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ABSTRACT 

Physiological factors and conditions accompanying anthocyanin 

synthesis and morphogenesis in the hypocotyl of Impatiens balsamina L. 

were investigated with the objective of showing relationships between a 

biochemical process (anthocyanin synthesis) and morphogenetic events 

(the formation of epidermal hairs and roots, elongation of the hypocotyl, 

straightening of the hypocotyl arch), which may yield information on the 

physiological control of growth and development. The scope of the problem 

includes a study (1) of the hypocotyl anatomy, (2) of the effects of 

chemical agents on the development of anthocyanins, roots, and epidermal 

hairs in cultured hypocotyl segments and (3) of the photocontrol of 

anthocyanin synthesis, hypocotyl elongation, and the straightening of the 

hypocotyl arch by specific regions of the visible spectrum. 

Rypocotyl anatomy was studied by preparing sections from preserved 

5 and 10-day-ol d etiolated seedlings by the paraffin technique and h<md 

sections of fresh tissue from 15-day-old light grown seedlings. Free­

hand drawings were made of the paraffin sections. A gradient of differ­

entiation from meristematic at the cotyledon end (the pseudomeristem) to 

mature primary tissues at the base of the hypocotyl is described. The 

elongation of the hypocotyl arose from cell division in the pseudomeristem 

and cell elongation in the region just below the hypocotyl arch. The 

hypocotyl arch is formed through differential elongation. Nearly all 

anthocyanin synthesis occurs in a highly differentiated hypodermal cell 
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layer . 

An axial gradient of respiration for the hypocotyl was determined 

by measuring the rates of oxygen consumption of segments of the hypocotyl 

in a Warburg respirometer . The maximum rates of respiration occurred in 

the region of the pseudomeristem when expressed on a fresh weight basis 

and in the region of cell elongation on a per cell basis . 

To study the effects of chemical agents, 7-day- old etiolated 

hypocotyls grown under sterile conditions were cut into 10 segments and 

cultured on an agar medium supplemented with the following chemicals 

either singly or in combinations: (1) sugars - sucrose and glucose, (2) 

growth substances - Naphthalene acetic acid (NAA), Triiodobenzoic acid 

(TIBA) and Gibberellic acid (GA.)., (3) compounds known to effect anthocyanin 

synthesis - Azaguanine (Aza), Benzimidazole (Bz) and Riboflavin (Rb) . 

Periodic observations on growth (root and hair formation) and anthocyanin 

synthesis in the hypocotyl segments were made over a period of 10 days . 

Glucose supported better anthocyanin synthesis than sucrose, while sucrose 

supported better growth of the hypocotyl segments . Results from experi­

ments using the growth substances and the purine analogues (Aza and Bz) 

indicate that growth and anthocyanin synthesis are closely integrated and 

that their coordination is dependent on an unaltered purine metabolism. 

Evidence is presented that endogenous auxin levels can simultaneously 

influence root and hair formation, and the quantitative distribution of 

anthocyanins along the axis of the hypocotyl . Rb inhibited anthocyanin 

synthesis generally and inhibited root and hair formation in segment 1 . 

The high energy action spectra for anthocyanin synthesis, 

inhibition of hypocotyl elongation, and straightening of the hypocotyl arch 
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were determined using monochromatic light sources. All three responses 

of the hypocotyl were shown to be photoreversibly controlled by the lo"IV 

energy phytochrome reaction through the use of filtered fluorescent and 

incandescent light. Action maxima for the high energy reaction IV'ere found 

at 425 mu for anthocyanin synthesis and hypocotyl elongation and at 441 

mu for the straightening of the hypocotyl arch. The similarity of the 

action spectra indicate that a single photoreceptor was active in all 

three responses, It is suggested that the high energy photoreceptor is 

phytochrome itself and a model photomorphogenic system is proposed. 



C H A P T E R I 

I N T R 0 D U C T I 0 N 

General Scope of the Problem 

The research problem reported in this thesis is an investigation of 

the physiological factors and conditions accompanying morphogenesis in the 

bypocotyl of Impatiens balsamina L . This is a study in morphogenesis, but 

the approach is more than purely descriptive . It is an effort to establish 

a physiological basis for observed morphogenetical responses along the 

axis of the hypocotyl which represents a gradient of tissue differentiation 

from meristematic to highly specialized tissue zones . 

In a broad sense, the scope of the problem includes the study of 

the anatomy of the hypocotyl, the morophogenetical and physiological 

responses of cultured segments, and the responses of the hypocotyl to 

light . More specifically each of the three major portions of the work are 

designed to contribute to the major objective and may be best presented 

separately with their specific pro bl ems and objectives as follows : 

1. Anatomy of the hypocotyl - A major aspect of this work was the 

observation and interpretation of morphogenetical responses of the hypo­

cotyl . Therefore a knowledge of the basic internal structure of the 

experimental material was necessary. This problem consisted of the study 

of the patterns of the major tissue zones . In particular, attention was 

gi ven to the distribution and activity of meristematic areas, and the 

ontogeny of the hypocotyl axis . 
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2. Chemical factors affecting anthocyanin formation and morpho­

genesis - The primary objective in this case was to establish a system 

of tissue culture under standard conditions upon which periodic 

observations were made and used as a norm . The morphogenetical responses 

followed were the production of roots and epidermal hairs . The physiolo­

gical response measured was the production of anthocyanin pigments in the 

hypocotyl segments . By altering this system with chemicals that are 

known to effect growth and development, with chemical agents known to 

ef fect anthocyanin formation, a correlation may be made by observing both 

types of responses under all treatments. The I mpatiens hypocotyl provides 

a system for the study of the physiology of anthocyanin synthesis while 

anthocyanin itself represents a labile overt .Physiological indicator which 

is associated with morphogenetical responses . 

J. Responses of the hypocotyl to light - Action spectra for 

anthocyanin synthesis and inhibi tion of hypocotyl elongation in the visible 

portion of the spectrum were obtained . The action on these responses of 

t he red - far - red photoreversible system i . e . the pi gment phytochrome was 

also studied . Thi s portion of the work complements the main objective 

of the comparative study of the morphological response of elongation and 

the physiological r esponse of anthocyanin synthesis . 

This research problem developed from a rather extensive genetic and 

.Physiological study of flavonoid pigments i n Impatiens bal samina . Previous 

studies have involved the inheritance of flower and stem color (48) , 

chemical changes affected by genes controling pigmentation (4), quanti tative 

effects of specific genes (75 ), leucoanthocyanin synthesis in the Impatiens 
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hypocotyl ( 2, 3), and a morphogeneti c-physiologi cal study of anthocyanin 

synthesis in cultured petal s of I mpatiens ( 94) . 



C H A P T E R I I 

LITERATURE REVIEW 

Hypocotyl Anatomy 

Considerable research on the plant axis has involved the anatomy and 

ontogeny of the stem and root, while the hypocotyl has received relatively 

little attention. 

Esau (56 ) describes the vascular pattern of a dicotyledon hypocotyl 

(~ vulgaris), but provides few references to other hypocotyl studies. 

Thomas (150) argues in favor of the phylogenetic significance of the 

vascular patterns of selected seedlings from Ranales , Rhoedales, and Rosales. 

Other early investigations (45, 46, 151) consider the vasculation and 

theoretical concept of the transition region, but they are not detailed 

studies of the entire hypocotyl anatomy. From a morphogenetical and 

physiological standpoint these early studies contain very little pertinent 

information. 

More recent work on the dicot axis c·oncerning elongation and root 

formation, although limited, providesuseful information. In a series of 

publications by Bouillenne et al (30, 31, 32) and Noel (110, 111), many 

aspects of the growth and development and physiology of the Impatiens 

hypocotyl are reported. Noel (111) conducted a study in which he describes 

the vascular pattern and nature of growth of the hypocotyl of Impatiens. 

He found a tetrarch xylem structure with alternating zones of phloem tissue 

"uniformly distributed around the periphery of the stele". In this very 

brief account he also describes the cotyledonary traces as arising from 
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the bifurcation of two of the four xylem strands which yields a total of 

three t races per cotyledon . It is interesting to note that since the 

studies of Bouillenne and Noel were directed toward the classical subject 

of the de ~ formation of roots by 11 r i zocaline 11
, Noel (110) described 

the lateral traces as being larger and more 11 impor tant 11 than the median 

traces of the cotyledons with respect to the translocation of the theoreti-

cal substance. In this same extensi ve report, observations of the site 

and nature of growth of the hypocotyl were made . It was found that in an 

etiolated hypocotyl elongating from 25 to 75 mm, over 90% of the growth 

occurred in the uppermost 10 mm of the 25 mm hypocotyl . Noel concludes the 

following from this data : 

The growth of the hypocotyl is realized from 
the intercal ary elongati on (of the cell s ) 
due to the uptake of water , then in part from 
the cellular multiplications of the pseudo­
meristem tissue at the apex . 

Noel assumes that cell divisions do occur at the apex of the hypocotyl which 

he defines as being immediately below the point of attachment of the 

cotyledons . Since no cytological studies were conducted, the question arises 

as to whether the concept of a 11pseudomeristem11 functioning in conjunction 

with cell elongation is a vali d one . Even if cell divisions do occur in 

this region, do these cell divisions contribute to overall growth? 

Other studies on axis elongation provide some insight into the 

above questions . In studying the growth capacity of the sunflower hypocot yl, 

de Ropp (50 ) reported that elongati on was limited to the uppermost 10 mm . 

This data was collected from cult ured hypocotyl segments . Again, because 

of the l ack of cytological data, little can be said as to the mechanism of 
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this elongation . Bindlos (15) conducted a comprehensive study of stem 

elongation in normal and dwarf varieties of _!;~rsicum elegans and Zinnia 

elegans . She makes the significant statement : 

It is no longer possible to think that the chief 
center of cell division is in the relatively 
shor t zone of 60 to 100 microns from the stem tip . 

This concept is supported by extensive cytological data in which frequent 

cell divisions are shown to occur in vacuolate cells. Sinnott and Bloch 

(136) have also described the division of vacuolate plant cells . A similar 

system could be operative in the Impatiens hypocotyl. 

Other interesting facts about the special nature of certain tissue 

zones of the hypocotyl are reported by Resch (123). He conducted a study 

of nuclear differentiation in epidermal and subepidermal cells (single layer 

of cells directly below the epidermis which will hereafter be referred to 

as the hypodermis) of Vicia faba, Impatiens balsamina, and Cleome spinosa . 

He found that the epidermal cells in Impatiens remain diploid during the 

growth of the shoot, whereas the comparatively large hypo dermal cells become 

8-to 16- ploid . The polyploid condition is brought about by a process of 

endomitosis in which different chromosomes divided at different times . 

Resch concludes that the necessary chromosomal growth may be brought about 

through the reproduction of gene material either in many diploid or in few 

polyploid cells . 

In summary, the fundamental structure and growth pattern of the 

I mpatiens hypocotyl has been described by Noel and forms a basis for further 

study. The developmenta l studies of Noel and others on the hypocotyl and 

stem axis present implications as to the possible meristematic nature of 
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b ocotyl elongation and growth. The questions of the exact nature of the 
yp 

".pseudomeristem11 and the distribution of secondary meristems along the length 

of tbe bypocotyl are not answered. These questions are primary objectives 

of tbe present study. 

Chemical Factors Af fecting Anthocyanin Formation and Morphogenesis 

The numerous reviews available are indicative of the large volume of 

work done in the field of plant growth regulators (13,58,68,138). Several 

comprehensive reviews on the flavanoid pigments (7, 18, 19, 89) are also 

available . Recent literature indicates an intimate association of flavonoid 

metabolism with growth and development, but little work has been done to 

interrelate the two through the external application of chemical factors. 

Since the initiation of this study such an approach to the study of growth 

and development has been taken by Klein and Hagen (94). 

The action of specific chemical factors on morphogenesis and antho-

cyanin formation will be treated individually. The following chemical 

factors are those used in the present study: (1) the sugars, glucose and 

sucrose, (2) napthalene acetic acid (NAA), (3) triiodobenzoic acid (TIBA), 

(4) gibberellin, (5) the purine analogues, benzimidazole and azaguanine . 

1. Sugars - In general the feeding of simple sugars ,promotes both 

growth and anthocyanin formation in many plants (1) . Thimann and Edmundson 

(147) briefly review the work before 1949 and report sucrose most effective 

for anthocyanin synthesis in Spirodela . Thimann et al (146) later found 

that glucose was used preferentially for growth while sucrose was used for 

anthocyanin production . Fructose was found to have an intermediate effect . 

Eddy and Mapson (55) found that a number of simple sugars enhanced 

anthocyanin formation in cress seedlings, glucose being the most effective . 
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In more recent work Straus (144) found sucrose to be more effective for 

anthocyanin formation than either glucose or fructose in cultured corn 

endosperm tissue. Contrary to the results of Thimann ~ (146), sucrose 

also supported the best growth oi' the corn endosperm. Arnold and Alston 

(6) compared the efficiencies of glucose and sucrose in promoting growth 

and anthocyanin formation in cultured hypocotyl segments of Impatiens 

balsamina. They found in general that glucose was considerably more 

efficient than sucrose in supporting anthocyanin formation but was less 

efficient in supporting the initiation of epidermal hairs and roots. The 

responses were varied in different segments of the hypocotyl -with respect 

to their position along the a.xis. At certain points along the axis of the 

hypocotyl the responses were different than the over-all results . For 

instance, sucrose was much more effective than glucose in promoting root 

and hair initiation in segments near the base of the hypocotyl while they 

were nearly equal in effectiveness in the relatively undifferentiated 

uppermost few segments~ This situation was nearly reversed in respect to 

anthocyanin f .ormation. This supports the idea (19) that different tissues 

and experimental objects vary in their utilization of simple sugars. This 

variability appears to depend on numerous obscure physiological factors. 

2 . Auxins: Napthalene acetic acid (NAA), Indole acetic acid (IAA) -

Several recent reviews (13, ,58, 68, 138) thoroughly cover the field of 

indole auxins and related compounds. Galston and Purves (68) summarize the 

known effects of auxin and remark that only the effect of cell elongation 

has been intensively studied. They lists the following effects: a) increased 

cell wall plasticity, b) increased water uptake, c) altered permeability 
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,patterns, d) decreased protoplasmic viscosity, e) increased rate of 

protoplasmic streaming, f) altered respiratory patterns, and g) altered 

nucleic acid metabolism. All of these effects have been noted in the 

study of elongation responses. The known and postulated interconversions 

of indole derivatives that occur in the plant cell are presented by Fawcett 

(58). The metabolism of the indole nucleus is a complex process involving 

many phases of the physiology of the cell. Even though much work has been 

carried out on the study of auxin action, no reliable conclusions can be 

drawn as to its mechanism or site of action in the cell (13). 

Despite this situation descriptive and biochemical data are available 

which indicate the action of auxins and their possible interactions with 

the formation of cellular products such as anthocyanins. 

It has long been known that various levels of auxin will stimulate 

stem growth, inhibit root growth, and cause the initiation of new roots 

(9). It is interesting that auxin stimulates root growth at 10-5 to lo-4 

ppm. whereas it strongly inhibits root growth in the range of 8 to 10 ppm. 

However, this latter concentration (8 to iO ppm.) is very effective in 

stimulating stem growth (9). IAA has been observed to inhibit root forma-

tion at high levels in Impatiens balsamina hypocotyls, but favored the 

formation of epidermal hairs (6). Cultured segments of balsam hypocotyls 

have the capacity to form roots, epidermal hairs, and anthocyanin pigments, 

all of which are affected by levels of NAA. Similar studies with the 

sunflower hypocotyl (50) have been made except that pigment formation was 

not observed. 
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High levels of NAA are known to cause tumorous growths in cultured 

balsam hypocotyl segments and at the same time enhance anthocyanin product­

ion (1, 6) . Studies on the effects of light on auxin activity have shown 

a close association between flavonoid synthesis and auxin levels. Also, 

increased levels of sucrose have been shown to increase auxin activity 

(l21) in etiolated pea epicotyl segments . Numerous workers have tested for 

the interaction of auxins and gibberellins with photoinduction of flowering 

(21, 49, 98, 99, 145) and photoinhibition of stem elongation (135, 164). 

Galston~ (67), Furuya et a! (64, 65), and Hillman et al (83) in 

extensive studies on the elongation responses of Pisurn seedlings and stem 

sections have shovm an intimate connection between indoleacetic acid action 

and the photoperiod mechanism. It was initially found (67) that low levels 

of red light in the region of 660 mu caused a 100-fold decrease in sensiti-

vity of Pisum stem sections to indoleacetic acid . In later work (64, 83) 

it was demonstrated that a dialyzable cofactor, acting as an inhibitor of 

IAA-oxidase, was under the photoreversible control of phytochrome. The 

latest statement on this work identifies the inhibitor as two different 

quercitin glucosides which are found only in light treated seedlings (65). 

In addition two derivatives of kaempferol were found to be natural cofactors. 

Other workers interested in this same problem have isolated an IAA- oxidkse 

inhibitor from pea tips and identified it as a 3-(p-hydroxycinnamoyltriglu­

cosyl) derivative of kaempf.erol (107, 137). They concl uded that the 3,7 

dihydroxy-flavones as a group are auxin inhibitors (107). Also, naringenin 

and apigenin- 7-glucoside were found to be cofactors for IAA- oxidase . This 

Work effectively links the photomorphogenic system with the action of IAA. 
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. us substituted phenols have been known to interact as cofactors or vario · 

inhibitors in IA.A activity (72, 73, 74). The findings of Mumford et al 

(l07) could explain the auxin activities of certain phenyl propanoid 

compounds (158). It has been suggested (65, 107, 137) that the red,far­

red system may control auxin activity by controlling the balance of IA.A­

oxidase cofactors and inhibitors. These findings have placed considerable 

physiological and morphogenetical significance upon the flavonoids. 

Theoretical considerations of Birch and Donovan (16) and later work by 

Underhill et al (157) and Watkin et al (161) have shown the importance of 

acetate metabolism in the formation of the flavone nucleus. In light of 

this work, it would seem that any upset of metabolically active acetate 

would directly effect anthocyanin formation (1). There is considerable 

evidence that auxins are directly involved in acetate metabolism. The work 

of Leopold and Guernsey (101) and Siegel and Galston (129) has indicated 

the formation of a thioester of IA.A and coenzyme-A which raises the 

possibility that auxins may influence the metabolism of acyl-coenzyme-A 

compounds. Later, work by Nance and Shigemura (109a) showed that the 

aerobic evolution of acetaldehyde is promoted by various auxins and 

antiauxins in wheat roots, corn and pea stems. More recent work by Nance 

(109) and Perlis and Nance (116) using ell+_ acetate and pyruvate has 

shown that IAA strongly af£ects the uptake and utilization of these 

compounds by pea stem sections. 

Considering the above information it would not be surprising to find 

that NAA or similar compounds strongly influence anthocyanin formation. 

The obvious correlations between the well known work of Siegelman and 
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Hendricks (131) on the photocontrol of alcohol and aldehyde production in 

apple skin, the recently shown control of auxin activity by the red-far red 

hotomorphogenic system (64, 65, 83, 107, 137), and the apparent involvement 
.P 

of auxins with the metabolism of acyl-coenzyme-A compounds (101, 109, 116, 

l29) indicate the important interrelated metabolic systems through which 

anthocyanin synthesis may be influenced. 

