational requirements.

As simulation complexity is increased further, through the introduction of a free surface,

wave structure interaction and wave breaking, traditional NS solvers are often too computation-

ally demanding to be useful. We believe that a our hybrid method may allow for the efficient

investigation of problems such as this through the addition of a hybrid volume of fluid method

that tracks an overall fluid volume flux as a combination of inviscid and perturbation components.

This may allow the simulation of wave breaking in the perturbation solution while suppressing

wave breaking in the FNPF solution through a combined free surface condition. This hybrid

VOF methodology is under development and may further demonstrate the benefits of the hybrid

method.
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Abstract

We report on the development and validation of a 3D hybrid numerical model for the simu-

lation of complex wave-structure interactions that is based on a perturbation method, in which

the velocity and pressure are expressed as the sum of an inviscid flow with a viscous perturbation.

The far- to near-field flow can be solved with a Boundary Element Method (BEM), based on

fully nonlinear potential flow theory, and the near-field perturbation flow is solved with a Navier-

Stokes (NS) model based on a Lattice Boltzmann Method (LBM) with a Large Eddy Simulation

(LES) of the turbulence. We summarize the hybrid model formulation, where the viscous per-

turbation flow is modeled using a modified LBM collision operator, resulting in a perturbation

LBM (pLBM). The pLBM is then extended for the simulation of turbulence using the LES and

a wall model for the viscous/turbulent sub-layer near solid boundaries. The latter is based on

a novel LBM wall model that is generalized for an arbitrary geometry, which is first presented

for the LBM then extended to the pLBM. The model is validated by simulating turbulent flows

over a flat plate for Re ∈ [3.7 × 104; 1.2 × 106], for which the friction coefficient computed on

the plate and turbulent properties agree well with experiments and direct NS simulations. We

then simulate the flow past a NACA0012 foil using the LBM-LES and pLBM-LES with the wall

model, for Re = 1.44 × 106, and show a good agreement of lift forces, drag forces and pressure

distribution with experiments and other numerical methods. Results obtained with the hybrid

LBM model are either nearly identical or improved relative to those of the standard LBM, but

for a smaller computational domain, demonstrating the benefits of the hybrid approach.

2.1 Introduction

Numerical models simulating the irrotational motion of an incompressible, inviscid fluid,

based on potential flow theory, are computationally efficient and sufficiently accurate to sim-

ulate many engineering fluid problems, such as those involving free surface waves and wave-

structure interactions (e.g., [Grilli, 2010]). However, potential flow models cannot be used in

applications where viscous effects are important, for instance, in the boundary layer near solid

boundaries, in the wake of bluff bodies, or to simulate surface wave breaking. Standard Com-

putational Fluid Mechanics (CFD) Navier-Stokes (NS) solvers, such as based on a finite volume

(e.g., [Hirt and Nichols, 1981]) or Lattice Boltzmann (LBM) method (e.g., [He and Luo, 1997,

d’Humieres et al., 2002, Krafczyk et al., 2003, Geller et al., 2006, Janssen and Krafczyk, 2009,

Janssen, 2010]), can model these types of flows, but can be computationally costly. Additionally,
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for free surface flows, NS solvers are often too numerically dissipative to model wave propagation

over long distances [Biausser et al., 2004].

To more efficiently solve a broad class of hydrodynamics problems of interest to many

engineering disciplines, in this work, we detail the development of a high-fidelity but low

cost hybrid numerical model, that combines potential flow and NS models, and applies each

model in the region where it is most effective. This hybrid model is based on a pertur-

bation method proposed in earlier work, but for different numerical methods and problems

[Alessandrini, 2007, Grilli, 2008]. For instance, it was successfully used to model turbulent flows,

using a finite volume method, and validated for turbulent channel and wave induced boundary

layer flows [Harris and Grilli, 2012] and for linear ship seakeeping ([Reliquet et al, 2014]). Un-

like one- or two-way coupled models applied over separate regions of the computational domain

(e.g., [Biausser et al., 2004, Guignard et al., 1999]), in this method, both the velocity and pres-

sure fields are expressed as the sum of inviscid/irrotational (I) and viscous perturbation (P )

components, each solved using different numerical models in separate but overlapping compu-

tational domains. This method is sometimes referred to in fluid mechanics as the Helmholtz

decomposition. More specifically, the I fields are solved with a potential flow model typically

over a larger size domain extending to the far-field, whereas the P fields are solved based on

a modified (perturbed) NS equation, here with a LBM model, in a smaller near-field domain

in which viscous effects are deemed important based on the considered problem (this will be

made more clear later). Thus, the more computationally demanding pLBM model is only used

in the smaller near-field domain where viscous/turbulent effects matter, with its solution forced

by results of the potential flow model applied to the larger domain. Hence this hybrid approach

is much more computationally efficient than applying a LBM model to the entire domain, while

ensuring that the complete NS solution is solved where the physics calls for it.

In engineering applications involving complex boundary conditions and/or bound-

ary/structure geometry, the model solving potential flow equations over the entire computational

domain must itself be an optimized generic numerical solver, such as based on the higher-order

Boundary Element Method, and feature fully nonlinear free surface boundary conditions if appli-

cable [Janssen et al., 2010, Harris and Grilli, 2012]. Such cases, however, are not considered here

but are described in recent work [O’Reilly et al., 2018]. The present paper instead concentrates

on detailing the development of the pLBM model and validating it on a series of applications for

which there are analytical solutions of the potential flow fields I that can be used in the hybrid
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model to force the pLBM solution. This was first done for low Reynolds number applications

in [Janssen et al., 2018] and here we develop LES and wall boundary turbulence models for the

pLBM and extend our validation suite into the turbulent regime, which will enable the method

to be used in high Reynolds number applications.

In our work, we use a LBM to solve NS equations, instead of a finite volume solver, in part

because the data locality and kernel simplicity of the LBM allow for a very efficient parallel

implementation of the model on a “General Purpose Graphical Processor Units” (GPGPU)

[Janssen and Krafczyk, 2010, Tölke, 2008, Tölke and Krafczyk, 2008b]. While a single GPGPU

still has a limited memory, a multi-GPGPU implementation of the LBM may achieve a higher

computational efficiency, for an identical accuracy, than traditional CFD solvers implemented on a

massively parallel CPU cluster. In the hybrid method context, for many engineering applications,

the reduced-size pLBM computational domain can often be simulated using a single GPGPU

[O’Reilly et al., 2017], allowing simulations to be run on a desktop computer equipped with

a relatively inexpensive GPGPU co-processor. When the potential flow is also solved with a

numerical model, e.g., BEM based, its solution may then be calculated using the computer’s often

parallelized CPUs, with limited conflicting resource requirements. If a traditional NS solver were

to be used in place of the LBM, a significant number of CPU nodes would be required to run

it at an accuracy equivalent to that of the LBM, leading to competing computational resources

when combined with the potential flow solver.

The coupling between continuum mechanics-based equations (or models), such as poten-

tial flow, and the kinetic-based LBM is less straightforward than earlier implementations of

the hybrid method based on a volume of fluid NS solver [Harris and Grilli, 2012]. In par-

ticular, one must derive a pLBM equivalent to the nonlinear I − P coupling terms that

appear in the perturbation NS equations, as described in the following sections. To as-

sess the ability of the LBM to simulate strongly nonlinear free surface flows, Janssen et al.

[Janssen, 2010, Janssen et al., 2010, Janssen and Krafczyk, 2010] simulated the two-dimensional

(2D) “weak coupling” wave breaking results reported in earlier work [Biausser et al., 2004,

Guignard et al., 1999], using a LBM in combination with a Volume Of Fluid (VOF) interface

tracking method. In such cases, the LBM model was simply initialized with potential flow re-

sults for waves that had been propagated up to the breaking point in a potential flow BEM model

[Grilli and Horrillo, 1997, Grilli and Subramanya, 1996, Grilli et al., 1997]. Next, the same au-

thors computed similar results with the hybrid method, in which the I − P coupling terms were
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represented as LBM body force terms, using the pre-computed I fields to force the P field solution

through these terms. This approach, while proven effective, required computing spatial deriva-

tives of both the I and P fields using finite difference approximations that yielded a compact but

non-local LBM kernel. Additional analyses showed that this approach caused higher truncation

errors in the pLBM than in the original LBM collision operator and reduced the overall efficiency

of the parallelized GPGPU solution. Therefore, Janssen [Janssen, 2010] suggested instead to in-

troduce the nonlinear I −P coupling terms directly into the LBM equilibrium probability distri-

bution functions (EPDFs), hence, to develop perturbation EPDFs or pEPDFs. The latter were in-

crementally developed, implemented, and validated as part of the development of a pLBM model

component to a hybrid naval hydrodynamic solver, in which the potential flow solution, with fully

nonlinear free surface boundary conditions (FNPF), was computed using a higher-order BEM

model [O’Reilly et al., 2015, O’Reilly et al., 2016, O’Reilly et al., 2017, Janssen et al., 2018].

In this paper, we focus on the development and validation of the pLBM solver applied to

the modeling of turbulent flows after first describing the pLBM formulation with a Multiple

Relaxation Time (MRT) collision operator. To model the sub-grid turbulence within the bulk

of the fluid, the LBM-LES model originally proposed by [Krafczyk et al., 2003] is adapted to

consider the influence of the hybrid coupling. For many applications, an additional “wall model”

is required for a more accurate representation of turbulent boundary layers near solid boundaries

without the need for a refined discretization. Here we present a wall model approach to LBM

that is based on the work of [Malaspinas and Sagaut, 2014] where modifications are proposed that

extend its validity to allow a more accurate simulation of wall boundaries of arbitrary shape and

orientation. The wall model is then extended for the pLBM. The LBM-LES with the wall model

and its pLBM counterpart are validated by first simulating the flow in turbulent channels using

the test case first presented in [Malaspinas and Sagaut, 2014], but our modifications allow for

model convergence, and a nominal difference between the LBM and pLBM results are observed.

Next, the method is validated in a more rigorous test, by computing the drag, lift, and pressure

distribution on a NACA0012 foil at a Reynolds number Re = 1.44× 106 using both the standard

LBM and perturbation LBM.

2.2 The Lattice Boltzmann Method

In the LBM, the macroscopic NS equations are modeled by solving an equivalent mesoscopic

problem in which the fluid is represented by particles interacting over a (typically regular) lattice
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(or grid), through their distribution functions (DF) f(t,x, ξ), representing the normalized prob-

ability to find a particle at location x at time t with velocity ξ; the macroscopic hydrodynamic

quantities (e.g., velocity, pressure,...) are defined as moments of the DFs.

2.2.1 LBM basics

The time evolution of discrete particle DFs is governed by the Boltzmann advection-collision

equation,

Dfα
Dt

=
∂fα(t,x)

∂t
+ eα ·

∂fα(t,x)

∂x
= Ωα + Bα (57)

in which eα denotes discrete particle velocities, Ωα is a collision operator describing interactions

between particles, and Bα represents volume forces such gravity. Eq. (57) is discretized over

a regular lattice, of grid spacing ∆x using n = 19 discrete particle velocities (standard D3Q19

scheme), which point in the directions of 18 neighboring particles from a given particle location;

thus: eα = {0, 0, 0}; {±c, 0, 0}; {0,±c, 0}; {0, 0,±c}; {±c,±c, 0}; {±c, 0,±c}; {0,±c,±c}, for α =

0, ..., 18. With this choice of lattice, isotropy is maintained with lattice dependent directional

weights wα are, w0 = 1/3, w1...6 = 1/18 and w7...18 = 1/36 (see Eq. (59)) and the relation

cs = c/
√

3 for the speed of sound cs and particle propagation speed c is found.

In the standard single relaxation time (SRT) LBM, Eq. (2) is discretized by finite differences

in space and time as,

fα(t+ ∆t,x + eα∆t)− fα(t,x) = −∆t

τ
{fα(x, t)− feqα (ρ,u)}+B′α (58)

where feqα (ρ,u) are equilibrium DFs, functions of the macroscopic fluid density ρ and velocity

u, ∆t is time step (with c = ∆x/∆t), and τ = 3ν/c2 + ∆t/2, a nondimensional relaxation time

(SRT) expressed as a function of fluid viscosity ν. LBM simulations are typically split up into

a nonlinear collision step, which locally drives the particle DFs to equilibrium, and a linear

propagation step, during which the evolved DFs are advected.

For the LBM solution to satisfy the incompressible NS equations [He and Luo, 1997], the

following equilibrium function is chosen,

feqα (ρ,u) = wα

(
ρ+ ρo

(
3

(u · eα)

c2
+

9

2

(u · eα)2

c4
− 3

2

u2

c2

))
(59)

where a Chapman-Enskog expansion (described in the appendix) to Eq. (58) shows that the

incompressible NS equations are recovered up to O(∆x2) and O(Ma2) errors, with Ma= U/cs, the

Mach number and U , a characteristic flow velocity. Variables ρo and ρ represent the average fluid
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density and a small perturbation from that density, respectively. The hydrodynamic quantities

are found as low order moments of the DFs,

ρ =

n∑
α=1

fα, ρoui =

n∑
α=1

eαifα. (60)

d’Humieres et al. (2002) showed that more accurate and stable results can be obtained,

particularly for high Reynolds numbers, using the multiple relaxation time (MRT) LBM. This

method incorporates higher-order moments (i.e., hydrodynamic quantities and their fluxes) into

the solution, which have important physical significance [Lallemand and Luo, 2000] and are useful

to implement LES in the LBM for turbulent flows. In the MRT, the collision operator in the

right hand side of Eq. (58) is replaced by the following (β = 0, ..., 18; γ, δ = 0, ..., 15; repeated

indices in equations mean an implicit summation),

Ωα = −M−1αγ Sγδ(Mβδfβ −meq
δ ) (61)

where Mαγ is the transformation matrix from DFs to moments, with fα = M−1αγmγ and Sγδ is

a diagonal collision matrix of relaxation parameters, weighing different properties of the fluid.

Equilibrium moments meq
γ are derived from Eq. (59) as,

meq
0 = ρ, meq

3 = ρux, meq
5 = ρuy, meq

7 = ρuz

meq
1 = eeq = ρ0(u2x + u2y + u2z), meq

9 = 3peqxx = ρ0(2u2x − u2y − u2z)

meq
11 = peqzz = ρ0(u2y − u2z), meq

13 = peqxy = ρ0(uxuy)

meq
14 = peqyz = ρ0(uyuz), meq

15 = peqxz = ρ0(uxuz) (62)

We now consider the scaling of our physical variables to non-dimensional lattice variables

(denoted by prime variables in the following) using spatial, temporal, and mass scales λ, τ , and

$, respectively. For numerical efficiency a mesh Courant number of Co = 1 is chosen to remove

the need for finite differencing in Eq. (58). In LBM, one typically assumes, ∆x′ = ∆x/λ = 1,

∆t′ = ∆t/τ = 1, c′ = cτ/λ=1, and m′ = m/$ = 1.

