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ABSTRACT

Chapter1 : We present the exact solution of a microscopic statistical mechan-

ical model for the transformation of a long polypeptide between an unstructured

coil conformation and an α-helix conformation. The polypeptide is assumed to be

adsorbed to the interface between a polar and a non-polar environment such as

realized by water and the lipid bilayer of a membrane. The interfacial coil-helix

transformation is the first stage in the folding process of helical membrane pro-

teins. Depending on the values of model parameters, the conformation changes as

a crossover, a discontinuous transition, or a continuous transition with helicity in

the role of order parameter. Our model is constructed as a system of statistically

interacting quasiparticles that are activated from the helix pseudo-vacuum. The

particles represent links between adjacent residues in coil conformation that form

a self-avoiding random walk in two dimensions. Explicit results are presented for

helicity, entropy, heat capacity, and the average numbers and sizes of both coil and

helix segments.

Chapter 2: We investigate profiles of local attributes (densities of entropy,

enthalpy, free energy, and helicity) for the backbone of long polypeptides in the

heterogeneous environment of a lipid bilayer or cell membrane. From these profiles

we infer landscapes of global attributes for the backbone of short peptides with

given position and orientation in that environment. Our methodology interprets

the broken internal H-bonds along the backbone of the polypeptide as statistically

interacting quasiparticles activated from the helix reference state. The interaction

depends on the local environment (ranging from polar to non-polar), in particular

on the availability of external H-bonds (with H2O molecules or lipid headgroups)

to replace internal H-bonds. The helicity landscape in particular is an essential

prerequisite for the continuation of this part of the project with focus on the side-



chain contributions to the free-energy landscapes. The full free-energy landscapes

are expected to yield information on insertion conditions and likely insertion path-

ways.

Chapter 3: We present the first part in the design of a kinetic model for the

insertion of short peptides, including variants of pHLIP, into a lipid bilayer. The

process under scrutiny combines a transport phenomenon and a change in proto-

nation status of negatively charged sites near the C terminus. The two kinetic

phenomena influence each other and set different time scales. Processes with a

significant range of time scales, known to be a challenge for molecular dynamics

simulations, are shown to be within the scope of the kinetic modeling presented

here, which is based on interlocking Markov chain processes. The two processes

governing protonation status and transport are run individually and then in com-

bination. This makes it possible to investigate feedback mechanisms between the

two component processes.
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PREFACE

This dissertation develops a theoretical model for the membrane-associated

insertion/folding of short peptides, employing advanced concepts of statistical

physics and kinetic theory. My work has been motivated by experiments car-

ried out in the Biological Physics Laboratory of Professors Yana Reshetnyak and

Oleg Andreev at URI. The three chapters represent integral parts of the modeling

framework with focus on conformational change, energetics, and kinetics, respec-

tively. Each of the three chapters has the format of a research paper and therefore

manuscript format is in use. The first paper has already been published. The

second and third papers are in preparation for publication.

1. G. P. Sharma, Y. K. Reshetnyak, O. A. Andreev, M. Karbach, and G. Müller,

Coil-helix transition of polypeptide at water-lipid interface, Journal of Statis-

tical Mechanics: Theory and Experiment, P01034, pp.1-23 (2015).

2. G. P. Sharma, A. C. Meyer, Y. K. Reshetnyak, O. A. Andreev, M. Kar-

bach, and G. Müller, Free-energy landscapes for peptides in a membrane

environment I: Contributions of the backbone (manuscript in preparation of

publication).

3. G. P. Sharma, Y. K. Reshetnyak, O. A. Andreev, M. Karbach, and G. Müller,

Kinetic model for peptide insertion into a membrane I: kinetics of a proton-

able residue at varying pH (manuscript in preparation of publication).
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CHAPTER 1

Coil-Helix Transition of Peptides at Water-Lipid Interface

1.1 Introduction

The folding mechanisms of water-soluble proteins from primary to secondary

and higher-order structures has been thoroughly investigated over many years. In

the study of protein translocation pathways into and across cell membranes, which

is a very important active area of current research, one important problem requiring

further elucidation is the coil-helix transition that accompanies the insertion of a

polypeptide into a lipid bilayer. The theoretical modeling of this ubiquitous process

in biological matter is fairly complex due to the heterogeneous environment in

which conformational changes occur and the simultaneity or rapid succession of

conformational change and translocation. Experimental studies are limited to the

small selection of polypeptides that are water soluble and undergo controllable

insertion/folding and exit/unfolding processes.

The folding of all helical membrane proteins/peptides, independent of the in-

sertion mechanism, is governed by the formation of helical segments in the lipid

bilayer environment. This process is driven by hydrophobic interactions and hy-

drogen bonding [1, 2, 3, 4]. Its two main steps are the transformation from coil

to interfacial helix and the insertion of the helix into the membrane with trans-

membrane orientation. Variants of the pH Low Insertion Peptide (pHLIP) family

are water soluble and prove to be well suited for the investigation of membrane-

associated folding and unfolding [5, 6], reversibly driven by changes in pH. A drop

in pH leads to the protonation of negatively charged side chains, which enhances

the hydrophobicity of the peptide and initiates the aforementioned two-step pro-

cess of folding and insertion. A subsequent rise in pH reverses the process: the

peptide unfolds and exits. Recent experimental studies have already established
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important thermodynamic and kinetic parameters of the peptide-membrane inter-

action [7, 8, 9].

What has been lacking for these and related experiments is a microscopic sta-

tistical mechanical model with experimentally testable attributes that is amenable

to an exact analysis. Our goal is to construct, solve, develop, and test such a model

in three successive stages. The first stage, which is the theme of this paper, in-

volves the design and solution of a microscopic model that describes the coil-helix

transformation of a long polypeptide adsorbed to the lipid bilayer of a membrane

(see Fig. 1.1). Such a model is an indispensable part of a theory of membrane-

Figure 1.1. (Color online) Long polypeptide at the interface between water and a
flat lipid bilayer undergoing a reversible and pH-driven coil -helix transformation.

associated folding and will be used as the foundation for the next two stages. They

include (a) the investigation of profiles of local attributes for generic polypeptides

and landscapes of global attributes for short peptides such as pHLIP in the het-

erogeneous water/lipid environment and (b) the kinetics of insertion and exit as

can be inferred from the landscapes of free energy and conformational attributes.

The pioneering theoretical studies of coil-helix transformations and related

phenomena that appeared throughout 1960s were admirably compiled and re-

viewed in a monograph by Poland and Scheraga [10]. A series of model systems

were introduced at that time. Many of them are still being used today in textbooks

and research papers. This includes the familiar Zimm-Bragg model [11] and gen-

eralizations thereof, all amenable to the transfer matrix method of analysis. Also

emerging at that time was the highly original Lifson method of statistical me-

2



chanical analysis [12], the scope of which includes (smooth) crossovers and (sharp)

transitions [13, 14]. The need at this time for yet another model solved by yet

a different method is dictated by the three stages of our project as will become

apparent in what follows.

In Sec. 1.2 we present the microscopic model of our design as a system of sta-

tistically interacting links and describe the method of its exact analysis. Depending

on the parameter settings the exact solution produces a conformational change in

the form of a crossover or a transition (Sec. 1.3). The transition may be of first or

second order as we discuss in Sec. 1.4 with focus on the helicity (order parameter)

and entropy (measure of disorder) and other quantities. In Sec. 1.5 we summarize

the main advances of this work and point out their role as the foundation for the

continuation of this project in two different directions in the arenas of biological

physics and statistical mechanics. We also discuss how this work connects to recent

studies by other researchers and how the continuation of this project can benefit

from those studies.

1.2 Model system

The microscopic model that we present here is a system of statistically inter-

acting quasiparticles with shapes. The methodology employed for its exact statis-

tical mechanical analysis is built on the concept of fractional statistics, invented by

Haldane [15], and developed by Wu [16], Isakov [17], Anghel [18], and others [19]

in the context of quantum many-body systems. The adaptation of this approach

to classical statistical mechanical systems of particles with shapes was developed

in a recent series of studies with applications to Ising spins [20, 21, 22, 23], jammed

granular matter [24, 25], lattice gases with long-range interactions [26], and DNA

under tension [27]. The application to the coil-helix transition of a long polypep-

tide adsorbed to a water-lipid interface worked out in the following is conceptually

3



simple but surprisingly rich in scope.

1.2.1 Coil segments from helix vacuum

The reference state (pseudo-vacuum) of our model system is the ordered helix

conformation of N residues bound by peptide bonds into N−1 links and stabilized

by internal hydrogen bonds along the backbone. Thermal fluctuations or environ-

mental change cause the nucleation of disordered coil segments, which then grow

by unravelling adjacent helical order.

In our model the coil segments are represented by thermally activated links

that combine to form a self-avoiding random walk between the ends of successive

helical segments. Both coil and helix segments are confined to the water-lipid inter-

face (Fig. 1.1). Coil segments carry configurational entropy that grows with their

size and range in the interfacial plane. That range is controllable at a microscopic

level by the integer-valued model parameter µ, henceforth called range parameter.

Each residue can be in µ + 1 states, of which one (denoted h) represents the

helix conformation and µ (numbered 1, . . . , µ) represent the coil conformation.

Access by a residue to these states is constrained by the states of its neighboring

residues as illustrated in Fig. 1.2 for the case µ = 3.

Helical links (hh) are short and form straight segments (horizontal, in Fig. 1.2)

in the plane of the water-lipid interface. Coil links are more extended and directed

either horizontally (11, 22, 33) or vertically (h1, 12, 23, 32, 21, 1h). Our model

allows each coil segment to randomly explore the interface on one side of the helical

direction without intersecting itself.1 That space is discretized and constrained by

the length of the segment and by the number of distinct coil states.

We assign different activation energies to coil links relative to hh links depend-

1The one-side restriction has no significant impact on the quantities we are calculating in this
work. Generalizations to coil segments that explore the plane of the interface more freely are
planned.
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hh h1h 11 121 22 232 33

hh

11

22

33

22
232 232

121 121

h1h

hh

22

h1 1h

12

23 32

Figure 1.2. Segment of coil conformation between two segments of helix conforma-
tion (bottom), generated by the activation of 2µ species of statistically interacting
particles in the form of single links or composed of pairs of links that are not
necessarily adjacent (top). Residues in helix conformation are in a unique state
(h). Residues in coil conformation are in one of µ states (1, 2, ..., µ), constrained
to form a self-avoiding walk in the interfacial plane and here illustrated for µ = 3.

ing on whether they contribute to nucleation or to growth. To the former we assign

the activation energy εn and to the latter εg (two model parameters). Nucleation of

one coil link requires the simultaneous break-up of several internal hydrogen bonds

whereas growth proceeds by the break-up of one bond per link (two bonds shared

by different pairs of residues). On our way to calculating a partition function we

now face the task of counting microstates of given link content.

1.2.2 Combinatorics of links

For the combinatorial analysis we introduce a set of statistically interacting

quasiparticles that contain individual links or pairs of links. It turns out that

we need 2µ species of particles. In the case of µ = 3 they are the six species

(along with the element of pseudo-vacuum) shown in the top panel of Fig. 1.2.

The combinatorics of statistically interacting particles is captured by the energy

5



expression

E({Nm}) = Epv +

2µ∑
m=1

Nmεm, (1.1)

and the multiplicity expression [15, 16, 17, 18, 19, 20, 21],

W ({Nm}) =

2µ∏
m=1

(
dm +Nm − 1

Nm

)
, (1.2)

dm = Am −
2µ∑

m′=1

gmm′(Nm′ − δmm′), (1.3)

inferred from a generalized Pauli principle as will be illustrated below for the

application under consideration. This means that there existW ({Nm}) microstates

with energy E({Nm}) that all have the same particle content: Nm particles of

species m for m = 1, . . . , 2µ. The εm are particle activation energies relative to the

energy Epv of the pseudo-vacuum, the Am are capacity constants, and the gmm′

are statistical interaction coefficients. The specifications for the model with µ = 3

distinct coil states are compiled in Table 1.1.

Table 1.1. Specifications of the six species of particles that describe the case µ = 3.

motif cat. m εm Am

h1h host 1 εn N − 2

121 hybrid 2 2εg 0

232 hybrid 3 2εg 0

11 tag 4 εg 0

22 tag 5 εg 0

33 tag 6 εg 0

gmm′ 1 2 3 4 5 6

1 2 2 2 1 1 1

2 −1 0 0 0 0 0

3 0 −1 0 0 0 0

4 −1 −1 0 0 0 0

5 0 −1 −1 0 0 0

6 0 0 −1 0 0 0

The particles form nested structures as indicated in Fig. 1.2. We have species

from three categories in the taxonomy of Ref. [21]: one species of hosts, two species

of hybrids, and three species of tags. Hosts cannot be hosted, tags cannot host any

particles from a different species, hybrids can do both.

A system of N residues in the helix pseudo-vacuum has the capacity of nucle-

ating a coil segment at A1 = N − 2 different locations by activating a host particle

6



with activation energy ε1 = εn. The activation of particles from any species re-

duces the capacity d1 of the system for placing further hosts on account of (1.3)

and g1m > 0. Hosts and hybrids have twice the size of tags. The former thus

reduce the capacity at double the rate of the latter.

For any mix of particles the system has a finite capacity. When that capacity

has been reached, we have d1 = 1, which makes the associated binomial factor in

(1.2) equal to one. If we attempt to add one more particle from any species, d1

becomes zero or a negative integer and, in consequence, the associated binomial

factor vanishes. The helix pseudo-vacuum has zero capacity for the placement of

hybrids and tags, as implied by A2 = · · · = A6 = 0. Such capacity of the system is

generated dynamically by the placement of particles with hosting capacity. This

generation of capacity is encoded in the negative interaction coefficients. Hosts 1

generate capacity for placing hybrids 2 and tags 4. Hybrids 2, in turn, generate

capacity for placing hybrids 3 and tags, 4, 5 etc. Tags do not generate capacity

for placing any particles.

The particle content of the coil segment of N = 16 residues shown in Fig. 1.2

is N1 = 1, N2 = 2, N3 = 2, N4 = 1, N5 = 3, N6 = 1. Its activation energy (1.1)

thus becomes E(1, 2, 2, 1, 3, 1)− Epv = εn + 13εg and the number of coil segments

of equal contour length and with the same particle content is, according to (1.2),

(1.3), W (1, 2, 2, 1, 3, 1) = 360. Further microstates with equal activation energy

are generated if we exchange hybrids or tags from one species by hybrids or tags

from a different species or if we replace hybrids by pairs of tags (or vice versa), all

within the constraints imposed by the nesting. The constraints are encoded in the

multiplicity expression. It does not allow spurious particle combinations.

The generalization to any µ is straightforward: the zoo of 2µ particle species

now comprises one host, µ − 1 hybrids, and µ tags, labeled consecutively in this

7



order. The host has activation energy εn, reflecting the nucleation of coil segments,

whereas hybrids and tags have activation energies 2εg and εg, respectively, reflecting

the growth of coil segments. The capacity constants remain the same for each

category: Am = (N − 2)δm,1.

The nonzero interaction coefficients generalize naturally in accordance with

the sizes and nested structure of the particles: g1m = 2 (1) for m = 1, . . . , µ (µ +

1, . . . , 2µ); gm′m = −1 for three sets of index pairs: (i) m = m′ − 1, m′ = 2, . . . , µ;

(ii) m = m′−µ, m′ = µ+1, . . . , 2µ; (iii) m = m′−µ+1, m′ = µ+1, . . . , 2µ−1. The

case µ = 1 has no hybrids: g11 = 2, g12 = 1, g21 = −1, g22 = 0. It is equivalent to

the Zimm-Bragg model [11]. With the combinatorial analysis completed we turn

to the statistical mechanical analysis.

1.2.3 Free energy of polypeptide

The partition function for the adsorbed polypeptide, modeled as a system of

statistically interacting and thermally activated particles [15, 16, 17, 18, 19, 20, 21],

Z =
∑
{Nm}

W ({Nm})e−βE({Nm}), (1.4)

depends on energy (1.1) and multiplicity (1.2) with ingredients εm, Am, gmm′ from

Sec. 1.2.2. The thermal equilibrium macrostate in the thermodynamic limit follows

from an extremum principle. Its implementation yields the partition function for

a macroscopic system in the (generic) form [16, 17, 18, 19, 20, 26],

Z =
M∏
m=1

(
1 + w−1

m

)Am
, (1.5)

where M = 2µ in our case and the (real, positive) wm are solutions of the coupled

nonlinear equations,

eβεm = (1 + wm)
M∏

m′=1

(
1 + w−1

m′

)−gm′m . (1.6)
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The average number of particles from species m are derived from the coupled linear

equations,

wmNm +
M∑

m′=1

gmm′Nm′ = Am. (1.7)

It is useful and economical to express all results as functions of the two control

parameters2

τ
.
= eβ(εg−εn) : 0 ≤ τ ≤ 1, (1.8)

t
.
= eβεg : 0 ≤ t <∞, (1.9)

with an additional dependence on the discrete range parameter µ implied. The

nucleation parameter τ is a measure of cooperativity and controls the average

length of coil and helix segments. High cooperativity (τ � 1) means a high

nucleation threshold. Low cooperativity (τ . 1) means little difference in enthalpic

cost of nucleation and growth. The growth parameter t controls the preference of

one or the other conformation. Coil is preferred at small t and helix at large t.

Equations (1.6) for w1, . . . , w2µ with parameters t, τ used on the left and the

gmm′ from Sec. 1.2.2 used on the right can be reduced to a single polynomial

equation of order µ+ 1 for wµ+1:

(1 + wµ+1 − t)Sµ(wµ+1) = tτSµ−1(wµ+1), (1.10)

where the Sm(w) are Chebyshev polynomials of the second kind. Among all the

solutions of Eq. (1.10) there exists exactly one,

w
.
= wµ+1(t, τ), (1.11)

that satisfies the criterion of physical relevance, requiring that (1.11) and all the

2The relevant energy scales are the strength of hydrogen bonds (∼ 5 kcal/mol) and kBT at
room temperature (∼ 0.6 kcal/mol).
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remaining wm inferred from it via

w1 =
Sµ(w)

τSµ−1(w)
=

t

1 + w − t ,

wm =


Sµ−m+2(w)

Sµ−m(w)
: m = 2, . . . , µ,

w : m = µ+ 1, . . . , 2µ,
(1.12)

are non-negative. The derivation of this reduction is outlined in Appendix A.