3. Antiauxins: Triiodobenzoic acid (TIBA) - TIBA is known as an 

antiaux:in but is not considered as such by all because it does not act as 

a direct competitor with auxin (13). It has been shown to effectively lower 

the auxin levels within treated roots ( 9). TIBA is also known to drastical-

ly lower free auxin levels in some seedlings (10, 11) and to induce an 

abscission l ayer in kidney bean (Phaseolus vulgaris) internodes upon 

application to the terminal bud (163). These effects are alleviated by 

applying auxins. The general class of compounds acting as antiauxins have 

been shown to be effective in inducing flowering in tomato (173) even in 

early post-germination stages of growth (51). TIBA has been shown to 

counteract the effect of supplementary low level irradiation which would 

ordinarily inhibit flowering in the short-day plant; Xanthium (20), whereas 

applied auxin inhibited photoperiodic.ally induced flowering in Xanthium 

(21). Galston (66) has shown that TIBA causes short-day plants to flower 

more prolifically even after they have been induced to do so by a favorable 

photoperiod. Thus far no clear relationship between TIBA and flowering has 

been shown in long-day plants ( 9). 

In addition to the above anti-auxin properties of TIBA, it has also 

been shown to suppress apical dominance in rose bushes (8). Bushes treated 
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with TIBA (1% solution in lanolin paste) produced nearly three times the 

number of lateral shoots than untreated controls. 

With the exception of the work of Klein and Hagen (94) the author 

is unaware of any work dealing with TIBA and anthocyanin formation. 

Immature petals of Impatiens balsamina cultured in the presenGe of 5 

rng/l of TIBA expanded and lost their chlorophyll as did the controls, but 

the concomitant onset of anthocyanin synthesis was delayed for two days . 

After the delay, anthocyanin formation was rapid and reached 65% of the 

controls at the end of 10 days. The significance of this observation is 

difficult to assay. However, the workers interpreted it as a disturbance 

between the apparently close relationship of morphological and biochemical 

events which indicated that both phenomena are under hormonal control. 

4. Gibberellin (GA) - The numerous reviews (33, 35, 43, 118, 139 

to 142, 171) dealing with the physiological action, chemistry, and applied 

aspects of this single class of growth- regulators is indicative of the 

vast literature dealing with the gibberellins. 

The gibberellins are defined (118) as substances possessing the same 

carbon skeleton as gibberellin A3 (gibberellic acid) or a closely related 

compound. These compounds stimulate cell division, cell elongation, or both 

when applied to plants (3 7) and are found as natural products in many 

plants. There is a series of gibberellins which differ slightly in 

chemical structure and which are effective as the acid, the salt, or in 

an acylated or esterified form (139). 

Although the gibberellins are known to promote cell division and 

elongation, they have been shown by many workers (JS, 91, 128) to be potent 



inhibitors of rooting. Recently Brian et al (36) have shown that the root 

inhibiting capacity of gibberellin is independent of the elongation of the 

test object. This cast considerable doubt on the theory that the 

gibberellins caused a rapid movement of foods and nutrients to the apex and 

thereby inhibited root formation (34). It was also shown that the inter­

action between gibberellin and auxin is non-competitive (36). 

Recent work has associated relative activity of gibberellic acid 

with the presence of flavonoids and phenolic compounds in various plants 

(154, 155). This work indicates that quercitin glycosides may be 

necessary for activity. 

5. Purine Analogues: Benzimidazole (Bz) and Azaquanine (Aza) -

Although compounds of this class are generally regarded as antipurine 

agents, it appears that benzimidazole in particular may ac.t on other 

systems. Person et al (117) found that the presence of benzimidazole 

protected detached wheat leaves floated on water £rom the rapid degeneration 

which is usually noted . The usual rise in respiration rate of detached 

leaves was depressed. Benzimidazole is known to be an effective respiratory 

inhibitor (172). The leaves treated with benzimidazole did not show as 

rapid a loss of chlorophyll as in the control~ and had lower levels of free 

amino acids and amides. These effects could not be obtained with nwnerous 

purine analogues including azaquanine. Continuing the studies of the effects 

of benzimidazole on detached wheat leaves, Samborski et al (127) found an 

increase in protein content over the controls which was apparently caused 

by the prevention of protein breakdown. Benzimidazole also prevented an 

increase of soluble nitrogen and alcohol-soluble carbohydrate which usually 
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accompanies leaf detachment. In these studies benzimidazole apparently 

t . II 
"conserves pro ein . 

Benzimidazole has been shown to inhibit I.AA-induced elongation 

(69) and cause specific patterns of growth in pea stem sections. Hillman 

(82) has reported that root growth is inhibited and frond area in Lemna 

is increased by 65-70%. Hillman also found that benzimidazole is a direct 

inhibitor of polyphenol oxidase and that at least some of its effects are 

due to the sequestration of copper. The influence of benzimidazole on 

metallic cations has been studied by Klingensmith (96) and McCorquodale 

~ (103). In the latter study it was shown that magnesium ion (Mg++) 

relieved root growth inhibition in Vicia faba caused by benzimidazole. 

The presence of an unidentified black pigment was noted in the treated 

roots. Growth inhibition was apparently accomplished through the depression 

of mitotic activity. 

Thimann et al (148, 149) demonstrated that purine and pyrimidine 

analogues strongly influence anthocyanin _pigment formation in Spirodela. 

They found that azaquanine was an exceedingly potent inhibitor of anthocya-

nin synthesis. The effects of the anti-pyrimidine and purines were 

attributed in part to the inhibition of copper containing enzymes. 

Inhibition of anthocyar;iin synthesis could be alleviated by the addition of 

copper. Azaquanine on the other hand was shown to inhibit riboflavin 

synthesis as well as anthocyanin. The addition of riboflavin reverses 

the effect of azaquanine on anthocyanin synthesis. Riboflavin also took 

the place of the light requirement for anthocyanin formation in Spirodela. 
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Straus (11+3), in contrast, reported slight stimulatory effects by 

Un~"ne and inhibitory effects by riboflavin on anthocyanin synthesis 
azaq ""'"""" 

in cultured corn endosperm tissue. These differences in effects remain 

unexplained, with the exception of the suggestion (11+3) that the experi­

mental objects used are very different in their physiology. Spirodela was 

used by Thimann and coworkers as an intact plant. The corn endosperm 

t i ssue used by Straus was undifferentiated, non photosynthetic, and grown 

in sterile tissue culture . 

The Action of Light on Plants 

The modern era of the study of the effects of light on plants began 

with the well knovvn discovery of photoperiodism by Garner and Allard in the 

early 1920 1 s ( 70, 71) . They clearly defined the phenomenon of photoperiod-

i sm in plants and initi ated a line of research which has born the fruit 

of much fundamental information on growth and devel.opment . The photore-

sponsive system upon which photoperiodism rests is now known to control many 

ot her aspects of growth and metabolism (23 , 106). Various authors have 

found photoperiodic responses in the algae (84) and liverworts (160) as 

well as in the higher plants. 

L The .Photoperiodic Mechanism - In general the photoresponses of 

plants (excluding photosynthesis) can be divided into two tYPes : those 

requiring relatively low energies ( ( . 01 Joule) and those requiring high 

energies ( ) l .O Joule) (80) . The former type of response is under the 

control of the photomorphogenetic pigment, phytochrome, and is characterized 

by saturation extremely low light intensities while the latter type i s 
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d b the direct response to increasing radiant energies over a wide typifie Y 

range. 

As might be expected, the low energy responses were observed first 

and have been studied most intensively. As early as 1871, Batalin (12) 

realized that only very low intensities of light were needed to effect the 

general development of most plants. Since the pioneering work of Garner 

and Allard (70, 71) concerned the flowering response, most studies were 

concerned with surveys of the occurrence of photoperiodism in various 

plants for more than a decade af'terwards (23). A few early workers did 

consider the effect of the spectral quality of light on photoperiodism 

previous to the publication of the first detailed action spectrum for 

flowering by Parker et al in 1945 (115) . The red portion of the spectrum 

was shown to influence flowering by several investigators. This was shown 

by Vogt in 1915 (159) and later studied by Trumpf (156) and Lang (100). 

Also Razumov (122) showed that red light of low intensities could be used 

to effectively lengthen the photoperiod of both long and short-day plants. 

He reported that the shorter wave lengths of the visible spectrum had 

little effect. On the other hand, some researchers claimed that the 

flowering response could be controlled by light from any part of the 

visible spectrum (92, 95). Withrow and collaborators (167, 168) found that 

low levels of red and white irradiation induced flowering in long-day 

plants and inhibited flowering in short-day plants. In these experiments 

the low intensity irradiation was used as a supplement to a natural short 

day. Certain long-day plants such as the sunflower (Helianthus annuus) 

were found to flower in response to blue light as well as red (63). Other 

long-day plants such as Scabiosa responded only to the long wavelengths 
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(6J). The literature at this time was replete with such contradictions. 

Attempts were made to classify the long and short-day plants according to 

their apparently different responses (61, 62, 63). Around this time it 

had been shown by Withrow et al (167) and later by Borthwick and Parker 

(25) that very low intensities of incandescent lamp radiation ( ( 0 .5 

ft. ed.) were sufficient to cause a photo-periodic response in the China 

Aster (Callistephus chinensis) and Biloxi soybean (Soja~ (L.) Piper). 

From this Withrow et al (169) perceived that very small amounts of 

contaminating red light could cause the apparent response of some plants 

to blue light. They studied a number of long and short-day plants, 

including those with reportedly anomalous responses, by using combination 

copper sulfate and gelatine filters which would deliver light of known 

spectral purity and equal energy . The results were very significant, 

because they were able to discount the apparent blue effects and advance 

a unified hypothesis for the low energy flowering response . Since all 

plants that they tested responded to red light, they postulated that there 

must be a pigment with an absorption maximum in the red which was the same 

in all the plants regardless of their daylength requirements. Other 

important observations in this same work were that, total dry matter, 

height, top-root ratio, and leaf area of the test plants were all 

influenced primarily by the red portion of the spectrum. It was also 

noted in this work that the blue and violet end of the spectrum appeared 

to have some minor effects . 

After the work of Withrow et al (167 to 169) there was an obvious 

need for detailed action spectra. Action maxima of specific wavelength 

could yield important clues as to the nature of the photoperiod mechanism. 

The study of detailed action spectra became possible with the construct-
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ion of the specially designed spectrograph in 1944 at the Plant Industry 

Station of the United States Department of Agriculture, Beltsville, Maryland. 

This instrument is described in some detail by Parker e t al (114, 115). 

Because of the low energy requirements o.f the flowering response 

it was feasible to use an instrument which delivered ~ high degree of 

spectral dispersion and purity but yielded low light energies. The 

visible spectrum could be projected at a width of about 2 meters and a 

height of 10 cm. (114). 

The first action spectra (114, 115) of the .floliTering response were 

found for the short day plants, Biloxi soybean and the cocklebur, (Xanthium, 

sacchartum Wallr) . The results for the two plants were essentially 

identical showing action maxima in the red at about 660 mu and lesser peaks 

in the blue at about 440 mu. The action found in the blue was loliT and not 

consistent. Because of the similarities of these action spectra to that 

of photo-synthesis, chlorophyll was first considered as the photo-receptor. 

Theoretical considerations (114) of factors involved in the self-screening 

effect of chloroplasts at points of maximum absorption are used as possible 

explanations of the low efficiency in the blue and of the broad action in 

the yellow and red (600 to 680 mu). The Beltsville workers then determined 

action spectra for the promotion of .flowering of the long-day plants, 

barley (Hordeum vulgare) and henbane(Hyo cyamus niger L.) (27, 113). The 

results were qualitatively v ery similar to the previous studie s on the 

short-day plants. At this stage of development the action spectrum of 

photoperiodism was known to have a prominent maximum at 660 mu and a some-
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what questionable minor action in the blue at about 400 mu. The ratio of 

nergies, 660 mu Energy necessary for a given response is about 10 for the 
e 400 mu Energy 

cocklebur, but is approximately 250 for barley and even greater in henbane 

(2J). This inconsistency cast some doubt upon the validity of the blue 

action. 

The next major step in the quest for the understanding of photo-

periodism was not brought about by the study of flowering, but came about 

from keen observation of the germination of light sensitive seeds (23). 

Light has long been known to effect the germination of some seeds as is 

evidenced by the reports of Caspary in 1861 (42) and ResUhr in 1939 (124). 

Reviews on this subject (47~ 57, 152, 153) allow one to trace the develop-

ment of knowledge almost to the present. This review is primarily concerned 

with the literature on seed germination of the last decade which has con-

tributed directly to the understanding of the photoperiod mechanism. 

Certain earlier work, however, is worthy of special comment. 

The work of Flint and Mc.Alister in 1-935 (60) and Flint in 1936 (59) 

on the germination of light sensitive lettuce seed (Lactuca sativa L.) 

provided a basis for the concept of photo-reversability. This work is 

summarized by Johnston (86). Previously imbibed lettuce seeds were 

given a dose of red light that would promote 50% germination and then 

placed across a prismatic spectrum. The portion of the spectrum from 

about 600 to 700 mu promoted germination to 100%. The most significant 

finding was a band from 720 to 770 mu which completely inhibited 

germination. A relatively weak band of inhibition was also found in the 

blue between 400 and 500 mu. The significance of the inhibitory effect at 
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~ave lengths longer than about 710 mu was not realized, and no association 

~as made with photoperiodism. Rather, the authors attempted to correlate 

their results with phototropic studies (87, 88). Even though the light 

treatments were not quantitative the response curve published by Flint and 

McAlister (60) clearly represents the action spectrum of the photoreversable 

pigment, phytochrome. This work was not improved upon until it was verified 

by Borthwick et al (2 9) in 1952 at wave lengths greater than 520 mu. The 

Beltsville group extended the work of Flint by quantitatively determining 

the action spectrum of lettuce seed germination. Action maxima for promo­

tion and inhibition were found at 660 mu (red) and 730 mu (far-red) 

respectively. The action maxima for inhibition and promotion of germination 

were shown to be reversible effects. That is, imbibed seeds previously 

potentiated to germinate by exposure to red light were inhibited by exposure 

to far-red and could be repromoted to germinate by red light~ This sequence 

of irradiations was repeated for many cycles and the seeds were always 

found to respond according to the last irradiation, red promoting and 

far-red inhibiting germination. This brilliant work firmly established the 

concept of a photoreversible pigment system which controls basic life 

processes. The activity of this system was quickly shovm to control 

flowering in cocklebur (26). 

Later, after an exaustive examination of lettuce seed germination 

(28) at wave lengths greater than 400 mu, it was shown that the absorption 

of radiation in the red or far-red region changes the photo-responsive 

Pigment into the far-red (P735) or the red-absorbing form (P66o), 

respectively. The action spectra for lettuce seed germination and flowering 

in cocklebur were found to be the same. Also, it was found that the far-red 
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absorbing form of the pigment changes to the red-absorbing form in darkness; 

darkness has the same effect as far-red irradiation. It is through this 

conversion of the pigment that the duration of darkness is measured in the 

photoperiodic control of floral initiation (26, 77). It is interesting 

to note here that at this point the pigment, which was later named 

phytochrome (23), had only been detected through physiological responses. 

The concept of reversibility and the time-measuring, dark reversion 

of phytochrome was quickly extended to many other phenomena in the 

morphogenesis of plants. Internode elongation and leaf expansion (54, 78, 

80, 93, 166), fern spore germination and sporling growth (39, 97), and 

control of anthocyanin synthesis (105, 132,. 133) are examples of some of 

the diverse factors under the control of the red, far-red pigment system. 

Phytochrome eluded direct measurement and purification until 1959 (40), 

when the development of a double beam, bichroma.tic spectrophotometer (17) 

by the Bel ts ville group provided a method for a direct optical assay. 

This instrument allowed for the in vivo assay of phytochrome and for the 

necessary in vitro measurement to trace the pigment through the steps of 

its partial purification carried out by H. W. Siegelman et al (134). 

Butler ~ (41) have determined the photochemical properties of phyto­

chrome preparations. All evidence indicates that phytochrome is a single 

proteinaceous pigment which exists in two forms. The interconversion of 

the two forms can be represented as follows (23, 77): 

660 mu max 

p660735 mu max P735 
DARK 

Contrary to earlier ideas (26, 29), the photoreaction does not seem to 

require any other component than the pigment itself (77). Phytochrome is 
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· ble in vitro af'ter prolonged dialysis and in the .presence of photoreversi . 

"d t or reductants which would remove or inactivate cofactors strong oxi an s 

(ZJ, 77). The dark reversion of phytochrome (P735 DARK>- P66o) has not 

been shown to occur in vitro ( 77) . The dark reaction is the time measuring 

device of photoperiodism and apparently must depend on factors which are 

present only in vivo . In some manner yet unknown the relatively simple 

photo-reversible interconversion of phytochrome controls and influences 

many phases of plant growth and development. 

2. High Energy Photoreactions - Considerably less is known about 

the so-called high energy photomorphogenic responses of plants. This 

phenomena is best illustrated in the literature concerning the photo-control 

of a.xis elongation and anthocyanin synthesis to which the remainder of 

this review will be devoted. 

The definitive work concerning the hi gh energy requiring photo-

morphogenic reactions in plants is of very recent origin. The early 

literature on the effects of light on anthocyanin formation is reviewed 

by Arthur in 1936 ( 7) and Blank in 1947 (18), and recently in an 

extensive work by Kandeler (89). 

Prior to the discovery of the photomorphogenic pigment phytochrome 

there was no understanding or distinction made between the high and low 

energy photoresponses of plants. Withrow, Klein, Price and Elstad (170), 

studied the pigment formation and photomorphogenic responses in seedlings 

of Black Valentine bean (Phaseolus vulgaris) and a hybrid field corn (Zea 

~' variety U. S. lJ) under continuous light regimesof specific wave 

length bands. Maximum responses were found in the region of 630 to 700 mu, 

While 725 mu exhibited strong responses with the development of only traces 
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of chlorophyll. Weak photomorphogenic effects were obtained at 765 mu with 

no detectable chlorophyll development. It is interesting to note that 

maxiJnUin responses in the 630 to 700 mu range occurred at only 2 u w/ cm2 

while those studied at 700 mu and 725 mu only approached saturation at 

hSO u -w/ cm2. Inhibition oi' hypocotyl elongation and anthocyanin synthesis 

responded progressively to the highest energies used (l)OO u w/cm2). Weak 

anthocyanin formation and elongation responses were also noted in the 

blue (436 mu Hg line) at 2 u w/cm2, but with a 1000-fold increase in 

chlorophyll content over that i'ound at 725 mu. In view of later work 

(29, 132, 133) the great differences in energy requirement at the different 

wave lengths which Withrow et al used are the result of the presence of two 

different photoreceptive systems, or, at least, the result of two types of 

photoreactions within the same system. Withrow et al also clearly showed 

that the photomorphogenic responses, even at very high irradiances, are 

distinct from the photosynthetic reaction. The studies of Siegelman and 

Hendricks on the action spectrum of anthocyanin synthesis in apple skin 

(~ malus L~) (132), red cabbage (Brassica oleracea L. var. "Red Acre") 

and turnip (Brassica sp.) (l33) clearly differentiated between the 

reversible photomorphogenic system , and the high energy responses. Dark 

grown red cabbage seedlings, which form small amounts of anthocyanin 

Without irradiation, were induced to form more anthocyanin in response to 

5 minute irradiances of low energy red light (J.O X lo-4 w/cm2). Turnip 

seedlings did not respond to this treatment. Therefore phytochrome in 

the P735 form was necessary for anthocyanin i'ormation in cabbage in the 

dark, and this effect could be reversed by exposure to far-red light. 
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.Anthocyanin formation is under phytochrome control in both plants after 

are potentiated to form pigment by exposure to high energy red light 
theY · 

(== 10 J/cm2) (lJJ). High energy action maxima for apple skin (132), 

cabbage, and turnip (133) were found to occur at 650 mu, 690 mu and 725 

mu respectively. The cabbage and tur,nip were also found to have action 

ma:x:Lma in the blue near 450 mu, Mohr (105) using the Beltsville 

Spectrograph found that the high energy action maxima for both anthocyanin 

synthesis and inhibition of hypocotyl elongation occurred at about 710 mu . 