Accordingly, our physical variables are scaled based on the flow Mach number Ma = u/cs =

u′/c′s and Reynolds number, Re = u`/ν = u′`′/ν′ (with ` a representative length scale of the flow)

and our physical length scale, λ, becomes λ = ∆x/`. Inserting c′s = c′/
√

3 = 1/
√

3 into the Mach

number equation gives u′ = Ma
√

3 and τ is found as τ = λu/u′. Hence, the non-dimensional

fluid viscosity reads, ν′ = ντ/λ2. For simplicity, in the following, we will drop the prime notation

for non-dimensional variables unless stated otherwise.
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2.2.2 Equations for the perturbation LBM

Here, we first recap the expressions of the NS perturbation method ([Grilli, 2008];

[Harris and Grilli, 2012]) and develop the corresponding LBM equations with MRT. Applying

a Helmholtz decomposition to the flow, both the velocity and pressure are expressed as,

ui = uIi + uPi with p̃ = p̃I + p̃P (63)

where p̃ = p + ρgx3 − 2
3ρk denotes the dynamic pressure, with k the turbulent kinetic energy.

As indicated before, superscripts I denote inviscid flow quantities, with uIi = ∇iφI satisfying

Euler equations, and superscripts P represents perturbation flow quantities that are driven by

the inviscid flow fields. After applying this decomposition and substituting Euler’s equations,

the perturbation NS equations read,

∂uPi
∂xi

= 0

∂uPi
∂t

+ uPj
∂uPi
∂xj

= −1

ρ

∂p̃P

∂xi
+ (ν + νt)

∂2uPi
∂xj ∂xj

−
(
∂uIi
∂xj

uPj + uIj
∂uPi
∂xj

)
+ 2

∂νt
∂xj

Sij (64)

where ν and νt are kinematic molecular and turbulent viscosity, respectively, with the latter

being expressed through the Smagorinsky method as,

νt = (CS∆)2|S|, with Sij = SPij + SIij =
1

2

(
∂uPi
∂xj

+
∂uPj
∂xi

+
∂uIi
∂xj

+
∂uIj
∂xi

)
(65)

where CS is the Smagorinsky constant, ∆ a grid filtering length scale, and Sij the rate of strain

tensor, which here is expressed as the sum of its perturbation SPij and inviscid SIij components,

both found as a function of the corresponding velocity components.

To recover Eq. (64) in the perturbation LBM, we decompose the DFs into their inviscid and

perturbation components, fα = f Iα + fPα . Introducing this decomposition into in Eq. (58) and

subtracting the LBM equation for the inviscid flow, we get,

fPα (t+ ∆t,x+eα∆t))−fPα (t,x)) = −∆t

τ
{fPα (t,x)−feqα (ρI +ρP ,uI +uP ) +feq,Iα (ρI ,uI)} (66)

where the feq,Iα (ρI ,uI) can exactly reproduce Euler’s equations [Janssen et al., 2018]. The per-

turbation equilibrium DFs are then found as, feq,Pα (ρP ,uP ,uI) = feqα (ρI + ρP ,uI + uP ) −

feq,Iα (ρI ,uI),

feq,Pα = wα

(
ρP + ρo

(
3
uP · eα
c2

+
9

2

(eα · uP )2 + 2(eα · uP )(eα · uI)
c4

− 3

2

(uP )2 + 2uP · uI

c2

))
,

(67)
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which satisfy,

n∑
α=1

feq,Pα = ρP ,

n∑
α=1

eαif
eq,P
α = ρou

P
i ,

n∑
α=1

eαieαjf
eq,P
α = pP δij+ρou

I
i u
P
j +ρou

P
i u

I
j +ρou

P
i u

P
j .

(68)

Extending this formulation to the MRT, assuming a collision operator expressed by Eq. (61), we

find the equilibrium moments,

meq,P
1 = eeq = ρ0((uPx )2 + (uPy )2 + (uPz )2 + 2uPx u

I
x + 2uPy u

I
y + 2uPz u

I
z)

meq,P
9 = 3peqxx = ρ0(2(uPx )2 − (uPy )2 − (uPz )2 + 4uPx u

I
x − 2uPy u

I
y − 2uPz u

I
z)

meq,P
11 = peqzz = ρ0((uPy )2 − (uPz )2 + 2uPy u

I
y − 2uPz u

I
z), meq,P

13 = peqxy = ρ0(uPx u
P
y + uPx u

I
y + uPy u

I
x)

meq,P
14 = peqyz = ρ0(uPy u

P
z + uPy u

I
z + uPz u

I
y), meq,P

15 = peqxz = ρ0(uPx u
P
z + uPx u

I
z + uPz u

I
x)

(69)

and moments that are not listed above are unchanged from the standard MRT formulation.

A Chapman-Enskog expansion using Eq. (67) shows that the laminar components of Eq.

(64) are recovered [Janssen et al., 2018] (seen in Appendix A). Note the nonlinear presence of

interaction terms between the I and P fields in Eq. (67) and Eq. (68), expressing the nonlin-

ear inviscid flow forcing on the perturbation fields without the need for directly evaluating the

derivative of the velocity. We now focus on recovering the turbulent components of Eq. (64)

using the perturbation LBM.

2.2.3 LES turbulence modeling with the perturbation LBM

Krafczyk et al. (2003) expressed the 2nd-order moments of the DFs as,

Pij =

n∑
α=1

eαieαjfα = c2sρoδij + ρouiuj −
2c2s ρo
sxx

Sij (70)

where s2 is a relaxation rate for these moments, and showed that they are related to 2nd-order

moments in the MRT, 3pxx, pzz, pxy, pyz, and pxz. The 1st and 2nd terms in Eq. (70)’s RHS

are functions of flow quantities obtained through other zeroth order moments of the DFs, and

the rate of strain tensor can be expressed as,

Sij =
sxx
2c2sρ

{c2sρ δij + ρuiuj − Pij} =
sxx

2c2sρo
Qij . (71)

Krafczyk et al. (2003) assumed that the Qij ’s are functions of the non-equilibrium part of the

DFs, fneqα = fα−feqα and provided their expressions as a function of the 2nd-order MRT moments.

Similar to the LES Eq. (65), they then calculated the turbulent viscosity as,

νt = (CS∆)2|S| = sxx
2c2sρ

(Cs∆)2|Q|, with |Q| =
√
QijQij (72)
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and expressed the relaxation rate of the 2nd-order moments as,

sxx =
1

τtotal
=

1

τ0 + τt
with τt =

1

2

(√
τ20 + 18(Cs∆)2|Q| − τ0

)
(73)

where τ0 is the relaxation time based on the molecular viscosity.

When applying the LES to the pLBM, the moments PPij are given by the last Eq. (68),

yielding an expression for the perturbation rate of strain tensor that features nonlinear interaction

terms between the I and P fields,

SPij =
sxx
2c2sρ

(
c2sρδij + ρou

P
i u

P
j + ρou

I
i u
P
j + ρou

P
i u

I
j − PPij

)
=

sxx
2c2sρ

QPij . (74)

The rate of strain tensor for the total flow is thus given by,

Sij =
sxx
2c2sρ

QPij + SIij (75)

Therefore the |Q| term to use in LES Eq. (72) and Eq. (73) in combination with the MRT LBM

Eqs. (66) to (69), is modified as follows,

|Q| =
√
RijRij with Rij = QPij +

2c2sρo
sxx

SIij (76)

where the QPij terms are computed with Eq. (74). Finally, considering Eq. (73) in Eq. (105)

found from the Chapman-Enskog expansion (seen in Appendix A) gives

∂uPi
∂t

+ uPj
∂uPi
∂xj

= −1

ρ

∂p̃P

∂xi
+ (ν + νt)

∂2uPi
∂xj ∂xj

−
(
∂uIi
∂xj

uPj + uIj
∂uPi
∂xj

)
. (77)

Note that the final term related to the gradient of the turbulent viscosity in Eq. (64), 2 ∂νt∂xj
Sij ,

is not recovered with the approach described here. It will exist both with and without the per-

turbation decomposition of the NS-LES equations and the standard LBM-LES scheme discussed

here also does not recover this term. The authors are unaware of a LBM-LES method that is

able to do so and it is possible to resolve it by using an additional body force term in Eq. (58).

However, the results presented here show a good agreement with their reference solutions, so it

is assumed that this term is small and further investigation is required.

2.3 Turbulent Wall Model

Typical naval hydrodynamics flows are fully turbulent, with Re > 106. Thus, the turbulent

boundary layers (BL) near solid boundaries (e.g., ship hull) must be properly modeled in the

LBM. Since resolving the BL in the LBM grid would be computationally prohibitive (even with

grid refinement), besides the LES of the flow, this requires implementing a turbulent a wall model

to properly capture velocity gradients near the wall and resulting wall stresses.
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Below, we describe an extension of the LBM turbulent wall model proposed by

[Malaspinas and Sagaut, 2014], who developed an appropriate treatment of the unknown DF’s

near a wall boundary and validated the method for discretizations where the near wall node

(location x1) is within the turbulent log law region (see Fig. 8). Here we propose a modification

to their model that allows for appropriate model behavior within the log law region, linear region

and transition layer, which is important for modeling curved boundaries as a large variation in

sub-grid wall distance q is inevitable. We then describe the modifications required for the pLBM

implementation of the wall model.

We begin with a macroscopic representation of the flow within the BL and the assumptions

that lead to what is commonly referred to as an “equilibrium wall model”. A thin layer ap-

proximation is introduced, implying that the mean free flow is locally nearly parallel to the solid

boundary (i.e., wall) and statistically stationary; it is also assumed that there is no horizontal

pressure gradient. In such conditions, the mean velocity profile can be found as a function of the

distance to the wall y from the semi-empirical equation proposed by [Musker, 1979], on the basis

of experimentally validated logarithmic “laws of the wall” for the fully turbulent upper BL, the

viscous lower BL, and a transition layer,

ux∗(y
+) = uτ

((
5.424 atan

(
2.0 y+ − 8.15

16.7

)
+ log10

(
(y+ + 10.6)9.6

(y+2 − 8.15 y+ + 86.0)2

)
− 3.52

)
(78)

where the friction velocity uτ and non-dimensional distance y+ are defined as,

uτ =
√
τw/ρ and y+ = y∗

uτ
ν

(79)

where x∗ and y∗ define a local wall coincident coordinate system. A common model for the

turbulent eddy viscosity is used

νt =

[
κ(∆x)qD

]2∣∣∣∣∂ux∗∂y∗

∣∣∣∣, (80)

where κ is a constant chosen to be 0.384 based on experimental data and D = (1− e
−y+
26.0 ) a Van

Driest damping function added to the length scale to eliminate an over prediction of the eddy

viscosity near the wall [Balaras and Benocci, 1994].

Turbulent Wall Model Applied to the LBM

These macroscopic quantities calculated in the previous section are used to reconstruct the

unknown DF’s at fluid nodes nearest to wall nodes. Let us define x1, x2, and n̂ as the position
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Figure 8: Sketch of LBM flow reconstruction near a solid boundary (assumed 2D for simplicity).
Boundary layer profile quantities and regions are described on the left, while LBM boundary
node reconstruction is seen on the right. Known (—–) and missing (- - - -) DF populations are
shown, along with subgrid wall distance q. This image is present in a wall coincident coordinate
system of x∗ and y∗ based on unit normal (n̂) and tangential vectors (t̂) to the wall.

of the first and second off wall lattice nodes and the outward normal unit vector at the wall,

respectively (Fig. 8). As is standard in most LBM wall boundary models, DF’s that satisfy

eα · n̂ < 0 (dashed populations seen in Fig. 8) are unknown after the propagation step and must

be reconstructed using ρ̃, ũ = ux∗ t̂ and ∂ũ/∂ỹ = −∂ũ/∂n̂.

The DFs near the wall are thus constructed as,

fα(x1, t) = feqα (ρ̃, ũ) + fneqα

(
∂ũ

∂ỹ

)
(81)

and ỹ and feqα is specified through Eq. (58) and Eq. (67) for the standard LBM or the pertur-

bation LBM methods, respectively. In accordance with the thin boundary layer assumption, we

set ρ̃ as equal to ρ evaluated at x2. Malaspinas and Sagaut (2014) construct fneqα as

fneqα

(
∂ũ

∂ỹ

)
= −wαρ0

c2sλν

3∑
i=1

3∑
j=1

{eαieαj − c2sIij}Sij (82)

where λν is the laminar relaxation time and Iij is the identity matrix. While this treatment is

suitable for large y+ values, as y+ values decrease fneqα become large relative to feqα , violating

the scale assumptions within the Chapman-Enskog expansion that requires feqα = O(1) and

fneqα = O(ε) to recover the NS equations with the LBM. This breakdown occurs within the

lower turbulent and transitional regions of the boundary layer, before the viscous sublayer is

reached and a standard “bounce back” type LBM wall treatment is valid. Therefore, we apply a

modification to Eq. (82) which uses a Van Driest function, D, to damp large values of fneqα in a
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similar manner to Eq. (80)

fneqα

(
∂ũ

∂ỹ

)
= −wαρ0D

c2sλν

3∑
i=1

3∑
j=1

{eαieαj − c2sIij}Sij . (83)

This modified treatment of the fneqα produces grid convergence over a larger range of y+ values,

which is essential for simulating curved boundaries on a regular lattice because large variations

in y∗ are inevitable due to variational distances of the wall to lattice points. We choose to damp

fneqα at a rate of D, and not D2 as in Eq. (80), based on convergence testing for the turbulent

channel simulations of section 2.4.1. Finally we note that if one were to reconstruct the unknown

values of fneqα using some combination of
∑N
α f

(1)
α =

∑N
α eiαf

(1)
α = 0 and Eq. (70) with a known

velocity gradient, either an under determined or inconsistent set of equations will be found when

using a D3Q19 lattice, depending on the wall orientation and number of unknowns.

Model Implementation

To evaluate the macroscopic variables of interest, Eq. (78) is solved through a Newton-

Raphson scheme that iterates over uτ for each near-wall lattice point, specified at location x1.

A tangential projection of the velocity at location x2 is done such that, ULES = |u(x2) · t̂| (̂t

being the unit local tangential vector). With uτ known, ux∗ and ∂ux∗/∂y
∗ can be found with

Eq. (78) and νt is found with Eq. (80) and used to calculate the relaxation rate of the 2nd-order

moments as sxx = 1/(τ0 + 3ν1T ), replacing the LES (Eq. 73).

