Three-Dimensional Model-Observation Intercomparison in the Loop Current Region

Kellen C. Rosburg

University of Rhode Island, rosburk@my.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Recommended Citation
https://digitalcommons.uri.edu/theses/799

This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
MASTER OF SCIENCE THESIS
OF
KELLEN C. ROSBURG

APPROVED:
Masters Committee:

Major Professor Kathleen Donohue

D. Randolph Watts

Stephen Licht

Nasser H. Zawia

DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2015
ABSTRACT

Accurate high-resolution ocean models are required for hurricane and oil spill pathway predictions, and to enhance the dynamical understanding of circulation dynamics. In order to investigate Loop Current dynamics, including eddy-shedding mechanisms and the forcing of deep flow in the Gulf of Mexico, a mapping array centered near 26°N 87°W was deployed from April 2009 through November 2011. The array provides a unique dataset for studying the Loop Current eddy cycle: it was centered in the region of Loop Current eddy formation/separation and during its 30-month deployment observed four Loop Current eddy events with measurements throughout the water column at daily temporal and mesoscale spatial resolution. This dataset provides the critical deep-velocity information required for comprehensive model-data intercomparision, a necessary first step in order to use a model for dynamical interpretation. The 1/25° data-assimilating Gulf of Mexico HYbrid Coordinate Ocean Model (HYCOM31.0) represents one of the highest resolution data-assimilating simulations of the full Gulf of Mexico region. This study compares output from HYCOM31.0 to the array observations to assess HYCOM31.0’s viability for use in studies of Loop Current processes, focusing on Loop Current path variability and upper-deep layer coupling during eddy separation. Point-to-point array averaged correlation was 0.93 for sea surface height (SSH), and 0.93, 0.63, and 0.75 in the thermocline for temperature, zonal, and meridional velocity, respectively. Peaks in modeled eddy kinetic energy during eddy separations were consistent with observations, but modeled deep eddy kinetic energy was half the observed amplitude. Loop Current meander phase speeds and wavenumbers, and site-to-site SSH coherence indicate high model accuracy, particularly for periods longer than 20 days. The model reproduced observed patterns indicative of baroclinic instability, that is a vertical offset with deep stream function leading upper stream function in the along-stream direction. While modeled deep eddies differed slightly spatially and temporally, the joint development of an upper-ocean meander along the eastern side of the Loop Current and the successive propagation of upper-deep cyclone/anticylone pairs that precede separation were contained within the
model solution. Overall, the model-observation intercomparison indicated that the 1/25° Gulf of Mexico HYCOM is well suited for the study of Loop Current eddy formation and separation, offering a larger spatial and temporal window than observational arrays.
ACKNOWLEDGEMENTS

I would like to wholeheartedly express my gratitude to my advisor, Kathy Donohue, for her continued support and guidance throughout this work. I also wish to thank Randy Watts for his insightful advice regarding research, careers, and everything else. Karen Tracy deserves acknowledgement, not just for the seemingly endless supply of peanut M&Ms in the jar by the printer, but also for her frequent help with questions about research, MATLAB routines, and life, as well as for providing the \LaTeX template used to create this thesis. I also would like to thank both Karen Tracey and Maureen Kennelly for sharing their vast knowledge of the various observational datasets used in this study. I wish also to thank Eric Chassignet for his input to this research. Thanks are also due to Stephen Licht and Jason Dahl for serving on my various committees. I would also like to thank David Smith and Meredith Clark for their moral support and help navigating the maze of paperwork, and Austen Blair, Philip Robinson, Rob Pockalny, and Brice Loose for their intellectual and moral support. I wish to acknowledge the financial support of the University of Rhode Island and the National Science Foundation. Lastly, I thank the University of Rhode Island Graduate School of Oceanography’s Summer Undergraduate Research Fellowship in Oceanography (SURFO) program for giving me the opportunity to explore the field of physical oceanography, an experience which ultimately led to my three amazing years at the Graduate School of Oceanography and the beginning of my career in oceanography.
PREFACE