These two action spectra are very similar and Mohr suggests that the same 

photoreceptor is active in both phenomena, although anthocyanin synthesis 

is also under t he reversible control of phytochrome while the inhibition 

of elongation of the hypocotyl is not. Downs et al (54) have demonstrated 

photoreversibility of elongation of internodes in Pinto beans and several 

other plants. Downs (52) recently determined the hi gh energy action 

spectrum for anthocyanin synthesis in milo seedlings (Sorghum vulgare var . 

Wheatland), and found the action maximum to fall in the blue part of the 

spectrum between 470 to 480 mu . Anthocyanin synthesis in milo was also 

found to be under phytochrome control . That is, the effect of blue light 

used to induce anthocyanin production can be nullified by brief exposure 

to far- red irradiation or reinstated by a subsequent exposure to red. 

In this work (52), Downs has shown a clear separation between the high 

and low energy reacti ons . The absence of any significant high energy 

action in the red remains unexplained. 

There is no direct evidence of physiological mechanisms of the 

light reactions, but theoretical ideas have been advanced on the basis of 

circumstantial evidence. These ideas along with morphogenic mechanisms 

beyond the light reactions will be taken up in the general discussion . 



C H A P T E R I I I 

MATERIALS AND METHODS 

Plant Material 

The hypocotyl of Impatiens balsamina L. was chosan as the experimen-

tal material because different regions of the hypocotyl have been shown to 

form anthocyanin at different rates (J). Cultured segments of the hypocotyl 

also differ in their ability to form roots and epidermal hairs. The 

formation of anthocyanin pigments may be used as a physiological indicator 

under various conditions that can be correlated with the genesis of roots 

and hairs in different regions of the hypocotyl. Practical advantages 

such as the availability of quantities of genetically uniform seed, and 

the ease of handling and germinating the seedlings under sterile conditions 

suggested that this species was a good choice for a study of growth and 

differentiation of the hypocotyl. 

Vaughn Seed Company's Scarlet Balsam was used in all experiments. 

This strain corresponds to Davis 1 HPr type (48) having bright red flowers 

and red stems, or RSWD in Weij er 1 s terminology ( 162) . The stems yield the 

anthocyanin aglycones, pelargonidin and cyanidin (4). 

!!YPocotyl Anatomy 

Three seeds were germinated in darkness in petri dishes containing 

lO rnl of distilled water and two layers of Eaton - Dikeman #613 filter 

paper. The dark-grown seedlings were harvested at either 5 or 10 days 

after planting. During the period of germination and growth the temperature 

Was controlled at 28°c. One group of seedlings was germinated and allowed 
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the light at 450 foot-candles at 20°C for 15 days. The whole 
to grow in 

. were killed, fixed, and stored in FAA solution (Table I) (127a). 
seedlings ·. 

TA BLE I 

FORMULA FOR FAA KILLING AND PRESERVING FLUID 

Ethyl alcohol (95%) •..... 
glacial acetic acid .•..•• 
formaldehyde (37-40%) ..•.. 
water ...•..•.•..•.....•... 

50 cc 
5 cc 

10 cc 
35 cc 

After remaining in FAA for at least 24 hours, the hypocotyls of the 10-day­

old seedlings were each cut into 10 pieces of equal length (approximately 

5 mm), which were labeled #1 nearest t o the cotyledons proceeding to #10 

at the base of the hypocotyl . 

Entire 5-day- old seedlings and the segments of the 10-day- old 

seedlings were dehydrat ed by a tertiary butyl alcohol (TBA) s eries prior 

to paraffin infiltration (85). Paraffin shavings of low melting point 

(48 to 50°G) were added when the plant material was in pure TBA. The 

paraffin was allowed to dissolve slowly over a period of several days at 

about 40°c. Finally the TBA was evaporated by placi ng the material in a 

52°C oven, and approximately 24 hours later , or until no odor of alcohol 

could be det ected, the open vials were placed in a 6J°C oven and impregnated 

with rubber based "Tissue Mat 11 wax (M.P. 56.5°G) . The tissue was left in 

the final change of paraffin for about 24 hours . and then cast into blocks 

in shallow porcel ain dishes where the wax was hardened rapidly by submerging 

the casting dishes in cold water . Blocks containing indi vidual pieces of 

tissue were cut out of the porcelain dishes and mounted on wooden blocks 

Which could be accomodated by the microtome chuck . 
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Sections, 20 microns in thickness were cut with an American Optical 

n,..,y 11820" rotary microtome. Serial l ongitudinal sections were made of comp=· 
the intact )-day-old seedlings and of all segments of the 10-day-old 

hypocotyl. Serial cross sections were made of segments #1, #5 and #10 of 

the 10-day-old hypocotyl. 

After sections were mounted on glass microscope slides (2)x7.5) using 

Haupt rs adhesive, the paraffin was removed by passing the slides through 

two washes of xylene and then to absolute ethanol through a 50% xylene: )0% 

ethanol bath. These sections were stained with either safranin and fast 

green or Heidenhain 1 s iron-hemotoxylin procedure as outlined by Johansen 

(85). After staining, the tissue was dehydrated with a graded ethyl 

alcohol-water series and sealed under #1 glass cover slips with Diaphane. 

Rand sections of the 1)-day--old, light grown seedlings were made 

using a pith block and straight razor. They were mounted in water and 

observed immediately for the location of anthocyanin pigments. Sections 

of the fresh material were also mounted in iodine-potassium iodide solution 

to test for starch. 

Free-hand india ink drawings were made to illustrate the anatomical 

features of the 10-day-old hypocotyl. They were photographed on 35 mm 

Kodak high contrast copy film (M-135) and printed on Kodabromide A-3 light 

weight photographic paper. 

The distribution of mitotic activity was noted and counts of mitotic 

figures were made from serial longitudinal sections of 10-day-old dark 

grown hYPocotyl segments at a magnification of 970x under oil emersion. 

For convenience in counting and for comparisons, segment #1 was divided 

into three portions labeled terminal, apex and lower (plate XIV). Mitotic 
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found in t he stele, cortex and epidermis were counted separately . 
figures 

tions that were counted, were separated by at least 40 u to avoi d 
The sec 

Possibility of counting the same figures more than once. 
the 

Mitotic activity that was obviously associated with lateral root 

formation was not counted . Only those nuclei having well defined chromo­

somes were counted as being in an active stage of di vision. Many nuclei 

that may nave been in early prophase or late telophase were not counted . 

The length of cortex cells at specific points along the axis of 5 

and 10-day- old etiolated hypocotyls were measured using a cal ibrated 

ocular micromet er. Those cells which were measured were those intersected 

by a transverse l ine drawn through the mid-point of each of 10 equal 

segments of the hypocotyl. Measurements were taken from radial longitudinal 

sections in the plane of the hypocotyl arch . Because of its size and 

varied cell lengths, segment #1 o.f the 10-day- old hypocotyl was di vided 

into f our equal parts, each o.f whi ch was measured separat ely . Separate 

measurements of cortical cells on the inside and outside o.f the hypocotyl 

arch were made . The cell length data are eipressed as average values. 

Chemical Factor s Affecting Anthocyanin Formation and Morphogenesis 

Seeds of Impatiens balsamina L. (Vaughn 1 s Scarlet Balsam) were 

sterilized by placing t hem in 1% bromine water for approximately 15 minutes. 

Then the s eeds were rinsed t horoughly with sterile distilled water and 

transferred to sterile Petri dishes containing 10 ml o.f steri le water and 

a double layer of .fil ter paper. Germination o.f the seeds was conducted in 

complete darkness at 27- 28°c with three s eeds in each Petri dish. 
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After 7 days the r oots and cotyledons were exci.sed from the 

seedlings leaving the bare hypocotyl of about 50 mm in length. The 

t 1 was then cut into 10 equal segments , which were transferred to a hYPoco Y 

Petri dish containing an agar medium . They were arranged in a radial 

fashion on the agar, the segment proximal to the cotyledons being designated 

as #1 and the more distal as 2, 3, 4 ..• to #10 . Sterile conditions were 

maintained throughout. 

White 1s medium (165) was used in all experiments as the basal 

medium, and it was supplemented in various experiments with the f ollowing 

constituents: a ) t he sugars glucose and sucrose, b) compounds affecting 

growth; naphthalene acetic acid (NAA), 2, 3, 5 triiodobenzoi c acid (TIBA), 

gibberelli c acid, s odium salt (GA) c) compounds affecting anthocyanin 

formation ; benzimidazole (Bz); 8-azaguanine (Aza), riboflavin (Rb) 

(Table II). 

Petri dishes were sterilized dry at 180°C for four hours and the 

medium was autocl aved at 12lOC for 15 minutes. Al l constituents were added 

to the medium before sterilization with the exception of Rb which was 

sterilized by filtration. 

Each experiment, comprised of 35 cultures, was carried out in 

darkness or under 450 ft. ed. of light from cool white flourescent tubes 

at 25°C. In experi ments which were conducted in darkness, transfers were 

made under dim green light. During the experimental period of 10 days the 

dark cultures received brief periodic exposures which were necessary f or 

the collection of data. 

During the experiments visual observations were made on all the 

cultures at the following intervals: JO, 48, 60, 72, 96, 144, 192, and 240 



TABLE II 

CONSTITUENTS OF WHITE 1S MEDI UM 

Components 

ZnS04 

H3Bo4 

KI 

MnS04 . 2H2o 

KCl 

KNOJ 

Ca(No3) 2 . 4H20 

NaH2 P04 . 4H2o 

MgS04 . 7H2o 

Glycine 

Nicotinic acid 

Pyridoxine 

Thiamine 

Sugar 

Agar 

NAA 

TIBA 

GA 

Basal Medium 

Concentrati on 

1.55 mg ./1. 

1.50 mg ./1. 

0 . 75 mg ./1. 

5. 70 mg./1. 

65 .00 mg ./1. 

80 .00 mg . /1. 

288 . 00 mg ./1. 

16 .50 mg ./1. 

736 .00 mg . /1. 

J .00 mg ./1. 

0 .50 mg ./1. 

0,50 mg./1. 

0 .10 mg ./1. 

2 . 50 mg./1. 

20 grams/1. 

10 grams/l . 

Test Compounds 

5 . 0 X io- 6M 
5 . 0 x io- 8}1 

5 . 0 X i o- 5M 

2 . 7 X i o- 5M 
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TABLE I I (CONT 1D) 

Components 

Rb 

Bz 

Aza 

Test Compounds 

Concentration 

J.O X 10-4M 

LO X io-4M 

J.O X 10-JM 

J.O X 10-~ 
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or 30 42, 54, 66, 90, ll4, l38, l86 and 240 hours in some instances. 
hours ' 

S
ence or absence of anthocyanin pigments, epidermal hairs, and the 

The .Pre 

f t were recorded for each of the lO hypocotyl segments in nUJllber o roo s 

each culture at the above intervals. These data represent 35 replicates 

of each of the 10 segments of tissue along the axis of the hypocotyl . 

.At the end of the 10 day experimental period the relative amounts 

of anthocyanin pigments were estimated by pooling 20 cultures which yield 

lO extracts representing segments #1 through #10 respectively. Anthocyanins 

were extracted from the hypocotyl segments by crushing the tissue in 5 ml 

of 1% methanolic hydrochloric acid (HCl). Segments were extracted overnight 

in darkness at 27-28°c and the extracts were filtered through glass wool 

and made up to 10 ml in volumetric .flasks with 1% methanolic HCL Relative 

concentrations of anthocyanins were obtained from their absorption spectra 

between 400 and 600 mu as determined with a Beckman model DU spectrophoto-

meter. .Anthocyanin concentration is expressed as the dif.ference between 

the absorbance at 524 mu and the average o.f the absorbance values at 450 

and 600 mu multi plied by 103 to give a whole number (3) . 

In respiration studies, unsterilized seeds were placed into large 

finger bowls lined with wet filter paper and incubated at 30°c for 7 days 

in darkness. Before readings were taken, pooled hypocotyl segments were 

incubated in the Warburg vessel for 30 minutes in 2 ml of White 1 s liquid 

medium (165) without ferric sul.fate and without adding IM or sugar. 

Manomet~r readings were taken at 10 minute intervals over a period of two 

hours· First, the respiration rates of each of the 10 hypocotyl segments 

Were measured. In order to resolve the respiratory gradient in the region 
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o! the hypocotyl arch, six cons ecutive 2 mm segments ( 80 replicate seg-

r Warburg vessel ) were measured . This 12 mm portion included the 
ments pe 

1 t e h'rnocotyl arch and a short distance t oward the base of the 
comp e "t' 

hypocotyl. Respirat ion rates are expressed as ul 02 consumed per mg of 

fresh weight per hour. 

Although the hypocotyls of dark grown seedl ings had no visible 

chlorophyll, as a precaution all cutting was done in a darkened room and 

the Warburg apparatus was operated in semi-darkness ( 5 foot candles). At 

the end of a run the tissue was blotted on filter paper and weighed on an 

Sllalytical balance. All cell counts were obtained by a method descri bed 

by Brown and Broadbent (38a). The segments were macerated in 5% chromic 

acid for 24 hours and the resulting cell suspension was drawn through a 

pipette to break up clumps of cells. Al iquots of the suspension were 

placed on a haemocytometer slide and the cells were counted. Total number 

of cells per s egment were calculated from the haemocytometer counts. 

Responses of the Hypocotyl to Light 

The action spectra for anthocyanin synthesis, elongati on of the 

hypocotyl, and the straightening of the hypocotyl arch were determined 

between 400 and 500 mu . An action spectrum f or photoreversibility of 

anthocyanin synthesis was determined between 600 and 800 mu . 

For the acti on spectra for anthocyanin synthesis Scarlet Bals am 

seeds were germinated in large plastic refrigerator boxes on two layers 

of white absorbent packing paper. The boxes were placed in complete dark­

ness for five days at 25°c. Seedlings were prepared for irradiation by 

remoVing the basal portion of the hypocotyl with the roots s o that all 
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tyls were approximately the same length (about 25 mm). 
bypoco · 

Hypocotyls were irradiated with white fluorescent light, and colored 

light from a prism spectrograph, or interference filters. Fluorescent light 

S 
were used in preliminary experiments to determine optimum periods 

80urce · · · 

of irradiation and darkness; various light intensities measured as foot 

candles, were obtained by using cheese-cloth filters. The hypocotyls were 

placed horizontally in Petri dishes containing two layers of Whatman No. 3 

filter paper moistened with water. Different periods of light and darkness, 

and light intensities were used. Preliminary experiments were designed 

to test the effect of red and far-red light on anthocyanin synthesis. The 

red light source was a bank of eighteen 8-foot, cool-white fluorescent 

lamps with a two layered red cellophane filter which delivered about 0. 6 

milliwatt per cm2 between 600 and 700 mu at a distance of 100 cm. 

Far-red light was obtained from three 300-watt internal reflector 

incandescent lamps with a filter of two layers of red and two layers of 

blue cellophane. A 5 cm layer of water was used to absorb infrared 

irradiation to reduce heating effects. About 1 milliwatt per cm
2 

of 

incident energy was obtained 100 cm from the source. 

Generally, the anthocyanin content of the hypocotyls was measured 

at the end of a dark period which followed a specific light treatment. 

After removing the cotyledons the hypocotyls were extracted overnight at 

5oc in 5 ml of 1% methanolic HCl. Usually, either 5, 10 or 15 hypocotyls 

Were extracted, depending on the amount of pigment present. The relative 

concentrations of anthocyanins in the extracts were measured spectrophoto­

Dletrically as previously described. 
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A 10 kilowatt carbon - arc lamp of the type used in the projection 

of J5 mm motion pictures was the l i ght source for the spectrograph. 

t um omitted from the glass prism was focussed on a mirror and 
spec r 

reflected onto a table-top. A greater spectral dispersion and focal 

The 

length were obtained when the spectrograph was used as a double prism 

instrument, but the incident energies were considerably lower than when 

the instrument was used with one prism. It was used as a single prism 

instrument for the irradiation of the hypocotyls between 400 and 500 mu. 

The projected spectrum between 394 and 507 mu was 24 cm in width which had 

a dispersion at 400 mu of 0.30 mu/mm, 0.50 mu/mm at 450 mu and 0.70 mu/mm 

at 501 mu. The energy distribution was 0.12 milliwatts/cm2 at 400 mu, 0.30 

mi.lliwatts/cm2 at 4.50 mu and 0.)2 milliwatts/cm2 at )01 mu. Energy 

measur.ements were made with a thermopile previously calibrated with a 

standard light source . 

Seedlings to be irradiated were prepared as previously described. 

They were placed side-by-side in a row lying across the bottom of square 

plastic sandwich boxes with two layers of moistened Whatman No. 3 filter 

paper in the bottom. Each plastic box was 11.75 cm on a side and two such 

boxes of seedlings gave a row of hypocotyls extending from 400 to about 

500 mu. The hypocotyls with attached cotyledons were irradiated for 6 

hours. A measurement of the exact position of each box in relation to a 

reference point on the table was recorded so that samples of the hypocotyls 

taken from the boxes could be related to specific points across the spectrum. 

After irradiation the hypocotyls received 10 minutes of red light and were 

returned to darkness at 25°c for 18 nours. At the end of the dark period 

conse t· cu ive samples of 10 hypocotyls each were taken from the plastic boxes. 

Each sample was extracted in 5 ml of 1% methanolic HCl. A sample of 10 



t ls covered about a 2 cm portion of the spectrum. .Anthocyanin 
hYPoco Y 
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t were meas.ured spectrophotometrically as before and the value ob­
axtrac s 

taiJled for each sample was assigned to that wave length which fell at the 

'dpoint of the sample. A measure of anthocyanin synthesis was obtained 
no. . 

at approximately 5 to 10 mu intervals. 

Due to the low energies obtained from the spectrograph only small 

8Jllounts of anthocyanins were formed. A second action spectrum for 

anthocyanin synthesis was determined using a carbon-arc light source with 

interference filters. Light from the 10 kilowatt arc was passed through 

a 20 1. carboy and an absorption cell filled with water cooled 1 M GuS04 

which removed most of the red and infrared radiation. Following the CuS04 

filters, the beam was passed through a condensing lens and reflected 

downward by a mirror through a holder which contained four square inter-

ference filters, 2 inches on a side. The carbon-arc lamp, Cu.S04 filters, 

and condensing lens were inside a small light-tight "walk-in 11 housing 

while the four beams of monochromatic light coming from the filters were 

projected downward onto the surface of a table outside the enclosure. 

Hypocotyls were prepared for irradiation as before and placed on the end 

surface of four solid aluminum cylinders which were wrapped with four layers 

of cheese-cloth and immersed in an ice water bath. Each cylinder with 25 

hypocotyls was placed under an interference filter and irradiated for 6 

hours. The temperature at the surface of the cylinders was maintained at 

25°C and the energy delivered by each filter was measured with a calibrated 

thermopile (Table III). 