When using this method for general boundary geometries, a shift in reference frame is needed,

such that the x-axis points towards the local streamwise direction and locations x1 and x2 align

with the wall normal. Thus, wall normal projections are applied to determine locations x2,

y∗α =
eα · −n̂

|eα|
(84)

The direction α with the largest y∗α is chosen to find x2 = x1 + eα∆t and n̂ is found at the

nearest point on the body to x1. When the wall is not coincident with the grid, a small loss of

accuracy due to geometry is accepted as eα will not perfectly align with the wall normal.

For each x1, an evaluation of n̂ and q is required at the closest point on the surface boundary

to x1, which is found using a Newton-Raphson scheme that considers a boundary described as

a polynomial in section 2.4.2 and a maximum error tolerance of ∆x/12. At all x1 locations, n̂

and q are computed at simulation start up. The time dependent tangential direction of the flow

is found by considering the flow velocity at x2 (u2),([Malaspinas and Sagaut, 2014])

t̂ =
u2 − (u2 · n̂)n̂

|u2 − (u2 · n̂)n̂|
. (85)
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Finally, for curved boundaries a scenario will arise where, for a given x1, its associated x2 will

also require its own separate wall model evaluation (i.e. x2 also has lattice links that cross the

solid boundary) and special consideration is needed to avoid a race condition during parallel

implementation.

Perturbation Expansion Applied to the Wall Model Equations

Within the wall boundary layer, the viscous component of the flow often dominates so we

reconstruct the total flow equations when the perturbation LBM is applied, then remove the

inviscid flow components after a total solution is found. The equilibrium DFs in Eq. (81) are

now those of Eq. (67), we consider the total velocity at x2 as ULES = |[uI2 + uP2 ] · t̂|, and Eq.

(85) now becomes

t̂ =
(uI2 + uP2 )− ((uI2 + uP2 ) · n̂)n̂

|(uI2 + uP2 )− ((uI2 + uP2 ) · n̂)n̂|
. (86)

Furthermore, we now use SPij = Sij−SIij instead of Sij in Eq. (83), so that only the perturbation

component is applied back to the DF’s.

2.4 Applications
2.4.1 Simulation of turbulent flow over a flat plate

Here, we validate the turbulent wall model and LES scheme for both the LBM and pLBM

by simulating a turbulent flow over a flat plate; results are compared to those of DNS simulations

of [Hoyas and Jiménez, 2009] and semi-analytical solutions ([Musker, 1979]) and measurements

of [Dean, 1976]. Although this benchmark has been run for the LBM and pLBM in previous

work ([Malaspinas and Sagaut, 2014], [O’Reilly et al., 2016] and [O’Reilly et al., 2017]), here we

present a more complete investigation that considers a wider range of discretizations, the turbu-

lent properties of the flow, and demonstrates convergence in the calculated coefficient drag force

on the wall.

We use a parallelepipedic domain of dimensions, L = 4πM , H = 2M , and W = 2πM (M

denoting the half channel width), with flat plates specified on the lower/upper boundaries at

y = 0 and H, on which the turbulent wall model is applied, and periodic boundary conditions

in the 2 horizontal directions at x = 0 and L (streamwise) and z = 0 and W (cross stream).

In this application, the flow is forced by way of a body force (term Bα in LBM Eq. 58; see,

[Cabrit, 2009]), F = {u2τ + um(um − ux)}/M , in which ux is the instantaneous space-averaged

downstream velocity component. The inviscid velocity field specified in the perturbation LBM

is uniform over the channel, uI = U , where U is calculated by applying the law of the wall, Eq.
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(78) at the center of the channel, i.e., ũ(y+) for y = H/2. The Smagorinsky constant used in the

LES is CS = 0.16 in all simulations, which is in the middle of the range of recommended values.

Each simulation is run until both a fully turbulent flow is observed and a quasi-steady mean flow

is achieved.

We tested flows for 3 values of the Reynolds number, Reτ = Muτ/ν = 950, 2,000, and

20,000 based on the friction velocity uτ , or Rem = 2Mum/ν = 37, 042, 86,773, and 1.21 × 106

based on the average bulk velocity um in the x direction, obtained from [Dean, 1976]. Each case

was simulated in 4 LBM discretizations, for which ∆x = ∆y = ∆z = M/N , with N = 10, 20,

30, and 40. The full channel width is thus discretized with 2N LBM points in the y direction.

Fig. (9)(a-c) shows the velocity profiles computed for Reτ = 950(a), 2, 000(b) and 20, 000(c)

calculated with the pLBM-LES and in all cases, the pLBM-LES results agree well with

[Musker, 1979]. This demonstrates the wall model’s ability to accurately simulate the flow for

a wide range of y+ locations of the first off-wall node. Fig. (9)(d) shows the computed bulk

friction coefficient plotted verses the bulk Reynolds number, as compared to Dean’s correlation

[Dean, 1976],

Cf = 2u2τ/u
2
m (87)

and the upper and lower bounds of his measurements are marked to indicate the experimental

variance.

In earlier turbulent channel simulations [O’Reilly et al., 2016], Cf was calculated by using

Eq. (87) where uτ was found using the spatially averaged velocity within the channel and Eq.

(78). Instead, a more general force evaluation approach is demonstrated here where the calculated

friction coefficient is defined as Cf = Fd/(
1
2ρu

2
mA), with A being the wetted area of the top and

bottom walls. The total force is calculated using a stress integration method

F =

∫∫
A

{pn̂ + τw} dA (88)

where n̂ is the unit normal vector on the surface. Discretizing the above equation yields

F =

Q∑
i

{pin̂i + τ iw}∆x2 (89)

with, ∆x the grid spacing, and Q boundary nodes. For this application the total normal compo-

nent of the force will be zero. In the LBM it is common to calculate τw using the non-equilibrium

component of the second-order moment (Eq. (70). This leads to a loss of accuracy from the can-

cellation of two close numbers in fα, and further loss of accuracy because the stress vectors acting
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Figure 9: Mean velocity u+ as a function of distance y+ above the plate calculated using the
hybrid LBM and turbulent wall model, at Rem=37,042 (a), 87,000 (b), and 1.21×106 (c). Nu-
merical results (symbols) are plotted for a half channel of resolution N = (•) 10, (�) 20, (N)
30, and N = 40 (�), compared to the velocity profile of [Musker, 1979] (—–). For visualization
purposes, results for N = 20, 30, and 40 are shifted by ∆u+ = 10, 20, and 30, respectively.
(d) Friction coefficient Cf computed, compared to [Dean, 1976] ( —–) and the upper and lower
bounds of his measurements ( - - -) as a function of Reynolds number.

on the surface of the body have to be extrapolated from the nearest lattice nodes to the bound-

ary ([Mei et al., 2002]). Here, we eliminate this error by applying τw which has been calculated

exactly at the wall boundary using the wall model.

Fig. (10) shows the turbulent velocity fluctuations and Reynolds stress in the flow for

N = 40, at Rem=37,042 (a) and 87,000 (b) with pLBM results plotted as dots and the direct

NS results of [Hoyas and Jiménez, 2009] plotted as lines. While a a generally satisfactory result

is observed, an under prediction of the turbulent kinetic energy in the flow is observed near to

the wall which is likely the result of the equilibrium wall function chosen (Equation 78). A more

advanced non-equilibum model, that considers the pressure and velocity gradients, would likely

improve this result.

As stated in section 2.3, when Eq. (82) is used to calculate the non-equilibrium compo-

nents in the wall model, we find divergence in the solution at the denser resolutions for Reτ =
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Figure 10: Turbulent fluctuation of the flow at Rem=37,042 (a) and 87,000 (b) calculated with
the hybrid LBM with dots representing u′+(•), v′+(•), w′+(•) and u′v′+(•) as compared to the
DNS values of [Hoyas and Jiménez, 2009] (shown as lines) as a function of wall distance y and
calculated using a resolution N = 40

Muτ/ν = 950 and 2, 000, particularly in the estimation of Cf ([Malaspinas and Sagaut, 2014],

[O’Reilly et al., 2016] and [O’Reilly et al., 2017]). The results shown here demonstrate a signif-

icant improvement in wall model convergence when Eq. (83) is used. Finally, in the interest of

saving space, results from the LBM-LES are not shown as almost identical results were obtained.

2.4.2 Turbulent Foil Simulation

Here, we focus on the simulation of the flow around a NACA0012 foil within the turbulent

regime, which represents a significantly more rigorous test of the LES implementation and the

turbulent wall model (TWM) due to the presence of curved boundaries and large flow gradients in

both the inviscid and perturbation fields. In the following subsections, grid independence studies

at Re = UC/ν = 1.44 × 106 (with U the free flow velocity, C the foil chord) are conducted at

several angles of attack (θ), for θ = 0◦, 4◦, 8◦ using the LBM and the pLBM.

In all simulations, convergence in spatial resolution was tested using resolutions within Grid

3 of ∆x/C = 4.0×10−3, 3.5×10−3, 3.0×10−3, 2.5×10−3 (see Fig. 11). The turbulent wall model

described in section 2.3 is applied over the entire foil surface, so it is assumed that no laminar

to turbulent transition (and associated transition region) occurs as the flow moves along the foil

chord. Furthermore, one may expect that a standard LBM “bounce back” type condition would

be appropriate when y+ is sufficiently small (approx. y+ < 5). However, in these simulations we

found that significant pressure spikes would occur between nodes where the 2 different boundary

conditions are applied. We therefore apply the TWM for all y+ values. With this setup, a max-

imum value of y+ = 292 was found at the first off boundary nodes when simulating the coarsest
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(a) (b)

# Min. Extent Dimensions Expansion
(x, y, z)/C (x, y, z)/C Ratio

0 (-23.7 -30.0 -0.3) (72.0, 60.0, 0.8) 32
1 (-1.85 -1.5 -0.1) (6.0, 3.0, 0.4) 8
2 (-0.45 -0.25 0.0) (3.0, 1.0, 0.25) 2
3 (-0.1 -0.125 0.025) (1.7, 0.25, 0.2) 1

Figure 11: Nested domain set-up for the LBM and pLBM simulations of a NACA0012 foil with
its leading edge defined at x = y = z = 0.0 and chord length C. The foil span extends beyond
the cross stream extents (z-direction) of all meshes. (a) The associated geometric parameters
for each grid; the expansion ratio indicates how the mesh size ∆x changes from one grid to the
other. In the pLBM simulations Grid 0 is eliminated. (b) a visualization of the of the edges
(black lines) of Grids 1-3 in reference to the foil seen in orange.

mesh at θ = 8◦, while many boundary nodes fall within the transitional and laminar region (below

y+ ≈ 12). To ensure a smooth transition between nested grids, we enforce that at least 3 lattice

nodes exist between the boundary of a domain and the boundary of a nested (finer) domain. DFs

are passed between nested meshes using the methods described in [Filippova and Hänel, 2008]

for the LBM and in [Janssen et al., 2018] for the pLBM. Assuming a foil chord length of C = 1

meter and that the simulations take place in air, the free stream velocity is set to U = 21.758m/s

and we match the physical and simulated Ma = c′/c′s = c/cs = 0.050. The associated physical

time step and LBM scaling parameters can now be found by using sub-section 2.2.1.

We compare our simulation results with wind tunnel measurements and the commonly used

airfoil analysis tool Xfoil [Drela and Youngren, 2001]. We use the wind tunnel measurements

of Gregory and O’Reilly (1973) measured at Re = 1.44 × 106, for NACA0012 foils of varying

roughness and Sheldahl and Klimas (2006) measured at Re = 1.36 × 106. Free boundary layer

laminar to turbulent transition is allowed for all tests and efforts were made to eliminate 3D

effects such as tip vorticies during measurements. Xfoil is a 2D BEM that accounts for the

boundary layer and wake using an integral boundary layer formulation. All Xfoil simulations

were run to match the Mach and Reynolds numbers of our simulations using a converged 200

BEM panels on the foil surface and Xfoil simulations are set up to force a turbulent boundary

layer at the leading edge of the foil.

The performance of the airfoil is evaluated with the classic pressure, lift and drag coefficients

based on the pressure at the surface of the foil (p), and the forces acting in the lift (FL) and drag
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(FD) directions.

CP =
2(p− pa)

ρaU2CS
and CD =

2FD
ρaU2CS

and CL =
2FL

ρaU2CS
(90)

with the ambient fluid density ρa, free stream velocity U , and with the foil span S and chord

C. In these tests forces are evaluated in the LBM and pLBM using the momentum exchange

method [Janssen, 2010].

LBM-LES simulation with the turbulent wall model

To validate the LBM-LES and TWM with no inviscid forcing, boundary conditions on

Grid 0 were specified as follows: (i) periodic conditions on the DFs at the sidewall boundaries

(z = −0.3/C, 0.5/C); (ii) a free stream velocity u = U on the inlet/top/bottom (x = −23.7/C,

y = ±30/C), prescribed by specifying the DFs as fα = feqα (ρa,u); (iii) zero horizontal gradient in

the DFs at the outlet (x = −23.7/C) (velocity u = U on the inlet/top/bottom (x = −48.3/C).

Although not shown here, separate tests were conducted to confirm that (x, y) domain boundaries

were sufficiently far enough away from the foil to eliminate any nonphysical influence on the foil

solution and that the domain is wide enough in the span wise direction (z) to allow sufficient 3D

characterization of the flow, which is particularly important for the LES of vortices.

At θ = 0◦, 4◦, simulations were run for 3 seconds which was sufficient to capture a steady

state flow. For θ = 8◦ 5 seconds of simulation time was required to ensure that the flow had

fully developed. At the finest resolution, ∆x/C = 2.5 × 10−3, simulations required ≈ 5.1 hours

to compute 1 second of simulation time on a NVIDIA R© Tesla R© K80 GPGPU using a single

precision implementation. We found that when the grid is refined beyond, ∆x/C = 2.5× 10−3,

double precision is required in the Newton-Rhapson iteration scheme that is used to solved Eq.

(78) within the TWM. If the non-iterative TWM that has been implemented in the LBM-RANS

simulations of [Wilhelm et al, 2018] is used, which uses a power law assumption of the velocity

profile within the entire boundary layer, we expect an increase in computational efficiency that

would be obtained at the loss of model accuracy within the linear and transitional boundary

layer profile regions.

