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ABSTRACT 

Salt marshes are a frontline of climate change providing a bulwark against sea 

level rise, an interface between aquatic and terrestrial habitat, important nursery 

grounds for many species, a buffer against extreme storm impacts, and vast blue 

carbon repositories. Since the 1700s salt marshes have been in flux due to 

anthropogenic actions, such as reclamation for development causing loss and an influx 

of sediment from land clearing leading to marsh expansion. The Clean Water Act of 

1972 provides legal protections for wetlands, limiting wetland reclamation and 

requiring that impacts be offset. However, salt marshes continue to change rapidly due 

to anthropogenic stressors including elevated rates of Sea Level Rise (SLR) due to 

climate change, herbivory driven by overfishing, droughts, and eutrophication. Salt 

marsh monitoring across large spatial extents requires remote sensing. This 

dissertation’s objectives include: Developing methods for monitoring how mid-

Atlantic salt marsh ecosystems are changing and where, determining how restoration 

and Hurricane Sandy affected Jamaica Bay’s salt marshes, and quantifying the effect 

of the tidal stage at the time of acquisition on very high spatial resolution (<1 m) salt 

marsh mapping.   

This dissertation is composed of three chapters in the format of published and 

prepared manuscripts for professional journals. In chapter/manuscript 1, a 

methodology for monitoring salt marsh with very high resolution imagery was 

developed and applied to the Jamaica Bay Unit of Gateway National Recreation Area. 

Jamaica Bay’s salt marshes were mapped using object-based image analysis (OBIA), 

random forest classifier, and a diverse set of data including high spatial resolution (<1 

m pixel size) satellite imagery. Change analysis was conducted at Gateway National 



 

 

 

 

Recreation Area with satellite imagery collected in 2003, 2008, 2012, and 2013. All 

classifications achieved >85% overall accuracies. In Jamaica Bay, from 2012 to 2013, 

restoration efforts resulted in an increase of 10.6 ha of salt marsh. Natural salt marshes 

within the Bay demonstrated a decreasing trend of loss. Larger salt marshes in 2012 

tended to increased vegetation extent in 2013 F(4, 6) = 13.93, p = 0.0357 and R2 = 

0.90).  

In chapter/manuscript 2, the effect of the tidal stage on salt marsh mapping was 

modeled using topobathymetric LiDAR and VDatum. Verification of the tidal effect 

on very high resolution imagery was explored within Jamaica Bay using bathtub 

models derived from topobathymetric LiDAR and imagery data collected at a range of 

tidal stages. The effect of the tidal stage was minimal at 0.6 m above MLW, only 3.5% 

of S. alterniflora was inundated. This varied greatly between salt marsh islands within 

the Bay. 

In chapter/manuscript 3, salt marshes change across seven HUC-8 mid-Atlantic 

watersheds was mapped from 1999 to 2018 using time series analysis of the Landsat 7 

and 8 archives with Google Earth Engine. Back-barrier salt marshes are integral to the 

barrier systems function and their long-term resilience in the face of SLR and future 

extreme storms. This analysis included watersheds across Maryland, Delaware, 

northern North Carolina, Virginia, New York, and New Jersey. Aboveground green 

biomass across the mid-Atlantic declined by an average of -68 g m-2. The Landsat 

derived estimates of aboveground green biomass were an indicator of salt marsh 

vegetation extent within a pixel (F(1165,1)=1316, p < 0.001) and R2=0.53 

Salt marsh environments along the mid-Atlantic coast are in decline and 



 

 

 

 

projected to suffer more losses due to SLR. These changes are evident with both 

localized mapping and regional assessments. Satellite remote sensing monitoring 

provides the spatial context necessary for successful salt marsh management. The 

response of salt marshes to SLR is uncertain, where will migration, persistence, and 

loss occur? Satellite remote sensing of salt marsh change is necessary for the 

appropriate management of these ecosystems. The synergistic stressors that are driving 

loss require both in situ monitoring to determine change and remote sensing to expand 

these analysis beyond a singular location.  
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PREFACE 

This dissertation is written in the manuscript format with three chapters each 

comprised of a manuscript. Chapter 1, entitled “Salt Marsh Monitoring in Jamaica Bay, 

New York from 2003 to 2013: A Decade of Change from Restoration to Hurricane 

Sandy” was published in Remote Sensing in January 2017. Chapter 2, entitled 

“Examining the Influence of Tidal Stage on Salt Marsh Mapping Using High Spatial 

Resolution Satellite Remote Sensing and Topobathymetric LiDAR” was published in 

IEEE Transactions on Geoscience and Remote Sensing in September 2018. Chapter 3, 

entitled “Salt Marsh Change Analysis of the mid-Atlantic Coast from 1999 to 2018 

using a Google Earth Engine Time Series Approach” has been prepared for ISPRS 

Journal of Photogrammetry and Remote Sensing. 
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Salt Marsh Monitoring in Jamaica Bay, New York from 2003 to 2013: a Decade of 

Change from Restoration to Hurricane Sandy 

by 

 Anthony Campbell1, Yeqiao Wang1, Mark Christiano2, Sara Stevens3 

 

Published as Campbell, A., Wang, Y., Christiano, M. and Stevens, S., 2017. Salt Marsh 

Monitoring in Jamaica Bay, New York from 2003 to 2013: A Decade of Change from 

Restoration to Hurricane Sandy. Remote Sensing, 9(2), p.131.  
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Abstract:  

This study used Quickbird-2 and Worldview-2, high resolution satellite 

imagery, in a multi-temporal salt marsh mapping and change analysis of Jamaica Bay, 

New York. An object-based image analysis methodology was employed. The study 

seeks to understand both natural and anthropogenic changes caused by Hurricane 

Sandy and salt marsh restoration, respectively. The objectives of this study were to: (1) 

document salt marsh change in Jamaica Bay from 2003 to 2013; (2) determine the 

impact of Hurricane Sandy on salt marshes within Jamaica Bay; (3) evaluate this long 

term monitoring methodology; and (4) evaluate the use of multiple sensor derived 

classifications to conduct change analysis. The study determined changes from 2003 

to 2008, 2008 to 2012 and 2012 to 2013 to better understand the impact of restoration 

and natural disturbances. The study found that 21 ha of salt marsh vegetation was lost 

from 2003 to 2013. From 2012 to 2013, restoration efforts resulted in an increase of 

10.6 ha of salt marsh. Hurricane Sandy breached West Pond, a freshwater 

environment, causing 3.1 ha of freshwater wetland loss. The natural salt marsh showed 

a decreasing trend in loss. Larger salt marshes in 2012 tended to add vegetation in 

2012–2013 (F4,6 = 13.93, p = 0.0357 and R2 = 0.90). The study provides important 

information for the resource management of Jamaica Bay. 
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1. Introduction 

 

Jamaica Bay, an estuary within the New York City (NYC) limits, is heavily 

influenced by urbanization. The salt marshes serve as an interface between the Bay 

and surrounding urban areas. Currently, over a dozen marsh islands span the Bay. 

Their landscapes are composed of mudflats, a variety of salt marsh plant species, 

sediment deposited to rebuild drowning salt marsh, transitional vegetation denoting 

the shift to upland, and human created upland areas. Salt marshes provide numerous 

ecological benefits such as high biodiversity, improved water quality, flood reduction, 

and carbon sequestration [1]. The wetland ecosystems of New York State, including 

salt marshes, were reduced by 60% from 1780 to 1980 [2]. Nationally, salt marshes 

have been under particular stress with increasing rates of loss from 2004 to 2009 

caused in part by coastal storms [3]. In the past, these trends were exacerbated in the 

urban-impacted Jamaica Bay. 

Jamaica Bay’s salt marsh loss is severe. Since 1951, approximately 60% of the 

Bay’s salt marsh has converted into mudflats due to a combination of factors including 

a reduction in sediment supply, changes in tidal regime, nutrient enrichment and 

increased hydrogen sulfide concentrations [4]. This estimate does not include areas of 

wetlands around the estuary lost to land filling and urbanization. From 1989-2003, 

Jamaica Bay’s salt marshes were in rapid decline losing 13.4 ha/year [5]. The nitrogen 

load of the Bay is one factor that may contribute to this high rate of loss [6].  

Remote sensing is uniquely suited for monitoring coastal environments, due to 

the difficulty of in situ access and the high temporal resolution required to understand 

these dynamic landscapes [7]. Remote sensing monitoring of the salt marsh landscape 
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can be used to determine vegetation trends for the entire bay and individual islands, 

facilitating an assessment of restoration impacts. Remote sensing is an important tool 

for furthering our understanding of how Jamaica Bay’s salt marshes are affected by 

anthropogenic and natural factors [8, 9]. This study used imagery data spanning a 

decade and two high resolution sensor systems.  

In October 2012, Hurricane Sandy impacted the coast of New York and 

surrounding states with high winds and storm surge. It was a 1 in 500-year storm surge 

event at the Manhattan Battery [10]. The boroughs of Brooklyn and Queens directly 

surrounding Jamaica Bay were inundated; the storm caused 2 million New Yorkers to 

lose power [11]. This study seeks to understand the impact of Hurricane Sandy on salt 

marsh vegetation within Jamaica Bay. The salt marsh vegetation types of interest are 

smooth cordgrass (S. alterniflora), high marsh (a mixture of Distichlis spicata, 

Spartina patens, and Juncus gerardii) and the common reed (Phragmites australis). 

Successful management of Jamaica Bay is contingent on continuing to further our 

understanding of the change experienced by the Bay’s salt marshes due to both natural 

disturbance and human impacts.  

The objectives of this study were to: (1) Document salt marsh changes that 

occurred in Jamaica Bay from 2003-2013, (2) Determine the impact of Hurricane 

Sandy on salt marshes within Jamaica Bay, (3) Evaluate this long-term monitoring 

methodology for the determination of change, (4) Evaluate the use of multiple sensor 

derived classifications to conduct change analysis. The combination of climate 

change, sea level rise and their impacts on natural disturbances are expected to have 

detrimental effects on coastal salt marshes [12]; thereby, enhancing the need for 
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accurate remote sensing monitoring and assessment of coastal wetlands to inform 

decision-makers.   

2. Materials and Methods  

 

2.1 Study Area 

Jamaica Bay is an urban estuary residing within the New York City boroughs 

of Brooklyn and Queens. Kings County, synonymous with Brooklyn, is the most 

populated county in New York State [13]. Approximately 3,704 ha of the Bay are 

managed by the National Park Service as Jamaica Bay National Wildlife Refuge, a 

subunit of Gateway National Recreation Area (Figure 1). The region has a humid 

continental climate with a mean temperature of approximately 10 °C. Over the last 

150 years, anthropogenic impacts to Jamaica Bay have been extensive. The Bay’s 

volume has increased 350% while surface area fell by approximately 4,856 ha [14]. In 

2005, Waste Water Treatment Plants serving 1,610,990 people discharged into Jamaica 

Bay [15]. Beginning in 2003, salt marsh islands including Big Egg, Yellow Bar, Rulers 

Bar, Black Wall, Elders Point East and West (Figure 1) have undergone salt marsh 

restoration. After restoration, sites were monitored in situ for 5 years [4]. These marsh 

restoration projects involved the deposition of dredge sediment from channels in the 

Bay onto the marsh surface then the transplanting and seeding of salt marsh vegetation 

[16]. 

 

2.2 Remote Sensing Data  

High spatial resolution Quickbird-2 and Worldview-2 data were employed for 

salt marsh mapping and change analysis. The spatial resolutions of Worldview-2’s 

multispectral and panchromatic sensors are 1.85 m and 0.42 m, respectively; 
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Quickbird-2’s resolutions are 2.6 m and 0.62 m, respectively. The Worldview-2 sensor 

collects eight spectral bands including the Coastal Blue, Blue, Green, Yellow, Red, 

Red Edge, Near Infrared 1 (NIR1), and Near Infrared 2 (NIR2). The Coastal Blue, 

Yellow, Red Edge, and NIR2 spectral bands of Worldview-2 have been shown to 

increase the accuracy of wetland vegetation classification [17]. This study used 

Quickbird-2 imagery data acquired on September 10, 2003 and September 9, 2008, 

and Worldview-2 data acquired on September 15, 2012 and September 19, 2013. The 

imagery data were geo-rectified to the 2013 imagery. The data were also 

atmospherically corrected to top of atmosphere reflectance.   

This study uses object-based image analysis (OBIA) which first divides an 

image into objects, using a segmentation algorithm, and then classifies those objects 

based on their spectral and spatial attributes [18]. Object-based change detection 

(OBCD) utilizes image objects to conduct a change analysis between multiple time 

periods. The change analysis can be conducted with object attributes, classified 

objects, multi-temporal image objects, or a hybrid of these techniques [19]. This study 

compared the classified 2003, 2008, 2012 and 2013 objects to understand restoration 

and Hurricane Sandy’s impact on wetlands within Jamaica Bay.  

 

2.3 Segmentation 

An important component of OBIA classifications is the determination of 

segmentation scale, which determines the size and similarity of resulting image 

objects, and parametrization i.e. the inclusion of texture [20]. Texture is the use of a 

moving window to quantify measures that represent ideas such as coarseness and 

roughness [19]. This study arrived at an appropriate segmentation scale with the 
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comparison of multiple segmentation scales for each time period to maximize intra-

segment homogeneity and intersegment heterogeneity [21, 22]. The parametrization of 

the resulting image objects included spectral values, texture, geospatial attributes, 

upland data, vegetation indices, and neighborhood and scene difference attributes 

(Described in Section 2.4). Segmentation scale is the key to accurately mapping a 

landscape. Scale parameters can be arrived at through “trial-and-error”. However, this 

method risks determining an inappropriate segmentation scale. Over or under 

segmenting an image can result in lower classification accuracy [23]. In addition, 

segmentation scale can impact the land cover classes that can be accurately mapped 

[20]. This study used the mean shift clustering approach to determine segmentation. 

Mean shift is a non-parametric segmentation algorithm which groups pixels based on 

their spectral mean in a feature space. The algorithm has improved accuracy when 

compared to other clustering techniques [24, 25]. Mean shift considers a spectral 

radius in the feature space as the scale parameter, which results in a hierarchical 

relationship between segmentation scales [26]. These factors make the algorithm 

suitable for multiscale segmentation.  

There are different methods for assessing the quality of segmentation. This 

study assessed segmentation scales with an index of intra-segment homogeneity and 

intersegment heterogeneity [21]. Intersegment heterogeneity was assessed through 

computation of Global Moran’s I that were normalized and then combined with the 

intra-segment homogeneity, as determined by normalized area controlled variance, to 

create a single parameter measuring segmentation quality [22]. The mean shift 

segmentation parameters that were determined were minimum size and spectral radius. 
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Minimum size refers to the fewest number of pixels that can compose a segment, and 

spectral radius is the distance in the feature which a pixel must be within to merge into 

the segment. Each image date was tested with the parameters from 5-50 spectral radii 

in increments of 1 and minimum size from 5-50 in increments of 5. Appropriate 

segmentation scale for the Worldview-2 2012 data was determined to be a spectral 

radius of 15 and a minimum size of 5 pixels. The 25% most over segmented objects 

were segmented again at a quantitatively determined appropriate scale of spectral 

radius 20 and minimum size 5 pixels. The same was done for 25% most under 

segmented objects, for which the appropriate scale was spectral radius 6 and minimum 

size 5 pixels. The appropriate scale for the Worldview-2 2013 data was determined to 

be spectral radius 22 and minimum size 20 pixels. The 25% most over segmented 

objects were segmented again at a quantitatively determined appropriate scale of 

spectral radius 27 and minimum size 5 pixels. The 25% most under segmented objects 

were re-segmented at a scale of spectral radius 7 and minimum size 5 pixels. The 

Quickbird-2 data were segmented at a spectral radius of 8 and a minimum size of 20 

pixels. No additional levels of segmentation were done as this scale adequately 

captured the landscapes and spectral complexity of the Quickbird-2 data.  

The classification was conducted with the Random Forest classifier. Random 

Forest is a non-parametric ensemble learning algorithm that has been demonstrated to 

achieve appropriate classification accuracy in a variety of landscapes [25, 28, and 29]. 

The 9 classes used in this study included 6 from a previous study of the Bay [8]. These 

classes included water, mudflat, sand, high marsh, patchy S. alterniflora, and S. 

alterniflora (≥50% vegetation cover). The two S. alterniflora classes were based on 
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percent cover with patchy being between 10%-49% vegetation cover and S. 

alterniflora (≥50% vegetation cover) being above 50%. Salicornia species are present 

within the Bay as a small component of the salt marsh [30], and were not prevalent 

enough to classify on their own. Additional classes included in this study are wrack, 

upland vegetation, Phragmites, and shadow, however shadow was removed with a 

decision tree post-classification. The 2003 classification did not include wrack due to 

the limited separability of the class in those images. These additional classes were 

included to expand our understanding of the Bay and inform management decisions. 