TABLE III 

ENERGY DELIVERED AND WAVE LENGTH AT MAXIMUM 
TRANSMITTANCE OF INTERFERENCE FILTERS 

Wave-length Milliwatts/cm2 

500 mu 1.30, 2.00 
483 mu 2 .oo, 2 . 72 
463 mu 1.60, 3.30 
441 mu 1. 72 
425 mu 1.50 
405 mu 1.50 

A minimum of two replicate experiments were conducted for each 

wavelength. After being irradiated the hypocotyls were transferred to 
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Petri dishes containing two layers of moistened Whatman No. 3 filter paper, 

exposed to 5 minutes of red l i ght , and then placed in the dark for 18 hours . 

At the end of the dark period, 10 hypocotyls were extracted in 5 ml of 1% 

methanolic HCl . Of the 25 hypocotyls at each wavelength 20 were used which 

gave two replicat e extracts for each wavelength per experiment. 

All quantitative values obtained for anthocyanin synthesis were 

plotted with relative concentration of anthoc;!yanin as the ordinate and 

wavelength as the abscissa. 

In the determination of the action spectrum of photo-reversibility, 

which is the action spectrum of phytochrome, the spectrograph was used as 

a two-prism instrument. In this form the instrument has a longer focal 

length and greater dispersion, but the incident light energies are greatly 

reduced. The dispersion at 600 mu was 0.46 mu/mm, 0. 71 mu/mm at 700 mu, 

and l.25 mu/mm at 800 mu while the energies delivered at these same points 

of the spectrum were 0.116 milliwatts/cm2, 0.150 milliwatts/cm2, and 0.171 

DtiJ.li 2 watts/cm respectively. 
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The bypocotyls placed in the plastic sandwich boxes as previously 

"b d were induced t o form anthocyanins by exposing them for 4.5 hours 
descri e 

to 
2000 

foot candles of cool-white fluorescent light at 25°C. Action of 

the red in the region of 660 mu was determined by exposing one lot of 

induced hypocotyls to an inhibiting dose of 5 minutes of far-red irradia-

uon. 

800 mu. 

This material was then placed on the spectrograph between 600 and 

Separate lots of hypocotyls were irradiated for 2, 4, 8 and 16 

minutes and then maint ained in complete darkness for 24 hours at 25°c. The 

far-red action was determined in a similar manner except that the hypocotyls 

induced to form anthocyanins by the high intensity fluorescent light 

received 5 minutes of red light immediately before being irradiated on the 

spectrograph. A period of 32 minutes was added to the irradiation schedule. 

At the end of the 24 hour dark period the hypocotyls were sampled, extracted 

and the anthocyanins were measured as described for the spectrograph 

experiments . 

Intact seedlings were used for the study of the effects of l i ght on 

hypocotyl elongation and on the straightening of the hypocotyl arch. The 

seeds were germinated in darkness at 25°c in covered polyethylene food­

freezer containers with two layers of moistened packing paper in the bottom. 

During periods of irradiation the covers were removed £ram the containers, 

Which Were about 3.25 to 3.5 inches square at the base and 4.0 inches deep. 

Approximately 40 seeds were pl anted in each container. 

The elongation and arch straightening responses were measured at the 

same time· Measurements were obtained from 30 seedlings per treatment in 

all F>~ • 
-·~eriments. Elongation responses were measured as the difference 

between the lengths of the irradiated seedlings and of the dark control. 
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e of straightening of the hypocotyl arch was measured as the angle 
The degre 

which is formed with the hypocotyl axis. The arc through which the 

l dons were moved in the straightening of the arch was divided into 
coty e 

si.X 300 segments and numbered 1 through 6. Thus, a hypocotyl which had 

received no light would have a value near 1.00, the arch being in the 

closed position. A completely straightened arch would have a value of 

6.oo. 
Cool-white fluorescent lights and the red and far-red sources were 

used in preliminary experiments to determine optimum light programs and 

the action of phytochrome. The carbon arc-interference filter apparatus 

was used for the action spectra determinations (Table IV). 

TABLE IV 

ENERGY DELIVERED AND WAVELENGTH AT MAilMUM TRANSMITTANCE OF 
INTERFERENCE FILTERS USED IN ELONGATION A.ND ARCH 

STRAIGHTENING EXPERIMENTS 

Wave length 

517 mu 
500 mu 
483 mu 
463 mu 
441 mu 
425 mu 
405 mu 

Milliwatts/cm2 

0.86 
0.48 
1.00 
1.00 
0.78 
0.56 
0.49 

Seedlings were irradiated periodically o';rer a period of 48 hours. 

A 24 hour cycle of 2 hours light, 4 hours dark, 2 hours light and 16 hours 

of darkness was repeated twice. At the end of each two hour irradiation 

the seedlings received 5 minutes of red irradiation. All seedlings were 

llleasured at the end of the last 16 hour dark period. The data were 

Plotted ·th 
WJ.. the response (amount of inhibition of elongation or degree of 

arch stra. ht . ) ig ening as the ordinate and the wavelength as the abscissa. 



C H A P T E R I V 

RESULTS 

HYI'ocotyl Anatomy1 
~ 

The major tissues found in the etiolated hypocotyl of Impatiens 

balsarnina L. (Plate I) are designated as follows: Epidermis (Plates II to 

XI), Hypodermis (Plates III to XI), Cortex (Plates II to X), Endodermis 

(Plates II, III, V, VI), Pericycle (Plates II, III, V to VII), Phloem 

(Plates II to IX), Xylem (Plates II to IX), and Pith (Plates VIII to IX). 

The plates referred to above illustrate the organization of the various 

tissues along the hypocotyl axis. Plate I shows the position of these 

sections and the gross morphology of the etiolated balsam seedling. 

The hypocotyl of Impatiens balsamina L. typifies the concept of 

the transition region with diverging vascular bundles and a central core 

of pith, somewhat like an inverted cone, leading to the apical meristem 

which gives rise to the shoot proper. 

The vascular tissue is i dentical throughout the length of the 

hypocotyl. A tetrarch pattern of tracheary elements with annular thicken­

ings alternates with strands of phloem tissue. The vascular cylinder con­

tains very little parenchymatous tissue near the bas e of the hypocotyl, 

being very similar to the primary root (Plates I~, V). About 200 to 250u 

from the base of the hypocotyl the first indications of a centrally 

located pith appeared (Plate VI). From this point the xylem strands 

~t Roman numerals placed in parenthesis () as a part of the descriptive 
a presented here refer to the plates on _ pages 48 to 62. 
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t and diminish in amount as a large central core of pith 
graduallY separa e 

l
ops (Plate VII). The phloem forms a cylinder of tissue broken only 

deve 
at the four xylem points. This pattern remains intact until the upper 

JjJnit of the hypocotyl is approached. The two xylem strands in the verti­

cal plane parallel to the cotyledons divide to form four xylem strands 

which act as the two lateral strands for each cotyledon (Plate VIII). 

These strands also appear to provide the vascular attachment to the 

shoot, as evidenced by the zones of procambium tissue that appear nearer 

to the apical meristem (Plate IX) • The vascular tissue then becomes 

arranged as three collateral cotyledon traces (Plate IX). These results 

agree with published descriptions by Noel (110) except that he describes 

the lateral traces as being larger and more 11 important" than the median 

trace. All traces observed by the author appeared to be of the same size 

with respect to each other. 

The similarity of appearance between the cross sectional anatomy 

o! the root (Plate II) and the basal portions of the hypocotyl (Plate V) 

is striking, but there are two notable exceptions. The pericycle of the 

root appears as a cylinder of cells directly internal to the endodermis, 

whereas it appears as four small zones at the xylem points in the hypocotyl . 

The latter observation is supported by the rooting pattern of hypocotyl 

segments· Adventitious roots consistently appear as opposed pairs (four 

roots at right angles to each other) and several roots often appear llsingle-

file" along the 1 th f eng o a segment. As can readily be seen, the four 

secondary roots (Plates III, IV) of the seedling are formed in this way. 

The root initiation zones (Plates V to VII) were found to traverse nearly 
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entire length of the hypocotyl . Further evidence was found in 

. t dinal sections of 10 day old hypocotyls containing early root 
1ong1 u 

prilJlordia (Plate Ill). These pr imordia were found as far removed from the 

base as segment #7. Serial sections showed that the proliferations were 

arising from a zone 2 to 4 cell s wide and 1 to 3 cells deep, situated 

close to a xylem strand. 

The second difference is the presence of a layer of large columnar 

cells just beneath the epidermis termed the hypodermis (Plates X, Il) . 

These cells begin to appear immediately above the primary root and are 

well established at the very base of the hypocotyl, traversing its entire 

length (Plates III to IX). Although the hypo dermis is anatomically 

consistent, it shows considerable cytological heterogeneity. Many cells 

appeared as the typical living cell with well defined nucleus and 

cytoplasm (Plate X), while others had a dense substance partially adhered 

to the internal cell wall. No positive identification of a nucleus could 

be made in the latter cells. Some appeared t o be empty. These cells also 

became very conspicuous when stained with iron-hematoxylin . The t wo major 

types of cells were not dispersed randomly but were organized in short 

longitudinal rows of several similar cells which appeared to be arranged 

randomly. They were termed as being either in the undifferentiated 

(Plate X) or in the differentiated state (Plate XJ;). -It is questionable as 

t . . 
0 whether the latter are actually living cells. A considerably larger 

Jlllmber of cells approximated the "undifferentiated" state. An important 

correlation to the above condition was noted in examining fresh hand 

sections f 1 . 0 i ght grown seedlings. Small amounts of anthocyanin pigment 



d to occur in cells closely associated with the xylem strands. 
11ere f oun 
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the majority of the red pigment was found in the hypodermis, the 
J{owever, 

. and cortex being unpigmented. The pigmented cells were arranged 
epidernus 

. ntinuous rows interspersed with rows of nonpigmented cells. This 
:in disco 

situation appeared identical to the pattern observed in the dark grown 

seedlings. From this it can be said that the cells previously described 

as being in the differentiated state are actually specialized cells which 

produce pigment. It is interesting that these cells differentiate in the 

absence of light, but do not develop anthocyanion pigments. Although the 

dense material observed in the hypodermis cells of the dar k gr own seedlings 

maybe an artifact, it do es indicate that these cells ar e unique and that 

they must assume a specialized condition in order to produce pigment. This 

concept is indirectly supported in a publication by Resch (123) in which 

he studies the incidence of polyploidy in the epidermal and subepidermal 

cell layers of the growing shoots of several seedlings including I mpatiens 

balsamina. He describes the subepidermal layer (hypodermis) as being 

comprised of comparatively large cells which are 8 to 16N in chromosome 

nwnber. The epidermal cells were found to remain diploid. Res ch states 

that the polyploidy was brought about by endomitosis, the different chromo-

somes dividing at different times. IS this were the case in the hypocotyl, 

then it may very well be correlated with the specialized condition of the 

hypodermis and the occurrence of pigment. On the other hand, no specialized 

cells were noted within the stele of the dark grown seedlings, even though 

Pigmented cells appeared in the light grown seedlings. The stelar, pigment 

fol'Illi 
ng cells were f ound closely associated with the xylem strands. Often 



· direct contact with a tracheary element. The significance 
theY 'IJere 1n 

o! this is at present obscure. 

The pith and cortex are made up of thin walled parenchyma tissue 

45 

differing little along the axis except in cell length . These tissues have 

. ts of interest in the region of the hypocotyl arch (Plate I) and will 
po:Lll 

be dealt with separately. 

A definite endodermis with Casparian strips was noted in the root 

and it extended some distance up the hypocotyl. It could no longer be 

detected above segment #6, but the presence of a starch sheath which 

extended to nearly the upper limit of the hypocotyl was noted. 

As previously mentioned, the uppermost segment (Plate XIV), because 

of inferences from .Published literature and its unique physiological 

responses, was examined closely to determine the presence or absence of 

meristematic activity . In Table V are presented the total number of 

mitotic figures found in four 20 u sections ta.ken from segment #1. They 

were selected to give each tissue zone continuous repres entation along the 

length of the segment. 

Since four 20 u sections yielded nearly 300 definite mitotic figures 

and the diameter of this portion is about 1000 u (1 mm.), it would seem 

that a conservative estimate for the total count would be wel l over 1000. 

There seems to be little question that this meristematic region contributes 

to the growth of the hypocotyl. The numerical data indicate that the 

mitotic activity of the terminal portion and the apex of segments is uniform, 

and a sharp decrease occurs in the lower ~ection of the segment (Plate XIV). 

In very young seedlings with hypocotyls of only 3 to 4 mm., mitotic 

actiVity was found along their entire lengths. From the study of seedlings 
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TABLE V 

MITUTIG FIGURES FOUND IN SEGMENT #1 OF 10 DAY OLD DARK GROWN HYPOCOTYLS 

Terminal Tissue Zone Apex Lower 

section # Cortex Stele Epi. Cortex Stele Epi. Cortex Stele Epi. 

-
2 7 1 15 20 1 1 

5 12 12 3 10 26 3 

8 17 25 7 12 4 

12 28 39 17 28 2 

Indv. Total 64 76 4 49 86 10 1 

zone Total 144 145 

Grand Total 290 

~- ?~ * 

TABLE V I 
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be seen that the active area occupies an of intermediate age it could 

;ngly smaller portion increas..i ..... 
of the hypocotyl. The active zone must be 

. d red as a separate meris tematic unit since in all material studied 
consi e 

the apical meristem was dormant . Certainly the growth of the hypocot yl 

is determinate, which leads to the conclusion that when the hypocotyl 

matures, this meristemat ic zone no longer exists. Thus, new cells are 

formed through mitosis without the conservation of undifferentiated 

tissue. Such a meristem must be classified as a transient meristem and 

is similar to intercalary meristems which Prat (119, 120) has descr ibed 

in grasses. The term, pseudomeris t em of Noel (110), seems to be mos t 

descriptive · 

Results from tissue culture experiments have shown that the 

physiological responsiveness of s egment #1 , particularly its ability to 

elongate, decreases wi th age . The transient nature of the pseudomeristem 

causes the age of the seedlings used for physiological work to become a 

critical factor which can influence the results greatly . 

Although the pseudomeristem contributes a gr eat deal to the growth 

of the hypocotyl, the actual increase in length occurs largely through 

cell elongation. Table VI presents the average length of cortex cells of 5 

and 10 day old hypocotyls . The measurements were taken at 10 points al ong 

the axis and the cells on the inside and outsi de of the arch are measured 

separately. Because of its size and varied cell lengths, segment #1 of 

the 10 day old hypocotyl was divided into four equal parts (A, B, C and D) . 

The data in Table VI indicate that the hypocotyl arch is most probab­

ly formed through differential elongation of the cells in that region . 

Elongation proceeds continuously upward from the base of the hypocotyl until 

at lO days nearly all cells, except those of the arch have reached a maximum 
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PLATE XIII: THE ORGANIZATION OF THE COTYLEDON TRACES OF 
IMPATIENS BALS.AMINA L. 
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iength· 

!!'Piration Studies 

Preliminary experiments showed that the cotyledon end of the hypoco-

tfl bad a much higher respiration rate than did the radicle end. When 

T-day-old hypocotyls about 50 nun long were sectioned into ten 5 mm segments, 

the respiration rate was found to be nearly J-times as great in segment 1 

u in segments 4 to 10 (Fig. 1) . Segment 2 had a rate of oxygen consumption 

o! about one-half of segment 1. In order to define more clearly the respi­

ratory gradient in the uppermost portion of the hypocotyl, successive 

2 mm segments were studied for their rate of oxygen consumption. Data from 

ligure 2 indicate that the rate of respiration in the first 4 mm from 

the terminal end of the hypocotyl is about 4-fold greater than the rest 

ot the hypocotyl. There is a steep respiratory gradient even within 

ngment 1. When respiration rates were calculated on a per cell basis 

(lig. 2) the minimum rate occurred at the terminal end of the hypocotyl. 

!he per cell respiration rate rises sharply t~roughout the pseudomeristem 

region and reaches a maximum at the 10 mm level; this is below the pseudo­

lllristem in the area of cell elongation. Beyond this point respiration 

drops sharply and is relatively constant throughout the remainder of the 

~ocotyl. 

!lemical Factors Affecting .Anthocyanin Formation and Morphogenesis 

The data are presented in three sections which correspond to the 

i1Pe of test compound under study. The three types are (1) the sugars, 

(
2

) those compounds known to affect morphogenesis, and (J) those compounds 

~ to af'fect anthocyanin formation. Some interactions of these compounds 
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d in a f ourt h section. 
Presente ·are 

1. Sugars - No (visually detectable) anthocyanins are f ound in 

segments grown on White 1s medium unless the medium is supplemented 
J11POCOtyl 

nth a sugar (6). The comparative effects of glucose and sucrose were 

ef e measured from a control base of no appreciable pigmentation. 
~er or -

These results have also been re,ported elsewhere by the author (6). 

Table VII indicates the visual data on the f ormation of anthocyanin, 

roots and hairs collected at the end of the 10-day experimental period. 

Jo appreciable differences occurred in the number of segments forming 

pigments with the exception of those grown in the dark on the 2% glucose 

•dium. Glucose appeared to be less efficient in supporting anthocyanin 

formation in the dark in segments 5 to 10 . A similar, lesser efficiency 

Qf glucose in promoting root and hair formation occurred in the lower 

s.egments, particularly s egment 10 . Hair formation was general ly increased 

1- darkness and the highest values were obtained in the presence of 

ncrose 1lllder both light and dark conditions. 

The responses of segment 1 which was f'ound t o contain pri marily 

lllll"isternatic and elongating tissue, were different f rom the responses of 

The hi gh rate of respiration and the elongation of 

Mgment 1 would seem to require more energy yielding substrat es t han the 

This was s ubstantiat ed in th e dark experi ments, where 

Jlaotosynthate did -not alleviate the substrate demands. With glucose as 

tke substrate, segment 1 formed (1) no visible anthocyanins, (2) the least 

:llalber of roots of any other segment, and (3) fe~er segments formed hairs 

tlau even those In the presence of sucrose, segment 1 

glucose and several of them became 



INCIDENCE OF ANTHUCYANIN PIGMENT AND EPIDERMAL HAIRS, AND 
NUMBER OF ROOTS ON SEGMENTED HYPOCOTYLS 

4 
Se~ment 

Substrate Treatment Observati on 1 2 3 ) b 7 s 9 lO 
---· 

Pigment1 35 35 35 35 34 35 35 34 35 35 

Glucose Light Rootsl 132 137 130 119 116 105 112 95 100 83 

Hairs1 20 5 1 0 0 0 0 0 0 0 

-
Pigment - 34 34 33 30 28 29 25 23 24 

Glucos e Dark Roots 70 129 131 122 114 113 115 107 94 85 

Hai r s 11 25 24 15 12 6 5 0 0 0 

Pigment 35 35 35 35 35 35 35 35 35 35 

Sucrose Light Roots 137 137 143 134 136 132 138 126 130 114 

Hairs 24 13 3 1 0 0 1 1 0 0 
- --

Pigment 7 34 35 35 34 35 34 35 35 35 
Sucrose Dark Roots 87 137 123 129 121 118 120 119 110 124 

Hairs 35 35 27 18 10 8 12 11 11 0 

1. Pi gment = Number of segments wi th visi ble anthocyanin per 35 repli cates 
°" Roots = Total number of roots on 35 replicate segments --J 

Hairs = Number of segment s with epidermal hairs per 35 replicates 



pigmented in the dark . 

. D1·ng sucrose. 
contaJ. 
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Maximum hair formation occurred in the medium 

Table VIII indicates that more anthocyanin pigments were formed per 

t with glucose than the substrate with sucrose. During the course 
,egmen 

of the experiment pigments appeared earlier in the glucose sets under both 

light and dark, but this pattern was reversed in segments 8, 9, and 10. 

