
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Dissertations

1999

On the Use of Undefined Logic Values in Digital VLSI On the Use of Undefined Logic Values in Digital VLSI

William D. Armitage
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Armitage, William D., "On the Use of Undefined Logic Values in Digital VLSI" (1999). Open Access
Dissertations. Paper 788.
https://digitalcommons.uri.edu/oa_diss/788

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/788?utm_source=digitalcommons.uri.edu%2Foa_diss%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

ON THE USE OF UNDEFINED LOGIC VALUES IN DIGITAL VLSI

BY

WILLIAM D. ARMITAGE

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

ELECTRICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

1999

APPROVED:

DOCTOR OF PHILOSOPHY DISSERTATION

OF

WILLIAM D. ARMITAGE

Dissertation Committee

Major Professor

~~9=~
DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

1999

·Abstract

This dissertation addresses both the consequences and advantages of the fact that

all digital logic implementations are analog in reality. Although, in the ideal sense,

all digital signals exist at either a logic 0 or a logic 1, in practice signals are generally

between these two extreme values. There is a poorly-defined zone (which we denote

as ¢) near the midpoint of the logic range where a logic level is not recognizable as

a O or 1 beyond a reasonable doubt. Variations in design and fabrication exacerbate

this uncertainty. We introduce the concept of zoned binary, which has three states

{ 0, ¢, 1 } , and arbitrarily define ¢ as consisting of the logic voltage range between

1/3Vid and 2/3Vdd , although the designer is free to set the boundary at any other

levels appropriate to the specific implementation. It is pointed out that there are

many physical causes why a logic value might be in the ¢ zone, including insufficient

time to settle to a static value, wire and device defects , and noise. It is noted that

current techniques focus on avoidance, or detection of and dealing with effects. We

introduce the idea of an unknown value as information, and suggest that it can be

used to enhance performance . We design and test a detector for ¢, and proceed

to apply it to rudimentary practical problems such as interconnect difficulties , and

to more demanding applications such as asynchronous systems and communications

error correction. A new logic family - Binary Plus logic - is proposed , designed

and validated, in both static and dynamic versions. Its applicability to completion

detection requirements of asynchronous circuitry is shown, and an asynchronous stage

is designed , fabr icated and tested. The detection of ¢ in a received communications

bit is interpreted as an error location method. It is shown that this information

can be used with techniques well documented in t he literature to enhance the error

correction capability of existing error-control coding schemes. A 9-bit simple parity

based circuit capable of correcting received bits in t he </>st ate is designed , fabricated

and shown to perform properly.

Acknowledgments

I would like to thank my advisor, Professor Jien-Chung Lo, for his understanding,

guidance, insightful suggestions , and , above all , his patience during my studies at

the University of Rhode Island. His many practical recommendations , an occasional

gentle "push" when needed, and his willingness to share his own experiences with

paper preparation - all were instrumental in my success.

I am deeply grateful to Professor James Daly, Professor Edmund Lamagna and

Professor Ying Sun for serving on my thesis committee, and to Professor Bala Raviku

mar for serving as my defense Chair. Each of them has given freely of his time, and

has shown extraordinary flexibility in adapting to my at times "strange" schedule. I

greatly appreciate their support.

Special thanks go to Phyllis Golden, without whose occasional reminders and

timely assistance I might not have made it through this program.

IV

Preface

Throughout my long and checkered career in the technology field , I have always been

fascinated with unknowns. Whether they were statistical "missing values", "missing

inputs" in neural networks, or other instances of "knowing that something was not

known", I was interested in how the knowledge of their existence affected how the

problem was approached, and possibly affected the validity of the results.

When taking ELE447 and ELE537 with Professor James Daly, I obtained practi

cal , and occasionally frustrating, experience in dealing with a new kind of "unknown"

- logic values that were not recognizable as either a zero or one. Trying to adjust

the design of a circuit so as to minimize the time it spent in this unknown area, and

thus delivered results faster, occupied serious time in design lab.

When the topic of this dissertation (among other possible topics) was suggested

to me, I found that it captured my interest immediately. Although I could find no

previous work directly addressing the topic, there was a reasonable body of literature

in areas that would be affected by this work. It quickly became clear that unknown

values in CMOS VLSI circuitry was an area that should be viewed in a positive way,

rather than something to be avoided. Attempting by design to avoid an uncertain

logic level (as I had spent so much time in the lab doing) was not at all the same

thing as detecting it and using the information.

The idea of maintaining the integrity of the "unknown" state through the function

of the gate led to the development of a new logic family, Binary Plus logic , and to

its dynamic version , Centered Binary Plus logic. This family is equivalent to classic

binary logic in terms of the functions realized, but has the added advantage (hence

the "Plus") of being able to recognize and deal with inputs in an uncertain logic range

v

in an way appropriate to the binary function implemented by the gate. While the

family should certainly be useful in dealing with inputs that are genuinely unknown,

it was also shown to have great potential as a completion-indicating construct, and

hence had obvious use in the area of asynchronous systems. Using the Centered

Binary Plus logic family, a rudimentary 4-bit ripple carry adder was designed and

fabricated. Testing has shown that the adder takes advantage of many input data

patterns to produce significant completion time savings.

Unknown inputs are often the result of a defect or noise in transmission of the

data from another place (on the chip, within the computer, or in the world) to the

circuit. Current techniques for combating communications errors focus on error

control coding. It is well established in the literature that if the location of an error

can be independently (of the error-control coding scheme) determined, correction

capabilities are greatly enhanced - for example, a distance-4 code can correct three

errors whose locations are known, as opposed to only one when it has to determine for

itself the location of the error. Another example is the simple 1-bit parity code, which

is , by itself, capable of detecting one error but correcting none. Using uncertain logic

values as error location identifiers , a simple 1-bit parity scheme can correct one-bit

errors. As part of this work, a 9-bit parity-based communications input register was

developed, fabricated and tested. This circuit can identify an uncertain bit, and use

the parity relationship in the transmitted word to correct it .

Vl

Contents

Abstract

Acknowledgments

Preface

Table of Contents

List of Tables

List of Figures

1 Introduction

1.1 Motivation .

1.1.1 Asynchronous system design

1.1. 2 Communications error correction

1.2 Organization of the dissertation

2 Undefined logic values in digital VLSI

2.1 Defining Terms

2.2 Existing approaches to avoid undefined values

2.2.1 What can cause undefined values? ...

2.2.2 What are t he effects of undefined values?

2.2.3 How are they combated? ..

2.3 An undefined value as information .

Vll

11

IV

v

Vll

XI

XllI

1

2

3

4

5

6

6

7

7

16

19

23

2.4 Summary . . .

3 Binary Plus logic

3.1 The detector . .

3.1.1 Not a new "value"

3.1.2 Required products of the detection process

3.2 Development of Binary Plus concepts

3.2 .1 A small step

3.2.2 Complete "Binary Plus" concept

3.3 Binary Plus logic specifications

3.3.1 Complementary logic .

3.3.2 Int ui t ive development .

3.3.3 Formal development .

3.3.4 Binary Plus and races

3.4 Summary

4 Design and Implementation

4.1 Detector design

4.1.1 The design equations

4.2 Binary Plus gate design

4.2.1 Internal versus external compleme~ted inputs

4.3 Rudimentary applications

4.3.1 Warnings of potential problems

4.3.2 The detector revisited as a decoder

4.4 Introduction to t he proof-of-concept circuit .

4.4.1 Overall view

4.4. 2 Layout .

4.4 .3 Pinouts

4.4.4 Test board .

4.5 Binary Plus component experiments .

4.5 .1 Circuit descriptions

Vlll

25

26

26

27

28

28

29

30

33

33

35

39

42

44

46

46

48

52

54

55

56

57

59

60

61

62

64

64

65

4.5.2 Testing results .

4.6 Summary

5 Centered Binary Plus logic

5.1 Static versus dynamic logic in VLSI design

5.2 Asynchronous systems - current status and requirements

Overview 5.2.1

5.2.2

5.2.3

5.2.4

Implications for input set sensitivity

Globally asynchronous locally synchronous systems

Currently used methods for completion detection

5.2.5 Interstage requirements .

5.3 Centered Binary Plus logic

5.3.1 Precharge is to Vi .
5.3.2 Inherent speed enhancement

Elimination of races 5.3.3

5.3.4

5.3.5

5.3.6

Detection of invalid inputs and defects

Granularity

Control and handshaking .

5.4 Comparison with other GALS self-clocking methods

5.5 Fabricated 4-bit ripple-carry adder experiment

5.5.1 Ripple-carry adder

5.5.2 Testing strategy .

5.5.3 Testing results .

5.6 Summary

6 Communications applications

6.1 Hardware and error detection/correction

6.2 Error-control coding

6.2.1 Channel models and errors

6.2.2 Distance

6.2.3 Simple parity code

lX

67

69

73

73

75

75

76

78

81

82

83

84

86

87

87

88

89

93

94

95

99

100

102

104

105

106

106

111

112

6.2.4 SEC and SEC/ DED codes

6.3 Error location with zoned binary detector

6.3.1 An easy case: the unidirectional channel

6.4 Error correction strategies for ¢ errors

6.4.1 Strategy for simple parity codes

6.4 .2 Extension of strategy to DED codes .

6.4 .3 Extension to SEC/ DED codes .

6.4.4 Extension to the general model

112

112

113

114

115

115

115

116

6.5 Implementation example: simple parity code 117

6.6 The detector once again revisited as a decoder 119

6.7 Partial utilization: some gain at lower cost 119

6.7.1 Code-independent advantage 120

6.7. 2 Simple set to zero with uniform distribution of erasure errors 120

6. 7.3 Simple set to most probable value with asymmetric distribu-

t ion of erasure errors .

6.7.4 Possible enhancements

6.7.5 Special case: Bridge detection and correction for bus commu-

nications . .

6.8 Comparison with classic method .

6.9 Fabricated 9-bit parity-based corrector experiment .

6. 9 .1 Actual design topology .

6.9. 2 Functional unit topology

6.9.3 Testing results .

6.10 Summary

7 Summary and conclusions

7.1 Future work

List of References

Bibliography

x

123

123

125

126

128

128

129

132

133

137

139

141

146

List of Tables

3.1 Division of Vss ::::} Vdd Logic Range into Zones

3.2 Implied Value and Signal

3.3 Relationship of Output Signals from Detector

3.4 2-lnput OR Gate Truth Table

3.5 Implied Value and Signal

3.6 Binary Plus 2-Input OR Gate Truth Table

3.7 Binary Plus 2-Input AND Gate Truth Table

3.8 Binary-Plus NOT Gate Truth Table

3.9 Binary-Plus 2-Input XOR Gate Truth Table

3.10 Binary Plus 2-Input OR Gate Truth Table

3.11 Relationship of Output Signals

3.12 Jet Network States vs. Zoned Output

3.13 Relationship of Output Signals, Including .Inverted .

4.1 Inverter Pair Behavior

4.2 Binary Plus Inverter Truth Table

4.3 Input Pinouts

4.4 Output Pinouts

4.5 Power Supply Pinouts

26

27

28

30

31

31

32

32

33

35

35

36

38

48

55

64

65

66

4.6 Test Results: Binary Plus Inverter Pair 67

4.7 Test Results: 2-input Centered Binary Plus logic AND and OR Gates 69

5.1 Ripple-Carry Adder Performance Summary 78

5.2 Results of Gate-Level Simulation of 4-bit Ripple Carry Adder 100

5.3 Timings of Adder Cycle Time Across Input Patterns 103

Xl

6.1 Comparison with Classic Parity Checker

6.2 Truth Table for P Eout

6.3 All Inputs in Valid Ranges and Parity = "Even"

6.4 All Inputs in Valid Ranges and Parity = "Odd"

6.5 Some Inputs in ¢ Range and Parity = "Even"

6.6 Some Inputs in ¢ Range and Parity = "Odd"

Xll

128

132

133

133

135

136

List of Figures

2.1 Simple Circuit with Inherent Race . 9

2.2 Physical Bridge (Short) Between Two Bus Lines . 11

2.3 Resistive Equivalence of Bridge (Short) Between Two Bus Lines 11

2.4 "Open" in Bus Line . 12

2.5 Resistive Equivalent to Open in Transmission Line . 12

2.6 Simple NAND Circuit 13

2.7 NAND Circuit with Shorted Transistor 14

2.8 Resistive Network: Shorted NAND 14

2.9 NAND Gate with Open Transistor 15

2.10 CMOS Inverter Transition 16

2.11 CMOS Inverter Transition across Fabrication Runs 18

2.12 Input to Two Inverters 19

2.13 Two Inverter Chains to XOR . . . 19

2.14 Operation of Two Inverter Chains to XOR 19

2.15 Non-Pipelined Circuit (Block Diagram) . 21

2.16 Pipelined Circuit (Block Diagram) 21

3.1 Prevention of Output Based on Uncertain Inputs 29

3.2 Complementary Logic 34

3.3 Binary Plus Gate 36

3.4 Binary Plus Gate with Float Centering

3.5 Binary Plus Gate including Complemented Inputs

4.1 Detector : Simple Block Diagram .

4.2 Detector: with Varied Transition Voltage Inverters .

Xlll

37

38

47

47

4.3 Basic Inverter Design

4.4 OR Created with Inverters and a NAND

4.5 OR Created with Inverters and a Device Level NAND .

4.6 Binary Plus OR Gate

4.7 Binary Plus OR Gate with Float Centering .

4.8 Example of Multi-Zoning

4.9 Forcing a Zone onto a Floating Line .

4.10 Inoperative Sensor Encoding .

4.11 Circuit Layout

4.12 Binary Plus Inverter Pair . . .

4.13 Centered Binary Plus logic 3-input OR Gate

4.14 Centered Binary Plus logic 2-input AND Gate

4.15 Centered Binary Plus logic 3-input AND Gate

4.16 Pinout Schematic ...

4.17 Test Board Schematic .

5.1 Dynamic NAND Gate

5.2 Ripple-Carry Adder . .

5.3 Three-Stage Pipeline .

5.4 GALS Three-Stage Pipeline

5.5 Expanded GALS Three-Stage Pipeline

5.6 Weak Transistor Precharge ..

5.7 Precharge Using Vh Supply ..

5.8 Adder with Completion Signal

5.9 Adder Including Precharge Cycle

5.10 Adder Including Enable Controls

5.11 Centered Binary Plus logic Full Adder

5.12 Centered Binary Plus 4-Bit Ripple Carry Adder

5.13 Centered Binary Plus logic Full Adder with NON E1a

6.1 Symmetric Error Model

6.2 Ideal Asymmetric Error Model .

6.3 Binary Erasure Error Model .

XlV

48

53

53

54

54

56

58

59

62

65

66

67

68

71

72

74

77

79

80

80

85

86

89

90

92

95

97

98

107

107

108

6.4 General Channel 109

6.5 Symmetric Channel with Erasures . 110

6.6 Transmission of ¢ 110

6.7 Illustrative Correction System .. 118

6.8 Input Bit Pre-Processing (¢ ~ 0) 124

6.9 Post-Processing for Two Erasures after SEC/DED Checker 125

6.10 Physical Bridge (Short) Between Two Adjacent Bus Lines 126

6.11 Distance-3 Correction System for Adjacent Bus Line Bridges 127

6.12 9-bit Implemented Correction System (4 bits shown) 129

6.13 Implemented Correction System (Bit-Slice View) 130

6.14 Selection Circuit for 9-bit Parity-Based Corrector 131

xv

Chapter 1

Introduction

" Yu, I shall instruct you about knowledge. To acknowledge what is

known as known, and what is not known as not known is knowledge."

Confucius, Lun Yu, Chapter 2, Verse 17

Digital logic constitutes the heart of so many of the technological improvements

that have been introduced to society during the last thirty years. Personal computer

systems, hardware that employs embedded processors, controllers for all sorts of

previously "manual" devices - these and many more depend on digital logic for their

operation.

Digital communications have likewise increased greatly, especially during the

growth explosion of the Internet during the last five years.

In today's comparatively technology-savvy world, it is likely that more people

than not know words like "binary" , and can identify the concept as having to do

with two states, perhaps can even specify it as the "zero or one idea."

Binary circuitry as an electronic dichotomy, however, is an abstraction. Digital

logic, as implemented in a practical sense, is not , strictly speaking, digital in nature.

Although future concepts such as quantum computers and networks[l] may be based

on phenomena that can be interpreted as true dichotomies , CMOS digital fabrications

today are inherently analog in implementation.

1

1.1 Motivation

Design rules, including Boolean algebra, assume a set of two possible values: {O,

1}, but, in reality, these values do not have an equivalent voltage level in a circuit,

except in the ideal sense.

Values inside a CMOS "digital" circuit are, in actuality, a continuum. Ranging

from the primary supply voltage, Vid , down to "ground", Vss, it is easy to classify

voltage levels near Vid or Vss, but neither easy nor reliable to interpret a voltage near

the midpoint of that range as "belonging" to a binary 0 or a binary 1, for, as shall

be explained, the boundary between the upper and lower halves of this range is not

a reliable one - between fabrication runs or even within a single circuit. The area

near the midpoint of the range is therefore a region of uncertainty, in which a value

cannot be reliably assigned to a member of the binary dichotomy. Common practice,

we shall see, is to design so as to maximize the occurrence of the "easy to assign"

values and minimize, insofar as possible, those which cannot be clearly assigned to

one binary value or the other.

There are many physical causes for the existence of intermediate, undefined logic

values near the midpoint of the logic range. The classic response is to use other

methods, not related to the existence of undefined values themselves, to make their

occurrence less likely or to find the causes and eliminate them. So circuits that exhibit

undefined values at their output - because they have not had time to settle - are

given enough time to settle in the worst-case condition. Manufacturing defects that

might cause undefined values are addressed by extensive and sophisticated testing

techniques. Problems that might develop in high-reliability systems are addressed

by fault-tolerance techniques. Undefined values occurring during data transmission

are detected and/ or corrected using error-control coding methods.

In all of the classic approaches , undefined values are treated as a problem that

might occur, and should be designed, tested or coded around in such a way that

they will tend to be taken care of if they do occur. An undefined value, when it

resolves itself into the incorrect binary value, is thus treated as merely a case of the

"wrong" valid binary value. For example, an undefined value in data transmission

2

may resolve itself to its proper, "as transmitted" , value, providing no error , or as the

opposite, "incorrect" value, in which case the error detection/correction capabilities

of the code checker are responsible for finding the problem and dealing with it.

The classic approaches make no effort to specifically detect the presence of unde

fined values. In so doing, they discard information which could potentially be useful

in correcting the problem.

This work will address this region of uncPrtainty, showing that its existence -

once detected and systematically treated - can be exploited in a number of useful

applications, of which two - asynchronous system design and communications error

correction - will be examined more closely.

1.1.1 Asynchronous system design

As processors scale down in feature size, but up in speed, absolute size and complex

ity, new problems develop . "Global clock propagation" (getting the synchronizing,

lock-step control signal everywhere on the processor at roughly the same time) is

becoming a greater and greater concern. One author , in discussing the future of

processor design, made the observation that "the percentage of the die that can be

reached in a few clock cycles is decreasing at an alarming rate. " [2] Others agree, ob

serving that while "local" interconnect time (the time for signals to propagate within

an individual logic block) is actually decreasing due to decreased feature sizes, global

interconnects require new approaches to avoid being a barrier to processor speed. [3]

As more and more processors "go mobile", power consumption also becomes

a critical problem. Even in non-mobile applications, power consumption must be

dissipated in the form of heat , a pressing design problem in itself. In CMOS circuits,

power use tends to be proportionally related to clock speed. A CMOS circuit uses

power only when the charge state of a circuit is changing, and states change only

as a result of the clock changing. A slower clock equals less power use. Already

this approach is used in portable systems today, with the aim of prolonging battery

charge life. But as applications require more and more speed, this method will be

squeezed between the demands of the application and the need to conserve power

3

and reduce the need for circuit cooling. Other methods need to be implemented to

allow greater effective processing speed while keeping power use under control. [4]

Types of asynchronous systems which we will explore in this work eliminate the

need for a global clock signal. Asynchronous concepts such as GALS (Globally

Asynchronous Locally Synchronous)[5] limit synchronizing clock signals to the local

logic block level. Additionally, when a local logic block "has no work to do," it stops

and consumes no power. We will show (and demonstrate in practice) the applicability

of using detection of our uncertain logic level to GALS-based asynchronous systems.

1.1.2 Communications error correction

While it is easy to think of communications in the "macro" sense - between computers

on a network, for example - we must also remember that much more communication

occurs on a "micro" level - among circuits on a printed circuit board , or even among

different processing elements within a single-chip microprocessor.

Data bits are continuously flowing inside a microprocessor, and elements such

as noise and even radiation can create occasional errors. It is important that these

errors be able to be (1) detected and, (2) if possible, corrected before serious system

degradation occurs. [6]

Error-control coding - a method of encoding information bits in a group of bits

also containing checking information that can be used to detect and sometimes cor

rect errors - is the predominant method of protecting systems from data corruption

errors. Merely detecting an error in a single bit using these techniques is a very simple

task, utilizing what is known as a simple parity code. Designing and implementing a

coding scheme that can correct errors is far more complex and costly, as it requires

that the bit location of the error be identified. Much of the "overh r·ad" of an error

correction code goes into locating the error. It is well established in the literature

that, if a method can be separately implemented (over and above the error-control

coding scheme in use) to identify by other means the location of errors, the correction

capability of a standard error-control code can be greatly enhanced.[6, 7, 8, 9, 10]

4

Detecting that a given bit is "uncertain" can be used as an error location tech

nique. This information can then be utilized as described in the literature to provide

superior correction capabilities.

1.2 Organization of the dissertation

Chapter 2 examines the region of uncertainty - its causes and effects - and discusses

the means typically used to "avoid or evade" the consequences. We also introduce

the concept of the unknown as knowledge.

Chapter 3 introduces the central concept of this work , Binary Plus logic, exam

ining it from a theoretical standpoint and proving its validity.

Chapter 4 addresses the design and implementation of the "Binary Plus" logic

family. Design equations for a simple detector for undefined logic values are derived,

and rudimentary applications are discussed. The overall organization of a proof-of

concept integrated circuit fabricated as part of this work is described, and specific

testing data for the detector and Binary Plus logic elementary gates are presented.

Chapter 5 extends the Binary Plus logic family to its dynamic version - Centered

Binary Plus logic - and shows its applicability to the design of asynchronous systems.

A simple asynchronous logic stage on the fabricated circuit is described and test data

presented.

Chapter 6 considers the use of uncertain logic levels in data communications -

both within a circuit and between circuits aud devices. It is shown that the ap

proach, by providing error location information, can enable limited error correction

capabilities where only error detection is possible using error-control coding alone.

A parity-based uncertainty error detector/corrector implemented on the fabricated

circuit is described and test data presented.

Chapter 7 summarizes the work , and suggests further research areas.

5

Chapter 2

Undefined logic values in digital VLSI

2 .1 Defining Terms

In digital logic a binary 1 is represented by a logic level 1, which is chosen by

convention to be a value nominally equal to the power supply voltage Vdd· This

voltage, typically five volts in the early days of VLSI development, may still be five

volts in some circuitry, but can be less than one volt in advanced circuits today. A

binary 0 is represented by a logic level 0, which is chosen by convention to be a value

nominally equal to power supply ground, or V55 , which we will define equal to zero

volts.

In practice, values merely near Vdd are also considered to represent a binary 1,

and those near Y'ss a binary 0. The question therefore arises: how near Vdd and Vss

need signals be in order to be a binary 1 and 0, respectively? Although a simple

question , it has no simple answer.

To aid in our understanding, let us define a term Vh:

It would be easy (and tempting) to refer to all values < Vh as binary 0 and all

values > Vh as binary 1. Theoretically, as Y'ss ::::} Vid is a continuum in the physical

sense, values exactly equal to Vh are of such low likelihood that they can be said to

not exist , and therefore there is no ambiguity. However, logic design is an eminently

6

practical process , and matters discussed later explain why such an ideal "point of

division" is impractical and unreliable.

For practical reasons , we shall see, a "buffer" must be defined around Vh, such

that all values outside the range of that buffer can be reliably counted on to default

to binary 1 or binary 0. As a study of the precise size and statistical reliability of

such a buffer is beyond the scope of this work, we shall err on the conservative side

and divide the V'ss =? Vid interval into three equal intervals , resulting in a definition

of 1/3 Vdd to 2/3 Vid for our undefined area. In short, we shall specify that , for the

purpose of this work:

The voltage level interval 1/ 3 Vid to 2/3 Vid shall be defined as the

"uncertain" , "undefined" or "invalid" logic level interval. That is, values

in this voltage range shall be deemed to be neither logic level 1 nor logic

level 0, but instead a level that that cannot be reliably distinguished as

to its proper binary value.

As implied above, no claim is made that this represents an ideal or even a reason

able division of the Vss =? Vdd voltage range into truly valid and invalid sub-ranges.

But it does provide a standard and a target for design and simulation of circuits

illustrating the principles in this work.

2.2 Existing approaches to avoid undefined values

2.2.1 What can cause undefined values?

It should be clear that one cause of an undefined value is a normal transition from one

logic level to the other. These changes are clearly not discontinuous , but transition

through the undefined region near Vh on their way from one valid value to the other.

Although good design practices emphasize as quick a transition as possible, it is

inevitable that every circuit segment in transition will spend at least some time in this

undefined region. We recognize, of course, that this "uncertainty" is a momentary -

a transient - phenomenon - waiting "a little longer" will result in a valid logic level

7

(O or 1) . There can be other causes of a transient visit to Vh. But the key term here

is "transient": the undefined status is dynamic. Given time, the circuit will resolve

itself into a steady state valid level.

There are , however, causes that can result in a steady state undefined value. No

matter how long we wait , the observed circuit value will never become a valid 0 or

1.

We'll now look at both of these circumstances.

Circuit Delays - insufficient time to "settle out"

In CMOS circuits , no power is used in steady state conditions. Despite this princi

ple, power consumption is one of the most urgent and continuing problems in CMOS

design. Power consumed must be dissipated in the form of heat, necessitating special

cooling arrangements. Laptop and handheld system battery life is inversely propor

tional to power consumption.

Power is used only during transitions from one logic state to another, and con

sists primarily of the charging and discharging of parasitic capacitance that is the

inevitable result of placing independent conductors - and parallel elements of active

devices like transistors - within very small distances of each other and other layers

of the integrated circuit. As it is a normal design goal to run the circuit as fast as

possible, this translates into as many logic transitions as possible per second, and,

as an undesirable side effect , into increased power consumption. In fact , to achieve

theoretically maximum speed , a circuit would potentially be in transition virtually

all of the time.

During this charging and discharging of parasitic capacitance, logic levels transi

tion from one state to another. During some of this time, inescapably, circuit output

levels (and, consequently, input levels to following stages) are in this undefined area

near Vh. In fact , t he maximum clock speed at which a circuit stage may be run is

determined by how long it takes the slowest signal in the worst case to leave this

area and become recognizably a logic 0 or logic 1. We see, therefore, that the need

to allow sufficient t ime for each value to reach defined levels - to leave the undefined

8

region near h and become distinguishably steady state - is the de facto determinant

in the practical maximum clock speed of a circuit.