The Gibbs free energy per residue inferred from (1.5) then depends on that

physical solution as follows:

Ḡ(t, τ) = −kBT ln
(
1 + w−1

1

)
, (1.13)

from which any thermodynamic quantity of interest can be derived, including the

entropy,

S̄
.
= −

(
∂Ḡ

∂T

)
εn,εg

, (1.14)

the enthalpy,

H̄
.
= Ḡ+ T S̄, (1.15)

the helicity (order parameter),

N̄hl
.
= 1−

(
∂Ḡ

∂εn

)
T,εg

−
(
∂Ḡ

∂εg

)
T,εn

, (1.16)

the density of (helix or coil) segments,

N̄seg
.
=

(
∂Ḡ

∂εn

)
T,εg

, (1.17)

and the average sizes of helix segments and coil segments,

Lhs
.
=

N̄hl

N̄seg

, Lcs
.
=

1− N̄hl

N̄seg

. (1.18)

The population densities N̄m
.
= Nm/N , m = 1, . . . , 2µ, of particles can be extracted

from the solution of the linear Eqs. (1.7) as shown in Appendix A.
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1.3 Structure of solution

Changing the level of pH primarily affects the growth parameter t. At normal

pH we have t . 1, which favors the random coil conformation. A drop in pH

pushes the growth parameter to higher values, t > 1, which increasingly favors

a conformation with helical ordering.3 Depending on the value of the nucleation

parameter τ and the discrete parameter µ, which controls the amount of entropy

that coil segments can generate, the growth of helicity takes place in a crossover

or in a transition of first or second order. To illuminate the criteria for these

alternatives we investigate the nature of the physically relevant solution (1.11) of

Eq. (1.10), in particular the singularities it acquires in the limits τ → 0 at µ <∞

and µ→∞ at τ > 0.

1.3.1 Crossover

For τ > 0 and µ <∞ the solution w(t, τ) is bounded from below by

w0
.
= 2 cos

(
π

µ+ 1

)
, (1.19)

which is the location of the last zero of Sµ(w). That value is only realized at t = 0

as illustrated in Fig. 1.3(a). For t � 1 the solution converges toward the linear

asymptote,

was
.
= t+ τ − 1. (1.20)

Note that w0 depends on µ but not on τ whereas was depends on τ but not on µ.

The smooth dependence on t of w(t, τ) for τ > 0 and µ <∞ describes a crossover

from low helicity at small t to high helicity at large t.

The Zimm-Bragg model [11] is represented by the case µ = 1, for which (1.10)

3The level of pH effectively controls how easy or hard it is to replace broken internal hydro-
gen bonds along the backbone of the polypeptide with external hydrogen bonds involving H2O
molecules. Hence the shift in t.
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Figure 1.3. Physical solution (1.11) of the polynomial equation (1.10) for τ =
1, 0.3, 0 (left to right in both panels). Panel (a) shows the emergence of a singularity
in the limit τ → 0 for µ = 1, 2, 3 and panel (b) the emergence of a singularity in
the limit µ→∞ at τ ≥ 0.

is a quadratic equation with physical solution

w =
1

2

[
t− 1 +

√
(t− 1)2 + 4tτ

]
. (1.21)

It is mathematically equivalent to an Ising chain.4

The case µ = 2 is qualitatively different in that each coil segment now carries

entropy. The physical solution of the associated (cubic) Eq. (1.10) reads

w =
1

3

[
x+ 2

√
x2 + 3y cos

ϕ

3

]
, (1.22)

tanϕ =

√
27(4y3 + y2x2 + 18yx2 + 4x4 − 27x2)

x(2x2 + 9y − 27)
,

where x
.
= t− 1, y

.
= 1 + tτ , and 0 ≤ ϕ < π.

For 3 ≤ µ <∞ and τ > 0 the solution (1.11) must be determined numerically.

In that context it is advisable to rewrite (1.10) as

(w + 1− t)rµ(w)− tτ = 0, rµ(w)
.
=

Sµ(w)

Sµ−1(w)
, (1.23)

4The Zimm-Bragg parameters commonly used are σ = τ and s = t. The (physically relevant)
larger eigenvalue of the transfer matrix is λ0 = w+ 1, taking into account a shift in energy scale
by εg per residue.
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using the function

rµ(w) =


1

2

[
w +
√

4− w2
]

cot
(
µ arccos

w

2

)
: w < 2,

µ+ 1

µ
: w = 2,

1

2

[
w +
√
w2 − 4

]
coth

(
µ arcosh

w

2

)
: w > 2

(1.24)

inferred from trigonometric/hyperbolic representations of Chebyshev polynomials.

For large µ the functions rµ(w) are much smoother than the polynomials Sµ(w).

Standard methods with initial values from the analytic solution for µ→∞ derived

in Sec. 1.3.3 below work quite well.

1.3.2 First-order transition

In the limit τ → 0 at µ < ∞, the solution (1.11) acquires a linear cusp as

shown in Fig. 1.3(a):

w =

{
t0 − 1 : t ≤ t0
t− 1 : t ≥ t0

(τ = 0), (1.25)

as the growth parameter t increases across the transition value,

t0
.
= 1 + 2 cos

(
π

µ+ 1

)
(τ = 0). (1.26)

It describes a discontinuous phase transition between a pure coil at t < t0 and a

pure helix at t > t0 in a sense that requires some explanations (Sec. 1.4). Dis-

continuities are manifest in the order parameter and the entropy. The latter is

associated with a latent heat.

1.3.3 Second-order transition

In the limit µ→∞ at τ > 0 the solution (1.11) acquires a quadratic cusp at

tc
.
=

3

1 + τ
(µ =∞). (1.27)

Performing that limit in (1.24) yields

r∞(w) =
1

2

[
w +
√
w2 − 4

]
, w ≥ 2. (1.28)
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The resulting analytic solution then reads

w =

{
2 : 0 ≤ t ≤ tc

t− 1 +
tτ

λ
: t > tc

(µ =∞), (1.29)

λ
.
=

1

2

[
t− 1 +

√
(t+ 1)(t− 3) + 4tτ

]
, (1.30)

and is graphically represented in Fig. 1.3(b). The singularity at t+c ,

w = 2 +

[
t0(t− tc)
tc(t0 − tc)

]2

+O
(
(t− tc)3

)
(1.31)

with t0 = 3 for µ =∞ represents a continuous transition between a coil phase (t <

tc) and a helix phase (t > tc) with helical ordering subject to thermal fluctuations.

Expression (1.31) is to be interpreted as an asymptotic expansion with coefficients

that diverge as τ → 0. In that limit the cusp turns linear as in (1.25).

1.4 Order and disorder

Helix means order and coil means disorder, clearly. However, both attributes

can be looked at from different angles and a more comprehensive picture emerges.

In the following we investigate several thermodynamic quantities, derived from the

free energy (1.13) as functions of the experimentally controllable growth parameter

t at fixed values of the other two parameters τ and µ.

Each quantity will illuminate the competition between order and disorder from

a somewhat different vantage point. All are functions of w1(t, τ), which depends

on the solution (1.11) of (1.10) via (1.12). The analytic expression in the limit

τ → 0 for µ <∞ as inferred from (1.25) reads

w1 =


t

t0 − t
: t < t0

∞ : t ≥ t0
(τ = 0), (1.32)

and the analytic result in the limit µ→∞ at τ > 0 as inferred from (1.29) becomes

w1 =


t

t0 − t
: t < tc

λ

τ
: t ≥ tc

(µ =∞). (1.33)
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1.4.1 Helicity and entropy

We begin by considering the two thermodynamic functions that represent

order and disorder most directly: helicity (1.16),

N̄hl = 1− t

w1(1 + w1)

∂w1

∂t
, (1.34)

and entropy (1.14),

S̄

kB

= ln
(

1 + w−1
1

)
+

1

w1(1 + w1)

[
t ln t

∂w1

∂t
+ τ ln τ

∂w1

∂τ

]
. (1.35)

In Figs. 1.4 and 1.5 we show the dependence of helicity and entropy on the growth

parameter t at fixed nucleation parameter τ (five curves) and range parameter µ

(two panels).
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Figure 1.4. (Color online) Helicity N̄hl versus growth parameter t at values τ =
1, 0.25, 0.05, 0.0025 (thin lines) and τ = 0 (thick line) of the nucleation parameter
for (a) µ = 2 and (b) µ = 3.

At finite cooperativity (τ > 0) the helicity crosses over from a low to a high

value near t0. The rise in helicity becomes sharper with increasing cooperativity

and turns into a step discontinuity in the limit τ → 0. Analytically, expression

(1.34) with (1.32) substituted yields

N̄hl = θ(t− t0) (τ = 0). (1.36)

While order as reflected in the helicity increases monotonically with t, the

disorder as reflected in the entropy is not monotonically decreasing. It shows a
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Figure 1.5. (Color online) Entropy S̄/kB versus t at τ = 1, 0.25, 0.05, 0.0025 (thin
lines) and τ = 0 (thick line) for (a) µ = 2 and (b) µ = 3.

shallow maximum at t ' 1 separate from the shoulder at t ' t0. The reason for this

difference is that there is only one source of order – helical links – but two sources of

disorder: disorder inside coil segments and disorder in the sequence of helical/coil

segments of diverse lengths. It is the first source of disorder that produces the

shoulder and the second source that produces the shallow maximum. The Zimm-

Bragg case µ = 1 is pathological in this respect. It produces coil segments without

internal entropy as noted and commented on before [28].

As τ → 0, the segments grow larger in size and become fewer in numbers (see

Sec. 1.4.2 below). This reduces disorder of the second kind. At infinite cooperativ-

ity the entropy turns into a step discontinuity of µ-dependent height and location.

Expression (1.35) with (1.32) substituted becomes

S̄

kB
= θ(t0 − t) ln t0 (τ = 0). (1.37)

This discontinuity signals the presence of a latent heat (see Sec. 1.4.3 below).

Next we investigate the same measures of order and disorder as functions of t

at fixed τ = 1.0 (low cooperativity) or τ = 0.2 (high cooperativity) for increasing

numbers µ of coil states per residue including the limit µ → ∞. Our results

are shown in Figs. 1.6 and 1.7. The crossover behavior for small µ turns into a

continuous order-disorder transition as µ→∞.
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Figure 1.6. (Color online) Helicity N̄hl versus growth parameter t at cooperativity
(a) τ = 1.0 and (b) τ = 0.2 for µ = 2, 3, 4, 9 (thin curves from top down) and
µ =∞ (thick curve). The dot-dashed lines marks tc.
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Figure 1.7. (Color online) Entropy S̄/kB versus t at (a) τ = 1.0 and (b) τ = 0.2
for µ = 2, 3, 4, 9 (thin curves from bottom up) and µ = ∞ (thick curve). The
dot-dashed line marks tc.

With µ increasing, the internal source of disorder in coil segments gains domi-

nance over the entropy of mixing between coil and helix segments. The shoulder in

S̄/kB becomes flatter, higher, and sharper. In the limit µ→∞ at t < tc, the helic-

ity approaches zero identically and the entropy approaches the value S̄/kB = ln 3,

independent of τ . Disorder defeats order hands down.

The helix phase at t > tc, by contrast, remains a battleground between order-

ing and disordering tendencies. Both the helicity and the entropy expressions,

N̄hl = 1− tτ

λ(2λ+ 1− t) , (1.38)
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S̄

kB

= ln
(

1 +
τ

λ

)
+

tτ ln t

λ(2λ+ 1− t) +
τ ln τ

λ+ τ

[
tτ

λ(2λ+ 1− t) − 1

]
, (1.39)

have linear cusps at tc with slopes that diverge in the limit τ → 0. The leading

critical singularities at t+c are

N̄hl =
2t0
tc

t− tc
(t0 − tc)2

+O
(
(t− tc)2

)
, (1.40)

S̄

kB

= ln t0 − 2
t− tc
t0 − tc

[
ln tc
t0 − tc

+
ln(t0 − tc)

tc

]
+O

(
(t− tc)2

)
. (1.41)

With the growth parameter increasing from tc the helicity steeply rises from zero

and gradually bends over toward its saturation value whereas the entropy steeply

descends from a high value and gradually approaches zero. The plots suggest that

cooperativity impedes the onset of ordering, yet assists the quick rise of ordering

once it has set in.

1.4.2 Segments of coil and helix

Further insight into how helical ordering grows during the crossover or near

the transition point between conformations can be gained from the two quantities

(1.17) and (1.18), representing, respectively, the density and average length of

segments in one or the other conformation. Coil segments alternate with helix

segments. Hence they come in equal numbers. However, their average lengths vary

independently with t. Parametric representations can be constructed as before. We

use (1.34) and

N̄seg = − τ

w1(1 + w1)

∂w1

∂τ
. (1.42)

We first examine the t-dependence of N̄seg, Lcs, and Lhs near the first-order

transition that takes place at t0 in the limit τ → 0. Our results for µ = 2, 3 are

shown in Figs. 1.8 and 1.9. We observe that the density of segments is near zero at

small t. Here the system is strongly coil-like. The segments grow in numbers with
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Figure 1.8. Density of segments, N̄seg, versus t at τ = 1, 0.25, 0.05, 0.0025 (from
top down) for (a) µ = 2 and (b) µ = 3. The dot-dashed line marks t0.

t increasing. They become most numerous at t0, where ordering and disordering

tendencies compete evenly. The density of segments becomes smaller again as t

further increases into the stability regime of the helix conformation. The maximum

of N̄seg at t0 strongly depends on τ . In the limit τ → 0 we have N̄seg ≡ 0, which

means that, in a macroscopic system, the number of segments grows more slowly

(if at all) than the number of residues.
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Figure 1.9. Average length of coil segments, Lcs (solid lines), and helix segments,
Lhs (dashed lines), versus t at τ = 1, 0.25, 0.05, 0 (from bottom up) for (a) µ = 2
and (b) µ = 3. The dot-dashed line marks t0.

Unsurprisingly, Lcs decreases and Lhs increases monotonically with t. As ex-

pected, both variations are enhanced by cooperativity. Most interesting is the limit

τ → 0. The exact expressions for the average lengths of helix segments at t < t0
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and coil segments at t > 0 read

Lhs =
t0

t0 − t
, (1.43)

Lcs =
t

(1 + t)(3− t)

[
2(µ+ 1)

rµ(t− 1)
+ 2µrµ(t− 1)− (2µ+ 1)(t− 1)

]
, (1.44)

respectively, with rµ(w) from (1.24). Both expressions diverge ∝ |t − t0|−1 as t

approaches t0 from opposite sides and then stay infinite.

These results tell us that the macrostate with zero helicity and saturated

entropy at t < t0 still contains helix segments albeit only in numbers that do not

add up to a nonzero density but still produce a well-defined average size. They

coexist with an equal number of coil segments of macroscopic lengths. Conversely,

the macrostate of zero entropy (per residue) and saturated helicity at t > t0 is not

a single helical domain. Here helix segments of short average length in numbers

that amount to zero density coexist with an equal number of helix segments of

macroscopic lengths.

A different picture emerges near the second-order transition at t = tc in the

limit µ→∞. Results for the density of segments at high and low cooperativity are

shown in Fig. 1.10 and results for their average lengths in Fig. 1.11. This includes

numerical results for µ < ∞ and analytical results for µ = ∞. The density of

segments vanishes identically in the coil phase (t < tc) and then rises in a linear

cusp to a smooth maximum in the helix phase (t > tc) :

N̄seg =
τ

λ+ τ

[
1− tτ

λ(2λ+ 1− t)

]
=

2t0
tc

t− tc
t0 − tc

+O
(
(t− tc)2

)
. (1.45)

The average length of coil segments in the helix phase,

Lcs =
t(λ+ τ)

λ(2λ+ 1− t)− tτ =
tc
2

t0 − tc
t− tc

+
2t2c − 9tc + 15

4(t0 − tc)
+O(t− tc), (1.46)

diverges at t+c and remains infinite in the coil phase. The average length of helix
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Figure 1.10. (Color online) Density of segments, N̄seg, versus t at (a) τ = 1.0 and
(b) τ = 0.2 for µ = 2, 3, 4, 9 (thin curves lines left to right) and µ = ∞ (thick
curve). The dot-dashed line marks tc.
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Figure 1.11. (Color online) Average length of coil segments, Lcs (solid lines), and
helix segments, Lhs (dashed lines), for µ = 2 (thin lines) and µ = ∞ (thick lines)
versus t at (a) τ = 1.0 and (b) τ = 0.2. The dot-dashed line marks tc.

segments, by contrast, remains finite in both phases,

Lhs =


t0

t0 − t
: t ≤ tc,

1 +
λ

τ
: t ≥ tc,

(1.47)

where again, t0 = 3 for µ = ∞ in (1.45)-(1.47). The graph of Lhs is continuous

and smooth at tc. The singularity is of higher order. Only in the helix phase does

the shape of the curve depend on τ .

The most striking feature in the data shown concerns the helix segments.

Unlike in the case of the first-order transition, the ordered phase near tc supports

a significant density of coil and helix segments of comparable finite size. The
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average length of helix segments depends only weakly on µ and only moderately

on τ , in strong contrast to the average length of coil segments, which exhibits

strong dependences on both parameters.

1.4.3 Heat capacity and latent heat

The heat capacity, C̄
.
= T (∂S̄/∂T )εn,εg , illuminates the competition between

order and disorder from yet a different angle. From (1.35) we derive

C̄

kB
=

2w1 + 1

w2
1(1 + w1)2

[
t ln t

∂w1

∂t
+ τ ln τ

∂w1

∂τ

]2

− 1

w1(1 + w1)

[
t(ln t)2∂w1

∂t

+τ(ln τ)2∂w1

∂τ
+ (t ln t)2∂

2w1

∂t2
+ (τ ln τ)2∂

2w1

∂τ 2
+ 2(t ln t)(τ ln τ)

∂2w1

∂t∂τ

]
.(1.48)

Figure 1.12 shows the dependence of the heat capacity on the growth parameter

for the case µ = 2 at moderate to high cooperativity and for the case µ =∞ over

a wider range of cooperativity.
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Figure 1.12. Heat capacity C̄/kB versus t for (a) µ = 2 at τ = 0.05, 0.025, 0.01,
0.005 (from top down on the right in the main plot and from bottom up in the
inset) and (b) µ =∞ at τ = 1.0, 0.5, 0.25, 0.2 (from bottom up in main plot) and
τ = 0.2, 0.1, 0.05, 0.01 (from top down in the inset). The dot-dashed lines mark
tc for given τ .