Roots and hairs appeared earlier in the segments on the sucrose 

medium and attained higher total values . The data indicate that in this 

qstem of tissue culture, sucrose supports better growth while glucose 

induces greater anthocyanin formation. Sucrose did induce the formation 

of easily measurable amounts of anthocyanin . For this reason and since 

aore vigorous growth was obtained with sucrose, this sugar was chosen as 

the carbon source in the medium with all other experiments. 

2. Compounds affecting morphogenesis - Table IX and X show the 

totals of the incidence of hair and pigment, and the number of roots formed 

for all segments with the growth substances used . The NAA control group 

Md no added growth factors and was used as a basis of comparison for the 

tlro levels of NA.A used (5xio-8 and 5x10-~). The group containing 5x10-8M 

Ill is the control for all other substances tested. Such a system of 

eo.ntrol experiments was necessary because in the complete absence of NAA 

formed hairs in small amounts, which would not allow a 

the inhibition of hair formation by t he compounds used. 

The addition of NAA caused an increase in the formation of hairs 

•d a sharp increase in the number of roots formed (Table IX) . NAA at 

.S.OJ:J.o-~ 
caused about a 2-fold 

IZcept · 
in segments 1, 9 and 10. 

increase in root formation over the control 

Segments 1 and 9 showed over a 250% 

I 



TABL E VIII 

RELATIVE AMOUNTS OF ANTHOCYANINl FORMED PER. HYPOCOTTI.. SF.GMENT I N lO DAYS 

Se ment 

Substrate Treatment 1 2 3 4 5 6 7 8 

2% Glucose Light 4 .141 5.46 6 .29 6.29 6 .74 6 .51 6. 89 5 47 

2% Glucose Dark 0 0.61 1.00 0.97 0 .96 0 .82 0 .83 0.88 

2% Sucr os e Light 2.94 3.89 4.34 4.66 4 .57 4. 09 5 .00 3.89 

2% Sucrose Dark 0 .14 0.32 0.46 0.37 0 .35 0.26 0.41 0.34 

1. Units = O.D . x 103 /pigment ed segment 

9 

5.09 

0.87 

4. 23 

0.31 

10 

4 .06 

0.63 

4.00 

0.34 

°' \.() 



TABLE I .X 

EFFECT OF DIFFERENT LEVELS OF NAA ON THE INCI DENCE OF ANTHOCYANIN AND HAIRS, 
AND THE FORMATION OF ROOTS ON CULTURED HYPOCOTYL SEGMENTS 

Segment 
Test Molar 

Compound Concentration Observation 1 1 2 3 4 5 6 7 8 9 10 

Pigment 35 35 35 35 35 35 35 35 35 34 

NAA- Control 0 Roots 139 136 123 121 110 111 114 101 102 62 

Hairs 15 0 0 0 0 0 0 0 0 0 

Pigment 35 35 35 35 35 35 35 35 35 35 

NAA 5 .0 x lo- 8 Roots 137 138 143 134 136 132 138 126 130 114 

Hairs 24 13 3 1 0 0 1 1 0 0 

Pigment 34 35 35 35 35 35 34 33 35 35 

NAA 5 - 6 .o x 10 Roots 372 208 222 237 224 230 241 212 259 314 

Hairs 29 20 11 5 5 0 0 0 0 0 

1. Same as Table VI I . 

--J 
0 



EFFECT OF GA AND TIBA ON THE I NCIDENCE OF ANTHOCYA.NI.N AND HAIRS, AND THE 
FORMATION OF ROOTS ON CULTURED HYPOCOTYL SEGMENTS 

Test Molar 
Segment 

Compound Concent ration Observati on1 1 2 3 4 5 6 7 8 9 10 

Pigment 35 35 35 35 35 35 35 35 35 35 

Contr ol Roots 137 138 143 134 136 132 138 126 130 114 

Hairs 24 13 3 1 0 0 1 1 0 0 

Pi gment 35 35 35 35 35 35 35 35 35 35 

GA 2 . 7 x 10- 5 Roots 105 138 123 118 120 121 135 137 131 112 

Hai rs 14 24 9 11 3 2 3 2 1 0 

Pi gment 35 35 35 35 34 35 34 34 35 J2 

TIBA 5.o x io-5 Roots 36 10 0 7 10 23 20 24 19 57 

Hairs 4 0 0 0 0 0 0 0 0 0 

1. Same as Tabl e VII. 

--J 
f--l 
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·1 segment 10 had a 500% increase in the number of roots formed. increase whi e 

During the course of the experimP.nts, roots and hairs appeared 

t h NAA treated cultures. The appearance of anthocyanin pig­earlier in e 

JlelltS however, did not follow this pattern . Figures 3 and 4 show that 

increments of NAA in the culture medium caused a delay in onset of 

8Jlthocyanin formation. The total amount of anthocyanin produced in most 

tegments of the hypocot yl increased with the addition of NAA to the medium. 

(Table XI). Figure 5 shows the total amount of anthocyanin f ormed for 

the entire hypocotyl at different levels of NA.A . However, the response of 

each segment of the hypocotyl was 

c' -8 ngments 1 and 2 with .:;>XlO ~ NA.A 

not the same. Figure 6 shows that 

and segments 1 to 3 with 5x10-6~ NA.A 

formed considerably less anthocyanin than the control. The remaining 

segments toward the base of the hypocotyl exceeded the control. Increasing 

levels of NAA also caused a shift in the point of maximum anthocyanin 

formation along the axis of the hypocotyl toward the base . Maximum 

IJIK>unts of anthocyanins occurred in segment 1 of the control, segment 4 

llld 5 with 5xlO- S!i NAA, and segment 8 with 5xio-6!:! NA.A. The rooting 

ruponse to NAA was somewhat similar in that the greatest increases are 

found in the lower segments (Figure 7) . There was no depression of the 

however , and segment 1 formed the most roots of any 

legment at the highest level of NA.A . Curiously, segment 1 showed no 

reaponse to the 5xlo- 8M level of NA.A. 

TIBA was found to have no effect on the number of segments forming 

hair for mation was strongly inhibited (Table X). 

'l'lBA. also depressed the total anthocyanin f ormed in all the segments except 

-leglnent 1 which showed about a 50% increase (Table XII) . Figure 8 shows 

I' 

I I 



lllrF.BCT OF .D.IFFll:RENT LJ:VJ:LS OF NA.A OU TOTAL .A.NTHOCY.ANI.Nl. 
FORMED IN HYPOCOTYL SEGMENTS 

Test Molar Se~ment 

Compound Concentration 1 2 3 4 5 6 7 8 9 10 

Nil-Control 0 4 .861 4.69 4 .29 4.11 3 . 71 3 .66 3 .91 3.60 3.37 2.66 

NAA 5 - 8 .ox 10 2. 94 3. 89 4 34 4.66 4.57 4 .09 5.00 3.88 4 .23 4 .00 

NAA 5.0 x io-6 4.17 3.37 3,40 4.28 5.00 4 . 77 5.32 6 .88 6 .34 6.03 

1. Same as Tabl e VIII. 

TABLE XI I 

EFFECT OF GA AND TIBA ON TOTAL ANTHOCYANIN1 FORMED IN HYPOCOTYL SEGMENTS 

Test Molar Segment 
Compound Concentration -1· 2 3 4· 5 6 7 8 9 10 

Contr ol 0 2.941 3 .89 4,34 . 4 .66 4. 57 4.09 5 .00 3.88 4 .23 4 .00 

GA 2. 7 x lo-5 1.86 3.34 2. 77 3.06 2. 94 2.95 2.92 2.94 2.89 2.32 

TIBA 5 o x i o-5 4 .32 3. 92 3 .63 3 . 72 3 .47 3 ,34 3.23 3.23 2.40 2.41 

1. Same as Table VIII. 

--J 
\.;.J 
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t}lat the pattern of anthocyanin formation along the axis of the hypocotyl 

changed by TIBA. While being generally lower, the TIBA curve 
1f8S also 

that segment 1 formed more anthocyanins than the other segments of 
1ho1lS 

the hypocotyl, while segments 4 and 5 were maximum in the control. The 

curve of the quantitative distribution of anthocyanin pigments along the 

bypocotyl axis in the presence of TIBA is very similar to the NAA. control 

(Figure 6) where no growth substances were added to the medium. 

GA had its greatest effects on segment 1 (Tables X and XII). The 

formation of roots and hairs, and the total anthocyanin formed were 

Hair formation was enhanced, rooting was slightly affected and 

the total anthocyanin was generally inhibited in segments 2 to 9. Segment 

l was observed to elongate markedly in the presence of' GA, as it did in 

Rapid elongation could drain the energy that would have 

i.en utilized for root and hair formation. The remaining hypocotyl 

1egments did not elongate noticeably. 

All segments of the hypocotyl, ID. th only a few isolated exceptions, 

formed visible amounts of pigment in the presence of NAA., TIBA or GA. The 

f'ound with NAA. which enhanced the formation 

hairs simultaneously (Table IX and XI) • Besides 

anthocyanin formed, the addition of NAA. caused a 

point of maximum synthesis toward the base of the hypocotyl 

Different parts of the hypocotyl were f'ound to respond quite 

For instance, anthocyanin synthesis 

in segment 10 anthocyanin 

thesis was greatly enhanced by the addition of NAA.. 
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3. Purine analogues (benzimidazole and azaquanine) and riboflavin-

10-day data for the effects of Aza and Bz on the formation of the visual 

t hairs and roots of cultured hypocotyl segments are summarized in 
pigrnen , 

Table .xrn. Both purine analogues effectively inhibited hair production 

ill all segments. The responses of segment 1 were f ound to be different 

trom the rest of the segments. Aza severely inhibited root f ormation in 

a]J. segments at both levels used. Bz, on the other hand, had little 

effect on segment 1, while reducing the number of roots formed on segments 

2 to 10 to negligible values . The re la ti ve ineffectiveness of Bz as 

compared with Aza on segment 1, while both compounds inhibit rooting in 

the rest of the hypocotyl indicates the uniqueness of segment 1. 

The data for the total anthocyanin produced at the end of the 10-

are presented in Table XIV. Both compounds 

generally inhibited anthocyanin formation. As reported by Thimann and 

potent inhibitor of anthocyanin 

In segments 2 to 10, 3.0 x 10-5 molar was about as 

3.0 x lo-3 molar Bz. Again, segment 1 is of 

particular interest. Aza had relatively little effect on anthocyanin 

in segment 1, whereas Bz inhibited pigment formation in segment 

as the other segments. The anthocyanin formed in segment 1 

molar is equal to the control, while the remaining 

only about 20 to 30% of the total anthocyanin found in 

Rb at J.O x 10-4 molar was found to inhibit anthocyanin formation 

l>J' hYPocotyl segments in the dark as shown in Table X:V . Straus (143) 

las sho~n that Rb inhibits anthocyanin synthesis in cultured corn endosperm 

'\issue· Rb also appeared to inhibit root and hair formation slightly 
1n segment 1. 



EFFECT OF AZA AND BZ ON THE INCIDENCE OF PIGMENT AND HA.IRS, AND 
ROOT FORMATION IN CULTURED HYPOCOTYL SEGMENTS 

Test Molar Segment 

Compound Concentration Observation 1 1 2 3 4 5 6 7 

Pigment 35 35 35 35 35 35 35 

Control 0 Roots 137 1J8 143 134 136 132 138 

Hairs 24 13 3 1 0 0 1 

Pigment 35 4 1 6 6 5 9 

Aza 3.0 x 10-5 Roots 2 0 0 0 0 0 0 

Hairs 0 0 0 0 0 0 0 

Pigment 35 35 35 31+ 35 J4 J5 

Aza J.O x 10 -6 Roots 58 68 80 71 62 86 61 

Hairs 2 0 0 0 0 0 0 

Pigment J4 J2 31 Jl Jl 28 28 

Bz J.O x 10-3 Roots 110 7 2 2 4 6 J 

Hairs 4 0 0 0 0 0 0 

1. Same as Table VII. 
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EFFECT OF .AZA AND BZ ON TOTAL ANTHOCYANINl FORMED IN CULTURED HYPOCOTYL SEGMENTS 

Test Molar Segment 

Compound Concentration 1 2 3 4 5 6 7 8 

Control 0 2.941 3.89 4.34 4.66 4.57 4.09 5.00 3.88 

Aza 3.0 x 10-5 1.40 0.87 0 0~92 0'"92 1.10 0.28 0.57 

Aza 3.0 x io-6 3.03 1.17 1.03 1. 29 LOO 1.65 1.43 1.03 

Bz 3.0 x 10 -3 0.71 0. 72 0.68 o. 71 0.74 1.00 0.96 0.92 

1. Same as Table VIII. 

9 

4.23 

0.42 

1.06 

o. 72 

10 

4.00 

0.60 

o. 73 

0.97 
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EFFECT OF 3 x io-4 MOLAR RB ON HYPOCOTYL SEGMENTS CULTURED IN THE DARK 

Se~ment 

Treatment Observation 1 2 3 4 5 6 7 8 

Pigment1 7 34 35 35 34 35 34 35 

Dark Roots 1 87 137 123 129 121 118 120 119 

Control Hairs 
1 

35 35 27 18 10 8 12 11 

Total Pigment2 0.14 0.32 0 .46 0.37 0.35 0.26 0.41 0,34 

Pigment 8 35 35 35 35 34 34 34 

Rb Roots 64 137 137 130 133 130 135 137 

Hairs 11 34 Jl 26 16 12 6 4 

Total Pigment2 0.,2) 0.09 0.2J 0.23 0.23 0.15 0~32 0.23 

1. Same as Table VII. 

2. Same as Table VIII. 

9 

35 
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0.31 
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4. The interaction of selected chemical factors - Table XVI 

ts the total data at the end of the 10-day experimental period for 
pres en 

. teraction of the growth factors, NAA and TIBA; and the compounds, the in · · 

Bz and Rb. These results may be compared with the data for the compounds 

used individually in Tables IX_, X and XII. 

The interaction of NAA and TIBA caused a reduction of both the 

incidence of pigments in the cultured segments and total pigment formed 

in the hypocotyl below the values obtained for either NAA or TIBA alone 

(Table XVI). NAA used alone was found to cause the lower segments to 

!orm the greatest amounts of pigment and this pattern was not disturbed 

byTIBA (Table XVII), even though the total pigment was reduced by about 

}0% (Figure 9) . 

Figures 10 and 11 show that the hypocotyl segments receiving 

both NAA and TIBA responded to give values for rooting and hair formation 

that are intermediate between those .for each compound used alone. The 

formation of roots and hairs was greatly enhanced by NAA_, while TIBA was 

found to completely eliminate hair formation and severely limit root 

formation. 

Hypocotyl segments receiving the Bz and Rb medium were severely 

illhibited in all activities (Tables XVI and XVII). Only segment 1 formed 

any Pigment or roots. This combination of chemical factors appeared to 

be lethal to many of the segments_, particularly those in the lower half 

of' the hypocotyl. 

With respect to pigment formation the interaction of Bz and NAA 

gave results similar to the interaction of NAA and TIBA (Table XVI). The 

COlllbination of' Bz and NAA reduced both the incidence of and the total 

I f 



INTERACTIONS OF SELECTED CHEMICAL FACTORS ON THE INCIDENCE OF AN.THOCYANI.N AND 
HAIRS, AND ROOT FORMATION I N CULTURED HYPOCOTYL SEGMENTS 

Test Molar Se ment 

Compounds Concentrati on Observation 1 1 2 3 4 5 6 7 8 

NAA 5.0 x 10 - 6 Pigment 28 29 35 33 29 27 29 28 

TIBA 5.0 x 10- 5 Roots 60 103 103 87 66 68 65 4 9 

Hairs 20 7 3 1 0 1 0 0 

Bz 3 .0xl0- 3 Pigment 31 0 0 0 0 0 0 0 

Rb i.o x io- 4 Roots 4 0 0 0 0 0 0 0 

Hairs 0 0 0 0 0 0 0 0 

Bz 3 .0 x 10-3 Pigment 4 5 3 4 1 10 21 18 

NAA 5.o x io- 6 Roots 36 10 0 7 10 23 20 24 

Hairs 30 31 18 11 7 7 8 3 

1. Same as Table VII . 
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TABLE .XV I I 

INTERACTIONS OF SELECTED CHEMICAL FACTORS ON TOTAL ANTHOCYANINl FORMED IN 
CULTURED HYPOCOTYL SEGJ:JI:ENTS 

Te.st Molar Seg;ment 

Compounds Concent ration 1 2 3 4 5 6 7 8 

NAA 5.0 x io-6 1.51 2.00 1.94 2.03 2.55 3, 26 3.24 3 .18 

TI BA 5 .0 x io-5 

Bz 3.0 x io- J 0 .23 

Rb i.o x io-4 

Bz J. x i o-3 0 0.4 .67 .25 0 0.4 0.1 0.28 

NAA 5.0 x io-6 

--
1. Same as Table VIII. 
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anthocyanin formed per s egment well below the values f or each compound 

used alone (Figures 12 and 13). The suppression of the incidence of 

t very· .pronounced in segments 1 to 5 (Figure 12). pigmen was 

Hair formation was effected in nearly an opposite manner to 
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anthocyanin formation by the Bz-NAA interaction. Bz per se almost 

completely eliminated hair production while NAA favored hair production. 

More segments were found to have epidermal hairs on the Bz-NAA medium 

tban with either substance used alone (Figure 14). 

Similar opposing responses on the Bz-NAA medium were also noted 

in the number of roots formed on the various segments (Figure 15). Bz 

alone severely inhibited rooting in all hypocotyl segrrents except 

segment 1. NAA per se, enhanced rooting in all segments, particularly 

in segment 1. When Bz and NAA were used together, rooting in segments 2 

to 10 was about equal to or slightly greater than that in a medium with 

Bz alone. Segment 1, however, formed less than 40% of the number of 

roots on the Bz-NAA medium than it did on the Bz-medium. The results 

indicate that a compound such as Bz may act a s an NAA antagonist .for a 

response such as anthocyanin synthesis while acting synergistically with 

llAA in the same tissue to cause the production of epidermal hairs. 

Futhermore NAA counteracted the inhibition of rooting by Bz in the more 

highly differentiated tissue of segments 6 to 10, while NAA acted 

synergistically with Bz to cause a minimum number of roots formed in 

segment 1 which contains the pseudomeristem. 

of the Rypocotyl to Light 

1. Action spectra for anthocyanin synthesis - Preliminary experi­

llents With fluorescent light characterize the response of anthocyanin 

I 'I 
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· in the hypocotyl and determined the i rradiation program to be 
synthesis 

used w-ith the spectrograph and interference filter light sources. The 

ults presented in Table XVIII indicate that the Impatiens hypocotyl 
res · 

requires long periods of irradiation in order to form appreciable 

quantities of anthocyanins. Thus, the process of anthocyanin formation 

required a certain period of time and was not always directly related to 

the quantity of light delivered. For instance, 48 hours of continuous 

light at 400 foot candles caused no more anthocyanin to be formed than 

only 16 hours of light given in alternating four hour periods throughout 

the 48 hour experimental period. This relationship, however, was not 

found at 200 foot candles. At the lower level of irradiation (200 ft. 

ed.) less than 25% of the total anthocyanin formed under 48 hours of 

continuous light was formed in the first 24 hours. Pigment was formed, 

therefore, at a much higher rate during the second 24 hours of irradiation 

at 200 foot candles. A similar "lag phase" in the rate of anthocyanin 

synthesis was also observed by Siegelman and Hendricks in apple skin (132). 

