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ABSTRACT

Micro/nano scale radiative transport phenomena present new opportunities

to design spectrally selective radiative surfaces and configurations that enable an

active control of radiative transfer. Several applications such as thermophoto-

voltaic energy technology, local thermal management and sensing can benefit from

fundamental research in the field. An investigation into photonic metamaterials

and near-field thermal radiation was conducted to explore various ways to achieve

spectral control and modulation of radiative heat transfer. This was followed by

designing novel metamaterials and configurations to consider their feasibility for

specific applications of thermophotovoltaics (TPV) and nanoscale thermal man-

agement.

An experimental investigation was conducted to estimate optical and radia-

tive properties of SU-8 thin films for various film thicknesses. Samples consisted

SU-8 films of thickness ranging from 10 µm to 157 µm deposited on gold coated

silicon substrates and were prepared using spin coating. Thickness dependent re-

flective properties were confirmed using Fourier Transform Infrared Spectrometer

measurements. Dielectric function of SU-8 in the range 2 µm to 15 µm was cal-

culated using the reflectance spectra of the samples. Optical properties of SU-8 in

mid-infrared (mid-IR) region were reported before and after UV treatment. Mea-

surements imply a change in optical properties of SU-8 upon exposure to UV and

heat treatment.

Using microscopic thin films is one of the simplest ways to achieve a change in

emission spectra. A methodology was proposed to shift the wavelength selectivity

in the desired location using thin films embedded with nanoparticles. For the

media doped with nanoparticles, an effective dielectric function using the Maxwell-

Garnett-Mie theory is employed to calculate emissivity and radiative heat transfer.



Influence of parameters such as particle size and volume fraction was studied. It

was also shown that wavelength selective behavior of such nanocomposite thin

films can be related to their effective refractive indices.

A theoretical study to explore Mie-resonance metamaterials (nanocomposites)

for possible use in TPV technology was conducted. Metamaterials were designed

to achieve spectral matching of thermal emitter and photovoltaic (PV) cell. The

emitter consists of a thin film of SiO2 on the top of tungsten layer deposited on

a substrate. Both near-field and far-field configurations were considered. The

methodology followed Maxwell-Garnett-Mie theory discussed earlier. The results

showed that the proposed Mie-metamaterial thermal emitter can significantly im-

prove the efficiency of TPV system. It was shown that, by changing volume fraction

of nanoparticles and thickness of SiO2 it is possible to tune the near-field thermal

radiation to obtain enhanced output power and high thermal efficiency.

Methods to achieve dynamic control of radiative heat transfer and thermal

rectification characteristics were investigated using a phase-change material called

vanadium dioxide (VO2). For a far-field configuration, a tri-layer structure consist-

ing a thin film of KBr sandwiched between a thin film of VO2 and a reflecting layer

of gold was proposed. The structure is highly reflective when VO2 is in insulating

state (below 68 ◦C), while it is highly absorbing when VO2 is in its metallic state.

Thermal rectification achieved by such a structure is greater than 11 a temperature

bias of 20 K, which is the highest rectification ever predicted for far-field radiative

diode configurations. A near-field thermal diode configuration was also considered.

Possible configurations using bulk, thin film and gratings of VO2 were studied. It

was shown that using 1-D rectangular or triangular grating of VO2, a high degree

of contrast can be achieved in the tunneling of surface waves across the two inter-

face of thermal diode. For minimal temperature difference of 20 K, rectification



ratio as high as 16 was obtained and it is maximum in existing literature to date

for comparable operating temperatures and separation.
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PREFACE

Thermal radiation is one of the fundamental modes of heat transfer. Our

textbook understanding of thermal radiation is based on Planck’s law and Stefan-

Boltzmann law. Thermal motion of atoms and molecules lead to fluctuating

charges and currents in a material. This in turn leads to a fluctuating electro-

magnetic field that travels in space and it is what we call thermal radiation. In the

infrared and visible part of spectrum, majority of radiation comes from molecular

or vibrational motion and the motion of conduction electrons. As this covers a

wide range of energy levels, thermal radiation is broadband, incoherent and unpo-

larized. Meaning, its electromagnetic nature can be ignored and it can be treated

as heat rays. However, recent advances in the field of radiative heat transfer have

defied the common generalizations observed in the macroscopic world.

When the dimensions of an object or surface features of a material become

comparable to the wavelength of radiation, electromagnetic nature of thermal

radiation gives rise to two interesting phenomena that cannot be ignored. Mi-

cro/nanoscale radiative transfer refers to scenarios where at least one of the two

conditions are satisfied: (i) features or dimensions of micro/nanostructured materi-

als are comparable to the characteristic thermal wavelength λth and (ii) Separation

between bodies is smaller or comparable to the thermal wavelength. In the first

case, features of a material are comparable to the wavelength of electromagnetic

radiation and effects like interference, diffraction, partial coherence and surface

scattering come into picture. These nanostructures could be a stack of thin films,

nanocomposites, diffraction gratings, 2-D surface patterns or photonics crystals.

As a result, radiative properties of such a nanostructured material can be sub-

stantially different than those of a flat surface of the same material(s). This can

give rise to unusual properties such as spectrally selective absorption/emission,

viii



coherent thermal radiation, linearly or circularly polarized thermal radiation, neg-

ative refraction and so on. Materials with such unusual properties are known as

metamaterials. The second case is known as near-field thermal radiation. When

separation between two objects at different temperatures is comparable or smaller

than the wavelength of thermal radiation, radiative heat transfer can exceeds what

is predicted by Planck’s law (the blackbody limit). Derivation of Planck’s law is

based on the assumption that all dimensions involved in a problem are much larger

than the thermal wavelength λth. Therefore, Planck’s law is unable to explain ra-

diative heat transfer between closely spaced bodies as surface waves dominate the

radiative heat transfer.

These novel phenomena allow us to spectrally control and modulate overall

radiative heat transfer. Spectral control refers to ‘tuning’ the spectral response of

a radiating surface, while modulation of radiative heat transfer refers to attaining

an active control of radiative heat transfer coefficient. Spectral control and mod-

ulation of nanoscale heat transfer are the two central themes of this dissertation.

Metamaterials and micro/nanoscale thermal radiation in general, have great ap-

plications in advanced energy conversion systems, thermal management, thermal

cloaking and sensing. Therefore, major goals of this dissertation are:

1. Explore various ways to achieve spectral control and modulation of nanoscale

radiative transfer (manuscripts 1 and 2).

2. Investigate feasible applications of various metamaterials in thermophoto-

voltaic technology (manuscripts 3 and 4) and local thermal management

(manuscripts 5 and 6).

This dissertation is prepared using the manuscript format. Sequence of the

manuscripts is according to their chief themes rather than chronological.
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In manuscript 1, optical and radiative properties of a polymer SU-8 in its

bulk form and thin-film form are investigated. Reflectivity of SU-8 samples was

experimentally measured using fourier transform infrared spectrometer. Thickness-

dependent reflectivity (or emissivity) was observed as expected. Reflectivity spec-

tra of samples were used to calculate refractive indices of the polymer in infrared

region. As SU-8 is sensitive to UV exposure, its properties before and after UV ex-

posure were reported. The manuscript follows the formatting guidelines specified

by Optical Materials Express.

Manuscript 2 investigates a possible way to attain spectral tuning of radiative

transfer by using nanoparticle embedded thin films. The Calculations of emission

spectra were performed using the Fresnel equations in the far-field limit, while the

dyadic Green’s function formalism was used to calculate for transmissivity between

the closely spaced objects in the near-field regime. Media containing nanoparticle

inclusions were modeled using Maxwell-Garnett-Mie theory. It was shown that

the spectral selectivity in the emission spectra can be influenced by varying the

size and/or the volume fraction of nanoparticles. Characteristic features of the

spectra were linked to refractive indices of the composite. Influence of metallic

and dielectric inclusions are separately investigated.

Manuscript 3 deals with design of a novel, efficient and cost effective thermal

emitter for thermophotovoltaic (TPV) applications. A Mie-resonance metamate-

rial based on nanoparticle-embedded thin film was used to attain desired spectral

response. The emitter consists of a thin film of SiO2 on the top of tungsten

layer deposited on a substrate. Effective dielectric properties are calculated using

Maxwell-Garnett-Mie theory. It was shown that, this would significantly improve

the efficiency of TPV cells. A new parameter to gauge the efficacy of thermal

emitters was also introduced and it was used to compare different emitter designs.
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In manuscript 4, the idea of Mie-metamaterial thermal emitter was imple-

mented to a near-field TPV system. Performance characteristics of a near-field

thermophotovoltaic system consisting a Mie-metamaterial emitter and GaSb based

photovoltaic cell at separations less than the thermal wavelength were theoretically

analyzed. Numerical results were obtained using formulae derived from dyadic

Green’s function formalism and Maxwell-Garnett-Mie theory. It was shown that,

by changing the volume fraction of nanoparticles and thickness of SiO2 it is possible

to tune the near-field thermal radiation to obtain enhanced output power and high

thermal efficiency. Materials considered can withstand high temperatures and are

suitable for thermal emitter. Improvement in spectral selectivity as well as overall

heat transfer was accounted for an increased power output and efficiency.

In manuscript 5, a concept of a far-field radiative thermal rectification device

was proposed. The device uses a phase change material to achieve a high degree of

asymmetry in radiative heat transfer. The proposed device has a tri-layer structure

on one side and a blackbody on other side. The tri-layer structure consists of a

thin film of KBr sandwiched between a thin film of VO2 and a reflecting layer of

gold. When VO2 is in its insulating phase, the structure acts as an infrared mirror

due to the two transparent layers on highly reflective gold. When VO2 is in the

metallic phase, Fabry-Perot type of resonance occurs and the tri-layer structure

acts like a highly absorbing surface achieved by destructive interference of partially

reflected waves making it highly absorptive for majority of spectral range of thermal

radiation. The proposed structure forms the active part of configuration that acts

like a far-field radiative thermal diode. Thermal rectification greater than 11 was

obtained for a temperature bias of 20 K, which is the highest rectification ever

predicted for far-field radiative diode configurations.

Manuscript 6 investigates a near-field radiative thermal diode that uses a phase
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change material to achieve asymmetry in radiative heat transfer. The temperature

dependent dielectric properties of VO2 were exploited due to its metal-insulator

transition near 341 K. Analogous to an electrical diode, heat transfer coefficient

is high in one direction while it is considerably small when the polarity of tem-

perature gradient is reversed. It was shown thermal rectification can be greatly

enhanced by using 1-D rectangular and triangular surface gratings of VO2. En-

hanced rectification in the near-field was accounted to reduced tunneling of surface

waves across the interfaces for negative polarity. It was predicted that for minimal

temperature difference of 20 K, rectification ratio as high as 16 can be obtained and

it is maximum in existing literature to date for comparable operating temperatures

and separation.
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Abstract

We report the optical properties of SU-8 in mid-infrared (mid-IR) region before and

after UV treatment. Samples consisted SU-8 films of thickness ranging from 10 um

to 157 um deposited on gold coated silicon substrates and were prepared using spin

coating. Mid-IR diffuse reflectance measurements were conducted using Fourier

Transform Infrared Spectroscopy. Spectra measurements imply a change in optical

properties of SU-8 upon exposure to UV and heat treatment. A gradual change

in optical properties is seen after each step of UV treatment and baking process.

Reflectance spectra of thin-films were also observed to be thickness dependent.

We calculate dielectric function of SU-8 in the range 2 um to 15 um using the

reflectance spectra of the samples.

1.1 Introduction

Continuous development in lithography and micromachining has led to invention

of a photoresist known as SU-8 by IBM R© research [1, 2]. SU-8 is a photosen-

sitive epoxy polymer that is now commonly used as negative photoresist for op-

tical lithography, especially for high-aspect ratio lithography [3]. SU-8 has been

shown compatible with other nanoscale lithography techniques, such as electron

beam lithography and x-ray lithography [4]. SU-8 is of prime importance in fab-

rication of semiconductor devices, micro-electromechanical systems (MEMS) and

microfluidics [5]. Due to its bio-compatibility, SU-8 is also used for bio-MEMS

applications [6]. Owing to its good thermal stability and young’s modulus, SU-8

can be potentially used for nanoimprint lithography [7]. When exposed to ultravi-

olet (UV) light, SU-8 undergoes cross-linking leading to polymerization, making it

insoluble in solvents such as Acetone, Methyl Ethyl Ketone (MEK) or N-Methyl

Pyrrolidinone [2]. While optical properties of SU-8 in visible and UV range have

been characterized [8], infrared refractive indices of SU-8 were not estimated until
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recently [9]. Fourier Transform Infrared Spectroscopy (FTIR) measurements us-

ing attenuated total reflectance (ATR) method have also been documented before

and various IR absorption bands have been assigned to several different functional

groups [10, 11, 12]. Mid-IR dielectric function of SU-8 was first reported by Mota-

harifar et al. [9] using reflection and transmission spectra of a free-standing SU-8

sample. Here, we calculate dielectric function of SU-8 using reflectance data for

various thickness of SU-8 films. We also observe its reflectance spectra before and

after UV treatment.

Polymers in general have been investigated for possible selective thermal emis-

sion properties [13]. They can also be embedded with nanoparticles furthering

spectral control of thermal emission [14, 15, 16, 17]. Infrared spectral response

of polydimethylsiloxane (PDMS) [13], poly(vinyl chloride) (PVC) [18], poly(vinyl

fluoride) (PVF) [19] and poly(4-methyl-1-pentene) (PMP) [20] have been studied

before. It would be crucial to study spectral response of SU-8 thin films in the

infrared region, especially given its sensitivity to UV treatment. We report the

optical response of SU-8 in mid-infrared (mid-IR) region: 2 µm to 15 µm. Here,

mid-IR optical response of SU-8 thin films have been reported before and after UV

treatment. Based on the reflectance spectra of thin films of various thicknesses of

SU-8, we have calculated its dielectric function using extended Lorentz model.

The main constituents of the SU-8 photoresists are the EPON R© Resin SU-8 (Shell

Chemical) and triarylsulfonium hexafluoroantimonate salt (CYRACURE R© UVI,

Union Carbide) photoacid generator that makes it photosensitive to UV light at

310 and 230 nm [21]. UV exposure causes hexafluoroantimonate salt to decompose

to form hexafluoroantimonic acid that in turn protonates the EPON R© oligomer.

These protonated ions react with epoxides in cross-linking reactions upon heating

(baking) [21]. Therefore, UV exposure of SU-8 pattern is usually followed by a few
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Figure 1.1: Schematic of sample preparation, UV exposure and heat treatment
steps.

baking steps during optical photolithography. In this work, we prepared several

samples of SU-8 thin films of various thickness coated on a reflecting layer of gold

over silicon wafers and recorded the reflectance spectra of the samples after each

step that would normally be undertaken during optical lithography. Reflectance

spectra of samples with various thicknesses are used to estimate refractive indices

of the polymer in the mid-IR region.

1.2 Sample Preparation

Silicon (Si) wafers were cleaned using successive washes of acetone, methanol and

deionized water and dried using nitrogen gas. The wafers were then heated to

120 ◦C on a hot plate to release adsorbed gases. 2 µm of 4N gold were deposited

on the smooth side of the Si wafer using RF sputtering via an MRC R© 8667 RF

Sputtering Machine in 9 mTorr argon gas. Various thicknesses of SU-8 3005 were

spin coated onto the gold coated substrates using a Laurell Technologies R© WS-

400 Spin Coater. Soft baking, exposure, post exposure baking and hard baking

were performed according to procedures suggested by the manufacturer and heated

using a Fischer Scientific R© Isotemp hotplate (see Fig. 1.1 for schematic). UV

Exposure was performed using an OAI R© UV Exposure and Aligner R© workstation.

Photoresist thicknesses were confirmed using a Dektak II stylus profilometer.
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1.3 Reflectance Measurements

Reflection spectra of the prepared samples were measured using Jasco R© 6600

FTIR spectrometer equipped with PIKE R©’s diffuse reflectance accessory known

as mid-IR integrated sphere. The spectrometer has a ceramic source that radiates

IR light while the integrated sphere uses its own dedicated mercury cadmium

telluride (MCT) detector. The source and the detector allow measurements in the

range 2 µm to 15 µm with sufficient accuracy. Sample is placed on the the top of

the accessory facing downwards. The accessory has a spherical shell coated with

a highly reflective layer of gold. The IR light from the interferometer falls on the

sample via a gold mirror. Light scattered by the sample is collected by the gold

sphere and is eventually captured by the MCT detector. The central mirror can be

turned to point at the sphere to take reference measurement of gold (assumed to

be 100% reflecting). Angle of incidence on the sample is fixed to 12 ◦. Nearly 96%

of the reflection is specular while about 4% is diffuse. This highlights the quality

of the samples. As all scattered light is collected, measured reflectance (r) can be

directly related to absorbance (a) by a = 1 − r. Each measurement consists of a

background measurement and a sample measurement. Scan rate was set to 64 scans

per measurement with a resolution of 0.4 cm−1. Three measurements were taken

for each sample from different location on the sample. Repeated measurements at

different locations were found to be essentially same; this also confirms the quality

of the samples.