Fig. (12) shows the results of convergence testing for the LBM simulations, where the

calculated forces are averaged over the last 10% of the simulation, and a converging trend towards

a reasonable agreement with the measurements and Xfoil is observed in lift. Predicting lift for this

foil, which is dominated by differences in pressure distribution, is in fact significantly easier than

predicting drag, which is dominated by both shear and pressure forces and can be more than an
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Figure 12: Lift (a) and drag (b) coefficient of a NACA0012 foil, as a function of its angle of attack.
LBM simulation results, calculated at Re = 1.44 × 106, are plotted as dots, for minimum Grid
3 resolution (∆x/C) of: 4.0× 10−3(•), 3.5× 10−3(•), 3.0× 10−3(•), 2.5× 10−3(•). Xfoil simula-
tion results are plotted as black diamonds (�), the measurements of [Gregory and OReilly, 1973]
for Re = 1.44 × 106 for a rough foil (—), and smooth foil (- - -), and the measurements of
[Sheldahl and Klimas, 2006] at Re = 1.36× 106 for a smooth foil (– - –).
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Figure 13: Negative pressure coefficients (Cp) plotted on the surface of the NACA0012 foil,
calculated at Re = 1.44 × 106 for θ = 0◦(a) and θ = 8◦(b). Xfoil results (—) are compared to
LBM results for (∆x/C) = 3.5× 10−3 (—), 3.0× 10−3 (—), 2.5× 10−3 (—).

order of magnitude smaller than lift. In the measured results of Gregory and O’Reilly (1973), the

rough foil shows the highest CD. This is because it will have both a higher overall skin fiction

due to the increased roughness and the added roughness will trip a turbulent boundary layer

closer to the leading edge of the foil, further increasing the viscous drag. In the LBM we assume

a fully turbulent boundary layer over the entire foil but our boundary layer equations assume a

perfectly smooth foil. Therefore our calculated CD results represent an excellent agreement with

the measurements because they fall between the rough and smooth foil. This is further verified

by our agreement with Xfoil where a fully turbulent BL and smooth foil are simulated.

Fig. (13) shows convergence in the estimated CP calculated with the LBM and Xfoil, where
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convergence towards a good agreement with Xfoil is observed. In the LBM results, the pressure

is unknown on the surface of the body and must be extrapolated based on the pressure at the

nearest LBM nodes. For these results a linear extrapolation is used. Furthermore, in most LBM

simulations of the flow around a curved body, small spurious pressure oscillations will occur

very near to the body. Therefore our Cp results have an equally weighted moving average filter

applied that has a window size of 7 LBM nodes. [Wilhelm et al, 2018] reduce these oscillations by

modifying the body geometry so that sub-grid distances (q in Fig. 8) are within an advantageous

region. Here we observe that a similar modification is required and limit our minimum sub-

grid distance that the wall model will encounter to qmin = 0.1∆x. We find that decreasing this

minimum allowable sub-grid distance increases these pressure errors, while increasing it allows for

smoother pressure distributions at the expense of an altered geometry and, for this application,

decrease in the predicted drag.

pLBM-LES simulation with the turbulent wall model

To validate the pLBM-LES and TWM along with the viscous domain reduction allowed

from the hybrid method, Grid 0 is removed from the simulation, and Grid 1 is extended outward

by 3/C in the x and y directions. While this represents a significant domain reduction relative

to the LBM, the limits of domain reduction is not tested here and the potential for further

reducing the size of the pLBM domain exists. On Grid 1, boundary conditions are specified

as follows: (i) periodic conditions on the DFs at the sidewall boundaries (z = −0.1/C, 0.3/C);

(ii) a zero perturbation solution that assumes pP = uPi = 0 at the x and y domain extents

(see. [Janssen et al., 2018]). We supply a potential flow solution that is based on the Karman-

Trefftz conformal mapping technique. No circulation is applied to the inviscid solution, and

d’Alembert paradox says the the inviscid forces will be zero on the foil. Therefore the pLBM

solution must supply a large perturbation to the inviscid flow at high angles of attack, supplying

the necessary circulation to generate lift. Our Karman-Treffts foil is seen in Fig. (14)(a) and has

a chord of CKT = 0.9972/C and thickness of tKT = 0.1192/C (the NACA0012 has a thickness

of 12/C). Our inviscid solution is found by considering the mapping function, ζ(z), that maps

a complex potential flow solution for a circle, φ, in the complex z-plane to a Karman-Trefftz

domain ([Kerwin and Hadler 2010])

ζ(z) =
λa[(z + a)λ + (z − a)λ]

(z + a)λ − (z − a)λ
. (91)
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Figure 14: (a) Comparison of the Karman-Trefftz foil profile (—) used to compute the potentiaal
flow solution with the NACA0012 foil profile (—-). (b) Visualization of the magnitude of velocity
calculated with the pLBM for a steady state and θ = 4◦; with total velocity, uTi = uIi +uPi (top),
the inviscid velocity, uIi , (middle), and perturbation velocity, uPi (bottom).

with a, the location where the circle crosses the positive x-axis and λ related to the trailing edge

angle τ (in degrees) through λ = 2− τ/180. We choose the circle to be centered at (−0.019, 0.0)

in the z-plane with a radius rc = 0.273, giving a = rc + xc = 0.254. We choose a trailing edge

of angle of 8.5◦, giving λ = 1.9528. The flow velocity is found from the derivative of potential

solution in the ζ domain, ∂φ/∂ζ = (∂φ/∂z)/(/∂ζ/∂z) and a visualization of it can be seen in Fig.

(14)(b). More details on the Karman-Trefftz mapping can be found in [Kerwin and Hadler 2010].

Fig. (15) shows the results of convergence testing for the pLBM simulations, where the

calculated forces are averaged over the last 10% of the simulation, and a converging trend towards

a reasonable agreement with the LBM solution, measurements, and Xfoil is observed at the finest

discretization (∆x/C) = 2.5 × 10−3. This demonstrates that the pLBM is capable of capturing

the lift of the foil when driven by an inviscid flow. Fig. (16) shows an example of the hybrid

decomposition as applied to the pressure acting on the foil at (∆x/C) = 2.5 × 10−3, where a

reasonable agreement with the Xfoil solution is observed when considering the total pressure

pT = pI + pP . As was done in the LBM results of Fig. (13), a linear interpolation from the

boundary nodes to the surface of the foil is applied to pP , then an evenly weighted moving

average filter of 7 nodes is applied. A visualization of the velocity decomposition uTi = uPi + uIi

can be seen in Fig. (14)(b) for (∆x/C) = 2.5×10−3, showing that a qualitatively reasonable flow

is achieved. At the finest resolution, ∆x/C = 2.5 × 10−3, simulations required ≈ 4.8 hours to

compute 1 second of simulation on on an NVIDIA R© Tesla R© K80 GPGPU, representing a slight

speedup relative to the LBM results. Furthermore, the the pLBM needed to simulate less time

for a steady state result to be achieved by approximately 1 second. This overall speedup is not
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Figure 15: Lift (top) and drag (bottom) coefficient of a NACA0012 foil, as a function of its angle of
attack. pLBM simulation results, calculated at Re = 1.44×106, are plotted as dots, for minimum
Grid 3 resolution (∆x/C) of: 4.0×10−3(•), 3.5×10−3(•), 3.0×10−3(•), 2.5×10−3(•). Xfoil simula-
tion results are plotted as black diamonds (�), the measurements of [Gregory and OReilly, 1973]
for Re = 1.44 × 106 for a rough foil (—), and smooth foil (- - -), and the measurements of
[Sheldahl and Klimas, 2006] at Re = 1.36× 106 for a smooth foil (– - –).

large because the bulk of the computational effort is in the grids near to the foil. However a

greater speedup will be achieved for applications where the domain reduction can be applied in

all 3 dimensions and when free surface waves must be modeled.

Limited convergence and slight under prediction in CL and CD is observed and this is a

result of the differences between the KT and NACA foil geometries, where the KT foil has a

smaller thickness relative to the NACA foil near the leading and trailing edges (see Fig. (14),

where the geometry at these locations can significantly affect the solution. The narrow KT foil

approximately between 0 < x/C < 0.25 results in an under prediction of uIi near the leading

edge, which leads to an under prediction of the peak in -Cp that is important for capturing lift,

as seen in Fig. (16(d)). Near the trailing edge of the foil and at an angle of attack, high inviscid

velocities are present as the inviscid flow wraps around the trailing edge (see Fig. (14)(b)). Thus

a large correction must be applied by the perturbation solution, which will provide circulation

to the flow. We see in Fig. (16)(b) and (d) that the perturbation component indeed provides

a significant correction, but a better representation of the NACA foil geometry is required in

the inviscid solution. This discrepancy at the tail of the foil is likely the cause for the lack of

convergence in the highly sensitive prediction of drag and a BEM solution for the inviscid flow

is required (this is being corrected for journal publication).
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Figure 16: Negative pressure coefficients (Cp) plotted on the surface of the NACA0012 foil,
calculated at Re = 1.44× 106 for θ = 0◦(a)(c) and θ = 8◦(b)(d). Xfoil results (—) are compared
to pLBM results for (∆x/C) = 2.5× 10−3 with (a) and (b) showing the perturbation component
of the pressure pP , calculated in the pLBM (—) which is driven by its inviscid counterpart pP

(—) and with (c) and (d) showing the total pressure, pT = pI + pP , (—).

2.5 Conclusions

In this paper we successfully extend our pLBM and hybrid method to simulate turbulent

flows. Its potential for providing a large correction to the potential flow is demonstrated in the

foil simulations by capturing lift without the need to supply circulation in the inviscid solution.

This indicates the possibility for the pLBM to correct an inviscid solution when 3D effects are

become large and where tip vortices and viscous spanwise flow can become important. While

only a small computational speedup was achieved in the pLBM relative to the LBM in the foil

simulations, a test of the limits to domain reduction was not conducted, which will be evaluated

in future work with a better inviscid solution. While the potential speedup for a largely 2D

simulation may not be large, we anticipate a larger hybrid speedup when the domain reduction

can be applied in 3 dimensions. Further speedup is anticipated when free surface effects are

introduced as the perturbation solver will no longer need to propagate waves over large distances
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away from a body.
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2.7 Appendix A: Recovering the perturbation NS equations from the perturbation
LBM

By applying a Chapman-Enskog (CE) expansion, the macroscopic behavior of a LBM model

formulation can be found from a multi scaling analysis. An expansion parameter ε is introduced,

which is proportional to the ratio of the lattice grid ∆x to a characteristic macroscopic length

(e.g., `). In the following, the CE scaling analysis is applied to the pEPDFs (67), by way of a

perturbation expansion, which shows that these indeed allow one to recover the perturbation NS

Eqs. (64).

CE expansion

Let us first consider the following quantities and scales. For convenience of notations, time

derivatives ∂/∂t are denoted as ∂t and spatial derivatives as ∂/∂xi as ∇i. With ε = ∆x/`� 1,

the PDFs are expanded as follows,

fα = f (0)α + εf (1)α + ε2f (2)α +O(ε3) with ∂t = ε∂t1 + ε2∂t2 +O(ε3) and ∇i = ε∇i

(92)

With these definitions, the Taylor series expansion of the first term on the LHS of Eq. (58) reads,

fα(t+ ∆t, xi + eαi∆t) = fα(t, xi) + ∆tε(∂t1 + eαi∇i)fα(t, xi)+

∆t2

2
ε2(∂t1 + eαi∇i)(∂t1 + eαj∇j)fα(t, xi) +O(ε3), (93)

Defining Dα = ∂t1 + eαi∇i, and collecting terms up to different orders yields to first order

[Guo et al., 2002, Janssen, 2010],

O(1) : 0 = −∆t

τ
(f (0)α − feqα ) (94)

and thus f0α = feqα .

The PDF components of O(ε) or smaller are then defined as the non-equilibrium components

of the PDFs (fneqα ), i.e.,

O(ε) : Dαf
(0)
α = −1

τ
f (1)α (95)
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O(ε2) : ∂t2f
(0)
α +

∆t

2
∂t1Dαf

(0)
α +

∆t

2
eαi∇iDαf

(0)
α +Dαf

(1)
α = −1

τ
f (2)α . (96)

Substituting Eq. (95) into Eq. (96) yields,

O(ε2) : ∂t2f
(0)
α +

(
1− ∆t

2τ

)
Dαf

(1)
α = −1

τ
f (2)α . (97)

PDF moments

Computing the zeroth-order moment of Eq. (95) and considering the pEPDFs (67) recovers

the conservation of mass equation for the perturbation NS equations,

n∑
α=1

∂t0f
(0,P )
α +

n∑
α=1

eαi∂if
(0,P )
α = −1

τ

n∑
α=1

f (1,P )
α

∂tρ
P + ρo∇iuPi = 0, (98)

while the inviscid mass conservation equation is recovered when the inviscid form of the EPDFs

are used,

ρo∇iuIi = 0. (99)

Taking the first-order moment of Eq. (95) and considering the pEPDFs (67) recovers the leading

order terms of the perturbation NS equations,

n∑
α=1

eαi∂t0f
(0,P )
α +

n∑
α=1

eαieαi∇if (0,P )
α = −1

τ

n∑
α=1

eαif
(1,P )
α

∂tρou
P
i +∇i(pP + ρou

I
i u
P
j + ρou

P
i u

I
j + ρou

P
i u

P
j ) = 0, (100)

and the inviscid momentum conservation equations (Euler equations) are recovered when the

inviscid form of the EPDFs of Eq. (59) are used,

∂tρou
I
i +∇i(pI + ρou

I
i u
I
j ) = 0. (101)

The latter confirms that Euler equations are exactly represented in the LBM when using the

inviscid form of the EPDFs in Eq. (59), feq,Iα . This is unlike NS or perturbation NS equations,

in which non-equilibrium components of the EPDF’s must be included to represent viscous effects.

Therefore, in the hybrid modeling context, this implies that an inviscid potential flow field

satisfying Euler equations can be exactly mapped to the LBM variables using feq,Iα . Finally,

this confirms that the decomposition method used to derive Eqs. (67) does not need to consider

fneq,Iα or its moments, since these are zero by definition.
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Based on these conclusions, one may infer that the numerical kinematic viscosity of the

pLBM can be selected as identical to that of the standard LBM. This is confirmed by taking the

first-order moment of Eq. (97), and then applying Eq. (67),

n∑
α=1

eα∂t2f
(0,P )
α +

n∑
α=1

eα

(
1− ∆t

2τ

)
(∂t0 + eαi∇i)f (1,P )

α = −1

τ

n∑
α=1

eαeαf
(2,P )
α

(102)

where the first moment of f
(1,P )
α is zero in the absence of a body force, and its second moment

found by considering, εΠ(1,P ) = Π−Π(0,P ), with,

Π(1,P ) =

n∑
α=1

eαieαjf
(1,P )
α = −c2sτ(∂iρou

P
j + ∂jρou

P
i ) (103)

and giving

∂t2ρou
P
i −∇i

(
τ − ∆t

2

)
c2s(∇jρouPk +∇kρouPj ) = 0. (104)

The perturbation momentum conservation equations can now be recovered by considering Eqs.