These results suggested further experiments in which hypocotyls were "pre-

induced" to form anthocyanins by a long period of low l evel irradiation 

(about 200 ft. ed.) _prior to experimentation. This technique was 

successful for action spectrum studies with apple skin (132). Results 

given in Table XIX and expressed graphically in Figure 16 show the 

relative amounts of anthocyanins formed after 4 and 8 hours of high 

intensity irradiation (1500 foot candles) with and without a 16 hour 

Preinduction period at 250 foot candles. It was found that a 2 to 3-fold 

increase in anthocyanin synthesis occurred when the hypocotyls received 

a. 16 hour . d . prein uction period. 



TABLE X V III 

RELATIVE AMDUNTSl OF ANTHOCYANIN FORMED UNDER DIFFERENT FLUORF.'3CENT LIGHT REGIMES 

Treatments Dark 200 ft. ed. 400 ft. ed. 200 + F.R. 4 
-

Control 25 

24 hr . light - - 78 225 

48 hr. light -- 358 410 

24 hr. l i ght + 24 dark -- 151 336 145 

4 hr. l ight + 20 dark -- JO 73 

8 hr . light + 40 dark -- 70 143 

8 hrs. alternating2 
light + 40 dark -- 108 154 59 

16 hrs. alternating 3 

light + 32 dark - - 161 400 130 

1 . Units = O.D. of extract x io3 

2. 4(1 hr . light + 1 hr. dark) + 16 hrs . dark i'or two 24 hr. periods. 

3. 4 hr. light - 4 hr . dark - 4 hr . light + 12 hr. dark for two 24 hr. periods. 

4. Far-red given for 5 min. at end of light period(s). 

400 + F .R . 

337 

54 

147 

'-0 
--J 



TABLE X I X 

I NFLUENCE OF A 16 HOUR PREINDUGTION PERIOD OF IRRADIATION ON THE 
RELATI VE .AMOUNTS OF ANTHOCYANINl FORMED I N RYPOCOTYLS TREATED 

WITH HIGH LEVEL FLUORESCENT, RED AND FAR- RED LIGHT 

Preinduction 
per i od 

250 f t . ed . 

16 hrs . 

16 hrs . 

16 hrs . 

Red 

5 min 

5 min 

Far- red 

5 min 

5 min 

1. Uni ts = 0. D. of extract X 103 

Light Treatments2 

Fluorescent 
Hours a t 1500 ft . ed . 

0 4 8 

21 6l 

77 

76 

78 

2. Sequence of irradiations = a ) prei nduction, b ) fluor escent at 
1500 f t . ed ., c) r ed or far- red . 
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The results presented in Tables XVIII and XIX and Figure 16 

indicate that anthocyanin synthesis is under phytochrome control in the 

tiens hypocotyl. Far-red light inhibited pigment formation when 
!S'a -
applied at the end of the light period in most cases. Table XVIII also 

indicates that far-red was ineffective following a 24 hour light period, 

whereas it strongly inhibited anthocyanin formation when applied 

following a 1 or 4 ho1IT period o.f irradiation. Figure 16 shows that far­

red inhibition was nearly complete after four hours of high intensity 

fluorescent light with or without a preinduction period. Part of this 

control was lost after 8 ho1ITs of irradiation, but the amount of 

iJlh:i.bition was quantitatively about the same~ 

On the basis of the above results (Table XIX) hypocotyls were 

irradiated with the spectrograph or interference filter light sources 

atter receiving a preinduction period o.f 16 hours of white fluorescent 

light at 250 foot candles . Only small amounts of anthocyanins were 

formed after exposure to the monochromatic irradiation. The 16 hour 

preinduction control formed some anthocyanin (Table XIX), but it was more 

nriable than dark controls used in previous experiments which were 

lfithout a preinduction ,peri od . Since it was difficult to measure small 

tlfferenoes between controls and treated hypocotyls, this approach was 

abandoned. 

Further experimentation indicated that a 6 hour irradiation 

followed by an 18 ho1IT dark period yielded measurable amounts o.f antho­

~s • The very consistent values obt.ained .from dark controls made 

the measurement of small amounts o.f anthocyanins .formed under 

low light intensities. In further experiments on the effect of light 
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illtensitY and the determination of the high energy action spectrum for 

anthocyanin synthesis a 6 hour period of irradiation followed by an 18 

dark period was adopted . 
hour · 

A study of the relationship between total light energy applied and 

the amount of anthocyanin formed was undertaken. This information was 

necessary so that different colored l i ght at different intensities may 

be compared as to their effect upon anthocyanin synthesis. The average 

values for anthocyanin synthesis are given in Table XX. These values 

plotted as a function of the log of light intensity, pertain t o the 6 

hour period of irradiation. Anthocyanin content was measured and all 

values reported are minus the dark control. Anthocyanin formed was a 

linear function of light intensity up to 25 foot candles (Figure 17). 

The dashed curve in Figure 17 represents a hypothetical linear response 

of anthocyanin formation to light intensity. A distinct plateau in the 

response appeared between 25 and 100 foot candles, and l inearity was 

between 200 and 800 foot candles with a gradual decrease 

candles. Figures 18 and 19 illustrate the two segments of 

100 foot candles and from 200 to 2000 foot 

candles respectively on an arithmetic scale of light intensity. The 

data indicate that there are two l evels of lllight saturationll in antho­

cyardn synthesis in the hypocotyl of Impatiens. 

Table m shows the relative amounts of anthocyanin formed at 

VarioUs wave lengths of light between 396 and 500 mu .. The first experiment 

Was conducted using the spectrograph which yielded very low levels of 

lnthocY<mins in the hypocotyls . The values from the spectrograph 

determi.n t . . . 
a ion in Table XXI are adJusted to equal energy across the 

, I 

I 

~ I 
I 

I 1 
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TABLE XX 

THE EFFECT OF DIFFERENT LEVELS OF FLUORESCENT LIGHT1 ON THE RELATIVE 
AMOUNTS OF ANTHOCYANIN2 FORMED IN IMPATIENS J:IYPOCOTYLS 

Replicate 
Light intensity Determinations Average 

ft . ed. 1 2 3 4 

5 3 5 J 0 2.75 

10 5 5 8 6 . 00 

25 8 19 13~50 

50 19 12 16 10 14 . 25 

100 21 16 18 . 50 

200 32 43 37 .50 

400 60 64 62 .00 

800 103 120 111.50 

1600 147. 149 148 . oo 

2000 154 149 151.50 

1. Anthocyanin measured after 6 hrs. light + 18 hrs. dark 

2. Units= 0 . D. of extract X ioJ . 
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T AB L E XX I 

THE ACTION SPECTRUM FOR ANTHOCYANIN SYNTHESI S I N THE HYPOCOTYL 
OF IMPATIENS BALSAMINA L. 

Relative Amount of Anthocyanin1 

Interference Filter Reps. 2 

106 

Wave 
Length Spectrograph 1 2 3 4 5 Aver age 

500 

483 

472 

463 

461 

451 

441 

431 

425 

423 

411 

406 

405 

396 

4 . 00 

16 .JO 

10 . 03 

18 .o 20 .0 17 .0 24 .0 16 .o 17. 0 

10 .45 

18 . 00 

20 . 90 

19 .60 

27 . 00 

28 .16 

20 .16 

21.32 

33 .0 24. 0 45 . 0 30 .0 

47 .0 45 .o 

45 . 0 45 . 0 34 .0 49.0 

65.0 65 . 0 70 . 0 

55.o .44 . o 48 . o 

3 
1. Units = 0 . D. of extract X 10 

33 .0 

46 . o 

43 .25 

66 .67 

49. 0 

2. Replicates 1 t o 4 under ~he interference filters= l.JO mw/cm2; 
replicat e 5 = 2,00 mw/cm at 500 mm 

Repli2ates 1 and 2 = 2 . 72 mx/cm2; replicat e 3 and 4 = 2. 00 
mw/cm at 483 mm 

Replicates 1 and 2 = J .30 mw/cm2; replicate 3 = l.60 mw/cm2 at 
46J mm . 
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assuming that reciprocity holds. This was done on the basis of 
spectrum, 

· ous findings that the rate of anthocyanin synthesis bears a linear 
pre vi 

relationship to light energy at relatively low levels (Figure 17, Table 

XX)· wavelengths below 450 mu were shown to be most effective with a 

maximwn occurring in the region of 411 to 423 mu. It was believed that 

more reliable results could be obtained with the carbon-arc, interference 

filter light source. Thus, by using interference filters, a several 

.fold increase in anthocyanin production was obtained over that from the 

spectrograph irradiations. This increase is due to the considerably 

higher radiant energies obtained from the interference filters. The 500, 

483 and 463 mu irradiations were made at two energy levels in each case 

(Table XXI). No increase in anthocyanin production could be detected in 

response to increasing amounts of energy. For this reason the results 

are simply recorded as the raw data minus the dark control and are not 

adjusted t o an equal energy basis. The assumption must be made that these 

irradiations fall in that portion of the energy-response curve (Figure 17) 

where reciprocity does not hold. Results from the interference filter 

irradiations verified and clarified the results obtained with the 

spectrograph showing that the greatest amounts 0£ anthocyanin were formed 

at wavelengths shorter than 463 mu with a prominent maximum at 425 mu . 

This peak is considered valid because of (1) the agreement with the 

spectrograph results and (2) the energy delivered at 425 mu was 

approximately equal to, or less than, the energies delivered at other 

'Wavelengths. Thus any adjustment to place the values on an equal energy 

basis Would tend to increase the magnitude of the 425 mu maximum . Both 



action spectra for anthocyanin synthesis in the Impatiens hypocotyl as 

determined with the spectrograph and with the inter.ference filters are 

presented graphically in Figure 20. 

The low energy action spectrum for photoreversible control of 
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anthocyanin formation was investigated using the spectrograph as a two­

prism instrument . Greater wave length dispersion was achieved allowing 

more precise measurements in the red end of the visible spectrum. 

Sufficient data were not obtained to construct an action spectrum. 

HoweverJ the results in Table XXII clearly show phot oreversibility of 

anthocyanin synthesis. Action maxima for red and for far-red light were 

found t o lie in the regions o.f 630 t o 680 mu and 700 to 780 mu respective-

ly. Since the action spectrum for phytochrome has been shown to have 

action maxima a t 660 mu for the red and 730 mu for the far-red for the 

photoreversible control of numerous light- dependent plant responses 

including anthocyanin synthesis (23J 24J 131 to 133) J the above data 

indicate that anthocyanin synthesis in Impatiens is under the photorever­

sible control o.f phytochrome . 

2. Action spectra for elongation of the hypocotyl and straightening 

of the hypocotyl arch - Table XXIII and Figure 21 present the rate of 

growth in length o.f Impatiens balsamina seedlings grown in complete 

darkness from the time o.f planting until harvested. All experiments on 

elongation and straightening o.f the hypocotyl arch were conducted on 

seedlings that were between 100 and 160 hours old . During this period 

the maximum rate of elongation occurred . 

Results of preliminary experiments indicated that a program of 2 

hours lightJ 4 hours of darknessJ 2 hours of lightJ and 16 hours of 

II 
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TABLE XXII 

ACTION MAXIMA. FOR THE PHOTOREVERSIBILITY OF ANTHOCYANIN SYNTHESIS 
IN THE RYPOCOTYL OF IMPATI ENS BALSAM.INA L. 

Spectrogra:eh Irradiations 

1 Red Far- red Light 
Action Control Control 

Red 120 76 

Far-red 100 50 

Wave 
Leng;;th 

700 to 780 mu 

630 to 680 mu 

570 to 620 mu 

700 to 780 mu 

630 to 680 mu 

570 to 620 mQ 

Color An tho cyanin 

far- red 68 

red 107 

orange 82 

far - red 55 

red 93 

orange .. 

1. Red action: Controls received 5 min . of red or f'ar-red af't er 4 hrs. 
of 2000 ft. ed. fluorescent light . Spectrograph Irradiations = 4 
hrs . fluorescent + 5 min . far - red + spectrograph - Far- red action : 
Controls are same as above. Spectrograph Irradiations == 4 hrs. 
fluorescent + 5 min . red + spectrograph . 

2. Units == o. D. X 103 

TABLE XXIII 

RATE OF ELONGATION OF IMPATIENS SEEDLINGS GROWN IN DARKNESS AT 25°c 

... . . . l 
Re:elicate Averages mm. 

2 

Hours 1 2 3 Ii Overall Average 

40 0 0 0 0 0 
72 2 . 0 2.0 2 . 0 1.6 1.90 
96 10 .0 11.2 9 ,4 10 .4 10 . 25 

148 55 .4 47 . 8 53 .2 53 . 8 52 .55 
196 83 .6 76 .6 87 . 2 86 .2 83.40 

1. Each value represents the of 5 seedlings . average 
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darkness, repeated twice, was convenient and substantially inhibited hypo­

cotyl elongation . Table XXIV presents the results of treatments with 

d far-r ed, and 400 foot candles of cool-white fluor escent light given re , 

on the above program for hypocotyl elongation. Red and far-red light 

were administered f or 10 minutes at the end of each scheduled 2 hour 

light period . White light strongly inhibited elongation and its action 

was partially inhibited by treat ment with far-r ed fo llowing the white 

light. The effect of far-red was reversible by a subsequent red light 

treatment. Red l i ght alone was much more effective than far-r ed light 

in inhibiting elongation . 

Data for the inhibition of hypocotyl elongation for light intensi­

ties in the range of 180 to 660 foot candles are presented in Table Y:l:J . 

The slope of the energy~response curve (Figure 22) was found to be 0.29 . 

A 2-fold increase in light intensity increased the inhibition of 

elongation only by a f act or of 1 . 2 . 

Results of the determination of the action S.Pectrum for the 

inhibition of elongation of the hypocotyl are compiled in Table Y:l:JI. 

Because of the low slo.Pe of the energy-response curve (Figure 22), energy 

delivered was not a critical f actor. However, corrections were made on 

the basis of a slope of 0 . 29 i f the energy delivered at any wavelength 

differed from 0 . 50 mw/cm2 by a factor of 1 . 5 or great er. The value of 

o.50 mw/cm2 is the approximate median of the energies delivered by the 

Various filters. Correction f actors for energies differing from the 

llledian. by less than a factor of 1 .5 would be smei.11 so as t o make only 

insignificant changes of the data . Data for the action spectrum of the 

inhibition of hypocotyl elongation are .Plotted in Figure 23 . The curve 



TABLE XXIV 

EFFECT OF RED, FAR-RED, .AND FLUORESCENT LIGHT1 
ON HYPOGOTYL ELONGATION2 

Treatment Length mm Elon~ation mm I nhibition mm 

dark 118 hrs. 9.7 0 
dark 160 hrs. 42 . 7 33 .0 0 
light alone 22 . 2 12 . 5 20 . 5 
far-red 37.2 27 .5 5,5 

red 29.6 19 . 9 13 .1 
light + F-R 28.5 18~8 14 . 2 
light + F-R + R 20 .3 10 .6 22.4 

1. Light program= 2(2 hr . light + 4 hr . dark+ 2 hr. light+ 16 hr . 
dark) Red or far - red given for 5 min . at the end of each light 
period. 

2. Values = average of 30 seedlings 

TABLE XXV 

EFFECT OF DIFFERENT LEVELS OF FLUORESCENT LIGHT ON THE 
INHIBITION OF ELONGATION OF THE IMPATIENS HYPOCOTYL 

llJ 

Li~ht intensity Length mm1 Inhibition mm 
ft . ed. 

Dark 

180 

400 

660 

1. Each value represents the 

49, 70 

31.55 

27 . 95 

23. 90 

average of 60 seedlings . 

0 

18 .15 

21. 75 

25.80 

1 11 

I I ,I 

I 



1 
3 5-1 

.,, 
~ 

ill 3 Q-1 -ill 
E ----
~ 2 5 ... 

r:: 
0 2 Q-1 -... 
0 
Ol 

---------0-
- o------o 

r:: 
0 1 5-1 -

w 

--0 

r:: 1 o-
0 -

..0 ·-r 5-
r:: 

o~----....,..----....,.----~ ....... ----..-----..,-----~----..,. ...... 
0 200 400 600 

Light Intensi ty. Ft. Cd. 

Figur e 22 . Effect of Different Levels of Fluorescent Light on the 
I nhi bi tion of Elongation of the Impatiens Hypocotyl. 

f--' 
f--' 

.i:=--



TABLE XXV I 

ACTION SPECTRUM FOR THE INHIBITION OF ELONGATION OF THE 
HYPOCOTYL OF IMPATIENS BALSAMINA L. 

I nhi biti on mm 

115 

I rradiation En erg~ Length 
mu mTiJ/cm mm Observed Corrected2 

Control 1 54 .0 

386. 5 0.18 39 .5 14 .5 18.9 

405 0.49 29 .8 24 .2 24 .2 

425 0 .56 26 .2 27 .8 27 .8 

441 0. 78 30 . 2 23 . 8 22 .0 

463 1.00 30 .6 23 .4 19 .5 

48J 1.00 28 .3 25 . 7 21.4 

500 0 .48 36.3 17 . 7 17 . 7 

517 o.86 37. 7 16 .3 14 .8 

1. The dark control is the average length of 150 seedlings . All 
other experimental values are the average of 40 seedlings . 

2. See t ext, page 112 . 
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was very similar to that for anthocyanin formation having a definite 

maximum at 425 mu. 
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In this same experiment observations were also made on the effects 

of the light treatments on the straightening of the hypocotyl arch. The 

arch remained closed in the 160 hour dark control. No effects of r ed or 

far-red light used alone were observed while the arches of seedlings 

receiving fluorescent light a.lone were partially to completely opened. 

This latter effect was completely inhibited by 10 minutes of far-red 

following the white l ight period. Red light wa.s found to reverse the 

inhibiting effect of far-red to give results comparable to fluorescent 

light alone. Table XXVII (page 118) presents results for the action 

spectrum of the straightening of the hypocotyl arch. Since no energy-

response curve was determined for the straightening of the arch the 

values were arbitrarily corrected as in the elongation experiments. The 

corrected data, plotted in Figure 24, show that the action spectrum is 

generally similar to the action spectra for elongation and anthocyanin 

synthesis in that the most effective region was between 405 and 463 mu. 

Although the apparent maximum at 441 mu differs from the 425 mu maximum 

found for the other responses, the precise point of maximum effectiveness 

Was not determined as precisely as in the action spectra f or anthocyanin 

formation and hypocotyl elongation. Complete straightening of the arches 

Was not achieved at any wavelength and the differences between values 

in the region of maximum response were small. There seems to be little 

doubt, however, that the region of 400 to 450 mu is the mo st effective, 

since the irradiation energies of this region were all less than those 



TABLE XXVII 

.ACTION SPECTRUM FOR THE STRAIGHTENING OF THE HYPOCOTYL .ARCH 
OF IMPATIENS B.ALS.AMIN.A L. 

118 

I rradiation En erg~ .Angle Increase 
Corrected3 mu rrrw/cm Index2 Observed 

Control1 l. 59 

386 .5 0.18 2.80 l.21 l.57 

403 0 .49 3.35 l. 76 l. 76 

425 0.56 J . 27 1.68 l.68 

441 0.78 3 . 70 2 .11 1.92 

463 1.00 3 , 52 1.93 1.61 

483 l.00 3 .12 1.53 1.28 

500 0 .48 2 . 92 1.33 1.33 

517 o . 86 2 . 99 l.40 1.27 

1. The dark control is the average length of 150 seedlings . .All 
other experi mental values are the average of 40 seedlings . 