1.4 Results and Discussion
1.4.1 Reflectance Spectra

Four samples of SU-8 thin films of thicknesses 10 µm, 20 µm, 50 µm and 157 µm

coated on a gold substrate were prepared (hereafter we will refer to samples as

thin films). This was followed by standard processing steps during optical lithog-

5



raphy: soft baking (Stage I), UV exposure (Stage II), post-exposure bake (Stage

III) and hard bake (Stage IV). For the 10 µm sample, reflectance measurement

were recorded at each stage as shown Fig. 1.2(a). As the thickness of the gold

layer is much larger than the penetration depth (λ/4πκ) of mid-IR radiation, it

is thick enough to be opaque. The layer of gold is also highly reflecting (>98%)

for the range of wavelengths considered here. Therefore, the spectra show optical

properties of SU-8. Reflectance spectrum shows several absorption bands. Each of

the absorption bands relate to a specific chemical bond. FTIR spectroscopy using

attenuated total reflection (ATR) mode is often performed to identify different

chemical bonds in the samples [12]. Here, we have conducted diffuse reflectance

measurements instead. While diffuse reflectance spectroscopy is more quantitative

than ATR method, the spectrum does not necessarily display all the distinct ab-

sorption bands. However, some typical absorptions peaks are clearly visible in the

thin-film reflectance spectrum that we briefly discuss. The most notable peaks are

due to O-H stretch around 3200-3500 cm−1 (∼ 3 µm), aromatic C-H stretch at

3050 cm−1(∼ 3.3 µm ) and aliphatic C-H stretch around 2960-2870 cm−1(∼ 3.45

µm). In addition, peaks corresponding to aliphatic CH3 bending ( ∼1390 cm−1;

7.2 µm), CH2 bending (∼1540 cm−1; 6.5 µm), and aromatic C-C stretching (∼1724

cm−1; 5.8 µm are also observed. This denotes presence of alkyl and aryl groups

present in SU-8.

A change in reflectance spectrum is seen after each stage of treatment, more promi-

nent changes are seen at specific wavelength bands, while some parts of spectrum

are unchanged. The UV exposure step induces the greatest change in the re-

flectance spectrum. Absorption band near 3 µm shows prominent increase in

absorption upon UV exposure. This is the band corresponding to O-H stretch.

Increase in absorption in this region suggests an increased number of hydroxyl (O-
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Figure 1.2: (a) Effect on reflectance spectrum after each treatment step on the 10
µm sample of SU-8; stage I: soft baking, stage II: UV exposure, stage III: post-
exposure bake and stage IV: hard bake. Shaded region highlights wavelengths at
which a significant change in reflectance is seen. (b) Measured reflectance of UV
and heat treated SU-8 samples with various film thicknesses.

H) groups through crosslinking of epoxy groups in SU-8. At longer wavelengths

(10 to 15 µm), it is difficult to assign the change in spectrum to particular bonds.

However, this is the region where absorption bands corresponding to aromatic C-H

bends lie [10]. Being an epoxy, SU-8 layers are sticky, especially for thicker films.

Hence it was not possible to conduct reflectance measurements for the thicker films

before UV exposure (as they tend to stick to the apparatus). However, after UV

exposure and baking stages, SU-8 becomes completely dry and measurements can

be taken.

Figure 1.2 (b) shows reflectance spectra of UV exposed and baked samples of
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Figure 1.3: Estimated refractive indices of UV treated SU-8

Figure 1.4: Comparison of measured and calculated reflectance of UV treated SU-8
samples with different thickness.

SU-8 of various thicknesses: 10 µm, 20 µm, 50 µm and 157 µm, respectively. A

gradual reduction in reflectance was observed as the thickness of the films increases.

While thinner films show absorption at several bands, thicker samples display a

broader absorption throughout the infrared region. Appearance of several sharp

peaks in the thin film spectra is due to surface phonon modes [22] corresponding

various modes of vibrations. Absorption peaks in thin-film spectra can be related

to refractive indices of the material[22].
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1.4.2 Estimation of Dielectric Function

To estimate the dielectric function of SU-8, we use the method outlined by Verleur

et al. [23]. Inspired by Srinivasan’s [13] approach to calculate dielectric function

of PDMS, we employ a similar process to calculate dielectric function of SU-8. We

picked reflectance measurements of all samples to extract the dielectric function.

Dielectric function ε(ω) of a polymer can be assumed to be of Lorentz-Drude

oscillator form given by [23],

ε(ω) = ε∞ +
N∑
k=1

sk
1− ( ω

ωk
)2 − jΓk( ω

ωk
)
. (1.1)

Here, sk, ωk, Γk and j are the strength, resonant frequency, damping factor of kth

Lorentz-Drude oscillator and the imaginary unit, respectively. N such oscillators

are assumed. ε∞ is the contribution from higher frequencies. Since the angle of

incidence in the measurements is 12◦, reflectance values were calculated for that

angle of incidence. ωk correspond to several of the vibrational bond resonances

inside the material. High absorption and strong dispersion exist around these

resonance frequencies.

For an unpolarized incident beam of light, reflectance rc for any angle of incidence

is related to polarized reflection coefficients by [24]

rc =
1

2
[|RTE|2 + |RTM |2] (1.2)

Here, RTE and RTM are effective reflection coefficients at the given angle of in-

cidence for transverse electric (TE) and transverse magnetic (TM) polarization,

respectively.

Consider a structure having 3-layer media: air, SU-8 and gold, respectively. Sub-

strate below the gold layer can be ignored as gold is assumed to be 100% reflective.

By solving the boundary conditions at the interfaces, one can obtain the expres-

sion for the generalized (or effective) reflection coefficient at the air-SU-8 interface
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which is given by [24],

R(µ) =
R

(µ)
12 +R

(µ)
23 e

2jk2zL

1 +R
(µ)
12 R

(µ)
23 e

2jk2zL
(1.3)

where R
(µ)
12 is the Fresnel reflection coefficient at the interface between the layer

1 and 2, and R
(µ)
23 is the Fresnel reflection coefficient at the interface between

the layer 2 and 3, µ = s (or p) refers to TE (or TM) polarization, L is the

thickness of SU-8 layer. Since we are dealing with an oblique angle of incidence

(12 ◦), k2z =
√
ε(ω)ω2/c2 − k2ρ is the normal component of the wave vector in SU-8

wherein ε(ω) is the relative permittivity of SU-8 as a function of angular frequency

ω, c is the speed of light in vacuum and kρ = sin(12◦)ω/c is the magnitude of the

in-plane wave vector. The above expression accounts for multiple reflections and

inventual absorption within the SU-8 layer and it is valid for thin as well as bulk

SU-8 coated on gold.

Dielectric function of SU-8 was obtained by tuning several oscillator parameters

by matching reflectance spectra of both thin films and bulk samples. This involved

an optimization procedure that aims to minimize the error between calculated and

measured spectra. The error between the spectra is given by

δ =
M∑
i=1

[rm − rc]2
∣∣∣∣∣
10 µm

+
M∑
i=1

[rm − rc]2
∣∣∣∣∣
20 µm

+
M∑
i=1

[rm − rc]2
∣∣∣∣∣
50 µm

+
M∑
i=1

[rm − rc]2
∣∣∣∣∣
157 µm

(1.4)

Here, rm and rc are measured and calculated values of reflectance, respectively.

Index i refers to M different frequencies over which the measurements are taken.

One may use reduced Chi-Squared function instead of using absolute error squared

as an objective function. One of the issues with reduced Chi-Squared function is

that, it produces large values for low reflectance points. This gives higher weightage

to thicker samples (because they have very low reflectance on an average). As a

result, it produces a good fit for thick samples but not for films. This method is

not practical when dealing with samples of various thicknesses. Therefore, absolute
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error squared was used as objective function.

The minimization was done in two steps. In the first step, we used Matlab R©

based genetic algorithm to arrive at an initial guess of oscillator parameters. This

brings us closer to the global optimum of the objective function, providing a rea-

sonable fit. This is further improved by using constrained optimization function

fmincon. It was found that eighteen such resonant frequencies are needed to achieve

a good fit with the experimental data. As observed by Verleur [23], at least one os-

cillator mode is needed to be outside the spectral range of measurement to achieve

a good fit. In our case, this is located at 15.4 µm. The oscillator parameters

for the UV exposed and heat treated SU-8 are provided in Table 1.1. Infrared

refractive indices calculated using reflectance measurements of UV exposed and

heat treated SU-8 samples are shown in Fig. 1.3. Comparison of measured and

calculated reflectance of UV treated SU-8 samples are shown in Fig. 1.4. Although

thicker samples of unexposed SU-8 could not be used for measurements, thin film

measurements of unexposed SU-8 samples (10 µm) and measurements of exposed

SU-8 samples with 50 µm and 157 µm thickness were used to estimate dielectric

function of SU-8 pre-exposure are tabulated in Table 1.1. While resonant frequen-

cies of the dielectric function of SU-8 are very similar before and after exposure,

values of oscillator strength parameters and damping factors are different. Some

of the resonant frequencies can be related to well-known IR absorption bands that

are associated with typical chemical bonds in organic materials. Those are also

listed in the tables for the reader’s convenience. In the recent work, Motaharifar

et al.[9] estimated dielectric function of UV and heat treated SU-8. Their model

identifies only six resonance frequencies that are also similar to the frequencies

identified in this work. These frequencies are 24.3 (24.7), 30.6 (32), 33.4 (32), 35.3

(36.8), 36.7 (36.8) and 45.0 (44.4) THz. Here, the numbers in the bracket denote
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Table 1.1: Lorentz-Drude oscillator parameters of SU-8 after UV and heat treat-
ment

k ωk λk sk Γk Vibrational Bond
- (cm−1) (µm) - -

1 3469 2.9 5.379E-04 1.198E-02 O-H
2 2955 3.4 1.474E-02 2.654E-03 Aliphatic C-H
3 1768 5.7 1.345E-03 2.151E-04
4 1702 5.9 4.714E-03 2.520E-05 Aromatic C-C
5 1610 6.2 2.330E-03 2.242E-04
6 1599 6.3 1.138E-03 1.100E-01
7 1479 6.8 6.422E-03 1.928E-03
8 1344 7.4 3.731E-04 4.898E-05
9 1339 7.5 9.896E-03 8.090E-05
10 1265 7.9 2.033E-02 1.242E-02
11 1227 8.2 1.944E-03 2.234E-02
12 1067 9.4 3.227E-02 1.668E-02
13 947 10.6 3.071E-03 3.863E-02
14 831 12.0 3.412E-03 4.090E-02
15 823 12.1 5.759E-03 3.790E-05
16 757 13.2 3.073E-03 3.831E-02 Aromatic C-H (out of plane)
17 682 14.7 5.168E-03 5.400E-05
18 648 15.4 6.622E-03 2.668E-02 Aromatic C-C (out of plane)

ε∞ = 1.4

Table 1.2: Lorentz-Drude oscillator parameters of SU-8 before UV exposure

k ωk λk sk Γk Vibrational Bond
- (cm−1) (µm) - -

1 3459 2.9 5.288E-04 1.633E-02 O-H
2 2963 3.4 1.615E-02 2.009E-03 Aliphatic C-H
3 1766 5.7 1.101E-03 1.195E-04
6 1727 5.8 9.321E-04 1.500E-01 Aromatic C-C
4 1702 5.9 4.727E-03 1.630E-05
5 1611 6.2 2.569E-03 3.018E-04
7 1480 6.8 7.252E-03 2.295E-03
8 1344 7.4 2.120E-04 3.086E-05
9 1338 7.5 9.496E-03 3.953E-05
10 1267 7.9 2.267E-02 1.143E-02
11 1180 8.5 9.107E-04 1.241E-02
12 1055 9.5 2.862E-02 1.448E-02
13 938 10.7 1.886E-03 4.126E-02
14 836 12.0 4.794E-03 3.526E-02
15 823 12.1 5.726E-03 4.452E-05
16 760 13.2 2.895E-03 2.617E-02 Aromatic C-H (out of plane)
17 682 14.7 5.220E-03 3.001E-05
18 642 15.6 6.403E-03 3.637E-02 Aromatic C-C (out of plane)

ε∞ = 1.4
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resonance frequencies estimated in the present work.

Average error between calculated and reflected spectra is about 5%. Given that the

estimated dielectric function allows us to calculate and match reflectance curves

for four different film thicknesses, such an error is reasonable. In Fig. 1.4, we ob-

serve that reflectance curves of thickers samples of SU-8 show flat regions. Such a

response cannot be a result of Lorentzian model as clearly seen from the deviations

in spectrum for thicker films, e.g. 157 µm sample. However, it does not mean that

Lorentz-Drude model is invalid for SU-8. We account for such differences to the

errors in reflectance measurements for thicker samples. Uncertainties in reflectiv-

ity measurements for thick samples can be larger due to their low reflectance. As

the reference standard is 100% reflectance, measured signal for highly absorbing

(weakly reflecting) samples is small and contains more noise. As a results, some

features of the reflectance spectra are lost. However, the reflectance data from

these thicker samples is necessary for correct estimation of ε∞. We also observed

that thicker samples tend to have non-uniformity issues. Moreover, there are dif-

ficulties in fabricating bulk samples that do not crank or display wrinkling on the

surface. For this reason, we did not include bulk samples measurements of SU-8

for estimation of dielectric function.

1.5 Conclusion

In summary, we have reported optical properties of SU-8 using FTIR diffuse re-

flectance spectroscopy. Observations were made before and after UV treatment

of the samples. Reflectance spectra clearly show change standard steps of UV

exposure and heat treatment are followed. Reflectance spectra of the polymer is

thickness-dependent. Reflectance spectra of various thicknesses can be used to

estimate dielectric function of the polymer that obeys Lorentz-Drude oscillator

model. The oscillator parameters for the dielectric function were identified using
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a curve fitting optimization routine between predicted and simulated reflectance

spectra.

Acknowledgments

This project was supported in part by a National Science Foundation through grant

number 1655221, Institutional Development Award (IDeA) Network for Biomedical

Research Excellence from the National Institute of General Medical Sciences of

the National Institutes of Health under grant number P20GM103430, and Rhode

Island Foundation Research Grant number 20164342. Authors would like to thank

Dr. Bharathy Subramanian Parimalam for his comments on chemical aspects of

SU-8.

List of References

[1] N. C. LaBianca and J. D. Gelorme, “High-aspect-ratio resist for thick-film
applications,” in SPIE’s 1995 Symposium on Microlithography. International
Society for Optics and Photonics, 1995, pp. 846–852.

[2] H. Lorenz, M. Laudon, and P. Renaud, “Mechanical characterization of a new
high-aspect-ratio near uv-photoresist,” Microelectronic Engineering, vol. 41,
pp. 371–374, 1998.

[3] “http://www.microchem.com/prod-su8.htm.”

[4] A. del Campo and C. Greiner, “Su-8: a photoresist for high-aspect-ratio and
3d submicron lithography,” Journal of Micromechanics and Microengineering,
vol. 17, no. 6, p. R81, 2007.

[5] J. Zhang, K. Tan, G. Hong, L. Yang, and H. Gong, “Polymerization opti-
mization of su-8 photoresist and its applications in microfluidic systems and
mems,” Journal of Micromechanics and Microengineering, vol. 11, no. 1, p. 20,
2001.

[6] K. V. Nemani, K. L. Moodie, J. B. Brennick, A. Su, and B. Gimi, “In vitro
and in vivo evaluation of su-8 biocompatibility,” Materials Science and Engi-
neering: C, vol. 33, no. 7, pp. 4453–4459, 2013.

[7] J. Sua, F. Gaob, Z. Gub, W. Daic, G. Cernigliaroc, and H. Sun, “Fabrication
of su-8 based nanopatterns and their use as a nanoimprint mold,” in Proc. of
SPIE Vol, vol. 8974, 2014, pp. 897 409–1.

14



[8] O. P. Parida and N. Bhat, “Characterization of optical properties of su-8 and
fabrication of optical components,” in Int. Conf. on Opt. and Photon.(CSIO),
2009, pp. 4–7.

[9] E. Motaharifar, R. Pierce, R. Islam, R. Henderson, J. Hsu, and M. Lee,
“Broadband terahertz refraction index dispersion and loss of polymeric di-
electric substrate and packaging materials,” Journal of Infrared, Millimeter,
and Terahertz Waves, vol. 39, no. 1, pp. 93–104, 2018.

[10] T. Tan, D. Wong, P. Lee, R. Rawat, and A. Patran, “Study of a chemically am-
plified resist for x-ray lithography by fourier transform infrared spectroscopy,”
Applied spectroscopy, vol. 58, no. 11, pp. 1288–1294, 2004.

[11] B. C. Smith, Infrared spectral interpretation: a systematic approach. CRC
press, 1998.

[12] X.-B. Wang, J. Sun, C.-M. Chen, X.-Q. Sun, F. Wang, and D.-M. Zhang,
“Thermal uv treatment on su-8 polymer for integrated optics,” Optical Ma-
terials Express, vol. 4, no. 3, pp. 509–517, 2014.

[13] A. Srinivasan, B. Czapla, J. Mayo, and A. Narayanaswamy, “Infrared dielec-
tric function of polydimethylsiloxane and selective emission behavior,” Applied
Physics Letters, vol. 109, no. 6, p. 061905, 2016.

[14] A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using
surface phonon resonant nanoparticles,” Nano letters, vol. 10, no. 2, pp. 373–
379, 2010.

[15] G. Smith, C. Deller, P. Swift, A. Gentle, P. Garrett, and W. Fisher,
“Nanoparticle-doped polymer foils for use in solar control glazing,” Journal
of Nanoparticle Research, vol. 4, no. 1, pp. 157–165, 2002.

[16] A. Heilmann, Polymer films with embedded metal nanoparticles. Springer
Science & Business Media, 2013, vol. 52.

[17] A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in
wavelength selectivity of multilayered structures in the far-field and near-field
regimes,” Optics Express, vol. 23, no. 19, pp. A1129–A1139, 2015.

[18] T. Felix, “Devices for lowering the temperature of a body by heat radiation
therefrom,” Mar. 21 1967, uS Patent 3,310,102.

[19] B. Bartoli, S. Catalanotti, B. Coluzzi, V. Cuomo, V. Silvestrini, and G. Troise,
“Nocturnal and diurnal performances of selective radiators,” Applied Energy,
vol. 3, no. 4, pp. 267–286, 1977.

[20] P. Grenier, “Radiative cooling-inverse greenhouse effect,” Revue de Physique
Appliquee, vol. 14, pp. 87–90, 1979.

15



[21] W. Teh, U. Dürig, U. Drechsler, C. Smith, and H.-J. Güntherodt, “Effect
of low numerical-aperture femtosecond two-photon absorption on (su-8) resist
for ultrahigh-aspect-ratio microstereolithography,” Journal of applied physics,
vol. 97, no. 5, p. 054907, 2005.