This thesis presents an in-depth intercomparison between an observational physical oceanographic dataset and a sophisticated ocean simulation of the Gulf of Mexico region, and is presented in manuscript format reflecting the submission of this manuscript to *Dynamics of Atmospheres and Oceans*. A subset of this research was presented at the 2014 Ocean Sciences Meeting in Honolulu, Hawaii under the title: “Comparison of the 1/25° assimilated Gulf of Mexico HYCOM with observations in the Loop Current Eddy formation region.”
TABLE OF CONTENTS

Abstract ... ii

Acknowledgements ... iv

Preface ... v

Table of Contents .. vi

List of Tables .. vii

List of Figures .. viii

MANUSCRIPT 1 Three-Dimensional Model-Observation Intercomparison in the Loop Current Region .. 1

 1.1 Introduction ... 2
 1.2 Data & Methods .. 7
 1.2.1 Observations .. 7
 1.2.2 Model .. 9
 1.2.3 Methodology .. 11
 1.3 Time-Series Point Comparisons 12
 1.4 Broad-Scale Spatial Patterns 18
 1.4.1 Sea Surface Height Variance in Frequency Space 19
 1.5 Phenomenological Comparisons 21
 1.5.1 LC Meander Characteristics 21
 1.5.2 Stream Function Case Study: Upper-Deep Layer Coupling .. 30
 1.6 Discussion and Conclusion 39

References .. 41
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Mode one CEOF variance by band and eddy</td>
<td>27</td>
</tr>
<tr>
<td>1.2</td>
<td>Observed and modeled Loop Current meander statistics</td>
<td>27</td>
</tr>
<tr>
<td>1.3</td>
<td>Phase speed vs. wavenumber from free-running expt_02.2</td>
<td>30</td>
</tr>
<tr>
<td>1.4</td>
<td>COEF mode variance for free-running expt_02.2</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1.1 Schematic of the Loop Current Eddy cycle 3
1.2 Map of the DynLoop array .. 5
1.3 Example temperature and velocity time series at mooring a1 13
1.4 Taylor diagrams of velocity, temperature, and sea surface height comparisons .. 15
1.5 Site-to-site mean-squared coherence between PIES and HYCOM 17
1.6 Maps and time series of eddy kinetic energy at 200 m depth 18
1.7 Maps and time series of deep eddy kinetic energy 19
1.8 Maps of standard deviation of observed and modeled sea surface height fields and correlation between the two 20
1.9 SSH CEOFs for observations and model during the Eddy Ekman time period 23
1.10 Same as Figure 1.9, but for Eddy Franklin 24
1.11 Same as Figure 1.9, but for Eddy Hadal 25
1.12 Same as Figure 1.9, but for Eddy Icarus 26
1.13 Phase speed vs. wavenumber comparison 28
1.14 Observed, data-assimilating, and free-running model phase speed vs. wavenumber comparison .. 29
1.15 SSH CEOFs from free-running HYCOM expt_02.2 during model dates 01 Jan. to 15 Mar. 1957 31
1.16 Same as Figure 1.15, but for free-running model dates 01 May – 01 Aug. 1957 32
1.17 Same as Figure 1.15, but for free-running model dates 01 Apr. – 15 Jul. 1958 33
1.18 Upper-deep layer coupling case study for Eddy Ekman 36
1.19 Upper-deep layer coupling case study for Eddy Franklin 37
1.20 Upper-deep layer coupling case study for Eddy Hadal 38
MANUSCRIPT 1

Three-Dimensional Model-Observation Intercomparison in the Loop Current Region

Kellen C. Rosburg and Kathleen A. Donohue
Graduate School of Oceanography
University of Rhode Island
Narragansett, RI

Eric P. Chassignet
Center for Ocean-Atmosphere Prediction Studies
Florida State University
Tallahassee, FL