At t < t0 = 2 in panel (a) we observe a weak signal that is associated with

the entropy caused by alternating coil and helix segments as discussed previously.

This contribution fades away at high cooperativity (best seen in the inset) as

the density of segments diminishes. The peak at t & t0, on the other hand, is
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associated with the entropy inside coil segments. With increasing cooperativity,

this contribution grows in a more and more narrow range at t0. Similar structures

have been obtained in recent Monte Carlos simulations, albeit upon variation of

temperature and in a somewhat different scenario [29].

In the limit τ → 0 for µ < ∞, where the coil-helix crossover sharpens into a

first-order transition at t0, the heat capacity approaches zero everywhere except

at the transition point, where it diverges and produces, via (1.37), a latent heat

of magnitude εg. Conversely, in the limit µ → ∞ at τ > 0, where the coil-helix

crossover turns into a second-order transition at tc, the heat capacity approaches

zero in the coil conformation and remains nonzero in the helix conformation as

shown in panel (b). When the transition changes from second to first order when

τ → 0 for µ = ∞, implying tc → t0 = 3, the heat capacity throughout the helix

conformation approaches zero as illustrated in the inset.

1.5 Conclusion and outlook

We have launched this project mainly for the purpose of interpreting (ongoing

and projected) experiments on pHLIP. In this first of three stages of analysis we

have constructed a microscopic model for the pH-driven coil-helix conformational

change of a long polypeptide adsorbed to a water-lipid interface. We have em-

ployed a methodology that facilitates the exact statistical mechanical analysis of

our model. The three model parameters t, τ, µ have settings for which the con-

formation changes either in a crossover, a first-order transition, or a second-order

transition.

We have carried out the analysis to the extent needed for a discussion of the

sources and agents of order and disorder. Our results include the t-dependence

of the helicity (order parameter), the average numbers and the average lengths

of helix and coil segments, the entropy, and the heat capacity. The behavior of
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these quantities near the continuous or the discontinuous transition has been given

special attention. We have plotted all quantities versus t at constant τ and µ for

a reason. The experimentally relevant processes for which we use our model will

primarily involve variations of the growth parameter t. These variations are caused

by changes in pH. The targeted peptides, adsorbed to the water-lipid interface,

include side chains that are strongly hydrophobic (e.g. Leu) and side chains that

are negatively charged (e.g. Asp, Glu).

A drop in pH leads to the protonation of the negatively charged side chains

and, therefore, enhances the overall hydrophobicity. The backbone of a coil seg-

ment thus pushed past the lipid headgroups is now more likely to satisfy an H-

bond internally than externally. The enthalpic cost for broken internal H-bonds

increases. This cost is encoded in t. Any increase in t favors a growth of helix

segments at the expense of coil segments. A rise in pH has the opposite effect.

The value of t decreases. Coil segments grow at the expense of helix segments.

The cooperativity parameter τ , by contrast, is much less sensitive to a change

in pH. In the nucleation process of coil segments from the helix conformation,

for example, the internal H-bonds are much more isolated from environmental

influences than are those at the border between coil segments and helix segments.

At this point, our project has reached a fork, where natural continuations

point in two different directions and address the interests of somewhat different

audiences. These continuations, already in the works, are outlined as follows.

1.5.1 Heterogeneous environment and short peptides

In one continuation we begin by considering long polypeptides that are no

longer confined to a plane parallel to a flat water-lipid interface. The growth

parameter t, which drives the conformational change, then becomes a field t(x)

and acquires a profile that depends on the local medium. Here x is a position
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coordinate in the direction perpendicular to the plane of the membrane. Such

circumstances pose a serious challenge to any existing model and its method of

analysis. However, the methodology used here is well positioned in that respect.

It has already been proven (in different applications [25, 27, 30]) to be adaptable

to heterogeneous environments.

The shape of the parameter field t(x) will be determined by the availability

of polar molecules to satisfy external H-bonds along the backbone of the peptide.

The dominant factor that shapes the field t(x) will be the density profile ρw(x)

across the membrane, for which data from experiments [31] and simulations [32]

are available. Subdominant factors include electrostatic interactions and fluid-

mechanical properties of lipids.

From the analysis of our extended model emerge profiles for the densities of

free energy, enthalpy, entropy, and helicity of long polypeptides that traverse the

heterogeneous environment (ranging from polar to non-polar) along some path

that is subject to conformational constraints [33]. These profiles, in turn, will be

interpreted as propensities for the statistical mechanical behavior of short peptides

in the same environment.

At this stage of the analysis, additional enthalpic and entropic effects involving

the side chains, the semi-fluid bilayer of lipid amphiphiles, and the hydrogen-

bonded network of H2O molecules can be built into the model. The outcome

are landscapes of free energy, enthalpy, entropy, and helicity for short peptides

of specific composition. The free-energy landscapes in particular then set the

stage for (i) a theoretical study of the kinetics of trans-membrane insertion and

exit of pHLIP and other membrane peptides and (ii) a direct comparison with

experiments currently in progress that investigate the insertion/exit processes of

pHLIP via tryptophan fluorescence and the accompanying conformational changes
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via circular dichroism spectroscopy.

This first continuation can also benefit from recent studies in the same area

of research. Not yet included in our modeling are effects related to torsion and

tension, which are bound to be present in the heterogeneous membrane environ-

ment. Experimental, computational, and analytic studies of force-extension and

torque-twist characteristics and the associated steric constraints [34, 35, 36, 37]

will be of great value for that purpose. The kinetic modeling of pHLIP insertion

while undergoing a conformational change will find valuable guidance from recent

studies that have investigated the fluctuation properties of helical polymers in con-

fined environments including narrow channels [38, 39, 40] and studies that have

investigated the Brownian dynamics of polymers in the membrane environment

[41].

1.5.2 Extensions of analysis, model, and scope

A second continuation focuses on the statistical mechanics of phase transitions

and critical singularities in the context of the microscopic model presented in this

work and extensions thereof. It is well known that the presence of a phase transition

at nonzero temperature in a system that is, in some sense, one-dimensional requires

interactions of long-range to stabilize an ordered phase in the face of strong thermal

fluctuations. In our model, which is truly microscopic and analyzed exactly, this

stabilizing agent comes in the form of quasiparticles that extend over entire coil

segments (hosts) or over parts thereof (hybrids).

In the context of the experiments that motivated this work we have examined

conformational changes driven by the control parameter t at fixed τ, µ as reflected

in just a few relevant quantities. The phase transitions that occur in the limits

τ → 0 (first-order) or µ → ∞ (second order) produce different singularities in

other quantities of no less interest for the statistical mechanical analysis. Such
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quantities of general interest include a mechanical response function, a correlation

length, and a correlation function. The further analysis of critical exponents and

scaling laws is best presented in a more general framework and along with model

extensions that remain inside the reach of our method of exact analysis.

In a final note, we should like to draw the reader’s attention to a different set of

applications, for which our statistical mechanical model and its extensions are likely

to produce significant new insights. These applications investigate the statistical

mechanics and the dynamics of DNA melting (thermal denaturation) [13, 14, 42,

43, 44, 45, 46, 47, 48] or the loop formation in RNA [49]. Of particular interest is

the loop exponent in the configurational entropy of loop formation [14, 49], which is

frequently used as an adjustable parameter. The further development of our project

aims for the analytic calculation of loop exponents pertaining to realistic scenarios.

Discussions of and debates about crossovers, first-order transitions, and second-

order transitions are at the center of most of these studies. The transcription

and adaptation of our methodology to this particular physics context is already in

progress. The main challenge in the endeavor is the extension of the self-avoiding

random walk to three dimensions.
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CHAPTER 2

Free-Energy Landscapes for Peptides in Membrane Environment I:
Contributions of the Backbone

2.1 Introduction

This work reports the second stage of a three-stage project aiming at a more

profound theoretical and experimental understanding of membrane-associated pro-

tein or peptide folding. The first stage, reported in [1], involves the design and

solution of a microscopic model for the pH-driven transition of a long polypep-

tide adsorbed to a water-lipid interface. The methodology used interprets the

polypeptide and its (homogeneous, effectively two-dimensional) environment as a

system of statistically interacting quasiparticles activated from the (ordered) helix

state. These particles represent broken internal H-bonds along the backbone in

the (disordered) coil conformation sprawled across the interface in the shape of a

self-avoiding random walk.

In one experimentally realized scenario the coil-helix conversion is triggered by

a drop in pH. The ensuing protonation of negatively charged side chains enhances

the hydrophobicity of the polypeptide and pushes its backbone deeper into the

(non-polar) membrane. This environmental change favors the formation of internal

hydrogen bonds that stabilize the α-helix conformation. Depending on the settings

of the model parameters, our model predicts the conformation to change as a

crossover, a first-order transition, or a second-order transition.

Here, in the continuation of this project, we begin by considering long polypep-

tides that are no longer confined to a flat water-lipid interface but are oriented

along some path across the heterogeneous environment comprising the lipid bi-

layer of a liposome or a biological cell and the surrounding water. The model

parameter identified in [1] to drive the conformational change then turns into a
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field reflecting the local medium. Such circumstances pose a serious challenge to

any existing model and its method of analysis. However, the methodology used

here is well positioned in that respect. It has already proven to be adaptable to

heterogeneous environments in different applications [2, 3, 4]. Here we extend the

model introduced in [1] accordingly.

From this analysis profiles emerge for the densities of free energy, enthalpy,

entropy, and helicity of long polypeptides that traverse the membrane along some

path consistent with conformational constraints. The profiles reflect enthalpic and

entropic consequences of the interactions between the backbone of the polypeptide

and the membrane or the surrounding hydrogen-bonded network of H2O molecules.

water

membrane

water

Figure 2.1. (Color online) Short peptide in conformation favored by local mem-
brane environment: two of several configurations analyzed in this work.

In the next step of the analysis these profiles are taken to represent propensities

for the statistical mechanical behavior of short peptides in the same environment

(see Fig. 2.1). At this stage, enthalpic and entropic effects involving the side chains

and the semi-fluid bilayer of lipid amphiphiles can be built into the model. The

outcomes are landscapes of free energy, enthalpy, entropy, and helicity for short

peptides of given composition. The free-energy landscapes in particular set the

stage for a study of the kinetics of trans-membrane insertion and exit of membrane

peptides.
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This theoretical study is custom-made for variants of the pH Low Insertion

Peptide (pHLIP) family but not to the exclusion of other peptides with similar

attributes. The sequences of three pHLIP variants are depicted in Fig. 2.2 with

several features relevant for this work emphasized.

The solubility in water of pHLIP is important. The presence and positioning

in the sequence of the charged residues and polar residues is instrumental for this

key attribute. The hydrophobic residues provide the affinity for adsorption of

pHLIP to the water-lipid interface. The protonatable negative charges at and near

the (inserting) C terminus make pHLIP sensitive to the experimentally controllable

and reversible change in pH.

The Trp residues are markers for fluorescent spectroscopy, by which the in-

sertion and exit processes are monitored. The three variants with Trp at different

positions in the sequence of residues promise to yield clues about the modes of

insertion and exit. The conformational changes between coil and helix segments

that accompany both insertion and exit are monitored by CD and OCD spec-

troscopy. The helix-inhibiting Pro residue near the center of the sequence may be

instrumental for the mechanics of the insertion process 1.
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Figure 2.2. (Color online) Sequence of the 32 residues that make up variants
W6, W17, W30 (top to bottom) of pHLIP. Highlighted are the residues that have
electrically charged side chains and the Trp residue used as a marker in fluorescent
spectroscopy.

1Experiments that use a variant with the Pro residue (near center) and the Ile residue (near
N terminus) switched as a control sample will shed light on this issue.
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The following sections are about fields, profiles, and landscapes: fields of envi-

ronmental parameters (Sec. 2.2), profiles of local properties for long polypeptides

(Sec. 2.3), and landscapes of global properties of short peptides (Sec. 2.4).

2.2 Membrane environment

We consider a patch of lipid bilayer with negligible curvature. Heterogeneity

is then associated with the spatial coordinate x, perpendicular to the bilayer. As

a convention we set x = 0 at the center of the bilayer. The outside of the cell or

liposome is at positive x and the inside at negative x. Any effects of curvature are

higher-order corrections to the results presented in the following.

The membrane environment is characterized by several parameters. In the

context of this work the dominant parameter field is the concentration of H2O

molecules. Hydrophobic interactions are prevalent. Subdominant parameter fields

involve electrostatic interactions including trans-membrane, surface, and dipole

potentials [5]. Further parameter fields are related to properties of lipids, notably

the profile of lateral pressure and the entropy reduction along the contact line with

the peptide. We begin by examining the effect of the dominant environmental

parameter.

2.2.1 Density field of water

We assume that the density field, ρw(x), of H2O molecules is symmetric under

reflection. It is a dimensionless quantity varying between ρw(x) = 1 sufficiently far

from the lipids and ρw(x) ' 0 near the center of the bilayer. We use a smoothed-

ramp density field as a model representation in our statistical mechanical analysis:

ρw(x) = 1− xs
xa − xb

ln

(
cosh(x/xs) + cosh(xa/xs)

cosh(x/xs) + cosh(xb/xs)

)
(2.1)

It has two adjustable parameters, xb/xa > 1 and xs/xa > 0. A density field of such

shape (Fig. 2.3) is well-established from experiment [6] and computer simulations
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[7].
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Figure 2.3. Smoothed-ramp model density field of H2O molecules. The parameters
xa and xb locate the bottom and the top of the ramp, symmetrically, and xs is a
measure for the softening of the edges.

For our applications we use parameter values as follows: xa ' 15Å represents

the distance from the center of the bilayer to a point just inside the lipid head-

groups, and xb ' 25Å the distance from the center to a point outside, where H2O

molecules are in contact with the polar ends of the lipid headgroups; xs ' 3Å rep-

resents smoothness over an atomic length scale.

A peptide of 35 residues 2 in helix conformation would have a length of roughly

50Å, if we assume that each helical link adds an element lh ' 1.5Å of length in the

direction of the axis [8]. The length of the peptide in the coil conformation is a

fluctuating quantity. The actual size of each link is la ' 4Å. If the peptide is fully

extended it reaches the contour length of ∼ 140Å, almost three times its length in

helix conformation.

In a homogeneous medium the coil conformation can be modelled by a self-

avoiding random walk. The average end-to-end distance predicted by an unre-

2The most widely used pHLIP variant has 35 residues.
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stricted random walk is ∼ 24Å, about half of its value in helix conformation.

Geometrical and dynamical constraints [9] make the average end-to-end distance

somewhat longer. In the membrane environment the average end-to-end distance

between N terminus and C terminus is much harder to estimate and best handled

case by case.

2.2.2 Free-energy

The term free-energy landscape as introduced in the title and then invoked

throughout this work is in need of some explanation. The system under consider-

ation includes a peptide in an environment consisting of a lipid bilayer surrounded

by water. The thermodynamic potential in use is the Gibbs free energy G. For a

homogeneous system it can be expressed in the form,

G(T, p) = U + pV︸ ︷︷ ︸
H

−TS, (2.2)

where U is the internal energy, H the enthalpy, S the entropy, and V the volume.

The control variables are the pressure p and the temperature T .

Our system is homogeneous in some but not all respects. We only consider

situations at uniform T , typically room temperature. The pressure is uniform in

the aqueous environment and its normal component, pN, also across the bilayer.

However, the lateral component, pL, has a characteristic profile that averages out

to the value of the normal pressure.

For the purpose of this study we only consider quasistatic processes of a

restricted type in which both T , and pN remain constant, at ambient pressure

and room temperature, respectively. One natural energy scale, therefore, uses

kBTrm ' 4.0×10−21J ' 0.58kcal/mol (at Trm = 293K) as its unit. These processes

involve the translocation of the peptide, accompanied by changes in conformation

of the peptide and in its interactions with water and lipids.
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Each such process can be described as a path in some parameter space. The

variation ofG along any such path is then a section of a free-energy landscape. Path

segments where ∆G < 0 are favorable and path segments with ∆G > 0 unfavorable

regarding spontaneous occurrence. Paths that are all ‘downhill’ are likely to have

fast realizations in experiments and paths that have significant barriers between

initial and final points may be realized only on much slower time scales.

In much of this study we categorize all changes of G as either enthalpic or

entropic in nature. We write,

∆G = ∆H − T∆S, (2.3)

and refer to changes with ∆H < 0 as producing an enthalpic gain and changes with

∆S > 0 as producing an entropic gain. In both cases a gain is thus associated with

a negative contribution to the free energy and loss with a positive contribution.

Entropic losses, ∆S < 0, under examination in this work include the follow-

ing kinds: (i) a complete or partial conformational change of the peptide from

(disordered) coil to (ordered) helix; (ii) the immobilization of H2O molecules via

the formation of H-bonds with polar contacts on the backbone or the side chains

of the peptide or with polar contacts on lipid head-groups; (iii) formation of an

ordered contact line between lipid head-groups and the peptide in adsorbed or

trans-membrane state.

Enthalpic losses related to a change ∆U > 0 are all associated with molecular

interactions. The two main sources of this type in the context of our study involve

(i) the breaking of H-bonds and (ii) the translocation of charges or polar contacts

from a polar environment (water) into a non-polar environment (membrane). The

H-bonds in question include internal ones between backbone contacts, and H-

bonds between the peptide (backbone or side chains), H2O molecules, and lipid

head-groups, all of which have polar contacts. A different type of enthalpic loss,
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(ph
L − pl

L)∆V > 0, comes into play when a peptide segment (e.g. a residue) of

volume ∆V translocates from a position of low lateral pressure, pl
L, to position of

high lateral pressure, ph
L.

It is quite challenging, in general, to estimate all these contributions with

some accuracy. Existing estimates found in the literature vary widely and often

contradict each other, in part due to differences in underlying assumptions. In

some instances, several contributions are lumped together such as in tabulated

data for hydrophobic transfer free energies.

2.2.3 Enthalpic cost of H-bonds

In the α-helix conformation the backbone of each residue is involved in two

H-bonds. The CO group of residue n is acceptor to the NH group of residue

n+ 4 acting as donor (Fig. 2.4). The helix conformation thus involves one internal

H-bond per residue. In the conversion of a helix segment into a coil segment, a

number of internal H-bonds must be broken, for which there is an enthalpic cost.