[22] A. Narayanaswamy, J. Mayo, and C. Canetta, “Infrared selective emitters
with thin films of polar materials,” Applied Physics Letters, vol. 104, no. 18,
p. 183107, 2014.

[23] H. W. Verleur, “Determination of optical constants from reflectance or trans-
mittance measurements on bulk crystals or thin films,” JOSA, vol. 58, no. 10,
pp. 1356–1364, 1968.

[24] W. C. Chew, Waves and fields in inhomogeneous media. IEEE press, 1995.

16



MANUSCRIPT 2

Role of Nanoparticles in Wavelength Selectivity of Multilayered
Structures in the Far-field and Near-field Regimes

by

Alok Ghanekar1, Laura Lin1,2, Junwei Su3, Hongwei Sun3, Yi Zheng1

1Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island,

Kingston, RI 02881, USA

2Department of Mechanical Engineering, Technische Universität Braunschweig, 38106

Braunschweig, Germany

3Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA

01854, USA

(Has been published in Optical Express.)

Corresponding Author: Yi Zheng

Department of Mechanical, Industrial and Systems Engineering

University of Rhode Island

Kingston, RI 02881, USA

Phone: +1 401-874-5184

Email Address: zheng@uri.edu

17



Abstract

Microscopic thin films have shown wavelength selectivity in the context of radiative

heat transfer. We propose a methodology to shift the wavelength selectivity in the

desired location. This work deals with the far-field and near-field radiation from

thin films embedded with nanoparticles. The calculations of emission spectra are

performed using the Fresnel equations in the far-field limit, and using the dyadic

Green’s function formalism for transmissivity between the closely spaced objects in

the near-field regime. For the media doped with nanoparticles, an effective dielec-

tric function using the Maxwell-Garnett-Mie theory is used to calculate emissivity

and radiative heat transfer. It has been shown that the wavelength selectivity

in the emission spectra can be influenced by varying the size and/or the volume

fraction of nanoparticles. We characterize the wavelength selectivity using real

and imaginary parts of the effective refractive index. We show that the influence

of nanoparticles on wavelength selectivity is different depending on whether the

particles are of polar materials or are metallic.

2.1 Introduction

Most naturally occurring materials exhibit a broad range of emission spectrum.

However, thermal and optical properties of nanomaterials and nanostructures are

significantly different than that of bulk materials. They are the basis of develop-

ment of selective thermal emitters and absorbers that are crucial for development

of solar cells and thermophotovoltaics (TPV) [1]. Wavelength selective emitters

also have a wide range of potential applications such as biosensors, chemical sensors

[2, 3], thermal cooling and thermal detectors [4]. It has been shown that one dimen-

sional (1-D) metallo-dielectric periodic structures display great selective emission

properties in the infrared and visible region [5]. Multi-layered structures of thin

films (1-D photonic crystals) of polar materials can also be used to develop selec-
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tive emitters [6]. The property of multi-layered structures to exhibit wavelength

selectivity can be explained by presence of surface phonon polaritons (SPhPs) for

polar materials and surface plasmon polaritons (SPPs) for metals [5, 7]. It has also

been demonstrated that two dimensional (2-D) or three dimensional (3-D) pho-

tonic crystals can be used to develop selective emitters [8, 9]. However, thin-film

layered structures are easy to design and fabricate. Calculation of their emission

spectra is also relatively simple.

Wavelength selectivity of 1-D photonic crystals is a far-field phenomenon. When

the distance between two objects is of the order of the dominant thermal wave-

length, the radiative heat transfer is enhanced to many orders of magnitude due

to the coupling of surface waves and is referred to as near-field thermal radiation

[10]. If the materials support SPhPs or SPPs, the near-field radiative flux can be

shown to be inversely proportional to the square of the distance. The enhance-

ment of heat transfer does not take place at all wavelengths but only at specific

wavelengths [10]. This wavelengths selectivity in the near-field is exhibited by thin

films as well as bulk materials. Wavelength selectivity in the near-field limit is due

to the coupling of SPPs or SPhPs across the two surfaces [10].

While many articles dedicated to design and fabrication of selective emitters can

be found in the literature, use of nanoparticles specifically for the application of se-

lective emitters is relatively sparse [11]. Optical properties of materials doped with

nanoparticles have been investigated before [12, 13]. Experimental and analytical

study of thermal coatings doped with nanoparticles such as Gonome et al. [14, 15]

can also be found in literature. However, emissive properties of nanoparticles em-

bedded thin films have not been studied in detail to the best of our knowledge.

This paper presents the multi-layered structures which contain nanoparticles (NPs)

doped into the thin films which are suitable for any of the potential applications
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in both far-field and near-field. In this paper, we investigate a methodology which

can be used to develop selective thermal emitters for a desired wavelength band.

Ideally, one may want to develop a selective emitter for specific wavelength band

as per the requirements. As the emission spectrum displays peaks at the wave-

lengths which are characteristics of the refractive index of the material, changing

the thickness of the film allows control over only a narrow spectral band. We

propose to dope the top layer (thin film) with nanoparticles to change the dielec-

tric properties of the material. The usual Maxwell-Garnett equation for effective

medium approximation is often employed for such an analysis disregarding the

sizes of doped materials [16]. Here, we apply the Maxwell-Garnett-Mie formula-

tion [17] for effective medium approximation to calculate the dielectric function of a

composite that consists of a host material embedded with nanoparticles of various

sizes and volume fractions, and extend the same approach to calculate radiative

heat transfer for thin-films doped with nanoparticles. Thin film structure with

nano-particles would be easy to fabricate as submicron thin films embedded with

nanoparticles have been fabricated before [18, 19]. We aim to study the effect on

the wavelength selectivity of thin films due to combination of surface polaritons of

the films and the nanoparticles and their effects in near-field radiative heat trans-

fer and spectral heat flux. We consider hypothetical cases of thin-film embedded

with nanoparticles although fabrication of these particular NPs embedded films

discussed here is relatively unknown. We choose SiC and Polystyrene as the host

materials (for thin films). SiC is chosen as a host because it has high permittivity

in the infrared region and supports SPhP. Polystyrene is chosen because it does not

support either SPPs or SPhPs. BN which supports SPhP and Au which supports

SPPs are picked for the material of inclusion (NPs).

The structure of the paper is as follows. In section 2.2 we present the theoretical
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background and analytical expressions used for calculation of emissivity of thin

film structures, calculation of heat transfer between closely placed half spaces and

the application of Maxwell-Garnett-Mie theory. In section 2.3 we discuss the re-

sults of our calculations obtained using the formulations outlined in section 2.2.

Subsequently, the ideas and conclusions of the paper are narrated in section 2.4.

2.2 Theoretical Fundamentals

Consider a structure having N -layer media having (N − 1) interfaces. By solving

the boundary conditions at the interfaces, one can obtain the expression for the

generalized reflection coefficient at the interface between region i and region i+ 1

and is given by [20],

R̃
(µ)
i,i+1 =

R
(µ)
i,i+1 + R̃

(µ)
i+1,i+2e

2jki+1,z(di+1−di)

1 +R
(µ)
i,i+1R̃

(µ)
i+1,i+2e

2jki+1,z(di+1−di)
(2.1)

where R
(µ)
i,i+1 is the Fresnel reflection coefficient at the interface between the layer

i and i+ 1, and R̃
(µ)
i+1,i+2 is the generalized reflection coefficient at the interface be-

tween the layer i+1 and i+2, µ = s (or p) refers to transverse electric (or magnetic)

polarization, z = −di is the location of the ith interface. ki,z =
√
εi(ω)ω2/c2 − k2ρ

is the normal z-component of the wave vector in medium i wherein εi(ω) is the

relative permittivity of the medium i as a function of angular frequency ω, c is

the speed of light in vacuum and kρ is the magnitude of the in-plane wave vector.

With R̃
(µ)
N,N+1 = 0, the above equation provides a recursive relation to calculate the

reflection coefficients R̃
(µ)
i,i+1 in all regions. The generalized transmission coefficient

for the layered slab is given by

T̃
(µ)
1,N =

N−1∏
i=1

ejkiz(di−di−1)S
(µ)
i,i+1 (2.2)

where S
(µ)
i,i+1 = T

(µ)
i,i+1/(1−R

(µ)
i,i+1R̃

(µ)
i+1,i+2e

2jki+1,z(di+1−di)) and j =
√
−1. Alterna-

tively, the generalized reflection and transmission coefficients can also be calcu-
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Figure 2.1: Configurations of thin-film structures embedded with nanoparticles.
(a) A thin film of SiC (or Polystyrene) on top of gold film of 1 µm placed on a
substrate, and (b) two multi-layered half-spaces in near-field. The top film will be
mixed with nanoparticles of radius r and volume fraction f .

lated using transfer matrix approach [21]. The hemispherical emissivity is given

by the expression [6]

e(ω) =
c2

ω2

∫ ω/c

0

dkρkρ
∑
µ=s,p

(1− |R̃(µ)
h1 |

2 − |T̃ (µ)
h1 |

2) (2.3)

where R̃
(µ)
h1 and T̃

(µ)
h1 are the polarized effective reflection and transmission coeffi-

cients, as shown in Fig. 2.1(a).

Far-field radiative heat transfer is described by Planck’s law of thermal radiation

[22]. This description, however, does not account for the presence of evanescent

(surface) waves which dominate only near the boundaries. The expression of ra-

diative transfer between closely spaced objects can be derived using dyadic Green’s

function formalism [23], and is given by

q1→2(T1,T2,L)=

∫ ∞
0

dω

2π
[Θ(ω, T1)−Θ(ω, T2)]T1→2(ω) (2.4)

where Θ(ω, T ) = (~ω/2) coth(~ω/2kBT ) is the energy of harmonic oscillator at

frequency ω and temperature T , ~ is the reduced Planck constant, and kB is the
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Boltzmann constant. The function T1→2(ω) corresponds to the spectral transmis-

sivity in radiative transfer between media 1 and 2 separated of distance L and is

expressed as [23]

T1→2(ω)=

∫ ω/c

0

kρdkρ
2π

∑
µ=s,p

(1− |R̃(µ)
h1 |2)(1− |R̃

(µ)
h2 |2)

|1− R̃(µ)
h1 R̃

(µ)
h2 e

2jkhzL|2

+

∫ ∞
ω/c

kρdkρ
2π

∑
µ=s,p

4=(R̃
(µ)
h1 )=(R̃

(µ)
h2 )e−2|khz |L

|1− R̃(µ)
h1 R̃

(µ)
h2 e

−2|khz |L|2

(2.5)

where R̃
(µ)
h1 and R̃

(µ)
h2 are polarized effective reflection coefficients of the two half

spaces (calculated in the absence of other half space), and khz is the z-component

of wavevector in vacuum. The first term in Eq. (5.2) corresponds to propagating

waves, while the second term describes the thermal transport due to evanescent

waves, and its contribution is significant only for small values of gap L.

Clausius-Mossotti equation for the effective dielectric function, εeff , of the com-

posite medium containing nanoparticle inclusions in a host material is given by

[24, 25]

εeff = εm

(
r3 + 2αrf

r3 − αrf

)
(2.6)

where εm is the dielectric function of the matrix, αr is the electric dipole polariz-

ability, r and f are the radius and volume fraction of nanoparticles respectively.

The size dependent extension of Maxwell Garnett formula can be obtained by

deriving an expression for electric dipole polarizability using Mie theory [17]

αr =
3jc3

2ω3ε
3/2
m

a1,r (2.7)

where a1,r is the first electric Mie coefficient given by

a1,r=

√
εnpψ1(xnp)ψ

′
1(xm)−√εmψ1(xm)ψ

′
1(xnp)√

εnpψ1(xnp)ξ
′
1(xm)−√εmξ1(xm)ψ

′
1(xnp)

(2.8)

where ψ1 and ξ1 are Riccati-Bessel functions of the first order given by ψ1(x) =

xj1(x) and ξ1(x) = xh
(1)
1 (x) where j1 and h

(1)
1 are first order spherical Bessel
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functions and spherical Hankel functions of the first kind, respectively. Here, ‘′’

indicates the first derivative. xm = ωr
√
εm/c and xnp = ωr

√
εnp/c are the size pa-

rameters of the matrix and the nanoparticles, respectively; εnp being the dielectric

function of nanoparticles.

Effective medium approximation method is applicable when average distance be-

tween inclusions is much smaller than the wavelength of interest. If the dielectric

inclusions of radius r can be imagined to be arranged in simple cubic lattice of lat-

tice constant a, the condition for validity of the effective medium approximation is

λh >> a > 2r. Where λh is the wavelength in the host material [26]. We empha-

size that since we use the approximation for thin-films doped with nanoparticles,

its use may not be correct when the particle size is comparable to the thickness of

the films. Also, as discussed in by Liu et al. [27], it can be argued that the use of

effective medium theory (EMT) is questionable at nanoscale distances. Although

such might be the case for the near-field calculations presented here, its detailed

analysis is beyond the scope of this work and is left for future work. Despite of

the limitations of Maxwell-Garnett-Mie theory and its application in the near-field

regime, the results obtained should provide general trends and give considerable

insight into optical properties of artificial materials. Further investigations by di-

rect numerical simulation may be necessary to confirm the validity of EMT [28].

Moreover, these results will be constructive when judging the validity of the EMT

in near-field by direct numerical calculations. We would like to keep these points

open for speculation.

2.3 Results

The dielectric function is related to real (n) and imaginary (κ) parts of refractive

index as
√
ε = n + jκ. For SiC and BN, the dielectric function has the form as
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Figure 2.2: Hemispherical emissivity spectra for SiC or polystyrene (PS) thin film
of thickness 0.4 µm mixed with BN and Au nanoparticles of 25 nm radius and
different volume fractions (a) SiC film mixed with BN nanoparticles of various
volume fractions, (b) SiC film mixed with Au nanoparticles of various volume
fractions, (c) Polystyrene film mixed with BN nanoparticles of various volume
fraction, and (d) Polystyrene film mixed with Au nanoparticles of various volume
fractions. All spectral ranges begin at 0.35 µm.

[29, 30]

ε(ω) = ε∞
(ω2 − ω2

LO + jωγ)

(ω2 − ω2
TO + jωγ)

(2.9)

where ωTO and ωLO are transverse and longitudinal optical phonon frequencies and

γ is the damping constant. For SiC, the constants ε∞, ωTO, ωLO and γ are equal

to 6.7, 9.83 × 10−2 eV, 0.12 eV and 5.90 × 10−4 eV respectively. The values of

ε∞, ωTO, ωLO and γ for BN are 4.46, 0.1309 eV, 0.1616 eV and 6.55 × 10−4 eV

respectively. Data for the bulk gold (Au) is taken from Johnson and Christy [31].

Figure 2.2(a) considers the case of SiC film doped with NPs of BN. SiC film of 0.4

µm is on the top of Au film of 1 µm deposited on a substrate. Effect of change

in NPs volume fraction (f) is studied. Volume fraction of BN nanoparticles is

changed from 0% to 30% while keeping the radius of 25 nm. Thin film of pure

SiC exhibits emission peaks at λSiCn ≈ 10.33 µm and λSiCk ≈ 13 µm. λn is the
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wavelength at which the real part of the refractive index becomes zero (zero-index

material) [6, 32]. λκ is the wavelength at which the real part of refractive index

(n) is large while the imaginary part of refractive index (κ) is small [6]. These

peaks are attributed to the presence of SPhPs, and the characteristic wavelengths

of the dielectric function of SiC. Appearance of new peaks upon 5% inclusion of

BN nanoparticles has been observed at λ ≈ 8.5 µm and λ ≈ 11.5 µm. When the

volume fraction of NPs is increased further, each of these peaks splits into two

giving rise to a total of six peaks. Locations of these peaks do not correspond

to the characteristic wavelengths of BN (λBNn ≈ 7.6 µm and λBNκ ≈ 9.8 µm). In

addition, there exists a small shift in the emission peak at λSiCκ . This suggests an

interaction between SiC matrix and BN NPs. Consider the case with 30% inclusion

of BN. Figure 2.3(a) shows that the mixture has two additional locations where

the refractive index is zero (λmixturen1 ≈ 8.5 µm and λmixturen2 ≈ 11.7 µm). Moreover,

at two more points n is large while imaginary part of refractive index is small,

namely λmixtureκ1 ≈ 9 µm and λmixtureκ2 ≈ 11.1 µm These wavelengths correspond

to the additional peaks. While the additional peaks are at the location of the

characteristics of the refractive index of the mixture, it is interesting to note that

peaks at ≈ 10.33 µm and ≈ 12.98 µm have no or little shift even at large volume

fraction of 30%, because they are characteristic wavelengths of the host. Inclusion

of BN leads to new SPhP leading to new peaks. Figure 2.2(b) shows the effect of

Au nanoparticles in SiC thin film. When particle size is small, especially when the

size is comparable to the mean free path of the free electrons, confinement effects

become significant [25, 33]. The optical properties of metallic nanoparticles have

shown size dependence [34]. We utilize a size-dependent dielectric function for Au

nanoparticles of radius r that takes care of electron scattering, which is given by
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Figure 2.3: Refractive index characteristics of SiC doped with BN and Au nanopar-
ticles: (a) Real part of refractive index n, and (b) imaginary part of refractive index
κ, for SiC and SiC doped with 30% BN or Au nanoparticles.