Prepared for submission to Dynamics of Atmospheres and Oceans
1.1 Introduction

As part of the North Atlantic subtropical western boundary current system, the Loop Current (LC) enters the Gulf of Mexico (GOM) from the Caribbean Sea as the continuation of the Yucatán Current (YC), circulates anticyclonically within the Gulf forming a large loop, exits through the Florida Straits, and becomes the Florida Current after turning north along the eastern side of Florida. On irregular intervals, between 3–17 months, a large (200–400 km diameter) anticyclonic eddy, a LC Eddy (LCE), separates from the LC (Sturges and Leben, 2000; Dukhovskoy et al., 2015). The separation process, shown schematically in Figure 1.1, begins with the northward intrusion of the LC into the GOM, followed by the necking down of the LC and eventual pinching-off of a LCE. After separation, the LC retreats southward to the so-called port-to-port mode while the newly shed LCE propagates westward across the Gulf.

There is a strong need for predictive skill for LCE separation. For example, strong currents associated with the LC and LCEs, as well as the strong deep currents generated during LCE separation, are hazardous to deep-water oil drilling operations. The warm cores of LCEs are also known to modify the intensity of passing hurricanes (e.g. Cione and Uhlhorn 2003; Yablonsky and Ginis 2012; Lin et al. 2008). Deep circulation, especially along the steep escarpments of the Gulf’s continental slope play an important role in the rapid dispersal of contaminants (e.g. Paris et al. 2012; Nguyen et al. 2015).

Efforts have been made to predict and model LCE separation. Using an idealized vorticity model, Lugo-Fernandez and Leben (2010) confirmed a linear relationship between the latitude of LC retreat and the length of time between LCE separations, a trend previously seen in satellite altimetry (Leben, 2005). Maul (1977) hypothesized a linkage between the rate of change of LC volume and deep transport through the Yucatán Channel. This idea is supported by 7.5 months of YC mooring observations (Bunge et al., 2002) and the recent analysis of a 54-year free-running 1/25° model (Nedbor-Gross et al., 2014). Chang and Oey (2011), on the other hand, suggest that mass exchange between the eastern and western basins, as well as exchange between the LC and deeper waters, play a significant role in the separation process. Numerical studies also point to the importance of instability processes, the coupling between upper and deep circulation, and the
Figure 1.1. Maps of sea surface height depicting the three-stage Loop Current Eddy cycle: (a) northward intrusion/growth of the Loop Current (LC), (b) pinch-off of the anticyclonic ring, and (c) final separation and subsequent westward propagation of the eddy, and retreat of the LC to port-to-port mode. FC is Florida Current. YC is Yucatan Current. Sea surface height from the 1/25° Gulf of Mexico Hybrid Coordinate Ocean Model, GOMl0.04 expt_31.0.
generation of bursts of strong deep eddies during LCE separation. Examining instabilities exhibited in upper and deep pressure fields of a two-layer model, Hurlburt and Thompson (1980, 1982) found deep circulation driven by mixed baroclinic and barotropic instabilities. During LCE separation and detachment events, deep circulation is dominated by a field of intense deep eddies that propagate and couple with vortices of the upper-ocean LC (Sturges et al., 1993; Chérubin et al., 2005). Baroclinic instabilities near Campeche Bank and the West Florida Shelf have also been identified as a possible mechanism for the generation of deep eddies that facilitate LCE detachment (Chérubin et al., 2005; Oey, 2008). Finally, Le Hénaff et al. (2012) suggest that deep eddies spin up as the LC moves off the Mississippi Fan. How well numerical models predict or simulate deep currents is not well documented owing to sparse observations of circulation below the surface and in particular below the thermocline.