 

2.4 Object Attributes 

Spectral attributes included the mean and standard deviation of all available 

spectral bands. The spatial variables computed were perimeter, area, and nodes. The 

panchromatic band was utilized to create Grey-Level Co-Occurrence Matrix (GLCM) 

textural measurements, including inverse difference moment, entropy, contrast, 

correlation, and uniformity. GLCM and other texture measures have been shown to 

improve classification accuracies in both Very High Resolution image classification 

[28] and object-based wetland classification [32]. Red Edge-based vegetation indices, 

have been shown to more accurately discern differences between high density 

vegetation species [33]. In this study, Worldview Vegetation Index (WVVI), 

Worldview Water Index (WVWI), Red Edge-based NDVI, NDVI, and Soil Adjusted 

Vegetation Index (SAVI) were calculated after pan-sharpening due to its benefits for 

detecting small vegetation patches (formulas in Table 1) [34]. Ancillary data included 

an upland GIS layer created from a geomorphological map of Jamaica Bay [35] and 
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Digital Elevation Model (DEM) derived from 2014 Topo-bathymetric Light Detection 

and Ranging [36].   

Object neighborhoods, those objects that share a border with an object, and 

weights were calculated to determine the neighborhood difference of the mean 

spectral, textural and vegetation index attributes giving additional spatial context to 

the data [33]. The final Worldview-2 image objects had 79 attributes including 3 

spatial attributes, 18 texture attributes, 32 spectrally derived attributes, 7 elevation 

based, 18 vegetation index, and a binary upland variable (Table A3). The Quickbird-2 

image objects had additional attributes including tasseled cap values but no Red Edge 

based NDVI. 

 

2.5 Accuracy Assessment 

The accuracy assessments were conducted for each classification by generating 

equalized random points. The number of points to generate was calculated with 

following equation [34].  

𝑁 =
𝐵 ∏ (1 −𝑖 ∏ )𝑖

𝑏𝑖
2  

Where 𝐵 is the Chi-squared distribution with 1 degree of freedom for the target 

error divided by the number of classes, ∏  𝑖 is the percent land cover of the most 

prevalent class and 𝑏 is the desired confidence interval of that class. The calculation 

required over 750 test points to fulfil the accuracy assessment. The final test dataset 

was composed of 765 test points. The objects were classified by the user based on 

Worldview-2, Quickbird-2, and Google Earth historic imagery from each time period. 

Overall accuracy, the Kappa statistic, producer’s accuracy, and user’s accuracy were 
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calculated to analyze the confusion matrix results [38, 39]. The study site was visited 

in 2014 and 2015 to verify the characteristics of the landscape and collect field 

reference data. The training samples and objects were extracted from Worldview-2 and 

Quickbird-2 imageries in combination with expert knowledge from the field visits. 

Land cover points were collected on each of the field visits. The point locations 

included areas in West Pond, Black Bank, Yellow Bar, JoCo, Elders Point, Canarsie 

Pol, and East High. The points were navigated to with a Trimble XH and the areas 

dominant vegetation community was verified. 

 

2.6 Statistical Analysis 

 The finished classifications were utilized to determine change rates (ha/year) in 

three time periods, 2003-2008, 2008-2012, and 2012-2013. Jamaica Bay’s unique salt 

marsh structure of individual islands led to their use for statistical analysis. The paired 

Wilcoxon signed rank test was utilized to test the differences between wrack extent 

throughout the Bay in 2008, 2012, and 2013 (Table A1). These extents were for each 

island for each year. The difference between percent change (Δ%/year) of restored and 

natural salt marsh from 2012 to 2013 was tested with a student’s t-test. Before 

utilizing the t-test, normality was tested with the Shapiro-Wilkes statistic, which 

indicated normality could not be rejected with p values = 0.37 and 0.80 for restoration 

and natural, respectively. The natural salt marsh islands for all time periods were used 

to compare change rates (ha/year) for each of the three time periods. The time periods 

were tested with Shapiro-Wilkes for normality finding p values of 0.54, 0.29, 0.43, 

and 0.19 for 2003-2008, 2008-2012, 2012-2013, and 2003-2012 respectively. Linear 

regressions were used to understand the impact of salt marsh extent, latitude, and 
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longitude on combined high marsh and both classes of S. alterniflora change rates 

(ha/year). Latitude and longitude were determined from the center point of each salt 

marsh island. 

 

3. Results 

The landscape was mapped accurately throughout the classification results 

(accuracies of 85.63, 85.20, 90.46, and 92.55 for 2003, 2008, 2012, and 2013, 

respectively). The overall accuracies were further analyzed by producer’s and user’s 

accuracy (Table 2). The 2003 data had an adequate overall accuracy of 85.6 %, with 

vegetation classes exhibiting the lowest accuracies (Table 2). This led to a focus on 

comparing vegetated salt marsh and non-vegetated areas as most of the error was 

between the multiple classes of salt marsh. The three classes of vegetated (S. 

alterniflora classes, high marsh, Phragmites), non-vegetated (water, mudflat, sand, 

wrack) and upland were used for comparisons between periods unless stated 

otherwise. These three classes had overall accuracies of 96.09, 93.46, 93.46, and 96.73 

for 2003, 2008, 2012, and 2013, respectively.  

 

3.1 Wetland Change 

The 2003 and 2013 classifications were compared to determine change 

between all classes (Table 3). From 2003-2013, 54.9 ha of sand, mudflat and water 

were converted into salt marsh. However during that same period 70.7 ha of high 

marsh and S. alterniflora were converted into sand, mudflat, or water. Salt marsh 

vegetation gains occurred in restoration sites, however, these were exceeded by losses 

in areas not subject to intervention (Figure 2). Elders Point East and West were 
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restored during the study period, an example of restoration driven change in the Bay 

(Figure 3). West Pond was breached during Hurricane Sandy and areas of freshwater 

wetland and upland vegetation shifted to mudflat (Figure 4). From 2003 to 2013, 21 ha 

of salt marsh were lost, including both S. alterniflora classes, high marsh, and 

Phragmites. Smaller salt marshes such as Duck Point and Pumpkin Patch nearly 

disappeared (Figures 1 and 2). 

 

3.2 Restored Islands: 2003-2013 

Elders Point East and West were restored in 2006 and 2010 respectively [4]. 

These islands were not being actively restored during the 2012-2013 period, however 

they did increase in salt marsh extent (Table A1). From 2012 to 2013, Yellow Bar, 

Rulers Bar, and Black Wall were the focus of significant restoration. In 2013, Yellow 

Bar added 8.0 ha of salt marsh vegetation, but had a negligible change in extent from 

2003-2013. Yellow Bar’s restoration process also added approximately 15 ha of 

mudflat, however, this does not account for the 32.5 cm higher tide in 2003 as 

determined from the Sandy Hook tidal gauge [41]. From 2003-2008 restoration of Big 

Egg and Elders Point East were completed, resulting in increases in salt marsh extent 

of 4.0 and 9.5 ha, respectively. Big Egg subsequently lost 4.7 ha of salt marsh extent 

between 2008-2012. 

 

3.3 Impact of Hurricane Sandy 

West Pond (Figure 2) is a retention pond created during the construction of the 

Cross Bay Boulevard and an important resource for migratory birds [42] (Figure 4). 

Hurricane Sandy breached West Pond, resulting in salt water intrusion into the fresh 
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water environment [43]. Prior to this breach, West Pond’s wetlands were dominated by 

Phragmites australis. The area represents the most drastic change from Hurricane 

Sandy; alterations to the upland and freshwater wetlands are evident (Figure 4, Table 

4).  

Between 2003 and 2013, the JoCo site lost salt marsh vegetation going from 

131.2 ha to 127.6 ha. However, from 2012 to 2013 vegetation increased (Table A1). 

This increase in vegetation was accompanied by a reduction in wrack across the Bay 

compared to both 2008 (W15= 110, p < 0.003) and 2012 (W15=113, p=.0011). The area 

of wrack was reduced after Hurricane Sandy going from 2.2 ha to 0.5 ha. This in part 

accounts for the 3.6 ha increase of salt marsh vegetation observed in JoCo. The 2008 

and 2012 classifications of JoCo had only 0.2 ha of overlapping wrack. 

 JoCo salt marsh was the most stable during the time period analyzed (Table 

A1). The restoration salt marshes in 2012-2013 had a larger percentage increase of salt 

marsh vegetation than natural salt marshes (t4, p=0.041). The natural salt marshes in 

2012-2013 demonstrated a larger positive change than 2003-2008 (t10=2.366, p 

=0.039), 2008-2012 (t10=2.6893, p= 0.022) and 2003-2012 (t10=2.5434, p < 0.03). The 

2008-2012 and 2003-2008 change rates were also significantly different (t10 =2.8012, 

p < 0.02) (Table A2). However, 2012-2013 was the only period when a mean increase 

in natural salt marsh vegetation was observed.    

We analyzed the natural salt marshes yearly change rates (ha/year) by linear 

regression for each time period. The only time period where salt marshes towards the 

eastern side of the Bay tended to gain vegetation was 2012-2013 (F1, 9 = 22.21, 

p<0.002 and R2 = 0.7116). Larger salt marshes in 2012 tended to gain vegetation in 
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2012-2013 (F4, 6 = 13.93, p<0.036 and R2 = 0.9028). From 2008-2012, larger salt 

marshes in 2008 tended to lose more vegetation (F4, 6 = 6.83, p<0.011 and R2 

=0.8199). From 2003-2008, no relationship was found between salt marsh extent and 

change (F4, 6=0.75, p = 0.41 and R2 = 0.33). The switch in the direction of this 

relationship demonstrates different processes dominating the Bay between 2008-2012 

and 2012-2013.  

 

3.4 Accuracy Assessment 

Confusion matrices were utilized to determine the performance of each of the 

classifications. The 2012 and 2013 classifications performed well in all vegetation 

classes of most interest including S. alterniflora and high marsh (Table 2). The lowest 

performing class was Phragmites, which is a difficult to classify land cover with 

overlap between many of the other classes spectrally and spatially. The 2003 and 2008 

classifications had low salt marsh vegetation accuracy due to confusion between the 

salt marsh vegetation types. The 2003 and 2008 error was mitigated by focusing our 

analysis on change in vegetation not changes in particular types of vegetation. Overall 

the Worldview-2 data were better suited for the specificity of this classification. 

 

4. Discussion 

Since the 1950s, salt marsh vegetation in Jamaica Bay has been in rapid 

decline and in the early 2000s, restoration was deemed necessary to maintain the salt 

marsh. This study and past estimates of salt marsh change were compared to better 

understand vegetation trends. From 1989-2003 there was an estimated 13.4 ha of 

yearly loss [5]. From 2003 to 2013 a yearly loss of 2.1 ha was observed. The long-
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term rate of salt marsh loss in the Bay slowed due in part to restoration, however, both 

tidal stage and nutrient inputs may have influenced this result. 

The 2003 and 2013 data were collected at a tidal stage of -0.129 m and -0.454 

m (North American Vertical Datum) [41]. Between 2003 and 2013 the larger salt 

marsh islands appeared to gain vegetation in the interior and lose salt marsh on the 

edges (Figure 2). However, the difference in tidal stage of the data could be 

responsible for some vegetation increases between the two dates. The tidal stage of the 

2012 data was -0.577 NAVD [41]. The small tidal difference in 2012 and 2013 could 

result in less inundated vegetation in 2012. Tidal stage may have influenced the larger 

trends from 2003-2013, but was not a factor in the vegetation increase from 2012 to 

2013. The impact of the tides on mapping salt marsh in Jamaica Bay should be further 

explored to account for this uncertainty. 

Since the mid-2000s, the Bay has had a 30% reduction in nitrogen load [44]. 

Nutrient enrichment in salt marsh systems can lead to creek bank collapse and 

conversion to mudflat [6]. The Waste Water Treatment Plants in Jamaica Bay account 

for 89% of all nitrogen inputs into the Bay; due to the Bay’s currents, the highest 

nitrogen concentrations were in the south and eastern sides of JoCo [15]. The different 

responses of salt marshes in the Bay to nutrient enrichment was partly explained by 

lower elevation marshes having longer periods of inundation increasing decomposition 

and loss of organic matter [45]. The nitrogen load reduction coincided with the 

slowing of salt marsh loss, however, the impact is unknown and in situ analysis would 

be necessary to explore this possible connection. 
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4.1 Restoration  

In 2003, the first salt marsh restoration in Jamaica Bay began at Big Egg. The 

project utilized dredge sediment to increase marsh elevation and then S. alterniflora 

plugs were planted 50 cm apart [17]. In 2006, Elders Point East’s elevation was 

increased with dredge sediment and then vegetated with both plugs and hummock 

relocation, the removal followed by placement of the entire salt marsh platform on 

areas of restored elevation [4]. The hummock relocation saves salt marsh that would 

be covered in dredge sediment, and provides vegetation to the restored area. In 2010, 

the elevation of Elders Point West was increased with dredge sediment and vegetated 

with a combination of hummock relocation, planting of high marsh species, seeding of 

S. alterniflora, and a test site with no planting [4]. In early 2012, Yellow Bar was 

restored with dredge material and vegetated with a mix of hummock relocation and 

salt marsh seeding [46]. In fall 2012, the elevation of Rulers Bar and Black Wall was 

increased with dredge sediment. In June 2013, a community effort added vegetation to 

these islands with plugs [46]. This decade of restoration coincided with our study, and 

resulted in the evaluation of this methodology for understanding restoration.  

 Black Wall and Rulers Bar were restored between 2012 and 2013. These marsh 

islands showed no evidence of revegetation at the time of the 2013 mapping. The salt 

marsh vegetation of Black Wall and Rulers Bar was reduced from 2.7 to 1.2 ha while 

sand and mudflat increased from 11.2 to 18.2 ha. The loss of vegetation appeared to be 

connected with sediment deposition from restoration and lack of hummock relocation. 

However, the storm event could have exacerbated the loss. Rulers Bar lost nearly all 

salt marsh vegetation from 2012-2013 (Table A1). In June 2013, plugs had been 
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planted on Black Wall and Rulers Bar. However, the vegetation was sparse and 

classified as mudflat.  

While restored salt marsh corresponded with a visual change, it may not 

represent a recovery of all the ecosystem services. Differences between natural and 

restored salt marshes include lower soil organic matter, insufficient nitrogen 

availability, stunted plant growth and increased susceptibility to herbivory [47]. Field 

studies in Jamaica Bay have demonstrated some differences between restored and 

natural salt marshes, including a high percent of sand and less soil organic matter in 

the first 10 cm of soil [45]. These differences and the unknown longevity of restored 

marshes are the reasons long-term monitoring is necessary. Big Egg and Elders Point 

East both demonstrated losses post restoration from 2008-2012, with a loss of 1.1 ha 

and 1.0 ha per year, respectively. Post-restoration losses demonstrate the need for 

further understanding of the underlying processes causing salt marsh loss in Jamaica 

Bay. The expected lifetime of a restored marsh could be estimated and used to inform 

management decisions. 

Restoration planting occurred on Yellow Bar between the 2012 and 2013 data 

collections (Table 5). The restoration process added elevation and S. alterniflora to the 

northern area of the site. The restoration resulted in vegetation increasing from 18.2 to 

26.3 ha. Elders Point’s restoration was already complete in 2012, however, the 

combined vegetated extent of Elders Point East and West went from 13.0 to 14.5 ha. 

Restoration sites added vegetation in the post-storm growing season. Restoration sites 

did not appear to be negatively impacted by Hurricane Sandy. However, post-storm 

the Yellow Bar restoration required extensive repairs and replanting [46]. The storm 
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impacted Yellow Bar at an early stage of restoration, which led to a slowing of the 

process. However considerable vegetation was gained in the post-storm growing 

season.  

 

4.2 Hurricane Sandy 

The response of salt marshes to storm events vary and include net elevation 

increases leading to vegetation growth [48] and accretion varying with distance to an 

inlet [49]. The natural and restoration salt marshes responded differently to Hurricane 

Sandy. The analysis of natural salt marsh separated the restoration and storm impacts. 

In 2012-2013, larger salt marshes and those further from Rockaway Inlet tended to 

gain vegetation. This is in agreement with past hurricane impacts which had a wide 

variation in sediment deposition and salt marsh response including edge erosion [50]. 

The large salt marshes may have been less impacted by Hurricane Sandy, and captured 

more of the accompanying sediment pulse. 

The response of vegetation in Jamaica Bay to Hurricane Sandy depended on 

the location and the ecosystem. Saltwater intrusion into freshwater ecosystems is a 

major source of storm event derived vegetation loss; evident in both coastal wetland 

environments [51] and forests [52]. The survival and recovery of freshwater wetland 

vegetation depends on the species [53] and replanting of coastal forests can be limited 

by the increased soil salinity and herbivory [54]. These long-term impacts emphasize 

the importance of monitoring the West Pond breach. Post-storm, both freshwater 

wetland and upland vegetation lost extent declining from 13.3 ha to 10.2 ha and 11.5 

ha to 6.0 ha, respectively (Table 4). There was 2.9 ha of change from upland 

vegetation to freshwater wetland, which can be understood as a loss of vegetation 
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biomass but not a complete loss of vegetation. Excluding those areas, 5.9 ha of 

freshwater wetland was lost. The majority of vegetation lost became mudflat. The loss 

of upland vegetation suggests the approximate extent of salt water intrusion into the 

upland areas around West Pond. The environmental assessment of the site has resulted 

in the decision to close the breach and restore the freshwater wetland environment 

[55]. This approach will create early successional habitat. Continued monitoring of 

West Pond is necessary to understand both the recovery of the freshwater ecosystem 

and unforeseen impacts of the management decision.  