[35]

ε(ω, r)=εb(ω) +
ω2
p

ω2 + jωγ0
−

ω2
p

ω2 + jω(γ0 + Avf/r)
(2.10)

where εb, ωp, vf and γ0 are the bulk dielectric function, the plasma frequency, the

Fermi velocity of free electrons and the electron damping, respectively. The values

of εb are taken from Johnson and Christy [31]. The parameters ωp, vf and γ0 are

taken to be 9.06 eV, 0.077 eV and 1.4×106 m/s, respectively. The proportionality

constant A that depends on the the electron scattering process at the surface of

nanoparticles is assumed to be unity. Volume fraction is varied from 0 to 30% while

NPs radius is kept constant (25 nm). Multiple oscillatory peaks are seen in the

lower wavelength region upon addition of Au nanoparticles. A shift in the original

peak of SiC at ≈ 13 µm is seem when volume fraction is large (30%). While the

presence of a peak at ≈ 10.33 µm and a peak at ≈ 13 µm can be related to n and
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Figure 2.4: Refractive index characteristics of Polystyrene doped with BN and
Au nanoparticles: (a) Real part of refractive index n, and (b) imaginary part of
refractive index κ, for PS and PS doped with 30% BN or Au nanoparticles.

κ plots shown in Figs. 2.3(a) and 2.3(b), multiple peaks between 0.35 µm to 8

µm cannot be explained using the refractive index characteristics. While change

in refractive index is seen around 500 nm which corresponds to surface plasmon

resonance of Au, one may expect a peak around 500 nm. Multiple peaks are

observed instead. Figures 2.2(c) and 2.2(d) show emission spectra of polystyrene

thin film doped with BN nanoparticles and Au nanoparticles respectively. The

dielectric function of PS is in the form of [36]

ε(ω) = 1 +
i=4∑
i=1

fi
(w2

i − ω2 − jgiω)
(2.11)

where the parameters fi, wi, and gi are, in the units of eV, given by fi =

[14.6, 96.9, 44.4, 136.9], wi = [6.35, 14.0, 11.0, 20.1] and gi = [0.65, 5.0, 3.5, 11.5],

respectively. In case of BN, appearance of new peaks is quite similar to that in

Fig. 2.2(a) and its relation with the refractive indices shown in Figs. 2.4(a) and

2.4(b) is obvious. Appearance of emission peaks at the locations of λmixtureκ and
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λmixturen is evident. However, when polystyrene film is doped with Au nanoparticles

we once again see multiple peaks produced in the region 0.35 µm to 6 µm which

are not related to the refractive index characteristics. Since polystyrene does not

support either of SPhPs or SPPs, interaction between SPPs of Au and surface po-

lariton of the host are not responsible for the multiple peaks. We hypothesize that

the origin of multiple peaks is due to interaction of SPPs of Au and the boundaries

of the thin film. In case of SiC film doped with Au nanoparticles the shift in the

peak of ≈ 13 µm is due to interaction between SPPs of Au and SPhPs of SiC, in

either cases (SiC and PS) the inclusion material does not produce new polaritons

as seen in refractive index characteristics.

Figure 2.5 shows the effect of NPs size on the emission spectra. In Fig. 2.5(a),

SiC film of 0.4 µm is doped with BN nanoparticles and volume fraction of BN

NPs is kept constant at 10% and the radius is varied from 1 nm to 50 nm. The

majority of emission spectrum shows no effect of BN particle size. However, effect

of size is noticeable at wavelengths less than 1 µm. This is due to the fact that

Mie scattering becomes important at shorter wavelengths giving rise to high peaks

for larger particles. Figure 2.5(b) presents the calculation of emissivity for 0.4

µm thick polystyrene (PS) film doped with Au NPs. The volume fraction of NPs

is fixed at 10% and particle size is changed from 1 nm to 50 nm. Unlike Fig.

2.5(a), Figure 2.5(b) shows a strong influence of particle size on the emissivity.

While the spectrum in the visible region shows a negligible response to particle

size, gold NPs greatly influence the near-infrared region between 1 µm to 4 µm.

As the NP size is increased from 1 nm the emissivity peaks reduce in magnitude,

showing smaller peaks for 10 nm and 25 nm. Emissivity for larger particles of 50

nm however is increased again and is comparable to that of NPs of 1 nm. This

is due to the presence of two counteracting phenomena here. First is the change
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Figure 2.5: Hemispherical emissivity spectra for SiC or polystyrene (PS) thin film
of thickness 0.4 µm mixed with BN and Au nanoparticles of volume fraction 10%
and different radii (a) SiC film doped with BN nanoparticles and (b) Polystyrene
thin film embedded with Au nanoparticles.

in dielectric function of Au NPs leading to decreased emissivity of larger particles

and the second being Mie scattering of EM waves in the host causing an increase

emissivity of larger particles.

Next, we present the effect of the doped nanoparticles on radiative heat transfer.

We analyse radiative heat transfer between two identical multilayered structures at

300 K and 301 K as shown in Fig. 2.1(b). Each structure has a top layer of 0.4 µm

deposited on 1 µm of Au. The top layer is doped with nanoparticles of 25 nm and

different volume fractions. Figure 2.6 shows radiative heat flux vs distance between

the structures and the normalized spectral density (defined as the ratio of dq/dω to

the maximum value over the range of wavelengths considered) at a distance of 100

nm is shown in the inset figures. Consider a structure with SiC layer doped with

BN nanoparticles. Figure 2.6(a) shows very little change in overall heat transfer.

While thin film of pure SiC shows nearly monochromatic heat transfer, selectivity

is seen at additional bands of wavelength. These locations are wavelengths where
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Figure 2.6: Near-field radiative heat flux between multilayered structures at 300
K and 301 K mixed with nanoparticles of radius 25 nm for different volume frac-
tions, and the normalized spectral heat flux is displayed in the inset for the same
configuration at a distance of 100 nm- each half space has nanoparticle-embedded
thin layer of 0.4 µm on the top deposited on Au layer of 1 µm placed on substrate.
Volume fraction of nanoparticles is varied. (a) SiC film doped with BN nanopar-
ticles (b) SiC film doped with Au nanoparticles (c) polystyrene (PS) film mixed
with BN nanoparticles and (d) PS film mixed with Au nanoparticles.

the effective refractive index of the mixture becomes zero (Figs. 2.3(a) and 2.3(b)).

While the locations of the new peaks depends on the volume fraction, the peak

corresponding to the host material is relatively unchanged. In Fig. 2.6(b), SiC film

is doped with Au nanoparticles of radius 25 nm with different volume fractions.

The change in total heat transfer characteristics is not significant with the addition

of nanoparticles. Selectivity is observed near λ = λ1 ≈ 10.33 µm as in Mulet et

al. [10], which is one of characteristic wavelengths of SiC. Moreover, the inclusion

of Au nanoparticles has only a small impact on the selectivity in the near-field

limit and this can be related to the refractive indices of the mixture (Figs. 2.3(a)

and 2.3(b)). When the top layer is polystyrene doped with BN nanoparticles
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(Fig. 2.6(c)), near-field heat flux is clearly dependent on volume fraction of the

inclusion both in the near-field and far-field regime. Since polystyrene does not

support SPPs/SPhPs, inclusion of BN clearly makes significant enhancement in

heat transfer. The surface becomes selective at the wavelengths at which the real

part of the effective refractive index becomes zero. When the PS film is doped

with Au nanoparticles instead, the radiative heat transfer in Fig. 2.6(d), shows

an increment with an increase in NPs volume fraction, both in the near-field as

well as far-field limit. However, the normalized spectral density does not show any

selectivity in the near-field. In summary, the wavelength selectivity of thin films

in the near-field can be related to its effective refractive index in all four cases.

This is logical as the selectivity is due to the presence of SPPs/SPhPs across the

interfaces. It is interesting to note that, unlike in far-field regime, the selectivity

is affected only when BN particles are used as inclusions. Addition of Au particles

shows little or no impact on the selectivity in the near-field. This supports the

idea that metallic nanoparticles do not induce new SPPs/SPhPs in the surfaces

while dielectric nanoparticles such as BN produce new SPhP in the material.

2.4 Conclusion

We have demonstrated that nanoparticles influence the emission spectra of the

multilayered structures. Wavelength selectivity can be altered and controlled by

size and/or volume fraction of the NPs. Presence of NPs in a host material gives

rise to an appearance of new emission peaks and a shift in the existing peaks

in the emission spectra. When the metallic NPs are used, the effect of size is

stronger as dielectric function of metallic NPs has a strong dependence of particle

size due to electron scattering. We have also shown that volume fraction of the

nanoparticles plays an important role in the near-field radiative heat transfer. If

the NPs support SPhP, wavelength selectivity of thin films in the far field is at the
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locations where the real part of effective refractive index of the mixture becomes

zero or the imaginary part of refractive index is small while real part of the index

is large. If the material of inclusion supports SPPs, as in metallic nanoparticles

multiple emission peaks are seen which cannot related to n and κ values of the

mixtures. (Our observation is limited to the case where the host material is thin-

film.)

In the near-field, for NPs supporting SPhPs or SPPs the heat transfer is nearly

monochromatic around the wavelength at which n for the mixture becomes zero. It

is observed that only SPhP supporting inclusions can influence the location of λn of

the mixture, hence wavelength selectivity of thin films in near-field has little or no

effect due to the presence of metallic nanoparticles. This can be understood as the

presence of NPs in the thin film does not induce new kind of SPPs/SPhPs resonance

across the interfaces. This work broadens the range of designs and methods for

wavelength selective emitters in both the far-field and near-field regime.
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Abstract

We theoretically demonstrate a novel, efficient and cost effective thermal emitter

using a Mie-resonance metamaterial for thermophotovoltaic (TPV) applications.

We propose for the first time the design of a thermal emitter which is based on

nanoparticle-embedded thin film. The emitter consists of a thin film of SiO2 on

the top of tungsten layer deposited on a substrate. The thin film is embedded with

tungsten nanoparticles which alter the refractive index of the film. This gives rise

to desired emissive properties in the wavelength range of 0.4 µm to 2 µm suitable

for GaSb and InGaAs based photovoltaics. Effective dielectric properties are cal-

culated using Maxwell-Garnett-Mie theory. Our calculations indicate this would

significantly improve the efficiency of TPV cells. We introduce a new parameter

to gauge the efficacy of thermal emitters and use it to compare different designs.

3.1 Introduction

Thermophotovoltaics (TPV) is a promising technology for heat recovery and an

attractive alternative for existing electricity generation technologies [1, 2, 3]. A

TPV system consists of a thermal emitter which operates at high temperatures

(∼1500 K) [4, 5] and a photovoltaic cell and can directly convert thermal energy

into electricity [6]. In principle, TPV systems can achieve an efficiency of Carnot

engine for monochromatic radiation [7] and such TPV systems with efficiencies

approaching the limit have been discussed in the literature [8, 9, 10]. In reality,

efficiencies of TPV systems suffer from the mismatch between emission spectrum

of emitter and absorption spectrum of PV cell [11]. External quantum efficiency

(EQE) of a PV cell is defined as the fraction of incident photons converted into

electron-hole pairs [12] and is indicative of the amount of current generated for

a given incident photon wavelength. A PV cell has non-zero EQE above the

band-gap, i.e. a PV cell can generate electric current only when incident photons
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Figure 3.1: (a) Schematic of a typical TPV system with a thermal emitter/absorber
and a PV cell. (b) An example of a thermal emitter based on 1-D grating structure
of SiC and W on the top of W base. The grating thickness and period Λ=50 nm,
filling ratio φ=0.55. (c) A proposed design of thermal emitter consists of 0.4 µm
thick SiO2 layer on the top of 1 µm thick W layer deposited on the substrate. SiO2

layer is doped with W nanoparticles of 20 nm radius with a volume fraction of
30%.

have higher energies than the bandgap of semiconductor material [13]. Moreover,

absorption of incident photons having wavelength longer than bandgap wavelength

is undesirable as it causes thermal leakage and reduces the efficiency [14]. So, in

order to achieve high efficiency of a TPV system, goal is to develop a thermal

emitter with high emissivity in the region of high external quantum efficiency

(EQE) of PV cell and low emissivity in rest of the spectrum. Several studies have

focused on using photonics crystals [15, 16], plasmonic metamaterials [17], single

micro/nano sized spheres [18], doped materials [19, 20], surface gratings in order to

obtain spectrally selective emission [21]. 1-D, 2-D and 3-D photonic crystals and

surface gratings have also been developed [22, 23, 24]. Numerous works involve

use of intermediate filters which reflect the low energy photons back to emitter

[25, 26, 27, 28].

Metamaterials is another class of nanomaterials/nanostructures which has been

the topic of many articles focused on selective thermal emitters. Liu et al [29] have
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demonstrated a narrow-band mid infrared thermal emitter based on a metamate-

rial. Plasmonic metamaterials have also been explored for solar TPV applications

as in [30, 31]. Woolf et al [32] have presented and also experimentally demonstrated

a heterogeneous metasurface for selective emitters and predicted 22% conversion

efficiency for InGaAs based TPV system at the operating temperature of 1300 K

for the emitter. Use of refractory materials such as tungsten is common in the

literature. These studies and several others [33, 34, 35, 36, 37, 38], although not

specifically focused on TPV applications, involve complex surface patterns which

are difficult to fabricate. In this paper, we propose for the first time the use of

Mie-metamaterial thin films, i.e., nanoparticle-embedded thin films to design a

novel, efficient and low cost thermal emitter suitable for GaSb and InGaAs based

TPVs. Mie-metamaterials or Mie-resonance metamaterials are artificial materi-

als which utilize Mie resonances of inclusions for the shaping of emission spectra.

Several theoretical studies of nanoparticle inclusions into host materials have been

performed [39, 40, 41]. However, literature pertaining to optical and emissive prop-

erties of nanoparticle embedded thin films is rare. Authors recently published a

broad study on the role of polar and metallic nanoparticles on far-field and near-

field thermal radiation from thin films by considering different cases of hypothetical

Mie-metamaterial thin films [42]. In present study we exploit the idea by using

thin films of SiO2 embedded with tungsten (W) nanoparticles to design a novel

thermal emitter specifically for GaSb and InGaAs based TPVs.

Schematic of a typical TPV system is shown in Fig. 6.1(a). Thermal radiation

from the heat source is absorbed by the blackbody absorber. This heat is emitted

by the selective thermal emitter only in the desired band of wavelengths in which

the external quantum efficiency of the PV cell is high. Figure 6.1(b) depicts an

example of 1-D grating structure that could be used to realize wavelength selective
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radiative properties of thermal emitter. It comprises gratings of SiC and W of

period Λ = 50 nm and filling ratio φ = 0.55. Grating layer is 50 nm thick. It’s

emissive properties along with the emittance of 2-D grating structure considered

in Zhao et al [13] will be compared to the Mie-metamaterial based thermal emitter

of present study. The prime focus of this paper is the proposed design of thermal

emitter shown in Fig. 6.1(c). It consists of a 0.4 µm thick film of SiO2 on the

top of 1 µm thick film of tungsten deposited on a substrate. Thickness of the

layer of W makes sure that all the radiation from the substrate is reflected back

and the radiative properties of the emitter are dictated by the top two layers

alone. The SiO2 film is doped with W nanoparticles of 20 nm radius. Inclusion of

W nanoparticles changes the optical properties of the film and results in desired

emission spectrum. Volume fraction of W nanoparticles was adjusted to 30% to

achieve the best result. While the mixture of SiO2 and W gives rise to spectrally

selective emission for the PV, the choice of materials also makes sure that it will

withstand high temperatures.

3.2 Theoretical Fundamentals

The hemispherical emissivity of the thermal emitter can be expressed as [42]

e(ω) =
c2

ω2

∫ ω/c

0

dkρkρ
∑
µ=s,p

(1− |R̃(µ)
h |

2 − |T̃ (µ)
h |

2) (3.1)

where c is the speed of light in vacuum, ω is the angular frequency and kρ is the

magnitude of inplane wave vector. R̃
(µ)
h and T̃

(µ)
h are the polarization dependent

effective reflection and transmission coefficients which can be calculated using the

recursive relations of Fresnel coefficients of each interface [43]. The dielectric func-

tions can be related to real (n) and imaginary (κ) parts of refractive index as

√
ε = n + jκ. Dielectric functions of the materials (SiO2, W and SiC) considered

in this paper are taken from literature [44, 45, 46]. Having very low temperature
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coeffcients, room temperature values of dielectric function are used for SiO2 and

SiC [47, 48]. Dielectric properties of tungsten were also assumed to be unchaged

as the operating temeprature is much less than the melting point. The top layer of

the thermal emitter considered in our calculations is either 1-D grating structure

or nanoparticle embedded thin-film. In both cases, it can be approximated as a

homogeneous layer of an effective dielectric function.

If the period of grating (Λ) is much smaller than the wavelength of interest such

as the case considered here, dielectric function of the grating layer can be approx-

imated using effective medium theory [49]. We use second order effective medium

approximation to calculate the effective dielectric function which is given by [49]

εTE,2 =εTE,0

[
1+

π2

3

(
Λ

λ

)2

φ2(1− φ)2
(εA−εB)2

εTE,0

]
(3.2a)

εTM,2 =εTM,0

[
1+

π2

3

(
Λ

λ

)2

φ2(1−φ)2(εA−εB)2εTE,0
(
εTM,0
εAεB

)2
]

(3.2b)

where εA and εB are the dielectric functions of the two materials in surface gratings,

Λ is the period and φ is the filling ratio. The expressions for zeroth order effective

dielectric functions εTE,0 and εTM,0 are given by

εTE,0 = φεA + (1− φ)εB (3.3a)

εTM,0 =

(
φ

εA
+

1− φ
εB

)−1
(3.3b)

For calculating the effective dielectric function the Mie-metamaterial, we use

Clausius-Mossotti equation. [50, 51].

εeff = εm

(
r3 + 2αrf

r3 − αrf

)
(3.4)

where εm is the dielectric function of the matrix, αr is the electric dipole polariz-

ability, r and f are the radius and volume fraction of nanoparticles respectively.