This cause of transient undefined logic levels is certainly the most common.

Races - may transition through Vh more than once

Due to differing delay times in paths within a circuit segment , the output value of

that segment may transition through Vh multiple times. This condition is known

variously as a "race" or as a "hazard" .[11, 12, 13] A simple example of a circuit with

an evident race is shown in Figure 2 .1:

A Output

Figure 2.1: Simple Circuit with Inherent Race

In the static sense, the Output from this circuit will always be a logic level of 0.

In the dynamic sense, however , it is clear that when A changes from 0 =? 1 or from

1 =? 0, the change takes longer to arrive at the Exclusive OR gate through the chain

of two inverters than via the direct line. Thus, there is a small period of time during

which one input to the gate differs from the other; yielding a logic level of 1 at the

output.

The danger posed by races has little to do with the undefined region m Vh,

however. The very fact of a "spurious" transition to a valid logic level may, when

the signal is used as input to a sequential circuit, result in improper operation. We

will return to the matter of races later in this work.

Noise

Another cause of dynamic values in the invalid range is noise[14]. Signal degradation

or noise injected into a circuit may have the effect of causing logic levels to enter the

undefined area near Vh . Of course, it may also cause a momentary transition to an

9

incorrect logic value in a valid range (0 ::::} 1 or 1 ::::} 0). In t his sense, it is similar

in effect to a race. Noise may appear on the inputs to the circuit, or even on power

supply lines , including Vss and Vid- Noise is by definition a transient phenomenon.

Defects

Under normal circumstances, a properly designed integrated circuit should never

exhibit static logic values near Vh . However , fabrication problems or , less frequently,

failures during service may result in defects affecting signal integrity, resulting in logic

levels near Vh .[15] Such faults may be hard - caused by a permanent defect - or soft -

caused by a sporadic event such as a radiation particle strike.[16] One type of defect ,

a bridge, is most likely to occur in data transmission busses. Another type, an open,

may occur anywhere, but is most likely where minimum-width features are being

used. Additionally, opens or shorts may also occur in active devices (transistors)

on an integrated circuit[l 7, 18]; we 'll refer to these problems collectively as "device

faults" .

Bridges

In an integrated circuit , a single transmission line typically transmits a single

binary value - logic 0 or 1 - from one part of the circuit to another. As digital

data is usually made up of several bits (a data word in modern microprocessors ,

for example, may be 16, 32 or 64 bits in width),_ several transmission lines must

run in parallel to carry the full word of data. Thus is created a situation in which

several transmission lines run for (comparatively) long distances in parallel paths. To

minimize parasit ic capacitance, t hese lines typically are composed of minimum width

metal features. To minimize consumption of valuable silicon "real estate", they are

usually spaced apart the minimum allowed by the fabricating technology being used.

The significant proportion of space on many integrated circuits taken up by these

data routing busses, combined with their minimum feature separation , results in a

high feature "density" that increases the probability that a conducting defect will

result in a resistive "short" between two (or more) adjacent lines , as illustrated in

Figure 2.2.

10

Figure 2.2: Physical Bridge (Short) Between Two Bus Lines

This fabrication defect could be a result of any of several problems, including

contamination of the substrate during processing or a defect on the photo negative,

or equivalent , used to form the features on the substrate. If the defect is of conducting

material, the effect is to form a resistive short between data lines D 1 and D2 , as shown

in Figure 2.3.

:~ ---+-f-~ ... ---R-5~~--
V2
J.

Figure 2.3: Resistive Equivalence of Bridge (Short) Between Two Bus Lines

The effect of this resistive short between data lines 1 and 2 on logic levels Vi and

Vi depends on the "intended values" of Vi and Vi (Vi1 and Vi2 , respectively), as

well as the resistance of Rs. Clearly, when V i 1 = V i 2 , there is likely to be no ill

effect. When, however , Vi1 # Vi2 , the actual voltage values appearing as Vi and

Vi will usually differ from their intended values, depending on the parameters of all

circuitry attached to those two lines and, not insignificantly, the value of the shorting

resistance, Rs. As Rs decreases ,

l(Vi - Vi)I::::;, 0 volts

, until, if Rs achieves a "dead short" (Rs = 00), Vi and V2 will exhibit close to

the same value. If circuit parameters are reasonably similar for D 1 and D 2 , as is

11

particularly likely for a bus, the resulting value of both Vi and Vi are likely to be

close to Vi for low values of Rs.

Opens
If a problem resulting from a bridge can be thought of as a "fight for possession"

between two voltage sources, an open could be characterized as an absence of voltage

sources. An open occurs under conditions of a break in a transmission line, as

illustrated in Figure 2.4.

Figure 2.4: "Open" in Bus Line

Unlike a bridge, an open may affect only one transmission line, alt hough in a bus

structure, it has the potential for "opening" two or more adjacent lines. Since no

interconnection is made with any other bus line, all such defects can be viewed as

independent . Also , not all opens are total - a small amount of conductive material

may still connect the two segments , which results in the open appearing as a resistor.

In the most general case, then, an open can be diagramed as shown in Figure 2.5.

0 1 • w. Vo1

Vi1
Ro

l .

Figure 2.5: Resistive Equivalent to Open in Transmission Line

Also unlike a bridge, voltage levels on the driving side of the defect are not much

affected. In Figure 2.5, Vi 1 will not be significantly affected by the break at R0 -

except, perhaps, that those areas of the circuit will operate more quickly, as a result

12

of being disconnected from the load and parasitic capacitance associated with the

circuitry "downstream" from the defect. Clearly, if Ro is low, there will be little or

no impact on V o1 , while as Ro :::::} oo, V 01 approaches independence of V i 1 . In this

case, v 01 can take on any value at all, even one outside the normal logic range; V o1

is said to be "floating" .

Device faults

Transistor defects may result in the equivalent of an open or a short. Consider

the simple 2-input NAND gate and its truth table in Figure 2.6.

A

B A B Output
AB

(Output) 0 0 1
0 1 1
1 0 1
1 1 0

Figure 2.6: Simple NAND Circuit

Note that if we make the pfet transistor attached to the A input "shorted out"

(Figure 2.7) , there is always an effective connection between the source and the drain ,

as shown in Figure 2.7.

Note that in Figure 2.7 the value for the output of the circuit in the case that

A=l and B=l is not obvious. In the normal NAND gate in Figure 2.6, both nfet

transistors conducted and neither pfet transistor conducted, so a Vs s (Ground) logic

level was connected to the output. With the defect of Figure 2.7, however, there is

always a conducting path from Vdd to the output, so t he circuit reduces in this case

to the resistive network shown in Figure 2.8, where R 1 is the resistance exhibited

13

A

B A B Output
AB

(Output) 0 0 1
0 1 1
1 0 1
1 1 ?

Figure 2.7: NAND Circuit with Shorted Transistor

Output

Figure 2.8: Resistive Network: Shorted NAND

by the shorted pfet transistor, and R2 and R3 are the resistances exhibited by the

conducting nfet transistors. In this circumstance, the voltage presented at the output

can be approximately determined by

R2 +R3
Output = Vdd(R)

R1 + 2 + R3

and may or may not be in the vicinity of Vh .

When a transistor is open , results are different , and similar to a transmission line

open, as shown in Figure 2.9 .

It is most likely that the "floating" value shown for A=O , B=l will actually simply

maintain the last value displayed by the output , at least until the charge dissipates ,

14

A
A B Output

B
AB 0 0 1

(Output) 0 1 Floating
1 0 1
1 1 0

Figure 2.9: NAND Gate with Open Transistor

although a "race" condition could alter this. As an example of this hazard, consider a

previous input/output set of A=l, B=O / Output=l. If the transition to A=O, B=l

was not instantaneous, but instead went through the state A=l, B=l / Output=O,

then the output would likely continue to be 0 even after the input state changed to

A=O, B=l.

Imperfect inputs to circuit

We have examined causes of the output of a combinational circuit falling in the

undefined area around Vh. It is important to note that, when this happens, it can

become a cause of the same phenomenon in later circuitry, as the output from a

circuit is usually used as an input to another. Therefore, it is conceivable that an

external input level presented to a circuit may fall in the area not clearly defined as

a logic 0 or 1.

Other causes of an input signal falling in this area include electronic faults external

to the integrated circuit , such as a bridge or open in a printed circuit board (PCB)

or multi-chip module (MCM) transmission line, or noise. It might also be due to a

problem at an original data source, such as a transmitting sensor having lost power

or malfunctioning.

15

2 2 What are the effects of undefined values? 2 ..

Conversion to either logic 1 or 0

These intermediate logic levels are considered non-desirable, and circuit design is

intended to minimize their occurrence and persistence. As the input voltage to an

inverter, for example, increases from 0 to 1, the output remains high until the input

nears (ideally) Vh, and then makes as rapid a transition as possible to a low output

state. The graph in Figure 2.10 illustrates this behavior.

5 ."-,

\

4 \
3

vout

2

\
\

1

0 +- - -- h

1 2 3 4 5

Figure 2.10: CMOS Inverter Transition

Note that an input of 1/3 Vdd (1.67 volts in Figure 2.10) does not result in an

output of 2/3 Vid, as would be expected if this was a linear function. Instead, the

output is very close to a logic 1. The design and technology used in the fabrication

of CMOS integrated circuits makes this effect consistent . It is desirable to have as

16

sharp a transition as possible - an instantaneous transition from an output of 1 to

an output of O (a square wave) might be desirable, although unattainable.

An input signal in the area very close to Vh, then, is placed in an effective position

of unstable equilibrium as it and its "descendents" pass through successive stages

of circuitry. If the first "stage" it encounters doesn't convert it to a logic 0 or 1,

one of the following stages almost certainly will. It is therefore virtually guaranteed

that an input to a set of successive inverters and gates will eventually be effectively

converted to a logic level of 0 or 1.

But what determines which value that input (or its descendents) eventually takes

on, and is it reliable?

Appears random overall - but really determined by fabrication conditions

In an ideal world, any value below Vh would tend toward a logic 0, and any value

greater than Vi would tend toward a logic 1. Only a signal falling exactly at the

infinitely small point Vh on the continuum from Vss to Vdd would have an indeter

minate fate. As the world of microelectronic fabrication is indisputably practical,

rather than ideal , such is not the case. Minor differences in the process used to

form elements across a wafer 's surface make it inevitable that no two inverters, for

example, will be truly identical. On a more general scale, differences in measured

electronic parameters between different fabrication. runs can provide clear proof of

the inaccessibility of consistent device behavior near Vh. The graph in Figure 2.11,

which is shown on a 1.1 volt to 3.9 volt x-axis for clarity, might represent area be

tween parallel transition curves for two different inverters in 5-volt 2.0 micron CMOS;

in fact, they are the extremes of transition curves for the same inverter across 31

fabrication runs, all of which were considered within tolerance by the foundry.

Note that even for truly identical inverters , Figure 2.11 shows clearly that the

variation in electronic parameters for different fabrication runs alone provides for

a range of 2.38 to 2.68 volts (fully 63 of a 5-volt scale) in driving voltage at the

inverter transition point (vertical dotted lines on the graph). Considered another

way, a driving voltage of exactly Vh (2 .5 volts on this 5 volt scale) could yield as

17

5

~UTil, ll=R
4) ---- - -- ------ --~d- ----- ------- ------ ---

r-3-.9-1 v__,· I 111 i
3 -+-~+---11-----+~-+-~:==El'3-t'-t-~+-~-l-----+~-l

~:
~i
~· vout
~
!~ 2 -l-~i---+~+------l-----+-l'~§-1~-+-~+----+----+ : ~1 :a

[1.05v] f----+~-+~+-~+--~:~~~§+-~-J-~+---1f----J
~ 1 \ ------ ------ ------- ------ ___ J_ ~ ------ ------- -------

:[\IL
oIIIIIJTI; :~O

~--;'7 2 5 ~.__________~
[2.38v J · [2.68v J 1.1 3.9

Vin

Figure 2 .11: CM OS Inverter Transition across Fabrication Runs

little an output as 1.05 volts or as much as 3.91 volts (horizontal dotted lines on the

graph).

Furthermore, consider the simple circuit segment in Figure 2.12.

If the input A is very close in value to Vh, we cannot even be certain that the

values at the outputs of the two inverters will be or tend to the same logic level (0 or

1). Discrepancies of this type can clearly lead to unplanned behavior by the overall

circuit. Consider the more specific example in Figure 2.13.

Logic would dictate that the output from the circuit in Figure 2.13 would always

be zero, as the inputs to the Exclusive OR gate would always be identical. But

consider the following case of an input value close to Vh (Vdd = 5 volts in this

example). Due to fabrication differences, the chains of Ala through Ald and A2a

through A2d may not come down on the same side of our unstable equilibrium. This

18

Figure 2.12: Input to Two Inverters

A Output

Figure 2.13: Two Inverter Chains to XOR

is illustrated in Figure 2.14.

Output=1 (I)

Figure 2.14: Operation of Two Inverter Chains to XOR

Although the example in Figure 2.14 is clearly contrived, it illustrates the poten

tial dangers inherent in logic levels close to Vi.

2.2.3 How are they combated?

The effect of the problems described above is to make it desirable - even imperative

- to avoid these effects.

The specific method(s) used to minimize the effects of uncertain logic levels , of

course, depends on which of the causes applies. We shall see, however , that all

have one characteristic in common: the aim of minimizing (ideally, eliminating) the

occurrence of these conditions.

19

When circuit delay is cause

The approaches here can be summed up by the phrase, "give it more time." But in

today's optimized and pipelined circuitry, there are a variety of techniques available

to do this . The reader is referred to design texts[19, 20, 21 , 14] for a full understanding

of these methods , a few of which we will briefly summarize here.

Decrease clock rate to allow sufficient time

The simplest and most obvious approach is to slow the clock rate governing the

circuit. With more time, the signals in the "problem segment" have an opportunity

to "settle", resolving themselves into a set of valid logic levels. As a practical matter ,

however, as high a circuit speed as possible is highly desirable for competitive reasons,

so other remedies are pursued when possible.

Optimize circuit elements J or speed

Significant attention is paid in VLSI texts to consideration of circuit delays -

their causes and design techniques to minimize them. The primary cause of delays

is the charging and discharging of the parasitic capacitance which is a natural and

inevitable consequence of placing conducting and semi-conducting elements in close

proximity to each other. Beyond the parasitic capacitance, the effective resistance

of both active (such as transistors) and passive circuit elements through which the

capacitance must be charged or discharged is critical in determining the delay.

One obvious approach is to increase the size of the "driving" transistors, thereby

decreasing its effective resistance, and enabling the more rapid charging or discharg

ing of the capacitance of the circuit. This may be more complex than it appears, how

ever, since increasing the size of the driving transistor(s) also increases the amount of

parasitic capacitance in the circuit "feeding" the gate of the driving transistors, re

sulting in a slowdown in that segment of the circuit. There is therefore a "balancing

act" inherent in the optimization of circuit elements.

Redesign pipelined circuits to redistribute delays

Modern circuits are frequently pipelined to increase speed. Briefly, pipelining as

a technique takes a large, long delay, circuit (with a necessarily low clock speed)

such as that illustrated in block form in Figure 2.15 , and breaks up the work of the

20

circuit into several smaller circuits , each of which run at a much higher clock speed,

as illustrated in Figure 2.16.

- OUT

Figure 2.15: Non-Pipelined Circuit (Block Diagram)

H Circuit 1b

f
,___ .. , Circuit 1 c

f
IN -1 Circuit 1 a

f
,___.,.OUT

CLOCK

Figure 2.16: Pipelined Circuit (Block Diagram)

While a given piece of data takes as long (usually longer) to get through the

circuit (latency), several other pieces of data are being processed through the pipeline

simultaneously, resulting in a much higher throughput. In an ideal partitioning of

the work of Circuit 1 above into Circuits la, lb and le , the delay of each of the

three pipeline "stages" would be one third the delay of the original, non-pipelined

circuit, yielding a throughput of three times the original circuit . The attainment of

such an ideal is unlikely in practice, however , but it is crucial to balance the pipeline

stages as evenly as possible, as the maximum clock speed of the entire pipeline is

determined by the worst-case delay of the slowest pipeline stage.

When race (hazard) is the cause

As mentioned earlier, races are already considered a potentially serious problem,

not because the circuit spends more time in an undefined state, but because the

transition through it to a valid logic state (although not necessarily the desired one)

can occur more than once while a final value is being arrived at.

For our purposes, primarily concerned with problems resulting from the existence

of undefined logic levels , this cause is not much different from the situation discussed

above where simple circuit delay is the cause. Given time, a combinational circuit

21

subject to race conditions will eventually settle into a final , valid state. Nonetheless ,

we wish to make note of the fact that races in sequential or dynamic circuits can be

a serious problem producing spurious results ; we shall return to the subject later in

this work.

When noise is the cause

Efforts in this area center on making the noise margin as great as possible. Weste and

Eshraghian[14] describe noise margin as a parameter that "permits one to determine

the allowable noise voltage on the input of a gate so that the output will not be

affected", and go on to recommend design goals in which "the transfer characteristic

should switch abruptly." A transition voltage near the midpoint of the logic range

(near Vh) is also desirable; while, for example, increasing the voltage at which the

transition takes place may raise the "low" noise margin , it will simultaneously lower

the "high" noise margin , rendering the gate asymmetrically sensitive to noise.

When defect is the cause

A defect differs significantly from delay-based causes m that additional time will

likely do little to change the result - the final resting state of the circuit may lie

in the undefined area near Vh. Approaches toward mitigating this problem vary

according to whether the defect is "hard" - caused by a manufacturing defect or

later permanent damage - or "soft" - a temporary result of a event such as the

strike of an alpha-particle. To this dichotomy we must add for completeness aging

based defects, such as the development of an open in a transmission line due to

conductor migration and use-caused device shorts and opens.[22] This last class of

defects resembles hard errors in their permanence, but differ in that they were not

present at time of manufacture.

Hard manufacture-time error: testing procedures must detect

It is the aim of modern testing procedures to detect hard errors as part of the

manufacturing/testing process. There are many testing methods which may be used

22

to confirm proper operation of a circuit , including boundary scan (a form of edge

pin testing), current-sensing (a higher than designed supply current may indicate a

short in the circuit) , and methods for getting to the "innards" of a fabricated circuit

prior to final processing and packaging, such as "guided probe", "electron-beam"

and "bed-of-nails" testing. [23, 24, 25, 26, 27, 28, 29, 17, 18, 30] It is pointed out,

however, that defects that are not strong enough to produce a logic error during

testing (such as one that produced an intermediate logic level but one that barely

resolves itself to the right value) cannot be detected with many standard tests.[31]

It has been known for some time to test designers working with analog circuits

that digital testing techniques accounted only for "catastrophic faults" , and not for

the "out-of-specification" faults that occur as often.[32] Later work[33] pays some

attention to analog effects of such faults in digital circuit testing.

Post-manufacture error: error-checking circuitry must detect and correct

Errors that are transient , or permanent errors that develop after the circuit is

put into service, must be detected while normal operations are in progress. Simple

techniques, such as including a parity bit in RAM arrays, may be used, or complex

fault-tolerant methods applied.[34, 35, 36] All such approaches have costs associated

with them, and what may be appropriate for a restricted subset of uses (long mission,

high reliability applications such as a space probe) may not be cost-effective for most

uses.

When imperfect input is the cause

Additional circuitry must be added to detect and sometimes correct this condition.

The same fault-tolerant on-chip methods to detect error (dual-rail encoding and

similar fault-tolerant methods) can be used between chips or assemblies.

2.3 An undefined value as information

We have seen that there are clear causes for undefined logic levels. Knowing that a

logic level is undefined could be an indicator of one of these specific causes, dependent

23

on the environment and circumstances. Indeed , we must consider knowledge of an

undefined logic level as information; in brief, the information is that we do not know

the proper value that this circuit is indicating. Yet current practice is effectively to

throw this information away - to never detect it and, instead, to avoid its occurrence

(and/or its effects) to the extent possible. We design as if it 's not there, and do

what we need to do to increase the probability that the circuit comes down on the

correct side of Vh. In circuits for high reliability applications, we have seen earlier,

the possibility of incorrect results is accepted, and complex methods for detecting

and correcting it (double rail encoding and the like) are em ployed where the cost can

be justified.

How could such knowledge (that a value is in the undefined range) be of use in

CMOS circuits? Earlier in this chapter, we looked at some of the causes that would

result in a value being in this range. By specifying appropriate constraints, we should

be able, in a practical sense, to use the existence of the condition of uncertain value

to infer the active presence of the corresponding cause. For example:

• In a tested and "known good" circuit , information that a result is undefined

could be used as an indication that more time is needed to allow the result to

settle, or that a circuit failure has occurred.

• During operation of a tested and "known good" circuit designed to receive data

(from an external source orfrom another area of the integrated circuit via bus

lines) , undefined values can be an indication of a transmission line or other

failure, and point to the bits in which the failure exists.

• During the initial post-manufacture testing of a circuit, where both (1) ade

quate time has been provided for signal values to "settle" and (2) value injection

functions of the testing equipment have been verified, the presence of an unde

fined logic level where none should exist can serve as an indicator of a physical

defect.

The question occurs: what is required to fulfill the promise inherent in these uses

of undefined logic levels as information? We can say immediately that two clear

24

requirements exist:

• A theoretical foundation must be established for the reliable and robust use of

this information, unless it already exists in the literature.

• The condition must be detectable. There must be circuitry implemented at ap

propriate locations (dependent on the desired detection capabilities) to detect

when a logic level is valid or invalid.

• Once a detc>ction scheme has been implemented, appropriate circuitry must be

present to make use of this new information in a meaningful and practical way.

We will consider these requirements in later chapters.

2.4 Summary

We have defined what we mean when we say a logic level is uncertain, undefined or

invalid, and have provided for the purposes of this work a range l/3Vdd =? 2/3Vdd·

We have further surveyed several causes of logic levels in this uncertain range, and

briefly discussed measures typically taken in response to their potential existence.

It should be clear , notably, that design methods used to address this problem

are of an "evade and avoid" character. There is no effort in the design to detect

the condition; on the contrary, they seem to be considered a nuisance - a form of

"non-information", and therefore something to be minimized or corrected.

We briefly discussed the potential the detection of undefined values has for use

in VLSI circuitry, based only on the inference that if the condition exists, a cause

(or causes) is indicated .

In the following chapters, we shall consider not only the inference of the cause

from the condition, but also other uses for this information.

25

Chapter 3

Binary Plus logic

Jn this chapter we shall define theoretically a new logic family, which we shall call

"Binary Plus" logic. This family is similar to existing binary logic in that it is

based on two valid values. It enhances the binary concept by adding the detection

of undefined logic levels - states in which the true binary value cannot be reliably

determined - and using that information to add capabilities unavailable to pure

binary logic circuitry.

3.1 The detector

We begin by specifying the requirements for a functional unit to detect the presence

of an undefined value.

Specific circuitry is needed to somehow measure the logic level on the input and

make a determination as to within which range it falls , in accordance with Table 3.1:

Range Zone

Vss =? 1/3Vdd Valid 0
1/3Vdd =? 2/3Vdd Uncertain

2 I 3 Vid ::::} Vid Valid 1

Table 3.1 : Division of Vss =? Vid Logic Range into Zones

We can say that the boundaries between the zones are robust . They might

vary significantly, while still maintaining confidence that , for example, an input on

26

or near the 1/3Vid boundary will never be interpreted as a valid 1. We must, of

course, remind ourselves of an earlier stated point - that there is no reason why these

boundaries could not be set closer to (or farther from) Vh. Provided that they are

not set excessively close to Vh, robustness should still be present. [What constitutes

"excessively close", in the presence of noise and other factors, must be left for the

specific implementation designer.]

3.1.1 Not a new "value"

It should be noted here that dividing the Vss =? Vid range into three, rather than two,

zones might be seen as creating a third "value" in a heretofore 2-value, or binary,

scheme. Although that theme has been applied - to create ternary logic - this is not

what we seek to do here. Ternary logic, in carrying three rather than two values in

each signal, actually suffers from a worse form of the same uncertainty problem as

CMOS binary logic circuitry. There are two zones of uncertainty in ternary logic -

between the first and second values, and between the second and third .

The third zone we seek to create in the Vss =? Vdd voltage continuum does not

represent a new value. Instead, it establishes a signal of the existence of a condition.

This signal can be conceptualized as an interdependent yet separate signal, as shown

in Table 3.2:

II Value II Binary (Value) I Uncertain (Signal) II

112:11 ~ I ~~ II

Table 3.2: Implied Value and Signal

One advantage of this approach is that the two pieces of information (binary

value and uncertainty signal) are encoded within one physical line. We will refer to

a line carrying such a logic level to a detector as carrying Zoned Binary data. It is,

in reality, no different than any line carrying binary data - it differs in that it is used

as input to a detector designed to "decode" it .

27

3.1.2 Required products of the detection process

For the purposes of this work, we will now define a signal RDY such that:

RDY = Uncertain

Conceptually, RDY, when true , indicates that the input value is in one of the two

valid binary zones: { < 1/3Vid, > 2/3Vdd }.

We also wish to define signals which indicate the presence of a valid "O" and

a valid "l ", effectively splitting the RDY signal into two: RDY0 and RDYi. We

shall see in Chapter 4 that it is most efficient to implement and use these signals as

inverted forms. We therefore define signals XH and XL as follows:

• XH takes on a value of 0 only when the input to the detection circuitry is a

valid 1. XH has a value of 1 under all other conditions.

• XL takes on a value of 1 only when the input to the detection circuitry is a

valid 0. XL has a value of 0 under all other conditions.

We summarize in Table 3.3 the interrelationship of the signals we wish to be able

to obtain from an input.

Input II RDY II XH I XL II
0 1 1 1

Uncertain 0 1 0
1 1 0 0

Table 3.3: Relationship of Output Signals from Detector

We have defined signals that may be used to provide various sorts of detection of

undefined values. We now proceed to develop the use of this detection information

in Binary Plus logic.

3.2 Development of Binary Plus concepts

We require a more precise operational description of Binary Plus logic , which we give
here:

28

• the logic is still two-valued, or binary, and

• logic gates are implemented so as to maintain the integrity of the additional

zoned binary signal through the function of the logic gate to the output; that

is, outputs become valid only when valid inputs constitute a sufficient Boolean

condition for a known output, and are invalid at all other times.

3.2.1 A small step

We take a small step in the direction of Binary Plus logic by considering a rudimen

tary use of our detection capabilities as applied to binary logic.

DETECTOR ROY CIRCUITRY

ROY
~---~

Inn DETECTOR

Figure 3.1: Prevention of Output Based on Uncertain Inputs

In Figure 3.1, we have placed tri-state buffers on the output(s) of the combina

tional circuitry that uses the inputs. Controlling the buffers with the ANDed RDY

signals of our detectors, we prevent erroneous signals from being passed on to later

circuits. We have satisfied, in a basic way, our requirement that the outputs be valid

only when needed inputs are valid. In fact, all inputs must be valid in this case

29

in order that outputs become valid. Clearly this is a contrived example, and an

imperfect one, too , for:

• the circuit has a clear hazard , in that the output tri-state buffers will likely

be enabled before the newly valid inputs have had time to flow through the

combinational logic block and reach their static value,

• efficiencies are disregarded, as in many implementations, not all inputs are

critical to the output, depending on the values of those inputs at any given

time, and

• we do not know what the outputs of the circuit will be when the tri-state

buffers are not enabled , as they will be left floating.