 

4.3 Wrack 

Wrack is an important component of Jamaica Bay’s landscape as persistent 

wrack deposits, for over 4 months of time, have a negative impact on the growth rate 

of all the principal marsh species [56]. Storm events including hurricanes are 

understood as one of the causes of wrack accumulation [50]. Mapping wrack 

accumulation pre- and post-storm enabled the evaluation of both the deposition and 

movement of wrack within Jamaica Bay. Post-storm there was less wrack on the salt 

marsh than in 2008 and 2012. When examining JoCo, it appears areas of wrack moved 

towards the center of the marsh island (Figure 5). If the same pattern occurred in 

islands with upland, wrack would have moved under the upland vegetation canopy. 

Throughout the Bay most wrack became S. alterniflora, capturing the removal of 

wrack and regrowth of impacted salt marsh vegetation in the following growing 

season. These findings suggest recovery from wrack can be rapid, with storm events as 

a major driver in the deposition and distribution of the material throughout Jamaica 

Bay. 
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4.4 Long-term monitoring; 

The two most prevalent mapping protocols for wetland change analysis are the 

National Wetland Inventory (NWI) conducted by United States Fish and Wildlife 

Service (FWS) and Coastal Change Analysis Program (C-CAP) conducted by the 

National Oceanic and Atmospheric Administration (NOAA). These programs are each 

focused on mapping wetland change across the entire or the majority of the United 

States. The NWI is an estimate of the trends conducted by mapping a large number of 

randomly sampled plots which are interpreted based on aerial imagery [57]. The 

methodology leads to trends in states or regions, however, these conclusions are not 

necessarily representative of rapidly changing sites such as Jamaica Bay. Between 

2004 and 2008, the NWI estimated salt marsh increased in the Atlantic by 133 

hectares, a negligible percent increase [3]. Between 2003 and 2008, Jamaica Bay 

added 6.3 hectares of salt marsh vegetation, a 1.8% increase. The two estimates agree 

that an increase occurred, however, the NWI estimate lacks the precise location or 

magnitude of the restoration driven change.  

The C-CAP utilizes Landsat, a 30 m spatial resolution sensor, to understand 

long-term change, however, accuracy reports showed confusion between water, 

consolidated shore, and emergent marsh [58]. From 2001-2010, C-CAP’s estuarine 

emergent wetland class maintained an extent of 674 ha in Jamaica Bay. During that 

time frame Big Egg and Elders Point East were restored, which had no discernable 

change in the extent of estuarine emergent wetland class. Remote sensing with high 

resolution imagery has been successfully utilized for monitoring restoration [59]. The 

coarse spatial and temporal resolution of C-CAP makes understanding storm events or 
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restoration in Jamaica Bay difficult. Localized solutions are necessary for capturing a 

restoration baseline and then mapping at an appropriate temporal resolution to 

understand shifts between vegetation communities and long-term restoration 

trajectories. 

Salt marsh losses are increasingly driven by sea level rise and high water 

events causing migration of S. alterniflora into areas previously composed of high 

marsh [60]. In order to understand these shifts between vegetation communities, a 

specialized high resolution classification is necessary. When conducting analysis over 

large areas C-CAP and NWI programs are invaluable. However, a specialized protocol 

is preferable when presented with single study site and unique management issues. 

The regular collection of satellite imagery is necessary for long-term 

monitoring. This can have a prohibitive cost, when using very high resolution satellite 

data. This study’s five-year data collection interval and additional data collected 

following the storm event was adequate for understanding both the decadal trends and 

Hurricane Sandy’s impact. Jamaica Bay is representative of the future for increasingly 

populated coastal communities worldwide, necessitating continued remote sensing 

monitoring of the impact of urbanization on the Bay’s salt marsh. Long-term 

monitoring requires additional exploration of the impact that multiple sensors have on 

change analyses. The switch from Quickbird-2 to Worldview-2 could be partly 

responsible for the change seen from 2008 to 2012. Quantifying this impact is a 

necessary step as we proceed into the third decade of commercially available very 

high resolution satellite imagery.  
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5. Conclusions  

This study reiterates the importance of continuing salt marsh monitoring with 

high spatial resolution satellite data within Jamaica Bay. This long history of 

monitoring allows an understanding of salt marsh change, restoration, and natural 

disturbance. Despite 10 years of restoration, salt marshes in Jamaica Bay continue to 

decline, though the yearly rate of loss slowed from 13.4 ha from 1989-2003 to 2.1 ha 

from 2003-2013 [5]. While Quickbird-2 data resulted in an adequate classification, a 

single scene of Worldview-2 was better suited to discern between salt marsh 

vegetation classes. The analysis of individual marsh islands elucidates the varied 

responses over the last 10 years such as the stabilization of JoCo and the near 

complete loss of Pumpkin Patch.  

Hurricane Sandy influenced both the salt marsh and freshwater wetlands of 

Jamaica Bay. The 2013 growing season in the Bay appeared to be impacted by the 

hurricane. The greatest change in Jamaica Bay attributed to Hurricane Sandy was the 

breach of West Pond, which caused a die-off of both upland and freshwater wetland 

vegetation within this important bird habitat. In total 8.6 ha of vegetation was lost 

around West Pond. Continued monitoring of the site is necessary to understand the 

long-term recovery of this area. While outside of our study’s target salt marsh 

protocol, the classification and change analysis was robust enough to interpret this 

landscape’s change.  

The vegetation loss in Jamaica Bay slowed over the study period. The salt 

marsh extent increased from 2012 to 2013 which can partly be accounted for by the 

restoration of Yellow Bar, movement of wrack off the salt marsh, and differences in 
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phenology between the two dates. Significant vegetation loss occurred in smaller salt 

marsh islands and the West Pond area.  

The dynamic nature and complexity of coastal wetlands makes monitoring 

with high temporal resolution important and necessary to understand change. This 

study demonstrates the feasibility of object-based classification and change detection 

using Worldview-2 data for mapping, monitoring and understanding salt marsh change 

in Jamaica Bay. The approach could be expanded to other coastal systems, with a 

focus on areas of restoration or periods of change. The decline of the salt marsh 

habitats in the Jamaica Bay is of concern from an ecological stand point and for the 

important role that coastal wetlands have in mitigating storm surge [61]. Future 

research should explore the impact of tidal stage on vegetation extent within the salt 

marsh environments of Jamaica Bay.  
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Table 1. Vegetation Indices, including Worldview-2 Vegetation Index, Worldview-2 

Water Index, Red Edge Vegetation Index, Normalized Difference Vegetation Index and Soil 

Adjusted Vegetation Index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WVVI WVWI NDVI 

Red Edge 

Vegetation 

Index 

SAVI 

(𝑁𝐼𝑅2 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅2 + 𝑅𝑒𝑑)
 

(𝐶𝐵 − 𝑁𝐼𝑅2)

(𝐶𝐵 + 𝑁𝐼𝑅2)
 

(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

(𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒)
 

(𝑁𝐼𝑅 − 𝑅𝐸𝐷) ∗ (1 + 𝐿)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿)
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Table 2. Accuracy assessment analysis (producer’s, user’s, and overall accuracy). 

 

 
Year Mudflat Sand 

S. 

alterniflora 

(>50% 

Vegetation 

Cover) 

Patchy  

S. 

alterniflora 

High 

Marsh 
Water Wrack 

Upland 

Vegetation 
Phragmites 

Overall 

Accuracy 

(%) 

Producer’s 

Accuracy 

(%) 

2003 90.12 98.70 70.73 71.43 82.93 97.50 - 92.68 81.01 85.63 

2008 89.53 83.16 76.84 80.23 85.54 96.59 77.46 91.86 85.33 85.23 

2012 89.53 90.70 95.06 88.37 98.77 98.84 80.43 91.46 82.35 90.46 

2013 92.31 92.77 92.05 98.75 91.86 100.0 89.41 94.05 82.35 92.55 

User’s 

Accuracy 

(%) 

2003 91.25 95.00 72.50 68.75 85.00 97.50 - 95.00 80.00 85.63 

2008 90.59 92.94 85.88 81.18 83.53 100.0 64.71 92.94 75.29 85.23 

2012 90.59 91.76 90.59 89.41 91.12 100.0 87.06 88.24 82.35 90.46 

2013 98.82 90.59 95.29 92.94 92.94 97.65 89.41 92.94 82.35 92.55 
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Table 3: Change between 2003 and 2013 (ha). Areas that had no change between the two dates are in grey.  

   2013        

 Class Water Mudflat Sand 

S. 

alterniflora(50% 

> Vegetation 

Cover) 

Patchy  

S. 

alterniflora 

Phragmites 
High 

Marsh 
Upland 

Total 

2003 

Area 

(ha) 

2003 

Water 485.5 66.3 3.8 12.6 6.7 0.1 0.8 0.0 651.4 

Mudflat 19.4 43.3 3.5 22.4 11.1 0.3 0.7 0.0 102.2 

Sand 0.4 1.0 2.7 0.5 0.2 0.2 0.1 0.1 5.7 

S. 

alterniflora(50% 

> vegetation 

cover) 

13.4 16.5 2.5 115.6 10.1 6.1 16.4 1.0 183.4 

Patchy S. 

alterniflora 
11.2 19.3 0.8 46.4 8.9 0.4 2.3 0.1 89.9 

Phragmites 0.1 0.2 1.5 2.6 0.8 5.5 1.0 1.1 14.0 

High Marsh 2.3 1.4 0.8 26.6 1.3 3.0 22.8 0.5 59.2 

Upland 0.00 0.2 0.3 0.2 0.2 3.2 0.1 16.5 21.3 

Total 2013 Area 

(ha) 
535.7 148.0 16.1 226.7 36.8 19.0 44.0 19.3 
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Table 4. Change of land cover classes between 2012 and 2013 for West Pond area.  

 
  2012 

 
Change or No 

Change Areas 

(ha) 

Mudflat Sand Wetland Water 
Upland 

Veg. 

Post-

Storm 

Total 

2013 

Mudflat 0.3 0.0 4.4 1.0 2.5 8.3 

Sand 0.0 0.4 0.9 0.0 0.4 1.7 

Wetland 0.0 0.0 7.4 0.0 2.8 10.2 

Water 0.1 0.0 0.4 16.9 0.1 17.5 

Upland Veg. 0.0 0.0 0.2 0.0 5.8 6.0 

Pre-storm Total 0.4 0.5 13.3 17.9 11.5 
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Table 5. Salt marsh restoration site, year, and extent [16; 46]. 

 

Year Salt Marsh Area (ha) 

2003 Big Egg 1.0 

2006–2007 Elders Point East 16.2 

2010 Elders Point West 16.2 

2012 Yellow Bar 18.2 

2013 Black Wall 6.1 

2013 Rulers Bar 4.0 
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Figure 1. The study area of Jamaica Bay, NYC, includes salt marsh islands as labeled on top of 

the pseudo color display of 2012 Worldview-2 imagery (NIR-1, G, B in RGB). Field photos 

illustrate (a) the transition from Phragmites australis to salt marsh; (b) Isolated S. alterniflora 

patch; (c) S. alterniflora 50-100% cover. Salt marshes that have been restored at some point are 

indicated by a white border. 
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Figure 2: Salt marsh change from 2003 to 2013 displayed on a panchromatic 2013 Worldview-2 imagery. 
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Figure 3: Salt marsh of Elders Point East and West for 2003, 2008, 2012 and 2013. 
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 Figure 4: Vegetation change from 2012 to 2013 of the West Pond area. 
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Figure 5: The JoCo salt marsh for 2012 and 2013.
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SUPPLEMENTARY MATERIALS 

Appendix A 

Table A1. Land cover extent of salt marsh islands (ha). 

Marsh Year Mudflat Sand 

S. 

alternifl

ora 

(50% ≥ 

Vegetati

on 

Cover) 

Patchy  

S. 

alternifl

ora 

High 

Marsh 
Water Wrack 

Upland 

Vegetati

on 

Phragm

ites 

Pumpk

in 

Patch 

2003 0.9 0.0 1.3 1.6 0.0 30.3 - 0.0 0.0 

2008 2.1 0.0 0.8 0.7 0.1 28.9 0.1 0.0 0.0 

2012 3.3 1.4 0.2 0.3 0.0 27.4 0.1 0.0 0.0 

2013 0.7 0.1 0.2 0.2 0.0 31.4 0.0 0.0 0.0 

Canars

ie Pol 

2003 3.9 0.9 5.4 2.5 1.8 12.6 - 1.2 1.7 

2008 3.9 0.6 5.1 1.6 2.1 12.9 0.7 0.6 2.5 

2012 9.5 1.8 4.2 3.3 0.1 6.2 0.7 0.7 3.4 

2013 7.2 1.8 5.2 1.1 0.3 9.4 0.3 0.3 4.2 

Stony 

Creek 

2003 3.9 0.0 5.4 4.8 0.2 41.7 - 0.0 0.0 

2008 4.1 0.0 6.4 2.9 1.2 21.8 0.1 0.0 0.0 
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2012 5.4 0.3 6.3 2.3 0.0 22.1 0.0 0.0 0.0 

2013 3.1 0.1 7.5 1.6 0.0 24.2 0.0 0.0 0.0 

Little 

Egg 

2003 7.7 0.7 7.1 6.1 0.8 22.6 - 0.0 1.6 

2008 8.2 1.7 9.5 4.0 3.3 18.7 1.8 0.0 0.5 

2012 10.8 4.4 10.3 4.5 0.3 13.8 1.1 0.0 0.2 

2013 6.7 4.8 13.4 2.2 0.6 16.8 0.1 0.0 0.7 

Big 

Egg 

2003 8.5 0.1 7.3 5.3 1.4 15.4 - 0.1 0.6 

2008 5.8 0.1 11.9 3.6 2.5 11.7 0.3 0.1 0.6 

2012 12.0 0.3 8.5 4.8 0.2 8.6 0.5 0.0 0.4 

2013 5.9 0.2 12.6 3.2 0.3 12.3 0.1 0.0 0.8 

Black 

Wall + 

Rulers 

Bar 

2003 2.9 0.0 1.5 2.6 0.0 47.4 - 0.0 0.0 

2008 5.1 0.0 2.1 2.3 1.0 43.9 0.0 0.0 0.0 

2012 8.3 2.9 1.2 1.5 0.0 40.4 0.0 0.0 0.0 

2013 17.1 1.1 0.9 0.3 0.0 34.9 0.0 0.0 0.0 

Black 

Bank 

2003 9.5 1.1 27.4 11.5 5.4 27.2 - 19.6 4.8 

2008 8.9 1.7 27.0 6.7 5.0 20.3 3.2 19.7 7.7 

2012 19.3 2.7 25.7 6.8 2.4 15.5 3.0 19.2 5.6 
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2013 8.6 2.3 29.4 3.5 3.5 24.7 1. 18.8 8.4 

Duck 

Point 

2003 4.6 0.1 3.9 2.6 0.6 40.2 - 0.0 0.0 

2008 2.6 0.1 4.1 4.3 0.1 49.7 0.0 0.0 0.0 

2012 10.4 1.0 3.2 2.1 0.0 35.3 0.2 0.0 0.0 

2013 4.3 0.2 3.8 1.3 0.0 42.6 0.0 0.0 0.0 

Broad 

Creek 

2003 1.3 0.0 1.4 0.7 0.6 33.9 - 0.0 0.1 

2008 1.8 0.2 0.8 0.2 0.4 27.4 0.2 0.0 0.0 

2012 2.7 0.4 0.6 0.2 0.1 26.9 0.1 0.0 0.0 

2013 1.3 0.2 0.8 0.2 0.1 28.4 0.0 0.0 0.1 

East 

High 

2003 10.5 0.1 14.3 5.8 3.0 49.6 - 0.0 0.0 

2008 15.1 0.1 12.5 3.1 4.0 48.2 0.3 0.0 0.0 

2012 18.7 0.7 11.8 1.6 2.6 47.7 0.2 0.0 0.0 

2013 5.1 0.3 12.7 1.7 2.8 60.6 0.0 0.0 0.0 

JoCo 

2003 11.1 0.1 72.4 20.1 37.5 83.6 - 0.1 1.3 

2008 11.9 0.1 74.5 11.8 44.6 79.6 3.1 0.0 0.4 

2012 18.5 0.3 82.0 6.5 35.5 80.9 2.2 0.0 0.1 
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2013 12.6 0.1 90.7 7.1 29.8 85.1 0.5 0.0 0.0 

Elders 

Point 

West 

2003 2.8 0.2 1.2 0.7 0.2 40.1 - 
 

0.1 

2008 3.9 0.4 1.0 0.5 0.5 38.4 0.1 0.0 0.1 

2012 15.5 0.7 0.5 2.8 0.0 25.3 0.1 0.0 0.1 

2013 14.0 0.3 2.2 2.4 0.2 25.5 0.3 0.0 0.3 

Yellow 

Bar 

2003 18.2 0.0 12.9 12.6 0.8 67.9 - 0.0 0.0 

2008 23.1 0.0 17.5 9.0 1.8 56.4 0.1 0.0 0.0 

2012 43.0 0.7 12.5 5.6 0.1 46.0 0.1 0.0 0.0 

2013 33.7 0.1 18.7 7.5 0.1 48.0 0.0 0.0 0.0 

Silverh

ole 

2003 11.1 0.0 11.8 8.0 0.9 40.7 - 0.0 0.0 

2008 12.6 0.0 15.2 3.3 1.1 25.5 0.2 0.0 0.1 

2012 16.6 0.4 12.9 3.0 0.2 24.5 0.3 0.0 0.0 

2013 13.3 0.2 14.5 3.4 0.3 26.1 0.0 0.0 0.0 

Ruffle 

Bar 

2003 4.1 1.9 7.7 1.8 6.4 12.0 - 0.1 3.0 

2008 3.7 2.5 6.3 0.8 7.7 11.3 2.1 0.0 0.5 

2012 7.7 3.4 6.5 1.5 5.2 7.4 1.0 2.2 0.0 
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2013 44.6 3.3 6.1 0.7 5.1 11.1 0.2 3.9 0.0 

Elders 

Point 

East 

2003 2.3 0.2 2.0 1.5 0.2 68.0 0.0 0.1 0.2 

2008 5.4 0.3 11.0 1.0 0.7 54.4 0.7 0.2 0.6 

2012 11.4 1.2 7.5 1.1 0.5 51.1 1.0 0.3 0.1 

2013 9.6 1.0 8.2 0.7 0.9 53.1 0.2 0.1 0.6 
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Table A2. Salt marsh change rates for 2003-2008, 2008-2012 and 2012-2013 

(ha/year). 