To consider the size effects of nanoparticle inclusions, we use the Maxwell Garnett
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formula which employs the expression for electric dipole polarizability using Mie

theory [52], αr = 3jc3a1,r/2ω
3ε

3/2
m , where a1,r is the first electric Mie coefficient

given by

a1,r=

√
εnpψ1(xnp)ψ

′
1(xm)−√εmψ1(xm)ψ

′
1(xnp)√

εnpψ1(xnp)ξ
′
1(xm)−√εmξ1(xm)ψ

′
1(xnp)

(3.5)

where ψ1 and ξ1 are Riccati-Bessel functions of the first order given by ψ1(x) =

xj1(x) and ξ1(x) = xh
(1)
1 (x) where j1 and h

(1)
1 are first order spherical Bessel

functions and spherical Hankel functions of the first kind, respectively. Here, ‘′’

indicates the first derivative. xm = ωr
√
εm/c and xnp = ωr

√
εnp/c are the size pa-

rameters of the matrix and the nanoparticles, respectively; εnp being the dielectric

function of nanoparticles.

It is worth mentioning that Maxwell-Garnett-Mie theory is applicable when average

distance between inclusions is much smaller than the wavelength of interest [53].

This criteria is satisfied in the calculated presented. Also noteworthy is the fact

that nanoparticle diameter (40 nm) is much smaller than the thickness of the

thin film (0.4 µm) considered. Thus, effective medium theory holds true for the

calculations presented in this study.

3.3 Results

Figure 6.2(a) illustrates the effect of W nanoparticle inclusions on the refractive

indices of SiO2 host. Pure SiO2 has a near constant refractive index (n) ∼ 1.55 and

a negligible extinction coefficient (κ). Nano-sized W spheres (2r = 40 nm) much

smaller than the operating wavelength are introduced into the SiO2 matrix. This

brings about an increased refractive index and extinction coefficient. Although

real and imaginary parts of the refractive index have different implications, it is

imperative that real and imaginary parts of the mixture depend on both the indices

of its constituents. It is essential to point out that change in refractive indices of

the mixture is a result of addition of new material as well as the Mie-scattering of
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Figure 3.2: Refractive indices of W, SiO2 and SiO2 doped with W nanoparticles
of volume fraction 30% and 20 nm radius. (a) Real part of refractive index. (b)
Imaginary part of refractive index. Imaginary part of refractive index for SiO2 is
negligible for the range of wavelengths considered here [46].

electromagnetic waves by spherical nanoparticles. Consequently, refractive indices

of the mixture depend on volume fraction and particle size. The resulting changes

in the emission spectrum are displayed in Fig. 6.3(a). Owing to its metallic nature,

W is moderately absorptive only at lower wavelengths and highly reflective beyond

2 µm. Although SiO2 bulk has a high absorptivity/emissivity, 0.4 µm thick layer

of SiO2 is practically transparent for the entire spectrum. Therefore, both the bare

tungsten and the combination of SiO2 layer on tungsten base have low emissivity

in the range of 0.4 to 2 µm and negligible emissivity for the majority of spectrum

beyond 2 µm. Upon inclusion of W nanoparticles, emissivity is enhanced for

spectral region of interest. The geometric parameters available for spectral shaping

of the emissivity are thickness of SiO2 film, volume fraction of W nanoparticles

and particle radius. If size distribution of nanoparticles is available, it can be

incorporated into the extended Maxwell-Garnett formula as in [55]. For the present

study, the particle radius is fixed to 20 nm. Figure 6.3(a) also highlights the effect
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Figure 3.3: Emission spectra of different configurations. (a) Hemispherical emis-
sivity of W, SiO2 film of 0.4 µm deposited on W base and SiO2 doped with W
nanoparticles of 20 nm radius and different volume fractions. (b) Emission spec-
trum (left y-axis) of the final design is compared to the result presented by Zhao
et al [13] and 1-D surface grating discussed in this study. The EQE plots (right
y-axis) of PV cells are shown for comparison [54].

of volume fraction of W nanoparticles on emission spectra. An increase in volume

fraction from 10% to 30% results in higher emissivity and the broadening of the

emission spectrum. The final proposed configuration has the SiO2 film thickness

of 0.4 µm and 30% volume fraction of W nanoparticles. Note that calculated

emissivity of W (black curve in Fig. 6.3(a)) matches well with high-temperature

(1600 K) emissivivty reported in [56]. Also refractive index of SiO2 has a low

temeprature coefficient [57]. Therefore these materials are well suited for high

temeprature applications.

The thermal emitter presented here is suitable for a typical TPV system consisting

GaSb or InGaAs based photovoltaics. The EQE of the two PV cells is shown

in Fig. 6.3(b). Both the GaSb and InGaAs based PV cells efficiently generate

electricity if the wavelength of incident photons falls in the range of 0.4 µm to

2 µm. Configuration of the proposed design i.e. thickness of the SiO2 layer,
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radius and volume fraction of W nanoparticles was chosen to achieve best match

between the emission spectrum and the EQE curve of the PV cells. Our design

exhibits high emissivity (> 0.8) in the wavelength range 0.4 µm to 1.7 µm and

very low emissivity (< 0.2) beyond 2 µm. The close match between the emission

spectrum of the emitter and EQE curve PV cell ensures high conversion efficiency

and minimizes the thermal leakage of long wavelength photons. For comparison,

the emission spectrum of 1-D structure (Fig. 6.1(b)) and that of a 2-D grating

structure discussed in Zhao et al [13] is also shown. It is apparent that the emission

spectrum of the design presented here is comparable to that of 1-D structure and

the 2-D structure presented in [13] for wavelengths below 1.7 µm. Although a

substantial part of blackbody radiation at high temepraturs (1000 to 1500 K)

exists between 2 to 6 µm, very little energy is emitted by proposed emitter in this

region as emissivty is very low. Moreover, the proposed design has lower emissivity

beyond 1.7 µm when compared to the 2-D design. This indicates much lower losses

due to thermal leakage. It is worth mentioning that, while choice of materials in

the present study is same as that used in [13], fabrication of thermal emitter based

on tungsten embedded SiO2 thin film is relatively simple. This guarantees low

cost of large scale fabrication of such emitters. As refractory materials such as

platinum and aluminum oxide (Al2O3) have been tested before for thermal emitter

[32], they can also be explored for this new class of emitters.

3.4 Discussion

While the match between emission spectrum of the emitter and the EQE curve

of the PV cell can be a good indicator of TPV system’s performance, the emitter

temperature has an equally important role as it decides the dominant wavelength

and can dictate the overall efficiency. Therefore, discussion of conversion efficiency

cannot be left out in this work. Ideal emitter has an e(ω) = 1 above bandgap and
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e(ω) = 0 below the bandgap. The conversion efficiency of the TPV system could

be defined as the ratio of the power output of the PV cell to the power incident

on the PV cell given by

η =
Pout
Prad

(3.6)

where Prad is the power radiated by the emitter [58]

Prad =

∫ ∞
0

ω2

4π2c2
~ω

(e~ω/kBT − 1)
e(ω)dω (3.7)

The power output, Pout is proportional to the number density of the photons above

bandgap and the EQE of PV cell defined as [32]

Pout = qVOCFF

∫ ∞
0

n(ω, T )e(ω)ηEQE(ω)dω (3.8)

where q, VOC , FF and ηEQE are electronic charge, open circuit voltage, fill factor

and EQE of PV cell, respectively. n(ω, T ) is the number density of incident photons

n(ω, T ) =
ω2

4π2c2
1

(e~ω/kBT − 1)
(3.9)

Now consider a hypothetical TPV system with a thermal emitter which has no

radiation below the bandgap but covers only a fraction of spectrum above bandgap

with e(ω) = 1. Such a system would have lower power output than the one with

ideal thermal emitter despite having maximum efficiency with no losses. It is

apparent that conversion efficiency of the TPV system alone cannot be regarded

as a criterion to gauge the efficacy of a thermal emitter. Therefore we propose

a new parameter to calculate the effectiveness of the thermal emitter for a given

PV cell and emitter temperature. The parameter termed as effectiveness index is

defined as the ratio of the efficiency of the TPV system to the efficiency of the TPV

system with ideal thermal emitter at the same temperature and for the given PV

cell, βemitter = ηReal/ηIdeal, where subscripts Real and Ideal refer to TPV systems
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with thermal emitter of consideration and an idealized thermal emitter at the same

temperature. So,

βemitter =

(
Pout
Prad

)
Real

×
(
Prad
Pout

)
Ideal

(3.10)

While this norm, βemitter doesn’t elaborate anything about the efficiency of the

TPV system as a whole, it is a good measure to compare the effectiveness of

different thermal emitters for a given PV cell and emitter temperature. Note that

if βemitter > 1, it implies that the TPV system is efficient but only a part of the

spectrum of the EQE is being utilized and the output power is less than what an

ideal emitter would produce. Therefore, the goal is to get βemitter close to 1 but not

exceed 1. It is assumed that the emitter has a much higher temperature than the

PV cell, which has a negligible reflection coefficient. While calculating effectiveness

indices for different thermal emitters and a given PV cell, it is assumed that PV

cell temeprature and its EQE do not vary.

We calculate the effectiveness of the thermal emitter for GaSb PV cell and at

emitter temperature 1500 K for the designs presented in Fig. 6.3(b). Our proposed

design has an effectiveness index βemitter = 0.72 while its value for the 1-D design

and the one considered in [13] is 0.78 and 0.65 respectively. It is important to

note that despite having lower emissivity, the 1-D design has higher effectiveness

index because it has lower emissivity beyond 2 µm, thermal wavelength at 1500 K

being 1.93 µm. Structure discussed in [13] shows lower effectiveness index as it has

higher emissivity below the bandgap. Effectiveness index of the aforementioned

designs at 1300 K is βemitter = 0.6, 0.68 and 0.58 respectively. As the thermal

wavelength shifts to 2.3 µm, losses increase which clearly demonstrates the role of

temperature and the dominant thermal wavelength governing the efficiency.

Thus, we have presented for the first time a thermal emitter which consists of

Mie-metamaterial based thin film. Dielectric properties of SiO2 thin films are
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influenced by the inclusions of W nanoparticles. This manifests into the spectral

shaping of thermal radiation from the surface of the emitter. The best possible

emission spectrum is realized by adjusting the thickness of the film, radius and

volume fraction of nanoparticles. The emission spectrum of the design matches

well with the EQE of GaSb and InGaAs based PV cells that indicates high

conversion efficiency. Emission spectrum of the present design is on par with

previously proposed design based on 2-D grating structures. Very low emission

for λ > 2 µm minimizes the leakage of long wavelength photons below the TPV

band-gap. Materials chosen for the design (SiO2 and W) are suitable from

fabrication perspective and can withstand high operating temperatures of the

TPV system. Moreover, fabrication of the proposed nanostructure is relatively

simple as compared to surface gratings making it cost effective. Nanoparticle

radius, volume fraction and film thickness offer a good tunability for tailoring of

emission spectrum. We also explored a new parameter named as effectiveness

index that can be used as a good indicator to compare efficacy of thermal emitter

for a given PV cell and operating temperature. This study gives valuable insights

into design opportunities for selective thermal emitters that can be applied for

TPV systems.
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[50] V. Myroshnychenko, J. Rodŕıguez-Fernández, I. Pastoriza-Santos, A. M. Fun-
ston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Mod-
elling the optical response of gold nanoparticles,” Chemical Society Reviews,
vol. 37, no. 9, pp. 1792–1805, 2008.

[51] U. Kreibig and M. Vollmer, Optical properties of metal clusters. Springer
Berlin, 1995, vol. 25.

[52] W. T. Doyle, “Optical properties of a suspension of metal spheres,” Physical
review B, vol. 39, no. 14, p. 9852, 1989.

[53] M. S. Wheeler, “A scattering-based approach to the design, analysis, and
experimental verification of magnetic metamaterials made from dielectrics,”
Ph.D. dissertation, 2010.

[54] M. G. M. Y. B. B. O. V. Sulima, A. W. Bett and P. S.Dutta, “Proc. 5th TPV
Conf., Rome, Italy, September 2002 (AIP, New York, 1999),” p. p 402.

[55] Y. Battie, A. Resano-Garcia, N. Chaoui, Y. Zhang, and A. E. Naciri, “Ex-
tended maxwell-garnett-mie formulation applied to size dispersion of metal-
lic nanoparticles embedded in host liquid matrix,” The Journal of Chemical
Physics, vol. 140, no. 4, p. 044705, 2014.

[56] S. Roberts, “Optical properties of nickel and tungsten and their interpretation
according to drude’s formula,” Physical Review, vol. 114, no. 1, p. 104, 1959.

[57] P. Timans, “The thermal radiative properties of semiconductors,” in Advances
in rapid thermal and integrated processing. Springer, 1996, pp. 35–101.

[58] M. Planck, The theory of heat radiation. Dover Publications, 2011.

54



MANUSCRIPT 4

Mie-Metamaterials Based Thermal Emitter For Near-Field
Thermophotovoltaic Systems

by

Alok Ghanekar1, Yanpei Tian1, Sinong Zhang2, Yali Cui2,3 and Yi Zheng1

1 Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island,

Kingston, RI 02881, USA

2 College of Life Sciences, Northwest University, Xian, Shaanxi 710069, China

3 National Engineering Research Center for Miniaturized Detection Systems, Northwest

University, Xian, Shaanxi 710069, China

(Has been published in Materials.)

Corresponding Author: Yi Zheng

Department of Mechanical, Industrial and Systems Engineering

University of Rhode Island

Kingston, RI 02881, USA

Phone: +1 401-874-5184

Email Address: zheng@uri.edu

55



Abstract

In this work, we theoretically analyze the performance characteristics of a near-field

thermophotovoltaic system consisting a Mie-metamaterial emitter and GaSb based

photovoltaic cell at separations less than the thermal wavelength. The emitter

consists of tungsten nanoparticle-embedded thin film of SiO2 deposited on bulk

tungsten. Numerical results presented here are obtained using formulae derived

from dyadic Green’s function formalism and Maxwell-Garnett-Mie theory. We

show that, by inclusion of tungsten nanoparticles, the thin layer of SiO2 acts like

an effective medium that enhances selective radiative heat transfer for the photons

above the band gap of GaSb. We analyze TPV performance for various volume

fractions of tungsten nanoparticles and thickness of SiO2.

4.1 Introduction

Thermophotovoltaics (TPV) have been the focus of several works as an alternative

to power generation technologies and a technology for waste heat recovery systems

[1, 2, 3]. A typical TPV system consists of a high temperature (∼1500 K) thermal

emitter and a photovoltaic (PV) cell that converts the energy of incident photons

into electricity. While ideal TPV systems convert radiative energy into electricity

at an efficiency of the Carnot engine, practical TPV systems suffer from mismatch

between the emission spectra of the emitter and absorption spectra of PV cell

[4, 5, 6, 7, 8]. Several studies investigate the use of metamaterials [9, 10, 11], sur-

face gratings and photonics crystals [12, 13, 14, 15, 16, 17] and complex surface

patterns [18] to improve efficiency of TPV system. In the recent few years, it was

demonstrated that near-field thermal radiation has a great potential in improv-

ing TPV systems [19, 20, 21, 22, 23, 24]. Several theoretical studies were focused

on exploiting near-field coupling of surface waves between emitter and PV cell at

nanometer separation to improve the efficiency. It is challenging to develop materi-
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als that can withstand high temperatures as well as allow an enhanced coupling of

surface waves for the energies above the band gap of PV cell. One-dimensional grat-

ings, hyperbolic metamaterials and photonic crystals have shown a great potential

in TPV applications. Dielectric mixtures and nanoparticle embedded thin films

can also be utilized to tune near-field thermal radiation [25]. It has been demon-

strated earlier that Mie-metamaterials or Mie-resonance metamaterials that utilize

Mie resonances of inclusions into host materials can be used for spectral tuning

of near-field thermal radiation. Authors earlier demonstrated the possible use of

tungsten nanoparticle-embedded thin film of SiO2 to achieve a selective thermal

emitter for far-field TPV system [26]. Effect of nanoparticle inclusions into host

material on near-field radiative heat transfer has been investigated in several the-

oretical studies [27, 28, 29]. Stemming from earlier work, we demonstrate the use

of a Mie-metamaterial thermal emitter that consists of tungsten nanoparticles em-

bedded into a thin film of SiO2 deposited on thick layer of tungsten for near-field

TPV system. We also explore possible alternative of W nanoparticles by refractive

materials such as titanium nitride (TiN), tantalum (Ta) and molybdenum (Mo).

We investigate the performance of such a TPV system for various configurations.

While many recent works have dealt with gratings, photonic crystals and other

metamaterials, this is the first time nanoparticle-embedded thin films have been

investigated for near-field TPV system. The configuration of near-field TPV sys-

tem considered in the present study is shown in Fig. 6.1. The emitter side is a

Mie-metamaterial consisting tungsten nanoparticle-embedded in SiO2 thin film on

the top of a tungsten layer. Radius of nanoparticles is fixed to 20 nm. Their vol-

ume fraction and thickness of SiO2 layer can be varied to investigate behaviour of

the system. The layer of tungsten blocks radiation from the substrate making the

emitter essentially opaque. PV cell considered here is GaSb (which has a bandgap
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Figure 4.1: Schematic of near-field thermophotovoltaic system consisting the pro-
posed thermal emitter and GaSb based PV cell at separation less than the thermal
wavelength.

of 0.726 eV) whose properties can be found in Ref. [30]. Calculations reports in

this work are for emitter temperature of 1500 K while PV cell is assumed to be at

300 K. The separation between the emitter and PV cell is comparable or less than

the thermal wavelength at 1500 K (λth= 1.93 µm).

While we concern ourselves with mostly the theoretical side of proposed thermal

emitter, there are various ways to fabricate nanoparticle embedded thin films. For

example, it has been demonstrated that a stack of metallic nanoparticle arrays

and SiO2 arrays can be fabricated [?]. Alternatively, as suggested by [?], core-shell

nanoparticle arrays can be fabricated using tungsten core and SiO2 shell. This is

followed by sputtering or chemical vapor deposition of SiO2. Nanoparticles-SiO2

composites also can be fabricated using sputtering deposition process. A mixture

of W and SiO2 powders can be prepared using PVDF (Polyvinylidene fluoride)

and sintering/pressing onto a sputtering cooling plate. W-SiO2 composites can

be fabricated by RF sputtering of W followed by sputtering of W-SiO2 powder.