3.2.2 Compleie "Binary Plus" concept

The simplistic approach to ensuring that results have been generated using valid

data that we discussed in section 3.2. 1 can be extended to a far more powerful

implementation .

We shall first develop an understanding of what it means when we say that

"outputs become valid only when needed inputs are valid." As an example, consider

the truth table of a basic 2-input OR gate, as show.n in Table 3.4.

0 0 0
0 1 1
1 0 1
1 1 1

Table 3.4: 2-Input OR Gate Truth Table

We note that a 1 on either input (by extension , any input on an OR gate of

more than two inputs) is a fully sufficient condition for a 1 appearing at the output.

Conversely, a logic level of 0 must be applied to all inputs of the OR gate in order

for a 0 to appear at the output.

30

To understand how these characteristics will point toward a better understanding

of the Binary Plus concept, let us first, for clarity, extend Table 3.2 by defining our

notation for zoned binary, as shown in Table 3.5 .

[Value II Binary (Value) I Uncertain (Signal) II Zoned Representation II

[~JI ~ I ~~ II f II
Table 3.5: Implied Value and Signal

We will be using the notational symbol </> to represent our uncertain zone in a

zoned binary representation. It is important to remember, however, that this is not

a true third value , but is instead shorthand for the combination of an unknown value

and a known signal.

Now we expand the truth table of Table 3.4 to include new possibilities on the

input, as shown in Table 3.6.

II A I B II OR II
0 0 0
0 </> </>

0 1 1

</> 0 </>

</> </> </>

</> 1 1
1 0 1
1 </> 1
1 1 1

Table 3.6: Binary Plus 2-Input OR Gate Truth Table

Note the behavior we have specified for the gate when one or more of the inputs

in¢. When one input is 1, it matters not whether the other input is 0, 1 or ¢. The

other input is no longer critical. As a 1 on any input of an OR gate is a necessary and

sufficient condition for a 1 on the output, we do not have to be concerned whether

the other input is even known.

31

There are two factors that separate this example from the rudimentary data

application illustrated in Figure 3.1, and which therefore define the concept of Binary

Plus:

• The concept of critical inputs for logic functions is taken into account in de

termining whether the output of the function can be considered valid. To

rephrase, we take advantage of logic functions that do not require complete

data for a valid output.

• The output of the function is also zoned binary.

Similarly, the Binary Plus AND gate also takes advantage of this conditional

criticality of data inputs , as shown in Table 3. 7.

II A I B II AND II
0 0 0
0 </> 0
0 1 0

</> 0 0

</> </> </>

</> 1 </>

1 0 0
1 </> </>

1 1 1

Table 3.7: Binary Plus 2-Input AND Gate Truth Table

For completeness , we define the Binary Plus NOT in Table 3.8.

Table 3.8: Binary-Plus NOT Gate Truth Table

It should be mentioned that there are functions for which no advantage of con

ditional input criticality can be obtained. For example, consider the Binary Plus

exclusive OR (XOR) table in Table 3.9.

32

II A I B II XOR II
0 0 0
0 </> </>

0 1 1

</> 0 </>

</> </> </>

</> 1 </>

1 0 1
1 </> </>

1 1 0

Table 3.9: Binary-Plus 2-Input XOR Gate Truth Table

Although the Binary Plus XOR gate maintains the integrity of the invalid input

signal, it can derive no performance advantage from input value patterns, as all

inputs are always critical in an XOR gate.

3.3 Binary Plus logic specifications

Before formulating the method we will use to create Binary Plus gates, it will be

useful to review some basic topics in VLSI CMOS design. We can then proceed to

develop the basic implementation theory of the Binary Plus logic family.

In doing so, we must remember that, for inputs i-n the valid ranges, the operation

of such gates must be exactly equivalent to its implemented Boolean function. For

inputs not in one of the two valid ranges, the gate must behave differently: taking

the logic function being implemented into effect, the gate must return a valid output

or an output reliably within the invalid range , preferably as close to Vh as possible.

We shall first develop the specification intuitively for understanding. We shall

then more formally extend the design technique to the general or complex gate.

3.3.1 Complementary logic

In standard CMOS complementary circuit design, the pfet network for a logic func

tion is the complement , or dual , of the nfet network. The arrangement of these

33

networks is shown in Figure 3.2. The pfet network connects the output to Vid when

the inputs warrant a logic 1 output; its complement, the nfet network, connects the

output to Ground (Vss) when the inputs warrant a logic 0 output.

vdd

pf et
Network

IN OUT

nfet
Network

v~s

Figure 3.2: Complementary Logic

In Boolean logic, saying that the inputs do not warrant a logic 1 output is the

same as saying they do warrant a logic 0 output - the output from a binary gate is

a dichotomy. Therefore the pfet network and nfet network are true complements of

each other.

Binary Plus: not quite complementary

For convenience, Table 3.6 is reprinted as Table 3.10. This Binary Plus OR gate

truth table shows the required zoned binary output for each possible input state.

Since Binary Plus gates must exhibit a three state output, it follows that the pfet

network and nfet network in such a gate cannot be true complements of each other.

Yet the same Boolean logic function must be realized. How are we to implement a

gate in the face of this seeming contradiction?

34

II A I B II OR II
0 0 0
0 </> </>

0 1 1

</> 0 </>

</> </> </>

</> 1 1
1 0 1
1 </> 1
1 1 1

Table 3.10: Binary Plus 2-Input OR Gate Truth Table

3.3.2 Intuitive development

In our rudimentary example in Figure 3.1 , we used the RDY signals from the de

tectors that receive the input for "pre-processing". We shall now rely on the other

signals - XH and XL - we specified for our detector outputs. Table 3.3 is reproduced

here as Table 3.11 for reference.

II Input II RDY II XH I XL II

II f II ~ II ~ I ~ II

Table 3.11: Relationship of Output Signals

If we now consider the pf et and nfet networks separate entities whose function is

to pull up or down , respectively, the output line, a solution is possible. Table 3.12

specifies the conditions in the pfet and nfet networks which must be met in order

that specified outputs will appear.

Remembering that a logic 0 input to the base of a pfet will cause it to conduct ,

we wish to apply inputs of logic level 0 to the pfet network only when that level

results from a valid input to the circuit - that is , when the input driving the detector

is in the valid logic 1 range. Examining Table 3.11, we see that output "XH" meets

this requirement . Output "XL" does not, as it will display a logic 0 when the input

35

11 Output (A+B) II pfet network nfet network

0 Not Conducting Conducting
1 Conducting Not Conducting

</> Not Conducting Not Conducting

Table 3.12: Jet Network States vs. Zoned Output

is either 1 or </>. Therefore, we must connect "XH" outputs to the pfet network.

Similarly, noting that a logic 1 input to the base of a nfet will cause it to conduct,

we wish to apply inputs of logic level 1 to the nfet network only when that level results

from a valid input to the circuit - that is, when the input driving the detector is in

the valid logic 0 range. Examining Table 3.11, we see that output "XL" meets this

requirement . Output "XH" does not , as it wiil display a logic 1 when the input is

either O or </>. Therefore, we must connect "XL" outputs to the nfet network.

Figure 3.3 shows this modification.

vdd

A Detecto pf et
Network

OUT

XH nfet
B Detecto Network

XL

vss

Figure 3.3: Binary Plus Gate

It is clear that we have handled the conditions under which the output should be

0 or 1. However, the output line floats when the conditions for an output of 1 or 0 are

not present - resulting in neither the pfet network nor the nfet network conducting.

The result of this would be that the gate would tend to display the last valid 0 or 1

36

output level. To ensure this does not occur when an output state of <P is appropriate,

we can "center" the output when it would otherwise be floating, creating the circuit

shown in Figure 3.4.

Detecto

.-------_, XH
B Detecto

'------'XL

pf et
Network

nfet
Network

Figure 3.4: Binary Plus Gate with Float Centering

The effect of the resistors that "center" the output value in event of a float

ing condition can be simulated in CMOS circuitry using weak, always-conducting

transistors. A disadvantage of this approach is that these weak devices are always

conducting, resulting in continuous power dissipation, not a desirable condition. We

shall see in Chapter 5 how a "dynamic" approach aileviates this problem.

A note on complemented inputs

In the preceding development, we have said that the "XH" outputs of the detector

should be used as inputs to the pfet network, as that output, in contrast to the "XL"

output, displays a logic 0 (needed to make a pjet conduct) only when the input to the

detector is a valid 1. If , however, it is desired to create a complex gate in which some

of the inputs must be inverted within the gate and used in that form, the approach

must be adjusted , as shown in Figure 3.5.

To make it clear why we now route the complemented "XH" outputs to the

nfet network and the complemented "XL" outputs to the pfet network, we now

37

vdd

A Detecto pf et
Network

OUT

nfet
B Detecto Network

Figure 3.5: Binary Plus Gate including Complemented Inputs

expand Table 3.11 to show the internally complemented values of Figure 3.5, yielding

Table 3.13.

II Input II RDY II XH I XL II XH I XL II

II f II ~ II i I ~ II ~ I : II

Table 3.13: Relationship of Output Signals, Including Inverted

It is now obvious that the criteria for selecting the output to be used as input to

the pfet network is reversed by internal complementing. That is , it is the comple

mented XL that takes on a value of logic 0 unambiguously, and should therefore be

used as input to the pfet network. By the same reasoning, it is t he complemented

XH which should be used as input to the nfet network.

Elimination of races

As no Binary Plus logic gate can display any valid logic level on its output until the

inputs have reached a necessary and suffici ent condition for that output (which im

plies that the later arrival of a previously unknown input cannot change the output) ,

38

and provided that all such inputs shall be, in turn, zoned binary inputs conditioned

by previous Binary Plus or equivalent "protected" sources, if follows - and will be

proven later in this chapter - that races cannot occur in properly functioning Binary

Plus logic stages.

3.3.3 Formal development

We begin by defining "zoned binary" more formally:

Definition 3.1 Zoned binary is the combination of a binary value and a signal,

carried on the sam e line. The binary values are 0 and 1, and the signal, which is

asserted when the value reaches an indeterminate state between 0 and 1, the width of

which is determined by the implementer, is termed </> , and represents that the value

is unknown.

We now proceed to define Binary Plus logic.

Definition 3.2 A Binary Plus logic gate is one that accepts zoned binary inputs

({ 0, 1> , 1 }) , and delivers outputs that are (1) logic level 1 when the set of valid

inputs constitutes a sufficient condition for an output of 1 under the implemented

Boolean funct ion, (2) logic level 0 when the set of valid inputs constitutes a sufficient

condition for an output of 0 under the implement·ed Boolean function , and (3) 1>

under all other conditions.

Before we can proceed to Binary Plus gate construction, we must define the term

"similarly constructed conventional binary gate":

Definition 3.3 A "similarly constructed conventional binary gate" is a conventional

binary gate whose pfet and nfet networks have been designed under the assumption

that the inputs will be inverted.

We are now ready to define gate construction in the form of a theorem.

39

Theorem 3.1 A Binary Plus gate constructed by connecting the "XH " outputs of

the input detectors (for complemented inputs the "XL " outputs of the detectors) to

the inputs of a pf et network equivalent to the pfet network for a similarly constructed

conventional binary gate generating the same Boolean function, and the "XL " outputs

of the input detectors (for complemented inputs the "XH" outputs of the detectors}

to the inputs of an nfet network equivalent to the nfet network for a similarly con

structed conventional binary gate generating the same Boolean function, and in which

a centering method is used to set floating outputs to </>, will display outputs appro

priate to the implemented Boolean fun ction when valid inputs constitute a sufficient

condition for that output under the Boolean funct ion, and will display a </> output in

all other cases.

Proof: Suppose that there is a Binary Plus logic gate that, when the "high"

detector outputs ("XH" for normal and "XL" for internally complemented) are con

nected to a pfet network equivalent to the pfet network for a similarly constructed

conventional binary gate generating the same Boolean function , and the "low" detec

tor outputs ("XL" for normal and "XH" for internally complemented) are connected

to an nfet network equivalent to the nfet network for a similarly constructed conven

tional binary gate generating the same Boolean function , and a centering method is

used to ensure that floating outputs are brought to </>, does not display the proper

zoned binary output. Then either (1) the pfet network is pulling the output high

when the Boolean function does not specify it , (2) the pfet network is not pulling

the output high when the Boolean function does specify it , (3) the nfet network is

pulling the output low when the Boolean function does not specify it , (4) the nfet

network is not pulling the output low when the Boolean function does specify it, (5)

the output is not being set to </> when neither conditions for a logic 1 output nor a

logic 0 output are met, or (6) the output is being set to </>when sufficient conditions

for a logic 1 output or a logic O output are being met.

If (1), and since the "XH" inputs ("XL" inputs for complemented inputs) are

identical to those in a similarly constructed conventional binary gate generating the

same Boolean function, then the pfet network is conducting when the pfet network

40

of a similarly constructed conventional binary gate would not. Therefore the pfet

network is not equivalent to the pfet network in a similarly constructed conventional

binary gate generating the same Boolean function, which contradicts the initial as-

sumption.
If (2) , and since the "XH" inputs ("XL" inputs for complemented inputs) are

identical to those in a similarly constructed conventional binary gate generating

the same Boolean function , then the pfet network is failing to conduct when the

pfet network of a similarly constructed conventional binary gate would. Therefore

the pfet network is not equivalent to the pfet network in a similarly constructed

conventional binary gate generating the same Boolean function, which contradicts

the initial assumption.

If (3), and since the "XL" inputs ("XH" inputs for complemented inputs) are

identical to those in a similarly constructed conventional binary gate generating the

same Boolean function, then the nfet network is conducting when the nfet network

of a similarly constructed conventional binary gate would not. Therefore the nfet

network is not equivalent to the nfet network in a similarly constructed conventional

binary gate generating the same Boolean function, which contradicts the initial as

sumption.

If (4), and since the "XL" inputs ("XH" inputs for complemented inputs) are

identical to those in a similarly constructed conventional binary gate generating

the same Boolean function , then the nfet network · is failing to conduct when the

nfet network of a similarly constructed conventional binary gate would. Therefore

the nfet network is not equivalent to the nfet network in a similarly constructed

conventional binary gate generating the same Boolean function, which contradicts

the initial assumption.

If (5), since a centering method is being used to set all floating outputs to </>,

therefore the output line must not be floating . If this is true, then either or both of

the pfet network and the nfet network are conducting when input conditions do not

warrant it . See (1) and (3) above for refutation.

If (6) , since a centering method is being used that can set only floating outputs

to </>, therefore the output line must be floating. If this is true, then either the pfet

41

network or the nfet network are not conducting when input conditions warrant it .

See (2) and (4) above for refutation.

Q.E.D.

3.3.4 Binary Plus and races

We wish to prove that combinational blocks of Binary Plus logic, as defined, are free

from races (hazards). We begin by defining the input conditions that must exist:

Definition 3.4 A Binary Plus compatible source is a source of a single binary value,

encoded in zoned binary, in which the source remains in the <P zone until its final,

valid value is known, at which point it transitions to that value and remains there for

the duration of the Binary Plus evaluation phase.

Intuitively, the requirement for a Binary Plus compatible source would be satisfied

by a tri-stated binary source, in which the tri-state buffer is not enabled until the

value it will release to the Binary Plus logic block is static, and which employs a

circuit mechanism to ensure that floating outputs to the logic stage are "centered"

to ¢. The term Binary Plus evaluation phase will be defined shortly.

We proceed to define a Binary Plus logic stage and a Binary Plus evaluation

phase:

Definition 3.5 A Binary Plus logic stage is a combinational logic block, consisting

solely of Binary Plus gates, and obtaining all inputs from Binary Plus compatible

sources.

Definition 3.6 A Binary Plus evaluation phase defines the time period over which

a Binary Plus logic stage evaluates its inputs from Binary Plus compatible sources

and produces outputs. Prior to its start, all input sources, outputs and intermediate

results must be at ¢ . The phase begins when the first valid input is released into the

stage and ends when all outputs from the stage reach valid values.

42

Theorem 3.2 A properly operating Binary Plus gate, operating on inputs from Bi

nary Plus compatible sources, is free from internal races over the duration of its

Binary Plus evaluation phase.

Proof: Suppose that there exists a properly functioning Binary Plus gate, oper

ating on inputs from Binary Plus compatible sources, that, over the duration of a

Binary Plus evaluation phase, exhibits an output race - that is , its output changes

from <P to a valid binary value and then changes back to <P or through <P to the

opposite binary value. We know by definition of a Binary Plus compatible source

that no input value will change from a valid binary value to <P or the opposite valid

binary value. We also know by the definition of a Binary Plus gate that the ini

tial transition of the output from <P to a valid binary value will occur only when a

necessary and sufficient condition for that output in a similarly constructed conven

tional binary gate generating the same Boolean function has been reached, turning

on conductivity of either the pfet or nfet network. As only a change of a critical gate

input from a valid binary value to some other state (¢ or the opposite valid binary

value) could cause a pfet or nfet network to stop conducting, thereby changing the

output state, we know that (1) in such a case, the inputs to the circuit have changed

from a valid binary value to another state, contradicting the definition of a Binary

Plus compatible source, or (2) the pfet network, nfet network, or "centering" cir

cuitry is malfunctioning, contradicting the assumption of the theorem that the gate

is "properly operating" .

Q.E.D.

Theorem 3.3 A properly functioning Binary Plus logic stage will be free from races

during its Binary Plus evaluation phase; that is, once an output from a Binary Plus

logic stage transitions from a <P state to a valid binary output state, there will be no

further change in that output for the remainder of the evaluation phase.

Proof: Suppose that there is a properly operating Binary Plus logic stage whose

output is observed to transition from a <P state to a valid binary value, and then to

some other state over the duration of its Binary Plus evaluation phase. Then either:

43

(l) One or more inputs to the Binary Plus logic stage have changed from a valid

binary value to or through a </> state, (2) a Binary Plus logic gate receiving inputs

from Binary Plus compatible sources or other Binary Plus logic gates is providing

an intermediate result that varies in the manner described to later Binary Plus logic

gates that themselves generate intermediate results, (3) the final Binary Plus logic

gate is directly generating the suspect output from Binary Plus compatible sources

or other Binary Plus logic gates, or (4) there is a sequential dependency in the Binary

Plus logic stage.

If (1), then the source of the signal is either not a Binary Plus compatible source

as defined, or it is not properly functioning. Either or both of these contradict the

assumptions of the theorem.

If (2), since outputs from either properly functioning Binary Plus gates or prop

erly functioning Binary Plus compatible sources cannot exhibit the observed behav

ior, one of these sources is malfunctioning, which contradicts the assumptions of the

theorem.

If (3), the argument from (2) applies.

If (4), as a Binary Plus logic stage is defined to be a combinational construct,

sequential operation contradicts the assumptions of the theorem.

Q.E.D.

3.4 Summary

This chapter has defined, intuitively and formally, Binary Plus logic. We have seen

that Binary Plus logic is a binary logic, for , by definition, when critical input values

are valid, the product is identical to what it would be if processed by Boolean binary

logic.

The characteristic that distinguishes Binary Plus logic from classic binary logic

is its use of zoned binary, wherein there is a third state between a binary 0 and

binary 1. This state is not a new value, but instead represents a signal that the

value is unknown. Binary Plus logic maintains the integrity of zoned binary through

its gates, implying that an output remains in the unknown range, represented by the

44

zoned binary notation </> , until inputs defining a critical set for a valid output have

themselves become valid binary zeros or ones.

The design characteristics of Binary Plus logic gates have been defined (and for

mally proven) to include connection of detector outputs to the nfet and pfet networks

of the gate, while the details of detector and gate design have been left for Chapter

4.

The Binary Plus logic stage has been defined, and formally shown to be immune

from races.

45

Chapter 4

Design and Implementation

In this chapter we shall examine the design considerations and methods employed

in the creation of Binary Plus gates. The design of a detector for zoned binary is

discussed in detail.

We shall then proceed to briefly discuss some rudimentary applications for the

concepts embodied in zoned binary and Binary Plus logic, discussions that will mo

tivate our in-detail look at two applications areas discussed in Chapters 5 and 6.

Finally, introductory information on a fabricated proof-of-concept integrated cir

cuit will be given, to include testing of elementary detection concepts and Binary

Plus gates.

4.1 Detector design

The requirements for our detector as described in Chapter 3 allow us to draw an

initial block diagram for the required detector (see Figure 4.1).

Clearly, there must be a form of voltage comparison taking place m order to

determine in which zone the input exists at any moment.

While we could use a scheme that compares a logic level to two reference voltages ,

either supplied externally or generated in some way internal to the integrated circuit,

it was desired to use a simple method , not using approaches thought of as "analog".

Consequently, a novel method of voltage comparison was devised that, by itself,

46

.....

IN __.. Detector p

......

......

-

ROY
-ROY

XH
XL

OUT

Figure 4.1: Detector: Simple Block Diagram

requires no more than the standard supplies for Vss (ground) and Vdd·

No claim is made that the comparison method chosen is the most efficient; de

signing the fastest or most space-efficient detector was not an aim of this work. It is

simply a demonstration that one need not have reference voltage supplies available

to implement this concept.

The design approach is suggested by an observation made in Section 2.2.2 of this

work. Inverter behavior - specifically the transition voltage - can vary from Vh to a

certain degree based on fabrication variability. If it is possible to vary the transition

voltage purposely, then one could devise a zone detector as shown in Figure 4.2.

A
o-~----• ROY

":>G---1• ROY

Figure 4.2: Detector: with Varied Transition Voltage Inverters

In Figure 4.2, a 5-volt supply for Vid (relative to Vss) is assumed, and therefore

the desired 1/3 Vdd transition point occurs at approximately 1. 7 volts, and the 2/3

Vdd transition point occurs at approximately 3.3 volts. The same scheme should scale

for any supply voltage, provided care is taken to ensure that the desired transition

voltage of the inverter does not approach the threshold voltage of either transistor;

the values for a 5 volt supply are shown in this and following figures since that is the

47

supply voltage for the proof of concept circuit discussed later in this work.

The two inverters shown with "3.3" and "1.7'' inscribed within their symbols have

been designed by some as yet undiscussed means to have transition voltages of 3.3

volts and 1.7 volts, respectively. Note the behavior of the inverters - and the rest of

the circuit shown in Figure 4.2 - for the three zones of the Vss ~ Vdd range shown in

Table 4.1:

A I A (on 5v scale) II B (XL) I C I D (XH) IJ RDY II
V'ss - l/3Vdd Ov - 1.6v 5v Ov 5v 5v

l/3Vid - 2/3Vid l.6v - 3.3v Ov 5v 5v Ov
2/3Vdd - Vdd 3.3v - 5v Ov 5v Ov 5v

Table 4.1: Inverter Pair Behavior

If we can design and fabricate inverters to have these transition points, then

it becomes practical to decode the input value into zones without the presence of

supplied reference voltages. We shall now proceed to derive the design equations for

such inverters.

4.1.1 The design equations

A basic inverter consists of one pfet transistor and one nfet transistor, arranged as

shown in Figure 4.3.

A

- vss

Figure 4.3: Basic Inverter Design

48

Weste and Eshraghian[14] discuss the electronic characteristics of the inverter in

detail , and the reader is referred to that text for an in-depth treatment. They note

that at the transition point of the inverter, both the pfet and nfet transistors are

in a state of saturation, and that the saturat ion currents for the two transistors are

given by:

where:

and:

Vin = input voltage to the inverter

vtn = threshold voltage of nfet transistor

vtp = threshold voltage of pfet transistor

µn = mobility of electrons

µP = mobility of holes

Wn = channel width of nfet transistor

WP = channel width of pfet transistor

Ln = channel length of nf et transistor

LP = channel length of pfet t ransistor.

Weste and Eshraghian[14] then derive an expression for the transition point of

the inverter (Vin) by noting that , in the inverter,

49

which yields:

Vid + Vi + Vi ~/3n 11; p n \j 73;
in= l + ~

\j 73;
(4.1)

Assuming for approximation purposes that Vin = - Vip, and setting /Jn = /3p, they

obtain:

11; _ vdd
m - 2

, establishing that , in the ideal case and with the lengths and widths of the pfet and

nfet transistors in an appropriate ratio, the transition point of the inverter will be

vh .
As we wish to derive an expression for the design-modifiable characteristics of

the pfet and nfet transition voltages as a function of the desired transition voltage

Vin , we rearrange 4.1 appropriately and obtain:

/Jn = (vdd + Vip - Vin) 2

/Jp Vin - Vin
(4.2)

as our expression for t he nfet:pfet ratio of the betas of the transistors.

Our aim now becomes expressions for the size of t he nfet or pfet transistors

as functions of the other device 's size and the nfet:pfet ratio of the betas of t~e

transistors in 4.2 above. For clarity, we define:

(4.3)

as our term for the nfet:pfet ratio of the betas of the transistors. We recall from [14]

that:

and

/3p = µpE (WP)
tox LP

' so we will also define ratio terms Gn and GP such that:

50

(4.4)

and

(4.5)

. Restating 4.3 above:

R = /3n = µnEGn • tox
/3p t0 x µpEGp

(4.6)

Obtaining expressions for Gn and GP:

(4.7)

and

(4.8)

We have in 4. 7 and 4.8 expressions for the required geometry of the nfet and pf et

transistors, in terms of the required beta ratio, the geometry of the other transistor,

and two fabrication parameters. If we further wish to assume equal channel lengths

Ln and LP, and referring to 4.4 and 4.5 we have:

(4.9)

and

(4.10)

Finally, eliminating our convenience terms R and G completely by remembering

from 4.2 and 4.3 that:

, we can now state complete expressions for the width of the nfet and pfet transistors:

51

(4.11)

and

(4.12)

The expressions in 4.11 and 4. 12 become the design equations for sizing the active

elements of an inverter to achieve a specified transition point. This makes it possible

to create the detector circuit shown in Figure 4.2.

4.2 Binary Plus gate design

Binary Plus gate design was described and proven, in the general case, in Chapter

3. Now we will look at design as applied to a specific gate.

The detector design shown in Figure 4.2 provides the needed XH and XL signals

for gate design. Consider, however , t hat we do not need a RDY signal, and can

therefore dispense with that circuitry from our original detector design. The inverter

pair alone provides us with t he needed XH and XL signals.

We now can see why XH and XL were defined in Chapter 3 as inverted versions

of the input - they can be easily generated through the use of inverter pairs.

As a first step in making use of this to design a Binary Plus OR gate , we need

an expression for OR that will include inverters on the inputs. Beginning with:

f =A+B (4.13)

we apply DeMorgan's theorem to yield:

f =A·B (4.14)

Figure 4.4 shows the circuit equivalent to Equation 4.14, while Figure 4.5 shows

the same circuit with the NAND expanded to device level, and the pfet and nfet

networks labelled.