(100) and (102) to within O(ε2) and O(Ma2) as,

∂tρou
P
i + ρo∇j(uiPujP + ui

Puj
I + ui

Iuj
P ) = −∇jpP + ν∇2

ju
P
i (105)

when the viscosity is defined as

ν =

(
τ − ∆t

2

)
c2s. (106)

This confirms that the standard LBM relaxation time is suitable for use in the pLBM.
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Abstract

We report on the development and validation of a 3D hybrid model for naval hydrodynamics

problems based on a perturbation method, in which both velocity and pressure are expressed as

the sum of an inviscid flow with a viscous perturbation. The far- to near-field inviscid flows can be

solved with a Boundary Element Method (BEM), based on fully nonlinear potential flow theory,

and the near-field perturbation flow is solved with a NS model based on a Lattice Boltzmann

Method (LBM) with a Large Eddy Simulation (LES) of the turbulence. We summarize the

hybrid model formulation, present a novel hybrid volume of fluid (hVOF) approach to modeling

the combined free surface of the LBM and BEM solvers, and summarize a new meshing tool for

importing general geometries into the LBM. The combined LBM-BEM model is then validated

by simulating the flow around a NACA0012 foil for Re = 1.44× 106 without a free surface and

calculating the steady resistance of a Joint High Speed Sealift ship hull form using a linear free

surface wave solution. Numerical errors involved in the coupling are investigated. Finally the

VOF and hVOF schemes are validated by simulating a towed hydrofoil near a free surface and a

nonlinear wave interacting with a cylinder with comparisons made to experiments.

3.1 Introduction

Numerical models simulating the irrotational motion of an incompressible, inviscid fluid,

based on potential flow theory, are computationally efficient and sufficiently accurate to simulate

many engineering fluid problems, such as those involving free surface waves and wave-structure

interactions (e.g., [20]). However, potential flow models cannot be used in applications where

viscous effects are important, for instance, in the boundary layer near solid boundaries, in the

wake of bluff bodies, or to simulate surface wave breaking. Standard Computational Fluid

Mechanics (CFD) Navier-Stokes (NS) solvers, such as those based on a finite volume (e.g., [31])

or Lattice Boltzmann (LBM) method (e.g., [30, 12, 40, 16, 32, 33]), can model these as well as

all types of flows, but are computationally costly. Additionally, for free surface flows, NS solvers

are often too numerically dissipative to model wave propagation over long distances [7].

To more efficiently solve a broad class of hydrodynamics problems of interest to many engi-

neering disciplines, in this work, we detail the development of a high-fidelity but low cost hybrid

numerical model, that combines potential flow and NS models, and applies each model in the

region where it is most efficient and accurate. This hybrid model is based on a perturbation

method proposed in earlier work [2, 19, 37, 53], but extends the method to free surface flow
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problems. Previously, this method was successfully used to model turbulent flows, using a finite

volume method, and validated for turbulent channel and wave induced boundary layer flows

[29] and demonstrated in modeling linear ship seakeeping [57]. Unlike one- or two-way coupled

models applied over separate regions of a computational domain [7, 26], in this method both

the velocity and pressure fields are expressed as the sum of inviscid/irrotational (I) and viscous

perturbation (P ) components, each solved using different numerical models in separate but over-

lapping computational domains. The decomposition of the flow field in this way is referred to in

fluid mechanics as the Helmholtz decomposition. More specifically, the I fields are solved with a

potential flow model typically over a larger size domain extending to the far-field, whereas the

P fields are solved based on a modified (perturbed) NS equation, here with a LBM model, in a

smaller near-field domain in which viscous effects are deemed important based on the considered

problem (this will be made more clear later). Thus, the more computationally demanding per-

turbation LBM model, referred to as pLBM, is only used in the smaller near-field domain where

viscous/turbulent effects matter, with its solution forced by results of the potential flow model

applied to the larger domain. Hence this hybrid approach is much more computationally efficient

than applying a LBM model to the entire domain, while ensuring that the complete NS solution

is solved where the physics calls for it.

In engineering applications involving complex boundary conditions and/or bound-

ary/structure geometry, the model solving potential flow equations over the entire computational

domain must itself be an optimized generic numerical solver, such as based on the higher-order

Boundary Element Method, and feature fully nonlinear free surface boundary conditions if ap-

plicable [34, 29].

In our work, we use a LBM to solve NS equations, instead of a finite volume solver as in

earlier work, in part because the data locality and kernel simplicity of the LBM allow for a very

efficient parallel implementation of the model on a “General Purpose Graphical Processor Units”

(GPGPU) [35, 61, 62]. While a single GPGPU still has a limited memory, a multi-GPGPU

implementation of the LBM may achieve a higher computational efficiency, for an identical ac-

curacy, than traditional CFD solvers implemented on a massively parallel CPU cluster. In the

hybrid method context, for many engineering applications, the reduced-size pLBM computa-

tional domain can often be simulated using a single GPGPU [52], allowing simulation to be run

on a desktop computer equipped with a relatively inexpensive GPGPU co-processor. When the

potential flow is also solved with a numerical model, e.g., BEM based, its solution may then
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be calculated using the computer’s often parallelized CPUs, with limited conflicting resource re-

quirements. If a traditional NS solver were to be used in place of the LBM, a significant number

of CPU nodes would be required to run it at an accuracy equivalent to that of the LBM, leading

to competing computational resources when combined with the potential flow solver.

The coupling between continuum mechanics-based equations (or models), such as potential

flow, and the kinetic-based LBM is less straightforward than the earlier implementation of the

hybrid method based on a volume of fluid NS solver [29]. In particular, one must derive a

pLBM equivalent to the nonlinear I − P coupling terms that appear in the perturbation NS

equations, details are given in the following sections. To assess the ability of the LBM to simulate

strongly nonlinear free surface flows, Janssen et al. [33, 34, 35] simulated the two-dimensional

(2D) “weak coupling” wave breaking results reported in earlier work [7, 26], using a LBM in

combination with a Volume Of Fluid (VOF) interface tracking method. In such cases, the LBM

model was simply initialized with potential flow results for waves that had been propagated

up to close to the breaking point in a potential flow BEM model [22, 23, 24]. Next, the same

authors computed similar results with the hybrid method, in which the I − P coupling terms

were represented as LBM body force terms, using the pre-computed I fields to force the P

field solution through these terms. This approach, while proven effective, required computing

spatial derivatives of both the I and P fields using finite difference approximations that yielded

a compact but non-local LBM kernel. Additional analyses showed that this approach causes

higher truncation errors in the pLBM than in the original LBM collision operator and reduces

the overall efficiency of the parallelized GPGPU solution. Therefore, Janssen [33] suggested

instead to introduce the nonlinear I − P coupling terms directly into the LBM equilibrium

probability distribution functions (EPDFs), hence, to develop perturbation EPDFs or pEPDFs.

The latter were incrementally developed, implemented, and validated as part of the development

of a pLBM model component to a hybrid naval hydrodynamic solver, in which the potential flow

solution, with fully nonlinear free surface boundary conditions (FNPF), was computed using a

higher-order BEM model [50, 51, 52, 37, 52].

In this paper, we develop a hybrid free surface capturing method based on the volume of

fluid (VOF) approach, where a fluid volume is tracked considering the combined flux of the I

and P fields, yielding a total free surface in the pLBM. This leads to situations where the total

free surface is either below or above the inviscid one, and the associated modifications to the

free surface boundary condition, conservation equations, and pLBM variables are detailed. At
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locations where the inviscid solutions are not present, the pLBM switches to the standard LBM

to simulate the full NS equations. This contrasts with other methods such as [57], where the

inviscid flow solution is extrapolated at locations where the inviscid field is not present. Using the

total free surface, wave breaking can be simulated in the pLBM, which can be used to eliminate

wave breaking in the BEM solution. We also report on the extension of the pLBM to simulate

general geometries that are not analytically defined like in previous work. This is done through

the importation of a stereolithiography file and using a ray intersection routine at each pLBM

node. A validation of the hybrid LBM-BEM coupling is conducted by simulating a NACA0012

foil and a Joint High Speed Sealift (JHSS) ship hull and the numerical errors associated with

the coupling are discussed. The VOF and hVOF scheme is also tested by simulating a nonlinear

wave interacting with a cylinder and a towed submerged hydrofoil.

3.2 Lattice Boltzmann Method (LBM)

In part due to its efficiency, models based on the LBM have become increasingly widely

used for solving a variety of complex fluid dynamics and multi-fluid multi-physics problems (e.g.,

[3, 4, 5]). By contrast, with classical CFD solvers that model the macroscopic NS equations on

a continuum basis, the LBM simulates CFD problems on a mesoscopic scale, in which the fluid

is represented by the distribution functions (DFs) of discrete particles moving on a fixed lattice.

Macroscopic hydrodynamic quantities are obtained from low-order moments of the DFs. He and

Luo, [30], Lallemand and Luo [41], and d’Humieres et al. [12] discuss the LBM theory.

Besides its numerical efficiency, significant advantages of the LBM are that it exactly sat-

isfies mass conservation and, being a pseudo-compressible method, for a single fluid there is no

need to solve a pressure Poisson equation, which is typically the most time consuming part of

CFD solvers. A disadvantage is the LBM low order of convergence of numerical errors (second-

order), consistent with the Chapman-Enskog expansion, which requires using smaller spatial and

temporal discretization sizes than for standard CFD solvers, to achieve a similar numerical accu-

racy. This, however, is typically compensated for by the LBM’s excellent scalability on massively

parallel computer hardware [14]; GPGPU implementations of the LBM have achieved remark-

able performances [61, 62, 35]. Geller et al. [16] present a study of transient laminar flows,

as compared to solutions of standard CFD solvers, and Krafczyk et al. [40] discuss Large Eddy

Simulations (LES), both demonstrating the efficiency and accuracy of the LBM in these contexts.
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3.2.1 LBM fundamentals

The primary variable of microscopic kinetic approaches is the particle distribution function

(PDF) f(t,x, ξ), which specifies the normalized probability to encounter a particle at position x

at time t, with velocity ξ. The PDF evolution is described by the Boltzmann equation,

Df

Dt
=
∂f(t,x, ξ)

∂t
+ ξ · ∂f(t,x, ξ)

∂x
= Ω +B, (107)

whose left-hand side is an advection-type expression, the collision operator Ω describes particle

interactions at the microscopic scale, and B represents body force effects.

A computationally efficient 3D model based on the Boltzmann Eq. (1) is first obtained

by introducing a discretization in the velocity space ξ, and the resulting discrete Boltzmann

equations,

Dfα
Dt

=
∂fα(t,x)

∂t
+ ξα ·

∂fα(t,x)

∂x
= Ωα +Bα. (108)

In this work we solve Eq. (108) on the commonly used D2Q9 and D3Q19 lattices. The for-

mer uses 9 lattice vectors, or lattice links connecting a node to its neighbors, with eα =

{0, 0} , {±c, 0} , {0,±c} , {±c,±c} , α = 0, . . . , 9 and the latter contains 19 vectors eα =

{0, 0, 0} , {±c, 0, 0} , {0,±c, 0} {0, 0,±c} , {±c,±c, 0} , {±c, 0,±c} , {0,±c,±c} , α = 0, . . . , 18 [55],

with a constant velocity c representing the speed of particle propagation on the lattice. Eq. (108)

is now discretized in space and time using a standard first-order finite difference scheme, which

yields the lattice Boltzmann equations,

fα(t+ ∆t,x+ eα∆t)− fα(t,x) = Ωα +Bα (109)

with ∆x and ∆t, the spatial and temporal resolution, respectively. In the LBM, this equation is

divided into a nonlinear collision step, which drives the PDFs towards a local equilibrium, and a

non-local linear propagation step, where the post-collision PDFs (f̄α) are advected to neighboring

nodes as,

f̄α(t,x) = fα(t,x) + Ωα +Bα and fα(t+ ∆t,x+ eα∆t) = f̄α(t,x) (110)

respectively. It has been well-established in the literature that, with the proper choice of the

collision operator (see subsections 3.2.2 and 3.2.3), the solution of the lattice Boltzmann Eqs.

(109) converge to that of the incompressible NS equations to within O(∆x2) and O(Ma2) [15, 38].

Macroscopic values of the hydrodynamic pressure p = c2sρ (assuming an ideal gas) and fluid
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velocity u are then found from hydrodynamic moments of the PDFs as,

p (x, t) = c2sρ (x, t) = c2s

Q∑
α=0

fα (x, t) and u (x, t) =
1

ρ

Q∑
α=0

eαfα (x, t) (111)

with Q = 9, 18 for our 2D and 3D lattices, respectively.

For clarity, we first consider the lattice scaling and discrete lattice effects associated with

our numerical scheme. To enforce isotropy, lattice dependent weighting factors wα (seen in Eq.

(114)) are introduced as a result of using different lattice lengths eα [42]

w0 =
1

3
, w1..6 =

1

18
and w7..18 =

1

36
. (112)

Both of these choices give the relationship between the speed of sound cs and particle velocity

as c2s = c/3.

We now consider the scaling of our physical variables to non-dimensional lattice variables

(denoted by prime variables in the following) using spatial, temporal, and mass scales λ, τ , and

$, respectively. For numerical efficiency a mesh Courant number of Co = 1 is chosen to remove

the need for finite differencing in Eq. (109). In LBM, one typically assumes, ∆x′ = ∆x/λ = 1,

∆t′ = ∆t/τ = 1, c′ = cτ/λ=1, and m′ = m/$ = 1.

Accordingly, our physical variables are scaled based on the flow Mach number Ma = u/cs =

u′/c′s and Reynolds number, Re = u`/ν = u′`′/ν′ (with ` a representative length scale of the flow)

and our physical length scale, λ, becomes λ = ∆x/`. Inserting c′s = c′/
√

3 = 1/
√

3 into the Mach

number equation gives u′ = Ma
√

3 and τ is found as τ = λu/u′. Hence, the non-dimensional

fluid viscosity reads, ν′ = ντ/λ2. For simplicity, in the following, we will drop the prime notation

for non-dimensional variables unless stated otherwise.