 

Marsh 2003–2008 2008–2012 2012–2013 

Pumpkin Patch −0.3 −0.3 −0.1 

Canarsie Pol −0.01 −0.1 −0.2 

Stony Creek 0.03 −0.5 0.5 

Little Egg 0.3 −0.5 1.5 

Big Egg 0.8 −1.2 2.9 

Black wall + Rulers 

Bar 
0.2 −0.7 −1.5 

Black Bank −0.5 −1.5 4.3 

Duck Point 0.3 −0.8 −0.1 

Broad Creek −0.3 −0.1 0.2 

East High −0.7 −0.9 1.3 

JoCo 0.0 −1.7 3.5 

Elders Point West −0.02 0.3 1.6 

Elders Point East 1.9 −1.0 1.1 

Yellow Bar 0.4 −2.5 8.0 

Silverhole −0.2 −0.9 2.2 

Ruffle Bar −0.7 −0.5 −1.4 
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Table A3: Object parameters used in OBIA for 2012 and 2013 Worldview-2 imagery 

classification. 

Variable Type Variable Name Variable Importance 

Elevation DEM mean 47 

Elevation 
DEM Standard Deviation 

(SD) 
4 

Elevation DEM min 4 

Elevation DEM max 57 

Elevation DEM range 3 

Elevation DEM sum 17 

Geospatial Node points 0 

Geospatial Perimeter 1 

Geospatial Area 1 

Ancillary Upland binary layer 36 

Spectral Coastal blue mean 24 

Spectral Coastal blue SD 2 

Spectral Blue mean 31 

Spectral Blue SD 1 

Spectral Green mean 28 

Spectral Green SD 0 

Spectral Yellow Mean 26 

Spectral Yellow SD 1 

Spectral Red mean 29 

Spectral Red SD 1 

Spectral Red edge mean 46 

Spectral Red Edge SD 3 

Spectral NIR1 mean 58 

Spectral NIR2 Mean 67 

Spectral 
Coastal blue mean 

neighborhood difference 
0 
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Variable Type Variable Name Variable Importance 

Spectral 
Blue mean neighborhood 

difference 
0 

Spectral 
Green mean neighborhood 

difference 
1 

Spectral 
Yellow mean neighborhood 

difference 
1 

Spectral 
Red mean neighborhood 

difference 
1 

Spectral 
Red edge mean 

neighborhood difference 
0 

Spectral 
NIR1 mean neighborhood 

difference 
0 

Spectral 
NIR2 mean neighborhood 

difference 
0 

Spectral 
Coastal blue mean 

neighborhood difference 
16 

Spectral 
Blue mean scene 

difference 
20 

Spectral 
Green mean scene 

difference 
30 

Spectral 
Yellow mean scene 

difference 
25 

Spectral 
Red mean scene 

difference 
33 

Spectral 
Red edge mean scene 

difference 
54 

Spectral 
NIR1 mean scene 

difference 
51 

Spectral 
NIR2 mean scene 

difference 
73 

Spectral NIR1 SD 4 

Spectral NIR2 SD 1 

Texture Correlation mean 0 

Texture Entropy mean 0 
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Variable Type Variable Name Variable Importance 

Texture 
Inverse Difference 

Moment(IDM) mean 
0 

Texture Uniformity mean 0 

Texture Contrast mean 0 

Texture 
Correlation mean 

neighborhood difference 
0 

Texture 
Entropy mean 

neighborhood difference 
0 

Texture 
IDM mean neighborhood 

difference 
0 

Texture 
Uniformity mean 

neighborhood difference 
0 

Texture 
Contrast mean scene 

difference 
0 

Texture 
Correlation mean scene 

difference 
0 

Texture 
Entropy mean scene 

difference 
0 

Texture 
IDM mean scene 

difference 
0 

Texture 
Uniformity mean scene 

difference 
0 

Texture Contrast SD 0 

Texture Entropy SD 0 

Texture IDM SD 0 

Texture Uniformity SD 0 

Vegetation Index REVI mean 26 

Vegetation Index WVVI mean 74 

Vegetation Index WVWI mean 93 

Vegetation Index 
REVI mean neighborhood 

difference 
0.9 

Vegetation Index 
WVVI mean neighborhood 

difference 
1 
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Variable Type Variable Name Variable Importance 

Vegetation Index 
WVWI mean neighborhood 

difference 
1 

Vegetation Index 
REVI mean scene 

difference 
12 

Vegetation Index 
WVVI mean scene 

difference 
66 

Vegetation Index 
WVWI mean scene 

difference 
100 

Vegetation Index REVI SD 0 

Vegetation Index WVVI SD 0 

Vegetation Index WVWI SD 0 

Vegetation Index SAVI range 0 

Vegetation Index SAVI mean 39 

Vegetation Index SAVI SD 0 

Vegetation Index NDVI range 0 

Vegetation Index NDVI mean 50 

Vegetation Index NDVI SD 0 
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Abstract 

Salt marsh vegetation extent and zonation are often controlled by bottom up 

factors determined in part by the frequency and duration of tidal inundation. Tidal 

inundation during remote-sensing mapping of salt marsh resources can alter the 

resulting image classification. The degree of this impact on mapping with very high 

resolution (VHR) imagery has yet to be determined. This paper utilizes 

topobathymetric light detection and ranging (LiDAR) data and bathtub models of a 

tidal stage at 5 cm intervals from mean low water (MLW) to mean high water (MHW) 

and determines the impact of tidal variation in salt marsh mapping within Jamaica 

Bay, NY, USA. Tidal inundation models were compared with the Worldview-2 and 

Quickbird-2 imageries acquired at a range of tidal stages. The modeled inundation of 

normalized difference vegetation index and smooth cordgrass (S. alterniflora) maps 

was compared from MLW to MHW. This paper finds that at 0.6 m above MLW, only 

3.5% of S. alterniflora is inundated. This paper demonstrates a modeling approach 

integrating VHR satellite remote-sensing data and topobathymetric LiDAR data to 

address tidal variation in salt marsh mapping. The incremental modeling of the tidal 

stage is important for understanding areas most at risk from sea level rise and informs 

management decisions in accordance with this. 
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I. INTRODUCTION 

 

Salt marshes are an important coastal ecosystem providing habitat, 

denitrification, carbon sequestration, and coastal resilience by reducing the impacts of 

wave energy and storm surge and by their process of adaption to sea level rise (SLR) 

[1], [2]. Salt marsh losses in Jamaica Bay, an estuary within New York City, are driven 

primarily by nutrient enrichment, an increased tidal range, a lack of sediment, and 

increased sulfide concentrations [3]. Jamaica Bay has a long history of salt marsh 

mapping and monitoring using remote sensing. Salt marshes mapped from aerial 

photographs acquired in the 1950s demonstrated significant losses [4]. Since 2003, 

very high-spatial-resolution satellites have been used to monitor and determine the 

change in the bay [5], [6]. An object-oriented classification using the Worldview-2 

satellite imagery has been used to map the salt marsh extent and the change caused by 

a storm event and restoration activities in the bay [6].  

The accurate determination of the salt marsh extent and the change by remote 

sensing is impacted by the tidal stage at the time of image acquisition. When mapping 

a vegetation change in tidal environments, differences in the tidal stage can lead to an 

erroneous identification of change [7]. The influence of the tidal stage on salt marsh 

vegetation mapping is a topic that has been addressed infrequently in the literature. 

Salt marsh vegetation zonation and extent are dependent on many factors driven by 

tidal inundation. For example, the lower bound of the growth range of smooth 

cordgrass, S. alterniflora, is limited by physical stress from abiotic factors [8]. A tidal 

stage above mean low water (MLW) can reduce the extent of vegetation mapped; an 

imagery acquired above mean highest high water corresponded with a 40% reduction 
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in the mapped vegetation extent [9]. That study led to the recommendation that when 

mapping salt marsh, an imagery should be acquired within 0–0.6 to a maximum of 0.9 

m above MLW. These guidelines have been applied to the Coastal Change Analysis 

Program protocol and other salt marsh mapping projects [10], [11]. The spatial 

resolution of remote-sensing data can influence many aspects of image classification 

and the coastal change analysis [12]. A variety of high-spatial-resolution imageries, 

including Worldview-2, Quickbird-2, orthoimagery, and historic imageries, have been 

utilized for mapping salt marshes [13]. Therefore, understanding the impact of the 

tidal stage on a very high resolution (VHR) imagery in coastal mapping is necessary. 

In this study, impact is defined as an increase in misclassification of salt marsh 

vegetation due to tidal inundation muting spectral differences. The study quantifies 

this as those areas with normalized difference vegetation index (NDVI) < 0 in the 

imagery and inundated areas in the models.  

There have been several approaches to quantifying and accounting for tidal 

uncertainty in remote-sensing classifications. In situ measurements and the Quickbird-

2 satellite-obtained spectra have been found to be similar despite a variety of tidal 

stages [14]. For a medium-resolution imagery, a digital elevation model (DEM) in 

combination with a satellite imagery has been used to quantify and limit the impact of 

the tidal stage on vegetation mapping [15]. In this paper, we explored a novel 

approach to understand the impact of the tidal stage on the vegetation extent using 

VHR satellite remote-sensing data and topobathymetric light detection and ranging 

(LiDAR). 
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LiDAR is often incorporated into salt marsh classifications with the creation of 

LiDAR-derived vegetation indices [16] or LiDAR-derived elevation to augment 

spectral classifications [17]. The limited penetration of LiDAR into the salt marsh 

canopy can result in a bias toward higher elevations [18]. However, areas of dense 

canopy are minimally impacted by tidal inundation unless completely submerged. This 

makes the bias toward including the salt marsh vegetation height in ground elevations 

within salt marshes a minor concern for this paper. 

Bathtub models are a method to determine inundation. A DEM is used to 

determine whether a pixel is inundated or not at a certain tidal stage or flood elevation. 

Additional nuance can be added by adjacency rules, i.e., a number of adjacent pixels 

must be inundated before a pixel is considered inundated [18]. Bathtub models have 

been used to determine SLR [19] and storm surge impacts [20] for coastal landscapes. 

Inundation has been shown to increase with the spatial resolution of the DEM [19]. 

Local tides can influence these predictions, and tidal variation can be included in 

bathtub models by converting elevation data to a tidal datum with software, such as 

VDatum [21]. Bathtub models are commonly used to assess SLR and have yet to be 

utilized to understand tidal impacts on VHR salt marsh mapping. 

This paper seeks to understand the relationship between the elevation and the 

salt marsh vegetation extent within Jamaica Bay by modeling the tidal stage impact on 

NDVI and classified S. alterniflora from MLW to mean high water (MHW). This 

paper addresses the following questions: 1) if VHR satellite imagery reduced the error 

introduced by tidal stage when mapping salt marsh and 2) how the impact of tidal 

stage varies between Jamaica Bay’s salt marsh islands? 
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II. METHODS  

 

A. Study Area  

Jamaica Bay is an estuary within the boundaries of the New York City 

boroughs of Brooklyn and Queens. The majority of the bay’s undeveloped areas have 

been managed by the National Park Service since 1972. The bay’s tidal range has 

increased, and high water across the Bay is increased by 40–52 cm, due to the 

expansion of Breezy Point, a barrier spit to the south, dredging for navigation, and 

other anthropogenic alterations [22]. From 2007 to 2012, there was a 3-cm mean 

increase in the tidal range within the bay [23]. Alterations to the bay have resulted in 

an increase in volume coinciding with a decrease in surface area [24]. The bay’s salt 

marsh islands are a combination of restored and natural salt marshes. Restoration in 

the bay began in 2003 with thin-layer deposition, a process of depositing sediment 

from channel deepening, onto the marsh surface followed by revegetation [25]. 

B. Satellite Imagery 

This paper used Worldview-2 imagery data collected on September 12, 2012 at 

4:25 P.M. and September 9, 2013 at 4:26 P.M. (UTC) (Table I). The Worldview-2 

sensor is composed of eight multispectral bands, including Coastal Blue, Blue, Green, 

Yellow, Red, Red Edge, near-infrared (NIR)-1, and NIR-2. Worldview-2 data had a 

multispectral spatial resolution of 2 m and a panchromatic resolution of 0.5 m. The 

study also used the Quickbird-2 imagery which is composed of four spectral bands, 

including Blue, Green, Red, and NIR. Quickbird-2 has a multispectral spatial 

resolution of 2.16 m and a panchromatic spatial resolution of 0.65 m. The tides at the 

time of imagery acquisition were verified with the tidal station at Sandy Hook, NJ, 

USA, with MLW of −0.799 m North American Vertical Datum 1988 (NAVD 88) [26] 
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(Table I). United States Geological Survey (USGS) tidal stations 01311875 and 

01311850 located at Gil Hodges Memorial Bridge and Inwood Marina, respectively, 

were used to understand the tidal variation across Jamaica Bay [27], [28] (Fig. 1). The 

2013 Worldview-2 imagery was coregistered to the LiDAR generated DEM. All other 

satellite imageries used in the analysis were coregistered to the 2013 Worldview-2 

imagery (Table I). 

C. Object-Oriented Classification 

An object-oriented classification approach was used, which begins with 

segmentation, i.e., dividing an image into spectrally similar patches. Objects were then 

classified giving a greater geospatial context and addressing many limitations of pixel-

based methods [29]. Jamaica Bay’s salt marsh islands were segmented using mean 

shift segmentation at multiple scales; the random forest classifier and a diverse set of 

parameters, including neighborhood differences, gray level co-occurrence matrix 

texture, and vegetation indices, were used in the classification [5]. The classification 

scheme included nine classes, Spartina alterniflora, Patchy S. alterniflora, 

Phragmites, upland, mudflat, water, high marsh, wrack, and sand. The Patchy S. 

alterniflora classes were those objects with 10%–49% cover, and S. alterniflora were 

those segments with ≥50% vegetation cover. A multiscale segmentation approach was 

implemented using local Moran’s I and variance to determine which objects were 

under- and oversegmented and resegment those objects at a more appropriate scale 

[30]. The classification excluded DEMs to remain independent of the bathtub models 

which used the topobathymetric LiDAR. The classification results from September 19, 

2013 Worldview-2 data were used as a baseline for analysis due to a tidal stage near 

MLW, and temporal proximity to the topobathymetric LiDAR collection date. 
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D. Topobathymetric LiDAR Data  

Topobathymetric LiDAR systems collect both terrestrial and nearshore 

elevation simultaneously. The topobathymetric data were collected from January 8, 

2014 to May 22, 2014 and achieved submerged accuracy and terrestrial vertical 

accuracy of 0.062 and 0.214 m, respectively [31]. The LiDAR point cloud data were 

binned and averaged into a DEM with 0.5-m spatial resolution to match the spatial 

resolution of the pan sharpened Worldview-2 data. 

E. Tidal Analysis  

Elders Point East, a salt marsh island in the northern portion of the study area 

(Fig. 1), was analyzed due to the overlap of imagery collected at variable tidal stages 

across 2012–2013. The site underwent salt marsh restoration in 2006, adding elevation 

and salt marsh vegetation [3]. The southern point of the island was used as a subset to 

analyze the tidal impacts on a restoration salt marsh within Jamaica Bay. Visual tidal 

differences between the dates are evident, with higher tides resulting in less visible 

vegetation (Fig. 2). The Worldview-2 image acquired on September 19, 2013 

represented a non-inundated scene with the tidal stage within 0–0.6 m of MLW (Table 

I).  