52

A--i A
I

L>------ A+B

B
B

Figure 4.4: OR Created with Inverters and a NAND

A
A

B
B

Figure 4.5: OR Created with Inverters and a Device Level NAND

We know from our general development in Chapter 3 that substituting an

"high/low" inverter pair for each of the single inverters in Figure 4.5, and connecting

the XH outputs to the pfet network and the XL outputs to the nfet network, should

provide the Boolean characteristics of a Binary Plus gate. This arrangement is shown

in Figure 4.6.

Inspection of Figure 4.6 will quickly verify that the cases for outputs of 0 and 1

are satisfied. However, the output line floats when the conditions for an output of

1 or 0 are not present - resulting in neither the pfet network nor the nfet network

conducting. The result of this would be that the gate would tend to display the

last valid 0 or 1 output level, at least initially. To ensure this does not occur when

an output state of <P is appropriate, we follow the development in Chapter 3 by

"centering" the output when it would otherwise be floating , creating the circuit

shown in Figure 4. 7.

The effect of the resistors that "center" the output value in event of a floating

53

XH
A

XL

XH

B
XL

Figure 4.6: Binary Plus OR Gate

XH vdd

A
XL A+B

XH i
I

B
I

nfet
XL networ

1

Figure 4.7: Binary Plus OR Gate with Float Centering

condition can be simulated in CMOS circuitry using weak, always-conducting tran

sistors. As we mentioned in Chapter 3, a disadvantage of this approach is that these

weak devices are always conducting, resulting in continuous power dissipation, not a

desirable condition. We shall see in Chapter 5 how a "dynamic" approach alleviates

this problem.

4.2.1 Internal versus external complemented inputs

In Chapter 3 we discussed the internal gate wiring procedure to be used if internally

complemented inputs were to be used in a complex gate. The reader will recall that

the conclusion was that the complemented XH should be used as input to the nfet

54

network and the complemented XL should be used as input to the pfet network, the

opposite of their uncomplemented signals.

It should be clear that if we choose to complement outputs externally to the

Binary Plus gate, then as far as the gate internals are concerned, all inputs are non

complemented - that is, there is no need to connect signals from a complemented "XL"

inverter pair output to the pfet network nor those from a complemented "XH" in

verter pair output to the nfet network.

The decision to do this, rather than to complement internally, involves trade-offs

that must be considered by the implementer. For example, how many other Binary

Plus gates require the same complemented inputs? Such external complementing

also increases the number of inverter pairs at the input to the complex gate, as much

as doubling them. Additionally, one must bear in mind that any external inverters

in such a scheme must be Binary Plus inverters, which maintain the integrity of

the zoned binary value and signal through the inversion, as shown in Table 4.2,

whereas complementing inside a Binary Plus gate ("downstream" of the inverter

pairs) requires only a pair of standard inverters for each input to be complemented.

Table 4.2: Binary Plus Inverter Truth Table

4.3 Rudimentary applications

Earlier in this chapter we provided a design approach for detecting unknown values

and , in combination with material presented in Chapter 3, showed how such detection

could be used to implement the Binary Plus logic family.

We shall now consider some additional and rudimentary applications of this

knowledge our detection capability enables. It is not suggested that these are de

manding or sophisticated uses for this technology, nor that they in any way constitute

55

an exhaustive list of such uses. They are meant to be illustrative of what can be

done with almost trivial applications of the information developed by "decoding" a

binary line as a zoned binary source.

Informat ion need not be used to its complete advantage. Sometimes a mmor

implementation of a concept can lead to "enough" improvement with minimal ex

penditure in design and space. So it is with the concept of using the fact of uncertain

logic levels to solve problems or improve performance. Engineering is, above all, a

practical process. It is not desirable to implement more of a costly enhancement

than is needed to achieve the required level of performance.

In Chapters 5 and 6 we shall study more demanding applications.

4.3.1 Warnings of potential problems

Sometimes it may be adequate to provide warning of circuit inputs that lie in this

uncertain zone. Simple indicator lights , readable outputs, or generation of an in

terrupt to a processor - all are possibly useful features in given circumstances, and

could be implemented as desired by the designer. One could even envision a case in

which more than one zoning could be performed on the same input as in Figure 4.8.

ROY wide "GREEN"
Indicator

"YELLOW"
A Indicator

"RED"

ROY narrow
Indicator

'---------------------------.-.1• Other Circuitry

Figure 4.8: Example of Multi-Zoning

56

3 2 The detector revisited as a decoder 4 . .

When we introduced the detector described in Section 3.1, our motivation was the

detection of naturally (or unnaturally) occuring undefined logic levels. Chapter 2

was partially devoted to describing the possible sources of undefined logic levels; our

aim in designing a detector was to infer the activity of one or more of these causes.

Section 3.1.1 redefined a line carrying binary data and attached to a detector as

a carrier of zoned binary data - a line which, it was realized, carried both a value

and a signal simultaneously. Table 3.2 specified the binary value and the undefined

level signal as separate entities.

Detection of the effect of the normal causes of undefined logic levels does not,

however, fully define the domain of uses to which this or equivalent detectors can be

put.

Passive encoding

It may be desirable , for example, to determine that a connector has become detached,

or that a cable has been cut. Functionally equivalent to an "open" , as discussed in

Section 2.2.1 , these occurrences would typically result in "floating" inputs, which, we

mentioned, might take on a value in the undefined zone, but which might also take

on any other value, conceivably even one outside the Vss :::} Vid range. Therefore

this situation, like any open, cannot be reliably detected. However, if we take design

action to prevent a floating value, and indeed to force a value in the undefined zone

in this circumstance, we then have a reliably detectable condition, as in Figure 4.9.

What we have done here is explicitly encoded the </> state onto the line, ensuring

that, in the even of an open on that line, the condition will be reliably detected. It

should be noted that the resistors shown in Figure 4.9 need not even be particularly

accurate, depending on the size of the uncertain zone.

Active encoding

Consider another example illustrative of how the encoded nature of zoned binary can

be put to work, this one active, in contrast to the passive encoding described above.

57

IN Detector ROY
(or ROY)

~--------OUT

Figure 4.9: Forcing a Zone onto a Floating Line

Figure 4.10 pictures a hypothetical circuit fed by a simple on-off sensor. For

example, the sensor might measure the level of gasoline fumes in a confined area

and relay a safe (1) / not safe (0) indication. Part of the sensor circuitry might be

devoted to detecting an out-of-range condition in the chemical sensor element. If

such a condition existed, neither a safe nor a not save indication would be accurate.

Of course, a second line could be run for the purpose of indicating this condition, but

this would also carry the disadvantage of providing another physical line, providing

another point of failure. Instead , the sensor carries tri-state logic on the output,

ensuring an electronic disconnect from the line when the measurement is unreliable.

This is combined with the passive resistor pair from the previous example to yield a

"fail safe" sensor. The design illustrated protects against:

• an out-of-range condition in the sensing element,

• a broken cable ,

• a disconnected cable at either end , and

• possibly, a power failure at the sensor.

Other encoding

The two examples given are rudimentary. The concept of using the detector as a

zoned binary decoder can be useful in any application in which it is desirable to

58

IN RANGE

Comparator

ENB

Detector ROY
(orR'Dv)

.____ ________ OUT

Figure 4.10: Inoperative Sensor Encoding

transmit an indicative signal in lieu of a valid binary value. Further application of

this principle is, however, left for other work.

4.4 Introduction to the proof-of-concept circuit

It was desired to test the concepts developed in Chapters 3 and 4, as well as the

applications that will be discussed in Chapters 5 and 6, by designing and fabricating

a proof of concept circuit addressing some of these areas.

In this chapter we will consider an overall view of this circuit and testing setup,

and examine and test in detail elementary zoned binary detection and Binary Plus

gates implemented as part of the circuit.

59

4.4.1 Overall view

It was desired to test as many concepts as possible within the constraints of the

space afforded by a 4 mm2 chip. As there are many different applications of the

concepts that are the subjects of this work, it was decided to implement different

concepts as independent subsets of circuitry. It was also decided to bypass the

testing of trivial applications (such as those discussed in Section 4.3.1 in favor of

the more complex areas of asynchronous systems (Chapter 5) and communications

applications (Chapter 6).

Experiments implemented

It was decided to implement the following circuits:

• the dual inverters (1 / 3 vdd and 2/3 vdd) used to detect the presence of levels

in the uncertain zone.

• a small collection of Centered Binary Plus logic elementary gates

• an asynchronous "stage" whose input set sensitivity could be measured

• a circuit illustrating the concept's use to communications

Dual inverters: This component was included in order to test the proper operation of

the inverters at inputs of VSS) vh and Vid- One input pin and two output pins ("3.3"

inverter output and "1.7" inverter output) were required to interface this component

to external test circuitry.

Elementary Centered Binary Plus logic gates: It was desirable to test typical Cen

tered Binary Plus logic gates. Four gates were chosen:

• 2-input OR gate

• 3-input OR gate

• 2-input AND gate

60

• 3-input AND gate

If independently implemented , these gates would have required 10 input pins and

four output pins. In the interest of conserving pin availability for other circuitry,

it was decided that these gates would partially share inputs. There are three input

pins used for the two 3-input gates, and 2 input pins used for the two 2-input gates,

for a total of five input pins.

Asynchronous stage: To demonstrate the varying speed of a circuit whose completion

time is sensitive to the input pattern, a 4-bit ripple-carry adder, implemented in

Centered Binary Plus logic , was chosen. [The concept of Centered Binary Plus logic

will be covered in Chapter 5.] No effort was made to make this design space-efficient

and, instead, standard Centered Binary Plus logic AND and OR gates were used to

construct the full adders that make up this design.

The implemented asynchronous stage requires eleven inputs and nine outputs;

these will be described in detail in Chapter 5.

Communications application: It was decided to implement a 9-bit simple parity

based checker/ corrector , using the concepts developed in Chapter 6. The primary

circuitry was developed as a bit-sliced construct containing, in each bit, all circuitry

necessary for detection, dual parity checking and output multiplexing.

This circuit requires ten inputs and eleven outputs; these will be described in

detail in Chapter 6.

4.4.2 Layout

The circuit was implemented on a 2.3 x 2.3 millimeter MOSIS TinyChip, and fabri

cated by ORBIT using their SCNA2 (2.0 micron feature size) process under contract

to the MOSIS Service, Information Sciences Institute, University of Southern Cali

fornia.

Figure 4.11 shows the relative space and location taken up by the components

listed in Section 4.4.1.

61

Input/Output Pads and Power Susses
en

Output Multiplexers & Buffers Q)
en

-a C/'J en
<I> .8

::J Signal & Data Routing Q)

en (/) (.)
~ c:c ca <I> :J Q) co t: co -en I Q co Ul
~ Q) en () Ql

-~ ""i:::: OI ·c, iii ~ ::J c:
C/'J ca <I> ·5 .3 CJ 0 0 c:c (L ..::.::: a:

"O c:- Q) - (.) ~ Unused
Ql ('(l x a.. - ·- <I>
Ci> E Q) -9 ..c 0

Q)
(j) () "" - Ql a. -c

~
(ij ~ E E c: c O> (.) ..!!! :J 0 Uj

UJ ctS I Adder Diagnostic Counter I ~ a.. - en
-c :J -c a.
c Signal & Data Routing ctS :J
ctS 0 a..
en I Adder Input Gating IJ --c

~~ ::J
ctS Signal & Data Routing c..

C> -a.. c: ::J .,
" 0 0 - a:

::J 4-Bit Centered Logic ~ ~ c.. 0
::J Ripple-Carry Adder "" - (ij c.. ::J c:

OI c 0 Uj

~ Precharge JI Signal & Data Routing

::J lQ9.iC

c..
c Input/Output Pads and Power Susses

Figure 4 .11: Circuit Layout

4.4.3 Pinouts

From the start it was clear that the number of inputs and outputs associated with

these circuits would preclude dedicated pins for each. Only 40 pins were available

for all power, input and output functions, yet signal and data inputs and outputs

listed above in Section 4.4.1 totaled 53 pins, and we have not yet accounted for power

requirements, which are:

62

• Vi

For reliability, and to ensure an adequate supply of power, at least two pads are

customarily allocated for each supply voltage; this would lead to a requirement for

6 power supply pins, for a overall count of 59 pins.

Pin conservation

Two methods were used to reduce the number of required physical pins.

Input sharing: As the 9-bit Parity Checker/Corrector was an entirely separate

experiment, there was no need to be able to control its inputs separately from those

of the 9-bit Ripple-Carry Adder data. Nine input pins were therefore shared between

these two experiments. Additionally, the input to the Binary Plus inverter pair was

shared with one of the inputs to the 2-input Centered Binary Plus logic gates. These

economies saved 10 pins.

Output pin sharing: Again, as for input pins, the fact that the experiments on

this circuit were functionally separate and independent enabled the sharing of output

pins. This, of course, required that multiplexers be used to select which of the two

possible outputs a pin would relay to the external world. This requirement meant

that we would have to allocate a new pin for multiplexer control. But by doing so,

it was possible to multiplex eleven outputs from the 9-bit parity checker/corrector

with outputs from the adder and the Binary Plus dual inverters.

21 pins were thus made "doubly useful", providing a surplus of two pins in the

40-pin package. One of these was allocated to output multiplexer control, and the

other was used as a diagnostic check on the output multiplexing circuit.

Pinout tables and diagram

Table 4.3 shows the input pinouts of the circuit as implemented, Table 4.4 the output

pinouts, and Table 4.5 the power supply pinouts.

Figure 4.16, included at the end of this chapter , shows the pinout information in

schematic form .

63

Pin Input Functions Pin Input Functions

14 Parity Odd/ Even Set 24 INS (Parity Exp.)

16 INO (Parity Exp.) Carry-In (Adder)
AO Data (Adder) 27 Precharge Set (Adder)

17 INl (Parity Exp .) 28 Precharge Reset (Adder)
BO Data (Adder) 29 Input B (2-Input OR)

18 IN2 (Parity Exp.) Input B (2-Input AND)
Al Data (Adder) 30 Input A (2-Input OR)

19 IN3 (Parity Exp.) Input A (2-Input AND)
Bl Data (Adder) Input (Binary+ Dual Inverters)

20 IN4 (Parity Exp.) 31 Input A (3-Input OR)
A2 Data (Adder) Input A (3-Input AND)

21 IN5 (Parity Exp.) 32 Input B (3-Input OR)
B2 Data (Adder) Input B (3-Input AND)

22 IN6 (Parity Exp.) 33 Input C (3-Input OR)
A3 Data (Adder) Input C (3-Input AND)

23 IN7 (Parity Exp .)
B3 Data (Adder) 34 MPX (Multiplexer Ctl.)

Table 4.3: Input Pinouts

4.4.4 Test board

A test board was constructed to allow efficient input of allowable values and mea

surement of outputs. Figure 4.17, also included at the end of this chapter , depicts

the schematic of this board.

4.5 Binary Plus component experiments

The purpose of these circuits was to verify the proper operation of the inverter pair

that decodes the three-state zoned binary into 0, </> and 1, and to check the operation

of two and three-input Centered Binary Plus logic AND and OR gates.

64

Output for MPX = O Output for MPX = 1
Pin (Parity Experiment) (Other Experiments)

1 Parity Error Output from "3.3" Inverter (XH)

2 </> Detection Output from "1.7'' Inverter (XL)

3 OUTS 8-bit Counter Output
4 OUT7 ALL Ready Signel

7 OUT6 SUM3 Ready Signal

8 OUTS NONE Ready Signal
9 OUT4 Carry-Out Data
10 OUT3 SUM3 Data
11 OUT2 SUM2 Data
12 OUTl SUMl Data
13 OUTO SUMO Data
36 0 1
37 ~ 2-input OR Output
38 ~ 2-input AND Output
39 ~ 3-input OR Output
40 ~ 3-input AND Output

Table 4.4: Output Pinouts

4.5.1 Circuit descriptions

Binary Plus inverter pair

This inverter pair is implemented as shown in Figure 4.12. Outputs XH and XL are

routed directly to the appropriate output multiplexers.

x

Figure 4.12: Binary Plus Inverter Pair

65

II Pin I Power Supply Voltage II
5 vdd
6 vh
15 Vss
25 Vid
26 vh
35 Vss

Table 4.5: Power Supply Pinouts

2 and 3-input Binary Plus logic OR gates

These Binary Plus logic gates are implemented as dynamic constructs as will be

suggested in Chapter 5, Section 5.3 .1. Indeed, the implementation of the 2-input

OR is exactly as shown in Figure 5. 7.

The implementation of the 3-input OR is shown in Figure 4.13.

A

B

c

XH

XL

XH

XL

XH

XL

L-.--'--1--'~-+-------l•A+B+C
~===t=========:!====-~_J

Precharge ---+------'--1----'-

Precharge -------1---'--

V h

Figure 4.13: Centered Binary Plus logic 3-inplit OR Gate

The output from these gates was routed to multiplexers for output.

66

2 and 3-input Centered Binary Plus logic AND gates

The AND gates are implemented in a similar manner to the OR gates discussed in

the previous section. The 2 and 3-input versions are shown in Figures 4.14 and 4.15,

respectively.

A

B

XH

XL

XH

XL

Precharge _______-l-~-

Precharge --------l---'-

V h

Figure 4.14: Centered Binary Plus logic 2-input AND Gate

4.5.2 Testing results

Binary Plus inverter pair

Testing of the inverter pair was straightforward. Logic level inputs of 0, ¢and 1 were

applied to the input , and the output observed as shown in Table 4.6

II Input II XH Output I XL Output II

II f II ~ I ~ II

Table 4.6: Test Results: Binary Plus Inverter Pair

Results were as predicted for the inverter pair.

67

A

B

c

XH

XL

XH

XL

XH

XL

Precharge -----~-;---r-

Precharge -------....-

V h

Figure 4.15: Centered Binary Plus logic 3-input AND Gate

2-input gates

All possible input combinations were tested for the 2-input AND and OR gates.

Results were as shown in Table 4.7.

The measurements were not as predicted. Those entries in Table 4. 7 marked

with an "*" should have been an output of ¢. It is likely that this is due to an

experimental design oversight on the part of t he author.

As designed , the output from each circuit is routed to a multiplexer, the reason

for which was discussed earlier in Section 4.4.3, and from there to strong output

pad buffers. The multiplexers are constructed from pass switches, and are less likely

than other components to alter the transmitted voltage level. The buffers are another

matter. In the manner discussed in Section 2.2.2 , values in the range of¢ are highly

likely to be transformed to a logic level 0 or logic level 1 by the two powerful , cascaded

inverters that make up t he buffer.

We can note in advance, however , that the test results for the adder discussed

in the next chapter provides evidence that these 2 and 3-input AND and OR gates

68

II A I B II AND Output II OR Output II
0 0 0 0
0 1> 0 1*
0 1 0 1

1> 0 0 1*

1> 1> O* 1*

1> 1 1* 1
1 0 0 1
1 1> 1* 1
1 1 1 1

Table 4. 7: Test Results: 2-input Centered Binary Plus logic AND and OR Gates

operate as anticipated , as that adder is constructed from circuits identical to those

implemented here, and would not operate as observed unless each gate operated as

intended.

3-input gates

All possible input combinations were tested for the 3-input AND and OR gates. The

same difficulty with the output buffers converting 1> outputs to valid O's and 1 's was

again noted.

4.6 Summary

In this chapter we developed the design , to include design equations, for the zoned

binary detector, as well as illustrating specific designs for Binary Plus gates, the

theory for which had already been covered in Chapter 3.

We examined a few rudimentary applications for the concepts involved, and ad

dressed an important point: that once a method of detection of 1> has been created,

originally motivated by the desire to detect a condition created by problems in the

circuit or timing inadequacies, it can be used in conjunction with methods that pur

posely set the logic level on a line as ¢ . Binary Plus concepts can be used in either

" d" mo e , although our definition of a Binary Plus logic stage in Chapter 3 was based

69

''I
I

I

around the latter mode.

Finally, we provided an overview of a circuit fabricated to test the concepts in

this work, and provided specific details and testing data appropriate to the material

covered in this chapter. Circuit details and testing data appropriate to concepts

discussed in Chapters 5 and 6 will be covered in those chapters.

70

~

INO

IN1

IN2

IN3

IN4 PARITY-BASED
INVALIDITY

INS DETECTION/
CORRECTION

IN6 CIRCUIT

IN7

IN

p in

PE

SET AO Al A2. A3

81 82 83
PRE

CHARGE
CONTRO

RESET CIRCUIT" 1---.-p--..i 4-BIT

NP BINARY+
RIPPLE-CARRY

ADDER
CIRCUIT

ELEMENTARY
BINARY+ XL
CIRCUIT !-------~

COLLECTION XH I-.;.;...:_ _____ _

AND3
OR3
AND2
OR2 ~~t

OUTO

OUT1

OUT2

OUT3

OUT4

OUTS

OUTS

OUT7

OUTS

Eout

S2

S3
C3out

NONE

S3RDY

ALL

Counter0 ut

vdd

Figure 4.16: Pinout Schematic

71

MPX vss

34

1oK 1 M

,,.,_.,,._,~ Vdd

v~ l
1M

Vdd
Vdd

l fl f '~
1M Odd Parity

~~r11
Vdd l Even

l
1M

Vdd

r .-v"
1M IITk_ Vdd

l ht_;;lil=;L.;;Li;!..oi I '1 I cl
- < 1J 0 0 0 0 ~ <~

1M Hi'iHP§§§~~~§ ~~~~=j

~~- - - - < ~ ~ ~ < ~ ~ ~ ~ ~
l Vdd j-M~~~~mw~
l 10K

j---v.\-v dd

1M '--:-i Vdd

l Tl ·ngs
PRESET 1Y 1M

8'.a~ Vdd

~ l l
Tos1•

v""

J
Ti ·ngs

PSET

-l: 1M
dd . h St:i: l Vdd

l Tos1•

v""

10K

v::.r
1M

Vdd

l
1 M

Vdd

l
1M

Vdd

l
1M

Vdd

Figure 4.17: Test Board Schematic

72

1K OUT1
OUT2
OUT3
OUT4
OUTS
OUTS
OUT7
OUTS
Ol lT9
OUT10
OUT11
OUT12
OUT13
OUT13
OUT14
OUT15

(

Chapter 5

Centered Binary Plus logic

In this chapter we shall further develop the Binary Plus concept to include its dy

namic version , Centered Binary Plus logic, and that version 's potential for use in

asynchronous systems. We will look at gate design for Centered Binary Plus logic ,

and how gates can be combined into combinational blocks of differing granularity.

We shall also examine asynchronous circuitry implemented on the proof-of

concept circuit, and describe the testing procedure and its results .

We begin by very briefly reviewing the operation of "dynamic logic" in VLSI

CMOS circuits , and reviewing in more detail the principles behind asynchronous

systems.

5.1 Static versus dynamic logic in VLSI design

Static logic designs in CMOS typically use complementary logic, as described in

Chapter 3. Complementary pfet and nfet networks "pull up" or "pull down" the

output line. In dynamic logic design , the pfet network is replaced by a precharge

phase, during which a pfet device precharges the output to a logic 1 (Vdd)· Then the

nfet network is given an opportunity to pull down the output line during an evaluate

phase. If the nfet network does not conduct, the output line remains charged to a

logic 1. Figure 5.1 illustrates a NAND gate constructed in this fashion. [It is also

possible to use an nfet device to precharge to 0 (Vss) , and then allow a pfet network

73

1 1

the opportunity to pull up the line to a logic 1.]

A----t-----t----11

e-------u

Clock~----1•

Precharge -1----- AB

nfe
networ

Figure 5.1: Dynamic NAND Gate

The chief advantage of dynamic logic is that it eliminates the need for the pfet [or

nfet] logic network, often saving significantly on space. It does, however, introduce an

additional cycle into the operation of the logic , as well as some design complications

such as enhanced timing dependencies and charge sharing.[14]

A moment's thought will reveal the sensitivity of dynamic logic to timing - specif

ically races. If the proper final value of an output is l 1 but a race exists in the circuit

such that the nfet network momentarily conducts, then the output precharge will be

dissipated, and the output will take on a value of 0. Even should the race condition

then be resolved , and the nfet network cease conducting, the damage has been done:

there is no mechanism that will "pull up" the output, as there is in a static gate (the

pfet network) . So the consequence of a race to a dynamic circuit can be very serious,

and must be guarded against carefully.

Weste and Eshraghian[14] cover dynamic logic design and considerations in some

detail, and can be referred to for a fuller understanding, if the reader so desires. Such

an understanding is not required for comprehension of this work, as what has been

mentioned above should be adequate to our development of Centered Binary Plus

logic later in this chapter.

74

5.2 Asynchronous systems - current status and re

quirements

5.2.1 Overview

Most circuit design today is synchronous - data is clocked through sequential circuits

(which contain combinational blocks of logic) by a master clock signal. In Section

2.2.1, we discussed the fact that the delay in the slowest block of circuitry was the

determining factor in how fast the system, governed by the system clock, could be

run. We also made reference in Section 2.2.3 to the criticality of balancing pipeline

stage delays so as to allow the master clock governing the pipeline to run at the

maximum rate .

A different design philosophy aims to eliminate the need for an all-governing

system clock, which in turn can reduce the impact of delays in individual stages

on the overall system speed. This approach, called "asynchronous systems", studies

many different forms of systems that do without a global clock signal.

One form , referred to as "wave pipelining" [20], relies on carefully balanced signal

transmission paths to enable the sending through of data in waves; careful attention

to design is needed to ensure that the results from one wave are distinguishable from

those in preceding or following waves.

Another approach to asynchronous systems seeks· to capture many of the advan

tages of avoiding a global system clock, while reducing the sensitivity to delay tuning

characteristic of wave pipelining circuits. This is referred to as Globally Asynchronous

Locally Synchronous design, or GALS.[5] In a GALS system, each local block runs

independently. One set of data is handled by a block at one time, and no further

data is admitted to the stage until completion has been detected and the output data

latched. A given logic block may complete with one time delay for one set of data,

and complete with a different delay for a different set of data. Statistically, the delay

attributable to the block is therefore the mean of the delays over a potentially wide

range of data input sets, instead of the maximum of those delays over all possible

input sets, as would be the case for a globally clocked design.

75

In Section 2.2.1 we mentioned that increased power consumption is the cost of

running a circuit as fast as possible, a~d explained that power is consumed by tran

sitions from one logic state to another. Self-clocked schemes such as GALS provide

one way to reduce power consumption. An independent stage - not governed by a

global clock - will consume power only when being used. A segment of circuitry not

needed will never operate, and will therefore not contribute to power consumption.[5]

Binary Plus logic clearly has the potential to contribute to a completion-signaling

scheme. Provided intermediate gate outputs within a combinational block can be

initialized to a ¢> state before applying input values to the block, a transition to valid

levels at the output of the block can be detected and indicate completion. Centered

Binary Plus logic , we shall see, has these necessary characteristics as a byproduct of

its design.