2. See text) page 40 . 

3. See text) pages 117 and 112 . 
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delivered at the longer wavelengths, with the exception of )00 mu 

(Table XXVII) · 
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The photomorphogenic responses of anthocyanin synthesis, inhibition 

of hypocotyl elongation, and straightening of the hypocotyl arch were 

found to be under the control of phytochrome. Their high energy action 

spectra were similar having a region of maximum effectiveness between 

400 and 4.50 mu. 



C H A P T E R V 

D I S C U S S I 0 N 

The objective of this research was to attempt to show interrelation­

ships between the development of morphological structures, (i.e. the 

development of roots and hairs) and a biochemical process (i.e. antho­

cyanin synthesis) . Definite relationships have been shown to occur and 

indicate possible mechanisms of endogenous and exogenous control of 

anthocyanin synthesis and morphogenetic capacity. Anatomically the axis 

of the hypocotyl of Impatiens balsamina L. has been shown to present a 

gradient of tissue types from meristematic at its upper end to highly 

differentiated and specialized types towards its basal end. Therefore 

the various physiological functions and responses as well as the morpho­

genetical manifestations observed in cultured hypocotyl segments can be 

interpreted with reference to the basic structure and levels of 

differentiation of the tissues. Still another approach to the problem, 

biophysical in nature, has shown that specific wavelengths of light are 

effective in causing and controll ing both anthocyanin synthesis and the 

morphological processes of elongation and the straightening of the 

hypocotyl arch which provided direct evidence for the primary action of 

light through a single mechanism. 

Anatomical features of the hypocotyl will be discussed as they 

pertain to the other results of this research rather than as a 'Separate 

unit, but certain findings are worthy of separate comment. A report by 
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Resch (123) indicating that the hypodermis of Impatiens balsamina (Plate 

X) is 8 to 16N in chromosome complement was of particular interest since 

virtually all anthocyanin formed in the hypocotyl of Impatiens s eedlings 

used in this thesis was found in this tissue. Resch describes the 

polyploid condition as arising from an asynchronous type of amitosis 

with a gradual increase of chromosome material. All cells of the hypo­

dermis were not pigmented in seedlings grown in the light by the author, 

but they varied from cells containing no pigment to very densely 

pigmented cells . In the dark, where no anthocyanins were formed, a 

similar pattern of differential development of the hypodermis cells 

(Plates X and XI) was noted. Such a striking correlation between 

cellular morphology and anthocyanin content, and reported polyploidy 

would indicate that the three are closely related. However , on the basis 

of the results obtained here this question must remain open. This 

condition of the hypodermis would appear to provide an excellent 

opportunity to study the control of differentiation and anthocyanin 

synthesis on the cellular level. 

The respiratory gradient along the axis of the hypocotyl provides 

further information upon which other results can be interpreted . The 

curves for respiration (Figures 1 and 2) conform closely to those 

obtained by Brown and Broadbent (38a) in pea root. Plotted on a fresh 

Weight basis, the respiratory gradient of the hypocotyl correlates 

closely with the area of the pseudomeristem in that the respiration rate 

drops sharply just below the pseudomeristem (Figure 2) . However, on a 

per-cell basis Figure 2 shows that the maximum rate of respiration 

occurs at the 8 to 12 mm level which falls at the lower end of segment 1 



where the most rapid rate of cell elongation was found (Table VI) . 

Segment 1 therefore has been shown to be both physiologically and 

anatomically different from the rest of the hypocotyl because of its 

rreristematic and elongating tissues which are responsible for the 
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greatly elevated rate of respiration. The responses of segment 1 to the 

various chemical constituents of the medium were in general quite 

different from the rest of the hypocotyl. Also segment 1 was always the 

first to show visible signs of anthocyanin during the course of an 

experiment. The pigment appeared in the lower portion of the segment 

which would correspond to the r egion of elongation where respiration on 

a per cell basis is maximum (6). These results correlate well with the 
-

report of Paech and Eberhardt (112a) that the rate of anthocyanin 

synthesis is maximum in germinating red cabbage seedlings during the 

period of maximum respiration. 

The effects of glucose and sucrose on anthocyanin synthesis and 

growth were studied because there is some disparity on this point in the 

literature . Glucose was found to be more effective in promoting antho-

cyanin synthesis (Table VIII) while sucrose supported better growth 

(Table VII) in the Impatiens -hypocotyl. The most critical test of the 

efficiency of the sugars in promoting anthocyanin synthesis was in the 

dark grown cultures. Neither sugar was effective in supporting anthocyanin 

synthesis in segment 1, but glucose gave a 2-to-3-fold increase in 

anthocyanin content over sucrose in segments 2 to 10. In the light 

experiments, none of the segments showed as much as a 2-fold difference 

in anthocyanin content although glucose was clearly more effective . In 
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segment 10 the two sugars were equally effective. Table VII shows that 

sucrose suppor ted better root formation in the segments below #5 in both 

the light and dark, but was only slightly more effective or equal to 

glucose in the upper segments. Eddy and Mapson (55) have shown that 

glucose is most effective of a number of sugars in promoting anthocyanin 

synthesis in cress seedlings; while Thimann et al (146),and Straus 

(144) have shown that sucrose is most effective in Spirodela oligorrhiza 

and cultured corn endosperm tissue, respectively. However Thimann et al 

(146) has indicated that sucrose is used preferentially for anthocyanin 

synthesis while glucose is used for growth in Spirodela and Straus (144) 

finds sucrose most effective for both pigment formation and growth of the 

corn endosperm. The results obtained under the conditions of the 

experiments herein reported for the hypocotyl of Impatiens balsamina L. 

are unlike those of Thimann and Edmundson (146) for Spirodela, i..e., that 

sucrose is more effective for growth while glucose is more effective for the 

formation of anthocyanins. The conflicting reports in the literature 

together with the results obtained here indicate that information from one 

experimental object cannot be applied to another and that little is defini-

tively known about the role of sugars in the process of anthocyanin 

synthesis. In the hypocotyl segments, the onset of pigmentation was more 

rapid with glucose in the upper segments but more rapid with sucrose in 

segments nearer the base (6). In general sucrose appeared to be more 

effectively utilized in the more highly differentiated tissue near the base 

of the hypocotyl. Such differences are a result of the tissue used for 

eJCperimentation rather than any direct role of the sugar being tested 
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and this is probably an important factor not taken into account already 

in the literature. In attempting to interpret the literature concerning 

the effects of sugars on growth and anthocyanin formation, Bogorad (19) 

states: HThe extensive current information on enzymatic reactions in 

sugar transformations appear to provide little comfortJJ. 

The most interesting results obtained from the treatment of the 

hypocotyl segments were obtained from experiments using the auxin, NAA. 

Suggestions made by Alston (1) concerning the mode of gene control of 

anthocyanin synthesis are supported by these results. He suggests that 

anthocyanin synthesis is gene controlledin two ways : (1) by the ability 

to produce a particular enzyme, or (2) through differences in the amount 

of enzyme, its distribution, time of appearance, and efficiency . Gene 

control of anthocyanin synthesis of the second type could be affected by 

altering the cellular environment so that important reactions in the 

synthesi s of anthocyanins may be favored or inhibited regardless of the 

proper enzymes being present. These genetic effects would be observed 

as the quantitative distribution of pigments in various organs or along 

the stem axis, the time of appearance of anthocyanins in a particular 

tissue, and the rate of pigment synthesis. In Impatiens, a series of 

genes is known to govern the distribution of anthocyanin pigments from 

the first node upward in the stem axis and even to the midribs of the 

leaves (1). The hypocotyls used for the present studies when grown on a 

medium containing no NAA have been shown to have a specific quantitative 

distribution of anthocyanin in which segment 1 fo rms the most with 

gradually decreasing amounts in each subsequent segment toward the base 

I : 

I 

~ I 

1,1,i 
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of the hypocotyl (Figure 6). Since pigment appears first in segment 1 

and proceeds step-wise toward the base (6), it would not appear that the 

rates of anthocyanin synthesis in the various segments differ greatly. 

A similar appearance and distribution of anthocyanins are found in the 

intact seedling grown in the light. This pattern of anthocyanin 

formation is under genetic control (1) and falls under the second type 

or indirect genetic control suggested by Alston. Increments of NAA 

added to the medium were found to generall y increase anthocyanin synthesis 

(Figure 5), but more important, NAA caused a shift in maximum anthocyanin 

content from segment 1 in the control) to segment 4 and 5 with 5.0 X 10-S~ 

N.AA in the medium, and to segment 8 at the highest level of NAA (Figure 6). 

NAA also retarded the appearance of anthocyanins in the upper segments 

during the course of the experiments while the lower segments were effected 

only slightly. For example, anthocyanins appeared in segments 2 and 9 

at the same time when subjected to 5.0 X 10-6~ NAA (Figures 3 and 4). 

Rates of anthocyanin synthesis in the lower segments were apparently 

greatly increased since segment 9 formed nearly twice the amount of 

anthocyanin of segment 2 on the medium with 5.0 X 10-6~ NAA (Table XI) 

in about the same amount of time. Therefore, the hypocotyls grown on the 

tvvo levels of NAA, and their control, may be looked upon as three mutants 

similar to the previously mentioned Impatiens plants in which the 

quantitative distribution of anthocyanins along the stem and into the 

petioles and leaf midribs is controlled by an allelic series. The 

hyPothetical mutant hypocotyls differ in the rates of anthocyanin 

5Ynthesis, the times of appearance of anthocyanins and the quantitative 
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distribution of anthocyanins along the axis of the hypocotyl, "W'hich 

suggests the shift of a physiological gradient favoring anthocyanin 

synthesis, towards the base of the hypocotyl. The control of anthocyanin 

synthesis then could be accomplished by a ser ies of alleles affecting the 

endogenous levels of auxins in the hypocotyl . This concept is supported 

by the results of experiments using the antiauxin TIBA, which has been 

shown to effectivel y lower endogenous auxin levels (9, 10, 11) . TIBA 

at a level of 5 .0 X 10-5~ completely overcame the low l evel of NAA 

(5 .0 X 10- 8~) in the control to cause a quantitative distribution of 

anthocyanin pigments along the axis of the hypocotyl which was identical 

t o the hypocotyl segments where no NAA "W'as added to the medium (Figure 8) . 

When the same concentration of TIBA was interacted with the level of NAA 

which caused the greatest shift in the pattern of anthocyanin formation 

(5 .0 X 10-~) results intermediate between no NAA and th e highest level 

of NAA were obtained (Figure 9). Along with the anthocyanin responses, 

NAA enhanced both root and hair formation by the hypocotyl segments 

(Table I X) and these effects were likewise counteracted by TIBA (Table X 

and XVI, Figures 10 and 11). Therefore if the three mutant varieties of 
~ 

Impatiens showing the different patterns of anthocyanin distribution were 

available, one would expect those hypocotyls forming greater amounts of 

anthocyanins to also have a greater capacity to form adventitious roots 

and epidermal hai r s. Just such a correlation between anthocyanin f orma-

tion and rooting ability has recently been observed in cuttings of Acer 

rubrum and Eucalyptus camaldulensis by Bachelard and Stowe (lla) . They 

foun d a direct correlation between the total amount of anth~cyanin in the 



128 

leaves and rooting ability of the cuttings. The auxin, indole butyric 

acid was found to increase the concentration of anthocyanin in the 

leaves, but not the total amount formed, which appeared to be an inherent 

property of an individual cutting . A possible interrelated system of 

root formation, anthocyanin synthesis, and leaf size is indicated by the 

report of Bachelard et al. Thus, it is quite possible that such apparent­

l y unrelated processes as anthocyanin synthesis, root formation and 

e_pidermal hair formation may be controlled simultaneously by factors 

(genetic or environmental) which influence the endogenous levels of 

auxins in the hypocotyl. 

GA was found to cause a marked increase in elongation of segment 1 

in the light which was similar to the response of segment 1 cultured in 

the dark without GA. The meristematic tissues of segment 1 are responsi­

ble for its ability to elongate. Elongation per se appears to be 

unfavorable for the formation of both roots and anthocyanins. Root 

formation and anthocyanin synthesis in segment 1 was inhibited with 

respect to the other segments of the hypocotyl in the dark without GA 

(Table VII and VIII) and in the light in the presence of GA (Table X and 

llI). 

In general, all the compounds tested affected both growth and 

anthocyanin synthesis in the same way. That is, an enhancement or 

inhibition of anthocyanin formation was usually accompanied by · a 

corresponding response in rooting and/ or hair formation. 

Thimann and Radner (148)have reported that in Spirodela, Rb replaced 

the light r equirement for anthocyanin synthesis and enhanced anthocyanin 
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formation in the light. He concluded that anthocyanin formation in 

§Eirodela is directly dependent upon Rb synthesis. In the I mpatiens 

bypocotyl Rb was found to actually inhibit anthocyanin formation in the 

dark and also inhibit root and hair formation in segment 1 (Table XV) . 

The growth of the lower segments of the hypocotyl was not noticeably 

affected (Table XV). When used in combination with Bz in the light, Rb 

severely inhibited all activities of the hypocotyl and was lethal to 

most of the lower segments (Table XVI and XVII). In agreement with the 

results obtained by the author, Straus (143) has shown that Rb inhibited 

anthocyanin synthesis in cultured corn endosperm tissue . 

The purine analogues, Bz and Az.a, used individually and Bz used 

in combination with NAA effectively separated the growth responses (root 

and hair formation) from each other and from anthocyanin synthesis . It 

is interesting to note that these responses were uncoupled only through 

the use of me tabolic inhibitors (Bz and Aza) and not by compounds such 

as the sugars, auxins, or other chemicals which would be expected to act 

as factors known to occur naturally in plant tissues . Both Bz and Aza 

effectively inhibited growth and anthocyanin synthesis in all segments 

of the hypocotyl except #l (Table .XIII). The results of the inhibition 

of anthocyanin formation in segme nts 2 t o 10 by the purine analogues 

agree well with the report of Thimann and Radner (149), but in segment 1 

only Bz was effective in preventing anthocyanin formation while Aza had no 

appreciable effect. Although Aza did not inhibit anthocyanin synthesis 

in segment 1, it strongly inhibited root formation and Bz in this case 

had little effect. These results suggest that Bz and Aza act at different 



points in the processes of anthocyanin synthesis and root formation . 

Both points in the two processes are apparently labile in the more 

highly differentiated tissues of the segments below segment 1, while 
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t he Bz labile events in the case of root formation and the Aza labile 

steps in anthocyanin synthesis are absent or somehow protected in the 

undifferentiated tissue of segment 1. The relationship between the 

level of differentiation of a tissue and the sensitivity of anthocyanin 

synthesis to Aza was further supported by the observation that the 

anthocyanin was formed well up into the hypocotyl arch (the region of 

the pseudomeristem) when Aza was present in the medium . Straus (UJ) 

has reported that Aza caused a slight enhancement of anthocyanin 

formation in corn endosperm. It would seem that the cultured corn 

endosperm would more nearly approximate the condition of the meristema­

t ic tissue of segment 1 rather than the mature Spirodela plants used 

by Thimann et al (JJ+6 to 149) . Since anthocyanin synthesis and root 

formation can be selectively inhibited in segment 1, but cannot in the 

lower segments oi' the hypocotyl, it appears that the processes are at 

first quite independent and become integrated· as the tissue matures. 

It would be interesting to investigate the efi'ect of Bz and Aza on 

the correlation between total anthocyanin formed in the leaves and 

the rooting ability of Acer and Eucalyptus cuttings reported by Bachelard 

and Stowe (lla) . That Aza acts as a potent inhibitor of anthocyanin 

synthesis in the mature tissue of the hypocotyl and has no effect on the 

undifferentiated pseudomeristem area, offers a likely explanation for 

the conflicting results of Straus (143) and Thimann and Radner (149). 

The mature Spirodela plants which Thimann and Radner used were severely 

inhibited by Aza as was anthocyanin synthesis in the mature segments of 
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the hypocotyl, while Aza did not ai'f ect anthocyanin synthesis in the 

undifferentiated corn endosperm tissue of Straus and the pseudomeristem 

of the Impatiens hypocotyl. It appears that the effectiveness of Aza 

in inhibiting anthocyanin synthesis is dependent on the state of 

differentiation of the tissue. 

The interaction of Bz and NAA (Table XVI) was found to ai'fect 

anthocyanin synthesis, root formation, and hair formation in different 

and apparently unrelated ways: (1) both anthocyanin synthesis (Figure 13) 

and the appearence of anthocyanins (Figure 12) in the segments was 

inhibited below the level attained with either compound used alone, 

(Tables XIII and IX) (2) hair formation (Figwe 14) was higher than that 

with the compounds themselves, and (3) root formation in segment 1 (Figure 

15) was depressed while in the remainder of the segments intermediate 

numbers of roots were formed. Earlier in this discussion it was indicated 

that growth and differentiation, and anthocyanin synthesis in the hypo­

cotyl of Impatiens balsamina L. were closely related and that they could 

be simultaneously controlled by a single factor such as the level of 

auxins in the tissues. The effects of the purine analogues and their 

interactions with NAA suggest that a coordinated response of both growth 

and differentiation, and anthocyanin synthesis is dependent on an 

unaltered purine metabolism in the tissue. 

Thus far the discussion has been limited primarily to the 

consideration of endogenous factors and relationships inherent in the 

Impatiens hypocotyl which could be involved in the auto-regulation of 

growth and differentiation, and anthocyanin synthesis under constant 

environmental conditions. It has been suggested that morphogenesis and 
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anthocyanin formation are closely associated phenomena, an idea which 

is supported in the literature (6, lla, 94) and that the morphogenetical 

processes of root and hair .formation, and the bio chemical process of 

anthocyanin synthesis are controlled simultaneously by the endogenous 

levels of auxin in the hypocotyl . 

In general the morphogenesis of higher plants has been studied 

through the observation of responses induced by external stimuli. The 

major avenues of advance have been through the study of the action of 

light and chemicals as stimuli. Progress has been most rapid in the 

study of action spectra of photo-responses of plants such as flowering, 

internode elongation, and anthocyanin synthesis. 

In the Impatiens hypocotyl , anthocyanin synthesis, inhibition of 

elongation, and the straightening of the hypocotyl arch are under the 

influence of two photoprocesses. The first photoreaction requires high 

intensities and has an action maxima in the blue region of the visible 

spectrum. The second photoreaction is the low energy photoreversible 

phytochrome system . In discussing the physiology of the photomorphogenic 

reactions, a separation must be made between the high energy and the 

low energy reactions . The high energy action spectra (Figures 20, 23 and 

24) are very similar for all three responses studied indicating that the 

same photoreceptor is involved. These findings agree with thos e of Mohr 

(105), who found that the high energy action spectra for anthocyanin 

synthesis and hypocotyl elongation in Sinapsis alba L. were the same. 

Mohr also suggested that a single photoreceptor was acting for both 

respons es, however the action maximum occurred at 710 mu, which is widely 

different from that in Impatiens (425 mu). Both anthocyanin synthesis 
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and the inhibition of hypocotyl elongation was found to be under the 

photoreversible control of phytochrome (Tables XXII and XXIV), but Mohr 

reported that only anthocyanin synthesis was under phytochrome control 

in Sinapsis. This may have been due to the long periods of irradiation 

used by Mohr, since phytochrome control of anthocyanin in Impatiens is 

lost after long periods of light(Figure 16 and Table XVIII). The high 

energy action-spectra for anthocyanin synthesis in several other plants 

have been found to have ,prominent maxima in the red end of the spectrum 

with minor activities in the blue portion (132, 133) . Downs (52) has 

recently determined the action spectrum for anthocyanin synthesis in milo 

seedlings and found the action maximum to occur in the region of 470 to 

480 mu with no appreciable effect in the red part of the spectrum. Milo 

remains as the only example of an action spectrum for anthocyanin syn-

thesis which closely approximates that of Impatiens. In both the milo 

and in Impatiens a clear separation of the high energy blue photoreaction 

and the red, far-red reaction (phytochrome) was accomplished . 