NDVI was used as a proxy for the vegetation extent. A threshold of NDVI > 0 

was applied to each of the images, all areas with NDVI > 0 were determined to be 

potentially vegetated. Imageries from 2012 and 2013 were included in the analysis as 

the area experienced a little change. The largest land cover change from 2012 to 2013 

for Elders Point East was the reduction in areas classified as wrack [6]. This should 

have minimal impact due to the inclusion of wrack in the NDVI threshold.  
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Stony Creek, a salt marsh island in the western side of the bay (Fig. 1), was 

selected to compare the NDVI of objects derived from Worldview-2 imagery data as 

vegetated at two extents of tidal inundation. Two dates of the Quickbird-2 and 

Worldview-2 imageries were used to explore the impact of the tidal stage on areas 

classified as S. alterniflora in 2013. This NDVI was differenced with two dates of the 

Quickbird-2 imagery acquired at 70.1 cm above MLW on September 28, 2013 and 

124.4 cm above MLW on September 7, 2012. The differenced NDVIs were compared 

across three elevation ranges: 1) objects inundated in both the images (34.5–70.1 cm); 

2) objects inundated only on September 28, 2013 (70.1–124.4 cm); and 3) non-

inundated objects (>124.4 cm). 

F. Bathtub Modeling of S. alterniflora  

The bathtub models of the tidal stage went from MLW to MHW at 5-cm 

intervals to correspond with the growth range of S. alterniflora. The growth range of 

Spartina alterniflora varies in the region with a lower bound above MLW and an 

upper bound around MHW [32]. VDatum was used to convert the LiDAR data from 

NAVD 88 to MLW. VDatum has been evaluated for use at the study site finding in situ 

and modeled elevations differed by a mean of 6.4 cm [32]. However, the conversion 

did introduced areas of no data to several marsh islands due to the VDatum’s 

conversion extent. The study used only salt marsh islands which were completely 

converted into the MLW tidal datum (Fig. 1). Salt marsh islands with more high-marsh 

and upland areas, such as JoCo and Black Bank, were not fully converted and 

therefore excluded. The tidal surfaces were utilized to simulate the impact of a tidal 

stage on the classified vegetation and the NDVI of the 2013 Worldview-2 imagery. 

G. Statistical Analysis  
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The RMSE of the tidal inundation bathtub modeling was calculated using 

comparisons of imagery collected at a range of tidal stages. The RMSE quantifies the 

level of uncertainty in this approach to modeling tidal stage impact on vegetation 

mapping. 

Linear regression was used to test the modeled tidal inundation’s impact on the 

percentages of S. alterniflora and NDVI. The interaction between tidal stage elevation 

and islands was tested to determine if the slopes of the islands were homogenous. An 

analysis of covariance (ANCOVA) further explored the relationships between islands 

with Tukey’s Honest Significant Difference. A t-test was also conducted comparing 

the modeled response of classified S. alterniflora and NDVI > 0. 

The imagery analysis of Stoney Creek salt marsh used a one-way analysis of 

variance (ANOVA) to understand differences in the means between the three 

elevations classes of vegetation: 1) inundated in both the images (34.5–70.1 cm); 2) 

inundated on September 28, 2013 (70.1–124.4 cm); and 3) not inundated (>124.4 cm). 

A Tukey’s Honest Significant Difference was then computed to determine 

which of these stages were significantly different for the September 28, 2013 and 

September 7, 2012 Quickbird-2 images. 

III. RESULTS 

 

A. Image Classifications for Salt Marsh Mapping  

The 2013 salt marsh classification included all tidally influenced areas of the 

salt marsh islands (Fig. 3). The 2013 classification with and without a DEM was 

trained with the same data. The out of box overall accuracy, a subset of samples 

withheld during each iteration of the classifier, was compared finding overall 

accuracies of 94.4% and 92.5% with and without a DEM, respectively. The 
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classification with a DEM achieved a 92.81% overall accuracy with an independent 

accuracy assessment (Table II) [5]. 

B. Tidal Stage  

The impact of the tidal stage on the NDVI for the Elders Point East site was 

determined for five dates of imagery across a tidal range of 162 cm. In the subset, 

areas with an NDVI > 0 were reduced by 82% (Table III). It is important to note that 

while the September 19, 2013 data included approximately 10 ha with NDVI > 0, only 

4.415 ha was classified as vegetation for the imagery at the greatest inundation (Table 

III). At a tidal stage of 124.4 cm above MLW, there was a ∼6-ha reduction of areas 

above the NDVI threshold. However, mudflat accounted for much of this reduction, 

and only 20.3% of areas classified as low marsh vegetation were inundated. The 70.1-

cm above MLW image demonstrates a very little loss of either NDVI or vegetation. 

The imagery collected at 196.4 cm above MLW data had the greatest difference 

between actual and modeled tidal impact on NDVI. The imagery collected at 83.4 cm 

had a large difference too due to being outside the growing season. The RMSE was 

0.9003 with all data included or 0.2364 without the October 18, 2012 and December 

30, 2012, as those data were outside this study’s target tidal range (MLW–MHW) and 

growing season, respectively 

C. Bathtub Modeling 

Bathtub modeling of the tidal stage at 5-cm intervals was applied to an NDVI > 

0 layer and a S. alterniflora classified layer for a subset of salt marsh islands. Bay 

wide inundation of the salt marsh vegetation was minimal before 0.6 m above MLW 

(Fig. 4). However, the salt marsh islands, including Black Wall, Rulers Bar, and 

Pumpkin Patch, had ∼20% of the S. alterniflora inundated at 0.6 m above MLW; these 



 

66 

  

salt marshes had significantly different inundation regimes than other salt marshes (see 

Fig. 4 and Table IV). A multiple linear regression of bathtub modeled percentage of 

inundation found that the tidal stage and the island had a significant impact on percent 

vegetation across the salt marsh [F(11, 318) = 79.3, p < 0.001, and R2 = 0.72] (Table IV). 

A multiple linear regression of the percentage of inundated NDVI areas found that the 

tidal stage and islands had a significant impact on the percentage of vegetation 

[F(11,318) = 201.5, p < 0.001, and R2 = 0.87] (Table IV). The tidal impact on the NDVI 

of restoration salt marshes was less than natural salt marshes [F(1, 328) = 15.53, p < 

0.001, and R2 = 0.042], given R2 that is a very little of the variability was explained 

due to restoration. However, linear regression of S. alterniflora saw no significant 

difference between the restoration and natural salt marsh response [F(1, 328) = 0.1085, p 

= 0.742, and R2 = 0.0]. The tidal inundation was variable across the bay’s salt marsh 

islands with many having significantly different modeled responses to the tidal stage 

(Fig. 4). The comparison of the NDVI with S. alterniflora models found that the 

NDVI was more impacted by the tidal stage than the S. alterniflora layer (t650 = 2.47 

and p < 0.01). 

The NDVI of areas classified as S. alterniflora was compared between two 

tidal stages at Stony Creek. The results showed that the NDVI of the S. alterniflora 

objects was significantly different for the September 28, 2013 imagery (70.1 cm above 

MLW) [F(2, 15280) = 343.6 and p < 0.001]; vegetated areas from 34.5–70.1 cm and 

those >70.1 cm were significantly different. However, areas between 70.1 and 124.4 

cm and those above 124.4 cm MLW were not different. When comparing the 

Worldivew-2 and Quickbird-2 data on September 7, 2012, all tidal levels were 
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significantly different [F(2, 15265) = 159.4 and p < 0.001]. Including the objects with 

elevation between 70.1 and 124.4 cm and those above 124.4 MLW. Inundated areas 

were not reduced to zero NDVI and they were impacted by the tidal stage. 

S. alterniflora height increases with the depth of tidal inundation due to 

increased nutrients and reduced edaphic stress [34]. The relationship between S. 

alterniflora and tidal inundations gives the possibility that these bathtub models are 

applicable between study sites. The relationship between the tidal range and the lower 

bound of S. alterniflora has been quantified as  

zmin = 0.7167 ∗ (TidalRange) − 0.0483[35]. 

At the tidal station located at Sandy Hook, NJ, USA, the range from MLW to MHW is 

1.433 m, which results in a lower boundary of S. alterniflora growth at 45.4 cm above 

MLW or 97.87 cm below MHW. This range matches the bay wide modeled inundation 

of S. alterniflora. VDatums MHW and MLW grids were used to determine local 

estimates of growth range for each salt marsh island finding only a 3.5-cm maximum 

difference between the eastern and western side of the bay. At or below the lower 

growth range of S. alterniflora is an ideal tidal stage for image acquisition to ensure no 

impacts from tidal inundation at this site. 

IV DISCUSSION 

 

The model was able to capture the impact of inundation, with an RMSE of 

0.2364 for the Elders Point East tidal site for the VHR imagery acquired between 

MLW and MHW in the growing season. The inundation of vegetation varied by island 

throughout Jamaica Bay, suggesting site characteristics, such as restoration status, 

available data, tidal regime, and vegetation type should be considered when 
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determining an appropriate tidal stage. The models and image analysis demonstrated 

that the tidal stage impacts restoration salt marshes less. 

In Jamaica Bay, algae deposited on beaches and mudflats is common due to 

eutrophic conditions and could add to misclassifications when mapping salt marsh. 

Algal blooms are common within the bay during the late spring and summer months 

[36]. Algal blooms result in algal deposition on mudflats which can be misclassified as 

vegetation due, in part, to the strong NIR value of the algae [7]. Algal mats on 

mudflats and beaches within Jamaica Bay create uncertainty in change between land 

cover classes and are difficult to include in the analysis due to their transience. The 

analysis of Elders Point East suggested that at 70.1 cm above MLW, the tidal stage had 

a reduction (1/2 hectares) in areas above the NDVI threshold, and a little S. 

alterniflora was impacted. However, due to the restoration activity on the island, this 

model was not representative of other salt marsh islands in the bay (Table IV). Higher 

tidal stages can reduce mudflats with seaweed deposition, however bay wide there was 

no single appropriate tidal stage for this application. 

Coregistration is another source of error. The fine resolution imagery requires 

careful registration or risks overestimating tidal inundation. The georegistration 

achieved an appropriate level of agreement between the imagery and the DEM. The 

registration error would not impact the comparisons between salt marsh islands. 

Registration errors would be systematic throughout the 2013 scene. The temporal 

proximity of the LiDAR and VHR imagery acquisitions is another source of error. 

From 2007 to 2009 and from 2009 to 2010, Elders Point East had significant elevation 

change, including increases and decreases of >30.48 cm [37]. The 1–2 years between 
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image and LiDAR acquisitions is another potential source of error. These sources of 

error and LiDAR accuracy are a component of the RMSE of the imagery analysis. 

The conversion to MLW datum was necessary for the bathtub models to 

capture the variation in the tidal regime in the bay. However, tidal variation alone does 

not account for modeled variation between the responses of salt marsh islands to 

inundation. The model overestimated inundation. This could be mitigated with the 

inclusion of a digital surface model to provide an indicator of the complete submersion 

of vegetation and the use of a minimum bin method for DEM creation. The analysis at 

Stoney Creek found differences between the NDVI of inundated and non-inundated S. 

alterniflora. Inundated areas can still be mapped as vegetation, though it is likely that 

spectra will be altered leading to more variability in the spectral signature for the S. 

alterniflora vegetation class. 

The impact of the tidal stage on the VHR mapping of S. alterniflora was 

similar to past estimates with a medium resolution imagery [8]. The image analysis 

method is preferred for determining local tidal impacts. However, the acquisition of 

several VHR images is often prohibitively expensive, making the modeling approach 

reasonable for understanding local tidal characteristics. The tidal impact on S. 

alterniflora was varied by a salt marsh island. These differences were due to Jamaica 

Bay’s tidal variability, vegetation characteristics, and restoration actions. S. 

alterniflora marshes have an area of taller high biomass vegetation along the marsh 

edge [38]. The finer spatial resolution would pick up some of these differences 

between edge and interior salt marsh. In addition, ground elevation was used in this 

analysis not accounting for differences in the vegetation height. These taller edge areas 
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were less impacted by canopy inundation than shorter interior S. alterniflora. The use 

of the VHR imagery did not, on its own, limit the impact of the tidal stage on the 

mapped vegetative extent. Salt marsh mapping requires accurate measure of fine-scale 

changes in land cover; therefore, even minor tidal impacts are of concern and should 

be quantified. 

Previous classifications and the change analysis of the study site (2003–2013) 

used imagery acquired at a range of tidal stages [6]. The tidal stage of the 2003 

imagery was 78.1 cm and outside the recommended 60 cm of MLW (Table I). The 

2008 and 2012 data were 57.0 and 22.2 cm, respectively. The bay wide bathtub models 

corresponding with image acquisitions, rounded up to the nearest 5-cm increment, 

found an estimated 9.5%, 3.5%, and 0.008% of S. alterniflora was inundated in 2003, 

2008, and 2012, respectively. This analysis suggests that S. alterniflora was 

underestimated in 2003. However, S. alterniflora in the 2003 classification was 73.31-

ha extent which was similar to the 2008 classification which found 73.84 ha [6]. This 

coincided with the restoration of Elders Point East which added significant areas of S. 

alterniflora. Variable tidal stages during acquisition are one reason to encourage a 

temporally extensive change analysis, when determining salt marsh change. In 

addition, a post classification change analysis is preferable in salt marsh environments 

to limit differences in spectra for a single species due to inundation. 

Determining the salt marsh extent and tidal regimes are important aspects of 

understanding the risk that SLR poses to a salt marsh ecosystem. The rate of global 

mean SLR from 1993 to 2010 has doubled when compared with the 1901–1990 

observed rates and is likely to continue to increase due to global warming [39]. 
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Regional SLR in the mid-Atlantic is projected to be between 30 and 50 cm greater 

than global SLR by 2100 [40]. SLR is a major concern for Jamaica Bay. A 30-cm SLR 

scenario is projected to cause extensive salt marsh loss in the western portion of the 

bay [41] and could be further exacerbated by eutrophication [42], [43]. This tidal 

inundation analysis can be utilized to understand the areas of potential salt marsh loss 

within Jamaica Bay. 

V. CONCLUSION 

 

This paper demonstrates the importance of assessing the tidal stage and 

characteristics when mapping salt marsh extent and change. The impact on imagery is 

unique to the local tidal regime. The analysis demonstrated that restored salt marsh 

vegetation was less impacted at higher tidal stages than expected, and the bathtub 

model performed worse at higher tidal stages due to below canopy inundation. The 

bathtub models identified areas of uncertainty when an imagery was acquired at a 

particular tidal stage. The study illustrates one application for the topobathymetric 

LiDAR in coastal mapping. The tidal response across the salt marsh islands of Jamaica 

Bay varied greatly due to the tidal range, elevation, restoration, and vegetation extent. 

The high variability of responses makes it clear that to accurately understand 

degrading salt marsh islands within Jamaica Bay, a tidal stage below 45.4 cm (relative 

to MLW) is preferred. However, there is no guarantee of consistent low-tidal stage 

imagery. Therefore, it is important to understand the potential error due to the tidal 

stage. When considering the impact of a tidal stage from 60 to 90 cm above MLW for 

the entirety of the bay, there was only a small amount of S. alterniflora inundated. 

However, when considering a 60–90-cm tidal stage on a particular salt marsh islands, 
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such as Duck Point, nearly all vegetation was inundated. The analysis demonstrates 

several lessons for mapping salt marsh vegetation.  

1) Tidal stage is even more a concern for VHR coastal mapping due to the 

desire for fine-scale measurements.  

2) Tidal stage variation throughout a study site can be modeled improving the 

estimates of uncertainty.  

3) When mapping S. alterniflora, the lower growth range of the species can be 

used to ensure limited impact and allow for an understanding of tidal impacts 

in microtidal areas. 
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TABLE II 

TABLE II: ACCURACY ASSESSMENT CONDUCTED WITH STRATIFIED RANDOM SELECTION OF 765 POINTS. 

PRODUCERS, USERS AND OVERALL ACCURACY WERE CALCULATED FOR THE 2013 CLASSIFICATION ERROR! 

REFERENCE SOURCE NOT FOUND.. LAND COVER CLASSES ARE ABBREVIATED AS MUD=MUDFLAT, SAND, 

WK=WRACK, SA=S. ALTERNIFLORA, PSA= PATCHY S. ALTERNIFLORA, HM= HIGH MARSH, PHG= 

PHRAGMITES, WTR= WATER, UP= UPLAND, UA = USERS ACCURACY, PA = PRODUCERS ACCURACY, 
OA=OVERALL ACCURACY 

CLASS MUD SAND WK  SA PSA HM PHG WTR UP UA 

MUD 84 1 0  0 0 0 0 0 0 98.8 

SAND 3 77 3  0 1 0 1 0 0 90.5 

WK 0 5 76  0 0 0 4 0 0 89.4 

SA 0 0 0  81 0 3 1 0 0 95.2 

PSA 2 0 0  2 79 0 2 0 0 92.9 

HM 0 0 0  5 0 79 1 0 0 92.9 

PHG 0 0 6  0 0 4 70 0 5 82.3 

WTR 0 0 0  0 0 0 0 85 0 100.0 

UP 0 0 0  0 0 0 6 0 79 92.9 

PA 94.3 92.7 89.4  92.0 98.7 91.8 82.3 100.0 94.0 OA: 92.8 

 
TABLE III: MODELED AND CLASSIFIED IMPACT OF TIDAL STAGE ON NDVI 

FOR ELDERS POINT EAST. 
 