During the sputtering process, tungsten nanoparticles would form.
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Figure 4.2: Real (n) and imaginary (κ) parts of refractive indices of pure SiO2 and
SiO2 with 30% tungsten nanoparticles.

4.2 Results and Discussion

Refractive indices of plain SiO2 and that of SiO2 mixed with 30% nanoparticles of

tungsten are shown in Fig. 6.2. Effect of nanoparticle inclusions can be observed.

SiO2 has a near constant value of refractive index (n) and a negligible extinction

coefficient (κ) in the spectral range of our interest. Dielectric mixture of SiO2

and tungsten displays an overall increased effective refractive index and a higher

absorption coefficient for wavelengths shorter than 2.5 µm.

It is crucial to reduce the spectral energy below the band-gap of PV cell in order

to improve the overall thermal efficiency of the TPV system. Coupling of surface

waves dictates whether radiative transfer would be enhanced or suppressed. The

goal is to enhance radiative transfer above the bandgap without significantly en-

hancing radiation below the bandgap of PV cell. In order to assess the impact

of nanoparticle inclusions, we investigate spectral heat flux of the proposed TPV

system for various configurations. Spectral heat flux across the proposed thermal

emitter at a separation of L = 100 nm for various compositions is plotted in Fig.

6.3. Emitter with a 0.3 µm layer of SiO2 on tungsten has lower heat flux across the

spectrum when compared to plain tungsten as seen in Fig. 6.3 (a). Upon inclu-
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Figure 4.3: Spectral heat flux across the proposed emitter and the GaSb PV cell
at a separation of L = 100 nm for (a) various volume fraction of W nanoparticles
- 0%, 15% and 30 % compared to bulk W emitter; (b) various thicknesses of SiO2

layer - 0.3 µm, 1 µm, 5 µm and bulk respectively.

sion of tungsten nanoparticles however, spectral heat flux is increased and is more

selective towards shorter wavelengths (λ < 2 µm). While spectral heat flux shows

increase over the entire range, it is more prominent for energies above the band-gap

leading to less fraction of energy lost. An increased absorption coefficient in the

shorter wavelengths can be accounted for enhanced coupling of surface modes in

that range. To demonstrate the effect of reducing bulk layer to thin layer, Fig.

6.3 (b) illustrates spectral responses for various thicknesses of SiO2 layer and fixed

volume fraction of 30%. While a bulk layer of SiO2 mixed with tungsten nanopar-

ticle show broadband heat transfer, it can be clearly seen that, thinner layers of

SiO2 yield more selective spectral response while maximum spectral heat flux re-

mains relatively same. It can be observed that radiation at longer wavelengths is

more sensitive to layer thickness. It is imperative that such a configuration is more

desirable for minimizing losses due to long wavelength photons. In principle, it is

possible to tune the near-field thermal radiation by changing volume fraction of
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Figure 4.4: Predicted spectral density of output power (dashed lines) from GaSb
PV cell for emitter with pure SiO2 thin film and SiO2 with 30% of W nanoparticles
for separation of 100 nm compared with corresponding spectral heat fluxes (solid
lines).

nanoparticles and thickness of the SiO2 layer to achieve optimal configuration for

a given operating temperature and separation.

We now investigate the power output of the GaSb PV cell as a result of near-field

radiative heat transfer at a separation of 100 nm. To assess the overall performance

of the TPV system, we model the PV cell as discussed in section 4.3. We calculate

spectral density of output power along with the total output power. Figure 6.4

shows calculated spectral density of output power from PV cell for the emitter

with pure SiO2 layer of 0.3 µm thickness on tungsten and SiO2 layer with 30%

tungsten nanoparticles. The emitter with tungsten nanoparticle embedded thin

film of SiO2 displays an enhanced output power contribution above the bandgap

of GaSb PV cell when compared the emitter to pure SiO2 layer. For comparison

spectral heat flux across the interface of the same configurations are also shown.

The total heat flux and total power output of the PV cell of these configurations

are plotted against separation up to 10 nm in Fig. 4.5. For gaps larger than

1 µm (far-field), heat flux and consequently power power and system efficiencies
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Figure 4.5: Total heat flux (solid lines) and output power (dashed lines) of PV
cell as a function of separation between the emitter and PV cell for an emitter
pure SiO2 film of 0.5 µm and SiO2 films with W nanoparticles. Inset shows overall
efficiency of the corresponding TPV systems plotted as a function of separation.

are independent of the distance. For separations less than 1 µm (near-field), the

overall heat flux increases due to presence of evanescent waves. Consequently, the

output power also rises monotonically as separation between the emitter and PV

cell is reduced. The inset in Fig. 4.5 shows TPV system efficiency against distance

for the same setups. While the trend in efficiencies is not as monotonous, for the

separations smaller than 100 nm, the emitter with tungsten nanoparticles shows

higher thermal efficiency than the one with pure SiO2. This is supported by ear-

lier results that show the increased selectivity at shorter wavelengths leading to

lower losses. Interestingly, the emitter with pure SiO2 has higher efficiency in the

far-field. Nevertheless, such a configuration has lower output power. Oscillatory

behaviour of efficiency has been observed before and can be attributed to vacuum

gap behaving like a waveguide [4]. We would like to emphasize that, to further im-

prove the performance of the TPV system the materials chosen are not necessarily

optimal. For example, PV cells with lower band gap such as InGaAs and InGaSb

or the quaternary alloys like InGaAsSb can be used. This can allow use of lower
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Figure 4.6: Spectral heat flux across the emitter consisting nanoparticles of alter-
native materials and the GaSb PV cell at a separation of L = 100 nm for volume
fraction of 30%.

emitter temperature or higher efficiencies and output power at the same operating

temperatures. Alternatively, other materials such as Al2O3 (in place of SiO2) and

Platinum, Molybdenum, Tantalum and Titanium Nitride (in place of W) can be

investigated for thermal emitter structure. We show a possible replacement of W

by refractory materials such as Titanium Nitride (TiN), Molybdenum (Mo) and

Tantalum (Ta) using our calculations in Fig. 4.6. Spectral heat flux between the

PV cell and emitter with SiO2 layer of 0.3 µm thickness and 30% nanoparticles

at a separation of 100 nm is shown. For comparison, heat flux with tungsten

nanoparticles is shown. Corresponding values of total heat flux for W, TiN, Mo,

and Ta nanoparticles is 3.72×105, 3.81×105, 2.68×105 and 2.57×105 W/m2, re-

spectively. From Fig. 4.6 it appears that emitter with TiN and W nanoparticles

display higher heat flux for this particular configuration. Emitter with tungsten

nanoparticles shows better selectivity than TiN. Various combinations of material

type and dimensions can be investigated to tune the emission spectra.

Overall, we have numerically investigated for the first time, near-field thermophoto-
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voltaic system that uses Mie-metamaterial based thermal emitter and a PV cell at

a separation less than the thermal wavelength. We have theoretically demonstrated

an enhanced wavelength selective thermal emitter for near-field thermophotovoltaic

system using a Mie-resonance metamaterial. Thermal emitter consists of tungsten

nanoparticle-embedded thin film of SiO2 deposited on thick tungsten substrate.

We analyze performance of such a TPV device for various cases. We study the

effect of volume fraction, layer thickness of SiO2 and separation between emitter

and PV cell. The embedded tungsten nanoparticles in the thin film can alter the

refractive index of the film and allow spectral control of near-field radiative transfer

across the emitter and the PV cell. We evaluate energy conversion efficiency of the

proposed near-field thermophotovoltaic system. The results show that the struc-

ture of Mie-metamaterial thermal emitter can significantly improve the efficiency

of thermophotovoltaic system. Improvement in spectral selectivity as well as over-

all heat transfer can be accounted for increased power output and efficiency. We

show that, by changing volume fraction of nanoparticles and thickness of SiO2 it is

possible to tune the near-field thermal radiation to obtain enhanced output power

and high thermal efficiency. Materials considered can withstand high temperatures

and suitable for thermal emitter.

4.3 Materials and Methods

The expression of radiative transfer between closely spaced bodies can be derived

using dyadic Green’s function approach [31], and is given by

q1→2(T1,T2,L)=

∫ ∞
0

dω

2π
[Θ(ω, T1)−Θ(ω, T2)]T1→2(ω) (4.1)

where Θ(ω, T ) = (~ω/2) coth(~ω/2kBT ) is the energy of harmonic oscillator at

frequency ω and temperature T , ~ is the reduced Planck constant, and kB is the

Boltzmann constant. The function T1→2(ω) corresponds to the spectral transmis-

sivity in radiative transfer between media 1 and 2 separated of distance L and is
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expressed as [31]

T1→2(ω)=

∫ ω/c

0

kρdkρ
2π

∑
µ=s,p

(1− |R̃(µ)
h1 |2)(1− |R̃

(µ)
h2 |2)

|1− R̃(µ)
h1 R̃

(µ)
h2 e

2jkhzL|2

+

∫ ∞
ω/c

kρdkρ
2π

∑
µ=s,p

4=(R̃
(µ)
h1 )=(R̃

(µ)
h2 )e−2|khz |L

|1− R̃(µ)
h1 R̃

(µ)
h2 e

−2|khz |L|2

(4.2)

where R̃
(µ)
h1 and R̃

(µ)
h2 are polarized effective reflection coefficients of the two half

spaces (calculated in the absence of other half space), and khz is the z-component

of wavevector in vacuum. The first term in Eq. (5.2) corresponds to propagating

waves, while the second term describes the thermal transport due to evanescent

waves, and its contribution is significant only for small values of gap L. For a

structure having N -layer media having (N − 1) interfaces, the expression for the

generalized reflection coefficient at the interface between region i and region i+ 1

is given by [32],

R̃
(µ)
i,i+1 =

R
(µ)
i,i+1 + R̃

(µ)
i+1,i+2e

2jki+1,z(di+1−di)

1 +R
(µ)
i,i+1R̃

(µ)
i+1,i+2e

2jki+1,z(di+1−di)
(4.3)

where R
(µ)
i,i+1 is the Fresnel reflection coefficient at the interface between the layer

i and i+ 1, and R̃
(µ)
i+1,i+2 is the generalized reflection coefficient at the interface be-

tween the layer i+1 and i+2, µ = s (or p) refers to transverse electric (or magnetic)

polarization, z = −di is the location of the ith interface. ki,z =
√
εi(ω)ω2/c2 − k2ρ

is the normal z-component of the wave vector in medium i wherein εi(ω) is the

relative permittivity of the medium i as a function of angular frequency ω, c is

the speed of light in vacuum and kρ is the magnitude of the in-plane wave vector.

With R̃
(µ)
N,N+1 = 0, the above equation provides a recursive relation to calculate the

reflection coefficients R̃
(µ)
i,i+1 in all regions. For calculating the effective dielectric

function the Mie-metamaterial, we use Clausius-Mossotti equation. [33, 34].

εeff = εm

(
r3 + 2αrf

r3 − αrf

)
(4.4)
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where εm is the dielectric function of the matrix, αr is the electric dipole polariz-

ability, r and f are the radius and volume fraction of nanoparticles respectively.

To consider the size effects of nanoparticle inclusions, we use the Maxwell Garnett

formula which employs the expression for electric dipole polarizability using Mie

theory [35], αr = 3jc3a1,r/2ω
3ε

3/2
m , where a1,r is the first electric Mie coefficient

given by

a1,r=

√
εnpψ1(xnp)ψ

′
1(xm)−√εmψ1(xm)ψ

′
1(xnp)√

εnpψ1(xnp)ξ
′
1(xm)−√εmξ1(xm)ψ

′
1(xnp)

(4.5)

where ψ1 and ξ1 are Riccati-Bessel functions of the first order given by ψ1(x) =

xj1(x) and ξ1(x) = xh
(1)
1 (x) where j1 and h

(1)
1 are first order spherical Bessel

functions and spherical Hankel functions of the first kind, respectively. Here, ‘′’

indicates the first derivative. xm = ωr
√
εm/c and xnp = ωr

√
εnp/c are the size pa-

rameters of the matrix and the nanoparticles, respectively; εnp being the dielectric

function of nanoparticles. It is worth mentioning that Maxwell-Garnett-Mie the-

ory is applicable when average distance between inclusions is much smaller than

the wavelength of interest [36]. This criteria is satisfied in the calculated pre-

sented. Since nanoparticle diameter (40 nm) is much smaller than the thickness

of the thin film (0.3 µm) considered, effective medium theory holds true for the

calculations presented in this study. Dielectric functions of the materials (SiO2and

W) considered in this paper are taken from literature [37, 38]. Having very low

temperature coefficients, room temperature values of dielectric function are used

for SiO2 [39]. Dielectric properties of tungsten were also assumed to be unchanged

as the operating temperature is much less than the melting point.

Near-field thermal radiation and charge transport in PV cell can be theoretically

modelled by accounting for charge density distribution due to number of photons

absorbed at different cell depth [22]. Due to limitations of the present study, we

employ a simplistic model to calculate output power of PV cell. We assume that
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quantum efficiency of PV cell in the near-field would be the same as that in the

far-field. Therefore, short circuit current can be calculated as [22]

ISC =

∫ ∞
Eg/~

e

~ω
· EQEGaSb(ω) · dq

dω
dω (4.6)

where Eg is the bandgap of GaSb cell, EQEGaSb is external quantum efficiency,

dq/dω is spectral heat flux and e is the electronic charge. Dark current can be

calculated by,

I0 =
eDnn

2
i

LnNn

+
eDpn

2
i

LpNp

; (4.7)

where Dn and Dp are diffusivities of electrons and holes, respectively, ni is the in-

trinsic carrier concentration, Nn and Np are concentrations of electrons and holes,

respectively, while diffusion lengths Ln and Lp can be calculated in terms of diffu-

sivity and recombination lifetime τ using,

Lx =
√
D · τ (4.8)

Total recombination lifetime is calculated by,

1/ttot = 1/τR + 1/τSHR + 1/τAu (4.9)

where τR, τSHR and τAu are radiative recombination, Shockley-Hall recombination

and Augar recombination, respectively [40]. Open circuit voltage is calculated

using,

VOC = (kBTPV /e)ln(ISC/I0 + 1) (4.10)

Output power of the PV cell is given by,

Pout = ISCVOC(1− 1/z)[1− ln(z)/z] (4.11)

where z = ln(ISC/I0) and efficiency of the TPV system is given by,

η = Pout/Qrad (4.12)
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For our calculations, intrinsic carrier concentration was assumed to be 4.3 × 1012

cm−3. Carrier concentration of electrons and holes were assumed to be equal to

Nn = Np = 1017 cm−3. The recombination lifetimes are taken to be τR = 40 ns,

τSHR = 10 ns and τAu = 20 µs. Carrier diffusivities are Dn = 129 cm2/s and

Dp = 39 cm2/s for electrons and holes, respectively.
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“Radiation filters and emitters for the nir based on periodically structured
metal surfaces,” Journal of Modern Optics, vol. 47, no. 13, pp. 2399–2419,
2000.

[15] J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. Ho, “All-metallic three-
dimensional photonic crystals with a large infrared bandgap,” Nature, vol.
417, no. 6884, pp. 52–55, 2002.

[16] H. Sai, Y. Kanamori, and H. Yugami, “Tuning of the thermal radiation spec-
trum in the near-infrared region by metallic surface microstructures,” Journal
of Micromechanics and Microengineering, vol. 15, no. 9, p. S243, 2005.

69



[17] A. Ghanekar, M. Sun, Z. Zhang, and Y. Zheng, “Optimal design of wave-
length selective thermal emitter for thermophotovoltaic applications,” Journal
of Thermal Science and Engineering Applications.

[18] D. Woolf, J. Hensley, J. Cederberg, D. Bethke, A. Grine, and E. Shaner,
“Heterogeneous metasurface for high temperature selective emission,” Applied
Physics Letters, vol. 105, no. 8, p. 081110, 2014.

[19] A. Narayanaswamy and G. Chen, “Surface modes for near field thermopho-
tovoltaics,” Applied Physics Letters, vol. 82, no. 20, pp. 3544–3546, 2003.

[20] R. DiMatteo, P. Greiff, D. Seltzer, D. Meulenberg, E. Brown, E. Carlen,
K. Kaiser, S. Finberg, H. Nguyen, J. Azarkevich, et al., “M icron-gap t hermo
p hoto v oltaics (mtpv),” in AIP Conference Proceedings, vol. 738, no. 1. AIP,
2004, pp. 42–51.

[21] M. Laroche, R. Carminati, and J.-J. Greffet, “Near-field thermophotovoltaic
energy conversion,” Journal of Applied Physics, vol. 100, no. 6, p. 063704,
2006.

[22] K. Park, S. Basu, W. P. King, and Z. Zhang, “Performance analysis of near-
field thermophotovoltaic devices considering absorption distribution,” Journal
of Quantitative Spectroscopy and Radiative Transfer, vol. 109, no. 2, pp. 305–
316, 2008.

[23] M. Francoeur, R. Vaillon, and M. P. Mengüç, “Thermal impacts on the perfor-
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Abstract

We propose a theoretical concept of a far-field radiative thermal rectification de-

vice that uses a phase change material to achieve a high degree of asymmetry in

radiative heat transfer. The proposed device has a multilayer structure on one side

and a blackbody on other side. The multilayer structure consists of transparent

thin film of KBr sandwiched between a thin film of VO2 and a reflecting layer of

gold. When VO2 is in its insulating phase, the structure is highly reflective due to

the two transparent layers on highly reflective gold. When VO2 is in the metallic

phase, Fabry-Perot type of resonance occurs and the tri-layer structure acts like a

wide-angle antireflection coating achieved by destructive interference of partially

reflected waves making it highly absorptive for majority of spectral range of ther-

mal radiation. The proposed structure forms the active part of configuration that

acts like a far-field radiative thermal diode. Thermal rectification greater than 11

is obtained for a temperature bias of 20 K, which is the highest rectification ever

predicted for far-field radiative diode configurations.