C terminus
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α

C’

H O

R n

... ...N C
α

C’

H O

R n+4
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C’

H O

R n+3

N C
α

C’

H O

R n+2

N C
α

C’

H O

R n+1

H−bond
13

4N terminus

Figure 2.4. Schematic of internal 413 H-bond (bridging 4 residues and 13 chemical
bonds along the backbone) of an α-helix.

Deep inside the lipids the full price is due, . 9kBT per H-bond, which is

considerable in units of ambient thermal fluctuations. Closer to the lipid-water

interface, where ρw(x) is significant, some broken internal H-bonds may be replaced

by H-bonds with H2O molecules in the role of donors or acceptors as needed.

When the peptide is in coil conformation and positioned in the polar environ-
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ment of the lipid headgroups and the adjacent water, there are opportunities for

all internal H-bonds to be replaced external ones. This increases the maximum

number of H-bonds per residue from one to two. Each residue is again donor and

acceptor, but now via bonds not shared with other residues.

Whether the enthalpic bottom line in this case is a gain or loss depends on

how the exposed backbone of the polypeptide affects the internal H-bonds of liquid

water. It is not obvious which is the case. In ice there are two intact H-bonds per

H2O molecule. Each molecule shares four bonds, two in the role of donor and two

as acceptor. In liquid water about 12% of H-bonds between H2O molecules are

broken [8] 3. The intact H-bonds form a dynamic network with H2O molecules on

average sharing less than four bonds.

If one internal H-bond on the backbone of the peptide is replaced by two

external H-bonds involving H2O molecules from surrounding liquid water, does

the average number of H-bonds increase, decrease, or stay the same? The answer

depends on the average number of H-bonds in the H2O network that are broken

when two external H-bonds (between one residue and two H2O molecules) are

formed. The enthalpic cost of the helix-coil transformation is zero if that number

is equal to one. Any higher number results in an enthalpic loss and any lower

number in an enthalpic gain.

If the fraction of unsatisfied H-bonds between H2O molecules is higher at

the lipid-water interface than inside the bulk, then the exposed CO groups and

NH groups along a coil segment of the backbone are more likely to encounter

partners for external H-bonds in adjacent H2O molecules. This reduces the need

for breaking H-bonds between H2O molecules when external H-bonds are formed

along the backbone of the peptide. The formation of external H-bonds in water is

3This estimate compares the latent heat of sublimation, Lsg = 680cal/g to the latent heat of
melting, Lsl = 80cal/g. If both latent heats are dominated by the breaking of H-bonds, then the
fraction of unsatisfied H-bonds in the liquid phase beomes 80/680 ' 0.12.
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then more likely to result in an enthalpic gain than loss.

In the context of the methodology developed in [1], the enthalpic contribution

to the conformational tendency in the heterogeneous membrane environment is

accounted for by turning the activation energies ε of coil links from the helix

reference state into fields 4. We use the general ansatz,

ε(x) = ε0
[
1− αρw(x)

]
, (2.4)

for their dependence on the density field of water, ρw(x), which represents the

dominant environmental influence.

Near the center of the lipid bilayer we have ρw(x) � 1, which maximizes

ε(x) to roughly the strength of an internal H-bond. At positions closer to the

lipid-water interface, ε(x) decreases as ρw(x) increases. This change is due to the

growing probability that internal H-bonds can be replaced by external ones. The

parameter α determines whether in the aqueous environment, with ρw(x) ' 1, we

have an enthalpic gain (α > 1) or an enthalpic loss (α < 1) 5.

2.2.4 Entropic cost of H-bonds

The enthalpic cost reduction associated with external H-bonds in the polar

environment of liquid water comes with an entropic price that has yet to be in-

cluded in the accounting. Every H-bond formed between an exposed backbone

CO or NH group with an H2O molecule immobilizes that water molecule and thus

lowers its contribution to the entropy.

It is hard to estimate this entropy reduction from first principles but, in all

likelihood, it is somewhat larger in magnitude than the entropic gain per residue

4We use the name ‘’link’ for the unit of peptide backbone between successive peptide bonds
as used in the mathematical modelling of Ref. [1].

5For the strength of hydrogen bonds we are using, for the time being, one universal value,
εHb/kBT ' 9, irrespective of the context. It represents the commonly cited 5kcal/mol. This is
an oversimplification. The strength of H-bonds varies and depends on geometrical constraints
and the strength of the polar contacts.
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produced when a segment of (ordered) helix transforms into a segment of (dis-

ordered) coil. In [1] we have calculated that entropy gain per residue to range

between ln 2 ' 0.7 and ln 3 ' 1.1 in units of kB. Residues in coil conformation are

clearly more constrained than H2O molecules in the dynamic network of H-bonds

that make up liquid water. For what follows we have set

∆SH

kB

' 1.5 (2.5)

which we estimate to be an upper limit.

The main message for Sec. 2.4 below is that the entropic contribution to the

free energy of the peptide backbone in coil conformation is likely to be positive,

i.e. unfavorable, when the peptide is contact with water. Here we have one factor

favoring insertion. It will be weighed against other factors yet to be identified and

examined 6.

2.2.5 Model for peptide conformation

Previously [1], we introduced and solved a microscopic statistical mechani-

cal model for the conformational transformation between coil and helix of a long

polypeptide positioned in a plane parallel to the interface between a polar and a

non-polar fluid medium such as realized by water and a lipid bilayer. Depending

on the settings and variations of its parameters, the model predicts a crossover or

a transition of first or second order between coil and helix.

All microstates of the peptide are characterized in our model by combinations

of 2µ species of statistically interacting nested particles: hosts (m = 1) nucleate

coil segments whereas hybrids (m = 2, . . . , µ) and tags (m = µ+ 1, . . . , 2µ) grow

such segments in two perpendicular directions of a self-avoiding random walk as

illustrated in Fig. 2.5.

6The value (2.5) is provisional, probably representing an upper limit. There are reasons to
argue that the number of immobilized H2O molecules is smaller than two per residue. That
would reduce the value of parameter α.
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helix

nucleation
growth

range

helix helixcoil coil

Figure 2.5. Coil conformation of polypeptide modeled as a self-avoiding random
walk generated by statistically interacting nested particles activated from the helix
reference state via nucleation (control parameter τ) and growth (control parameter
t) with range limited by control parameter µ.

The activation energies εm, m = 1, . . . , 2µ can be tailored to meet the physical

requirements at hand. In the plane of the water-lipid interface all activation ener-

gies are spatially uniform. Nucleating a coil segment requires that several internal

H-bonds along the backbone of the α-helix are broken simultaneously whereas the

growth of a coil segment already nucleated proceeds by the sequential breaking of

single H-bonds.

The model solved in [1], therefore, assigns different activation energies for the

control of nucleation than for the control of growth, namely ε1
.
= εn for hosts,

ε2 = · · · εµ .
= 2εg for hybrids, and εµ+1 = · · · ε2µ .

= εg for tags. These activation

energies in units of the thermal energy kBT are usefully expressed by the nucleation

parameter τ (also named cooperativity) and the growth parameter t:

τ = eβ(εg−εn) : 0 ≤ τ ≤ 1, (2.6a)

t = eβεg : 0 ≤ t <∞. (2.6b)

In addition to these two continuous control parameters, the discrete model param-

eter µ controls the range of the random walk away from the axis of the local helix

segments. All model features used in the following are reviewed in Appendix B.
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2.2.6 Model parameter field

Of the three model parameters the growth parameter t is the one most sensitive

to the environment by far. We begin our model adaptation to the membrane

environment by keeping the cooperativity parameter τ and the number µ of coils

states per residue uniform, while we turn t into a field.

For this purpose we now use the ansatz (2.4) for the construction of two fields

of scaled activation energy, one for hosts, the other for hybrids and tags 7. The

former (m = 1) we leave undetermined and the latter (m = 2, . . . , 2µ) we link to

the density field of water:

K1(x)
.
=
ε1(x)

kBT
, (2.7)

Kt(x)
.
=

εHb

kBT

[
1− αHρw(x)

]
, (2.8)

where εHb/kBT represents the scaled energy of an H-bond and αH ' 1 is the

enthalpy parameter introduced previously, now assumed to be equal for hybrids

and tags.

The growth parameter field,

t(x) = eKt(x) : 0 ≤ t(x) <∞, (2.9)

is environmentally sensitive via the shape of ρw(x) and the value of αH. The

cooperativity,

τ = eKt(x)−K1(x) : 0 ≤ τ ≤ 1, (2.10)

is kept as a continuous model parameter controlling the nucleation of coil segments.

The function K1(x) is then determined via (2.10).

Our reasoning for this choice of modelling is that cooperativity, which con-

trols the nucleation of coil segments, is a process initiated by thermal fluctuations

within the backbone of an intact segment of α-helix. Multiple H-bonds must be

7We keep setting εh = 2εt for the activation energies of hybrids ad tags, respectively as in
Ref. [1] for the same reason.
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broken simultaneously. They are all protected from immediate contact with the

environment. Nucleation is affected indirectly by an environmental change from

non-polar to polar. In the non-polar environment the nucleation energy barrier is

followed by a high plateau and in the polar environment by a low plateau. The

difference is accounted for by the growth parameter field.

-40 -20 0 20 40
0.0

0.2

0.4

0.6

0.8

1.0

x@ÞD

Ρ
w

Hx
L

xa = 15Þ

xb = 25Þ

xs = 3Þ

-40 -20 0 20 40
0.1

1

10

100

1000

x@ÞD
tHx

L

ΑH = 0.9
ΑH = 1.0
ΑH = 1.1

Figure 2.6. Model density field of water ρw(x) [left] and growth parameter field
t(x) [right], with specifications as indicated. The dot-dashed lines represent the
endpoints of the ramp and the dashed lines the range 1 ≤ t ≤ 3 in which a coil-helix
phase transition may occur.

The panel on the left in Fig. 2.6 shows the model density field of water ρw(x)

used henceforth. It has the smoothed-ramp profile (2.1). The growth parameter

field t(x) inferred from the predominant environmental field ρw(x) via (2.8) and

(2.9) is shown in the panel on the right. When the polypeptide is in coil confor-

mation while adsorbed to the water-lipid interface its position is near the outer

dot-dashed line.

For the coil conformation to be stable, the growth parameter must be below

the upper dashed line (at t = 3) at the very least. We see that is not the case

unless αH > 1, i.e. unless the breaking internal H-bonds along the backbone of the

polypeptide and replacing them by external H-bonds with available H2O molecules

is an enthalpic gain.

Now we have the extended model system ready for applications to the hetero-
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geneous membrane environment. We have converted t into the field (2.9) and keep

the control parameters τ and µ as in [1]. We have already stated reasons not to

turn the nucleation parameter τ into a field. Regarding discrete model parameter

µ 8 we will primarily consider the cases µ = 2 and µ = ∞, for which analytic so-

lutions are available to our analysis in extension to the solutions presented in [1].

The two values span a range that is correlated with a range of entropy generated

inside coil segments of given length.

2.3 Profiles

The analysis as carried out in the following yields profiles for some relevant

local attributes of peptides in this heterogeneous membrane environment: densities

of free energy Ḡ, enthalpy H̄, entropy S̄, and helicity N̄hl. These profiles are still

attributes of long, generic polypeptides. What is taken into account at this stage

are the internal H-bonds along the backbone of the polypeptide and external H-

bonds with water or lipid headgroups depending on their availability. Also taken

into account is the entropic effect the exposed backbone in coil conformation has

on the surrounding water or lipid molecules.

The polypeptide is oriented perpendicular to the membrane and the length

per residue is taken to be independent of the conformation. We can then use

the expressions for N̄hl(t, τ), S̄(t, τ), Ḡ(t, τ), and H̄(t, τ) from Appendix B with

t = t(x) from (2.8), (2.9) and any choice of τ . The growth parameter field t(x)

determines all profiles via local relations. Profiles for µ = 2 are shown Fig. 2.7 and

profiles for µ =∞ in Fig. 2.8.

Well inside the lipid bilayer, at x ' 0, the helix conformation is firmly es-

8It is fair to argue that the coil becomes more constrained in the lipid environment than in
the aqueous environment, which suggest that we should use a larger value of µ in the latter
than in the former. To implement the restricted space available to the polypeptide coil in this
way is difficult from a technical point of view. It would entail approximations of little control
and is likely to obscure other environmental effects. We, therefore, opt to account for the space
restrictions imposed by the lipids in different ways.
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Figure 2.7. Profiles of helicity, entropy, free energy, and enthalpy for a long
polypeptide. The model parameter values are µ = 2 and τ = 0.5. The growth pa-
rameter field t(x) uses (2.8)-(2.9) with ρw(x) from Fig. 2.6. The solid, dashed, and
dotted curves pertain to αH = 1, αH = 1.05, 1.1, and αH = 0.95, 0.9, respectively.

tablished. All internal H-bonds are intact. There is no configurational disorder.

Therefore, the order parameter (helicity) is very close to saturation whereas the

densities of enthalpy and entropy are near zero. In consequence, the free-energy

density of the polypeptide rises only imperceptibly above its (zero) reference value

as well. As we move the position x away from the center of the bilayer, out of the

membrane environment into the aqueous environment, the helicity decreases and

the entropy increases, the former reflecting a drop in (helical) order and the latter

a rise in (coil-like) disorder, both associated with the same conformational change.

In [1] we have identified one source of order and two sources of disorder in-

volving the secondary structure of the polypeptide alone. Order increases with the

growth of segments of helix conformation. Disorder is contained in the positions
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Figure 2.8. Profiles of helicity, entropy, free energy, and enthalpy for a long
polypeptide. The model parameter values are µ =∞ and τ = 0.5. The growth pa-
rameter field t(x) uses (2.8)-(2.9) with ρw(x) from Fig. 2.6. The solid, dashed, and
dotted curves pertain to αH = 1, αH = 1.05, 1.1, and αH = 0.95, 0.9, respectively.

of boundaries between coil segments and helix segments as well as inside each coil

segment.

The enthalpy density exhibits a sharp maximum at locations near the lipid-

water interface. At the peak position the thermal fluctuations are just strong

enough to break the internal H-bonds but the environment is not yet sufficiently

polar to be able to replace all of them by external H-bonds. Outside the interface

the enthalpy profile levels off in a high or low plateau depending on the value of

the physical parameter αH. That parameter also affects the drop in helicity and

the rise in entropy. Enthalpic loss (αH < 1) favors order and suppresses disorder

in the aqueous environment.

There are some qualitiative and some quantitative differences between the
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curves for µ = 2 shown in Fig. 2.7 and those for µ = ∞ shown in Fig. 2.8. The

case µ =∞ produces pure coil with maximum entropy in the aqueous environment.

Pure coil means zero helicity. The entropy that can be generated in coil segments

by the case µ =∞ is significantly higher than that generated by the case µ = 2.

The enthalpic spikes near the interface are more pronounced in the case µ =

∞. This difference is attributable to an entropic effect. The breaking of an H-

bond at significant enthalpic cost is more likely to happen if the entropy produced

is large (µ =∞) than if it is small (µ = 2).

The free-energy profiles in Figs. 2.7 and 2.8 tell us that the incentives for

the insertion of peptides must come from a source other than what has already

been taken into account. The free-energy density Ḡ(x) is significantly higher in

the membrane environment than in the aqueous environment. The enthalpic bal-

ance strongly depends on the parameter αH but it is not decisive. The entropic

contribution strongly favors coil over helix, which, in this context, means water

over lipids. At this stage of the analysis we consider one source that modifies the

free-energy density profile toward favoring insertion. Further sources, associated

with side chains and their interaction with lipids.

The replacement of backbone internal H-bonds with external H-bonds that

immobilize H2O molecules from the aqueous environment, while providing an en-

thalpic discount as already accounted for, comes at a significant entropic cost. This

effect can be taken into account via an amended free-energy density constructed

as follows:

Ḡ(x)H

kBT
=
Ḡ(x)

kBT
+ 2

∆SH

kB

[
1− N̄hl(x)

]
, (2.11)

with ∆SH from (2.5). The factor in square brackets represents the fraction of

backbone segments in coil conformation with each segment offering docks for two

H2O molecules.
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Figure 2.9. Profiles of free energy for a long polypeptide including the entropic
contribution from external H-bonds. The model parameter values are τ = 0.5,
∆SH/kB = 1.5 [top] and SH/kB = 1.0 [bottom] from(2.6), and µ = 2 (left), µ =∞
(right). The growth parameter field t(x) uses (2.8)-(2.9) with ρw(x) from Fig. 2.6.
The solid, dashed, and dotted curves pertain to αH = 1, αH = 1.05, 1.1, and
αH = 0.95, 0.9, respectively.

The profiles for the amended free-energy densities are shown in Fig. 2.9 for

two values of ∆SH/kB. We recall from earlier that the (higher) value (2.7) has

been estimated to be an upper limit. This amendment does indeed produce an

incentive for insertion. It shifts the global minimum of the free-energy density to

the middle of the lipid bilayer. Most interestingly, the modified profiles exhibit,

except for low values of αH, an energy barrier at the interface between membrane

and water.

Note also that for α > 1 the global minimum switches position from lipid

environment to water environment as the ∆SH/kB is lowered below 1.0. The

significance of these features for stable and metastable states of short peptides will
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be further investigated below.

2.4 Landscapes

At this next stage of the statistical mechanical analysis we interpret the profiles

calculated in Sec. 2.3 as propensities of residues in short peptides such as pHLIP.

The density profiles represent average local attributes of long, generic polypeptides

in and around the membrane environment. Here we use them as one factor affecting

the behavior of residues of short peptides in the same environment, specifically their

conformational preference (coil or helix). Other factors depend on attributes of

the specific side chains in the short peptide and further (enthalpic and entropic)

effects of peptide-lipid interactions.

The analysis to be carried out produces landscapes of global properties of

short peptides: free energy, enthalpy, entropy, helicity again and others. From

the shapes of these landscapes with all major contributions included, in particular

from the global and local minima of the free-energy landscape, we glean information

about the preferred conformation, orientation, and position of the short peptides

in the heterogeneous membrane environment. In this Sec. 2.4 we discuss ways to

construct landscapes for short peptides in general and, for one scenario, what the

contributions from their backbones are.