DATE TIME 

(UTC) 

ABOVE 

MLW 

(CM)* 

NDVI 

> 0 

(HA) 

MODELED 

INUNDATION 

IMPACT (HA) 

MODELED 

VEGETATION 

INUNDATION  

(%) 

9/19/2013 4:26 

PM 

34.5 10.385 10.3762 0 

09/28/2013 3:02 

PM 

70.1 9.9089 9.5283 0.0014 

12/30/2012 4:16 

PM 

83.4 7.2796 8.1561 -- 

09/07/2012 3:07 

PM 

124.4 4.2511 4.1002 0.2032 

10/18/2012 3:14 

PM 

196.4 1.7977 0.0323 -- 

*MLW AS DETERMINED BY THE NOAA TIDAL GAGE AT SANDY HOOK, NJ 
 

TABLE I. TIDAL STAGE AT TIME OF WORLDVIEW-2 (WV-2) AND QUICKBIRD-2 (QB-2) IMAGE 

ACQUISITION FOR THE DATA UTILIZED 

 
DATE TIME 

(UTC) 

SENS-

OR 

MLW 

SANDY 

HOOK 

ERROR! 

REFEREN

CE 

SOURCE 

NOT 

FOUND. 

(CM) 

MLLW 

SANDY 

HOOK 

ERROR! 

REFERE

NCE 

SOURCE 

NOT 

FOUND. 

(CM) 

MLLW 

INWOODER

ROR! 

REFERENC

E SOURCE 

NOT 

FOUND. 

(CM) 

MLLW 

ROCK- 

AWAY  

INLETERROR

! 

REFERENCE 

SOURCE NOT 

FOUND. 

(CM) 

RMSE*** 

9/10/2003 15:34 QB-2 78.1* 84.0 NA NA - 

9/15/2008 16:00 QB-2 57.0 62.9 54.0  27.7 - 

09/15/2012 16:25 WV-2 22.2 28.1 6.7 0.1 0.135 

09/19/2013 16:26 WV-2 34.5 40.4 20.4 6.4 0.223 

09/07/2012 15:07 QB-2 124.4** 130.3 157.0 152.0 0.1485 

10/18/2012 15:14 QB-2 196.4** 202.3 204.5 182.3 1.120 

12/30/2012 16:16 QB-2 83.4* 89.3 75.0 51.8 0.123 

09/19/2013 15:01 QB-2 92.7** 98.6 77.4 58.8 - 

09/28/2013 15:02 QB-2 70.1* 76 95.7 97.2 0.128 

 

 * EXCEEDING THE RECOMMENDED 0.0-0.6 M ABOVE MLW 

** EXCEEDING THE 0.9 M ABOVE MLW 

***RESULTS OF CO-REGISTRATION IN M. 
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TABLE  IV. ANCOVAS RESULTS COMPARING INUNDATION BETWEEN ISLANDS 

FOR S. ALTERNIFLORA AND NDVI. 
 

ISLAND NAME ISLAND 

NAME 

VEGETA

TION (P 

VALUE) 

NDVI > 

0 (P 

VALUE) 

RESTORATION 

SALT MARSH 

BLACK WALL 

(BW) 
BIG EGG < 0.01 1.00 YES 

BROAD CREEK 

(BC) 

BIG EGG 0.08 1.00 NO 

CANARSIE 

POL (CP) 
BIG EGG 1.00 0.39 NO 

DUCK POINT BIG EGG <0.05 <0.01 NO 

EAST HIGH BIG EGG 0.21 0.94 NO 

ELDER POINT 

EAST (EPE) 
BIG EGG <0.05 <0.05 YES 

ELDER POINT 

WEST (EPW) 

BIG EGG <0.01 <0.05 YES 

PUMPKIN 

PATCH (PP) 
BIG EGG <0.01 <0.01 NO 

RULERS BAR BIG EGG < 0.01 0.23 YES 

STONY CREEK BIG EGG 1.00 1.00 NO 

BROAD CREEK BW <0.01 0.99 NO 

CP BW <0.01 1.00 NO 

DUCK POINT BW 070 <0.01 NO 

EAST HIGH BW <0.01 1.00 NO 

EPE BW <0.01 0.57 YES 

EPW BW <0.01 0.57 YES 

PP BW 1.00 <0.01 NO 

RULERS BAR BW 0.99 0.94 YES 

STONY CREEK BW <0.01 0.98 NO 

CP BC 0.27 0.66 NO 

DUCK POINT BC <0.01 <0.01 NO 

EAST HIGH BC 1.0 0.99 NO 

EPE BC 1.0 0.10 YES 

EPW BC 0.91 0.10 YES 

PP BC <0.01 <0.01 NO 

RULERS BAR BC <0.01 0.45 YES 

STONY CREEK BC <0.05 1.00 NO 

DUCK POINT CANARSIE 

POL (CP) 

<0.01 <0.01 NO 

EAST HIGH CP 0.54 0.99 NO 

EPE CP 0.12 0.99 YES 

EPW CP <0.01 0.99 YES 

PP CP <0.01 <0.01 NO 

RULERS BAR CP <0.01 1.00 YES 

STONY CREEK CANARSIE 

POL 
0.99 0.42 NO 

EAST HIGH DUCK POINT <0.01 <0.01 NO 

EPE DUCK POINT <0.01 <0.01 YES 

EPW DUCK POINT <0.01 <0.01 YES 

PP DUCK POINT 0.86 <0.01 NO 

RULERS BAR DUCK POINT 0.28 <0.01 YES 

STONY CREEK DUCK POINT <0.05 <0.01 NO 

EPE EAST HIGH 1.00 0.67 YES 

EPW EAST HIGH 0.70 0.67 YES 

PP EAST HIGH <0.01 <0.01 NO 

RULERS BAR EAST HIGH <0.01 1.00 YES 

STONY CREEK EAST HIGH 0.12 0.95 NO 

EPW EPE 0.98 1.00 YES 

PP EPE <0.01 <0.01 NO 

RULERS BAR EPE <0.01 0.99 YES 

STONY CREEK EPE <0.05 <0.05 NO 

PUMPKIN 

PATCH 

EPE <0.01 <0.01 NO 

RULERS BAR EPW <0.01 0.99 YES 

STONY CREEK EPW <0.01 <0.05 NO 

RULERS BAR PP 1.00 <0.01 YES 

STONY CREEK PP <0.01 <0.01 NO 

STONY CREEK RULERS BAR <0.01 0.25 NO 
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Fig. 1. (A)  The locations of tidal stations used in this study including USGS 

tidal station 01311875 on Gil Hodges Memorial Bridge, USGS tidal station 

01311850 at Inwood Marina, and NOAA tidal station 8531680 on Sandy 
Hook, NJ. (B) The map displays a subset of salt marsh islands denoted by 

pseudo color that were analyzed in this study. The background display is a 

topobathymetric DEM of Jamaica Bay, New York.  
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Fig. 2.  Visualization of tidal stage impact on salt marsh vegetation, Worldview-2 
data acquired in September 16, 2012 and Quickbird-2 data acquired in 

September 9, 2012, October 18, 2012, and September 28, 2013. The maps show 

vegetation inundation in relation to tidal stage at the time of image acquisition. 
Background panchromatic display is a hillshade from Topo-bathymetric LiDAR. 

The elevation profile across the salt marsh island demonstrates the salt marsh 

island’s elevation gradient. 
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Fig. 3.  The results of the object-oriented classification of salt marsh 

vegetation in Jamaica Bay using Worldview-2 imagery acquired September 

19, 2013. 
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Fig. 4.  The figure illustrates the modeled % of salt marsh vegetation 
inundated at tidal stages in relation to MLW for each salt marsh island and 

the entirety of Jamaica Bay. The vegetation inundation was determined using 

the object-oriented classification of S. alterniflora and bathtub models at 5 

cm intervals. Island inundation regimes varied widely across the bay. 
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Abstract: 

Salt marshes are a frontline of climate change providing a bulwark against sea 

level rise (SLR), an interface between aquatic and terrestrial habitat, important nursery 

grounds for many species, a buffer against extreme storm impacts, and vast blue 

carbon repositories. However, salt marshes are at risk of loss from a variety of 

stressors such as SLR, nutrient enrichment, sediment deficits, and herbivory. 

Determining the dynamics of salt marsh change with remote sensing requires high 

temporal resolution due to the spectral variability caused by disturbance, tides, and 

seasonality. Time series analysis of salt marshes can broaden our understanding of 

these changing environments. In this study, Google Earth Engine (GEE) enabled time 

series of the Landsat archive to be used to determine salt marsh change from 1999 to 

2018 along the mid-Atlantic coast of the United States. These time series were filtered 

by cloud cover and the Tidal Marsh Inundation Index (TMII). The Landsat derived 

TMII correctly identified 10 out of 14 inundated and 148 out of 150 of the non-

inundated test pixel areas. The study analyzed aboveground green biomass in seven 

mid-Atlantic Hydrological Unit Code 8 watersheds. This study revealed that the 

Chincoteague watershed had the highest average loss, and the Eastern Lower 

Delmarva watershed had the largest reduction in salt marsh aboveground green 

biomass from 1999-2018. A comparison of Worldview-2 derived interior mudflats and 

aboveground green biomass estimates found a positive relationship between biomass 

estimates and the area of mudflat within the Landsat test pixel area (F(1165,1)=1316, p < 

0.001) and R2=0.53. This study developed a method for regional analysis of salt marsh 

change and identified at risk watersheds and salt marshes providing insight into 

resilience and management of these ecosystems. 
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1. Introduction 

 

Development of methods for monitoring the response of salt marsh to drivers 

of loss is necessary to improve our ability to understand both the resilience and change 

of these ecosystems. Drivers of salt marsh loss are diverse from replacement by 

mangroves due to increasing temperature (Saintilan et al. 2014; Armitage et al. 2015), 

eutrophication (Deegan et al. 2012), herbivory impacts (Holdredge et al. 2009; 

Silliman & Zieman 2001), and sea level rise (SLR) (Watson et al. 2017). Less than 

half of salt marshes are predicted to keep pace with SLR under the Intergovernmental 

Panel on Climate Change’s (IPCC)  representative concentration pathway 2.6 (Crosby 

et al. 2016). The mid-Atlantic coast is one region where salt marshes are unlikely to 

keep pace with SLR due in part to high projected rates of SLR (Boon 2012) and 

relative SLR due to glacial isostatic adjustment and anthropogenic processes (Sweet et 

al. 2017). Time series analysis of mid-Atlantic salt marshes can improve our 

understanding of current trends and develop the capacity for monitoring future change. 

A variety of remote sensing data have been applied to evaluate salt marsh 

change including very high resolution (VHR) satellite imagery, Landsat, Synthetic 

Aperture Radar (SAR), and aerial imagery (Campbell et al. 2017; Kearney et al. 2002; 

Fu et al. 2017; Watson et al. 2017). Salt marsh time series analysis has been conducted 

using Moderate Resolution Imaging Spectroradiometer (MODIS) data for prograding 

coasts (Zhao et al. 2009), wetland classification using SPOT-5 data (Davranche et al. 

2010), Landsat yearly Normalized Difference Vegetation Index combined with 

tasseled cap values to determine change (Kayastha et al. 2012), aboveground biomass 

time series of S. alterniflora (O’Donnell & Schalles 2016), and Google Earth Engine 
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(GEE) to understand freshwater wetland change (Hird et al. 2017). Recent, time series 

studies have employed all available Landsat images to quantify ecological processes, 

and land-use and land-cover change (Vogelmann et al. 2016; Fu & Weng 2016; 

Pasquarella et al. 2016).  The utilization of GEE to process and derive time series has 

the potential to elucidate the changes these ecosystems are experiencing regionally.  

Estimates of salt marsh change have shown a slowing of loss across the 

Atlantic coast of the USA from 2004 to 2009 with a 0.4 % reduction of estuarine 

emergent vegetation (Dahl & Stedman 2013).  Estimates from specific sites have 

demonstrated extensive losses of salt marsh including Rhode Island, Jamaica Bay, and 

Chesapeake Bay, however these studies evaluated long-term change (Watson et al. 

2017; Campbell et al. 2017; Schepers et al. 2017). Salt marshes composed 

predominantly of S. alterniflora or S. patens in the mid-Atlantic coast are peat 

dominated (Elsey-Quirk et al. 2011). Salt marshes which rely on organic matter to 

build elevation, as opposed to those accreting mostly through sedimentation, such as 

those along the southeast U.S. coast (Morris et al. 2002), may adapt more slowly to 

SLR (Mudd et al. 2004).  

In the mid-Atlantic, SLR is exceeding accretion rates at many locations 

(Crosby et al. 2016). Salt marshes with microtidal ranges and low sediment budget are 

at greater risk from SLR (Roman 2017). The elevated risk to these salt marshes makes 

them the equivalent of canaries in the coal mine; ideal systems for studying and 

monitoring the effect of SLR on salt marsh resilience. Loss of back-barrier salt 

marshes also has implications for the entire barrier island system. Barrier islands are 

predicted to follow a runaway transgression model in which SLR drives salt marsh 
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drowning causing an increase in the back bay tidal prism and less sediment reaching 

the barrier beach, which results in additional erosion and migration of the barrier 

island (FitzGerald et al. 2008). However, the opposite relationships has been observed 

in the mid-Atlantic barrier islands where localized drivers of barrier island migration 

have been suggested (Deaton et al. 2017). Landsat’s global and temporally-rich 

archive is the ideal data source for monitoring the persistence of salt marshes across 

the mid-Atlantic with the potential to expand these methods.  

Remote sensing of salt marsh is prone to time series outliers due to tidal 

inundation, extreme water events, and atmospheric anomalies. However, with the use 

of spectral indices tidal inundation events can be filtered (O’Connell et al. 2017). The 

tidal stage at the time of image acquisition can directly impact the extent of salt marsh 

vegetation in Landsat imagery (Jensen et al. 1993) and in VHR imagery due to low 

marsh being submerged at high tide (Campbell & Wang 2018). Time series outliers 

can alter the attributes and the results of an analysis (Basu & Meckesheimer 2007). 

Therefore, the effect of tidal outliers is a concern in salt marsh environments. The tidal 

marsh inundation index (TMII) has been successfully used to identify inundated pixels 

and improve time series results for MODIS (O’Connell et al. 2017). Additionally, time 

series analysis with season and trend decomposition has been found to be robust to 

noise when detecting change (> 0.1 NDVI) (Verbesselt et al. 2010). In this study, the 

effect of tidal inundation on the time series has been mitigated by the use of filtering 

and seasonal and trend decomposition. 

This study explores the capacity of time series analysis to help understand salt 

marsh dynamics in association with locations of stability, gradual loss, loss driven by 
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disturbance, or a combination of loss and recovery and the sources of change such as 

tidal loss, interior drowning, edge erosion, barrier island migration processes, and 

shifts in vegetation composition. The objectives of this study include: (1) to test the 

TMII for use with Landsat time series; (2) to model the aboveground biomass of mid-

Atlantic salt marshes and show how it changed from 1999 to 2018 and (3) to evaluate 

the salt marsh aboveground biomass estimates with high spatial resolution imagery 

and in situ aboveground biomass estimates. 
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2. Methods 

 

2.1 Study site 

The mid-Atlantic coastal region has a variety of estuaries and bays including 

drowned river valleys such as the Chesapeake and Delaware Bays and barrier island 

lagoon systems such as Great South Bay and Barnegat Bay. Watersheds were used as 

the spatial extents for this study because salt marshes are affected by their watershed’s 

sediment supply (Weston 2014) and nutrient loads (Deegan et al. 2012). The study 

selected USGS Hydrological Unit Code 8, i.e. HUC-8, watersheds covering areas 

including southern New York, New Jersey, Delaware, Maryland, Virginia, and 

Northern North Carolina (Figure 1). The majority of these watersheds are dominated 

by back-barrier lagoon systems with extensive salt marshes. The exception was the 

Tangier watershed within the Chesapeake Bay which is a drowned river valley. The 

Tangier watershed is an area of extensive land loss due to SLR, low sediment load, 

and groundwater withdrawal (Kearney & Stevenson 1991). The dominate salt marsh 

species in these watersheds are S. alterniflora in the low marsh and Juncus gerardii, S. 

patens, Distichlis spicata, and J. roemerianus in the high marsh. Extensive changes in 

the mid-Atlantic are projected from climate change including shifts in salt marsh plant 

composition and extent, displacement of species (Najjar et al. 2000), increases in 

decomposition rates leading to a reduction of organic accretion in the low marsh 

(Crosby et al. 2017), and possible reductions in belowground biomass due to earlier 

senescence of S. alterniflora (Crosby et al. 2015).  