Various suggestions have been made regarding the nature of the 

high energy reaction and its relation with the low energy phytochrome 

system. Downs (52) suggests that the high energy photoreaction causes 

the synthesis of a product essential for anthocyanin synthesis while 

phytochrome controls a later reaction in the pathway. From this it follows 

that if the proper 11product1' were already present in the plant the high 

energy photoreaction would not be necessary and the response could be 

controlled by the low energy .Phytochrome reaction alone. The magnitude 

of the response would be limited by the amount of product in reserve. 
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This pattern is illustrated to different degrees in the responses of 

elongation and anthocyanin synthesis of the Impatiens hypocotyl (Tables 

y;y:v and XX). Figure 17 shows that anthocyanin does not respond linearly 

to light intensity as it would be expected to if substrates were not 

limiting ( Curve A in Figure 17). In Figure 18 it can be noted that 

anthocyanin synthesis responds sharply to very low light intensities but 

levels off quickly, presumably when reserve substrates are exhausted. 

Apparently a threshold of light intensity must be exceeded in order to 

supply anthocyanin precursors so that the maximum rate of synthesis may 

again be achieved (Figure 19). Thus two photoreactions are clearly 

defined. The first (Figure 18), which is saturated at JO foot candles, 

is thought to be the low energy red, far-red system which allo-ws antho­

cyanins to be formed from pre-existing substrates in the etiolated 

hypocotyl. The second photoreaction (Figure 19), which does not become 

saturated until above 1000 foot candles, is the high energy blue-light 

reaction (Figure 20) which drives reactions providing suitable substrates 

for futher anthocyanin synthesis. Table XXIV indicates that elongation 

of the hypocotyl may be controlled by the red, far-red system alone and 

is not nearly as dependent upon the high energy photoreaction as is 

anthocyanin synthesis. Maximum inhibition of hypocotyl elongation could 

only be achieved when relatively high level fluorescent irradiation was 

used which supplied the blue light necessary for the high energy photo­

reaction (Figure 23). 

Contrary to the results of Klein et al (94a) and Withrow et al 

(169a) using bean seedlings, the hypocotyl arch of Impatiens was unrespon­

sive to red or far-red light unless a previous period of high level blue 
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light or fluorescent light was used. Klein et al (94a) found that only 

a few minutes of red light was necessary to cause the bean hypocotyl arch 

to open. Even repeated 10 minute exposures to red light (3 times per 

day) for several days caused no measurable opening of the hypocotyl arch 

in I mpatiens. Excised bean arches were found to respond best to light 

and the action of the red light could be completely inhibited by auxin 

(IAA). This is in harmony with the findings of Galston et al (67) that 

preirradiation with red light reduced the sensitivity of pea epicotyls 

to t reatment with auxin. Recently workers have shown that red light 

induces the formation of a f lavonoid type auxin inhibitor in pea 

seedlings (64, 65, 107, 137). Assuming that auxin activity is controlled 

in the bean and Impatiens seedlings by photoreactions similar to that 

reported for the pea epicotyl, several factors could be responsible for 

the high energy blue- light requirement in Impatiens which is apparently 

absent in the photocontrol of the opening of the hypocotyl arch in the 

bean. Since the flavonoid auxin inhibitors would be formed from the same 

basic precursors as anthocyanins, it would not seem unlikely that their 

synthesis would depend upon the same high energy light requirement that 

is necessary for anthocyanin synthesis in the Impatiens hypocotyl. Fang 

et al (57a) has reported that relati vely high intensities of fluor escent 

light (exact intensities were unspecified) increased the rate of the 

oxidative destruction of IAA by corn and pea seedlings . Red light alone 

is reported to produce products which inhibit IAA oxidase (107). There-

fore if the levels of endogenous auxin were high a period of high 

intensity irradiation would be necessary to remove IAA by oxidative 
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destruction until the endogenous levels of auxin were low enough for the 

inhibitors induced by red light to be effective. 

The photoreactions thus far mentioned may be divided into two 

general groups : (1) Those where the response may be controll ed to a 

large extent by the red, far-red photoreversible system alone and are 

enhanced by high energy irradiation, and (2) those where the response 

is wholly dependent upon a period of high energy irradiation but are 

under the photoreversible control of the red, far-red system. Photo­

inhibi tion of elongation of the Impatiens hypocotyl is an example of the 

first type of reaction while anthocyanin synthesis and the straightening 

of the hypocotyl arch are examples of the second type. 

To reiterate a previous statement) the high energy photo-reaction, 

which has its action maxima in the blue portion of the spectrum for the 

responses studied in Impatiens (Figures 20, 23 and 24) and the low energy 

photoreversible reaction (Table XXII) must be considered as separate 

functions. The high energy reaction is thought of as driving endergonic 

reactions leading to the formation of substrates or causing the proper 

bal ance of physiological factors, such as auxins, necessary for the re­

sponse-expression. The phytochrome (red, far-red) system apparently 

controls subsequent reactions in the biochemistry of the response­

expression which are not dependent upon an external energy source . At 

present, no specific biochemical reactions are known that are under the 

influence of the photomorphogenic system, but work is currently in 

progress to uncover light- dependent reactions in the pathway of 

anthocyanin synthesis (130). Possible physiological mechanisms for the 

Photomorphogenic system must remain speculative. However, a model system 
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which could be subjected to experimental test can be constructed from 

information in the literature and the findings in this thesis. 

Al though the phytochrome reaction was initial ly written as an 

oxidation-reduction process, it is now believed to involve only the 

phytochrome molec.ule with no cofactors (23, 77). Hence, the loVJ' energy 

photoreversible reaction is written as the following: 

Cis Trans 

Pr _______ 6 .... 6 .... 0.__.m ... u...._ ____ .. _ P fr 

730 mu or Darkness 

The cis-trans isomeration is indicated as the tVJo possible .forms of the 

pigment ( 76, 81). The absorption o.f phytochrome indicates that the 

prosthetic group may be a polyene (23) such as the chromatophore of 

certain phycocyanins, which is a bilitriene mesobiliverdin (112). The 

high energy action spectra for anthocyanin synthesis and internode 

elongation (105, 132, 133) which have their action maxima in the red 

portion o.f the spectrum indicate that the continuous excitation of phyto-

chrome in either form (P or P.f ) may mediate the primary reactions. This r r 

concept has been thoroughly developed by Hendricks and Borthwick ( 78, 79) 

and Hendricks, Toole, Toole,, and BorthVJick (80). If the proposals o.f 

Hendricks et al are valid, then the action spectra for anthocyanin 

synthesis in milo (52) and Impatiens (Figure 20) and the action spectra 

for elongation and arch straightening in the hypocotyl o.f Impatiens 

(Figures 23 and 24), all o.f which have their action maxima in the blue, 

indicate that continuous excitation of phytochrome may also occur at 

shorter wavelengths. This is not contrary to absorption spectra data 



138 

for phytochrome preparations (19a) . A more "complete" photoreceptive 

system could then be represented as the following: 

Cis Trans 

P 660 mu P r - - -------------'"'"- fr 
730 mu or Darkness 

+2e j t-2e } Continued Excitation 

PH 
2 

pH
2 

represents a third~ reduced form of the pigment. It may arise from 

either the cis or trans isomer since the reduction of a bilitriene such 

as is proposed ( 76) would eliminate the possibility of isomerism. The 

high energy action maxima for anthocyanin synthesis and elongation occur 

at various wavelengths in the red (near 660 mu) and far - red (near 730 mu) 

as well as in the blue ()+OO to )00 mu) . This is quite reasonable since 

the product PH2 is the same regardless if it arises from Pfr or Pr . The 

action spectrum for anthocyanin synthesis in the hypocotyl of Inwatiens 

as determined with the interference filter light source (Figure 20) 

indicates an action maximum at 42.5 mu, but the curve obtained from the 

spectrograph irradiations (Figure 20) indicates that the actual maximum 

occurs at somewhat shorter wavelengths, falling between 410 and 420 mu . 

This apparent discrepancy could not be resolved since no interference 

filters transmitting light between 40.5 and 42.5 mu were available. The 

indication that the actual action maximum for anthocyanin synthesis occurs 

in the region of 410 to 420 mu is important since it closely agrees with 

a reported absorption peak of phytochrome occuring at 41.5 mu (19a). These 
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data further support the idea that phytochrome participates directly in 

the high energy reaction and that a form of the pigment such as PR2 may 

arise from irradiation of any wavelength provided that sufficient radiant 

energy is absorbed. Cases have been noted where a continued exposure 

to far-red light results in a response as to red light, (44, 53, 108). 

Recent studies on the reversibility of flowering in Chenopodium have 

indicated the Sormation of a third form of phytochrome upon continued 

far-red irradiation (90). With the model above, a variety of wavelengths 

falling near the absorption maxima of either Pr or P fr could cause the 

formation of PH2 . The absence of both oxidized forms of the pigment 

could cause the "red effect 11 with continued far-red irradiation. 

The model system consists of a photoreversible pigment (phyto­

chrome) existing in one of two isomeric forms (Pr or Pf) and a third 

reduced form (PH2) which can be derived from either of the two isomers 

as a result of high energy irradiation from the visible spectrum. The 

reduced form may arise from any portion of a broad band either in the red 

(600 to 750 mu) or in the blue (400 to )00 mu). Action spectra of the 

low energy photoreversible reaction, on the other hand, have in all cases 

been found to be the same and coincide with the absorption spectra of 

Pr and Pfr in the red end of the spectrum (24). 

Although phytochrome has been linked to numerous plant responses, 

it is unknown how this apparently simple photoreversible reaction is 

linked to the physiology of the plant (23). It has been suggested that 

the far-red absorbing form (Pfr) of phytochrome is an active enzyme 

associated with the metabolic fate of acyl coenzyme compounds (24, 131). 

• 



Evidence for this proposal is inconclusive and it is difficult to 

envision a single enzyme having such varied effects and precise control 

over a number of processes of plant growth and development. 

It has been shown recently that the synthesis of proteins and 

enzymes are under the control of the low energy phytochrome reaction (5, 

102, 104) . Marcus (102)demonstrated that the formation of a TPN dependent 

triosephosphate dehydrogenase in dark grown bean leaves is reversibly 

controlled by the low energy red, far - red reaction. Mego and Jagendorf 

(104) have recently shown that the growth of bean chloroplasts is 

induced by short exposures to red light (2 minutes per day) in otherwise 

dark grown plants . The effect was reversible with far-red treatment. 

Proteins were formed to the level of the mature chloroplast, but the low 

energy reaction was capable of converting only preexisting protochloro­

phyll to chlorophyll. The development of the structure, shape and chloro­

phyll content of mature chloroplasts was dependent on long periods of 

high level irradiation. Of importance in the work of Marcus, Mego and 

Jagendorf is that proteins (presumably enzymes) are synthesized in response 

to the formation of Pfr by red light with a negligible input of radiant 

energy. By this method, enzymes are formed which mediate the reactions 

leading to a particular response. However, if the response which is 

controlled by the red, far - red system through protein synthesis requires 

the synthesis of certain precursors such as protochlorophyll or reduced 

coenzymes (TPNH2 for exrunple), the response will not be displayed unless 

they are present . The high energy reaction .functions to provide the proper 

precursors and cofactors. A third form of the pigment (such as PH2 for 

instance) could very easily trans.fer electrons to yield energy and/or 



proper substrates. Mego and Jagendorf (104) have clearly shown these two 

.Phases in chloroplast development. This separation has been shown earlier 

by the Beltsville group in several photoresponses of plants and the same 

pattern is apparent in the photoresponses of the Impatiens hypocotyl 

studied in this research. The fact that sugars will alleviate the high 

energy irradiance requirement for anthocyanin synthesis (6, 146, 147), and 

for the display of photoreversibility of stem elongation (14, 54) 

implicates the high energy reaction in the energetics of the cell. Further 

evidence for the participation of the high energy form of the pigment 

(PH2) can be .found in the work of Siegelman and Hendricks (lJl). They 

found that apple skins floating on sucrose solutions in the dark produced 

alcohol and aldehydes. Light suppressed the synthesis of these ,products 

in a manner similar to the suppression of .fermentation by oxygen. Apparent­

ly the irradiation facilitated the removal of electrons from the system, 

to molecular oxygen with (1) the concomittant release of energy, (2) util­

ization of acetate and (3) anthocyanin production. The role of the high 

energy reaction in the utilization of acetate and acyl coenzyme A compounds 

has been suggested in numerous publications from the Beltsville laboratory 

(23, 24, 78, 79, 80, 10), 133). From this discussion the previous model 

could be extended as follows: 
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Further evidence which implies that the phytochrome s ystem is active in 

some phase of protein synthesis is that pyrimidines strongly influence 

photoinduction of flowering in Xanthium (125, 126) . Recently, it has been 

shoViTn) through the use of c14 - labelled 5-fluorouracil, that RNA synthesis 

may be the process essential to photoperiodic induction of flowering in 

Xanthium (22) . The above model alloVirs for the formation of products 

mediated by enzymes Virhich are dependent on the formation of Pfr through 

the action of 660 mu red light . Far- red light (730 mu) inhibits protein 

synthesis by converting Pfr to Pr, thereby making the system photoreversi­

ble. The formation of products within the proposed system which are 

casually related to the observed response, may or may not have a high 

energy r equirement depending on the existence suitable substrates. In 
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conclusion, it appears that the proposed model for the mechanism of the 

photomorphogenic system is in harmony with the observations thus far made 

on the light responses of higher plants and is subject to experimental 

examination . 
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CHAPTER VI 

SUMMARY 

Factors affecting anthocyanin synthesis and morphogenesis of the 

hypocotyl of Impatiens balsamina L. were investigated. Anatomy of the 

etiolated Impatiens hypocotyl was studied and respiration rates along the 

axis of the hypocotyl were determined. Factors affecting anthocyanin 

synthesis and morphogenesis which were studied fall into two groups: 
v 

(1) chemicals which are reported to affect growth and differentiation or 

anthocyanin synthesis and (2) the effects of light. 

Anatomy and Respiration Rates of the Hypocotyl 

1. The anatomy of the etiol ated Impatiens hypocotyl, including 

the arrangemBnt and occurrence of the primary tissues is described. 

Growth, i.e. elongation, of the dark grown hypocotyl arose from the 

contribution of DBW cells by the pseudomeristem in the hypocotyl arch, and 

the region of cell elongation immediately below the hypocotyl arch. 

Anthocyanin synthesis was limited nearly exclusively to the hypodermis, 

a highly differentiated single layer of cells directly beneath the epider-

mis. 

2. Simple hairs similar to root hairs were formed from epidermal 

cell s of the hypocotyl. Adventitous roots arose from 4 small zones of 

pericycle tissue located at the points of the tetrarch xylem pattern of 

the hypocotyl. 

J. Highest rates of respiration occurred in the region of the 

pseudomeristem when calculated on a fresh weight basis. On a per cell 



basis the pseudomeristem e.xhibi ted minimal res,piration and the maximum 

rate occurred in the region of cell elongation. 

Chemical Factors Affecting Anthocyanin Synthesis and Morphogenesis 

1. The effects of the following types of compounds on the forma-

tion of roots, hairs, and anthocyanin pigments in segmented hypocot yls 

grown in sterile culture were studied: (1) the sugars, glucose and sucrose, 

(2) the growth substances, Naphthalene acetic acid (NAA), Triiodobenzoic 

acid (TIBA) and Gibberellic acid (GA), (3) compounds effecting anthocyanin 

synthesis, Azaguanine (Aza), Benzimidazole (Bz) and Riboflavin (Rb). 

2 . Both sucrose and glucose supported good growth and anthocyanin 

f or mation i-n the hypocotyl segments, glucose being more effective in 

supporting anthocyanin synthesis than sucrose in both the light and dark 

while sucrose supported better growth . Neither sugar was effective in 

causing anthocyanin synthesis in segment 1 in the dark . 

3 . Increments of NAA in the medium caused a coordinated increase 

in hair production, root formation, and anthocyanin synthesis. A shift 

in the point of maximum anthocyanin synthesis from segment 1 in the control 

to segment 8 in hypocotyl s treated with NAA -vvas observed. 

4. TIBA inhibited both growth and anthocyanin synthesis in the 

hypocotyl segments and acted as a direct antagonist of NAA . 

5. GA acted primarily on segment l of the hypocotyl. Under the 

influence of GA, segment 1, in the light, elongated considerably 't'rhich 

was accompanied by a reduction in rooting and anthocyanin synthesis. A 

similar pattern of growth and anthocyanin formation was noted when segment 1 

was cultured in darkness without GA. Hair formation was not significantly 
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affected by GA. 

6. Both the purine analogues, Bz and Aza, effectively inhibited 

hair formation in all segments of the hypocotyl and inhibited rooting 

and anthocyanin synthesis in segments 2 to 10. In segment 1 Bz inhibited 

anthocyanin synthesis and had little effect on rooting while Aza acted 

in the opposite manner . In segments 2 to 10 Aza was about 100-fold more 

effective in inhibiting anthocyanin synthesis than Bz, but was nearly 

without effect in segment 1. 

7. In hypocotyl segments cultured in the dark, Rb inhibited 

anthocyanin synthesis generally and inhibited root and hair formation in 

segment 1. In the light, the interaction of Rb and Bz severely inhibited 

all observed activities of the hypocotyl segments and was lethal to many 

of the lower segments. 

8 . Interaction of Bz and NAA had synergistic effects in inhibiting 

anthocyanin synthesis and in enhancing hair production in the hypocotyl 

segments. NAA counteracted the inhibition of rooting by Bz in segments 

6 to 10, while NAA acted synergistically with Bz to inhibit rooting in 

segment 1. 

9. Results are discussed in relation to literature concerning the 

effects of chemicals on growth and differentiation and anthocyanin 

synthesis, and theories on the endogenous regulation of the appearance 

of anthocyanin pigments in plant tissues. 

Responses of the Hypocotyl to Light 

1. High energy action spectra for anthocyanin synthesis, inhibi-

tion of hypocotyl elongation, and straightening of the hypocotyl arch in 
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the region of 400 to 500 mu were determined . These responses were al so 

shown to be under the control of the low energy) photoreversible red -

far-red system) i . e . phytochrome. 

2. Action spectra for anthocyanin synthesis and inhibition of 

hypocotyl elongation were found to be identical) having an action maximum 

in the vicinity of 425 mu . Straightening of the hypocotyl arch had an 

action maximum at 441 mu. 

J. Anthocyanin synthesis and straightening of the arch were 

obligate for high energy irradiation) but elongation could be controlled 

to a l arge extent through the low energy red and far - red irradiation alone. 

Inhibition of elongation was enhanced by high energy blue light. 

4. All responses investigated) anthocyanin synthesis inhibition 

of hypocotyl elongation and straightening of the hypocotyl arch were 

under the ultimate control of the low energy phytocbrome reaction, 

5. Direct evidence was obtained for the simultaneous control of 

the biochemical process of anthocyanin synthesis and the morphogenetic 

processes of hypocotyl elongation and straightening of the hypocotyl arch 

through a single system. 

6. Results are discussed in relation to current literature 

concerning photomorphogenesis of plants . It is suggested that a single 

photoreceptor for the high energy i rradiation is active in mediating the 

responses studied and that the photoreceptor is the phytochrome molecule 

itself . A model photomorphogenic system is proposed. 
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