2.4.1 Scenario #1

Consider a peptide of NR residues oriented perpendicular to the plane of the

bilayer. The residues are positioned along that normal as shown schematically

in Fig. 2.10. The peptide position x0 is taken to be the position of the center

residue if NR is odd and the midpoint of the center link if NR is even. The relative

positions of all residues are then generated recursively from x0 out toward both
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Figure 2.10. Specifications for the positions of residues along x-axis perpendicular
to the plane of the bilayer.

ends as follows:

x
(±)
0 = x0, x(±)

n = x
(±)
n−1 ± l

(
x

(±)
n−1

)
, (2.12)

for n = 1, . . . , 1
2
(NR − 1) if NR is odd, and

x
(±)
1 = x0 ± 1

2
l(x0),

x(±)
n = x

(±)
n−1 ± l

(
x

(±)
n−1 ± 1

2
l
(
x

(±)
n−1

))
, (2.13)

for n = 2, . . . , 1
2
NR if NR is even. The function l(x) is a part of the modeling

that varies with context (see Sec. 2.4.3 below). The expression for free energy per

residue and for helicity can then be calculated from the profile functions evaluated

at specific positions via

Ḡ
(p)
H (x0)

kBT
=

1

NR

[
ḠH(x0)

kBT
+

1
2

(NR−1)∑
n=1

ḠH

(
x

(+)
n

)
kBT

+
ḠH

(
x

(−)
n

)
kBT

 , (2.14)

N̄
(p)
hl (x0) =

1

NR

[
N̄hl(x0) +

1
2

(NR−1)∑
n=1

{
N̄hl

(
x(+)
n

)
+ N̄hl

(
x(−)
n

)} ]
, (2.15)

if NR is odd, and

Ḡ
(p)
H (x0)

kBT
=

1

NR

1
2
NR∑
n=1

ḠH

(
x

(+)
n

)
kBT

+
ḠH

(
x

(−)
n

)
kBT

 , (2.16)
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N̄
(p)
hl (x0) =

1

NR

1
2
NR∑
n=1

{
N̄hl

(
x(+)
n

)
+ N̄hl

(
x(−)
n

)}
, (2.17)

if NR is even. The function N̄hl(x) and the backbone contribution to the function

ḠH(x) that enter these expressions are those used in Sec. 2.3 for profiles of long

polypeptides. We now present results for two cases of this scenario. Results for

two cases of this scenario follow in Sec. 2.4.3 below.

2.4.2 Scenario #2

Here we consider free-energy landscapes for short peptides of varying position

and orientation. The model peptide in this scenario consists of two straight seg-

ments as illustrated in Fig. 2.11. In applications to pHLIP, the position of the

kink could naturally be associated with the helix inhibiting proline residue but it

can be anywhere in the sequence. One simulation study [10] places a kink at the

position of the Asp residue which is somewhat closer to the N terminus than the

Pro residue.

K

1

N terminus C terminus
x

θ
N

θ
C

− 1n
n

n + 1

N
R

K
K

Figure 2.11. Variables xnK
(depth of kink) and θN, θC (angles of adjacent segments)

used in scenario #2.

We use the position xnK
of the kink on the normal to the bilayer and the

angles θN, θC of the segments with the N, C termini, respectively, as the variables

that uniquely specify the position and orientation of the peptide in the membrane
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environment. The distances between residues in each segment are modeled as

before but with all positions of residues now generated recursively from the position

of the kink.

Free-energy landscapes that depend on three continuous variables are hard

to visualize in a compact fashion. We must adapt the mode of graphical presen-

tation to best serve our chief purpose, which is to explore different pathways of

insertion such as have been suggested, for example, on the basis of experimental

evidence. We therefore investigate the variation of free energy along different in-

sertion pathways. Each pathway is described by a specific synchronized variation

of the variables indicated in Fig. 2.11. In practice, we express all three variables

as functions of a single parameter with range 0 ≤ z ≤ 1. Each set of functions,

xnK
(z), θN(z), θC(z), traces a specific insertion pathway.

In pHLIP applications the initial state (named state II) is an adsorbed peptide,

largely oriented parallel to the bilayer and positioned close to the lipid headgroups.

The final state (named state III) is the TM state, oriented perpendicular to the

bilayer, with the C terminus having crossed the membrane. Hence the initial and

final values of the three variables are

xnK
(0) = xini

nK
, θN(0) = θC(0) =

π

2
, (2.18a)

xnK
(1) = xfin

nK
, θN(1)0, θC(1) = π, (2.18b)

where the values xini
nK

, xfin
nK

are the results of optimizations. Along each insertion

pathway we can calculate the free energy as we have done in Sec. 2.4.1. Modified

versions of (2.12), (2.14), (2.15) read

xn−1 = xn + l(xn) cos θN : n = nK, . . . , 2, (2.19)

xn+1 = xn + l(xn) cos θC : n = nK, . . . , NR − 1,

G
(K)
H (xnK

)

kBT
=

NR∑
n=1

ḠH(xn)

kBT
, (2.20)
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N
(K)
hl (xnK

) =

NR∑
n=1

N̄hl(xn). (2.21)

For the function l(xn), which enters (2.19), we again refer to Sec.2.4.3 below, where

two variants are being used. Evidently, scenario #1 is contained in scenario #2 as

a special case.

A stretch of pathway along which the free energy as calculated via (2.20) de-

creases is favorable for insertion and a stretch along which it increases is unfavor-

able. Insertion pathways that are all downhill are fast. Any barriers encountered

slow down the characteristic time of insertion.

The free-energy densities ḠH(x) from Sec. 2.3 include only selected contribu-

tions, mostly from the backbone of the peptide. We therefore postpone applica-

tions of scenario #2 until we are ready to employ amended expressions ḠH(x) that

include the most important side chain contributions.

2.4.3 Landscapes from backbone alone

It is instructive to investigate the backbone contributions to the landscapes

of helicity and free energy for scenario #1. The simplest case uses

l(x) = lh = 1.5Å, (2.22)

implying that the position coordinate between successive residues progresses uni-

formly and independently of conformation. The value chosen in (2.22) is most

realistic for a helical segment.

Free-energy and helicity landscapes thus predicted are shown in Fig. 2.12 for

µ = 2,∞ and three size of peptides (NR = 35, 47, 23). The first row of landscapes

(NR = 35) is tailored to represent some variant of pHLIP, the second row a signif-

icantly longer longer peptide (NR = 47), and the third row a significantly shorter

peptide (NR = 23). We only consider enthalpy parameters that are neutral αH = 1

or represent a gain αH = 1.05, 1.1.
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Figure 2.12. Helicity (peaked at center) and scaled free-energy of peptide with NR

residues oriented and positioned as described in the text versus the coordinate x0

of the central residue for µ = 2 (left) and µ =∞ (right) and three sizes. The solid
and dashed curves pertain to the values αH = 1 and αH = 1.05, 1.1 of the enthalpy
parameter, respectively.
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No matter whether we assign little entropy to coil segments (µ = 2) or a lot

of entropy (µ = ∞), the landscapes have similar shapes. The helicity landscapes

are almost independent of the enthalpy parameter. That parameter affects the

free-energy primarily in the aqueous environment as expected.

Insertion into the membrane is clearly favored in all three cases and for both

variants of the model. The plots also tell us that insertion is accompanied by a

conformational change from coil to helix. For the longest peptide the minimum

in free energy is not as deep and the maximum in helicity is not as high as is the

case for the two shorter ones. The obvious reason is that the former has significant

flanking ends that remain in water.

Of particular interest is the free energy barrier that separates states with the

center of the peptide in aqueous or membrane environments, the former mostly in

coil conformation and the latter in helix conformation. This free-energy barrier is

very shallow for µ = 2 and only exists if αH > 1. For µ = ∞, on the other hand,

it is more conspicuous and present even for α = 1. This difference is related to

the higher entropy that must be expelled by coil segments for µ = ∞ when they

order into helix segments before they can cash in the enthalpic benefit of the lipid

environment.

One message we take from this simplest scenario is that insertion is not au-

tomatic. An environmental change may be needed to push the peptide over the

barrier. One environmental change that acts on protonatable charges carried by

some side chains (e.g. Asp and Glu) is an increase in acidity. The consequences

for pHLIP are well documented by experiments [11, 12, 13, 14]. Let us recall that

the extent of insertion as predicted by free-energy landscapes and the extent of

ordering as predicted by helicity landscapes can be directly monitored experimen-

tally, namely by tryptophan fluorescence and by circular dichroism experiments,
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respectively.

An improved level of modeling takes into account that the distance between

adjacent residues is different in the coil and helix conformations. This feature

can readily be implemented in the framework of our methodology. Here we keep

the orientation of the peptide perpendicular to the bilayer. The distance between

successive residues now depends on the local conformation of the backbone at their

position in the membrane environment. That conformation is either coil or helix

with probabilities for which we use propensity profile as calculated in Sec. 2.3. We

replace (2.22) by

∆x
.
=xn+1 − xn = l(xn),

l(xn) = lc − (lc − lh)N̄hl(xn), (2.23)

where we use (averaged) lengths lc for coil segments and lh for helix segments.

The values of lc and lh are two physical parameters in this model version.

We again mark the location of the peptide as the position of its center residue

or center link and generate the relative positions of residues recursively from that

center as in (2.12) and (2.13). The expression for free energy per residue and for

helicity do not change from (2.14)-(2.16) in structure.

Whereas the shift lh associated with a helix segment remains fixed at the value

(2.22) our model now allows for a coil segment of average length lc that can be

different. Its maximum value is the contour length per residue of the backbone:

lc . 4Å.

In Figs. 2.13 and 2.14 we show landscapes of the helicity and the free energy

for the cases lc = 2.0Å and lc = 3.0Å, respectively. Many of the features that we

described in the context of Fig. 2.12 remain qualitatively the same. However, the

improved model adds one new feature to the landscapes of both helicity and free

energy. It is a change in slope at the interface position. With lc increasing, the
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Figure 2.13. Helicity (peaked at center) and scaled free-energy of peptide with NR

residues oriented and positioned as described in the text versus the coordinate x0

of the central residue for µ = 2 (left) and µ =∞ (right) and three sizes. The solid
and dashed curves pertain to the values αH = 1 and αH = 1.05, 1.1 of the enthalpy
parameter, respectively. The length specifications are lh = 1.5Åand lc = 2.0Å.
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Figure 2.14. Helicity (peaked at center) and scaled free-energy of peptide with NR

residues oriented and positioned as described in the text versus the coordinate x0

of the central residue for µ = 2 (left) and µ =∞ (right) and three sizes. The solid
and dashed curves pertain to the values αH = 1 and αH = 1.05, 1.1 of the enthalpy
parameter, respectively. The length specifications are lh = 1.5Åand lc = 3.0Å.
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bend becomes more pronounced. In addition we observe a systematic change in a

feature already present in Fig. 2.12. The locations where both landscapes level off

shift further away from the center of them membrane.

Consider the the peptide with NR = 35 residues. It just fits into the non-polar

space between the two layers of headgroups. As its center residue is gradually

displaced away from the middle of the membrane the two stretches of residues on

either side respond differently two the changing environment. The outer stretch

gradually moves into the polar environment, converting from helix to coil in the

process. The inner half remains in helix conformation. The outer stretch gets

continually longer a while the inner stretch maintains its length.

For as long as the center residue is inside the membrane thus observe a steady

descent of the helicity and a steady rise of the free energy. When the center

residues moves into the non-polar environment, then the inner stretch begins to

unravel from helix to coil and thus increase is length. The implication is the helical

portion of the inner stretch now moves away from the center of the membrane at

a slower rate than the center residue does. The consequences are that the both

landscapes now change more slowly and level off later.

The systematic dependence on NR of the landscapes remain very similar in

the improved model as is evident when we compare the panels of Fig. 2.12 with

the corresponding panels of Figs. 2.13 and 2.14.

2.5 Conclusion and outlook

The continuation of this project will focus on the effects of side chains and

additional effects of the lipids. The contributions to the free-energy landscape

originating from the side chains of a peptide with a given sequence of residues are

manifold. Some of them are associated with properties of the lipid bilayer that

we have yet to discuss. For this investigation the protagonist will be a peptide
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with a specific sequence of residues, in particular the pHLIP variants identified in

Fig. 2.2.

We shall estimate the peptide free energy (in the sense explained in Sec. 2.2.2)

in three principal configurations relative to its environment and along specific

pathways between two of them. The three states are

• State I: pHLIP is in aqueous solution and in coil conformation.

• State II: pHLIP is adsorbed to the outside interface of a cell membrane with

interstitial fluid or of a liposome with water. At high pH the degree of

adsorption is shallow and the conformation is coil. At low pH the degree of

adsorption is deeper and the conformation is α-helix, at least to a large part.

• State III: pHLIP is in a trans-membrane state with a helical central part and

short coil-like flanking ends.

Given that the side chains of residues range from strongly hydrophobic to

strongly hydrophilic, it is not surprising that they contribute significantly to the

free-energy landscapes. Some side chains carry (positive or negative) electric

charges. The protonation of the negatively charged Glu and Asp residues and

of the negatively charged C terminus at low pH changes the overall hydrophobic-

ity significantly. The current consensus is that the protonations caused by a drop

in pH trigger the destabilization of the adsorbed state II in favor of the trans-

membrane state III.

For the continuation of our modeling we plan to employ and compare existing

data for transfer free energies in order to estimate the side-chain contribution to

the free-energy owing to hydrophobicity. Our goal is to compare such free-energy

contributions between states I, II, and III at high pH and at low pH.

The primary effect of the lipids has been present in this study from the outset.
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The lipids produce the heterogeneous membrane environment described in Sec. 2.2

and govern the conformational propensities of peptides placed into this environ-

ment as described in Sec. 2.3. In the projected continuation we are concerned

with secondary effects of the lipids as they interact with pHLIP in its adsorbed or

trans-membrane states. Our focus will be on three such effects that appear most

relevant for this study:

• lateral pressure profile within lipid bilayer,

• hydrophobic mismatch of peptide in trans-membrane state,

• lipid entropy reduction due to contact with peptide

The first two effects are enthalpic in nature and the third entropic. It is not

a priori clear which effects are the most important. Further effects may require

consideration.
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CHAPTER 3

Kinetic Model for Peptide Insertion into a Membrane I: Kinetics of
Protonatable Residue at Varying pH

3.1 Introduction

The folding mechanism of water-soluble proteins including the coil-helix tran-

sition has been thoroughly investigated over many years. The coil-helix transi-

tion that accompanies the insertion of a polypeptide into a membrane has not

nearly been studied as extensively theoretically and experimentally. The theoret-

ical modeling is much more complex due to (i) the heterogeneous environment in

which the conformational changes occur and (ii) the simultaneity of insertion and

conformational change. Experimental studies are limited to the small selection

of polypeptides that are both water soluble and exhibit controlled spontaneous

insertion/folding and exit/unfolding.

Stability and folding of all membrane proteins, irrespective of the mechanism

of their insertion into the membrane, are governed by the formation of a secondary

structure in the lipid bilayer environment, driven by the hydrophobic effect and by

hydrogen bonding. Consideration of these factors has led to the proposition that

the spontaneous insertion and folding includes the formation of helical intermedi-

ates at the bilayer surface, followed by insertion [1, 2, 3, 4, 5]. The evidence from

fluorescent experiments is mostly indirect [6, 7, 8] and the results of simulation

studies are somewhat ambiguous in this respect [5, 9, 10, 11, 12, 13, 14, 15].

The kinetic modeling presented in this work is custom-made, as were two

predecessor studies [16, 17] that serve as its foundation, for variants of the pH

Low Insertion Peptide (pHLIP) family but not to the exclusion of other peptides

with similar attributes. All variants of pHLIP considered here are moderately

hydrophobic membrane peptides containing protonatable residues. Our published
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biophysical data indicate that at neutral and high pH, pHLIP is monomeric and

largely unstructured [18].

Peptides in aqueous solution (state I) coexist with peptides adsorbed to the

surface of a lipid bilayer (state II). The fraction of the adsorbed peptides is con-

trolled by the lipid-to-peptide ratio. Lowering the pH shifts the equilibrium to-

wards membrane insertion and the formation of a trans-membrane (TM) helix

(state III). A subsequent increase of pH initiates a process of unfolding of the TM

helix and exit from the bilayer (states I or II). The three way stations of pHLIP

realized at thermal equilibrium are schematically illustrated in Fig. 3.1.

Figure 3.1. Schematic presentation of the three pHLIP positions relative to the
lipid bilayer and the associated conformation at thermal equilibrium for specific
peptide concentrations and levels of pH.

The process of the peptide association with the membrane is experimentally

distinguishable from the process of peptide partitioning into bilayer. The latter is

accompanied by the coil-helix transition and triggered by a drop in pH. Caloric

experiments [19, 20] have established that the bilayer affinity of the peptide is

about 30-50 times higher at low pH than at high pH.

Another fact is that pHLIP insertion comes in the wake of the protonation

of Asp/Glu residues in the trans-membrane (TM) part and the inserting end (C

terminus) of the peptide. The protonation leads to an increase in hydrophobicity

which, in turn, triggers the peptide to partition into the bilayer and fold across
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the lipid bilayer [21, 22]. Since the peptide is located at the border between polar

(aqueous) and non-polar (membrane) environments, the pKa for the protonation

of Asp and Glu residues is significantly shifted to higher values [23]. Moreover,

the pKa of individual groups changes during peptide propagation into a bilayer

[18, 20, 22, 24, 25, 26].

In Sec. 3.2 we describe the working hypothesis underlying our kinetic model-

ing, first in general terms and then regarding specific tasks ahead. The physical

phenomena to be described involve a combination of processes on a range of time

scales and with interactions that affect these time scales. For molecular dynam-

ics (MD) simulations this is a serious challenge. Our Markov chain modeling is

designed to cope with this challenge. It can do that at a price that is significant

(spatial resolution) but still worth the effort.

Next we present Markov chain models for two separate processes. One process

describes changes in protonation status of one protonatable residue at a given

location in the membrane environment with a controllable level of pH in water

(Sec. 3.3). The other process describes changes in location of that residue (in

a given protonation status) across the membrane environment as driven by the

prevailing forces (Sec. 3.4).