 

2.2 Data 

Landsat 7 and Landsat 8 Tier-1 imagery accessible with GEE were used for the 
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time series analysis. Multispectral Landsat 7 Enhanced Thematic Mapper + (ETM+) 

has a 30 m spatial resolution for bands 1-5 and 7. The panchromatic band 8 has a 15 m 

spatial resolution. Landsat 8 Operational Land imager (OLI) and Thermal Infrared 

Sensor (TIRS) are instruments onboard the Landsat 8 satellite. OLI has a 30 m spatial 

resolution for bands 1-7 and 9. The OLI panchromatic band 8 has the same spatial 

resolution as the ETM+ panchromatic band.  

The selected ETM+ imageries were acquired 7/01/1999 to 4/01/2017. The OLI 

imageries were acquired 3/20/2013 – 7/28/2018. The HUC-8 watersheds are covered 

by Landsat scenes of WRS-2 Path/Row 14/34, 14/33, 13/32, 13/31, 14/32, and 14/35. 

The selection and filtering resulted in ≈144 scenes for most pixels in the study area 

(Figure 2). GEE was used to convert Landsat 7 surface reflectance to Landsat 8 

surface reflectance following the methods in Roy et al. (2016). The converted values 

were then used to calculate vegetation indices utilized in the tidal filtering and random 

forest regression estimating aboveground green biomass (Byrd et al. 2018). Raw time 

series of the spectral indices were computed for each pixel within the defined extent of 

salt marsh and exported from GEE. The spectral indices were converted to 

aboveground green biomass following the methods put forth in Byrd et al. (2018), 

which achieved a RMSE of 310 g m-2 and R2 = 0.59, for calculating aboveground 

biomass with Landsat data. All Landsat 7 and 8 scenes were filtered by cloud cover 

<50%, pixel quality, and a TMII value of >0.2. Landsat 5 data were not utilized due to 

a lack of conversion into Landsat 8 surface reflectance and lack of verification of the 

aboveground green biomass model (Roy et al. 2016; Byrd et al. 2018).  

National Wetland Inventory (NWI) data were used to select estuarine emergent 
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vegetation pixels and VHR satellite imagery to verify the relationship of aboveground 

green biomass estimates and vegetation extent. The spatial resolution excluded areas 

which fell directly within creeks, ditches, and mapped pools, resulting in the removal 

of some partial salt marsh pixels from the analysis. 

 The Worldview-2 imagery was collected on October 11 and October 16, 2016 

for the Chincoteague watershed. This imagery included the entirety of Assateague 

Island. Multispectral Worldview-2 imagery possesses 2.4 m spatial resolution and a 

panchromatic band of 0.46 m. The spectral coverage includes 8 bands ranging from 

coastal blue, blue, green, yellow, red, red edge, to near infrared.  

 

2.3 Time Series Analysis 

NDVI is frequently used in time series analysis including monitoring forest 

disturbance with Landsat (DeVries et al. 2016), determining wetland variability in a 

river delta (Zoffoli et al. 2008), mapping agricultural abandonment across decades 

(Estel et al. 2015), and mapping change in salt marsh environments (Klemas 2011). 

NDVI is an indicator of many aspects of aboveground biomass (Anderson et al. 1993). 

Recent methods for estimating aboveground green biomass in freshwater and salt 

marsh environments have relied on vegetation indices (Byrd et al. 2014; Byrd et al. 

2018). This method allows for the estimation of aboveground green biomass for the 

majority of plants common in the estuarine emergent wetland category of Cowardin et 

al. (1979).  

The R package Prophet was used for time series analysis (Taylor & Letham 

2018). The seasonal-trend decomposition method uses locally weighted regression 

smoother (LOESS) to isolate the seasonality, trend, and noise (Cleveland et al. 1990). 



 

96 

  

The approach has been used for many remote sensing time series studies (Verbesselt et 

al. 2010; Fu & Weng 2016; Zhu et al. 2016) The prophet package was used due to its 

robustness to irregular time series, ability to calculate many time series, and identify 

trends and seasonality. 

 

2.4 TMII 

Many spectral indices such as the Enhanced Vegetation Index share formulas 

between Landsat and MODIS. TMII was developed for MODIS data. This study 

assessed the index for use with Landsat data. NDWIgreen, swir and NDWInir, swir were 

calculated for each salt marsh pixel. The NDWInir, swir was averaged for each month 

across each pixel’s time series for a single sensor. This replaced the rolling average of 

the MODIS TMII which included 44 adjacent time periods (O’Connell et al. 2017). 

Replicating such a rolling average would not be reasonable for our coarse temporal 

resolution. The adapted formulas and the original MODIS formulation are shown 

below.  

 

1) MODIS TMII 

TMII = (1 − (1/e^(0.3 + 16.6 ∗ NDWI4,6 − 25.2 ∗ rolling mean (NDWI2,5))) 

        (O’Connell et al, 2017). 

2) Landsat 7 TMII 

TMII = (1 − (1/e^(0.3 + 16.6 ∗ NDWI4,5 − 25.2 ∗ monthly mean (NDWI2,5))) 

 

3) Landsat 8 TMII 
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TMII = (1 − (1/e^(0.3 + 16.6 ∗ NDWI3,6 − 25.2 ∗ monthly mean (NDWI5,6))) 

 

The resulting index was evaluated at the Sapelo Island phenocam across Landsat 7 and 

Landsat 8 images from WRS-2 Path/Row 16/38 and 17/38 and a date range from 

8/09/2013 to 5/03/2018. The evaluation followed the approach of O’Connell et al. 

(2017).  

 

2.5 Statistical Analysis 

In this study, the time series were analyzed for breakpoints with the Breaks for 

Additive Season and Trend (BFAST) algorithm. The algorithm as implemented in the 

BFASTspatial package for R was used (Dutrieux & DeVries 2014; R Core Team 

2013). The algorithm has been used to successfully detect trends in remote sensing 

imagery (Verbesselt et al. 2010). The algorithm requires a defined stable period to 

which subsequent dates are compared to determine if the new data fits the expected 

time series model. The stable period was defined as 1999-2012. The performance of 

this algorithm was evaluated using the Southern Long Island and the Eastern Lower 

Delmarva watersheds. These disturbances represent deviations from the expected time 

series, and could correspond with disturbance events of >30 m scale including 

Hurricane Sandy, tidal loss, and barrier migration. For Southern Long Island, the 

average biomass in the summer of 2012 (July, August, September) was compared to 

the final average biomass in 2018 with Spearman’s rank correlation for both disturbed 

and non-disturbed pixels. 

The effect of tidal range on salt marsh change was explored with the use of 

data from NOAA tidal stations. The tidal ranges of each tidal station within our study 
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area were interpolated into a raster map of tidal ranges as they coincided with HUC-12 

watersheds within the study area. All Landsat centroids that were in the interior of the 

salt marsh (>30 m from an edge) were analyzed. The effect of tidal range on average 

change across HUC-12 watersheds and the four dominate salt marsh classes (estuarine 

emergent regularly flooded, estuarine emergent irregularly flooded, estuarine emergent 

ditched regularly flooded, and estuarine emergent ditched irregularly flooded) were 

compared with linear regression. The average change in aboveground green biomass 

for each HUC-12 watershed was compared to the average tidal range within that 

watershed. The Albemarle watershed, NC was excluded due to the larger distances 

between tidal stations. 

  An analysis of all Landsat pixels of the estuarine emergent regularly flooded, 

estuarine emergent irregularly flooded, estuarine emergent ditched regularly flooded, 

and estuarine emergent ditched irregularly flooded classes was conducted for each 

watershed. Kruskal-Wallis and post-hoc Dunn’s test with Bonferroni adjustment 

compared the trend in aboveground green biomass from 1999 to 2018 for each 

watershed across these four dominate classes.  

Worldview-2 image classification of interior salt marsh mudflats was used to 

assess the relationship of aboveground biomass estimates and vegetation extent within 

the test pixel. The Wordlview-2 classification was an object-based image analysis 

utilizing the approach of Campbell et al. (2017; Wang & Campbell, 2018). This 

analysis was conducted for a portion of the salt marsh on the Maryland side of 

Assateague Island within the Chincoteague watershed. This analysis was conducted 

for mudflats on Assateague Island which corresponded with WRS-2 Path/Row 14/33. 
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End of season in situ biomass estimates from 1999-2014 for the Eastern Lower 

Delmarva were accessed from Christian & Blum  (2014). These estimates included 17 

sites at Mill Creek, Bellvue, Steelman’s landing, Gator Track, Cushman’s landing, 

Oyster Marsh, Indian Town, Box Tree, Brownsville, Hog Island north, Hog Island 

south, Kegotank, Green Creek, Wallops Island, Woodland Farm, and Assateague 

(Christian & Blum, 2014). The sites were sampled along transects at four locations, 

creek side, low marsh, high marsh, and upland transition (Christian & Blum, 2014). 

These locations and replicates were averaged to get an estimate of each sites 

aboveground biomass in a single year which were compared to the average 

aboveground green biomass estimates for July, August, and September in the 

corresponding years. RMSE was calculated considering each year and each site, and a 

site-wide RMSE including all years.  

 

3. Results 

3.1 Biomass modeling and change 

The ability of the time series trend component to reveal salt marsh change was 

evident in the identification of both losses and gains across the watersheds. Across the 

studied watersheds 52% of salt marsh experienced a decline in aboveground green 

biomass with an average reduction of -17 g m-2 (Table 1). In the Chincoteague 

watershed, declines were most common and interior loss along the back-barrier of 

Assateague Island National Seashore was apparent (Figure 3). Increases in 

aboveground green biomass were most prominent in the prograding areas to the south 

of Assateague Island (Figure 3c) and on the overwash fans on northern Assateague 

Island (Figure 3b). In general, Chincoteague, Eastern Lower Delmarva, and Southern 

Long Island all had moderate declines in biomass (Table 1). Tangiers, Mullica-Toms, 
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Albemarle, and Great Egg Harbor had slight increase. The Chincoteague, Eastern 

Lower Delmarva, and Southern Long Island watersheds demonstrated considerable net 

loss of aboveground green biomass (Figure 4). The Chincoteague watershed had the 

largest average loss which was -61 g m-2. The Tangier watershed had the largest 

average gain which was 15 g m-2.  

 

3.2 TMII 

The TMII was assessed by evaluating the inundation of each Landsat image 

date and time of collection at the phenocam and by plotting the decomposed time 

series before and after filtering (Figure 5). The filtered time series removed all pixels 

with a TMII >0.2. This level of TMII was suggested previously and performed well in 

the analysis with the phenocam. The filtered time series removed extreme outliers 

reduced the observed trend and improved the seasonal graph. The phenocam analysis 

had a limited number of inundated scenes to work with using images from both WRS-

2 Path/Row 16/38 and 17/38. For Landsat 7 and 8, the phenocam image evaluation 

verified that 10 of the 14 images with TMII >0.2 were inundated. The performance 

improved slightly when just considering the Landsat 8 imagery, which found 7 out of 

9 inundated images were correctly identified. The index had few false negatives for 

inundation with 148 out of 150 non-inundated images being accurately identified. The 

filter was applied due to its ability to remove outliers and improve both the seasonal 

and trend component of the time series decomposition (Figure 5).  

 

3.3 Salt marsh trend 

The rates of change varied greatly across watersheds with the Chincoteague 

watershed having the largest average change and the Tangiers watershed having the 
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largest average increase. The Eastern Lower Delmarva watershed had the largest total 

loss (Figure 4). The trend maps reveal clustering of loss around landscape features 

such as ditches, inlets, and rivers even in stable watersheds (Figure 6). Moran’s I for 

each of the watershed confirmed clustering of salt marsh change (Table 2).  

Kruskal-Wallis test was used to test the difference between dominant salt 

marsh types with each analysis finding significant differences (Table 3). Dunn’s post 

hoc test determined that Chincoteague watersheds had no statistically significant 

difference between regularly and irregularly flooded salt marsh (Table 3). 

Chincoteague and Albemarle were the only watersheds were ditched regularly flooded 

lost vegetation at a lesser rate than regularly flooded salt marshes. Eastern Lower 

Delmarva and Tangiers were the only watersheds were regularly flooded salt marsh 

lost more biomass than irregularly flooded salt marsh. Mullica-Toms, Great Egg 

Harbor, and Tangier watersheds were the only watersheds to demonstrate a small 

increase in aboveground green biomass. These watersheds were mosaics composed of 

a combination of increases and decreases in aboveground biomass (Figure 6; Figure 7; 

Figure 8). 

 

3.4 Tidal range 

No significant effect of tidal range was found for the entirety of the average 

aboveground green biomass change by HUC-12 watersheds (F(1,573)=0.52, p = 0.52) 

and R2=0. However, when comparing those sites with irregular tidal inundation, 

mosquito ditches, and a tidal range < 0.8 m; then sites with small tidal ranges saw 

significantly more loss (F(1,34)=6.2, p < 0.05) and R2 = 0.16). When comparing those 

sites with regular tidal inundation, mosquito ditches, and a tidal range < 0.8 m; then 
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small tidal ranges also saw significantly more loss (F(1,14)=7.1, p < 0.05) and R2 = 

0.33). Neither inundation regime without mosquito ditches had a significant 

relationship to tidal range.  

 

3.5 Disturbance 

The Southern Long Island and Eastern Lower Delmarva watersheds were 

analyzed with the BFAST algorithm to detect disturbances. The watersheds were 

selected as they had high average rate of. In the Eastern Lower Delmarva, 46% of 

pixels were disturbed and the average disturbance was a loss of -59. In the Southern 

Long Island watershed, 28% of pixels were disturbed and the average disturbance was 

a loss of 46. The resulting maps demonstrated that disturbances captured some of the 

long-term change, however, many of the detected disturbances in the time series did 

not represent a permanent change (Figure 9). Spearman's rank correlation showed that 

in non-disturbed pixels average summer aboveground green biomass in 2012 was 

correlated with the summer 2018 average biomass (rτ=0.74, p < 0.001). Disturbance 

pixels had a smaller correlation with 2018 average biomass (rτ=0.54, p < 0.001). In the 

long-term change maps areas and types of change are identifiable for example interior 

loss (Figure 10).  

3.6 Verification 

The relationship of Landsat derived estimates of aboveground green biomass 

and salt marsh extent were verified with Worldview-2 image classification of salt 

marsh on Assateague Island National Seashore (Wang & Campbell, 2018). The 

Worldview-2 classification was used to compare non-vegetated extent within a pixel to 

the estimates of aboveground green biomass. This comparison found a positive 
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relationship between biomass estimates and the area of mudflat within a pixel 

(F(1165,1)=1316, p < 0.001) and R2=0.53. The verification with VHR imagery suggests 

that the Landsat aboveground green biomass is related to vegetation extent.   

The in situ analysis resulted in a site-wide RMSE of 144±7 with the confidence 

interval resulting in a conversion factor from wet biomass to dry of between 0.55 and 

0.6. The in situ yearly RMSE for the Eastern Lower Delmarva watershed 1999 to 2014 

was found to be 298 ±15. This compares favorably with the RMSE calculated 

internally for this type of modeling (Byrd et al. 2018). The areas of uncertainty 

include the exact location of the sampling sites and differences between dates of the 

end of season sampling and July, August, and September satellite estimates.  

 

4. Discussion 

Aboveground biomass declined throughout three of study watersheds. These 

watershed-wide declines were driven by clusters of significant loss, even stable 

watersheds had areas of significant loss (Figure 3; Figure 6-8; Figure 10). The analysis 

of tidal range makes it clear that ditched salt marshes with < 0.8 m tidal range were 

more prone to loss of aboveground green biomass than the relatively more stable areas 

(> 0.8 m). This result is supported by previous modeling which found for the same 

suspend sediment concentrations macrotidal marshes (>4m tidal range) can adapt to 

much higher rates of SLR than microtidal (<2 m tidal range) salt marsh (Kirwan et al. 

2010). The filling of mosquito ditches has been identified as a possible contributing 

factor to salt marsh dieback and loss of Spartina patens in Rhode Island (Raposa et al. 

2017). The fragility of microtidal marshes is likely due to the relationship between 

tidal range and the growth range of Spartina alterniflora (McKee and Patrick 1988; 
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Cahoon et al. 2018). Ditched salt marshes comprised approximately 1/3 of all salt 

marsh pixels analyzed. These salt marshes are undergoing hydrological changes that 

are altering vegetation extent and quantity of plant biomass.  

The analysis with high-resolution satellite imagery suggests that these Landsat 

estimates are partly explained by salt marsh extent within a pixel. However, vegetation 

extent does not explain all variation in the aboveground green biomass. The estimates 

are also influenced by the amount of water, vegetation composition, and geometric 

rectification of the two datasets. The composition of plants, salt marsh edge, and high 

marsh to low marsh are all possible sources of variability. These differences and other 

site characteristics result in variability of the biomass estimates. Aboveground green 

biomass estimates were determined to be an indicator of salt marsh change, especially 

in the interior salt marsh. Additional in situ verification would be necessary to 

determine the relationship of these changes to shifts in the vegetation community. 