3.2.2 Collision operators

For modeling interactions between fluid particles, different collision operators Ωα have been

proposed. In the single relaxation time (SRT) model [6], the PDFs are driven towards an equi-

librium state (denoted by an eq superscript) based on a single relaxation time τ = 3ν/c2 + ∆t/2,

for which particle collisions are modeled as,

Ωα = −∆t

τ
{fα(x, t)− feqα (ρ,u)} (113)

with,

feqα (ρ,u) = wα

(
ρ+ ρo

(
3

(u · eα)

c2
+

9

2

(u · eα)2

c4
− 3

2

u2

c2

))
(114)
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where variables ρo and ρ now representing the average fluid density and a small density pertur-

bation, respectively [30].

In the more advanced and accurate MRT model [12], the PDFs and equilibrium PDFs

(EPDFs) are transformed into moment space, where the PDFs are relaxed using several different

relaxation rates (and times). MRT was shown to increase the stability of LBM models, partic-

ularly when applied to high Reynolds flows, which are of greater practical interest, and at the

same time to enable the development of more accurate boundary conditions [17]. The moments

used in the MRT m = M · f are labeled as,

m = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pxz,mx,my,mz)
T
,

and denote the following: mass density m0 = ρ; the part of kinetic energy independent of density

m1 = e; the part of kinetic energy square independent of density and kinetic energy m2 = ε;

momentum m3,5,7 = jx,y,z; m4,6,8 = qx,y,z are related to heat flux; m9,11,13,14,15 are related to

the symmetric traceless viscous stress tensor; m16,17,18 are third-order moments; and m10,12 are

fourth-order moments. The collision operator for the MRT model is defined as,

Ω = M−1 · S · (M · f −meq) (115)

where M denotes the transformation matrix from distribution functions to moments (m = M · f

and f = M−1 ·m), meq
α are equilibrium moments, and S = sα,α is a diagonal collision matrix of

relaxation parameters. The parameters,

s9,9 = s11,11 = s13,13 = s14,14 = s15,15 = −∆t

τ
= sω (116)

are related to the kinematic viscosity ν via the relaxation time τ as,

τ = 3
ν

c2
+

1

2
∆t. (117)

The remaining relaxation parameters,

s1,1 = sa, s2,2 = sb, s4,4 = s6,6 = s8,8 = sc,

s10,10 = s12,12 = sd and s16,16 = s17,17 = s18,18 = se.

can be tuned to improve the model stability [41]. While the optimal values of these parameters

depend on the specific system under consideration (geometry, initial and boundary conditions),

reasonable values are given in [12]. Here, we use sa = sb = sc = sd = se = −1.0.
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3.2.3 Equations for the perturbation LBM

Here, we first recap the expressions of the NS perturbation method ([19]; [29]) and develop

the corresponding LBM equations with MRT. Applying a Helmholtz decomposition to the flow,

both the velocity and pressure are expressed as,

ui = uIi + uPi with p̃ = p̃I + p̃P (118)

where p̃ = p + ρgx3 − 2
3ρk denotes the dynamic pressure, with k the turbulent kinetic energy,

modeled with a sub-grid LES model here (Eq. 120). As indicated before, superscripts I denote

irrotational flow quantities, with uIi = ∇iφI satisfying Euler equations, and superscripts P

represents perturbation flow quantities that are driven by the inviscid flow fields. After applying

this decomposition and substituting Euler’s equations, the perturbation NS equations read,

∂uPi
∂xi

= 0 (119)

∂uPi
∂t

+ uPj
∂uPi
∂xj

= −1

ρ

∂p̃P

∂xi
+ (ν + νt)

∂2uPi
∂xj ∂xj

−
(
∂uIi
∂xj

uPj + uIj
∂uPi
∂xj

)
+ 2

∂νt
∂xj

Sij + gi

where gi represent a body force while ν and νt are kinematic molecular and turbulent viscosity,

respectively, with the latter being expressed through the Smagorinsky method as,

νt = (CS∆)2|S|, with Sij = SPij + SIij =
1

2

(
∂uPi
∂xj

+
∂uPj
∂xi

+
∂uIi
∂xj

+
∂uIj
∂xi

)
(120)

where CS is the Smagorinsky constant, ∆ a grid filtering length scale, and Sij the rate of strain

tensor, which here is expressed as the sum of its perturbation SPij and inviscid SIij components,

both found as a function of the corresponding velocity components.

To recover Eq. (120) in the perturbation LBM, we decompose the DFs into their inviscid

and perturbation components, fα = f Iα + fPα . Introducing this decomposition into in Eq. (109)

and subtracting the LBM equation for the inviscid flow, we get,

fPα (t+∆t,x+eα∆t))−fPα (t,x)) = −∆t

τ
{fPα (t,x)−feqα (ρI +ρP ,uI +uP )+feq,Iα (ρI ,uI)} (121)

where the feq,Iα (ρI ,uI) can exactly reproduce Euler’s equations [37]. The perturbation equilib-

rium DFs are then found as, feq,Pα (ρP ,uP ,uI) = feqα (ρI + ρP ,uI + uP )− feq,Iα (ρI ,uI),

feq,Pα = wα

(
ρP + ρo

(
3
uP · eα
c2

+
9

2

(eα · uP )2 + 2(eα · uP )(eα · uI)
c4

− 3

2

(uP )2 + 2uP · uI

c2

))
,

(122)

which satisfy,

n∑
α=1

feq,Pα = ρP ,

n∑
α=1

eαif
eq,P
α = ρou

P
i ,

n∑
α=1

eαieαjf
eq,P
α = pP δij+ρou

I
i u
P
j +ρou

P
i u

I
j +ρou

P
i u

P
j .

(123)
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Extending this formulation to the MRT, assuming a collision operator expressed by Eq. (115),

we find the equilibrium moments,

meq,P
1 = eeq = ρ0((uPx )2 + (uPy )2 + (uPz )2 + 2uPx u

I
x + 2uPy u

I
y + 2uPz u

I
z)

meq,P
9 = 3peqxx = ρ0(2(uPx )2 − (uPy )2 − (uPz )2 + 4uPx u

I
x − 2uPy u

I
y − 2uPz u

I
z)

meq,P
11 = peqzz = ρ0((uPy )2 − (uPz )2 + 2uPy u

I
y − 2uPz u

I
z), meq,P

13 = peqxy = ρ0(uPx u
P
y + uPx u

I
y + uPy u

I
x)

meq,P
14 = peqyz = ρ0(uPy u

P
z + uPy u

I
z + uPz u

I
y), meq,P

15 = peqxz = ρ0(uPx u
P
z + uPx u

I
z + uPz u

I
x)

(124)

Moments that are not listed above are unchanged from the standard MRT formulation.

A Chapman-Enskog expansion using Eq. (122) shows that the laminar components of Eq.

(120) are recovered [37] and the turbulent components can be modeled using the methodology

of O’Reilly et al. (2018).

3.3 Free Surface Boundary Conditions with the Perturbation Method

At the free surface, the kinematic free surface boundary condition (KFSBC), represents a

material derivative at the free surface

∂η

∂t
+ u1

∂η

∂x1
+ u2

∂η

∂x2
− u3 = 0 on x3 = η (125)

The dynamic free surface boundary condition (DFSBC) is obtained by expressing that the pres-

sure at the free surface boundary is equal to the atmospheric pressure, pa, and assuming zero

shear stress at the free surface

p̃ = p+ ρgx3 −
2

3
ρk = pa on x3 = η (126)

with p̃ the dynamic pressure, and k the turbulent kinetic energy, modeled with a sub-grid LES

model (Eq. 120).

With the perturbation decomposition of Eq. (118) the total pressure may be further de-

composed knowing that the inviscid solution considers gravity forcing and that the perturbation

pressure contains the turbulence term.

p̃I = pI + ρgz (127)

p̃P = pP − 2

3
ρk (128)

and by definition, u′I = 0. Therefore nonlinear inviscid coupling is not present in this term.
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As with the Helmholtz decomposition of the velocity fields, the total free surface may be

defined as an inviscid free surface plus a perturbation from that surface.

ηT = ηI + ηP (129)

Within the pLBM, the total free surface is simulated so the total KFSBC must consider both

the inviscid and perturbation velocities

∂ηT

∂t
+ (uI1 + uP1 )

∂ηT

∂x1
+ (uI2 + uP2 )

∂ηT

∂x2
− (uI3 + uP3 ) = 0 (130)

This condition is satisfied through the volume of fluid method in which the total fill level is

tracked as a sum of the inviscid and perturbation volume fluxes.

The hybrid DFSBC is

p̃P + p̃I = pa on x3 = ηT (131)

Using gage pressure, we define atmospheric pressure as pa = 0. An additional constraint is that

the inviscid solution enforces that p̃I = pa at ηI . The hybrid DFSBC must therefore consider

scenarios where the perturbation free surface is either above or below the inviscid free surface

(Fig. 17) such that: 
p̃P = −p̃I at ηT , if ηP ≤ 0

p̃P = pa at ηT , if ηP > 0

(132)

When ηP > 0 the perturbation solution exists outside of the inviscid field and the full NS

equations must be represented above the inviscid solution (Fig. 17(a)). Thus p̃P = pP + ρg3x3−
2
3ρk, and hydrostatic pressure is now present in this region. Additional modeling considerations

are required at the ηI interface to ensure that the conservation equations are enforced across the

boundary.
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(a) (b)

Figure 17: Visualization of the hVOF with (a) a scenario when the total free surface is above
the inviscid one, ηT > ηI , illustrating the perturbation NS domain (red) and a region where the
total NS is solved (blue). (b) a scenario when the total free surface is below the inviscid one,
ηT < ηI and the dynamic free surface boundary condition is modified in the pLBM.

3.4 Hybrid Volume of Fluid Method

The volume of fluid (VOF) method captures the interface via a fill level of a given cell,

ε =
Vfluid
Vcell

(133)

The VOF scheme considers cells centered at each LBM node and uses the flow quantities present

at each cell center. A fill level of 0.0 marks an empty cell (gas), a fill level of 1.0 marks a full

cell (fluid), while fluid and gas cells are seperated by an interface layer with a fill between 0.0

and 1.0. During time evolution, no cell may transition directly from a fluid to gas or vice versa.

This is essential to conserve mass as the interface cells are where the total mass is balanced [39].

When an interface cell becomes filled (ε > 1.0) or empty (ε < 0.0), it becomes fluid or gas cells

respectively, and new neighboring interface cells are initialized so that mass is conserved.

In the current formulation the total fill level, ε = εI + εP , is considered and its discretized

time evolution equation is

εn+1 = εn + ∆εn = εn + ∆εI,n + ∆εP,n (134)

with ∆ε representing the flux of ε entering or leaving the cell at time step n. To calculate the

inviscid flux we use a finite volume formulation

∆εI,n = ∆t
∑
i

(uIi n̂i)Ai (135)

with directions i that are normal to cell faces, and cell face normal n̂. The wetted area between
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the current and neighboring cells, Ai, can be estimated as an arithmetic mean of the fill level as

Ai =


1.0 : fluid neighbor

ε(x,t)+ε(x+ei,t)
2 : interface neighbor

0.0 : gas neighbor

(136)

The perturbation volume flux between two cells is described through an LBM formulation

[39]

∆εP,n = ∆t
∑
i

(uP,ni n̂i)A
n
i = ∆t

∑
α ∆mn

α

(ρo + ρn)∆x3
(137)

where ρ represents a deviation from the average fluid density, ρo. A mass flux may then be

calculated in terms of the DFs

∆mn
α = [fβ(x, tn)− fα(x, tn)]Anα (138)

where β is the inverse direction to lattice direction α and the wetted area between the current

and neighboring cells, Aα, can be estimated as an arithmetic mean of the fill level as

Aα =


1.0 : fluid neighbor

ε(x,t)+ε(x+eα,t)
2 : interface neighbor

0.0 : gas neighbor

(139)

Therefore the time evolution of the fill level for the hVOF is described by

εn+1 = εn + ∆t

∑
α ∆mn

α

(ρo + ρn)∆x3
+ ∆t

∑
i

(uI,ni n̂i)A
I,n
i (140)

A simple control volume analysis of a partially filled fluid cell shows that Eq. (135) reproduces

the KFSBC or Hybrid KFSBC up to first order in ∆x and ∆t.

3.4.1 Dynamic Boundary Condition with the pLBM

The pressure condition on the LBM free surface is satisfied by the anti-bounce back rule

proposed by [39] at each interface node (0.0 < ε < 1.0). The procedure works by adapting the

DFs so that the force exerted by the fluid is balanced by the force exerted by the surrounding air.

After streaming, DFs traveling from gas to interface nodes are undefined and are constructed by

using a force balance between DFs entering the fluid from the gas and vice versa. They make

use of the fact that the forces exerted by the gas are known and defined by the gas pressure and

velocity at the interface [39]. Unknown DFs are reconstructed as

f t+1
β = −f tα + feqβ (ρB ,uB) + feqα (ρB ,uB) (141)
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(a) (b)

Figure 18: (a) Scenario when ηP > 0 illustrating the interface between the perturbation NS
domain and the total NS domain. (b) 2D representation of DFs crossing the perturbation NS
and total NS interface.

where direction α corresponds to lattice directions containing gas nodes and its inverse direction

β. Velocities and pressures at the free surface boundary, uB and pB , correspond to the node’s

local velocity and atmospheric pressure, where ρB = 3pB . [39] shows that when the DF are

constructed in this way, the DFSBC is recovered.

For the hybrid free surface, the equilibrium DFs are replaced by their perturbation counter-

part

f t+1
β = −f tα + feqβ (ρB ,u

P
B ,u

I
B) + feqα (ρB ,u

P
B ,u

I
B) (142)

and pB is found from Eq. (132), while uPB is known from the pLBM solution. If ηT ≤ ηI , the

uIB is known from the inviscid solution and when ηT > ηI , uIB = 0 and Eq. (141) is recovered.

3.4.2 Initialization of New Interface Nodes

When a node transitions from gas to interface, its DFs must be initialized in a manner

consistent with the conservation equations. This is done using the equilibrium DFs through
fnewα = feqα (ρB ,u

T
B) if ηT > 0

fnewα = feqα (ρB ,u
P
B ,u

I
B) if ηT ≤ 0

(143)

where ρB is specified considering the atmospheric pressure, uTB or uPB are found through a

weighted average of the surrounding interface and fluid nodes, and uIB is known. When ηT

moves above the inviscid free surface, ηT > ηI , the governing equations change from the per-

turbation NS equations to the total NS equations. Node initialization in this scenario requires a

weighted average of the surrounding interface and fluid nodes for both uPB and uIB .
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3.4.3 The Perturbation NS and Total NS interface

When ηP > 0, DFs will propagate through an interface separating the perturbation NS and

total NS domains (Fig. 18). These DFs must be treated so that momentum is conserved for each

governing equation in the next collision step. This is done by representing the inviscid solution

through equlibrium DF’s calculated from the inviscid flow. After each collision step, DFs are

modified as
fα(x + eα∆t, t) = fα(x, t)− feqα (ρI ,uI) if: fα(x, t) ∈ NS, fα(x + eα∆t, t) ∈ PNS

fα(x + eα∆t, t) = fPα + feqα (ρI ,uI) if: fα(x, t) ∈ PNS, fα(x + eα∆t, t) ∈ NS

(144)

where pI and uI are known at the perturbation NS node.