5.2.2 Implications for input set sensitivity

In an asynchronous system, a logic block no longer must be given adequate time,

every time, to complete its worst case function. The performance can vary with

input data; as soon as a function is complete, the output data can be latched and

the functional logic block can be given its next set of input.

This latter characteristic has more significant implications for design than might

first be thought. For example, the synchronous nature of most systems has resulted

in much effort being expended in creation of designs that have good worst case

performance, versus good or at least adequate mean performance.

Consider the "lowly" ripple-carry adder shown in Figure 5.2. This adder is rarely

used in synchronous designs because of its very poor worst-case performance.

The worst case gate delay for such an adder, using a typical full adoer design, is

given by:

Delay = 3 + n · 2

where n is the operand size in bits. For a 16-bit adder, the worst-case gate delay is

35. This occurs when a carry generated in the low-order bit full adder is propagated

76

0 •••

SUM, SU~ SU~

Figure 5.2: Ripple-Carry Adder

SU~

Final
Carry Out

through the entire series of full adders. In a synchronous system in which this adder

design was used, the synchronizing clock signal would have to allow adequate time

for this worst-case carry propagation to occur.

In an asynchronous system, in contrast , the mean gate delay is a better measure

of an adder design's efficiency. Using a 16-bit adder as an illustrative example, there

are 216 possible configurations of input bits for each operand, leading to a total of 232

possible "problems", or input sets, that can be presented to such an adder. For each

of these input sets, one can readily see that the total gate delay - the time before all

outputs will have "settled" to their final, valid values - can be computed from the

above formula, substituting for n the maximum number of consecutive carries (the

largest "carry chain") encountered in performing that addition.

Simulating the ripple-carry adder over the 232 possible input sets yields the results

shown in Table 5.1.

The mean gate delay can be computed to be approximately 13.27, or roughly 38%

of the worst-case delay. There may be situations in which the space advantage of a

simple adder design like the ripple-carry, combined with a mean gate delay of 13.25

(and a median gate delay of just over 11), is enough to make its inclusion in a design

warranted. If there are additional constraints known to the designer that might

further reduce mean delay (for example, knowledge that the Carry-in input is always

zero), the simple design may be even more attractive. In any event, this example

points to the need to emphasize designs of all kinds with good mean performance

for use in asynchronous systems, a significant shift in philosophy.

77

[Maximum Carries II Delay (Gates) I No. of Cases I 3 of Total II
0 3 43,046,721 1.03
1 5 196,197,901 4.63
2 7 472,945,947 11.03
3 9 671 ,448,213 15.63
4 11 695,429,010 16.23
5 13 603,021,996 14.03
6 15 4 73,355,009 11.03
7 17 351,502,659 8.23
8 19 250,962,624 5.83
9 21 174,890,016 4.13

10 23 121,247,280 2.83
11 25 83,613,384 1.93
12 27 57,395,628 1.33
13 29 39,326,634 0.93
14 31 27,103,491 0.63
15 33 19,131 ,876 0.43
16 35 14,348,901 0.33

Table 5.1: Ripple-Carry Adder Performance Summary

The ripple-carry adder was used as an example for two reasons. Firstly, the

significant difference between it 's mean and worst-case performances highlights the

paradigm shift in design for asynchronous versus synchronous systems. Secondly, a

small (4-bit) ripple-carry adder has been implemented on the fabricated proof-of

concept circuit.

5.2.3 Globally asynchronous locally synchronous systems

The term asynchronous systems covers many concepts, grouped together under the

common characteristic of not requiring a global clock signal. One such concept,

wavepipelining, can be described as locally asynchronous. Lam and Brayton, in their

1994 book Timed Boolean Functions[20], succinctly describe both the advantage and

the complications of wavepipelining:

78

" in wavepipelining mode, the circuit .. . will be clocked at a period less

than the maximum topological delay (or true delay) of a stage; thus a

data wave is pumped into a stage before the previous wave reaches the

registers at the end of the stage. So wavepipelining circuits operate at

higher speeds than conventional circuits, sometimes orders of magnitude

higher. Since the clock period is shorter than the delay of a circuit, data

from neighboring clock cycles co-exist in the circuit simultaneously, and

they can interact to cause the circuit to compute incorrectly. For instance,

if a long path and a short path converge at a gate and the clock frequency

is fast enough, then the present data on the short path can arrive at

the gate earlier than the previous data on the long path, resulting in

an invalid computation. Hence wavepipelining circuits involve complex

signal interactions in the temporal domain and their proper operations

require precise timing analysis ."

A type of asynchronous system that removes the need for careful timing control

in the combinational logic block, while maintaining the advantages of asynchronous

systems on a global scale, comes under the general classification of Globally Asyn

chronous Locally Synchronous (GALS) systems.[5] To develop this type of system

from more familiar constructs, let us modify the pipeline shown in Figure 2.16 to

explicitly show the interstage "hold and forward" la.tches that must be a part of any

pipeline. You can see in Figure 5.3 that the global clock signal actually controls

these latches, each of which receives data from a previous pipeline stage and releases

it into the next.

IN Circuit
1a

Circuit
1b

Circuit
1c

Figure 5.3: Three-Stage Pipeline

OUT

To eliminate the global clock in a GALS pipeline, we make each pipeline stage

and following latch responsible for recognizing completion of its task, latching the

79

valid results, and sending back to the previous latch a signal indicating that the next

input set can be released into the newly available stage. This modified form of the

pipeline is illustrated in Figure 5.4.

IN
Circuit

1a
Circuit

1b
Circuit

1c

Figure 5.4: GALS Three-Stage Pipeline

OUT

Each stage now takes only the amount of time required to accomplish its task

with the specific input set presented to it - it need not wait for a global clock signal

to cycle.

While one might at first conclude that the overall pipeline speed is still limited

by the delay of the slowest stage, we must bear in mind that that delay may be

long for some input sets, and short for others. We saw in Table 5.1 that a stage

composed of a 16-bit ripple carry adder could vary in delay from three gate delays

to thirty-five, depending on the input set. If we wished to make the overall pipeline

less sensitive to potentially long data-dependent delays in a pipeline stage, we could

provide for storage of multiple results in each latch , which would tend to "average

out" the delay of a stage. While this would increase the pipeline latency, it would

tend to also increase its throughput in the presence of varying stage delays.

We could further enhance the pipeline by expanding its width, as in Figure 5.5.

IN

M M M M
u Circuit u Circuit u Circuit u
L L L L

T 1a(1) T 1b(1) T 1c(1) T
p p p p
L 14----------l L ----------l L --------j L
E E E E

L
A
T
c
H

Circuit
1 a(2)

L
A
T
c
H

Circuit
1 b(2)

L
A
T
c
H

Circuit
1 c(2)

Figure 5.5: Expanded GALS Three-Stage Pipeline

80

L
A
T
c
H

OUT

This arrangement , it is seen, would double the capacity of the pipeline. Addition

ally, since the multiple latches would have the ability to release an available result

from, for example, pipeline stage a, into Circuit lb(l) or lb(2), depending on which

was available first , it would further "smooth" the operation of the pipeline, making

it less sensitive to timing "spikes" caused by occasional inputs sets generating large

delays.

5.2.4 Currently used methods for completion detection

Self-timed combinational logic blocks must be able to determine when completion

has been achieved and results are valid. There are several methods in use for doing

this, of which we shall briefly mention a few.

Bounded-delay: not detecting completion

The bounded-delay technique, such as described in [37], does not concern itself with

detecting completion. Instead, it estimates the maximum (worst-case) delay for a

stage, and creates a delay element to provide that much delay before the output

data is latched and new data is admitted into the stage. While it might at first seem

that this approach gives up the benefit of GALS entirely, such is not really the case.

The global clock signal is still eliminated, the prime purpose of GALS constructs.

Additionally, although each pipeline stage now has- a fixed delay, it need not be the

same delay as every other stage. Pipeline latency is reduced (in comparison to an

equivalent synchronous pipeline) but throughput will not necessarily be improved

unless slow stages are duplicated in a manner similar to that shown in Figure 5.5.

The chief disadvantage of this technique is that it does not take advantage of

data dependent delay to improve throughput.[38]

Dual-rail: doing it twice

So-called "dual-rail" techniques, such as proposed in [5], are based on using two

independent nfet networks; input to these networks are both the normal inputs and

inverted inputs, so that one or the other nfet networks conducts. The RDY signal

81

(completion) for a stage goes to logic 1 when either of the two outputs goes to logic

0 (both were precharged to a logic 1 at the start of the cycle).

While these methods take advantage of data dependent delays, they "carry the

disadvantages of a very high hardware overhead and slow operation" [38].

Activity-sensing: waiting for steady-state

During the operation of a combinational logic block, the application of new data to

the inputs will typically result in various transitions of internal (intermediate result)

signals and the output(s). Grass and Jones [38] proposed a method of detecting

such transitions; after no transitions had occurred for a specified period of time,

completion could be assumed.

Aside from the obvious disadvantage of completion not being signalled until a

preset delay period had passed since the last signal transition, the case in which

no signal transition takes place also must be addressed; such a circumstance could

occur in many ways, but would at least occur when two consecutive input sets were

identical. Grass and Jones propose a "minimum delay generator (MDG)" which

would signal completion when no transitions at all occurred.[38]

5.2.5 Interstage requirements

In Section 5.2.3 we mentioned the need for "store and forward" latches to receive

the results from one stage and, when the following stage becomes available, to apply

those results as input to the next stage.

These latches, as has been suggested, can be simple or complex. But at the least ,

they must be able to:

• Latch the results, possibly on the leading edge of the RDY (completion) signal.

• Initiate any required precharge phase for the combinational logic block from

which the results have just been latched.

• Signal the preceeding latch when a new input data set may be released into

the stage.

82

• Release the latched data to the next combinational logic block when the fol

lowing latch signals that it is permissible to do so.

The design of these interstage latches is not a focus of this work. However , it is

required that completion-detecting components of the designs to be covered in the

next section be able to fulfill the interfacing needs of such latches. These requirements

are:

• A completion signal must be supplied to the receiving (sink) latch. All outputs

from the combinational logic block must be valid and remain valid while this

signalling is transitioning from logic 0 to logic 1.

• Any precharge required for completion detection or result determination must

be able to be controlled by a signal from the sink latch or as a natural conse

quence of the results being latched. This process should also reset the comple

tion signal to logic 0.

• Once the precharge has been accomplished, the completion signal must not

transition to logic 1 until a new set of data inputs has been presented to the

circuit by the input (source) latch, and valid results obtained.

5.3 Centered Binary Plus logic

We shall now proceed to adapt the Binary Plus concept to self-timed circuitry. In

doing so, we shall combine many concepts covered previously.

In Section 3.3.1 , we saw that the output from a Binary Plus gate will take on a

valid logic level only when critical inputs have become valid. As, depending on the

logic function of the gate, not all inputs are, or remain, critical, Binary Plus logic can

be said to take advantage of data dependencies to improve performance. To do this ,

we must ensure that all inputs and outputs - as well as internal signals (intermediate

results) - are given an initial value of Vh.

83

5.3.1 Precharge is to Vh

To do this , we borrow a technique from dynamic logic, and precharge all results and

intermediate values to Vh. It is from this precharging to the center of the Vss ==?- Vdd

range that we obtain our name for this subset of Binary Plus logic: Centered Binary

Plus logic.

Two obvious approaches present themselves for this precharging process. One is

to provide weak pfet and nfet transistors to accomplish this precharging. Modifying

the Binary Plus OR gate shown in Figure 4. 7 yields the circuit shown in Figure 5.6.

This approach has some undesirable characteristics, however:

• During the precharge part of the cycle, there is a current path from Vdd to V55 ,

and therefore power will be used.

• To minimize the power use during precharge, the precharge transistors will

have to be made very weak. This will slow the precharge process, impacting

the speed of the circuit .

• Due to the variance between transistors and fabrication parameters we have

discussed in Chapter 2, the strengths of the pf et and nfet precharge transistors

may not be adequately close to equal to assure a precharge value very close to

Vh.

In the interest of eliminating the above problems, we introduce a single, additional

supply to the circuit , carrying Vh. This modifies the circuit of Figure 5.6 to that

shown in Figure 5. 7.

Note that a pass switch is necessary, as the output line may have to be either

"pulled up" from logic 0 to Vh or "pulled down" from logic 1 to Vh.

The advantages of this circuit over the use of weak precharge transistors are:

• No path is created from Vdd to Vss · Those supplies are no longer involved in

the precharge process.

84

XH (Weak)

A
XL ._,.__.__--++----+-----4-----A+B

~-+----------l----'

XH

B (Weak)

XL

Precharge ---------------+--'-----

Precharge _____________ ____.__ ___ _

Figure 5.6: Weak Transistor Precharge

• The pass switch need not be made purposely "weak". Charging of the output

directly from a vh supply should be fast, minimizing the time spent in that

part of the cycle.

• Any variance between transistors in the pass switch will not affect the final

voltage level held by the output line at the end of the precharge process.

Must have both pfet and nfet complementary logic

In the dynamic logic discussed in Section 5.1, the pf et (or nfet) network was elim

inated, and a precharge device used in its stead. Due to the fact that Centered

Binary Plus logic precharges to Vh , we will still need both a pfet network (to pull

the output up to logic 1) and an nfet network (to pull the output down to logic

0). This additional space requirement will certainly be a consideration in deciding

whether to use Centered Binary Plus logic in an asynchronous design , but there are

compensations, as we shall now discuss .

85

XH

A
XL

XH

B
XL

Precharge --------------~--+-+--

Precharge -----------------+-~

vh

Figure 5. 7: Precharge Using Vh Supply

5.3.2 Inherent speed enhancement

In dynamic logic like that illustrated in Figure 5 .1, the precharge phase sets result

and intermediate lines to one end of the logic range: Vid (or Vss). During the evaluate

phase of the cycle, time is required for the nfet (or pf et) network, if it conducts, to

pull the output or intermediate result well past Vh into the other valid logic state, a

voltage "distance" of, perhaps, 66% of Vid - Vss.

In Centered Binary Plus logic, the precharge is only to Vh. When the "evaluate"

phase of the local synchronous cycle starts - when inputs are made available to the

stage - as inputs are applied and intermediate results filter though the combinational

logic block, the logic level on those intermediate and end result lines have to be pulled

up or down only through the boundary between our undefined zone and one of the

two valid logic zones, a "distance" of 16.5% of Vdd - Vss · This can happen much more

quickly than the "full-swing" dynamic logic circuit. We can say that Centered Binary

Plus logic should enjoy an inherent speed advantage for t his reason. Of course, this

conclusion can be impacted by the specific implementation of Centered Binary Plus

logic, including such considerations as the capacitance of the required inverter pairs,

if that specific implementation is taken.

86

5.3.3 Elimination of races

In Section 5.1, reference was made to the vulnerability of dynamic logic in general

to race conditions (hazards). It is in this area that Centered Binary Plus logic shows

a significant advantage. As no changes have been made to the basic Binary Plus

concept that would invalidate the Theorems in Chapter 3, we can say that Centered

Binary Plus logic is immune from races, both within a single gate and within an

entire combinational stage. This eliminates the need for careful attention to timing

dependencies needed in dynamic logic design.

Intuitively, as no Centered Binary Plus logic gate can display any valid logic

level on its output until the inputs have reached a necessary and sufficient condition

for that output (which implies that the later arrival of a previously unknown input

cannot change the output), and all such inputs shall be, in turn, zoned binary inputs

conditioned by previous Centered Binary Plus logic or Binary Plus compatible input

sources, it is clear that races cannot occur in properly functioning Centered Binary

Plus logic stages.

5.3.4 Detection of invalid inputs and defects

This chapter has emphasized the use of the characteristics of zoned binary to asyn

chronous systems, pointing out how those characteristics can provide for a powerful

completion-detection capability. But the designer is free to implement additional

enhancements taking advantage of the other uses of our detection capability.

For example, self-timed systems could be equipped with an auxiliary timer to

detect when an excessive amount of time has elapsed with no completion being

detected. Such an "alarm" could signal a hard or soft defect in the circuitry, or, if it

were "designed in" , that a signal that is in the unknown zone has becone critical to

the computation being done by the circuit.

Note, however, that Centered Binary Plus logic is a dynamic logic, despite the

presence of both pfet and nfet networks . The precharge (to Vh) can dissipate over

time, so the detection of non-completing input or circuit conditions must be sensitive

to these timing considerations. As the time necessary for inputs to be processed

87

through a Centered Binary Plus logic stage should be, under normal conditions, far

less than the dissipation time, timing determination for this purpose should not be

difficult to achieve.

5.3.5 Granularity

Just as a large combinational block in a synchronous system can be broken up into

balanced pipeline stages, Centered Binary Plus logic provides the paradigm for a

designer's choice for breaking up a circuit into self-timed blocks.- A systeP-1. in which

the blocks of combinational logic between latches are small could be referred to

as having fine granularity, whereas an ALU implemented in one logic block would

certainly be said to display coarse granularity.

Much the same tradeoffs exist in the coarse to fine granularity decision as in the

breakup of circuits into pipeline stages in synchronous systems, with some additional

considerations.

• As in synchronous pipelines, making the granularity finer will tend to increase

throughput.

• Space overhead, especially in the form of latches, increases as granularity be

comes finer , just as in synchronous pipelines.

• For Centered Binary Plus logic (and other GALS constructs), finer granularity

allows for easier "widening" of the pipeline for "bottleneck" stages.

• Granularity in Centered Binary Plus logic pipelines can be taken to the single

gate extreme, if advisable from a design standpoint. Each gate contains the

essential capabilities to be a pipeline stage.

We shall henceforth refer to a self-synchronized Centered Binary Plus logic block

as a granule.

88

5.3.6 Control and handshaking

While, as stated earlier, it is not a purpose of this work to look closely at latch and

control design , it is desirable to specify methods by which Centered Binary Plus logic

granules interface with their source and sink latches.

Completion signaling

We have made clear that Centered Binary Plus logic is inherently capable of detecting

a valid output logic ;:,ignal. It is left for us to briefly define how such detection applied

to several outputs might be aggregated into a granule completion signal (CLS).

Let us expand upon the simple ripple carry adder shown in Figure 5.2. We add

ROY detectors and combine their outputs with a binary AND gate, yielding the

circuit in Figure 5.8.

Ai B,

0

SUM,

•••

SU~ SUMa SUM.,

Figure 5.8: Adder with Completion Signal

Final
Carry Out

ALLRDY

Signal ALLRDY meets the requirements of a completion signal. Lines SU M1

through SU Mn and the Final Carry Out would be latched by appropriate circuitry

89

0

on the rising edge of ALLRDY. [39, 40]

Precharge initiation and completion

As the ALLRDY signal will latch the data as it rises , it is also a signal to the sink

latch that the precharge can begin . This would be accomplished through the use of

the Precharge SET input, as shown in Figure 5.9.

A, 8 1 Az 82 A:i 8a

PRECHARGE

'-----+--P_R_EC_H_A_R_G_E---+-~O R

SU~ SU~ SUMa

Precharge
RESET - (from
source latch)

~ 8"

•••

Detecto

Detecto

SUM,,

Precharge SET -
(from sink latch)

Figure 5.9: Adder Including Precharge Cycle

Final
Carry Out

ALLRDY
(to sink
latch)

NON ER DY
(to source

latch)

A second multiple AND is used to aggregate the RD Y signals to provide an

indication to the source latch that precharge is complete and the stage is ready for

90

1 1

another input set. The source latch would then reset the precharge flip-flop and

release the inputs into the stage.

A faster method of cycle control

By internally connecting the ALLRDY output to the Precharge flip-flop SET input,

we allow the precharge to begin immediately upon completion and latching of the

output data. The NONERDY signal can be routed to the Precharge flip-flop RESET

input to initate the evaluate phase as soon as the precharge is complete. However,

we require two more features: the ability for the source latch to prevent an evaluate

until it has valid input data to present to the stage, and an equivalent ability for the

sink latch to prevent an evaluate until there is space in the latch to receive a new

output set.

Figure 5.10 illustrates these connections, as well as enhancement of the adder

with two enable lines: EN B1 for use by the source, or "input", latch, and EN B0 for

use by the sink, or "output", latch. Until both enable inputs are high, the precharge

phase cannot end, and the new inputs cannot be released into the adder. Although

not shown in the figure as drawn, all input lines between the tri-state buffers and

the full adders would also have to be precharged, to prevent charge sharing from

potentially affecting the results at the very start of the evaluate phase.

Note that power-saving is automatic with this scheme. The circuit is held in

precharge phase, using no power, until there is work for it to do.

Satisfaction of requirements

In Section 5.2.5 were listed three requirements for a stage to fulfill the interfacing

needs of interstage latches in a GALS pipeline. Let us now review them in light of

our preceeding development:

• A completion signal must be supplied to the receiving latch. All outputs from

the combinational logic block must be valid and remain valid while this sig

nalling is transitioning from logic 0 to logic 1.

91

0 •••

~--~Rov~--
Detecton------.--,_-t--t-----1

'-----+-P_RE_C_H_A_R_G_E-+ _ _, Q S 1-----+--

PRECHARGE

SU~ SU~ SUM_i EN8i ENB0 SUM.i

Figure 5.10: Adder Including Enable Controls

Final
Carry Out

ALLRDY
(to latch)

NONERDY

Indeed the transitioning of the ALLRDY signal is a clear indication that all

outputs are valid and may be latched. As the precharge phase cannot begin to

be started until the ALLRDY signal becomes 1, latching (on the leading edge)

will be complete before precharge begins.

• Any precharge required for completion detection or result determination must

be able to be controlled by a signal from the receiving latch or as a natural

consequence of the results being latched. This process should also reset the

completion signal to logic 0.

92

If the Precharge flip-flip SET input is generated by the sink (receiving) latch,

this requirment if clearly satisfied. The ALLRDY signal will go to logic 0 as

soon as the first of the results moves out of its valid range due to the precharge

operation.

• Once the precharge has been accomplished, the completion signal must not

transition to logic 1 until a new set of data inputs has been presented to the

circuit , and valid results obtained.

The ALLRDY signal cannot again transition to logic 1 until (a) the precharge

phase is released by both the source and sink latches (this implies that both

a new input set is ready for release into the stage and that there is "room" in

the sink latch for the next result set) and (b) the input set propagates through

the stage and makes all results valid.

It would seem that the requirements have been satisfied. Design of the latch is

left to the implementer.

5.4 Comparison with other GALS self-clocking

methods
,

In Section 5.2.3 were listed other, currently used methods for detecting stage comple

tion in a GALS pipeline stage. We now compare these techniques with the Centered

Binary Plus pipeline stage approach just developed:

Bounded-delay: The Centered Binary Plus pipeline approach takes advantage of

input pattern dependencies in completion time, whereas the bounded-delay

technique[37] is similar to synchronous approaches in that it requires a worst

case delay be built into the pipeline stage timing. The bounded-delay method,

of course, requires significantly less hardware overhead than the Centered Bi

nary Logic method or other methods do.

93

Dual-rail: The dual-rail technique[5], as has been mentioned before, is characterized

by high hardware overhead and slow operation. While a speed comparison is

inappropriate at this time (as no effort has been made to design a detector

optimized for speed), we may fairly say that the Centered Binary Plus technique

will have a significant hardware overhead. However, it has been proven not to

suffer from the sensitivity to races that dynamic techniques like dual-rail have,

so Centered Binary Plus pipeline stages should be more robust.

Activity-sensing The chief advantage of Centered Binary Plus logic over activity

sensing[38] is that there must be a delay built into activity-sensing stages,

over and above the actual completion time. Minimizing such delays makes it

necessary to do detailed timing analyses of such stages to ensure that the delay

is not excessive.

No claim is made that Centered Binary Plus logic is the best approach to use

in all GALS pipelines. However, it does possess its own significant advantages with

regard to currently used techniques - factors a designer will take into account in

determining the best technique to use in a specific implementation.

5.5 Fabricated
.

exper1-4-bit ripple-carry adder

ment

There are typically two primary approaches in designing a complex combinational

circuit to perform a given function. One is to use complex gates to implement the

function; this method reduces the gate count , but increases design complexity and

time and tends to decrease modularity.

The other approach is to use standard circuits for logic functions, even at the

expense of additional space. This maximizes regularity, and not only can lead to a

reduction in the time to create and simulate a design, but can also lead to being able

to judge the design correct by construction.[14]

Although the use of complex gates can lead to significant space savings in Binary

94

Plus and Centered Binary Plus logic (due to the reduction in the number of dual

inverter based "zone decoders"), it was decided to implement the proof-of-concept

asynchronous circuit by use of standard Centered Binary Plus logic AND gates, OR

gates and inverters.

5.5.l Ripple-carry adder

The circuit selected to demonstrate the use to asynchronous design of the concepts

of Centered Binary Plus logic is the ripple-carry adder. This adder should vary in

completion time with differing input data patterns. It was not an aim of this work

to produce a fast or space-efficient implementation.

B

>--.---~SUM

ROY

ROY

Figure 5.11: Centered Binary Plus logic Full Adder

The gate-level diagram of the full adder circuit used in this design is shown in

Figure 5.11. We introduce two conventions at this point.

Centered Binary Plus logic gates are denoted in the above diagram by the use of

standard binary logic gate symbols, superimposed by a "+". This implies:

• the existence of zone decoding dual inverters on all inputs ,

• standard Binary Plus gate design - that is, the routing of the "high transi

tion voltage inverter" output to the pfet network and the routing of the "low

transition voltage inverter" output to the nfet network, and

• inclusion of components necessary to precharge the output of the gate to Vh.

95

A standard symbol is shown to represent a full "Ready detector", with its output

of both "RDY", indicating that the logic level being measured is in one of the valid

binary ranges , and its inverse, RDY, indicating that the logic level being measured

is in the intermediate, ¢ range. The presence of both outputs is necessary for proper

functioning of the precharge/evaluate cycle, as discussed in Section 5.3.6 and as we

shall see shortly.

The organization of the adder itself is very similar to that shown in Figure 5.10.

As modified to use the Centered Binary Plus adder shown above, its final form

appears in Figure 5.12.

Precharge control

The prime method for control of the precharge/evaluate cycle in this proof-of-concept

circuit is via the PSET and PRESET inputs:

• A short pulse on the PSET input will set the precharge flip-flop, result

ing in the internal PRECHARGE line going high and its complement, the

P RECH ARCE line going low. This turns on the pass switches in the Cen

tered Binary Plus logic gates to charge all intermediate results and gate outputs

to Vh . It also isolates the adder inputs from the logic.

• A short pulse on the PRESET input will reset the precharge flip-flop, re

sulting in the internal PRECHARGE line going low and its complement, the

P RECH ARCE line going high. This turns off the pass switches in the Cen

tered Binary Plus logic gates, isolating the intermediate result lines and gate

outputs from the Vh supply. It also has the effect of turning on the pass switches

that gate the adder inputs to the logic.