5.1 Introduction

Thermal diode [1], thermal transistors [2], thermal memory element [3] and similar

thermal analogues of electronic devices have been topic of theoretical as well as ex-

perimental works. While earlier research has been on conduction (phonon) based

devices [4, 5, 6, 7, 8], more recent studies have been focusing on radiation (photon)

based thermal rectifiers [9, 10, 11, 12]. Thermal rectification has numerous appli-

cations in thermal management, thermal logic gates [13, 14, 15] and information

processing [16].

Analogous to electrical diode, thermal diode is a rectification device wherein mag-

nitude of heat flux strongly depends on the sign of applied temperature bias. To

quantify rectification, we employ the widely used definition of rectification ra-
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tio, i.e., R = (Qf − Qr)/Qr where Qf and Qr refer to forward and reverse heat

flux, respectively [17]. Alternatively, rectification coefficient can be defined as

η = (Qf −Qr)/max(Qr, Qf ). There are numerous studies pertaining to near-field

and far-field thermal radiation based rectification devices that exploit tempera-

ture dependent properties of a phase change materials such as vanadium dioxide

(VO2) and La0.7Ca0.15Sr0.15MnO3 (LCSMO) [18, 11, 19]. A number of studies deal

with far-field thermal radiation [20, 21] while several others focus on modulation

of radiative heat transfer in the near-field regime [22, 23, 24, 25, 18, 26, 19]. Ben-

Abdallah and Biehs introduced a VO2 based simple far-field radiative thermal

diode, while Prodhomme, et al., [27] proposed a far-field thermal transistor that

uses a VO2 base between a blackbody collector and a blackbody emitter. Zhu, et

al., [28] showed that temperature dependent optical properties of SiC can be used

to attain negative differential conductance. Van Zwol, et al., [22] proposed that

one can take advantage of the phase transition from crystalline to amorphous state

in AIST (an alloy of Ag, In, Sb, and Te) driven by a current pulse to obtain a large

contrast in heat flux. In far-field limit, rectification is due to the change in emissive

properties of a phase change material. In near-field limit, the difference in the cou-

pling strength of polaritons or tunneling of surface waves between structures leads

to thermal rectification. In general, it is observed that a higher rectification can be

achieved in the near-field regime than in the far-field. However, it is challenging

to develop such devices operating on the principle of near-field radiative transfer.

Spectral control has been studied to affect radiative heat transfer in both the

far-field as well as near-field. Customization of absorption/emission spectra is

often achieved by the use of multilayer thin film structures [29], nanoparticles

[30, 31], dielectric mixtures [32, 33], photonic crystals [34, 35], 1-D/2-D gratings

[36] and metamaterials [37, 38]. Absorbers that utilize Fabry-Perot cavities [39, 40],
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Figure 5.1: Schematic of a far-field thermal diode with a high rectification ratio.
The active component has a tri-layer structure consisting of VO2, KBr and gold
thin films on a substrate with thicknesses L1, L2 and 1 µm, respectively. The
passive component is a blackbody. Tc = 341 K is the phase transition temperature
of VO2.

Salibury screens [41] and Jaumann absorbers [42] and ultra-thin lossy thin films

bounded by transparent substrate and superstate [43, 44, 45] have been investi-

gated for decades. Quite notably, Nefzaoui, et al., [46] proposed using multilayer

structures consisting of thin films (e.g., Si, HDSi and gold) to obtain thermal rec-

tification. Kats, el al., [47] have theoretically and experimentally demonstrated

that a thin-film of VO2 on sapphire shows strong modulation of absorbance upon

phase transition, particularly, at wavelength of 11.6 µm. Taylor, et al., [48] recently

proposed an emitter consisting a dielectric spacer between VO2 film and a reflect-

ing substrate to achieve dynamic radiative cooling upon phase transition of VO2.

Fabry-Perot resonance was achieved at 10 µm wavelength. As discussed later, we

show that, by tuning the resonance at right wavelength, maximum rectification

can be achieved in the proposed design.

VO2 has often been used in thermal rectification devices, because its phase-change
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from an insulator to a metal can be switched reversibly within a short time (∼100

fs) [49]. The common devices use either a bulk VO2 solid or its thin-film form.

In this work, we present a VO2 based far-field thermal rectification device with

a simple multilayer structure. We predict a record rectification factor of greater

than 11 (η >0.91).

A typical far-field thermal diode has two planar components separated by a dis-

tance much larger than thermal wavelength. The active component is made of a

phase-change solid, whereas the passive component stays inert. Figure 6.1 illus-

trates the vertical structure of our proposed thermal diode. The active component

contains a tri-layer structure consisting of VO2, potassium bromide (KBr) and

gold thin films on a substrate. Thicknesses of VO2 and KBr layers can be tuned

to maximize rectification. The thickness of gold layer is fixed at 1 µm to block

radiation from the substrate. For a given temperature bias, maximum (far-field)

radiative heat transfer would be possible when both sides are blackbodies, while

minimum heat transfer would take place when at least one side is a highly reflective

mirror. Ideally, the active component should exhibit a transition from blackbody

to reflective surface upon the reversal of a temperature bias which induces the

phase change. This is exactly our design attempts to achieve. Therefore, the pas-

sive component is chosen to be a blackbody. Any material other than a blackbody

would not yield maximum rectification. Structure 1 and 2 are at temperature T1

= TC + ∆T and T2 = TC − ∆T , respectively. The mean temperature is chosen to

be the phase transition temperature of VO2 (TC = 341 K). When T1 > T2 (referred

to as forward bias), VO2 layer is in its metallic phase; and when T1 < T2 (reverse

bias), VO2 layer becomes insulating with its optical axis aligned along the vertical

direction, i.e., z-axis.

Phase transition of VO2 is not abrupt [49, 50] and a complete insulator-metal tran-
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Figure 5.2: Spectral heat flux across the optimized thermal diode in forward and
reverse bias scenarios. Spectral heat flux between blackbodies at temperatures 331
K and 351 K is shown for reference. Inset shows hemispherical emissivity of the
active component of the diode for the forward and reverse bias.

sition does not occur until 350 K [26]. Rectification ratio depends on temperature

bias as the temperature dependence of radiative heat transfer is essentially nonlin-

ear. We calculate rectification values at a minimal temperature bias of 20 K i.e.,

∆T = ±10 K. Although transition of VO2 exhibits a thermal hysteresis of about 8

K as presented in Ref. [49] and Ref. [51], the phase transition is reversible. As we

report heat flux values at 10 K above and below the critical temperature of VO2 ,

hysteresis behavior is beyond the scope of this study.

5.2 Results and Discussion

A multilayer structure can be designed to attain high absorbance or reflectance

based on its dimensions and material properties. Multilayers with constituent

thicknesses much smaller than the incident wavelength of light have been studied

before [52]. We show that in a VO2 based multilayer structure, the dramatic

change in the optical property of VO2 upon phase-change facilitates an extensive

variation in the surface reflectivity.
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Concept shown in Fig. 6.1 has variable dimensions of VO2 (L1) and KBr (L2)

layer. These dimensions were optimized by running Genetic Algorithm to maxi-

mize rectification ratio. Matlab’s optimization toolbox was used to run Genetic

Algorithm to perform optimization. Default values of population size (50), fitness

scaling (rank), crossover fraction (0.8), stopping criteria (100 generations) were

selected in the optimization toolbox. No tuning of optimization parameters was

required as number of variables was only two. Lower and upper bounds on both

L1 and L2 were kept at 25 nm and 2 µm, respectively. Optimal dimensions were

found to be L1 = 25 nm and L2 = 880 nm, both are practical values. Further

discussion will be focused on the design with these dimensions.

Figure 6.2 shows spectral heat flux (dq/dλ) of the proposed thermal diode in for-

ward and reverse direction with temperature bias 20 K (∆T = 10 K). Forward heat

flux is significantly higher than reverse flux as is clear from Fig. 6.2. A comparison

is shown for heat flux across blackbodies at temperatures 331 K and 351 K, respec-

tively. Inset in Fig. 6.2 displays angle-averaged emissivity of the active component

in both scenarios. When VO2 is metallic, the structure on the active component

has high emissivity near the thermal wavelength (λth = 1.27~c/kBT = 8.5 µm

for 341 K). As a significant portion of blackbody radiation falls within this range,

this gives rise to a high heat flux in forward bias. However, when VO2 is insu-

lating, the structure has very low emissivity in the broad spectrum. The tri-layer

structure behaves like a highly reflecting mirror resulting in very low heat flux.

Consequently, high contrast in heat flow is achieved leading to a high rectification

ratio of 11.3 (η =0.918). In order to highlight the diode-like characteristics, heat

flux across the device has been plotted against themeprature difference in Fig.

6.3. For comparison, simple case of bulk VO2 is also shown, it has a rectification

coeffcient of η = 0.49. Note that, effect of thermal hystersis is not considered here
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for simplicity. Angle dependent spectral reflectivity of the active component of the

thermal diode is plotted in Fig. 6.4 for the forward and reverse bias cases. When

VO2 is metallic, the tri-layer structure acts like a wide-angle antireflection coating

for wavelengths between 4 µm to 10 µm. The dark spot in Fig. 6.4 corresponds to

Fabry-Perot type of resonance that occurs around λ = 4nKBr(λ)L2 = 5.3 µm [47].

High absorption/emission in this wavelength region favors radiative heat transfer

as thermal wavelength falls within this range. In reverse bias, the structure is

highly reflective in a broad range of wavelengths giving rise to a very low absorp-

tion. Note that for thermal wavelength of 8.5 µm, Fabry-Perot resonance occurs

(for metallic VO2) when thickness of KBr layer is L2 = λth/4nKBr(λth) = 1.4 µm.

This configuration however, would not necessarily achieve maximum rectification

as the structure may not be purely reflecting when VO2 is its insulating phase.

Contrasting reflective properties of the structure are due to constructive and de-

Figure 5.3: Heat flux plotted
against temperature difference for
thermal diode with bulk VO2 and
present structure.

Figure 5.4: Angle dependent reflec-
tivity of the active component of
thermal diode plotted against wave-
length and angle of incidence under
forward and reverse bias.

structive interferences of electromagnetic waves generated by partial reflections at

interfaces. As an electromagnetic wave travels through the media, it is partially
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reflected at each interface leading to multiple reflections from each layer. This

causes interference of electromagnetic waves due to each partial reflection. Ef-

fective reflection coefficient of the structure is the phasor sum of these reflection

coefficients due to (an infinite number of) individual reflections. When VO2 is

metallic, phasor sum of partial reflections results in destructive interference in the

wavelength range of 4 µm to 10 µm. As a result, the structure is highly absorptive

in the range. When VO2 is insulating, individual reflections add up to a large value

making the structure highly reflective for a broad range of the spectrum.

Figure 5.5 shows phasor diagram of partial reflections at air-VO2 interface and

VO2-KBr interface for TE polarized incident ray of wavelength λth = 8.5 µm

and angle of incidence 10◦. R̃1,2 is the effective reflection coefficient at air-VO2

interface and R̃2,3 is the effective reflection coefficient at VO2-KBr interface due to

multiple reflections within KBr layer. They can be expressed as geometric series

whose terms are relative amplitudes of partial waves due to first, second and third

reflection and so on. For both metallic as well as insulating VO2, the magnitude

of R̃2,3, |R̃2,3|, is large. However, when VO2 is in metallic phase, each partial

reflection results in a phase-shift such that partial waves add up destructively

leading to a small value of |R̃1,2| and low reflectivity, especially in the wavelength

range centered around thermal wavelength. On the other hand, in reverse bias

(insulating VO2) phasors add constructively, giving rise to highly reflective surface

properties for a broad range of wavelengths. A similar phenomenon can be observed

for TM polarization as well. As KBr is transparent and has a negligible extinction

coefficient for most of infrared region, much of the absorption takes place within

the VO2 layer. Transparent layer of KBr mainly influences the reflective properties

by altering the phase of the light propagating through the media. Potentially, any

other material transparent to infrared light such as magnesium fluoride or intrinsic
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Figure 5.5: Effective reflection coefficient at air-VO2 interface (R̃1,2) and VO2-KBr

interface (R̃2,3) as phasor sum of reflection coefficients due to each reflection for TE
polarized incident plane wave of wavelength λth = 8.5 µm and angle of incidence
10◦

silicon can be used in this concept. However, optimal dimensions of such a device

might be different.

In summary, we present a VO2 based far-field radiative thermal diode structure

with a high rectification ratio of 11.3. The active component of the proposed

device has a tri-layer structure consisting thin films of VO2, KBr and gold. As

VO2 undergoes phase change around 341 K, reflecting properties of the surface are

dramatically changed in the spectral region that contributes to significant amount

of thermal radiation. Facilitated by Fabry-Perot type of resonance around 5.3

µm, metallic VO2 makes the structure behave like a wide-angle antireflection coat-

ing while insulating VO2 makes it highly reflecting. As a result, high degree of

asymmetry in radiative heat transfer is predicted across the tri-layer structure
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and a blackbody. Contrasting reflecting properties of the structure can be ex-

plained using constructive and destructive interference of partial reflections across

the interfaces. We optimized layer thicknesses to maximize rectification. Thermal

rectification greater than 11 is predicted for temperature difference of 20 K and

it is highest among far-field radiative diodes that have been studied. Possibility

of attaining higher rectification could be investigated in future by using alternate

transparent materials, thinner films of VO2 and/or using more number of alter-

nating VO2/dielectric layers. Such devices can find numerous applications such as

thermal logic devices and thermal management systems.

5.3 Methods

To calculate heat flux in forward and reverse bias across our far-field thermal

diode, we use the well known expression of radiative transfer obtained through

dyadic Green’s function formalism [53]. Radiative transfer between two planar

objects is given by

Q1→2(T1,T2,L)=

∫ ∞
0

dω

2π
[Θ(ω, T1)−Θ(ω, T2)]T1→2(ω, L) (5.1)

where Θ(ω, T ) = (~ω/2) coth(~ω/2kBT ) is the energy of a harmonic oscillator at

frequency ω and temperature T , ~ is the reduced Planck constant, and kB is

the Boltzmann constant. The function T1→2(ω, L) corresponds to the spectral

transmissivity in radiative transfer between media 1 and 2 with a separation of L

and is expressed as [53]

T1→2(ω, L)=

∫ ω/c

0

kρdkρ
2π

∑
µ=TE,
TM

(1−|R̃(µ)
h1 |2)(1−|R̃

(µ)
h2 |2)

|1− R̃(µ)
h1 R̃

(µ)
h2 e

2jkhzL|2 (5.2)

where R̃
(µ)
h1 and R̃

(µ)
h2 are polarized effective reflection coefficients of the two half

spaces (calculated in the absence of other half space), µ = TE (or TM) refers

to transverse electric (or magnetic) polarization and khz is the z-component of
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wavevector in vacuum. Here, j is the imaginary unit. For a structure having N -

layer media having (N − 1) interfaces, by solving the boundary conditions at the

interfaces, one can obtain the expression for the generalized reflection coefficient

at the interface between regions i and i+ 1 [54],

R̃
(µ)
i,i+1 =

R
(µ)
i,i+1 + R̃

(µ)
i+1,i+2e

2jki+1,z(di+1−di)

1 +R
(µ)
i,i+1R̃

(µ)
i+1,i+2e

2jki+1,z(di+1−di)
(5.3)

where R
(µ)
i,i+1 is the Fresnel reflection coefficient at the interface between the layers

i and i + 1, and R̃
(µ)
i+1,i+2 is the generalized reflection coefficient at the interface

between the layers i + 1 and i + 2, z = −di is the location of the ith interface.

ki,z =
√
εi(ω)ω2/c2 − k2ρ is the normal z-component of the wave vector in medium

i, wherein εi(ω) is the relative permittivity of the medium i as a function of angular

frequency ω, c is the speed of light in vacuum and kρ is the magnitude of the in-

plane wave vector. With R̃
(µ)
N,N+1 = 0, the above equation provides a recursive

relation to calculate the reflection coefficients R̃
(µ)
i,i+1 in all regions. Note that Eq.

5.2 has only one integral corresponding to propagating waves. The terms due to

evanescent waves are ignored as separation between the two half spaces is much

larger than the thermal wavelength (L � λth). The hemispherical emissivity of

the active component can be expressed as [32]

e(ω) =
c2

ω2

∫ ω/c

0

dkρkρ
∑
µ=s,p

(1− |R̃(µ)
h |

2) (5.4)

Note that the term for tranmissivity has been omitted as a layer of gold makes the

structure opaque.

Insulating VO2 (below 341 K) is anisotropic. In a plane (x− y plane in Fig. 6.1)

perpendicular to optical axis known as the ordinary mode, its dielectric function

is εO and it is εE along the optical axis (extraordinary mode). Both εO and εE can

be calculated using the classical oscillator formulaε(ω)=ε∞+
N∑
i=1

Siω
2
i

ω2
i − jγiω − ω2

.
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Values of high-frequency constant ε∞, phonon frequency ωi, scattering rate γi and

oscillator strength Si are taken from Ref. [55]. There are eight phonon modes

for ordinary and nine phonon modes for extraordinary dielectric function. In the

metallic state, VO2 is isotropic and Drude model [55] is used to describe the di-

electric function i.e., ε(ω) =
−ω2

pε∞

ω2 − jωΓ
. Refractive indices of KBr are taken from

Ref. [56], while dielectric properties of gold can be found in Ref. [57]. Blackbody

is assumed to have a constant dielectric function ε = 1 + 0.001j.
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Abstract

We theoretically demonstrate workings of a near-field thermal rectification device

that uses a phase change material to achieve asymmetry in radiative heat transfer.