3.5 Power Dissipation Due to Wave Breaking

One of the key components of the hybrid method is that wave breaking can occur in the

pLBM that is driven by the BEM, which cannot model wave breaking alone. Typical nonlinear

BEM models require filtering or damping at the free surface to suppress waves that would other-

wise break, a process that must be carefully controlled by the user. Guignard and Grilli (2001)

provide breaking suppression through an absorbing pressure patch (AB) that provides a damping

pressure term in the DFSBC to model dissipation of energy through the physical process of wave

breaking. The damping pressure is defined as

pb(x, η, t) = νb(x)
∂φ

∂n

(
η(x, t)

)
(145)

with, ∂φ/∂n, the normal derivative of the velocity potential at the free surface and, να(x), a non-

dimensional absorption coefficient that is based on the power dissipated during wave breaking

as

Pb(x, η, t) =

∫∫
S

pb
∂φ

∂n

(
η(x, t)

)
dA (146)

with A, an area on the free surface where wave breaking is occurring. Guignard and Grilli (2001)

estimated Pb based on a turbulent hydraulic jump of similar height and depth as the breaking

wave.

The goal of the pLBM hVOF is to provide a more general representation Pb and S to the

BEM solver where, within the hybrid domain, an AB patch is initialized in the BEM to supress

wave breaking. To estimate the power dissipated in the pLBM, we use (Lamb (1932))

Pb(x, t) =
(
µ+ µt(x, t)

) ∫∫∫
V

(
∂ui(x, t)

∂xj
+
∂uj(x, t)

∂xi

)2

dV (147)
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with dynamic viscosity, µ, an LES turbulent dynamic viscosity µt, and volume V . Discretizing

the integral into a Riemann sum and assuming grid sizes ∆x, ∆y, and ∆z gives

Pb(xm, tn) = 4

Q∑
i

(
µ+ µnt,m

)
|Snm|2∆xm∆ym∆zm (148)

With S given from Eq.(120), Q cells within volume V, and using time and space indices m and

n, respectively. In the pLBM the rate of strain tensor can be found by considering the second

moment of the nonequilibrium PDFs ([40], [53]) within each cell m and at time n as

S =
sxx
2c2sρ

18∑
α=0

eαeα(fα − feqα ) (149)

for the D3Q19 lattice, with lattice link, α, speed of sound cs, relaxation time, sxx, and equilibrium

DF feqα [53].

3.6 Gridding General Geometries in LBM with the Turbulent Wall Model

To utilize general body geometries with the LBM, a lattice meshing tool has been developed

that identifies points within a solid boundary and, for turbulent wall model nodes, determines the

boundary normal and sub-grid distance between the node and boundary. The boundary surface

is represented through a stereolithography (STL) file that contains a tessellated representation of

the surface that is comprised of many discrete triangles. For each triangle, the (x, y, z) locations

of each corner (m) is given as vm along with the surface normal n̂m (pointing into the solid).

In the lattice mesher, each grid point, p, is considered and a ray, r, extending in a given

direction is defined. The triangle intersection routine of [49] is then used for each point, ray, and

triangle combination. If an intersection exists, the point is within the body when

n̂ · r > 0. (150)

To calculate the sub-grid distance and normal information, an additional operation is considered

for each point and triangle pair. First the centroid of the triangle is calculated as

c =
1

3

3∑
n

vt (151)

and the distance between c and p is calculated. If this distance is less than the grid spacing, n̂m

and the sub-grid distance is stored at p and if multiple instances of this occur at the same point,

the information corresponding to the minimum distance is used. We note that this calculation

is not dependent on the choice of the direction of r and its accuracy requires sufficient accuracy

in the STL geometry.
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Figure 19: Snapshots of the gridded domain around a JHSS hull with (top) fluid cells shaded
blue, turbulent wall model boundary cells shaded red, and the JHSS hull surface in light grey.
(bottom) y-component of the normal vectors plotted for the same JHSS domain.

This “brute force” method suffers from the curse of dimensionality when meshing 3D objects

as a significant increase in the number of required operations will occur as the grid and STL

geometry are refined and when the number of rays increases. However, we assume a body fixed

LBM mesh so this calculation is only done at simulation start up and doesn’t add a major

computational cost relative to the LBM simulation. Furthermore we can select a minimum

number of ray directions as appropriate for a specific geometry and bounding boxes can be used

to minimize the number of nodes considered.

Here we discuss the meshing process for the Joint High Speed Sealift (JHSS) ship hullform

[10], seen in Fig. 19. First, a linear free surface about z = 0 is assumed in this simulation

(see below), so only points that satisfy pz < 0 are considered. Next, we observe that there is

symmetry about the x-z plane, so the calculation is done on the positive y half of the domain,

then mapped onto the negative side after the meshing tool is completed, switching the sign of

all y values on the mirrored side. Furthermore a bounding box is fit around the hull that is

approximately 2∆x larger than the maximum extents of the hull. It can be assumed that all

points outside of this box are neither solid nor boundary layer nodes. With these considerations,

one might expect that only one ray direction of r = (0, 1, 0) is needed to identify all points within
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the hull. However, when using dense LBM grids, rounding errors can cause small gaps between

the triangles and occasionally a misclassification of a solid node is encountered. This typically

occurs near the mirror plane and bilge, where adjacent triangles have a small |n̂y|. Therefore an

additional search in r = (0, 0,−1) is required, and sufficient to mesh many hull forms. However

special consideration near the bulbous bow is required for the JHSS because fluid nodes above the

bulb can be misclassified as solid nodes when searching in the r = (0, 0,−1) direction. Therefore,

within a small region around the bulb, Eq. (150) must be satisfied for a search in r = (0, 1, 0)

and r = (0, 0,±1) directions.

3.7 Applications
3.7.1 Coupling the perturbation LBM to a BEM solver

In this section the pLBM solver is coupled to the linear ship seakeeping code Aegir, which

uses a NURBS based representation of the geometry and a high order spline representation of

the hydrodynamic variables. This represents a shift from previous work ([50], [51], [52], and [53])

which used analytical inviscid solutions. Hence work shown here begins to address the additional

constraints and considerations that are required for the fully coupled hybrid solver.

Lifting foil simulation

Here we simulate a NACA0012 foil operating at a Reynolds number of 1.44 million. In

previous work ([50], [51], [52], and [53]), an analytical inviscid solution using conformal mapping

was supplied and reasonable agreement with measurements in lift, drag and pressure distribution

were demonstrated. Furthermore, no circulation was added to the inviscid solution, meaning that

the perturbation component of the solution could replace the Kutta condition that is typically

seen, but often faulty, in potential flow solvers.

Here the inviscid solution is calculated using Aegir, where the inviscid solution is calculated

using a 3D foil of span S = 20/C (C being the foil chord), 20 high order elements were used in

the downstream and 40 elements were used in the cross stream directions on the top and bottom

surfaces of the foil. A no penetration (Neumann) boundary condition is applied to the top and

bottom surfaces of the foil while the boundary integral equations are formulated for an infinite

fluid far field condition so no domain boundaries are required. No Kutta condition was added

on the foil so no lift is created in the BEM solution. A 2D solution is desired and it is assumed

that a nearly 2D result can be achieved at the center of a foil with an aspect ratio of 20. The

leading edge of the foil and half span location is centered at the origin and a sheet of points was
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Grid origin (x/C) Number of nodes (Nx,Ny,Nz) ∆x

0 -0.450,-1.000, -0.075 601, 401, 31 0.005
1 -0.350,-0.550, -0.070 722, 442, 58 0.0025

Table 4: Grid parameters used for the pLBM simulation of a foil coupled to a BEM solver.

used to calculate the inviscid flow around the foil, centered at z=0 and using only 1 node in the

z-direction. Its remaining parameters match that of Grid 0 in Table (4). The pLBM solution

was achieved using 2 grids defined in Table (4), the turbulent wall model of [53] supplied the

body boundary conditions, a zero perturbation velocity was applied at the domain extents while

periodic conditions were applied on the side. The simulation Mach number was chosen to match

the physical Mach number of Ma = 0.05 in air.

An inspection of the inviscid velocity field results showed large numerical errors at points

very near to the surface boundaries. This is the result of the 1/r2 singularity that occurs in

the evaluation of the integral of the Green’s function on a boundary element as the distance of

the point to the panel center becomes small relative to the solid angle of the panel. A common

numerical cure is to successively bisect the panel, until that solid angle becomes small, then

integrate over each subdivided section of the panel. This was done in Aegir, and a minimum

error was achieved after 15 subdivisions were allowed on a panel, the benefit of any additional

subdivisions became small relative to rounding errors. This was found to improve results, but

small numerical errors near the boundaries still existed. Because the inviscid grid and Grid

0 were coincident in x and y locations no interpolation of the inviscid solution was necessary.

For Grid 1 a linear interpolation was used to provide an inviscid solutions on points that were

not coincident with the inviscid grid, derivatives were calculated using finite differencing, and

derivatives evaluated using a point inside of the foil were removed.

The coefficient of lift (CL = F (1/2ρU2CS)−1) calculated for several angles of attack is com-

pared to previous numerical results and measurements in Fig. (20), where a reasonable agreement

in lift is observed between the pLBM coupled with the BEM and other results. Although the

pLBM provided an observable correction to the flow at locations where the inviscid solution was

incorrect, the inviscid error has a noticeable influence on the overall result. Furthermore, the

errors observed in CL are of a similar magnitude to the expected drag values so drag results are

not presented here.
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Figure 20: Coefficient of lift (CL = F (1/2ρU2CS)−1) calculated using the LBM with the tur-
bulent wall model (•), the pLBM with the turbulent wall model and analytical inviscid solution
(•), and the pLBM with the turbulent wall model and BEM inviscid solution (•), and compared
to measurements (—–)[1]

.

JHSS steady resistance study

In this test case we introduce a linear free surface, fixed at z = 0, using the BEM solver

Aegir to provide the inviscid solution. We solve for the steady resistance of a JHSS ship hullform

[10] under forward motion and generating waves using the hybrid method. Simulations were run

for a Froude number of Fn = U/
√
gLWL = 0.2, 0.3, 0.4 (U is the forward speed, g is gravity and

LWL is the length of the hull waterline) with the hull fixed at the experimental sinkage and trim

for each speed. The goal of the simulation is that the BEM solution will provide a very accurate

estimate of the wave generating component of resistance while the pLBM will supply the viscous

and form drag components. The BEM simulation was run using a mirror plane oriented along

the x-z axes and the free surface domain covered (xmin/LLWL, xmax/LLWL) = (−1.1, 0.76) and

(ymin/LLWL, ymax/LLWL) = (0, 0.49) with a regular free surface panel size of 0.014/LWL. The

wetted surface of the hull was discretized with 76 panels in the downstream direction and 6 panels

in the cross stream direction and the center of mass of the hull was located at the x-y origin. A

grid independent solution was confirmed for these simulation parameters and a visualization of

the Aegir result at Fn = 0.3 can be seen in Fig (22).

The pLBM simulation used a reduced domain consisting of the 2 grids described in Fig (21)

that were run on 2 separate GPUs, in parallel. Grid 1 represents approximately the maximum

number of nodes that can be used on the GPU, containing 12 GB of memory. Because a linear

free surface is assumed in the Aegir solution, the free surface is set at z = 0 and the VOF solver
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Grid Origin (x/LWL) Extents (x/LWL) ∆x/LWL Dt (sec) # nodes

0 1.05, -0.29, -0.12 1.74, 0.58, 0.13 2.8×10−3 1.00×10−5 6.2×106

1 -0.55, -0.07, -0.05 1.11, 0.14, 0.05 6.9×10−4 2.50×10−6 26.0×106

Figure 21: (top) A visualization of the pLBM domain used in the JHSS steady resistance sim-
ulation, black lines in the image represent the outer extents of each grid and the hull is seen in
orange. (bottom) pLBM domain parameters for the JHSS steady resistance simulation.

is not used. Instead, an atmospheric pressure boundary condition is applied to the free surface

boundary. The hybrid turbulent wall model was used as a hull boundary condition, with an

estimated average y+ = 300 with the hybrid LES turbulence model applied [53]. When using

the LES turbulence model, a mirror boundary at y = 0 is not valid, and the full domain must be

simulated. A zero perturbation, ρP = uIi = 0 boundary condition was applied to the remaining

edges of the domain. The inviscid velocity field was gridded to match Grid 0, and as done in

the previous test, a linear interpolation was used to provide an inviscid solutions on points that

were not coincident with the inviscid grid in Grid 1. We note that derivatives were calculated

using finite differencing and derivatives evaluated using a point inside of the hull were removed.

As observed in the previous application, inviscid velocity errors were present at points that were

very close to the free surface or hull.

Simulation results and snapshots can be seen in Fig. (24). Due to the relatively high

Reynolds numbers, and orientation of the forward motion, no separation of the flow was expected.

The significant perturbation components of the flow are therefore localized to a very small region

around the hull. The perturbation solution also has a very small solution near the free surface

meaning that it will not contribute significantly to the wave drag component of the solution,

with an exception to a localized region behind the transom. We expect that nearly all of the

pressure drag should be captured in the inviscid result, with very small viscous perturbation

pressure, or form drag. However, pressure spikes in the perturbation solution were created from
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(a) (b)

Run 1 Run 2 Run 3

Fn 0.2 0.3 0.4
Re 15.5×106 23.4×106 31.0×106

Ma 0.0012 0.002 0.0024

Figure 22: (a) Visualization of the free surface elevation predicted by the BEM solver Aegir
using a linear free surface at Fn = 0.3. The JHSS hull can be seen in grey and for visualization
purposes the sufaces are mirrored about the y=0 plane. (b) Relevant non-dimensional physical
parameters of each hybrid method run for the JHSS steady resistance simulations.