Were this circuit to be used as part of a Centered Binary Plus asynchronous

pipeline, the ALL output would be used to latch the data from the adder into the

sink latch. The sink latch would then initiate the precharge phase by sending a pulse

to the PSET input. Once NONE had gone high, indicating that the precharge was

96

82 ~ 83

Full Full Full Full
Adder Adder Adder Adder C3 C3out

ROY ROY ROY ROY
ROY ROY ROY ROY

L---t---P_RE_C_H_A_R_G_E-t-----i Q

'-------+-P_R_E_C_H_AR_G_E-+---iQ R

SUM.i SUM, SU~ SU~ SUM3RDY

Figure 5.12: Centered Binary Plus 4-Bit Ripple Carry Adder

complete, the source latch , if data was available, would initiate the evaluate cycle by

sending a pulse to the PRESET input .

This is an appropriate point to mention that a fully correct implementation would

include in the creation of the NONE signal from not only the RDY signals for each

output , but also from the equivalent for each of the intermediate results within each

full adder. To avoid an AND gate of impractical size, this would most likely be

implemented on a modular basis: the full adder circuit diagram would be modified

as shown in Figure 5 .13.

97

A SUM

B ROY

ROY
cout

NONE;,.A

Figure 5.13: Centered Binary Plus logic Full Adder with NON Efa

Note that the need to ensure that all intermediate results have returned to ¢

before the precharge phase can terminate leads to significant expansion of the circuit .

This problem could be largely eliminated by the u;e of complex gates. In reality,

however, the designer is likely to find that going to the extreme shown in Figure 5.13

is not necessary in the practical sense, for the following reasons:

• The load and other capacitance on the output lines (SUMs and Carry-Out)

will in most cases be greater than that on the intermediate result lines, making

it highly likely that intermediate result lines will have reached ¢ during the

precharge phase before the outputs do.

• It takes additional time for the NONE signal to be generated once all lines

have gone not ready, and more time for the reset on the precharge fiip-fiop to

take effect. This provides a margin of error for intermediate values to become

98

adequately centered.

• Considering the extra time that will be used by the AND tree in Figure 5.13,

the designer could just as easily build a short delay into the initiation of the

evaluate cycle without adversely affecting comparative timing, allowing even

more time for intermediate values to reach </> while reducing greatly the space

requirements of the full adder circuits.

5.5.2 Testing strategy

Following the difficulty encountered and discussed in Section 4.5.2 regarding getting

predicted results from elementary Centered Binary Plus gates in cases when one or

more inputs were </> , it was decided to run static tests on the adder, in addition to

those planned for dynamic operation.

The prime purpose of this experiment, however , was to demonstrate the varying

completion times for the adder over a range of input sets. A short pulse was generated

using a function generator; this was used to set the precharge flip flop, and was also

used as a trigger to a pulse generator, which generated another short pulse delayed

from the first. This second pulse was used to reset the precharge flip-flop. This second

pulse was also used to trigger a dual trace oscilloscope, on which the output of the

ALL signal was also displayed. In this manner , the delay between the beginning of

the evaluate phase (the start of the flip-flop reset signal) and the completion signal

(the ALL output) could be measured. The duration of the cycle could thus be

measured and recorded. The input set could be modified at any time, and a new

duration measured and recorded.

As it was desired to obtain some a priori prediction of adder performance relative

to input set, in order to compare actual performance with predicted to confirm

intended operation, a gate-level simulator was constructed. As it was desired only to

get a rough prediction of performance, this software assumed that the delay for each

gate-type construct in the circuit was equal. When run on all 512 possible input

problems, the following gate delay predictions shown in Table 5.2 were computed.

The mean gate delay predicted is 9.3 gates.

99

II Gate Delay (gates) II Frequency I % II
5 1 « 1%
6 7 1%
7 56 11%
8 124 24%
9 132 26%
10 72 14%
11 56 11%
12 40 8%
13 24 5%

Table 5.2: Results of Gate-Level Simulation of 4-bit Ripple Carry Adder

5.5.3 Testing results

Static testing

Several input patterns were applied to the adder in a static mode. As was the case

with the elementary circuit testing discussed in Section 4.5.2, results were correct

when all inputs (or a critical subset of inputs) were Valid; when these conditions

were not met, the result came down on "one side or the other". Again, this is likely

due to output buffer conversion of</> to 0 or 1, although the time required for static

measurements would allow for dissipation of the Vh precharge anyway.

Dynamic testing

Randomly selected input bit patterns were applied to the adder and the completion

delay measured as described above. Table 5.3 lists the results , trial by trial.

From Table 5.3 it is difficult to see by inspection any more than a rough rela

tionship between the input set and the completion time. It is clear, however, that

the input set does affect the completion time. To determine if the completion times

measured were, in fact, related to the input-set related performance of the adder

as predicted by the gate-level simulator, a correlation was run between the number

of gate delays as determined by the gate-level simulator and the actual measured

completion time.

100

A correlation coefficient of 0.5832 was reported (a reasonably positive correlation).

It was reported to be statistically significant at the p=.000 level - highly significant. It

is therefore highly likely that the variation in completion time is due to the predicted

operation of the adder circuit and that, therefore, the adder is operating as intended.

While the variation in completion time (from a tested minimum of 76.1 ns. to

a maximum of 106.0 ns., only 39% greater) is not great, it is likely that there are

constant-time factors that are having the effect of minimizing the variation. If we

assume that the variation in actual completion time (excluding constant factors such

as precharge time and output buffer delay) is roughly proportional to the variation

in gate delays as predicted by the gate-level simulator, then we can estimate the

constant time C as follows . Since t, the total time measured for completion, can be

roughly given as:

, where C is the constant time due to factors not related to the input set pattern, dp

is the number of gate delays as predicted by the gate-level simulator and d9 is the

delay in nanoseconds per gate delay, then we can use our extreme measurements to

set up a simple set of simultaneous equations in two variables:

106.0 = c + 12. dg

76.1=c+5. dg

Solving gives us:

d9 = 4.271ns.

and

C = 54.7ns.

Based on a predicted gate delay range of from 5 to 13 gate delays, we can estimate

that our input set dependent delay - ignoring constant-time causes - will range from

approximately 21 to 56 ns. , a variation of 166%.

101

,I I

It is likely that runnmg the stage isolated from output buffer influences will

significantly lessen the constant time factor.

5.6 Summary

In this chapter we developed the design of Centered Binary Plus logic gates and

stages. We saw that Centered Binary Plus logic has several advantages, and is

fully capable of interfacing with latches as part of a Globally Asynchronous Locally

Synchronous (GALS) pipeline. The technique proposed has significant advantages

over each of the examined alternative methods of self-clocking.

We examined a 4-bit ripple-carry adder implemented as part of the proof-of

concept circuit, and presented test results showing input set related variations in

completion time which were statistically shown to correlate very significantly with

the predicted behavior as shown by a gate level simulator designed for the circuit.

102

[A
0000
0000
0000
0001
0001
0010
0010
0011
0100
0101
0101
0110
0110
0111
0111
1000
1000
1001
1010
1010
1011
1100
1101
1101
1110
1111
0000
0000
0000

B I G in II Out I Time(ns) Ill A B I Gin II Out j Time(ns) II
0000 0 0 0000 88.5 0001 0010 1 0 0100 89.3
0111 0 0 0111 98.5 0001 0011 1 0 0101 86.2
1000 0 0 1000 96.2 0001 1001 1 0 1011 94.7
0010 0 0 0011 87.8 0001 1011 1 0 1101 91.5
1110 0 0 1111 105.6 0001 1110 1 1 0000 100.7
0010 0 0 0100 88.3 0010 0101 1 0 1000 98.8
1110 0 1 0000 100.1 0011 0000 1 0 0100 88.1
1010 0 0 1101 95 .5 0011 1100 1 1 0000 101.1
0101 0 0 1001 91.0 0100 1000 1 0 1101 101.4
0001 0 0 0110 94.2 0101 0100 1 0 1010 90.5
1101 0 1 0010 88.1 0101 1111 1 1 0101 86.3
0010 0 0 1000 91.3 0110 1011 1 1 0010 92 .6
1001 0 0 1111 106.0 0111 0111 1 0 1111 87.2
0100 0 0 1011 89.7 1000 0011 1 0 1100 94.5
1111 0 1 0110 88 .3 1000 1110 1 1 0111 96.7
0000 0 0 1000 96.7 1001 1010 1 1 0100 84.5
1100 0 1 0100 92 .3 1011 0101 1 1 0000 101.8
1000 0 1 0001 84.8 1010 0110 1 1 0001 91.9
0011 0 0 1101 95 .1 1011 0010 1 0 1110 94.4
1111 0 1 1001 86 .6 1011 1101 1 1 1001 88.5
1011 0 1 0110 84.2 1100 1001 1 1 0110 91.1
0111 0 1 0011 88.8 1101 0101 1 1 0011 90.0
0010 0 0 1111 105.4 1110 0001 1 1 0000 100.2
1110 0 1 1011 82.5 1110 0110 1 1 0101 86.3
1010 0 1 1000 86.4 1110 1100 1 1 1011 83.7
0110 0 1 0101 87.9 1110 1110 1 1 1101 78.7
0001 1 0 0010 88.3 1111 0000 1 1 0000 99.4
1101 1 0 1110 101.9 1111 1000 1 1 1000 90.7
1111 1 1 0000 100.4 1111 1111 1 1 1111 76.1

Table 5.3: Timings of Adder Cycle Time Across Input Patterns

103

I
I

Chapter 6

Communications applications

Data communications is an increasingly important part of technology. Rarely is it

understood, however , how pervasive the concept really is. For communication takes

place over not only large but also very small distances. Data must be communicated

from one part of an integrated circuit to another, or between integrated circuits in a

Multi-Chip Module (MCM) or on a circuit board (for example, from main memory

to and from the CPU). One of the two primary purposes of the backplane in systems

and other digital devices is to communicate data among the circuit boards in the

system.

For our purposes we will consider communication as the moving of digital data

(whether by digital or analog communications media) from one location to another,

placing no upper or lower bounds on the distance over which it is moved. We shall

see that the information that can be derived by use of the detector of Figure 4.2 can

be used to good advantage in enhancing the reliability of communications.

Reliability in communications on all scales is generally addressed under the gen

eral heading of "error-control coding" . We will not propose an alternative to error

control coding, but will instead show how the use of the information provided by

the detection techniques covered in Chapter 4 can be used in conjunction with error

control coding strategies covered in the literature.[7, 6, 8, 9, 10]

104

6.1 Hardware and error detection/correction

Much attention was paid in Chapter 2 of this work to transient and static problems

that can result in undefined logic levels occurring during the transmission of data

from one place in a system to another. While static errors would presumably be

detected by an adequate post-manufacturing testing process, transient errors can

occur at any time. There are also cases in which new static errors can appear; for

example, a cable can be broken, a connector detached or aging of a circuit can cause

bus line or device failure.

Many schemes address the detection and correction of such errors.[6] The simplest

of these schemes remains the single parity bit found in some semiconductor memories

and common in communication designs. It is axiomatic that a single parity bit is

limited to detecting 1-bit errors. Errors involving an even number of bits cannot,

by definition, be detected by such a scheme. Additionally, the scheme is limited to

detection only - an error indication implies that an odd number of bits (usually one)

are in error , but cannot identify those bits. Schemes involving a larger number of

check bits are generally able to detect a larger number of errors than a 1-bit scheme,

and may also be able to point at the bit in error. In a binary system, correction

requires merely being able to identify the offending bit; with only two possible values,

correction is comparatively trivial.

Now consider what effect an undefined logic value might have on a typical circuit

based on a 1-bit parity design. As we have discussed in Section 2.2.2, circuitry is

going to resolve an undefined logic level into a valid 0 or 1. If the value happens to

be the correct one, then no parity error will be detected and the user of the results

- human or system - will never be made aware of the possible problem. If, on the

other hand, the resolved value is the incorrect one, a parity error will be signaled

and the received word will be considered incorrect.

In the above example, we have an excellent illustration of the consequences of

discarding information. In one result, the value passed on is presumably correct, but

lost was a possible indication that a problem _exists with the transmission link. The

alternate result indicates the existence of a problem, but the location (bit-wise) of

105

1 I

I

the problem is lost.

6.2 Error-control coding

In their book, Error Control Coding for Computer Systems, T. R. N. Rao and E.

Fujiwara begin Chapter 1 thusly:

"In computer systems, large amounts of data move between various

subsystems. For instance, the data traffic between the CPU and main

memory may be of the order of 100 million bits every second. Even

though the systems are designed for very high reliability, there are bound

to be a few errors in these communications caused by such things as atmo

spherics, electrical noise, component or device malfunctions, or sometimes

design or program faults. It is important that the system detect these

errors as and when they occur. Some remedial action such as error cor

rection or error recovery must take place before a more serious situation

like a system crash arises." [6]

Rao and Fujiwara's text provides excellent coverage of the topic of error-control

coding, and the reader is referred to that work for an in-depth understanding, includ

ing analyses of the probability of various errors in different channel models. We will

cover the topic of error-control coding in only enough detail to provide an adequate

background for the adaptations proposed in this chapter.

6.2.1 Channel models and errors

When data is transmitted from one site to another , bits may arrive as transmitted

or may be received as some other value. Depending on the characteristics of the

communications channel , different types of data modification may be possible, with

varying probabilities. An examination of some typical models will lead the way to a

model most appropriate for the contribution described in this chapter.

106

Classical (symmetric) error model

A binary symmetric channel is one in which errors may be of the 0 :::} 1 or 1 :::} 0

variety, with equal probability. Additionally, the errors are bitwise independent - an

error in one bit neither increases nor decreases the probability that any other bit will

be in error. [6]

0 0
"O
CD "O
E CD

E >
Cl)

·a;
c ()

~ CD ,_ a:
I-

1 1

Figure 6.1: Symmetric Error Model

Figure 6.1 , adapted from Rao and Fujiwara[6], summarizes the behavior of the

binary symmetric channel.

Asymmetric error model

For binary symmetric channels , we mentioned that the probability of a 0 :::} 1 error

was equal to that of a 1 :::} 0 error. This is the constraint that is relaxed to form the

binary asymmetric channel.

0 0 0 0
"O /

"O
Q) / "O CD "O :::: /~ . CD :::: Little or CD .E _;::: .E

"-.. snoerror
>

Cl) Little or CD Cl)
·a;

c / no error
() c ()

~ CD CD / a: ~ a: I- /
,_

~1
I-

/
1' ~ 1 1

Figure 6.2: Ideal Asymmetric Error Model

107

In an ideal asymmetric channel, as shown in Figure 6.2, the probability of one of

the error transitions is virtually zero.

Unidirectional error model

The unidirectional model is a "word-by-word" special case of the asymmetric error

model. Rao and Fujiwara define it as follows: "Both 1-errors and 0-errors can occur

in the received words, but in any particular received word, all errors shall be of one

type; these errors are characterized as unidirectional errors." [6]

Binary erasure error model

Rao and Fujiwara define a binary erasure model. In such a channel, 0 :::::} 1 and 1 :::::} 0

do not occur, but there may be erasures - a change of a 0 or 1 to a non-existent value.

This channel is depicted in Figure 6.3.

Figure 6.3: Binary Erasure Error Model

This diagram should be of particular interest to us, as it implies the existence

of a third state - neither 0 nor 1. In actuality, such a non-value state need not be

signaled by a value close to Vh; any other method of determining that a bit is not

known (such as a plane-wise parity error in a memory) may be used.[6, 7]

General analog model

Our discussion in Chapter 2 regarding the effects of using what is inevitably analog

circuitry to process digital values leads us to a more general error model of the

communications channel.

108

As the state of a practical binary circuit or channel driven by a circuit is not a

dichotomy of values , but a continuum , we can depict the change in a transmitted

data bit over the communications process in a diagram similar to those used in the

previous digital channel examples (although the characterization of Figure 6.3 as a

truly digital channel is open to question). This is shown in Figure 6.4.

V ss(O) ~----,r---~-----,...----i
"'O
Q)

E
E
CJ')
c
~
I-

"'O
Q)
>

"Q)
(.)
Q)

a:

v di1) L..---L---1--~----r Vdi1)

Figure 6.4: General Channel

It can be seen that the general case can be simplified into any of the previously

shown channel error models, dependent on the distribution of error frequencies along

each of the arcs shown in Figure 6.4.

Symmetric with erasures model

We can take the general model shown in Figure 6.4 and "digitize" it. If we use a

typical division point of Vh, then the general model simplifies to that of Figure 6.1.

If, however, we also wish to detect "erasures", which we will now define as bits

that fall within our undefined zone, we have the diagram shown in Figure 6.5.

Now adopting our three-state notation of Chapter 3, we can say that an infor

mation bit that is transmitted as a 0 may be received correctly as a 0, or incorrectly

as a 1 or a ¢. Symmetrically, an information bit that is transmitted as a 1 may be

received correctly as a 1, or incorrectly as a 0 or a ¢ . The probabilities of any of

these outcomes is dependent on the specific characteristics of the communications

channel; their determination is outside the scope of this work.

109

"D
Q)

.E
E
(/)

c
~
I-

Figure 6.5: Symmetric Channel with Erasures

A caution about transmitting zoned binary

Heretofore we have used a working assumption, first made in Section 2.1, that the

boundaries between logic 0 and </> and that between </> and logic 1 are placed at 1/3

Vdd and 2/3 Vid respectively. The implementer must be cautioned against assuming

that this is an always appropriate choice. Let us consider the transmission of a zoned

binary bit from one location to another.

0 0
"D
Q) "D
E Q)

E >
(/) .0 .0 ·a;
c (.)

~
Q)

..... a:
I-

1 1

Figure 6.6: Transmission of </>

In Figure 6.6, only the "digitized" paths of the </> state are shown; the error

transitions shown in Figure 6.5 are still present , but have been orr.itted from the

figure for clarity.

We see that we must admit for consistency the possibility of </> ==;. 1 and </> =? 0

errors.

Returning to our analog equivalence, we realize that for a 0 =? </> or a 1 ==;. </>

transition, there must be an absolute change in analog value of 1/3 Vid , using our

boundary divisions as defined in Section 2.1 and shown as dotted lines in Figure 6.6.

110

But for a </> (Vh) to 1 or 0 transition, there need be an absolute change in analog

value of only 1/ 6 Vdd· Such errors may be even more dangerous, as they will be, by

definition, undetectable except by error-coding techniques.

The designer must consider this problem, especially when contemplating the

transmission of encoded zoned binary data over long or noisy communications chan

nels, and consider moving the boundaries for such exceptions to, perhaps, 1/4 Vdd

and 3/4 Vid, thereby making the analog "distance" between any valid state and the

adjoining state(s) equal to 1I4 vdd.

6.2.2 Distance

All error-control codes are characterized by the fact that not all of the words that

can be formed by different combinations of bits are valid. Those that are, are termed

codewords, while those that are not are indications of error.

The Hamming distance between two equal-sized strings of binary bits can be

computed by counting the number of bit positions in which the values of those two

strings differ. The distance (dmin) of a code is the minimum Hamming distance

between all pairs of codewords.[6]

The distan ce of a code serves as an indicator of the theoretical ability of the code

to detect and/or correct errors. Three theorems from Rao and Fujiwara's text are

quoted:

"It is necessary and sufficient that the distance (dmin) of a code is at

least d in order to detect any error pattern of weight d - 1 or less."

"A code C can detect and correct all patterns of t or fewer errors if

and only if the code has minimum distance ~ 2t + 1."

"A code can correct any combination of t errors and detect up to d

errors (d ~ t) if and only if the dmin of the code~ t + d + 1."[6]

A distance-2 code, therefore, can detect one-bit errors and correct none. A

distance-3 code can detect up to two-bit errors, or, if error correction was required,

could detect and correct one-bit errors. To detect up to two-bit errors while correct

ing one-bit errors would require a distance-4 code.

111

I I

6.2.3 Simple parity code

A simple parity code is probably the cheapest and easiest error-control coding scheme

in use. It uses one parity bit (or "check" bit) to "protect" any number of data bits.

Intuitively, to generate a parity check bit, we count the number of data bits with

a value of 1, and then set the check bit to ensure that the number of ones (including

the check bit) is always odd (for "odd parity") or even (for "even parity").

It is easy to see why the simple parity code is a distance-2 code. If you take a

valid code word (some number of data bits plus an appropriately computed parity

check bit) , and change one data bit position (from 0 to 1 or from 1 to 0), you must

also change the parity bit . Therefore each codeword differs from any other codeword

by a minimum Hamming distance of 2 bits.

With a dmin of 2, the simple parity code is capable of detecting a single-bit error.

6.2.4 SEC and SEC/DED codes

There are a number of linear codes that provide minimum distances of 3 and 4.

The distance-3 Hamming code can be used as either a DED (double error de

tecting) or a SEC (single error correcting) code. By adding an overall parity bit to

the distance-3 Hamming code, we obtain a distance-4 code, which can be used for

DED and SEC purposes simultaneously. Such a code is referred to as a SEC/DED

code.[6]

In our discussion later in this chapter, we will not be concerned with the construc

tion of these codes and their implementation with encoders and decoders, for which

Rao and Fujiwara can be referred to. We will, however , treat them as functional

units that can be used to detect and/or correct errors on the basis of the received

code alone.

6.3 Error location with zoned binary detector

It is clear that a bit received and identified as being in the uncertain zone by our

detector of Figure 4.1 has at least a strong potential for being in error. So an array

112

of these detectors - one for each bit of a received word - can provide additional

information regarding the location of a possible error that would otherwise be lost.

It is, of course, possible that an error occurs that causes the bit in error to take on

a valid value opposite to what was intended. In this event , our detector would not be

able to identify it. In this case, we would be no better off than without the detectors,

but no worse off either. The error detection circuitry based on error-control coding

would at least detect the error, if not correct it.

But if an error-correcting code scheme is in use , why implement the detector

scheme in addition? Does the additional location information it might provide gain

us anything?

It would seem this is so, according to Rao and Fujiwara:

"Because the positions of the erasures are known, the correction of

erasures in a received word will be simpler than the correction of errors.

Thus, a given code that is used for error correction can be employed more

efficiently to correct erasures." [6]

It should be clear from earlier in this chapter that a received value of</> function

ally indicates an "erasure" - that is , it has changed from a 0 or 1 to neither.

6.3.1 An easy case: the unidirectional channel

Using the known location of erasures in the unidirectional channel described in Sec

tion 6.2.1 provides a clear and easy path toward enhancing communications reliabil

ity. We know by definition that errors in a unidirectional channel word are all of the

same direction: 0 =:::> 1 or 1 =:::> 0. Therefore, the proper binary value of any error is

known, provided only that we can identify its location. As our detector points to the

location(s) of erasures, those locations can simply be set to their proper value. The

enhancement in reliability comes from the fact that this strategy effectively moves

the boundaries between logic 0 and logic 1 to a point 2/3 towards the only error

transition that can be made. More precisely:

113

• When the only possible error direction is 0 ==> 1, any </> should be set to 0,

effectively moving the boundary between logic 0 and logic 1 to 2/3 Vid·

• When the only possible error direction is 1 ==> 0, any </> should be set to 1,

effectively moving the boundary between logic 0 and logic 1 to 1/3 vdd·

The same strategy could be applied to an ideal asymmetric channel, as described

in Section 6.2. l.

6.4 Error correction strategies for ¢ errors

In this section, we shall see how the uncertainty detector can be used to indicate

erasures to schemes suggested by Rao and Fujiwara.[6] We shall also extend these

approaches into a channel model not considered in that text: the "symmetric with

erasures model" in Figure 6.5 that we developed from the general model shown in

Figure 6.4. This model requires less a priori knowledge about channel characteristics

than other discussed models, and so should be more widely usable.

Consider that a simple parity scheme with a single check bit can detect one error

in a received word and correct none, as it is a distance-2 code. As this is a theoretical

limit of the coding structure itself, we must step "outside" the code decoding circuitry

if we wish to enhance the performance of a receiving device using such a simple code.

Likewise, coding schemes developed to have more capability, such as DED and

SEC/DED codes , have their theoretical limits . An external approach must be used

- that is , the input must be conditioned in some way by taking advantage of the

additional knowledge of error location.

Provided that we can identify the location of a bit in error by virtue of its being

an erasure, we know one critical fact about that bit: it was originally transmitted as

a 0 or as a 1. This may seem trivial, but it points us toward a correction strategy.

The strategy involves the generation of alternative received words, varying only in

the values of the bits that were identified as unknown.

114

6.4.1 Strategy for simple parity codes

Consider a receiver utilizing codewords based on a simple parity check bit. This is a

distance-2 code, and so should be capable of detecting a one-bit error and correcting

none. Consider, however, the following example:

If a received word is " 0 1 0 0 </> 1 1 0 1 ", then it is likely that the transmitted

word was either " 0 1 0 0 0 1 1 0 1 " or " 0 1 0 0 1 1 1 0 1 " . We can now use

the error detection capability of the simple 1-bit parity method to determine which

alternative is not in error.

Our strategy for correcting single bit unknowns ("erasures") is therefore to gen

erate two words from our received word, differing only in the value assigned to the

unknown bit. Both are t hen processed by a parity checker (either in parallel by two

identical checking circuits, or sequentially by one) to choose which of the generated

words is the valid codeword.

6.4.2 Extension of strategy to DED codes

A DED code is a distance-3 code, which implies that it should be capable of either

correcting a one-bit error or detecting two-bit errors and correcting none. The dif

ference between detecting and correcting is really one of determining the location of

the error.

Our strategy is similar to that used for a simple parity code, but since we have two

unknown bits (erasures), there are four possibilities for the settings of those two bits.

The four words generated by these four possibilities are independently processed by

DED checkers; the orie that is error-free is selected.

6.4.3 Extension to SEC /DED codes

SEC/DED codes are distance-4 codes, which implies that they can detect 3-bit errors

or, alternatively, detect 2-bit errors while correcting one error.

For erasure errors, however, "error location capability allows a distance-4 code

(SEC-DED code) to correct up to three errors." [6]

115

Suppose we have a received word with a 3-bit erasure. We can generate 23

alternative words, and check them all for errors. This is certainly getting to the

point where a sequential approach is more practical , as providing eight independent,

parallel code-checking circuits can be space-consuming. If, of course, time constraints

were extreme enough, the expenditure of space might be warranted.

6.4.4 Extension to the general model

The general channel depicted in Figure 6.4 yielded more possible error transitions

(as shown in Figure 6.5) than was the case in either the "classical" symmetric error

rnodel (Figure 6.1) or the Binary Erasure Error Model (Figure 6.3). A transmitted

1 may be received in error as a 0 or as a ¢, while a transmitted 0 may be received in

error as a 1 or as a ¢.

It should be intuitively clear that we can no longer correct three errors. Since we

can no longer "point" to all three error locations, it will "cost" us to determine the

location of that non-erasure error.

We can still, however , do better than correct a single one-bit error, the theoretical

maximum that we could accomplish with the symmetric error model of Figure 6.1.

The strategy described earlier in Section 6.4.1 can be adapted to fit this new

model, as follows:

• Generate two alternatives of the received word , based on the two possible values

of the erasure error (whose location is known).

• Route these two alternatives to independent SEC/DED checkers.

• Select the output from the checker that reports a single, corrected error.

If the only error was an erasure error , both checkers will output the correct

codeword; one checker will indicate a single, corrected error, while the

other will indicate no error.