The two component processes are combined, as reported in Sec. 3.5, by way

of an interlocking Markov chain process. Each component process has an intrinsic

time scale that can be varied parametrically. The time scale of the combined

process depends on these parameter choices directly by changing the speed of one

or the other process and indirectly via natural feedback mechanisms.

In Sec. 3.6 we sketch out extensions of the modeling already carried out to

include multiple sites with protonatable charges that are linked by backbone seg-

ments in either coil or helix conformation. Changes in conformation would then
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be a third Markov chain process. The dynamics of conformational change depends

on location. Motion, in turn, depends on protonation status. A Markov chain

process that interlocks all three component processes is the logical next step of

kinetic modeling.

3.2 Working Hypothesis

The proposed modeling of the peptide insertion is largely anchored by exper-

imental data on pHLIP.

3.2.1 Experimental evidence

The initial state in the kinetic model is a pHLIP molecule adsorbed at the

surface of a bilayer in coil conformation. The first step in the insertion process,

taking place on a ∼100ms time scale, is associated with a coil-helix transformation

[27].

The second step (insertion, formation of TM helical state) would be completed

within the same time scale if no protonatable residues or polar cargo were present

at the peptide inserting end (C terminus) [28]. The presence of protonatable

residues (or polar cargo) leads to the stabilization of intermediate states. These

intermediate states involve helical segments located near the water-lipid interface

and oriented mostly parallel to it.

There are two dominant effective forces: a hydrophobic force Fin pointing

toward the center of the bilayer and an electric force Fout pointing away from

the bilayer. The force Fout acts directly on the negative charges of the Asp/Glu

residues while the force Fin originates from nearby non-polar residues (e.g. Leu,

Ile). It is well established that the removal of Asp/Glu residues from the peptide

inserting end increases the rate of insertion by orders of magnitude, thus greatly

reducing the stopping power of Fout [28].
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3.2.2 Forces in control of insertion

Consider a coil segment near one of the Asp residues. At pH 8 the Asp

residue has a high probability for being in a deprotonated (negatively charged)

state. There are two major effective forces acting on that segment: a hydrophobic

force Fin pointing toward the lipids (positive x) and an electric force Fout pointing

away from the lipids (negative x) (Fig. 3.2). The force Fout mostly originates from

negatively charged Asp residues. The force Fin originates from nearby hydrophobic

residues (Leu and Ile, for example). Both forces depend on the heterogeneity of

the medium, its shifting attribute from polar to non-polar with increasing position

coordinate x. We expect both forces to have profiles with maxima (in strength)

near the interface, and tails fading in both directions.

x
Fin+Fout

F(x)
Fin

outF

polar
environment

non−polar
environment

Figure 3.2. Schematic profile of the hydrophobic force Fin, the electric force Fout,
and the sum. The position x = 0 is at the outer water-lipid interface.

For a stable equilibrium near the interface to exist, for which there is ample

experimental evidence at high pH, the maximum of Fin must be further out than

the maximum of Fout as sketched. This establishes a potential minimum at the

position of the vertical arrows. Near this mechanical equilibrium position the force

Fin + Fout acts like a restoring force.

The average state of protonation of the Asp residue is determined by its pKa in
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a given environment. In aqueous solution the pKa of protonation of Asp residues is

around 4. As the environment changes from polar to non-polar across the interface,

the pKa of protonation rises. Hence the probability of protonation at constant pH

increases while the Asp residue moves into the lipid environment.

The force imbalance caused by protonation of the Asp residue when the pH is

dropped initiates its displacement toward a location where deprotonation becomes

less likely. Deprotonation, if it happens in time, restores the balance of forces. The

threshold of an instability that leads to the insertion then hinges on a comparison

of two time scales. One is related to the rates of protonation/deprotonation at a

given location in the heterogeneous environment and at a given level of pH. The

other is the time needed to displace the Asp a critical distance under the influence

of the unbalanced hydrophobic force Fin while it stays protonated.

3.2.3 Kinetics of protonatable residue

There are strong experimental indicators that the insertion of a pHLIP

molecule from (adsorbed) state II to the (transmembrane) state III is driven by

the kinetics of protonatable residues near the C terminus. In the modeling pre-

sented in the following we focus on one such residue and consider two processes

that overlap in time. We first analyze them separately, in Secs. 3.3 and 3.4, and

then, in Sec. 3.5, we combine them. They are

• a process of protonation/deprotonation of Asp/Glu residues controlled by the

availability of protons and the polar/nonpolar nature of the environment,

• a process of in/out motion through the heterogeneous membrane environ-

ment driven by unbalanced hydrophobic and electrostatic forces.

The speed and direction of each process depends on the instantaneous status of

the other process.
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We begin with the design of Markov chain models for each process, which

we then combine into a single stochastic process. The challenge we face is to

simultaneously accommodate all relevant time scales. In a Markov chain model

one universal clock ticks at the rate in which transition matrices are multiplied.

The physical time scales are controlled via adjustments in transition rates.

3.3 Protonation status of residue

We begin with a negatively charged, protonatable residue such as Glu or Asp

in water. If the rate constants of deprotonation and protonation are kd and kp, re-

spectively, then chemical equilibrium in water dictates (as detailed in Appendix C)

that the ratio depends on the level of pH and the pKa of the residue as follows:

kd

kp

= 10pH−pKa . (3.1)

If the residue is located in the heterogeneous membrane environment, i.e. away

from pure water, then the pH in (3.1) must be replaced by 1
2
pKw, where pKw is the

pK of water in that environment. In Appendix C we present further details about

the modification of (3.1). We conclude that between pure water and the center of

the membrane both kd and kp decrease with kd decreasing faster than kp. In the

following modeling we introduce parameters that reflect key attributes of the rate

constants kp, kd.

3.3.1 Markov chain

The Markov chain model discretises the line of positions between pure water

and the center of the membrane into an array of N cells (see Fig. 3.3). For

convenience we assign odd i and even i+1 to the same position of the protonatable

residue in its protonated (pro) and deprotonated (dep) states, respectively. The

index i = 1, . . . , 2N thus specifies the position of the residue and its pro/dep status
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dep
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Aoe = bdKp

Aeo = Kp

Aeo = apKp

Aoe =a
2
pbdKp

Figure 3.3. Off-diagonal matrix elements Aeo and Aoe, where e stands for the even
index and o for the odd index at the same position. The parameter ap is controlled
by the change in pKa of the protonatable residue. The parameter bd is controlled
by the level of pH. The parameter Kp sets the time unit of the computational
clock.

The Markov chain model for the pro/dep kinetics at a fixed position is char-

acterized by a transition matrix of the form,

A =



A11 A12 0 0 0 · · ·
A21 A22 0 0 0 · · ·
0 0 A33 A34 0 · · ·
0 0 A43 A44 0 · · ·
0 0 0 0 A55 · · ·
...

...
...

...
...

. . .


. (3.2)

The physics is contained in the nonzero off-diagonal elements Aeo and Aoe between

states with odd index i and even index i+1. The diagonal elements are determined

by the requirement that probability is normalized:

Ai,i = 1− Ai,i+1

Ai+1,i+1 = 1− Ai+1,i

}
: i = 1, 3, . . . 2N − 1. (3.3)

1A mathematically more elegant notation would employ a rank-2 tensor to specify the state
and a rank-4 transition tensor. However, our emphasis on elucidating competing time scales is
better with the alternative notation.
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3.3.2 Transition rates

For the specification of the transition probabilities of protonation and depro-

tonation as encoded in the matrix elements Aeo and Aoe, respectively, we divide

the range of positions into three intervals of variable relative size, representing the

exterior, interface, and interior parts of the membrane, respectively (see Fig. 3.3).

Across the interface, both transition probabilities change between the values,

Aeo =

{
Kp : ext.

apKp : int.
Aoe =

{
bdKp : ext.

a2
pbdKp : int.

(3.4)

The drop of one rate by a factor ap and the other by a factor of a2
p, where 0 <

ap < 1, encodes the slowing-down of both processes between polar and non-polar

environments. The linear variation of Aeo and Aoe across the interface as indicated

in Fig. 3.3 is the default choice. It can be modified on the basis of empirical

evidence.

The rationale behind our choices of parametrization for these rates is explained

in Appendix C. The significance of the three model parameters are the following:

• Kp sets the time scale for the pro/dep process associated with the compu-

tational clock. The latter advances by one tick per matrix multiplication in

the Markov chain model.

• bd is controlled by the level of pH.

• ap is controlled by the change in pKa (and pKw) between water and mem-

brane interior.

3.3.3 Time scale

With all ingredients for the kinetics of the protonation status in place we must

choose an initial state as encoded in a (normalized) probability vector,

P(0) =
(
P1(0), P2(0), . . . , P2N(0)

)
. (3.5)
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It specifies the initial probability for the residue being at a given position in a given

protonation status. Here we are concerned with the time evolution of the pro/dep

status alone. As mentioned previously, on the computational clock time advances

one tick per matrix multiplication, expressed as follows:

P(n) = P(n− 1) ·A = P(0) ·An. (3.6)

For the Markov chain process specified by matrix A all times t will be stated

in units of K−1
p . This has two advantages.

• By choosing the value of Kp sufficiently small we can ensure that the com-

putational clock provides the necessary time resolution of the underlying

physical process.

• For values of Kp below a certain threshold, the results expressed as functions

of t become independent of Kp.

3.3.4 Stationary state and equilibration

The structure of the matrix A guarantees that a stationary state P(∞) exists.

The block-diagonal nature of A conserves probability within each pair of states,

Pi(n) = Po(n),

Pi+1(n) = Pe(n),

}
: i = 1, 3, . . . 2N − 1. (3.7)

The stationary state can then be computed iteratively,

Ps = P(∞) = lim
n→∞

P(0) ·An, (3.8)

or determined from the eigenvalue equation,

Ps = Ps ·A, (3.9)

and the normalization as an auxiliary condition. We find

P (o)
s =

Aeo

Aeo + Aoe

, P (e)
s =

Aoe

Aeo + Aoe

. (3.10)
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For the purpose of illustrating the local equilibration of the protonation status

for situations where the water is at high pH or low pH we consider a model system

with N = 7 positions. The main point is to get a grip on the variable time scale

associated with the pro/dep process in different environments. The border between

exterior and interface is at the position represented by indices 5,6 and the border

between interface and interior by indices 9,10. All elements of the matrix A are

determined by the parameters Kp, bd, and ap as explained in Sec. 3.3.2.

Our choices of parameter values for a situation of high pH (in water) and a

situation of low pH produce transition rates and stationary states as illustrated in

Figs. 3.4(a) and 3.4(b), respectively.
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Figure 3.4. Scaled off-diagonal elements Aeo/Kp and Aoe/Kp at the N = 7 posi-
tions, here represented by indices i = 1, 3, . . . , 13. The parameter values in panel
(a), bd = 4, ap = 0.2, are designed to represent a situation of high pH, and the
parameter values in panel (b), bd = 0.25, ap = 0.2, a situation of low pH. The
insets represent the stationary state (3.10) for each case.

3.3.5 High level of pH

For this case, the deprotonation rate Aoe in water is much higher than the

protonation rate Aeo, yielding, as we shall see, a high probability for the residue

to be deprotonated. Both rates slow down as the position shifts from the exte-

rior to the interior region. The deprotonation rate slows down more rapidly as

75



argued in Appendix C. In Fig. 3.5 we show the dependence on physical time t of

the probabilities Pi, Pi+1 with opposite initial values for positions in the exterior,

interface, and interior regions. The value of Kp was chosen sufficiently small to

ensure optimal time resolution.
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Figure 3.5. Equilibration of probabilities P3, P4 in the exterior region, P7, P8 at
the center of the interface, and P11, P12 in the interior region at a high level of pH
(in water). The parameters are specified in Fig. 3.4(a). The initial state for each
probability shown is either fully protonated or fully deprotonated. All curves were
produced with Kp = 0.01. The dashed lines represent the equilibrium values from
(3.10).

Taking into account the different horizontal scales we can clearly see the pro-

gressive slowing down of the pro/dep process as we move from the exterior region,

Fig. 3.5(a), across the interface, Fig. 3.5(b), to the interior, Fig. 3.5(c). The

time it takes to reach equilibrium is much the for opposite initial states. We can

also observe how the rising pKa between exterior and interior regions changes the
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equilibrium values (3.10). At high pH, the equilibrium in water strongly favors

deprotonation. That tendency becomes much weaker as the position shifts from

the polar exterior to the non-polar interior.

3.3.6 Low level of pH

Here we are concerned with the time evolution of the pro/dep process at con-

stant, low pH. For that purpose we have lowered the relevant parameter from

bd = 4 to bd = 0.25. The parameter ap is left unchanged. The modified transition

rates at low pH are shown in Fig. 3.4(b) along with the stationary state (3.10).

We see that the lower pH affects the rate of deprotonation, Aoe, more strongly

than the rate of protonation, Aeo. The former is now much lower both in water

and inside the membrane. This shifts the equilibrium toward the protonated state

everywhere.

The equilibration process at the same positions as in Fig. 3.4 with the same

initial states but now in an environment of lower pH produces the results shown in

Fig. 3.6. In water (exterior region) the equilibrium has shifted from favoring the

deprotonated state at high pH to favoring the protonated state at low pH. The

time scale for equilibration has not changed significantly.

Inside the membrane (interior region), the protonated state was already fa-

vored over the deprotonated state at high pH albeit not by much. At low pH

it is much more highly favored. The time scale of equilibration remains slower

in the membrane compared to the water environment. In summary, the change

in pH does not alter the speed of equilibration significantly, but the change in

environment does.
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Figure 3.6. Equilibration of probabilities P3, P4 in the exterior region, P7, P8 at
the center of the interface, and P11, P12 in the interior region at a high level of pH
(in water). The parameters are specified in Fig. 3.4(a). The initial state for each
probability shown is either fully protonated or fully deprotonated. All curves were
produced with Kp = 0.01. The dashed lines represent the equilibrium values from
(3.10).

3.3.7 Drop of pH

Lowering the pH as part of a pHLIP insertion experiment involves the mixing

of fluids, which takes place on its own time scale. The so-called dead time before

the first data are taken is of the order of 10ms, which is certainly much longer

than the time scale on which the protonation status equilibrates, at least, in water.

Equilibration is slower in the membrane environment but, in all likelihood, comes

to completion well within the dead time. This conclusion will be used in Sec. 3.5,

where we combine the kinetics of protonation status and motion.
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3.4 Motion of residue

Depending on whether the residue is protonated or deprotonated it experiences

different forces. We have already identified these forces in Sec. 3.2.2 as being

predominantly hydrophobic and elecrostatic in nature with profiles as sketched in

Fig. 3.2.

It is reasonable to argue that the translocation of the protonatable residue is

an overdamped motion driven by these forces. The velocity is then proportional

to the magnitude of the resultant force. In the Markov chain model, the units of

both distance and time are fixed. The velocity of motion is accounted for by the

probability of a step of unit distance in (i→ i+ 2) or out (i→ i− 2) in the time

period assigned to one matrix multiplication (computational clock).

3.4.1 Transition rates

The motion of the residue with fixed protonation status is encoded in the

transition matrix,

B =



B11 0 B13 0 0 · · ·
0 B22 0 B24 0 · · ·
B31 0 B33 0 B35 · · ·
0 B42 0 B44 0 · · ·
0 0 B53 0 B55 · · ·
...

...
...

...
...

. . .


, (3.11)

where in each row we have, in addition to the nonzero diagonal element Bi,i, one

nonzero off-diagonal element, Bi,i−2 if the resultant force is directed out, or a

nonzero Bi,i+2 if the resultant force is directed in. The value of the nonzero Bi,i±2

is proportional to the magnitude of the resultant force. The values of the diagonal

elements again follow from the normalization condition,

Bi,i = 1−Bi,i−2 −Bi,i+2. (3.12)

The direction and magnitude of the resultant force depends on the position and

pro/dep state of the residue. The force is Fin if the residue is protonated and
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Fin + Fout if it is deprotonated.

As a default, we use piecewise linear force profiles with Fin and Fout related to

each other by two successive reflections as illustrated in Fig. 3.7. This choice, which

can be modified as prompted by empirical evidence, produces a stable equilibrium

at the center of the membrane when only Fin is acting as is the case when the

residue is protonated. When both forces are acting as is the case when the residue

is deprotonated, then they produce a stable equilibrium state at the center of the

interface.
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. . .

2Ndep

pro o

e

exterior interface interior

Fin

Fin + Fout

Fout

Bo,o+2 = cfFin

Bo,o−2 = 0

Be,e+2 = cf|Fin − Fout|
Be,e−2 = 0

Be,e+2 = 0

Be,e−2 = cf|Fin − Fout|

Figure 3.7. Piecewise linear force profiles for hydrophobic force Fin and electro-
static force Fout. They determine the off-diagonal elements Be,e±2 and Bo,o±2 as
indicated. The parameter cf sets the time unit of the computational clock.

This simple model force profile leaves us with a single model parameter cf .
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We write

Bo,o+2 = cfF̄in, Bo,o−2 = 0, (3.13a)

Be,e+2 =

{
cf |F̄in − F̄out| : F̄in > F̄out,

0 : F̄in < F̄out,
(3.13b)

Be,e−2 =

{
0 : F̄in > F̄out,

cf |F̄in − F̄out| : F̄in < F̄out,
(3.13c)

where F̄in = Fin/Fmax and F̄out = Fout/Fmax are scaled forces.

3.4.2 Time scale and stationarity

Equations (3.8) and (3.9) with matrix B substituted for A determine the

stationary state. The time unit associated with one tick of the computational

clock, i.e. one matrix-B multiplication as in (3.6), is controlled by the parameter

cf . When we express the physical time t in units of c−1
f the results again become

independent of the parameter cf and provide optimal time resolution provided we

choose a value below a certain threshold.

The stationary states are readily identified by inspection of the force profiles

in Fig. 3.7. Protonated residues will end up in the interior (state i = 2N − 1)

and deprotonated residues on the interface (state i = N), irrespective of the initial

conditions. These are absorbing states of matrix B, in the Markov chain jargon 2.

In the following we separately investigate the motion of protonated and depro-

tonated residues as driven by the applicable forces. The protonated residue only

experiences the hydrophobic force Fin. The deprotonated residue also experiences

the electrostatic force Fout.