Figure 23: Snapshots of the JHSS steady resistance simulation using the hybrid method running
at a Fn = 0.3. with the hybrid domain cut along y = 0 and z = 0. (top) Visualization of the total
hybrid method solution, with the linear free surface elevation (BEM) shown at z = 0 and total
velocity magnitude ui = uIi + uPi (BEM+pLBM) shown along the y = 0 plane, and the JHSS
hull seen in grey. (bottom) Visualization of the perturbation velocity magnitude uPi (pLBM) the
domain is cut along the y = 0 plane and only water and turbulent wall model nodes are shown.

the errors of the inviscid solution (seen at the bulbous bow in Fig. 22), causing an over prediction

of the perturbation pressure drag. Overall, the pLBM reasonably predicts the viscous drag, and

a comparison of the drag prediction as compared to tow tank measurements and its different

components of the calculated drag can be seen in Fig. (24). An improved inviscid velocity field

is required for a more accurate viscous pressure estimate.

3.7.2 Nonlinear free surface modeling

In this section the VOF scheme is validated and tested using the LBM and pLBM. The VOF

scheme used based on what is described in [33], which has been validated for simulations of a dam

break and an overturning wave on a sloping beach. Here we present the modifications required

to simulate naval hydrodynamics scenarios, i.e. a moving reference frame, surface piercing body,

absorbing beach boundaries; with a demonstration of the hybrid VOF scheme.
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Figure 24: Total steady resistance for the JHSS hull as a function of Froude number. Measure-
ments are shown as blue circles (•), the resistance from wave generation (BEM) is shown as grey
circles (•) and the hybrid method solution of wave drag (BEM) and viscous drag (pLBM) with
viscous pressure removed is shown as the green diamonds (�).

Towed hydrofoil

In this section the towed hydrofoil tests of Duncan (1983) are reproduced with the LBM

VOF solver. First a non-breaking wave is simulated in order to validate the VOF approach, then

a breaking wave is simulated so that the power dissipation scheme of section 3.5 can be validated.

In the experiments, a NACA0012 hydrofoil was towed at a constant speed through a long basin

at a fixed orientation and height above the bottom of the basin. The amount of water within

the basin was varied so that the foil would see different submergence depths (see Fig. 25) and

care was taken to eliminate significant 3D effects during testing. During the experiments, a wave

field would be generated that is in steady state relative to the reference frame of the foil for both

breaking and non-breaking waves (depending on depth). Measurements of the steady free surface

were collected and the amount of additional drag generated by wave breaking was estimated.

The LBM domain setup can be seen in Fig. (25) and the mesh used for these results has

an origin at (x = −1.,y = 0.0,z = 0.0) meters and extends (3.0, 0.6, 0.02) meters in the (x, y, z)

directions with a grid spacing of 2.0×10−3 meters. The foil, which was specified using the

NACA0012 profile with a chord of 0.203 meters at an angle of attack of 5◦ for all runs, is located

at (x = 0.,y = 0.175,z = 0.0) with its center defined at C/3 (C is the foil chord). All simulations

were run at a Mach number of Ma = 0.01.The simulation is run in the reference frame centered

about the moving foil. To avoid nonphysical accelerations, the foil must start from rest, meaning

the initial fluid velocity is zero, and only hydrostatic pressure is applied to initialize the PDFs.

A ramp up of the foil velocity uFi is then simulated over Tr = 2.0 seconds, using a ramp specified
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Water depth (m) foil depth(m) wave breaking

0.385 0.193 no
0.334 0.159 yes

Figure 25: Simulation setup for the towed hydrofoil experiments with a scale visualization the
domain (top) where the turquoise region is water and the small white region represents the foil.

by

uFx =
1

2
tanh

(
6t

Tr
− 1

2

)
+

1

2
and uFy = uFz = 0. (152)

During the acceleration period a body force is applied to the fluid that is proportional to the

acceleration, F1 = ρ∆x3∂u1/∂t, during the ramp so that it stays in the correct position relative

to the moving frame.

At the inlet boundary (x = −100cm) a specified velocity of uFi and hydrostatic pressure are

enforced and, to simulate the bottom of the tank in a moving domain, a modified bounce back

boundary condition is used (Janssen 2018)

fα′ = fα − 2ρ0wα
eiα · −uFi

c2
, (153)

for velocities directions reflecting into the domain α′ and opposite direction α. The LBM turbu-

lent wall model was applied as the foil boundary condition and the LES turbulence model was

used. Atmospheric pressure is applied at the free surface, a zero horizontal gradient of the DFs

at the outlet, and periodic conditions are applied on the sides of the domain (z direction). It was

found that an absorbing beach was required to eliminate reflections within the domain and one

was set up at x = 160− 200 which followed

feqα = (1−R)feqα (ρLBM , uLBMi ) +Rfeqα (ρLBM , uFi )

R = 1.0− (200− x)/40 (154)

where ρLBM , and uLBMi are calculated from the PDFs at each time, and this modified equilibrium

function is used during the collision step.

Fig. (26) shows the simulation results for a tank water depth of 0.385 meters as compared to

measurements. Experimental observation showed that a steady state wave field formed behind the
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Figure 26: LBM simulation results for the towed hydrofoil and foil submergence depth of 0.193
meters (non-breaking in experiments). (top) Snapshot of the velocity magnitude within the
domain. (bottom) Plot of the steady state free surface elevation with measured results (—),
nodes containing a volume fraction, ε, 0.1 < ε < 0.9 (•), and a spline fit of those points (—).

foil and no wave breaking was observed. A reasonable agreement in free surface elevation is found

when comparing the LBM results to the measurements. Near the center of the measurements

(roughly 75 cm), a very good agreement is observed and a slightly increasing error is observed as

the edges of the measurements are reached. This is possibly a result of lens distortion from the

use of a 10mm wide angle lens in experimental measurements, which will falsely increase the wave

height and wave length that is observed at the edges of the view field, as no image correction is

applied in the experiments. The measured results shown here do not have any correction for lens

distortion and it is likely that a better agreement would be observed if one were to be applied

dependent on the lens characteristics.

Fig. (27) shows the simulation results for a tank water depth of 0.334 meters as compared to

measurements. Experimental observation showed that a steady state wave field formed behind

the foil and steady state wave breaking was observed at the first crest behind the foil. While a

reasonable agreement between the LBM and measurements in free surface elevation was found

at some points during the simulation, a steady state breaking wave was not generated. Instead

periods of significant wave breaking then wave reforming were observed in the LBM. This dis-

crepancy is the result of the simple VOF scheme used, as a more advanced scheme such as the

piecewise linear interface construction (PLIC) would provide better accuracy in calculating the
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(a)

(b) (c)

(d) (e)

Figure 27: LBM simulation results for the towed hydrofoil and foil submergence depth of 0.159
meters (breaking in experiments). (a) Snapshot of the velocity magnitude within the domain
before breaking and the region in black is where the power dissipation will be calculated. Wave
breaking visualized within the black region is seen at 3.0 seconds (b and c) and 3.5 seconds (d
and e). Velocity magnitude is shown (b and d) with blue representing |ui| = 0.0m/s and red
representing |ui| = 1.5m/s. The power dissipation is shown (b and d) with blue representing
0.0W and red representing representing 1.0 × 10−5W calculated within each cell containing a
volume of 3.4× 10−9m3.

flux of the volume fraction (Eq. 134). Furthermore we have identified that an error exists in

the collision step in the LBM with VOF. PDFs streaming from a full cell are given the same

treatment as PDFs streaming from a nearly empty fluid cell, likely over representing the mo-

mentum of the breaking spray and jet. Although steady breaking was not observed, an initial

investigation of the free surface power dissipation scheme was conducted, where Fig. (27a) shows

the location where power dissipation is measured and Fig. (27 b-e) show snapshots of the wave

breaking with contours of velocity magnitude (b and c) and instantaneous power dissipated (c

and e). During this period of time a reasonable agreement between power dissipated is found

when comparing the LBM to the hyrdaulic jump originally used in [27]). The hydraulic jump

estimate was calculated using a jump of similar height and depth as the breaking wave observed

in measurements while the LBM estimate used the total power dissipated within the volume

shown.
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Nonlinear wave using the hybrid VOF

In this section the hybrid VOF scheme is tested by using a highly nonlinear wave as the

inviscid solution driving the hybrid VOF. To remove the numerical errors involved with using

the BEM to generate the flow, stream function theory is used to generate the FNPF inviscid

wave solution [22], so no dissipation from wave breaking is supplied back to the inviscid flow.

For increased efficiency, this time and space dependent solution was calculated in parallel on

the GPU during simulation. The simulated wave had a height of H = 0.59 meters, period of

T = 1.5 seconds, and was simulated in a depth of h = 3 meters which corresponds to a wave

length of L = 4.15 meters. The pLBM domain was 8.3 meters long (2L), 4.2 meters high, and 1

meter wide, using a grid spacing of 2 cm and a simulation Mach number of Ma = 0.01. Periodic

conditions were applied to the sides of the domain while hydrostatic pressure was enforced at

the bottom boundary, p = pI + pP = pHS , so with hydrostatic pressure present in the inviscid

solution, zero perturbation pressure is applied at the bottom boundary pP = 0. The simulation

was initialized with zero perturbation flow everywhere.

First, the nonlinear wave is simulated alone so that, theoretically, the inviscid flow will

provide the total solution. With zero perturbation flow the hVOF scheme should perfectly follow

the inviscid solution. However, the inviscid wave was very steep and near the breaking limit so

numerical dissipation in the pLBM along with round off errors in the hVOF scheme caused small

deviations from the perfectly inviscid solution, providing a test of the total hVOF scheme. The

resulting solution, seen in Fig (28), reduced the total wave height slightly relative to the inviscid

wave height. The modified DFSBC of Eq. (132) enforces a balance of the driving inviscid flow

and dissipation from the perturbation component so that a steady state was reached. During the

simulation, a slight increase in total fluid mass of +0.157% was observed, which is an acceptable

numerical error considering the single precision implementation of the solver.

Next, the same inviscid wave and simulation parameters are simulated except in a wider

domain (6 meters instead of 1 meter) and a cylinder is added to the middle of the domain.

Typically in the hybrid method the inviscid solution will provide the no-penetration boundary

condition to the solid object while the perturbation component will provide the no-slip condition.

In this case the stream function inviscid solution cannot consider the cylinder boundary so we

apply both cylinder boundary conditions within the pLBM using a zero total velocity condition,
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(a) (b)

Figure 28: Snapshots of the hVOF simulation of a nonlinear wave using the a fully nonlinear
potential flow solution and periodic side boundaries. The solution is shown at simulation start
up (a) and at t = 0.9T (b) as a balance between the driving inviscid flow and dissipative effects in
the pLBM is reached. Cells shown have a volume fraction of ε ≥ 0.5 and color contours represent
total velocity magnitude (u = uIi +uPi ) with blue representing |u| = 0.0 m/s and red representing
u = 1.8m/s.

uPw = −uIw, which is applied in the pLBM as [37]

fPα′(x1, t+ ∆t) = fPα (x1, t)− 2ρ0wα
eα · (−uIw)

c2
(155)

in velocity directions α, crossing the cylinder boundary, and their opposite counterpart α′, at

lattice nodes of coordinate x1 adjacent to the wall.

Simulation results can be seen in Fig. (29), which shows snapshots at approximately quarter

period intervals, starting at t = T/4 and ending at t = T (the wave is traveling from left to right).

The addition of the cylinder boundary in these steep and nonlinear waves produces a total free

surface that is largely perturbed from the inviscid solution, representing a more rigorous test of

the hVOF. Regions where ηT > ηI can be observed at the front and sides sides of the cylinder,

where wave breaking is occurring, and regions where ηT < ηI are observed behind the cylinder.

For this application, ring waves propagating away from the cylinder should be generated. These

are often noticed in potential flow simulations of wave-cylinder interactions, where zero energy

dissipation is present. In this simulation ring waves are not observed, likely because of the missing

diffracted wave component of the inviscid solution, significant wave breaking that is present, and

because any small ring waves that may form would be under-resolved with this pLBM resolution.

Finally, small blue streaks (near zero velocity) can be observed on the cylinder in Fig. (29)(b)

and (d) which are one cell wide and immediately adjacent to the cylinder boundary. These are

a result of the no-slip cylinder boundary condition, while strange in the visualization, are not

representative of a problem with the simulation.
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(a) (b)

(c) (d)

Figure 29: Snapshots of the hVOF simulation of a nonlinear wave interacting with a cylin-
der (grey) using the a FNPF inviscid wave solution, periodic side boundaries and the cylinder
boundary condition is applied in the pLBM. The solution is shown at quarter period (T ) intervals
starting at time t = T/4(a) and ending at t = T (d). Cells shown have a volume fraction of
ε ≥ 0.5 and color contours represent total velocity magnitude (u = uIi + uPi ) with blue repre-
senting |u| = 0.0 m/s and red representing u = 2.0m/s.

3.8 Conclusions

In this paper we show the progression of the hybrid LBM-BEM solver towards an engineering

design tool for the simulation of arbitrary geometries in the presence of a free surface. Previous

work validate the method for bodies with an easily defined geometry and analytical solution

without the presence of a free surface. While in this work the addition of the gridding tool allows

any arbitrary geometry to be simulated without a significant loss of accuracy, provided that the

underlying geometry file is of sufficient resolution.

A novel hybrid VOF scheme is presented here and initial validation has been conducted along

with a validation of the linear free surface hybrid method. While reasonable validations of these

components are shown, either an analytical inviscid solution is used or the inviscid velocity field

calculated with the BEM contained significant errors near to the solid body. Further validation

will be conducted by coupling the pLBM to a nonlinear free surface BEM solver [48] in future

work.
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[2] Alessandrini, B. (2007). Thèse d’Habilitation en Vue de Diriger les Recherches. Ecole Centrale

de Nantes, Nantes.

[3] Banari A., Janssen C., Grilli S.T. and M. Krafczyk (2014). Efficient GPGPU implementation

of a Lattice Boltzmann Model for multiphase flows with high density ratios. Computers and

Fluids, 93:1-17.

[4] Banari A., Janssen C.F., and Grilli S.T. (2014). An efficient lattice Boltzmann multiphase

model for 3D flows with large density ratios at high Reynolds numbers. Computers and Math-

ematics with Applications, 68:1819-1843.

[5] Banari A., Mauzole Y., Hara T., Grilli S.T. and C.F. Janssen (2015). The simulation of

turbulent particle-laden channel flow by the Lattice Boltzmann method. International Journal

for Numerical Methods in Fluids, 79(10):491-513.

[6] Bhatnagar, P. L., Gross, E. P., and Krook, M. (1954). A model for collision processes in

gases. i. small amplitude processes in charged and neutral one-component systems. Phys.

Rev., 94(3):511-525.
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