If there is a single, non-erasure error, both checkers will output the correct

codeword and report a single, corrected error.

116

- If there is both a single erasure and a single non-erasure error, one checker

will output the correct codeword and indicate a single, corrected error,

while the other will output an incorrect codeword and indicate a double

error.

Note that this method can be adapted to a circumstance in which two erasure

errors were detected. In this case, a value could be arbitrarily assigned to the second

erasure (making it either the correct value or a non-erasure error), and sent to the

same circuitry.

It should be pointed out that it is not even necessary for this second erasure to

be assigned the same arbitrary value in the two generated alternatives. This may

simplify the design of the circuitry generating the alternatives.

We have seen how the information from our uncertainty detector can be used to

extend the correction capabilities of standard error-control coding schemes to handle

a model in which both erasures (transitions to¢) and classic 1=}0and0=}1 errors

can be received.

6.5 Implementation example: simple parity code

We can now proceed to illustrate the design of a correction system appropriate to

the error-control coding strategies of both Sections ·6.4.1 and 6.4.4. A very simple

4-bit codeword scheme will be shown.

Figure 6.7 is not a complete circuit diagram. Depending on the specific error

control coding scheme being used, there would be additional desirable outputs.

Specifically, one might find various error indicators useful, such as:

• An indicator that at least one of the inputs was an erasure (¢).

• An indicator that at least two of the inputs were erasures (¢).

• For a SEC/DED code, an indicator that more than two of the inputs were

erasures. (¢) .

117

Selection Circuitry

Figure 6. 7: Illustrative Correction System

• An indicator that errors are present that could. not be corrected.

• An indicator that no errors of any kind were present.

The multiplexers at the inputs to the two checkers are used to either (1) pass the

original value of the input bit to the checker, or (2) pass a 0 or 1 (for ·he left or right

checker, respectively) to the checker in place of the original input bit (for erasures).

The two checkers each return a "parity correct/error" signal to t he "Selection

Circuitry", which chooses which checker 's output is to be used.

118

6.6 The detector once again revisited as a decoder

In Section 4.3.2, we mentioned that the undefined range that can be discerned by

the detector need not be a natural outcome of circuit conditions we wish to detect -

it can be explicitly coded, should there be a valid need.

Early in this chapter, we defined "communications" as "the moving of digital data

(whether by digital or analog communications media) from one location to another,

placing no upper or lower bounds on the distance over which it is moved." There

are many forms of transport media; certainly not all depend on varying voltage

levels to represent a 0 or 1. There may be many transmission modes, and various

modulation/demodulation methods appropriate to them.

It is possible that a demodulation subsystem may detect an indeterminate state

for one or more bits in a received word of digital data. In such a circumstance, that

subsystem could emit as output a zoned binary value, encoding the uncertain bit(s)

as <f>. The methods of this chapter could then treat those bits as erasures.

6. 7 Partial utilization: some gain at lower cost

Sometimes the tradeoff of space (or time) in order to achieve a given performance

gain is not practical. This must be judged on an implementation by implementation

basis by the designer. The methods already discussed in this chapter do provide

significant performance gain, but at the undeniable cost of either:

• at least two code-checker circuits, implemented in parallel, with associated

multiplexers and selection circuitry, or

• a single code checker, with required circuitry to sequentially present the alterna

tives to it until a successful decoding into a codeword occurs, the impossibility

of doing so is recognized, or the list of alternatives is exhausted.

Space is impacted to some degree, and, in the second approach, time is also

lengthened, which may not be practical in a time-constrained system.

119

Is there any other way in which the information provided by our detector can

be used to good advantage, while not requiring such a significant expenditure of

resources?

6.7.1 Code-independent advantage

Simply by detecting that one or more bits are in the uncertain range provides the

receiver with more information than it had. As this condition would indicate some

measure of difficulty with the communications media or transmitting device, it could

signal an actual or developing problem before it was detected by the code checker, if

any.

In fact , it is simple to link detectors together in such a way as to provide an

indication when more than one "erasure" is detected in the same received word,

providing an indication of the possibility of a two-bit error, one that would not

be detected by, for example, a simple one-bit parity code checker. While this is

obviously not the only kind of two-bit error that can occur, it will certainly detect

some of them.

Additionally, we might refer to the simple application illustrated in Figure 4.9.

For an external parallel input , for example, ANDing the RDY signals obtainable from

the detectors for all lines would provide a single signal indicating the probability of

a broken or disconnected cable, or a totally malfunctioning communications link.

6.7.2 Simple set to zero with uniform distribution of erasure

errors

Consider the simple expedient of setting all </> inputs to 0. [One could just as easily

set them all to one, or set them to one or zero depending on the bit position - it

is truly arbitrary, unless there is a priori knowledge about the error distribution

(or data distribution) that would bias the decision one way or the other.] We will

assume for the moment that the distribution of correct values when </> is detected is

a dichotomy with a probability of .5 for each.

120

Simple one-bit parity checker

Use of this approach would gain no operational advantage with a simple one-bit

parity code (distance-2) checker, other than those mentioned above in Section 6.7.l.

It would have an equal probability of causing a bit that would have been correctly

interpreted as a 1 (greater than vh but less than 2/3 vdd) to be forced to a zero,

causing an error. While this is counter-balanced by the possibility that its proper

value was a zero, it is at best a draw.

SEC/DED codes

Consider the possible consequences of setting erasure bits to zero, or some other

arbitrary assignment:

• When there is one error, and that error is an erasure: setting the erasure bit to

zero and passing the resulting word to the SEC/DED code checker will result

in either:

if 0 was the correct value, no error will be indicated, and the output will

be correct, or

if 0 was the incorrect value, the SEC/DED checker will correct the error,

a single, corrected error will be indicated, and the output will be correct.

• When there is one error and that error is not an erasure: there is no impact.

The error is corrected by the SEC/DED code checker.

• When there are two errors, and both are erasure errors: setting both erasure

bits to zero and passing the resulting word to the SEC/DED code checker will

result in one of the following:

if 0 was the correct value for both bits, no error will be indicated, and the

output will be correct, or

if 0 was the correct value for one of the bits and the incorrect value for the

other bit , then the SEC/DED checker will correct the remaining error, a

single, corrected error will be indicated , and the output will be correct, or

121

if 0 was the incorrect value for both bits , then the SEC/DED checker will

detect and indicate a double-bit error, and the output will be incorrect

(but this will be known because of the double-bit error indication).

• When there are two errors , and one is an erasure and one is not an erasure:

setting the erasure bit to zero and passing the resulting word to the SEC/DED

code checker will result in either:

if 0 was the correct value for the erasure, the SEC/DED checker will

correct the remaining, non-erasure error, a single, corrected error will be

indicated, and the output will be correct , or

if 0 was the incorrect value for the erasure, then the SEC/DED checker

will detect and indicate a double-bit error, and the output will be incorrect

(but this will be known because of the double-bit error indication).

• When there are two errors, and both are non-erasures: there is no impact.

The SEC/DED checker will detect and indicate a double-bit error, and the

output will be incorrect (but this will be known because of the double-bit error

indication).

We can determine that there will be no gain over a system in which the received

value of all bits in the region of Vh are allowed to resolve themselves into a 0 or a 1

by chance.

Consider that being consistent in the assignment of 0 or 1 will have no effect on

the outcomes listed above. Assignment as a 1 or a 0 is as likely to be correct as

incorrect.

Since the assignment of the value in the above scheme is arbitrary, and consistency

confers no advantage, a random assignment (such as might occur by allowing the

values around Vh to resolve themselves) works just as well.

But this conclusion does not eliminate the possible use of this simplified approach

in situations in which the distribution of values within </> is not uniform, as we shall

see in the next section.

122

6.7.3 Simple set to most probable value with asymmetric

distribution of erasure errors

In Section 6.3.1 we discussed the simple expedient of setting an erasure bit to the

"error-susceptible" value for a unidirectional channel or ideal asymmetric channel.

For both of these types of channels, we possessed a priori knowledge that, for any

given word, the probability of one of the two possible error transitions is very close

to zero. Therefore, knowing that only one of the two transmitted values could be

"corrupted" during transmission implied that any "corrupted" value received had

to have been transmitted as the "corruptible" value, and so it could be set to that

value.

If we have an asymmetric channel, even if not an ideal asymmetric channel (char

acterized by the fact that the probability of one of the two possible error transitions

is very close to zero), the negative conclusions of Section 6.7.2 may be mitigated.

If the probabilities of the 1 ~ 0 and 0 ~ 1 error transitions differ from .5 signif

icantly, the assignment of erasures to 0 or 1 is no longer arbitrary, and so modifying

the strategy to set erasures to the most "corruptible" value may yield gains. The

designer will have to consider the relative probabilities involved, together with any

other characteristics of the communications channel, in deciding whether to imple

ment any partial approach.

6.7.4 Possible enhancements
·~

There are three possible modifications to the approaches discussed in this section,

which may be used to some advantage.

Simplified detector

The techniques described in this section do not require a full detection capability.

If, for example, it was desired to set all </> inputs to 0, which might be desirable

in processing received words from an ideal asymmetric channel, one could simply

pre-process each input as shown in Figure 6.8.

123

A Acondltloned

Figure 6.8: Input Bit Pre-Processing (</>::::} 0)

As the "3.3 inverter" will not transition to an output of zero until the input rises

out of the </> range into the range of logic level 1, all inputs are conditioned by the

pre-processing circuit such that all inputs in the </> range will be received as logic

level 0.

It should also be pointed out that the designer has the option of varying the

transition point of the inverter using the design equations in Chapter 4 so that it

will occur at some point other than 2/3 Vdd, in order to best fit the error distribution

of the channel.

Post-toggling two incorrect erasures

In one of the cases described under SEC/DED codes in Section 6.7.2, we described

the consequences when there were two erasures. For 25% of the cases (in a uniform

distribution) , both erasures will be set incorrectly by the simplified scheme discussed

in that section, and a double-bit error will be detected and reported; the output will

be unusable.

By detecting:

• the double erasure (as opposed to any other double-bit error), and

• the double-bit error returned by the code checker,

we can post-process those two bits using a circuit such as that depicted in Figure 6.9.

In this manner , we can correct those two bits with as much confidence as we

could in the double-checker scheme discussed earlier in this chapter. While there is

additional space expended on this circuitry, it is not as much as a full dual checker

implementation, while it does correct more than other single-checker approaches

discussed. As always, the designer must consider the tradeoffs involved , especially

124

ROY from Detector~

2-bit Erasure-----~ ,__ __))) _ _, .___,~ Corrected

2-bit Error from Checke ~ output bit

Output bit from CheckeF--------~·

Figure 6.9: Post-Processing for Two Erasures after SEC/DED Checker

including the comparatively unlikely possibility of a word with two erasures plus one

full error; as there is no checking done following post-processing, such an error would

be neither corrected nor detected.

6.7.5 Special case: Bridge detection and correction for bus

communications

It should be again emphasized that the techniques suggested m this chapter are

meant to be, above all, practical techniques. This implies that, in cases in which

special circumstances exist, the designer must as always be alert to the possibility

of cost-effective modifications to the underlying concepts. As an example of such an

implementation, we consider here the special case of an internal data bus in which

temporary bridges are of specific concern.

In Section 2.2.1 , we discussed various physical defects that could cause undefined

logic levels. Figure 2.2, reproduced here as Figure 6.10, illustrated one of these

defects - a bridge between adjacent bus lines.

It is clear that a bridge between two adjacent bus lines can produce a two-bit

error. We know from our earlier discussion that we require a distance-3 code to

be able to correct two erasures. We also found that it was necessary to generate

four alternatives, passing them through four parallel distance-3 code checkers (or

sequentially through one).

Consideration of the special case of bridges, however , allows us to eliminate two

of the alternatives. For if, in Figure 6.10, the driven value of D 1 and D 2 are both 0 or

both 1, then there is no error - in fact , the effects of the bridge will be undetectable.

Only when one of the driven values is 0 and the other 1 will there be a potential

125

Figure 6.10: Physical Bridge (Short) Between Two Adjacent Bus Lines

problem. Additionally, only when the resistance of the bridge is low enough will the

values be pulled "toward" each other enough to become undefined; if not, they retain

their proper, driven values. In the former case, under the reasonable assumption (for

parallel bus lines) that both lines are driven and loaded equally, the effect of our

low-resistance bridge will be to create two adjacent bit values in the undefined zone.

Since we need to check only two alternatives, we need only two parallel distance-3

code checkers, very similar to the arrangement shown in Figure 6. 7. That figure need

be only slightly modified, as shown in Figure 6.11, by alternating the Vss and Vdd

multiplexer inputs so that both "01" and "10" patterns will be generated for any

pair of adjacent erasures.

Again, the simplicity of this arrangement for correcting a two-bit error depends

on an a priori understanding of the defects that are likely to occur. While this circuit

would also properly correct a single-bit erasure, a two-bit erasure in which the proper

values were "00" or "11" would not be corrected - instead, the circuit would indicate

an uncorrectable error.

6.8 Comparison with classic method

It might be asked how these methods compare with the use of code-checking circuits

alone. To illustrate, we use the example of a 9-bit parity checker/corrector circuit

fabricated on our proof-of-concept circuit, as discussed and tested in the following

126

Selection Circuitry

Figure 6 .11: Distance-3 Correction System for Adjacent Bus Line Bridges

section, compared with a simple 1-bit parity checker. · Table 6.1 , limited to those cases

in which a maximum of three errors of both types appear in a 9-bit received word,

details the differences in capability based on different input conditions, including

patterns that can be successfully handled by neither checker.

The percentage shown for each condition that can be handled by each checking

scheme assumes a uniform distribution across ¢: that is, an equal number of</> inputs

would be interpreted as zeros and ones by the classic parity checker.

The experimental circuit displays results superior to the classic simple parity

checker when there is a single erasure. The simple parity checker is superior in

detecting errors when there are both a single erasure and one or two full errors in

the same word. The results are identical or mixed in other cases.

127

Errors Parity Only Corrector Circuit
Era- Full False False Ind False False Ind
sures Errs Good Pos Neg Err Good ·Pos Neg Err

0 1 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
1 0 50.0 0.0 0.0 50.0 100.0 0.0 0.0 0.0
0 2 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0
2 0 25.0 0.0 25.0 50.0 25.0 0.0 25.0 50.0
0 3 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0
3 0 12.5 0.0 37.5 50.0 25.0 0.0 75.0 0.0
1 1 0.0 0.0 50.0 50.0 0.0 0.0 100.0 0.0
1 2 0.0 0.0 50.0 50.0 0.0 0.0 100.0 0.0
2 1 0.0 0.0 50.0 50.0 0.0 0.0 50.0 50.0

Table 6.1: Comparison with Classic Parity Checker

6.9 Fabricated 9-bit parity-based corrector exper

iment

A 9-bit parity-based correction circuit, similar to the 4-bit version shown in Fig

ure 6.7, was implemented, with minor enhancements . We show the impemented

version (as a 4-bit example for visibility) in Figure 6. 12.

Two enhancements are shown:

• The P in signal is used to set "odd" or "even" parity.

• A signal D </> is generated such that one or more 1> inputs will set it to 1.

6.9.1 Actual design topology

For reasons of extensibility to any number of bits, t he actual design implemented

a "bit-slice" approach. A circuit was designed that contained all one-bit compo

nents required for the detector, input mult iplexers, two parity-based checkers and

the out put mult iplexer, such as shown in Figure 6.13.

Using this approach led to space efficiency as well as to extensibility to greater

than 9-bit inputs.

128

Selection Circuitry

...
Q)
)(
Q)

c..
:;:::
:;
::!:

Figure 6.12: 9-bit Implemented Correction System (4 bits shown)

6.9.2 Functional unit topology

For clarity, we present the design of the implemented circuit organized by function.

Detectors and input multiplexers

The design of the detector is straightforward along the lines described fully in Chapter

3. One output, RDY, is used as a selection signal for the two input multiplexers for

each input bit .

When RDY is high, both multiplexers pass the original (valid) input bit through

to the pair of checkers. When RDY is low, indicating a¢ input level , one multiplexer

129

P,"--------r------------,

1-Bit Detector I Erasure Corrector

1-Bit Detector I Erasure Corrector

1-Bit Detector I Erasure Corrector

1-Bit Detector I Erasure Corrector

1-Bit Detector I Erasure Corrector

1-Bit Detector I Erasure Corrector

1-Bit Detector I Erasure Corrector

1-Bit Detector I Erasure Corrector

1-Bit Detector I Erasure Corrector

Selection Circuitry

Figure 6.13: Implemented Correction System (Bit-Slice View)

sends a 0 to its checker in place of the original input bit value, and the other sends

a 1 to its checker.

Note that the Vss and Vid inputs alternate multiplexers for successive bits, as

in Figure 6 .11. This is simply because this part of the circuit was designed to be

adaptable to the technique covered in Section 6.7.5 with the substitution of distance-

3 checkers for the distance-2 checker implemented. As the assignment of bits in the

implementation 's scheme is arbitrary, it has no effect on the ability of this circuit to

correct 1-bit erasures.

130

Parity checkers

The checkers implemented in this circuit are straightforward, implementing a bit-by

bit exclusive or. The output at the "bottom" of each checker is 0 if a parity error is

detected, and 1 if the parity check passes.

Selection circuitry and multiplexer

The selection circuitry is shown in Figure 6.14.

Figure 6.14: Selection Circuit for 9-bit Parity-Based Corrector

Inputs consist of a "parity error" indicator (0 = no error, 1 = error) from each

of the two checkers and the Dq, line indicating that at least one of the inputs was

in the </>zone (1 = one or more inputs are </>, 0 = no inputs are </>). The circuitry

generates the select signal for the bit-sliced output multiplexer , as well as a Parity

Error (P Eout) output.

The truth table for P Eout is shown in Table 6.2.

Notes that apply to the entries in Table 6.2 are as follows:

1. This is the normal state when there are no erasures or other one-bit errors. It

can also occur when there are an even number of non-erasure errors.

131

0 0 0 0 1
0 0 1 x 2
0 1 0 x 2
0 1 1 1 3
1 0 0 1 4
1 0 1 0 5
1 1 0 0 5
1 1 1 1 4

Table 6.2: Truth Table for P Eout

2. These states cannot occur. If there are no erasures, input sets to the two code

checkers are identical, so there cannot be different parity results.

3. This state occurs when there is no erasure, but there is a one-bit error (or any

odd number of one-bit errors) on the input.

4. These states occur when an erasure is indicated, but the two checkers return

identical results. This can happen only in the presence of more than one erasure

- technically, an even number of erasures.

5. These states occur when there is an erasure that has been corrected. It can

also occur when there are an odd number of errors, at least one of which is an

erasure.

6.9.3 Testing results

Testing results for this circuit are shown in Tables 6.3 through 6.6. Table 6.3 shows

results when all inputs are in the valid binary ranges and Parity is set to "Even",

Table 6.4 shows results when all inputs are in the valid binary ranges and Parity is

set to "Odd", Table 6.5 shows results when one or more inputs is in the </>zone and

Parity is set to "Even", and Table 6.6 shows results when one or more inputs is in

the </> zone and Parity is set to "Odd".

The results show that the circuit performs as intended.

132

Input II PE I ¢ I Output Ill Input II PE I ¢ I Output II
000000000 0 0 000000000 111111110 0 0 111111110
000000001 1 0 000000001 111111100 1 0 111111100
000000011 0 0 000000011 111111000 0 0 111111000
000000111 1 0 000000111 111110000 1 0 111110000
000001111 0 0 000001111 111100000 0 0 111100000
000011111 1 0 000011111 111000000 1 0 111000000
000111111 0 0 000111111 101010101 1 0 101010101
001111111 1 0 001111111 010101010 0 0 010101010
011111111 0 0 011111111 111111111 1 0 111111111

Table 6.3: All Inputs in Valid Ranges and Parity = "Even"

Input II PE I ¢ I Output Ill Input II PE I ¢ I Output II
000000000 1 0 000000000 111111110 1 0 111111110
000000001 0 0 000000001 111111100 0 0 111111100
000000011 1 0 000000011 111111000 1 0 111111000
000000111 0 0 000000111 111110000 0 0 111110000
000001111 1 0 000001111 111100000 1 0 111100000
000011111 0 0 000011111 111000000 0 0 111000000
000111111 1 0 000111111 101010101 0 0 101010101
001111111 0 0 001111111 010101010 1 0 010101010
011111111 1 0 011111111 111111111 0 0 111111111

Table 6.4: All Inputs in Valid Ranges and Parity = "Odd"

6.10 Summary

We have briefly reviewed channel models and their associated errors , as well as

some basic theoretical concepts in error-control coding, such as distance. We then

proceeded to adapt our uncertainty detector to serve the purpose of error location.

This allowed us to use strategies described in the literature to boost the correction

capabilities of error-control coding schemes.

We also considered the possibilities for partial implementation of these principles,

and found them dependent for their efficacy on asymmetry in the error distribution,

or on a restricted set of possible error patterns , both of which are realistic possibilities

in specific implementations.

133

We compared the performance of a parity-based correction circuit to classic

parity-based error detection. The proposed circuit allowed error location (and there

fore correction) in cases where there was one erasure (0 ::::} 1> or 1 ::::} ¢) and no

full errors (0 ::::} 1 or 1 ::::} 0) in the received codeword. Use of the circuit was not

without its disadvantages , however; when there were both erasures and full errors

in the same codeword, error detection was reduced in some cases. As always, the

designer of the specific implementation must take channel error characteristics into

account, including the probabilities of various types of single and compound errors,

in deciding which scheme to use.

Finally, we depicted the design of a 9-bit, parity-based error correction circuit

fabricated on the proof-of-concept circuit. We described the bit-sliced design of

this experimental circuit, and presented the testing results showing that the circuit

performs as intended.

134

II Input II PE I </> I Out put Ill Input II PE I </> I Output II
00000000</> 0 1 000000000 ¢ 101¢ 1010 1 1 010101010
0000000¢ 1 0 1 000000011 </> 1010¢010 1 1 010101010
0000001¢ 1 0 1 000000101 ¢ 10101¢ 10 1 1 010101010
000000 </></> 1 1 1 000000011 </> 101010¢ 0 1 1 010101010
00000 </></></> 1 0 1 000000101 </> 1010101 </> 1 1 010101010

0000</></></></> 1 1 1 000010101 </>01010101 0 1 001010101

000 </></></></></>1 0 1 000101011 1</>1010101 0 1 111010101

00</></></></></></>1 1 1 000101011 10¢010101 0 1 100010101

0</></></></></></></>1 0 1 001010101 101¢ 10101 0 1 101110101

</> </> </> </> </> </> </> </> 1 1 1 101010101 1010¢0101 0 1 101000101

</> </> </> </> </> </> </> </> </> 0 1 010101010 10101¢ 101 0 1 101011101
0¢0101010 0 1 010101010 101010¢ 01 0 1 101010001
01¢ 101010 0 1 010101010 1010101¢ 1 0 1 101010111
010¢ 01010 0 1 010101010 10101010</> 0 1 101010100
0101¢ 1010 0 1 010101010 </></> 1010101 1 1 101010101
01010¢010 0 1 010101010 1</></>O10101 1 1 101010101
010101¢ 10 0 1 010101010 10¢¢ 10101 1 1 101010101
0101010 </>0 0 1 010101010 101¢¢0101 1 1 101010101
01010101 </> 0 1 010101010 10lO</></>101 1 1 101010101
</></>O 101010 1 1 010101010 10101¢¢01 1 1 101010101
O</></> 101010 1 1 010101010 101010¢¢1 1 1 101010101
01 </>¢01010 1 1 010101010 1010101 </></> 1 1 101010101
010¢¢1010 1 1 010101010 ¢0¢ 010101 1 1 101010101
0101¢¢010 1 1 010101010 </>O 1</> 10101 1 1 101010101
01010¢¢10 1 1 010101010 </>O 10¢0101 1 1 101010101
010101 ¢¢0 1 1 010101010 </>O 101 </>101 1 1 101010101
0101010 </></> 1 1 010101010 </>O 1010¢ 01 1 1 101010101
</> 1</>101010 1 1 010101010 ¢ 010101 </>1 1 1 101010101
¢ 10¢ 01010 1 1 010101010 </>O 101010 </> 1 1 101010101

Table 6.5: Some Inputs in </> Range and Parity = "Even"

135

Input II PE I ¢ I Output Ill Input II PE I ¢ I Output II
00000000¢ 0 1 000000001 ¢101¢ 1010 1 1 110111010
0000000¢ 1 0 1 000000001 ¢1010¢010 1 1 110100010
0000001¢ 1 0 1 000000111 ¢ 10101¢ 10 1 1 110101110
000000¢¢1 1 1 000000101 ¢ 101010¢0 1 1 110101000
00000¢¢¢1 0 1 000001011 ¢1010101¢ 1 1 110101011
0000¢¢¢¢1 1 1 000001011 ¢01010101 0 1 101010101
000¢¢¢¢¢1 0 1 000010101 1¢1010101 0 1 101010101
00¢¢¢¢¢¢1 1 1 001010101 10¢010101 0 1 101010101
0¢¢¢¢¢¢¢1 0 1 010101011 101¢10101 0 1 101010101
¢¢¢¢¢¢¢¢1 1 1 010101011 1010¢0101 0 1 101010101
¢¢¢¢¢¢¢¢¢ 0 1 101010101 10101¢ 101 0 1 101010101
0¢0101010 0 1 000101010 101010¢01 0 1 101010101
01¢101010 0 1 011101010 1010101¢1 0 1 101010101
010¢01010 0 1 010001010 10101010¢ 0 1 101010101
0101¢ 1010 0 1 010111010 ¢¢1010101 1 1 011010101
01010¢010 0 1 010100010 1¢¢010101 1 1 110010101
010101¢10 0 1 010101110 10¢¢10101 1 1 100110101
0101010¢0 0 1 010101000 101¢¢0101 1 1 101100101
01010101¢ 0 1 010101011 1010¢¢101 1 1 101001101
¢¢0101010 1 1 100101010 10101¢¢01 1 1 101011001
0¢¢101010 1 1 001101010 101010¢¢1 1 1 101010011
01¢¢01010 1 1 011001010 1010101¢¢ 1 1 101010110
010¢¢1010 1 1 010011010 ¢0¢010101 1 1 000010101
0101¢¢010 1 1 010110010 ¢01¢ 10101 1 1 001110101
01010¢¢10 1 1 010100110 ¢010¢0101 1 1 001000101
010101¢¢0 1 1 010101100 ¢0101¢ 101 1 1 001011101
0101010¢¢ 1 1 010101001 ¢01010¢01 1 1 001010001
¢1¢101010 1 1 111101010 ¢010101¢ 1 1 1 001010111
¢ 10¢01010 1 1 110001010 ¢0101010¢ 1 1 001010100

Table 6.6: Some Inputs in ¢ Range and Parity = "Odd"

136

Chapter 7

Summary and conclusions

The major contribution of this research is the consideration of unknown logic level

values as information. Much of digital logic design views logic as an abstraction,

a dichotomy of zero and one. Although it is well acknowledged in VLSI texts that

digital logic circuitry is analog in its ultimate nature, efforts are made to make the

reality fit, insofar as possible, the abstraction.