The in situ aboveground biomass samples from the Eastern Lower Delmarva 

verify a similar accuracy to internal out-of-box accuracy assessments. The model 

achieved a RMSE of 298 ±15 g m-2 compared to previous out-of-box estimates of 

310 ±42 g m-2 (Byrd et al. 2018). However, models have been observed to perform 

better at the site scale (Byrd et al. 2014). The site wide RMSE, compared site averages 

for all available years, was 144±7. This observed improvement could be due to a 

reduction in the variability of in situ biomass, which was collected at a much finer 

resolution (0.0625 m2). The site wide RMSE are likely a more appropriate assessment 

of the time series’ performance. 

The higher spatial resolution of NWI resulted in the inclusion of edge pixels 
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which are only partially composed of salt marsh. However, in most watersheds, these 

did not impact the trends as they changed little. The widespread loss of aboveground 

green biomass that was observed included several processes: 1) interior loss and 

fragmentation, 2) salt marsh loss due to inlet widening and change, 3) conversion of 

high marsh to low marsh, 4) edge erosion, and 5) overwash. Comparing edge (within 

20 m of the salt marsh polygon edge) and interior marshes found that in all watersheds 

besides Chincoteague edge had a higher average rate of loss. In Chincoteague 

watershed edge areas lost on average 56 g m-2 compared to interior areas which lost on 

average 63 g m-2. Interior loss appears to be the most frequent type of loss in 

Chincoteague. Chincoteague interior losses were likely connected to the microtidal 

range and site conditions such as mosquito ditches (Figure 3c). The higher rates of loss 

of regularly flooded compared to irregularly or regularly flooded ditched salt marsh 

for Chincoteague, suggests a relationship between these losses with SLR (Table 3).  

Tidal loss corresponded with high magnitude disturbances, but were much less 

common (Figure 11). Small declines (<100 g m-2) across the salt marsh were of little 

concern as they fall well within the uncertainty of this data. These areas are likely 

stable, however, if a dramatic increase in SLR or other stressors occur this could 

change, and all locations need monitoring.  Due to the medium spatial resolution, used 

in this study, the cause of these minor changes is difficult to determine. Small declines 

in aboveground green biomass could be the result of a variety of changes within a 

pixel including vegetation type, plant composition, and percent cover or some 

combination of these factors. For example, increased inundation can cause 

replacement of high marsh plants with S. alterniflora and this is likely to reduce 
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aboveground biomass (Sneddon et al. 2015). Declines in irregularly flooded areas are 

possibly related to the replacement of high marsh with S. alterniflora which has been 

observed on Long Island (Cameron Engineering and Associates 2015) and Rhode 

Island (Raposa et al. 2017). In the mid-Atlantic, estimates of aboveground biomass for 

S. patens, J. roemerianus, and S. alterniflora were 1399 g m-2, 853 g m-2, and 257 g m-

2, respectively (Elsey-Quirk et al. 2011). The shift from S. patens or J. roemerianus to 

S. alterniflora would be accompanied by a large loss of above, and presumably, 

belowground biomass.  

Edge erosion is a common salt marsh process with variable rates depending on 

basin characteristics (Mariotti & Fagherazzi, 2013). These erosional processes are 

likely to be less than the width of a Landsat pixel and therefore were frequently a 

subpixel change. However, extensive edge erosion was evident in the time series data 

(Figure 11c-d). Overwash was a loss process evident in all of the barrier island lagoon 

systems, however, both recovery (Figure 3c) and loss from overwash (Figure 10b; 

Figure 8) were evident. These types of change are easily detected due to their location 

along the barrier island interior and the magnitude of the loss.  

 

4.1 Tidal filtering  

The use of all available data is vital for understanding seasonal and long-term 

vegetation trends (Vogelmann et al. 2016). Keeping all quality data is especially 

important with Landsat time series given the limited temporal phases due to clouds, 

tides, 16-day revisit, and Landsat 7’s shutter synchronization anomalies. The TMII 

filter is unique to the vegetation cover of a particular pixel. Therefore, it did not over 

filter those areas with frequent inundation. Adapting the index to Landsat posed 
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several challenges, including different bandwidths and lower temporal resolution. 

These issues were addressed with the conversion of rolling to monthly averages and 

substitution of bands with appropriate equivalents. The index could be further 

improved by considering a subset of a date’s month for years directly preceding and 

following it. The filtering improved time series trend estimates (Figure 5). The rarity 

of false positives limited any reduction of quality data while removing many suspect 

images. In this study, the amount of data was essential to ensure enough images were 

available to filter by tides, cloud cover, and data quality. Tidal filtering is necessary to 

improve time series modeling of salt marsh and in turn our understanding of long-term 

salt marsh change. 

4.2 Salt marsh change 

Persistence versus die-off of salt marshes has been attributed to a variety of 

drivers such as sediment supply (Anisfeld et al. 2017), edaphic characteristics of the 

salt marsh (Crawford & Stone 2015), elevation (Watson et al. 2017), nutrient 

enrichment (Deegan et al. 2012), and basin characteristics (Mariotti & Fagherazzi 

2013).  Honeycombing of the interior salt marsh was evident particularly in ditched 

salt marshes and across the Chincoteague watersheds (Figure 3 d-e.). This relationship 

was most likely due to the combination of altered hydrology from mosquito ditches 

and small tidal ranges being more at risk due to SLR. There is no expected impact of 

mosquito ditches as a sediment sink on salt marshes response to SLR (Corman et al. 

2012). The clustering of change in the salt marsh environments was evident visually 

and from the results of the Moran’s I analysis (Table 1).  

The Eastern Lower Delmarva watershed, had a significant average rate of loss 

(Figure 3) and a low average biomass, 529 g m-2 over July, August, and September of 
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2017 (Figure 11b). Salt marsh losses in the region are driven by barrier island 

migration at rates of 1-6 m yr-1 (Deaton et al. 2017), including shifts in the barrier 

island extent (Figure 11c). Edge erosion driven by sediment supply and salt marsh 

basin width have been proposed as significant contributors of salt marsh loss within 

the Eastern Lower Delmarva watershed (Mariotti & Fagherazzi, 2013). This represents 

a different change regime than the other barrier island watersheds in this study. 

Migration of the seaward salt marsh boundary, minor shifts in the interior back bay 

salt marsh, and significant edge erosion due to inlet shifts were evident from the 

aboveground biomass change maps (Figure 11). The BFAST algorithm determined 

disturbances (>100 g m-2) corresponded with changes evident in the NAIP image 

record (Figure 11d). These moderate, but temporally discrete, changes represent a 

significant reduction in percent aboveground green biomass for many of the back bay 

areas. In the Eastern Lower Delmarva, 17% of all areas analyzed experienced a 

disturbance of this magnitude. Previous studies of this area were focused on salt marsh 

edge erosion and loss through barrier island migration. This study demonstrates that 

the site’s salt marshes are low biomass, creating even greater likelihood of loss in the 

watershed. This watershed demonstrates the ability of this method to monitor salt 

marsh under a variety of change regimes. 

 

4.3 Disturbance 

The BFAST algorithm detected many disturbances. However, a large number 

of these disturbances were brief which is to be expected in salt marsh environments 

i.e. high inundation event or algal deposition on mudflats. Positive disturbances were 

common. However, these did not correspond with long-term increases (Figure 9). Both 
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the long-term trend analysis and disturbance analysis identified areas of loss (Figure 

11). The disturbance pixels had less correlation with 2018 aboveground biomass than 

2012 biomass in non-disturbed pixels. This correlation suggests that disturbed areas 

were less stable areas of the salt marsh. These disturbances illustrate the highly 

dynamic nature of these systems and the importance of monitoring salt marshes with 

time series data. Disturbances with an increase in aboveground green biomass could 

correspond with increased vegetation, changes to vegetation composition, algal 

deposition on mudflats, or algal blooms in pools. Temporary decreases could 

correspond with droughts, which have been observed as a driver of temporary salt 

marsh die-off in the southern United States (Alber et al. 2008).  

 

5. Conclusion 

This study puts forth an approach for understanding salt marsh change with a 

combination of medium resolution imagery and time series analysis. Declines in 

aboveground green biomass across the study area were identified with a mean of -17 g 

m-2 (Table 1). In the mid-Atlantic coastal watersheds, 52% of all area analyzed 

declined from 1999 to 2018. Areas of losses were evident across all watersheds likely 

driven by salt marsh stressors such as SLR, sediment starvation, and barrier island 

migration. Clusters of extensive loss corresponded with barrier island processes and 

interior drowning. This methodology was applied across the mid-Atlantic coastal zone 

including several barrier island watersheds and a sub-watershed of the larger 

Chesapeake Bay watershed. The BFAST algorithm successfully found large 

magnitude disturbances. However, there was little relationship found between all 

disturbances and long-term trends. The algorithm should be applied in salt marsh areas 
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following a major disturbance or other widespread change. It was evident that tidal 

range in areas with a < 0.8 m tidal range was influencing rates of loss in ditched salt 

marshes. The tidally filtered time series were necessary to determine the change 

experienced by the study sites. Landsat aboveground green biomass estimates had a 

positive relationship to changes in vegetation extent of VHR imagery. In situ biomass 

verification compared favorably with previous accuracy assessments and the time 

series analysis likely improves the accuracy of salt marsh change estimates. 

GEE created a single processing environment facilitating the filtering of 

Landsat images, calculation of vegetation indices, the conversion of Landsat 7 surface 

reflectance into Landsat 8 surface reflectance, and processing of the raw time series. 

The limiting factor for the process was exporting data from GEE to be further 

analyzed. The Landsat archive is the only option for decadal time series of salt marsh 

environments with medium spatial resolution and an extensive archive. This approach 

demonstrates a promising method for both historic assessment and continued 

monitoring. However, higher spatial resolution imagery is necessary to increase the 

sensitivity of this methodology to fine-scale change. Next steps include applying the 

method to compare a broader range of sites and mapping areas identified as clusters of 

change with high spatial resolution imagery. Biomass is an important indicator of salt 

marsh sustainability, tied to ecogeomorphic feedbacks that contribute to salt marsh 

resilience. The current analysis demonstrates the use of aboveground biomass 

estimates as an indicator of salt marsh change at the watershed scale.  
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Table 1. The percentage of change, total area, and mean trend of estuarine emergent 

irregularly flooded, estuarine emergent regularly flooded, estuarine emergent 

irregularly flooded ditched, and estuarine emergent regularly flooded ditched classes 

from 1999 to 2018.  

HUC 8 

Code 

Name Decrease 

(%) 

Increase 

(%) 

Area 

(hectares) 

Mean 

trend (g 

m-2) 

02080110 Tangier 35 65 35650 15 

02030202 Southern Long 

Island 

76 24 7226 -48 

02040301 Mullica-Toms 48 52 18891 1 

02040302 Great Egg 

Harbor 

49 51 21172 3 

02040303 Chincoteague 62 38 14538 -63 

 

 

02040304 Eastern Lower 

Delmarva 

75 25 25880 -67 

03010205 Albemarle 40 60 16223 5 

 

 Mid-Atlantic 

coast 

52 48 139580 -17 
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Table 2. The results of the Moran’s I test of spatial autocorrelation for each of the 

watersheds. The neighbor distance was 200 m across all watersheds. 

Watershed Moran’s Index P value z-score 

Tangier 0.39 < 0.001 1572 

Southern Long 

Island 

0.41 < 0.001 1319 

Mullica-Toms 0.53 < 0.001 1509 

Great Egg 

Harbor 

0.34 < 0.001 1050 

Chincoteague 0.57 <0.001 1252 

Eastern Lower 

Delmarva 

0.45 <0.001 1513 

Albemarle 0.41 <0.001 1319 
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Table 3. The results of the Kruskal-Wallis and Dunn’s post hoc test for each of the 7 

watersheds. The tests compared the four most common estuarine emergent vegetation 

subclasses including irregularly flooded (E2EM1N), regularly flooded (E2EM1P), 

ditched irregularly flooded (E2EM1Nd), ditched regularly flooded (E2EM1Pd). 

Watershed Kruskal

-Wallis 

Dunn’s post hoc test  

regularly 

flooded 

vs.  

ditched 

regularly 

flooded  

 

regularly 

flooded 

vs. 

irregularl

y flooded  

 

ditched 

regularly 

flooded 

vs. 

irregularl

y flooded 

 

regularly 

flooded 

vs. 

ditched 

irregularl

y flooded 

 

ditched 

regularly 

flooded 

vs.  

ditched 

irregularl

y flooded 

irregularl

y flooded 

vs. 

ditched 

irregularl

y flooded 

Tangier H(3)=12

39 , p < 

0.001 

Z = 11.9 

p < 0.001 

Z = -27.3 

p < 0.001 

Z = -15.4 

p < 0.001 

Z = -

16.5 

p < 

0.001 

Z = -16.5 

p < 0.001 

Z = -

13.9 

p < 

0.001 

Southern 

Long 

Island 

H(3)=24

8, p < 

0.001 

Z = 9.0 

p < 0.001 

Z = 8.5 

p < 0.001 

Z = -3.9 

p = 0.001 

Z = 

14.4 

p < 

0.001 

Z = -0.4 

p =1.00 

Z = 8.2 

p < 

0.001 

Mullica-

Toms 

H(3)=30

99 , p < 

0.001 

Z = 14.5 

p < 0.001 

Z = 2.5 

p = 0.4 

Z = -14.0 

p < 0.001 

Z = 

36.9 

p < 

0.001 

Z = 5.7 

p < 0.001 

Z = 

47.2 

p < 

0.001 

Great Egg 

Harbor 

H(3)=41

66, p < 

0.001 

Z = 13.8 

p < 0.001 

Z = 4.1 

p <0.001 

Z = -12.8 

p < 0.001 

Z = 

36.1 

p < 

0.001 

Z = 6.1 

p < 0.001 

Z = 

57.9 

p < 

0.001 

Chincoteag H(3)=12 Z = -5.3 Z = 2.1 Z = 6.8 Z = Z = 28.2 Z = 
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ue 80, p < 

0.001 

p < 0.001 p = 0.11 p < 0.001 28.2 

p < 

0.001 

p < 0.001 23.4 

p < 

0.001 

Eastern 

Lower 

Delmarva 

H(2)=22

62, p < 

0.001 

NA Z = -47.5 

p < 0.001 

NA Z = 2.3 

p =0.04 

NA Z = 4.5 

p < 

0.001 

Albemarle H(3)=21

42, p < 

0.001 

Z = -31.6 

p < 0.001 

Z = 14.7 

p < 0.001 

Z = 39.3 

p < 0.001 

Z = 

19.9 

p < 

0.001 

Z = 43.9 

p < 0.001 

Z = 1.6 

p = 

0.36 
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Figure 1: The seven study watersheds located across the mid-Atlantic coast. 

Background data in display are 100 m impervious surface and 30 arc-second GEBCO 

bathymetry data. Watershed subsets are true color Landsat 8 imagery.  
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Figure 2: The year, Julian date, and Landsat sensor of each image after filtering by 

pixel cloud cover and TMII for a single Southern Long Island watershed time series. 
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Figure 3: a-c. Change in aboveground green biomass from 1999-2018 for the 

Chincoteague watershed, encompassing the eastern shore of Maryland and a sections 

of Virginia and Delaware. d. Inset (white box in c.) of salt marsh change and mosquito 

ditches.   e. Worldview-2 pseudo-color image of the same extent as d.   
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Figure 4: a) The sum of the average aboveground green biomass (1999-2018) for each 

watershed. b) The net change (1999-2018) in aboveground green biomass for each 

watershed. 
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Figure 5: 

Evaluation of 

TMII with 

time series 

analysis 

using 

Landsat 7 

and 8. Raw 

time series 

includes 

inundated 

dates. 

Filtered time 

series was 

excluded 

dates with 

TMII > 0.2. 
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Figure 6: Change in aboveground green biomass from 1999 to 2018 in the Tangier 

watershed. a. Shows an inset area of concentrated change in the aboveground green 

biomass trend. b. shows a subset of the heavily ditched area with pseudo color NAIP 

imagery from 6/1/2017. 
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Figure 7: Great Egg Harbor watershed, stretching from Cape May, NJ to just south of 

Great Bay, NJ. The change of aboveground green biomass from 1999 to 2018. 
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Figure 8: Change in aboveground green biomass from 1999-2018 for an area 

surrounding Great Bay, NJ, a section of the Mullica-Toms watershed. 
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Figure 9: a) Aboveground green biomass disturbance magnitude (g m-2). b) 

Aboveground green biomass trend 1999-2018 (g m-2). c) 1996 digital orthophoto. d) 

NAIP image from 2017. 
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Figure 10: Two subsets of the Southern Long Island watershed. Change in 

aboveground green biomass from 1999-2018: a) the back bay salt marshes of Jones 

Beach Island; b) the north-eastern section of Fire Island and Moriches Bay.  
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Figure 11: a) Eastern Lower Delmarva watershed change in aboveground green 

biomass from 1999 to 2018. b) Eastern Lower Delmarva watershed with the average 

aboveground green biomass in July, August, September of 2017. 
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