2If the residue is protonated then the unique absorbing state is i = 2N − 1. There are
transitions in but no transitions out. If the residue is protonated then the state i = N is the
unique absorbing state for even N/2 whereas the states i = N,N + 2 are two absorbing states
for odd N/2.
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3.4.3 Protonated residue

Locations of the residue in its protonated state have odd indices i. The curves

in Fig. 3.8(a) represent the time evolution of the probabilities Pi, i = 1, 3, . . . , 2N−

1, if at time t = 0 the residue is located in the exterior region (state i = 1).
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Figure 3.8. Probability versus time of protonated residue during motion driven by
force Fin for two sets of initial conditions: (a) the residue is initially at position
i = 1, (b) the residue is initially at any position with equal probability. All curves
were produced with cf = 0.1.

P1 is monotonically decreasing as t increases and will approach zero asymptot-

ically for t→∞. The Pi for intermediate positions i = 3, 5, . . . , 11 are represented

(in that order) by the curves that start at zero and approach a smooth maxi-

mum at later and later times. All these curves also reach zero asymptotically for

t → ∞. P13 also starts from zero but is monotonically increasing and will level

off at 1 asymptotically for t → ∞. The non-monotonic variation in the heights

of the maxima reflects information about average position and velocity as will be

analyzed below.

In Fig. 3.8(b) we have only changed the initial state. We now assume that

the (protonated) residue is in any position with equal probability. All Pi except

P13 reach zero asymptotically for t → ∞. The residue again ends up with unit

probability at the center of the membrane. The curves for low values of i are
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monotonically decreasing whereas the curves for higher i go through a maximum.

This feature encodes information about the unidirectional motion to be analyzed

later.

3.4.4 Deprotonated residue

Locations of the residue in its deprotonated state have even indices i. The

motion is now driven by two opposing forces. The time evolution of the Pi, i =

2, 4, . . . , 2N shown in Fig. 3.9(a) are for the case where at t = 0 the residue is at

the outermost position (state i = 2) with unit probablity. By contrast, the data

in Fig. 3.9(b) represent the case where the residue is at each position with equal

probability. We can see in the two panels that the residue moves toward the center

of the interface, here located at position i = 8.
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Figure 3.9. Probability versus time of deprotonated residue during motion driven
by force Fin + Fout for two sets of initial conditions: (a) the residue is initially at
position i = 2, (b) the residue is initially at any position with equal probability.
All curves were produced with cf = 0.1.

In panel (a) P10, P12, and P14 stay strictly zero. The probability P2 is mono-

tonically decreasing and the probability P8 monotonically increasing between the

same extreme values. The probabilities P4, and P6 start from zero and go back

to zero asymptotically. The initial rise is quicker and higher for the former. The

long-time asymptotics is the same for both. In panel (b) the reflection symmetry
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of the combined forces makes the curves overlap in pairs. Naturally, the final state

is the same in both panels.

3.4.5 Location and speed

Some of the information contained in Figs. 3.8 and 3.9 can be unlocked by

using different formats. For example, if our chief interest is in the location of the

residue and the speed at which it changes location under given circumstances we

can proceed as follows.

We consider the cases where the initial state is either i = 1 or i = 2 as

represented by Figs. 3.8(a) and 3.9(a). Both residues can be at N distinct scaled

positions across the range 0 ≤ xi ≤ 1. The position xi is related to the (odd or

even) state index of the protonated or deprotonated residue via

xi =


i− 1

N − 2
: odd i,

i− 2

N − 2
: even i.

(3.14)

The average position 〈x〉 of the protonated and the deprotonated residue as func-

tions of physical time t is then calculated as different weighted averages of state

probabilities.

The results are shown as two curves in Fig. 3.10. The protonated residue,

which experiences only the hydrophobic force Fin, moves to the center of the mem-

brane (x = 1) whereas the deprotonated residue, which is also subject to the

electrostatic force Fout, moves to the interface (x = 0.5).

Both residues are released in water (x = 0) at time t = 0. They reach their

destination within 30 units of physical time. That time unit is arbitrary in the

sense that it can be assigned any value based on empirical evidence. We have seen

that changing the value of cf below a certain threshold leaves the shape of the

curves on the time scale t invariant.

In the overdamped dynamics used here the residues inertia is neglected, whcih
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Figure 3.10. Mean scaled position versus time of a protonated and a deprotonated
residue when released in water 〈x〉 = 0. The interface is centered at at x = 0.5.
The center of the membrane is at 〈x〉 = 1. The physical time is t = n · cf , where
n is the number of ticks on the computational clock and we choose cf = 0.1 for
optimized time resolution and computational cost.

explains the nonzero average initial velocity as indicated by the slope of each curve.

The protonated residue experiences a stronger force than the deprotonated residue.

In consequence the former moves faster and reaches its destination a bit earlier even

though it travels a longer distance.

3.5 Motion with status change

In Secs. 3.3 and 3.4 we have explored two processes that we intend to combine

here. The physical time scale relative to the tick of the computational clock was

controllable by a single parameter in each case. That parameter was Kp for matrix

A and cf for matrix B. In both processes we achieved results whose t-dependence

were independent of those parameter values provided they were chosen sufficiently

small. The unit of t in each process was arbitrary and could be assigned any value

based on empirical evidence.

One way to combine the two processes within the framework of the same
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methodology employs the transition matrix

W = A ·B (3.15)

with A from (3.2) and B from (3.11). Whereas the t-dependence of Markov chain

process driven by matrix A alone or by matrix B alone are independent of the

relevant parameters Kp and cf , respectively, provided they are sufficiently small,

the t-dependence of the Markov chain process driven by matrix W varies with the

ratio rw
.
= cf/Kp. A small (large) value of that ratio means that the kinetics of

motion is slow (fast) compared to the kinetics of protonation and deprotonation.

Variations of rw are likely to produce very diverse results as will be explored in the

following.

The dynamics of W has a sort of adiabatic regime. For small rw all motion

takes place with the pro/dep status always close to being equilibrated. In practice

this means that the motion consists of tiny steps forward and back that average

out to an effectively smooth motion of a residue with fractional protonation sta-

tus. If we release the residue at some location then its subsequent motion does

not significantly depend on its initial protonation status. This adiabatic limit is

expected to produce the least complex dynamics.

As we investigate the dynamics of the process W for progressively larger values

of rw, the motion becomes dependent on the initial protonation status. The residue

is now able to move a significant distance, at least in some locations, before the

protonation status has a chance to switch.

From Sec. 3.3 we know that the protonation status shifts its equilibrium as a

function of position and the equilibrium value in water is controllable by the level

of pH. From Sec. 3.4 we know that the deprotonated residue tends to settle at the

interface and the protonated residue in the center of the membrane.

With the level of pH we now control the average initial protonation status
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with which the residue is being released in water. It is to be expected that the

residue will either settle at the interface (adsorbed state) or in the center of the

membrane (inserted state) with probabilities that depend on the level of pH.

3.5.1 Stationarity

It makes sense to begin our exploration with stationary states, i.e. solutions

of the eigenvalue equation,

P(∞) = P(∞) ·W. (3.16)

These solutions are all independent of the initial state of the residue, both regarding

location and protonation status. We are looking for the physically relevant regions

in the space spanned by the three parameters ap (controlling the change in pKa

between exterior and interior), bd (controlling the pH in the exterior), and rw

(controlling the relative time scales of processes A and B).

The solution of (3.16) for given values of these three parameters produces a

unique stationary probability distribution,

P(∞) =
(
P

(s)
1 , . . . , P

(s)
2N

)
, (3.17)

containing all information about that state. In Fig. 3.11 we show stationary dis-

tributions for for a model with N = 7, where we only vary parameter bd.

Panel (a) represents a situation of high pH. The protonatable residue is with

very high probability in state i = 8. This state represents a deprotonated residue

at the center of the interface. As we decrease bd in the three steps we observe

the probabilities to shift towards locations in the interior and then also toward

protonation. In panel(d) the residue is with overwhelming probability in state

i = 13, meaning protonated and located at the center of the membrane.

As we explore the parameter space in search of the physically relevant and

interesting regions, it is advisable to focus on quantities that are graphically more
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Figure 3.11. Stationary probability distribution P
(s)
i , i = 1, . . . , N for N = 14.

Note the variations in the parameter bd controlling the pH in water.

compact than the P
(s)
i , yet express the most important information. Two natural

selections are the mean scaled position of the residue,

〈x〉(s) .=
N∑
i=1

xiP
(s)
i , (3.18)

with xi from (3.14), and the probabilities

P (s)
pro =

∑
odd i

P
(s)
i , P

(s)
dep =

∑
even i

P
(s)
i , (3.19)

for its protonation status. The latter are, of course, complementary: P
(s)
pro +P

(s)
dep =

1. In Fig. 3.12 we have plotted the three quantities versus the parameter bd across

the same range but now varied continuously. We see that a quasistatic rise in pH

lowers the protonation probability and shifts the average position of the residue

from near the center of the membrane, 〈x〉(s) = 1, to near the center of the interface,

〈x〉(s) = 0.5.
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Figure 3.12. Mean scaled position 〈x〉(s) and probabilities P
(s)
pro, P

(s)
dep for the proto-

nation status of the residue versus parameter 0.25 ≤ bd ≤ 16. All other parameters
are as in Fig. 3.11.

How are these stationary states affected when we vary the other two param-

eters ap and rw? This is shown in Fig. 3.13. In panel (a) we vary ap. Recall that

the lowest value of ap represents the highest rise in pKa of the residue between

exterior and interior positions. We observe that variations in that parameter have

little impact at low pH (small bd). The effect is largest at intermediate pH and

still significant at high pH. Residues with a large shift in pKa tend to be located

deeper in the membrane at high pH than residues with a smaller shift. The former

tend to have a higher protonation probability than the latter. The second trend

is, of course, at least in part, a consequence of the first trend.

By strong contrast, but unsurprisingly, a variation in rw produces much weaker

changes as illustrated in panel (b) for just one case. Decreasing rw from unity by

as much as a factor of 10 (not shown) has little effect. Increasing rw by the same

factor produces the effect shown. Recall that changing rw means changing the

relative time scales between the two intertwined processes A and B. A factor of

10 either way is huge, yet we have to keep in mind that here we are studying
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Figure 3.13. Dependence on parameters (a) ap, (b) rw of mean scaled position

〈x〉(s) and probability P
(s)
dep versus parameter 0.25 ≤ bd ≤ 16. With increasing ap

〈x〉(s) goes up and P
(s)
dep goes down. With increasing rw the trends (at large bd) are

the same.

stationary states. The trajectory in time from any initial state toward the unique

stationary state is expected by much more strongly affected by variations in rw.

3.5.2 Kinetics

We begin our investigation of the kinetics of insertion of the protonatable

residue by tracking its motion in time for a given initial state under different

circumstances. In Fig. 3.14 we show the position of the residue as a function of

time under variations of two parameters.

Panel (a) represents a case of sluggish motion, rw = 1. The residue starts in

the exterior region moves to the interface at high pH or to the center of the interior

region at low pH. The residue gets to its destination on very similar time scales. It

makes almost no difference wheter the inital state of the residue is protonated or

deprotonated. We know from Fig. 3.11 that the final state is with high probability

deprotonated at high pH and protonated at low pH.

The motion represented in panel (b) is significantly less sluggish compared

to the pro/dep kinetics.: rw = 10. The physical time scale for the motion to be

completed remains very similar. We continue using the time unit c−1
f . At high pH
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Figure 3.14. Average position 〈x〉 vs time t of protonatable residue launched in
the exterior region in either a protonated state (red curve) or a deprotonated state
(blue curve). Panels (a) and (b) use different relative time scales for the two
intertwined processes. Each panel shows a case of low pH and a case of high pH.
The parameter related to the change in pKa is kept at the value ap = 0.5 in all
cases shown.

the initial potonation status has little impact on the average position. However,

at low pH, the residue moves faster (on average) if it is initially protonated than

if it is initially deprotonated.

This makes sense if we take into account that the force in the exterior region

is stronger for the protonated residue than for the deprotonated residue. At high

pH the (average) protonation goes down or stays down whereas at low pH it goes

up or stays up.

Next we examine the kinetics of a situation where the protonatable residue

is in the stationary state at high pH and then experiences a sudden drop in pH.

The initial state is the one identified in Sec. 3.5.1 and described in the context of

Fig. 3.11(a). The residue is, with high probability, deprotonated and located at

the center of the interface.

When parameter controlling the pH is switched from the initial value, b
(ini)
d =

16 to one of four distinct actual values b
(act)
d = 16, 8, 4, 0.25 both the average

protonation status and the average location change toward different values. The
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long-time asymptotic states are the four stationary states described in the context

of Fig. 3.11.
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Figure 3.15. Mean scaled position 〈x〉 versus time of protonatable due to sudden
change in pH. The initial state is the stationary state depicted in Fig. 3.11(a)
at high pH. The long-time asymptotic state for each curve is the one of the four
stationary states depicted n Fig. 3.11(a)-(d).

The time-dependence of the average position for the different cases are shown

in Fig. 3.15. The final values of average position are consistent with the results

shown in Fig. 3.12. Only for the largest change in the parameter value chosen

does the average position move from the center of the interface to the center of

the membrane. The shape of the curves in Fig. 3.15 tell us that the the kinetic

process between initial state and (final) stationary state is faster at low pH than at

intermediate pH. At t = 20 the slope of the top curve, pertaining to b
(act)
d = 0.25,

is smaller that the slope of the next lower curve, pertaining to b
(act)
d = 4.

The observation that the average position increases gradually as we lower the

value of the actual pH gradually does not mean that the most likely position of

the residue changes gradually from near the center of the interface to near the

center of the membrane. This fact is already evident in the stationary probability
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distributions shown in Fig. 3.11. More details about the combined kinetics of

relocation and protonation status is contained in Fig. 3.16.
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Figure 3.16. Probability Pi(t) versus t of protonatable residue in state i. The initial
state is the stationary state depicted in Fig. 3.11(a) at high pH. The long-time
asymptotic state in panels (a) and (b) are the stationary states at low pH depicted
in Fig. 3.11(d) and at intermediate pH depicted in Fig. 3.11(c), respectively. We
only show curves for selected odd i (protonated states) and even i (deprotonated
states). The curves not shown have lower maximum values. Note the different
scales.

Consider first panel (a) pertaining to a large drop in pH. The residue starts

out with high probability in state i = 8, which positions it at the center of the

residue and has it deprotonated. As time evolves observe a quick change toward

protonation and a slower change in location toward the center of the membrane.

The probabilities at intermediate positions peak successively but the peak values

are much higher for the protonated state (shown) than for the deprotonated state

(not shown). Within 20 time units the kinetic process is very close to the long-time

asymptotic state, which we already know from Sec. 3.5.1 as the stationary state at

given pH. The growth with time of probability P14, which specifies a deprotonated

state, is simply a consequence of the fact that probability for the residue to be at

that location increases. It does not indicate any reversal in protonation status.

Now consider panel (b) pertaining to an intermediate drop in pH. Here the
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time scale related to kinetics of relocation is even slower compared to that of the

kinetics of protonation/deprotonation. Note that we have extended the maximum

time to reach closer to the long-time asymptotic state. One quick change in pro-

tonation status while the residue is still near the center of the interface is encoded

in the sharp rise of probability P9. All the probabilities shown then change more

slowly toward their long-time asymptotic values. In this slower process we see

the kinetics of relocation in action. The highest probabilities position the residue

either near the center of the interface (states 7,8) or at the center of the membrane

(states 13,14). The probabilities for the residue to be at intermediate positions are

smaller. If the residue is still at the interface it is more likely to be deprotonated,

if it has moved to the interior it is more likely to be protonated.

3.5.3 Variation of pKa

There is considerable uncertainty regarding the the amount and the rate by

which the pKa of the protonatable residues change between the (exterior) aqueous

environment and the (interior) highly non-polar environment. While the modeling

carried out thus far ties the rate of change to the amount of change, we can vary

the amount through the model parameter ap.

In Fig. 3.17 we show what the effect on the stationary probability distribution

as discussed in the context of Fig. 3.11 is if we assume a significantly smaller or a

significantly larger change in pKa. The larger change is represented by the value

ap = 0.2 and the data point connected by solid lines whereas the smaller change is

represented by the value ap = 0.8 and the data point connected by dashed lines.

The case shown in Fig. 3.11 represents an intermediate change in pKa.

The main insight from this exercise is that that the insertion tendency is

enhanced by a larger change in pKa. The difference between the two sets of data

is highest at intermediate pH. In panel (c), for example, a small change in pKa
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Figure 3.17. Stationary probabilities P
(s)
i , i = 1, . . . , 2N for N = 7. The four

panels show data for different values of bd, which controls the level of pH. The
data in each panel pertain to two values of ap, which controls the amount by
which the pKa changes between exterior and interior regions. The value ap = 0.2
reflects a large change (solid lines) and the value ap = 0.8 a small change.

has the residue still with high probability at the interface in a deprotonated state,

whereas the a large change in pKa has it with high probability at the center of the

membrane in a protonated state. The enhanced tendency of insertion is already

present at high pH as seen in panel (a). Only at low pH is the role of the parameter

ap of marginal significance.

The main insight already gained from stationarity is largely confirmed by

results portraying the kinetics such as shown in Fig. 3.18. Comparison with the

results of Fig. 3.15 for an intermediate change in pKa we see that a large change in

pKa [panel (a)] enhances the trend toward insertion most strongly for intermediate

values of pH. The exact opposite trend is exhibited by the data for a small change
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Figure 3.18. Mean scaled position 〈x〉 versus time of protonatable due to sudden
change in pH. The initial state is the stationary state depicted in Fig. 3.17(a)
at high pH. The long-time asymptotic state for each curve is the one of the four
stationary states depicted in Fig. 3.17(a)-(d). Panel (a) for ap = 0.2 connects
with the solid lines and panel (b) for ap = 0.8 connects with the dashed lines in
Fig. 3.17.

in pKa [panel (b)]. The trend towards insertion is equally strong for the case oh

low pH despite the different (average) starting position.

3.5.4 Average-force approximation

The type of motion we have been considering throughout this study is over-

damped and slow. However, what matters in our kinetic modeling is relative

slowness, a measure captured by the parameter rw. It compares the speed of the

pro/dep process with the speed of translocation. For rw ' 1 and smaller, the

residue does not move significantly between pro/dep events whereas for rw � 1 it

does

We recall that the pro/dep transition rates vary a great deal between the aque-

ous environment and the membrane interior. Their slowing down is attributable

to two factors: the scarcity of free protons as reaction partners and the highly

endothermic nature of proton production in the non-polar medium. Allowing for

situations with large rw has made the modeling significantly more complex than it

96



would be if rw . 1 could be guaranteed for all applications likely to be encountered.