In this work, we developed a design for a detector for unknown logic values that

does not depend on the existence of reference voltages. While no implication is made

that this is the most efficient detector in any regard , it does provide the required

information necessary to demonstrate the validity of the concepts covered in this

thesis.

Several uses were described for this information , some of them rudimentary but

potentially of practical application. We focussed, however, on two specific application

areas to illustrate and demonstrate the contribution of this research.

Clock skew, as a result of increasing circuit speeds and concurrently increasing

die size, is a serious problem for the future of processor design. Power consumption

by advanced processors is also of increasing concern, especially with the proliferation

of laptop systems and other portable computing devices. Asynchronous system con

cepts, especially the GALS (Globally Asynchronous Locally Synchronous) constructs,

are well suited to address both of these problems. As logic stages are independently,

locally clocked, the need for a global clock is reduced or eliminated. Power usage

137

can be greatly reduced without impacting performance, since a local stage without

work to do undergoes no state transitions, so uses no power.

A logic family, Binary Plus logic, and its dynamic version, Centered Binary Plus

logic, was developed to fulfill the completion recognition and self-clocking require

ments of GALS systems. The design technique for a Binary Plus gate was developed

and proven valid, and Binary Plus gates and combinational multiple-gate logic blocks

were shown to be free from race conditions. Binary Plus gates recognize an undefined

value on the input , and do not display a valid output until there is a necessary and

sufficient condition on the inputs to justify it. This provides clear completion recog

nition, and also allows the logic stage to take advantage of low-delay input sets. The

method has significant advantages over other currently used completion-detection

techniques in asynchronous design.

To demonstrate the use of these concepts in asynchronous system design , we

designed and fabricated a proof-of-concept circuit containing a 4-bit ripple-carry

adder, implemented as a Centered Binary Logic stage. Tests on this circuit showed

the anticipated effects of input-dependent variations in completion time; a correlation

between measured completion time and the performance predicted by a gate-level

simulator constructed for the circuit was positive and showed very high statistical

significance.

In communications applications, error-control coding techniques have long been

used to guard against transmission errors, some of which may be transitions to

undefined values. These transitions are termed erasures in the literature. By

knowing the location of an error , correcting it is greatly simplified, and an error

detecting/ correcting code can be used to correct more errors than would be possible

without the knowledge of the location of an error. Detecting an undefined logic level

on an input can be used as an erasure location technique, enabling us to use era

sure correction methods well documented in the literature. Such erasure-correction

methods were previously limited to environments in which the error could be lo

calized in other ways , such as a current spike (due to an a-particle strike) or from

multi-dimensional parity checks in memory arrays.

A 9-bit, simple parity-based erasure detector/corrector was implemented on the

138

proof-of-concept circuit . This system showed itself capable of correcting a one-bit

erasure, demonstrating that the knowledge that an input is undefined can be used

to boost the detection/ correction capability of error-control coding.

7.1 Future work

There are many directions in which further research could be taken to explore the

concepts introdllced in this work.

More space-efficient or faster versions of the detector must be developed. The

detector as designed in this work is large; this both takes up space and increases

capacitance in the driving circuit, limiting its speed. It is possible that techniques

using a Vh supply and non-ratioed inverters might create a faster, more space-efficient

detector. As a Vh supply is of use in precharging Centered Binary logic stages, this

would simply be an additional use for it.

Issues of noise margins for this logic family should be examined. It is clear that

in some ways the noise margin is decreased from that of standard binary logic , while

in other ways it is increased. For example, it would take less noise to cause a change

from a valid binary value to another state (1>) as the boundary between either valid

value and that state is closer than the boundary between 0 and 1 in pure binary

logic. On the other hand, it would take more noise to cause a change from a valid

binary value to the opposite binary value, as that boundary has been pushed farther

away. In short , the chance of transitioning to a detectable error is greater, while the

chance of transitioning to a non-detectable error is less. In the event that it was

desired to transmit a 1> from one location to another - and have it arrive as a 1> -

noise could be a serious consideration , for reasons that were covered in Chapter 6.

For asynchronous designs , Binary Plus compatible input sources, such as pipeline

stage source latches, should be developed and tested. Techniques for widening the

pipeline should be explored, including expansion of the source latch concept into a

stage router.

A major application area not addressed in this work is the use of the concepts

we have developed in the area of circuit testing. Adaptation of Boundary Scan

139

techniques to the detection of unknown values would be a significant topic by itself.

140

References

[1] P. Weiss, "Quantum internet ," Science News , vol. 155, pp. 220-221 , April 3

1999.

[2] D. Matzke, "Will physical scalability sabotage performance gains? ," Computer,

vol. 30 , pp. 37- 39, September 1997.

[3] S. Hamilton, "Semiconductor research corporation: Taking Moore 's law into the

next century," Computer, vol. 32 , pp. 43- 48 , January 1999.

[4] M. Schlett , "Trends in embedded-microprocessor design ," Computer, vol. 31,

pp. 44-49, August 1998.

[5] S. J . Jou and I. Y. Chung, "Low-power self-timed circuit-design technique ,"

Electronics Letters, vol. 33 , pp. 110-111 , January 16 1997.

[6] T. R. N. Rao and E. Fujiwara, Error-Control Coding for Computer Systems.

Englewood Cliffs, NJ: Prentice-Hall , Incorporated, 1989.

[7] D. C . Bossen and M. Y. Hsiao, "A system solution to the memory soft error

problem," IBM Journal of Research and Development, vol. 24, pp. 390-397, May

1980.

[8] 0. Keren and S. Litsyn, "A class of array codes correcting multiple column

erasures ," IEEE Transactions on Information Theory, vol. 43, pp. 1843- 1851,

November 1997.

141

[9] T . Calin, F. Vargas , M. Nicolaidis, and R. Velazco, "A low-cost , highly reli

able SEU-tolerant SRAM - prototype and test-results," IEEE Transactions on

Nuclear Science, vol. 42 , no. 6, pp. 1592- 1598, 1995.

[10] F. Vargas and M. Nicolaidis , "SEU-tolerant SRAM design based on current mon

itoring," in Proceedings of the 24th International Symposium on Fault-Tolerant

Computing, pp. 105-115, 1994.

[11] F. J. Mowle, A Systematic Approach to Digital Logic Design. Reading, MA:

Addison-Wesley Publishing Company, 1976.

[12] Z. Kohavi , Switching and Finite Automata Theory. New York: McGraw-Hill

Book Company, 1978.

[13] E. McCluskey, Logic Design Principles. Englewood Cliffs , NJ: Prentice-Hall ,

1986.

[14] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design - A Systems

Perspective. Reading , MA: Addison-Wesley Publishing Company, 1988.

[15] M. Favalli, P. Olivo, M. Damiani, and B. Ricco, "Novel design for testabil

ity schemes for CMOS IC 's," IEEE Journal of Solid-State Circuits, vol. 25 ,

pp. 1239- 1246, October 1990.

[16] T. Juhnke and H. Klar , "Calculation of the soft error rate of submicron CMOS

logic circuits ," IEEE Journal of Solid-State Circuits, vol. 30, pp. 830-834, July

1995.

[17] C. Henderson, J. Soden, and C. Hawkins , "The behavior and testing implications

of CMOS IC logic gate open circuits ," in Proceedings of the 1991 International

Test Conference, pp. 302- 310, 1991.

[18] H. Hao and E. McCluskey, '"'Resistive shorts" within CMOS gates ," in Proceed

ings of the 1991 International Test Conference, pp. 292- 301 , 1991.

142

[19] J. Hennessy and D. Patterson, Computer Architecture - A Quantitative Ap

proach. San Mateo, CA: Morgan Kaufmann Publishers, Incorporated, 1990.

[20] W. K. C. Lam and R. Brayton, Timed Boolean Functions - A Unified Formalism

for Exact Timing Analysis. Boston: Kluwer Academic Publishers, 1994.

[21] H. S. Stone, High-Performance Computer Architecture. Reading, MA: Addison

Wesley Publishing Company, 1990.

[22] E. Suhir , "Flip-chip solder joint interconnections and encapsulants in silicon-on

silicon MCM technology: Thermally induced stresses and mechanical reliabil

ity," in Proceedings of the 1993 IEEE Multi-Chip Module COnference, pp. 92- 99,

1993.

[23] M. Jacamet and W. Guggenbuhl, "Layout-dependent fault analysis and test

synthesis for CMOS circuits ," IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 12, pp. 888- 899 , June 1993.

[24] B. Bennetts and C. Maunder, Notes for Tutorial 6: Boundary S can and Other

1149.x Standards. Test Technology Committee of the IEEE Computer Society,

Washington, DC, October 18 1998.

[25] J . Lien and M. Breuer, "Maximal diagnosis for wiring networks," in Proceedings

of the 1991 International Test Conferen ce, pp.- 96- 105, 1991.

[26] T. Storey, W. Maly, J. Andrews, and M. Miske, "Stuck fault and current testing

comparison using CMOS chip test ," in Proceedings of the 1991 International

Test Conference, pp. 311- 318, 1991.

[27] J . Karlsson , U. Gunnefto , P. Liden, and J. Torin, "Two fault injection techniques

for test of fault handling mechanisms," in Proceedings of the 1991 International

Test Conference, pp. 140- 149, 1991.

[28] M. Marzouki, J. Laurent , and B. Courtois , "Coupling electron-beam probing

with knowledge-based fault localization," in Proceedings of the 1991 Interna

tional Test Conference, pp. 238- 247, 1991.

143

[29] J. Salinas, Y. Shen, and F . Lombardi , "A sweeping line approach to interconnect

testing," IEEE Transactions on Computers, vol. 45, pp. 917-929, August 1996.

[30] H. Wu, N. Zhuang, and M. Perkowski , "Novel CMOS scan design for VLSI

testability," in Proceedings of the 23rd International Symposium on Multiple

Valued Logic, pp. 82- 86, 1993.

[31] C. Hwang, M. Ismail, and J. DeGroat, "On-chip IDDQ testability schemes for

detecting multiple faults in CMOS IC's," IEEE Journal of Solid-State Circuits,

vol. 31, pp. 732-739, May 1996.

[32] M. Soma, "An experimental approach to analog fault models," in Proceedings

of the IEEE 1991 Custom Integrated Circuits Conference, May 1991.

[33] C. Metra, M. Favalli , M. Olivo, and B. Ricco, "On-line detection of bridging

and delay faults in functional blocks of CMOS self-checking circuits," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 16, pp. 770-776, July 1997.

[34] Y. Crouzet and C. Landrault , "Design specification of a self-checking detection

processor," in Proceedings of the 10th Symposium on Fault-Tolerant Computing,

pp. 2775- 277, 1980.

[35] N. Gaitanis , "A totally self-checking error indicator ," IEEE Transadctions on

Computers, vol. C-34, pp. 758-161, August 1985.

[36] J. H. Patel and L. Y. Fung, "Concurrent error detection in ALU 's by recom

puting with shifted operands," IEEE Transactions on Computers, vol. C-31,

pp. 589- 595, July 1982.

[37] S. S. Appleton, S. V. Morton, and M. J . Liebelt, "Technique for high speed

asynchronous pipeline control," Electronics Letters, vol. 32 , pp. 1973- 1974, Oc

tober 10 1996.

144

[38] E. Grass and S. Jones , "Activity-monitoring completion-detection (AMCD): A

new approach to achieve self-timing," Electronics Letters, vol. 32 , pp. 86-88 ,

January 18 1996.

[39] M. Renaudin , B. Elhassan, and A. Guyot , "A new asynchronous pipeline scheme

- applications to the design of a self-timed ring divider," IEEE Journal of Solid

State Circuits , vol. 31, pp. 1001- 1013, July 1996.

[40] A. Ishii, C.Leiserson, and M. Papaefthymiou, "Optimizing 2-phase, level-clocked

circuitry," Journal of the ACM, vol. 44, pp. 148- 199, January 1997.

145

Bibliography

Abramovici, M., Breuer, M., and Friedman, A., Digital Systems Testing and Testable

Design. New York: IEEE Press, 1990.

Appleton, S. S., Morton, S. V., and Liebelt , M. J. , "Technique for high speed asyn

chronous pipeline control," Electronics Letters, vol. 32, pp. 1973- 1974, October 10

1996.

Belabbes, N., Guterman, A. J. , Savaria, Y. , and Dagenais, M. , "Ratioed voter circuit

for testing and fault tolerance in VLSI processing arrays," IEEE Transactions on

Circuits and Systems - I: Fundamental Theory and Applications, vol. 43, pp. 143-

151 , February 1996.

Bennetts, B. and Maunder, C., Notes for Tutorial 6: Boundary Scan and Other

1149.x Standards. Test Technology Committee of the IEEE Computer Society, Wash

ington, DC, October 18 1998.

Bossen, D. C. and Hsiao, M. Y. , "A system solution to the memory soft error prob

lem," IBM Journal of Research and Development, vol. 24, pp. 390-397, May 1980.

Calin, T. , Vargas , F. , Nicolaidis, M., and Velazco, R. , "A low-cost, highly reliable

SEU-tolerant SRAM - prototype and test-results," IEEE Transactions on Nuclear

Science, vol. 42 , pp. 1592- 1598, 1995.

Crouzet, Y. and Landrault , C., "Design specification of a self-checking detection

processor ," in Proceedings of the 10th Symposium on Fault-Tolerant Computing, pp.

2775- 277, 1980.

Downie, N. M. and Heath, R. W., Basic Statistical Methods. New York: Harper and

Row, Publishers , 1965.

146

Escriba, J. and Carrasco, J. A. , "Self-timed Manchester chain carry propagate

adder," Electronics Letters, vol. 32 , pp. 708- 710, April 11 1996.

Favalli, M., Olivo, P., Damiani, M. , and Ricco, B. , "Novel design for testability

schemes for CMOS IC's," IEEE Journal of Solid-State Circuits, vol. 25 , pp. 1239-

1246, October 1990.

Foster, C., Computer Architecture. New York: Van Nostrand Reinhold Company,

1976.

Gaitanis, N. , "A totally self-checking error indicator," IEEE Transadctions on Com

puters, vol. C-34, pp. 758- 761 , August 1985.

Goldsmith, A. and Varaiya, P., "Capacity of fading channels with channel side infor

mation," IEEE Transactions on Information Theory, vol. 43 , pp. 1986-1992, Novem

ber 1997.

Grass, E. and Jones , S. , "Activity-monitoring completion-detection (AMCD): A new

approach to achieve self-timing," Electronics Letters, vol. 32, pp. 86- 88, January 18

1996.

Hamilton, S., "Semiconductor research corporation: Taking Moore's law into the

next century," Computer, vol. 32 , pp. 43- 48, January 1999.

Hao, H. and McCluskey, E., ""Resistive shorts" within CMOS gates," in Proceedings

of the 1991 International Test Conference, pp. 292-301, 1991.

Hashimoto, T. and Taguchi, M., "Performance of explicit error-detection and thresh

old decision in decoding with erasures," IEEE Transactions on Information Theory,

vol. 43 , pp. 1650-1655, September 1997.

Henderson, C., Soden, J ., and Hawkins, C., "The behavior and testing implications

of CMOS IC logic gate open circuits," in Proceedings of the 1991 International Test

Conference, pp. 302- 310, 1991.

Hennessy, J. and Patterson, D., Computer Architecture - A Quantitative Approach.

San Mateo, CA: Morgan Kaufmann Publishers, Incorporated, 1990.

147

Hwang, C., Ismail , M. , and DeGroat, J., "On-chip lDDQ testability schemes for de

tecting multiple faults in CMOS IC 's," IEEE Journal of Solid-State Circuits, vol. 31,

pp. 732-739, May 1996.

Ishii , A., C.Leiserson, and Papaefthymiou, M., "Optimizing 2-phase, level-clocked

circuitry," Journal of the ACM, vol. 44, pp. 148- 199, January 1997.

Itoh, K., Sasaki, K., and Nakagome, Y., "Trends in low-power RAM circuit tech

nologies ," Proceedings of the IEEE, vol. 83, pp. 524- 543, April 1995.

Jacamet, M. and Guggenbuhl, W., "Layout-dependent fault analysis and test synthe

sis for CMOS circuits ," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 12, pp. 888-899, June 1993.

Jou, S. J. and Chung, I. Y., "Low-power self-timed circuit-design technique," Elec

tronics Letters, vol. 33, pp. 110-111 , January 16 1997.

Juhnke, T. and Klar, H. , "Calculation of the soft error rate of submicron CMOS

logic circuits," IEEE Journal of Solid-State Circuits, vol. 30, pp. 830- 834, July 1995.

Karlsson , J ., Gunneflo, U., Liden, P. , and Torin, J ., "Two fault injection techniques

for test of fault handling mechanisms," in Proceedings of the 1991 International Test

Conference, pp. 140-149, 1991.

Keren, 0. and Litsyn, S. , "A class of array codes correcting multiple column era

sures," IEEE Transactions on Information Theory ," vol. 43, pp. 1843-1851, November

1997.

Kohavi, Z., Switching and Finite Automata Theory. New York: McGraw-Hill Book

Company, 1978.

Lam, W. K. C. and Brayton, R., Timed Boolean Functions - A Unified Formalism

for Exact Timing Analysis. Boston: Kluwer Academic Publishers, 1994.

Lien, J. and Breuer, M., "Maximal diagnosis for wiring networks ," in Proceedings of

the 1991 International Test Conference, pp. 96-105, 1991.

Mano, M. , Computer System Architecture. Englewood Cliffs, NJ: Prentice-Hall , In

corporated, 1982.

148

Marzouki , M., Laurent, J. , and Courtois, B., "Coupling electron-beam probing with

knowledge-based fault localization ," in Proceedings of the 1991 International Test

Conference, pp. 238-247, 1991.

Matsuzawa, K. and Fujiwara, E., "Masking asymmetric line faults using sem1-

distance codes," The Transactions of the IEICE, vol. E73, pp. 1278-1286, August

1990.

Matzke, D. , "Will physical scalability sabotage performance gains?," Computer,

vol. 30, pp. 37- 39, September 1997.

McCluskey, E., Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall, 1986.

Mendenhall , W. and Scheaffer, R. , Mathematical Statistics with Applications. North

Scituate, MA: Duxbury Press, 1973.

Metra, C. , Favalli , M., Olivo, M. , and Ricco, B. , "On-line detection of bridging and

delay faults in functional blocks of CMOS self-checking circuits," IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems , vol. 16, pp. 770-776,

July 1997.

Mowle, F. J. , A Systematic Approach to Digital Logic Design. Reading, MA: Addison

Wesley Publishing Company, 1976.

Patel , J. H. and Fung, L. Y. , "Concurrent error detection in ALU 's by recomputing

with shifted operands," IEEE Transactions on Computers, vol. C-31, pp. 589- 595,

July 1982.

Rao, T. R. N. and Fujiwara, E., Error-Control Coding for Computer Systems. En

glewood Cliffs , NJ : Prentice-Hall , Incorporated , 1989.

Renaudin, M. , Elhassan, B. , and Guyot, A., "A new asynchronous pipeline scheme -

applications to the design of a self-timed ring divider ," IEEE Journal of Solid-State

Circuits , vol. 31, pp. 1001- 1013, July 1996.

Salinas, J., Shen, Y. , and Lombardi, F., "A sweeping line approach to interconnect

testing," IEEE Transactions on Computers, vol. 45 , pp. 917-929 , August 1996.

149

Schlett , M. , "Trends in embedded-microprocessor design," Computer, vol. 31 , pp.

44- 49, August 1998.

Sit, V. W. Y., Choy, C. S. , and Chan, C. F., "Use of current sensing technique

in designing asynchronous static RAM for self-timed systems," Electronics Letters,

vol. 33, pp. 667-668 , April 10 1997.

Soma, M., "An experimental approach to analog fault models ," in Proceedings of the

IEEE 1991 Custom Integrated Circuits Conference, May 1991.

Sternheim, E., Singh, R., and Trivedi, Y., Digital Design with Verilog HDL. Cuper

tino, CA: Automata Publishing Company, 1990.

Stone, H. S., High-Performance Computer Architecture. Reading, MA: Addison

Wesley Publishing Company, 1990.

Storey, T., Maly, W., Andrews, J. , and Miske, M., "Stuck fault and current testing

comparison using CMOS chip test ," in Proceedings of the 1991 International Test

Conference, pp. 311- 318, 1991.

Suhir, E., "Flip-chip solder joint interconnections and encapsulants in silicon-on

silicon MCM technology: Thermally induced stresses and mechanical reliability," m

Proceedings of the 1993 IEEE Multi-Chip Module COnference, pp. 92- 99, 1993.

Vargas, F. and Nicolaidis, M., "SEU-tolerant SRAM design based on current moni

toring," in Proceedings of the 24th International Symposium on Fault-Tolerant Com

puting, pp. 105- 115, 1994.

Weiss , P. , "Quantum internet ," Science News, vol. 155, pp. 220- 221 , April 3 1999.

Weste, N. and Eshraghian, K., Principles of CMOS VLSI Design - A Systems Per

spective. Reading, MA: Addison-Wesley Publishing Company, 1988.

Wu , H., Zhuang, N., and Perkowski, M., "Novel CMOS scan design for VLSI testa

bility," in Proceedings of the 23rd International Symposium on Multiple- Valued Logic,

pp . 82-86, 1993.

150

	On the Use of Undefined Logic Values in Digital VLSI
	Terms of Use
	Recommended Citation

	dissert_armitage_1999_001
	dissert_armitage_1999_002
	dissert_armitage_1999_003
	dissert_armitage_1999_004
	dissert_armitage_1999_005
	dissert_armitage_1999_006
	dissert_armitage_1999_007
	dissert_armitage_1999_008
	dissert_armitage_1999_009
	dissert_armitage_1999_010
	dissert_armitage_1999_011
	dissert_armitage_1999_012
	dissert_armitage_1999_013
	dissert_armitage_1999_014
	dissert_armitage_1999_015
	dissert_armitage_1999_016
	dissert_armitage_1999_017
	dissert_armitage_1999_018
	dissert_armitage_1999_019
	dissert_armitage_1999_020
	dissert_armitage_1999_021
	dissert_armitage_1999_022
	dissert_armitage_1999_023
	dissert_armitage_1999_024
	dissert_armitage_1999_025
	dissert_armitage_1999_026
	dissert_armitage_1999_027
	dissert_armitage_1999_028
	dissert_armitage_1999_029
	dissert_armitage_1999_030
	dissert_armitage_1999_031
	dissert_armitage_1999_032
	dissert_armitage_1999_033
	dissert_armitage_1999_034
	dissert_armitage_1999_035
	dissert_armitage_1999_036
	dissert_armitage_1999_037
	dissert_armitage_1999_038
	dissert_armitage_1999_039
	dissert_armitage_1999_040
	dissert_armitage_1999_041
	dissert_armitage_1999_042
	dissert_armitage_1999_043
	dissert_armitage_1999_044
	dissert_armitage_1999_045
	dissert_armitage_1999_046
	dissert_armitage_1999_047
	dissert_armitage_1999_048
	dissert_armitage_1999_049
	dissert_armitage_1999_050
	dissert_armitage_1999_051
	dissert_armitage_1999_052
	dissert_armitage_1999_053
	dissert_armitage_1999_054
	dissert_armitage_1999_055
	dissert_armitage_1999_056
	dissert_armitage_1999_057
	dissert_armitage_1999_058
	dissert_armitage_1999_059
	dissert_armitage_1999_060
	dissert_armitage_1999_061
	dissert_armitage_1999_062
	dissert_armitage_1999_063
	dissert_armitage_1999_064
	dissert_armitage_1999_065
	dissert_armitage_1999_066
	dissert_armitage_1999_067
	dissert_armitage_1999_068
	dissert_armitage_1999_069
	dissert_armitage_1999_070
	dissert_armitage_1999_071
	dissert_armitage_1999_072
	dissert_armitage_1999_073
	dissert_armitage_1999_074
	dissert_armitage_1999_075
	dissert_armitage_1999_076
	dissert_armitage_1999_077
	dissert_armitage_1999_078
	dissert_armitage_1999_079
	dissert_armitage_1999_080
	dissert_armitage_1999_081
	dissert_armitage_1999_082
	dissert_armitage_1999_083
	dissert_armitage_1999_084
	dissert_armitage_1999_085
	dissert_armitage_1999_086
	dissert_armitage_1999_087
	dissert_armitage_1999_088
	dissert_armitage_1999_089
	dissert_armitage_1999_090
	dissert_armitage_1999_091
	dissert_armitage_1999_092
	dissert_armitage_1999_093
	dissert_armitage_1999_094
	dissert_armitage_1999_095
	dissert_armitage_1999_096
	dissert_armitage_1999_097
	dissert_armitage_1999_098
	dissert_armitage_1999_099
	dissert_armitage_1999_100
	dissert_armitage_1999_101
	dissert_armitage_1999_102
	dissert_armitage_1999_103
	dissert_armitage_1999_104
	dissert_armitage_1999_105
	dissert_armitage_1999_106
	dissert_armitage_1999_107
	dissert_armitage_1999_108
	dissert_armitage_1999_109
	dissert_armitage_1999_110
	dissert_armitage_1999_111
	dissert_armitage_1999_112
	dissert_armitage_1999_113
	dissert_armitage_1999_114
	dissert_armitage_1999_115
	dissert_armitage_1999_116
	dissert_armitage_1999_117
	dissert_armitage_1999_118
	dissert_armitage_1999_119
	dissert_armitage_1999_120
	dissert_armitage_1999_121
	dissert_armitage_1999_122
	dissert_armitage_1999_123
	dissert_armitage_1999_124
	dissert_armitage_1999_125
	dissert_armitage_1999_126
	dissert_armitage_1999_127
	dissert_armitage_1999_128
	dissert_armitage_1999_129
	dissert_armitage_1999_130
	dissert_armitage_1999_131
	dissert_armitage_1999_132
	dissert_armitage_1999_133
	dissert_armitage_1999_134
	dissert_armitage_1999_135
	dissert_armitage_1999_136
	dissert_armitage_1999_137
	dissert_armitage_1999_138
	dissert_armitage_1999_139
	dissert_armitage_1999_140
	dissert_armitage_1999_141
	dissert_armitage_1999_142
	dissert_armitage_1999_143
	dissert_armitage_1999_144
	dissert_armitage_1999_145
	dissert_armitage_1999_146
	dissert_armitage_1999_147
	dissert_armitage_1999_148
	dissert_armitage_1999_149
	dissert_armitage_1999_150
	dissert_armitage_1999_151
	dissert_armitage_1999_152
	dissert_armitage_1999_153
	dissert_armitage_1999_154
	dissert_armitage_1999_155
	dissert_armitage_1999_156
	dissert_armitage_1999_157
	dissert_armitage_1999_158
	dissert_armitage_1999_159
	dissert_armitage_1999_160
	dissert_armitage_1999_161
	dissert_armitage_1999_162
	dissert_armitage_1999_163
	dissert_armitage_1999_164
	dissert_armitage_1999_165
	dissert_armitage_1999_166