We exploit the temperature dependent dielectric properties of VO2 due to metal-

insulator transition near 341 K. Analogous to an electrical diode, heat transfer

coefficient is high in one direction while it is considerably small when the polarity of

temperature gradient is reversed. We show that thermal rectification can be greatly

enhanced by using 1-D rectangular and triangular VO2 surface gratings. With the

introduction of periodic grating, rectification ratio is dramatically enhanced in

the near-field due to reduced tunneling of surface waves across the interfaces for

negative polarity. Our calculations predict that for minimal temperature difference

of 20 K, rectification ratio as high as 16 can be obtained and it is maximum in

existing literature for comparable operating temperatures and separation.

6.1 Introduction

The idea of thermal rectification devices such as thermal diode [1] and thermal

equivalents of electronic devices such as thermal transistors [2] and memory element

[3] has been around for more than a decade. These conduction (phonon) based

thermal rectifiers have some limitations due to speed of acoustic phonons, presence

of Kapitza resistances and nonlinear phonon-phonon interaction [4, 5]. Devices that

utilize property of temperature dependent thermal conductivity [6, 7, 8] and solid

state thermal rectifiers [9, 10] have also been demonstrated. Components based on

thermal radiation (photons) have also been proposed [5, 11, 12, 13]. In this letter,

we discuss radiative thermal rectification devices, which are contactless and do not

suffer from above mentioned limitations [14]. They also have weaker nonlinearity

[12]. Moreover, physics of thermal transport remains unchanged close and far from

equilibrium in photonic devices [4]. Apart from thermal management and energy
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storage, these thermal analogues of electronic devices could find applications in

thermal circuits [15], thermal logic gates [16] and information processing [17].

Thermal diode is a device that is analogous to electrical diode and has a high degree

of asymmetry in the magnitude of heat flow depending on the applied temperature

bias. To gauge rectification, we use the widely used definition of rectification ratio,

i.e. R = (Qf − Qr)/Qr where Qf and Qr refer to forward and reverse heat flux

respectively [18]. The goal is to increase R as much as possible so that Qf � Qr

and rectification is reasonably high to be utilized in a practical device. Studies per-

taining to rectification devices other than thermal diodes also deal with achieving

manipulation of heat flux. Most thermal rectification devices exploit temperature

dependent properties of phase change materials by focusing on the use of bulk

materials or thin-films to achieve thermal rectification. Non-contact rectification

devices utilize change in dielectric properties of materials such as vanadium dioxide

(VO2) and La0.7Ca0.15Sr0.15MnO3 (LCSMO) [19, 12, 20]. In far-field, rectification

is due to change in emissive properties of a phase change structure. In near-field,

difference in the degree of tunneling of surface waves between structures leads to

thermal rectification. Consequently higher rectification can be achieved in the

near-field regime. Zhu et al [21] utilized temperature dependent optical properties

of SiC to put forward a method to attain negative differential conductance. Zwol

et al [22] proposed rapid modulation of near-field radiative heat flux at a distance

of 100 nm that utilizes fast transition in crystalline and amorphous states of AIST

(an alloy of silver, indium, antimony and tellurium) that can be achieved using a

current pulse. Zwol et al [23] and Menges et al [24] have experimentally demon-

strated that phase change of VO2 results in change of surface polariton states and

significantly alters near-field radiative heat transfer. It has been theoretically cal-

culated that bulk VO2 and SiO2 can achieve thermal rectification ratio of about
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Figure 6.1: Schematics of near-field thermal diodes. (a) Active side has top layer
of 1-D rectangular grating made of VO2 of height h, width w, period Λ and filling
ratio φ on a gold layer deposited on a substrate. (b) Rectangular grating is replaced
by a triangular one of height h and period Λ. Passive counterpart of both designs
consists of a BN layer on gold on the top of a substrate.

2 at a gap of 10 nm [19]. Yang et al [25] also proposed a VO2 based near-field

radiative thermal switch whose switching factor can reach up to 80% for gap of

10 nm. Using a combination of two phase change materials - VO2 and LCSMO,

Huang et al [20] achieved the rectification ratio of 7.7 at a gap of 10 nm, hot and

cold temperatures being 80 K and 25 K, respectively.

Present study focuses on rectification in a near-field thermal diode and employs

VO2 as phase-transition material. VO2 can be switched reversibly in a very short

amount of time (∼ 100 fs) from an insulating state to a metallic state [26]. To

increase the rectification, one may try to use different materials. It has been ob-

served that metamaterials such as mixtures of dielectric materials [27] and grating

structures [28] can manipulate radiative transfer in near-field. Therefore they are

candidates for enhancement of thermal rectification. Previous studies mainly dealt

with bulk materials and thin films. Our calculations indicate that rectification ra-

tio (key results shown in Fig. 6.2) can be raised significantly by using 1-D surface
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gratings of VO2.

A typical near-field thermal diode has two planar structures at a distance less

than thermal wavelength [19]. One structure (hereafter referred to as active side)

has a phase change material and its counterpart has fixed material properties

(passive side). Figure 6.1 introduces the two concepts of thermal diode proposed

in this letter that consists of two structures at a distance of L = 100 nm. In both

concepts, structure 1 (active side) contains top layer of phase change material

VO2 at temperature T1 = 341 K + ∆T . On the passive side, structure 2 has its

temperature T2 = 341 K − ∆T . Mean temperature is chosen to be the phase

transition temperature of VO2 at 341 K. When T1 > T2 (referred to as forward

bias), VO2 layer is in metallic phase; when T1 < T2 (reverse bias), VO2 layer is

in insulator phase with its optical axis aligned along the distance between them.

Proposed configurations will be discussed in more details along with results.

Phase transition of VO2 is not homogeneous and it happens gradually along

temeprature [26, 29]. Hence, transition from insulator to metallic phase should

be considered complete only at 350 K [25]. We calculate rectification values at

a minimal temperature difference of 20 K (∆T = ±10 K), as it reflects intrinsic

properties of the proposed device around anchoring temperature. As the temper-

ature dependence of radiative heat transfer is essentially non-linear, rectification

ratio is a function of temperature difference (bias). It has been observed before

that rectification ratio generally increases with bias near the anchoring temper-

ature [11]. Higher rectification ratios have been predicted earlier, but mostly at

larger biases and gaps smaller than 100 nm [19, 12, 20, 21, 22, 25]. The proposed

concepts in this letter exhibit highest rectification ratio in the existing literature

for comparable operating conditions and separations.
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6.2 Theoretical Fundamentals

To calculate heat flux for forward and reverse bias across near-field thermal diode,

we use the well known expression of near-field radiative transfer obtained through

dyadic Green’s function formalism [30]. Radiative transfer between closely spaced

objects can be calculated by

Q1→2(T1,T2,L)=

∫ ∞
0

dω

2π
[Θ(ω, T1)−Θ(ω, T2)]T1→2(ω, L) (6.1)

where Θ(ω, T ) = (~ω/2) coth(~ω/2kBT ) is the energy of harmonic oscillator at

frequency ω and temperature T , ~ is the reduced Planck constant, and kB is the

Boltzmann constant. The function T1→2(ω, L) is known as the spectral trans-

missivity in radiative transfer between media 1 and 2 separated of distance L

[25, 27, 28, 30].

As our proposed designs involve 1-D grating structure of VO2 in vacuum, we use

second order approximation of effective medium theory to obtain the dielectric

properties given by the expressions [31, 32, 33]

εTE,2 =εTE,0

[
1+

π2

3

(
Λ

λ

)2

φ2(1− φ)2
(εA−εB)2

εTE,0

]
(6.2a)

εTM,2 =εTM,0

[
1+

π2

3

(
Λ

λ

)2

φ2(1−φ)2(εA−εB)2εTE,0
(
εTM,0
εAεB

)2
]

(6.2b)

where εA and εB are dielectric functions of the two materials (VO2 and vacuum) in

surface gratings, λ is the wavelength, Λ is grating period and filling ratio φ = w/Λ

where w is width of VO2 segment . The expressions for zeroth order effective

dielectric functions εTE,0 and εTM,0 are given by [34, 31]

εTE,0 = φεA + (1− φ)εB (6.3a)

εTM,0 =

(
φ

εA
+

1− φ
εB

)−1
(6.3b)
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For triangular gratings as shown in Fig. 6.1(b), gratings can be treated as a

composition of multiple layers of rectangular gratings each having decreasing filling

ratio and period equal to that of parent grating [34]. We confirm that slicing the

triangular structure into 100 layers is sufficient to achieve converging values of

near-field heat flux.

Effective medium approximation (EMA) holds true when grating period is much

less than wavelength of interest [33]. As this study deals with temperatures around

341 K, grating period (50 nm) is much less than the thermal wavelength (∼ 8.5

µm). Thus the condition of EMA is satisfied. When dealing with near-field radia-

tive transfer pertaining to periodic gratings, criterion for the validity of EMA is

somewhat different and effective medium theory holds true as long as gap between

the planar structures (100 nm in this case) is greater than the grating period [35]

(see discussions about dashed lines in Fig. 6.2).

VO2 in insulator state (below 341 K) is anisotropic. In a plane perpendicular

to optical axis (x − y plane in our case) known as ordinary mode, its dielectric

function is εO and it is εE along the optical axis (z axis, extraordinary mode).

Both εO and εE can be calculated using classical oscillator formula ε(ω) = ε∞ +
N∑
i=1

Siω
2
i

ω2
i − jγiω − ω2

. Experimental values of high-frequency constant ε∞, phonon

frequency ωi, scattering rate γi and oscillator strength Si can be found in Ref.

[36]. Here, j is the imaginary unit. There exist eight phonon modes for ordinary

and nine phonon modes for extraordinary dielectric function. In metallic state,

VO2 is isotropic and Drude model [36] is used to describe the dielectric function

that is given by ε(ω) =
−ω2

pε∞

ω2 − jωΓ
. Dielectric function for BN [37] is of the form

ε(ω) = ε∞
(ω2 − ω2

LO + jωγ)

(ω2 − ω2
TO + jωγ)

. Here ωTO and ωLO are transverse and longitudinal

optical phonon frequencies and γ is the damping constant. The values of ε∞, ωTO,

ωLO and γ for BN are 4.46, 0.1309 eV, 0.1616 eV and 6.55× 10−4 eV respectively.
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Figure 6.2: Gap-dependent rectification ratio for different thermal diode configu-
rations. Passive structures are (I): Bulk BN, and (II), (III), (IV): 1 µm layer of BN
over 1 µm layer of gold on a substrate. Active structures are (I): Bulk VO2, (II): 1
µm layer of VO2 on the top of 1 µm layer of gold on a substrate, (III): Rectangular
1-D grating of VO2 with thickness h=0.5 µm, period Λ=50 nm and filling ratio
φ=0.3, (IV): Triangular grating of VO2 with height h=0.5 µm and period Λ=50
nm. Inset figure shows heat flux as a function of temperature difference at 100 nm
separation to highlight diode-like characteristics of different configurations.

Dielectric properties of gold can be found in Ref. [38].

6.3 Results

In order to explain the results of our calculations for the proposed designs shown

in Fig. 6.1 we plot rectification ratio against gap for four different configurations in

Fig. 6.2 for the temperature difference of 20 K (∆T = ±10 K). Before discussing

the main design (Fig. 6.1(a)) we consider the simplistic case which consists of bulk

VO2 on active side and bulk BN on passive side (case I). As insulator VO2 and

metallic VO2 have different optical properties, one expects to observe some degree

of asymmetry in heat flow. Such a configuration exhibits weak rectification which

gradually increases at smaller gaps when surface waves become dominant. Next
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we consider using thin films. In case II, the active side has 1 µm layer of VO2 over

1 µm thick gold and the passive side has 1 µm layer of BN on the top of 1 µm gold.

1 µm thick layer of gold is sufficient to block radiation from the substrate and to

support the top layer as free standing thin layer is not practical [39]. This design

shows an increased near-field rectification, far-field rectification being about the

same. Rectification is stronger in near-field because of the asymmetry in heat flux

due to different levels of tunneling of surface waves across the two interfaces. We

now consider case III where thin film of VO2 is replaced by a 1-D grating structure

of height h = 0.5 µm, period Λ = 50 nm and filling ratio φ = 0.3. The passive side

remains the same as in case II. This configuration shows a significant enhancement

in rectification and rectification value reaches around 14 at the gap of 100 nm.

Figure 6.2 also shows dependence of rectification ratio on gap for an alternative

design (case IV) depicted in Fig. 6.1(b). This design has a 1-D triangular structure

of height h = 0.5 µm and period Λ = 50 nm on active side. While this structure

shows a similar trend as case III, a sharp increase in rectification ratio can be seen

at smaller gaps. Rectification ratio of 16 is reached at 100 nm gap. Although

results for the distances smaller than 100 nm may not be accurate completely

as gap becomes comparable to the grating period (displayed using dashed lines

in Fig. 6.2). The trend is noteworthy for the triangular structure (case IV) as

rectification ratio keeps increasing to higher values for shorter distances. Further

investigations for triangular grating are beyond the scope of this study and left for

future work. Numerical methods such as Wiener chaos expansion method [40] can

be employed for calculation of near-field heat flux for distances shorter than the

grating period. Figure 6.2 inset displays heat flux versus temperature difference

for the four cases studied. Difference between slopes for forward and reverse bias

is obvious. Diode-like characteristics are apparent especially for designs based on
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Figure 6.3: Coefficient of energy transmission ξ(ω, kρ) across the the two inter-
faces of thermal diode plotted against angular frequency ω and normalized parallel
wavevector kρc/ω for (a) case II: forward bias, (b) case II: reverse bias, (c) case
III: forward bias, and (d) case III: reverse bias.

rectangular and triangular gratings. Different materials such as SiO2, SiC, BN,

gold and polystyrene and structures (thin film or bulk) can be used on passive side

and strongly influence rectification. When 1 µm layer of BN is used over reflecting

gold surface on passive side, it results in maximum rectification for case II. The

choice of passive structure used here may not remain optimal when active structure

is modified. In order to emphasize the effect of 1-D gratings on active side, we use

the same structure on passive side for cases II, III and IV.

To illustrate why grating structure enhances the thermal rectification, we plot

energy transmission coefficient ξ(ω, kρ) across the interfaces of thermal diode for

case II (Figs. 6.3(a) and 6.3(b)) and Case III (Figs. 6.3(c) and 6.3(d)) at a gap of
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Figure 6.4: Effect of design parameters (filling ratio φ and grating height h) on the
rectification ratio of thermal diode using rectangular gratings. Inset figure shows
variation of rectification ratio near zero filling ratio. (Horizontal axis in main figure
starts at 0.1.)

100 nm. Here kρc/ω is normalized parallel wavevector.For both cases, transmission

coefficient is close to unity for forward bias well beyond light line (kρc/ω = 1).

Transmission is high for two prominent frequencies that are close to characteristic

wavelengths of BN (7.6 µm and 9.8 µm), as shown by dashed lines. Since metallic

VO2 does not support surface phonon polariton in the infrared region [25], near-

field radiative transfer is mainly attributed to the symmetric and antisymmetric

surface phonons supported by the BN layer (kρc/ω � 1 in Fig. 6.3). In addition,

there exists a secondary contribution due to Fabry-Perot modes and frustrated

modes (kρc/ω ≈ 1) in the near-field regime. High energy transmission in forward

bias is due to tunneling of surface waves across interfaces. In reverse bias, although

both BN and insulator VO2 support surface phonon modes, they do not overlap

and near-field radiative transfer is dominated by non-resonant surface waves. In

addition, surface phonons of insulator VO2 occur in frequency range where BN has

low extinction coefficient (κ ≈ 0), and vice versa. As a result, tunneling between
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BN and insulator VO2 is much weaker than that of BN and metallic VO2, that

leads to thermal rectification. We note that when thin film of VO2 is replaced by

a 1-D rectangular grating, transmission coefficient for reverse bias is reduced as

seen in Figs. 6.3(b) and 6.3(d). Reduction in transmission coefficient comes from

the presence of grating which suppresses the tunneling of surface waves supported

by insulator VO2 and BN. Tunneling between BN and metallic VO2 however is

relatively unchanged (Figs. 6.3(a) and 6.3(c)). Consequently, a higher rectification

is achieved. Resulting difference in spectral heat fluxes can also be observed.

We analyze possible parameters that can influence the rectification for the design

using 1-D rectangular grating (case III) for a gap of 100 nm in Fig. 6.4. Filling

ratio is fixed to 0.3 and the grating height is varied from 0.1 to 0.9 µm (dashed

line). We observe that peak rectification ratio is achieved when grating height is

around 0.5 µm. Solid line in Fig. 6.4 shows variation in filling ratio for fixed grating

height of 0.5 µm. Dependence of rectification on filling ratio is clearly stronger, as

it directly affects the optical properties of grating structure therefore influencing

the surface waves across the interfaces. For higher filling ratios, rectification values

are lower, and understandably, are close to what is predicted for a thin film design

(case II). Thermal rectification even higher than 20 can be predicted at smaller

filling ratios. Rectification reaches maximum value when filling ratio is around

0.03, and it becomes zero when filling ratio is zero (Fig. 4 inset). However, filling

ratio of 0.03 is impractical as grating period is 50 nm. Another parameter of

interest would be grating period. Since we focus on gap of 100 nm we have to

limit ourselves to periods less than 100 nm. As the period is much smaller than

the dominant thermal wavelength, it has virtually no effect on rectification.

Thus we have demonstrated that an enhanced thermal rectification can be achieved

using 1-D grating of phase change material VO2. Our calculations indicate that
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a reasonably high value of rectification ratio (∼ 16) can be obtained at a gap of

100 nm. Rectification ratio can be optimized by tuning parameters such as grating

height and especially, filling ratio. Materials and structures on passive side also play

a significant role in the rectification. Improved rectification is attributed to reduced

tunneling of surface waves across the interfaces for reverse bias. Rectification ratio

can be further increased to much higher values for distance shorter than 100 nm

and it is a viable candidate for future investigations.
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