Here we explore the limiting case in our modeling where the distance traveled

between pro/dep events can be assumed to be tiny during the entire process. In

this limit, the Markov chain model can be simplified as follows. Instead of the

transition matrix W, which is the product of the two non-commuting matrices A

and B, representing pro/dep status change and translocation, respectively, we now

use a matrix C with the same structure as matrix B but modified elements.

The nonzero off-diagonal elements of B depend on the force experienced by

the residue in a given pro/dep status as encoded in (3.12).
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Figure 3.19. Average-force approximation data (dashed curves) added to the data
alrady presented in Fig. 3.14.

The corresponding elements in the matrix C, by contrast, depend on the aver-

age pro/dep status of the residue at any given position, as determined in Sec. 3.3.4.

Keeping the same numbering of states, which now contains some redundancy, we

write

Co,o±2 = Ce,e±2 = P (o)
s Bo,o±2 + P (e)

s Be,e±2 (3.20)

for the off-diagonal elements and infer the diagonal elements from the normaliza-

tion condition as in (3.12).

In Fig. 3.19 we show the data of Fig. 3.14 amended by data (shown dashed)
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representing the average- force approximation. As expected the approximation is

very accurate for rw = 1, where the pro/dep status equilibrates faster than the

translocation, but turns unreliable at rw = 10, where significant motion between

pro/dep are likely in some cases.

3.6 Project extensions

Naturally, the kinetics of pHLIP during its insertion into a membrane is more

complex on several counts. It contains several protonatable residues and has a

protonatable C terminus, all at different locations in the membrane environment

and thus subject to different pro/dep transition rates. The relative positions be-

tween these residues and the C terminus is constrained in ways that depend on the

conformation of the peptide (flexible coil or rigid α-helix).

In addition, we have to take into account, the forces acting on the other

residues. The strongest inward forces will be experienced by the hydrophobic

residues (e.g Leu) and the strongest outward forces by the positively charged Arg

residue and N terminus. The relative locations of these sites are again constrained

by the orientation and conformation of the peptide.

Here we have arrived at a point of closest contact with part two of the three-

part modeling outlined in Sec. 3.2. In Ref. [17] we have explored pHLIP insertion

pathways that are all downhill in the free-energy landscape or have to overcome,

at most, small energy barriers. Free-energy landscapes are suggestive of realistic

insertion pathways. They merely hint at the distinction between fast and slow

pathways by the presence and size of energy barriers.

Insertion time scales of predictive significance require a kinetic study or a

simulation study based on realistic rates for at least the dominant microscopic

processes involved. This certainly includes the pro/dep transition rates and the

rates of translocation of residues as investigated in Secs. 3.3-3.5 of this work. One
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challenge for simulations is to deal with processes that involve a wide range of

time scales. The approach taken in this study faces several challenges including

the following.

The parameters Kp, ap, bd, which have served the purpose for which they have

been introduced reasonably well, must be more closely linked to chemical data

such as pH in water, the pKw of H2O molecules in the non-polar lipid environment,

and the pKa of protonatable residues. The forces acting on individual residues in

the modeling carried out thus far have strongly simplified profiles with a single

parameter cf setting the time scale for translocation. A significant refinement will

be necessary in this aspect as well.

The design of our modeling is such that it is capable of accommodating these

desired extensions. The number of discrete locations can readily be scaled up to

improve spatial resolution. It is also straightforward to extend the space to include

both sides of the membrane including a layer of water on either side at either the

same or different levels of pH.

Our scheme of combining processes with individual time scales via controlled

products of distinct transition matrices can be extended to include any number of

relevant factors that govern the kinetics of insertion. As the level of complexity

increases, a tensor notation of the Markov chain process will become more natural.
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APPENDIX A

Polynomial equations and particle population densities

The 2µ Eqs. (1.6) with the βεm expressed via parameters (1.8) and (1.9) and

the gmm′ as stated in Sec. 1.2.2 acquire the following form (for µ ≥ 2):

t

τ
=

w2
1

1 + w1

1 + w2

w2

1 + wµ+1

wµ+1

, (A.1)

t2 = (1 + wm)
w2

1

(1 + w1)2

1 + wm+1

wm+1

1 + wµ+m−1

wµ+m−1

1 + wµ+m

wµ+m

, m = 2, ..., µ− 1 (A.2)

t2 = (1 + wµ)
w2

1

(1 + w1)2

1 + w2µ−1

w2µ−1

1 + w2µ

w2µ

, (A.3)

t = (1 + wm)
w1

1 + w1

, m = µ+ 1, ..., 2µ. (A.4)

From (A.4) we infer

wµ+1 = ... = w2µ
.
= w, (A.5)

which, upon substitution, simplifies (A.1)-(A.4) into

t

τ
=

w2
1

1 + w1

1 + w2

w2

1 + w

w
, (A.6)

t2 = (1 + wm)
w2

1

(1 + w1)2

1 + wm+1

wm+1

(1 + w)2

w2
, m = 2, ..., µ− 1, (A.7)

t2 = (1 + wµ)
w2

1

(1 + w1)2

(1 + w)2

w2
, (A.8)

t = (1 + w)
w1

1 + w1

. (A.9)

Substitution of (A.9) into (A.6)-(A.8) yields

w1 =
w

τ

w2

1 + w2

, τ 6= 0, (A.10)

wm = w2 wm+1

1 + wm+1

− 1, m = 2, ..., µ− 1, (A.11)

wµ = w2 − 1, (A.12)
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which express all wm for m ≤ µ from w recursively.

Next we show that these recursive relations can be satisfied by Chebyshev

polynomials of the second kind, which themselves are generated recursively from

S0(w) = 1 and S1(w) = w via

Sm+2(w) = wSm+1(w)− Sm(w), m = 0, 1, 2, . . . (A.13)

We reason inductively by writing (A.12) in the form

wm =
Sµ−m+2(w)

Sµ−m(w)
, m = µ. (A.14)

If (A.14) holds for some m then we infer from (A.11) that it also holds for m− 1:

wm−1 = w2 wm
1 + wm

− 1 =
w2Sµ−m+2(w)

Sµ−m+2(w) + Sµ−m(w)
− 1

=
wSµ−m+2(w)− Sµ−m+1(w)

Sµ−m+1(w)
=
Sµ−m+3(w)

Sµ−m+1(w)
. (A.15)

This validates (A.14) for m = 2, . . . , µ. We use (A.10) to obtain

w1 =
Sµ(w)

τSµ−1(w)
. (A.16)

The polynomial equation that determines w,

(1 + w − t)Sµ(w) = tτSµ−1(w), (A.17)

follows from (A.9) substituted in (A.16). This completes the derivation of (1.10)

and (1.12). All wm must be non-negative to be physically meaningful. Only one

root of (A.17) satisfies this criterion.

The solution of the linear Eqs. (1.7) yields the following explicit expressions

for the population densities of statistically interacting particles:

N̄m =
Sµ−m(w)Sµ−m+1(w)

γµ
,

N̄µ+m =
[Sµ−m(w)]2

γµ
, m = 1, . . . , µ, (A.18)
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γµ
.
= (1 + w)

[
µ−1∑
m=0

[
Sm(w)

]2
+

[
Sµ(w)

]2
tτ

]
,

= (1 + w)

[
2µ+ 1− S2µ(w)

4− w2
+

[
Sµ(w)

]2
tτ

]
. (A.19)

Entropy (1.14), enthalpy (1.15), helicity (1.16), and density of segments (1.17) can

all be expressed in terms of the N̄m:

S̄

kB

=

2µ∑
m=1

N̄m

[
(1 + wm) ln(1 + wm)− wm lnwm

]
, (A.20)

H̄ =

2µ∑
m=1

N̄mεm, (A.21)

N̄seg = N̄1 =

[
Sµ(w)

]2
γµ

w + 1− t
tτ

, (A.22)

N̄hl = 1− N̄1 − 2

µ∑
m=2

N̄m −
2µ∑

m=µ+1

N̄m =

[
Sµ(w)

]2
γµ

w + 1

tτ
, (A.23)

The shortest proof of (A.18) uses its substitution into a scaled version of (1.7),

wm′N̄m′ =

µ∑
m=1

(
gm′mN̄m + gm′,m+µN̄m+µ

)
= δ1m′ . (A.24)

We perform this substitution in four batches: (i) for m′ = 2µ we use g2µ,m = −δµm;

(ii) for m′ = µ + m′′, m′′ = 1, . . . , µ − 1 we use gµ+m′′,m = −δm′′m − δm′′,m−1; (iii)

for m′ = 2, . . . , µ we use gm′m = −δm′,m+1; and (iv) for m′ = 1 we use g1m = 2,

g1,µ+m = 1, m = 1, . . . , µ.

In the first three batches (A.24) is shown to be satisfied by merely using (1.12)

and (A.18):

(i) : w[S0(w)]2 − S0(w)S1(w) = 0, (A.25)

(ii) : w[Sµ−m′′(w)]2 − Sµ−m′′(w)Sµ−m′′+1(w)− Sµ−m′′−1(w)Sµ−m′′(w) = 0, (A.26)

(iii) :
Sµ−m′+2(w)

Sµ−m′(w)
Sµ−m′(w)Sµ−m+1(w)− Sµ−m′+1(w)Sµ−m+2(w) = 0. (A.27)

105



In the fourth batch, (A.24) reduces to the identity,

(iv) :
[Sµ(w)]2

τ
+ 2

µ∑
m=1

Sm−1(w)Sm(w) +

µ∑
m=1

[Sm−1(w)]2 = γµ, (A.28)

which is proven by also using (1.10).

The two sources of disorder identified in Sec. 1.4.1, namely the disorder in the

sequence of coil/helix segments of diverse lengths and disorder within individual

coil segments, are related to the population densities N̄m of 2µ species of particles

from three catgories (hosts, hybrids, and tags).

Hosts (m = 1) generate coil segments out of the helix pseudo-vacuum whereas

hybrids (m = 2, . . . , µ) and tags (m = µ + 1, . . . , 2µ) extend coil segments at the

expense of helix segments. Thermally excited hosts at random locations along the

polypeptide helix thus produce one source of disorder and germinate the other

source of disorder via the thermal excitation of hybrids and tags nested inside.

Each coil segment, nucleated by exactly one host particle, forms a self-avoiding

random walk assembled from hybrids and tags. The distribution of hybrids and

tags inside a large coil segment as realized in the limit τ → 0 at t < t0 and inferred

from (A.18), reads

N̄m =
2 sin

(
(m− 1)φ0

)
sin(mφ0)

(µ+ 1
)
t0

,

N̄µ+m =
2 sin2(mφ0)

(µ+ 1)t0
, m = 1, . . . , µ, (A.29)

where φ0 = π/(µ + 1). In the limit µ → ∞, the distributions of both hybrids

and tags acquire identical sin2 x density profiles if we set x = m/µ for hybrids and

x = (µ+m)/µ for tags.
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APPENDIX B

Statistically interacting polymer links

The origin in quantum many-body theory of the methodology used here and

its adaptation to problems of current interest in classical statistical mechanics has

already been presented from several different angles. In chapter 1 we worked out

one particular application with mathematical rigor. The extensions presented in

Secs. 2.3 and 2.4 are all built from that foundation.

Here we summarize those results from chapter 1 that are being used as the

main building blocks for these extensions. The microscopic model for the coil-

helix transition of a long polypeptide at a water-lipid interface solved in Chapter 1

has three parameters: the growth parameter t, the nucleation parameter τ (both

continuous) and the (discrete) parameter µ that numbers the coil states available

to each residue.

For our extensions we only use the cases µ = 2 and µ = ∞ at τ > 0 and we

only use selected results. We quote the relevant expressions in ways that are easy

to trace back to their derivations in chapter 1.

The scaled Gibbs free energy in closed form reads

Ḡ(t, τ)

kBT
= − ln

(
1 + w(t, τ)

t

)
, (B.1)

where, for µ = 2,

w(t, τ) =
1

3

[
x+ 2

√
x2 + 3y cos

ϕ

3

]
, (B.2)

tanϕ =

√
27(4y3 + y2x2 + 18yx2 + 4x4 − 27x2)

x(2x2 + 9y − 27)
,

with x
.
= t− 1, y

.
= 1 + tτ and 0 ≤ ϕ < π, and, for µ =∞,

w(t, τ) =

{
2 : 0 ≤ t ≤ tc

t− 1 +
tτ

λ
: t > tc

(B.3)
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with

λ(t, τ)
.
=

1

2

[
t− 1 +

√
(t+ 1)(t− 3) + 4tτ

]
(B.4)

and

tc
.
=

3

1 + τ
. (B.5)

The expressions for helicity (order parameter) and entropy, inferred from first

derivatives of Ḡ become

N̄hl(t, τ) =
t

1 + w

∂w

∂t
, (B.6)

S̄(t, τ)

kB

= ln(1 + w)− 1

1 + w

[
t ln t

∂w

∂t
+ τ ln τ

∂w

∂τ

]
, (B.7)

respectively. They are too unwieldy for µ = 2 to be reproduced here but fairly

concise for µ =∞:

Nhl(t, τ) =


0 : 0 ≤ t < tc

1− tτ

λ2 − 1 + tτ
: t ≥ tc

(B.8)

S̄(t, τ)

kB

= ln
(

1 +
τ

λ

)
+

tτ

λ2 − 1 + tτ

(
ln t− λ2 − 1

t(λ+ τ)
ln τ

)
. (B.9)

Finally the scaled enthalpy,

H̄(t, τ)

kBT
=
Ḡ(t, τ)

kBT
+
S̄(t, τ)

kB

=
tτ

λ2 − 1 + tτ

(
ln t− λ2 − 1

t(λ+ τ)
ln τ

)
, (B.10)

is of importance in this work.
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APPENDIX C

Rate constants of protonation and deprotonation

Here we present some details about our reasoning that led to the model pa-

rameters used in Sec. 3.3. We consider (protonatable) Asp residues in a range of

locations between pure water at given level of pH and the center of the membrane.

The focus is on the rates kp and kd of protonation and deprotonation, respectively,

in particular their dependence on location and pH. The reaction at hand is

A− + H+ � AH. (C.1)

If in some volume element at a given location there are N Asp residues with

n of them in the protonated state then we describe the pro/dep process by the

master equation,

∂

∂t
P (n, t) =

∑
m

[
W (n|m)P (m, t)−W (m|n)P (n, t)

]
, (C.2)

with transition rates,

W (m|n) = kdnδm,n−1 + kp(N − n)δm,n+1. (C.3)

and rate constants kp, kd.

The equation of motion for the average number, 〈n(t)〉, of protonated residues,

d

dt
〈n〉 = 〈α1(n)〉, (C.4)

depends on the first jump moment,

α1(n)
.
=
∑
m

(m− n)W (m|n), (C.5)

which, in this case, leads to the linear 1st-order ODE,

d

dt
〈n(t)〉 = kpN − k+〈n(t)〉, (C.6)
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where we define k+
.
= kd + kp. The solution for initial condition 〈n(0)〉 = n0 reads

〈n(t)〉 = n0e
−k+t +

kpN

k+

(
1− e−k+t

)
. (C.7)

The stationary solution of (C.6),

〈n〉
N

=
1

1 + kd/kp

= Ps, (C.8)

represents the probability Ps that any given Asp residue at that location is proto-

nated. It is approached by (C.7) exponentially fast at the rate k+.

The ratio kd/kp is determined by the dissociation equilibrium. In pure water

we have [
H+
]

= 10−pH,

[
A−
][

H+
][

AH
] = 10−pKa , (C.9)

and, in any environment,

Ps =

[
AH
][

AH
]

+
[
A−
] =

1

1 +
[
A−
]
/
[
AH
] . (C.10)

Comparison of (C.10) with (C.8) with use of (C.9) yields the key result (3.1) used

in Sec. 3.3:

kd

kp

= 10pH−pKa . (C.11)

Given that pKa ' 4 for Asp in water, the ratio (C.11) is large at neutral pH and

becomes small at sufficiently low pH, implying that Asp is very likely to be depro-

tonated at neutral pH and to become protonated when the aqueous environment

turns sufficiently acidic.

At locations away from pure water toward the membrane interior, the dissoci-

ation equilibrium condition is more complex. It now depends on the pKw of H2O

in addition to the pKa of Asp. Both quantities are expected to rise. Evidence from

MD simulations [Vila-Vicosa et al. 2018] strongly suggests that the pKa of Asp

rises from 4 to near 7 between water and membrane interior. The pKw likewise
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rises from twice the pH to a value yet to be estimated. It is reasonable to expect

that if the pH in water is lowered, then the pKw will go down throughout the

membrane environment.

A different chain of reasoning can be employed to estimate the dependence

on position of kd and kp in the membrane environment. The relative dielectric

constant, ε(x) is known to vary between a high value, ε1 ' 80, in pure water and

a much lower value, ε2 ' 5, inside the membrane. Key for our argument is that

all electrostatic energies are reduced by a factor ε(x)−1.

Deprotonation creates two charges. Its energetic cost rises steeply between

polar and non-polar environments. The activation energy per charge associated

with deprotonation thus contains a factor ε(x)−1. It is then fair to conclude that

the rate constant of deprotonation of a neutral Asp residue is suppressed as follows:

kd ∝ e−2βEe/ε(x). (C.12)

The rate constant of protonation of a charged Asp residue at a given location x is

also suppressed but less so and only indirectly due to the suppressed availability

of protons. Only the charge of the proton affects the rate. The suppressed density

of deprotonated residues itself is already accounted for by the factor (N − n) in

(C.3). Therefore, we can write

kp ∝ e−βEe/ε(x), (C.13)

which, with (C.12), implies

kd

kp

∝ e−βEe/ε(x). (C.14)

If this reasoning is sound then it follows that both rate constants are exponen-

tially suppressed on the way from water into the membrane but the ratio is also

exponentially suppressed. Comparison of (C.14) with (C.11) then implies that the

pKw rises more slowly than the pKa as the location of the protonatable residue
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changes from water toward the center of the membrane. Our modeling of the

matrix elements in (3.2) are based on these conclusions.
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