In 2009, a comprehensive field study “Observations and Dynamics of the Loop Current” (DynLoop) was undertaken (Hamilton et al., 2014). Funded by the Bureau of Ocean Energy Management (BOEM), DynLoop aimed to investigate LC circulation dynamics, eddy-shedding mechanisms, and forcing of deep flow. The study utilized an in situ mapping array centered in the LC (Figure 1.2) that included nine full water column moorings, seven near-bottom moorings, and 25 pressure sensing inverted echo sounders (PIES). The array provides a unique dataset for studying the LCE cycle: it was centered in the region of LCE formation/separation and during its 30-month deployment observed four LCE events with daily measurements throughout the water column at mesoscale resolution. The dataset from this study provides critical deep-velocity information required for a comprehensive 3D model-data intercomparison.

Through advances in modeling, advanced assimilation techniques, and increased computational power, modern predictive ocean models reproduce surface currents to a high degree of accuracy. One example is the HYbrid Coordinate Ocean Model (HYCOM). Because of the demonstrated application of global- and basin-scale real time ocean predictions, the US Navy has transitioned HYCOM into operational use at the Naval Oceanographic Office (Chassignet et al., 2009; Cummings and Smedstad, 2013; Metzger et al., 2014). The high-resolution 1/25° regional-scale data-assimilative GOM HYCOM has undergone a number of iterations and im-
Figure 1.2. Map of DynLoop mooring array, indicating locations of tall-moorings (gray filled stars), near-bottom moorings (triangles), and PIES (black filled circles), along with satellite altimeter exact repeat ground track coverage for OSTM/Jason-2 (solid) and Jason-1 tandem mission (dashed), as well as bathymetry (gray contours) at 500 m intervals.
provements. The current version, 1/25° GOM HYCOM expt_31.0 (hereafter HYCOM31.0) is one of the highest resolution and most advanced data-assimilative numerical models available for studies and predictions of GOM circulation. HYCOM31.0 assimilates predominately surface measurements from remotely sensed satellite altimetry and temperature, as well as temperature and salinity profiles, but does not incorporate deep (> 2000 m) observations. Previous validation of HYCOM includes comparison to other models, to SST, SSS (salinity), SSH, and ocean color (Chassignet et al., 2005, 2007, 2009), and to airborne profiles of near-surface temperature and 20 °C isotherm depth (Shay et al., 2013). Scott et al. (2010) did compare global HYCOM ocean forecasting systems to a global current meter record dataset that included observations below 2000 m depth, but no comparisons to sub-surface observations in the GOM have been conducted.

The overarching goal of this study is to assess the model’s viability for use in studies of LC processes. Here, we focus on two aspects: LC path variability and vertical coupling between the upper and deep circulation during LCE separation. The term LC Frontal Eddy has been applied to describe variability along the LC path (see Le Hénaff et al. 2014 for a comprehensive review). LC Frontal Eddies are thought to play a role in LCE separation (e.g. Cochrane 1972; Chérubin et al. 2005; Schmitz 2005). In SST and SSH, this variability appears as LC meanders and cyclonic eddy-like features that propagate along the LC path (e.g. Walker et al. 2003). Here, we choose to term variability along the LC path as “LC meanders” rather then LC Frontal Eddies to reinforce the concept that the rich variability along the LC path encompasses a wide range of spatial and temporal scales, and more importantly that multiple dynamical processes are likely responsible for the variability.

The DynLoop analysis of LC meanders determined that within the mesoscale band, 100 to 3 days, wavelengths are between 460 km to 230 km with phase speeds ranging between 8 to 50 km d^{-1} (Hamilton et al., 2014). Moreover, that study and Le Hénaff et al. (2014) demonstrate that variability is strongest for periods between 100 and 40 days. Long-wavelength low-frequency meanders were found to be restricted to east of LC, corroborating the early findings of Vukovich (1988) and the recent analysis of Le Hénaff et al. (2014). These long-wavelength meanders
form along the eastern edge of the LC prior to eddy separation. Development of the upper meander is accompanied by elevated deep eddy kinetic energy and the formation of a deep cyclone (anticyclone), which leads the upper-ocean meander trough (crest) by roughly a quarter wavelength in a pattern consistent with baroclinic instability.

Observational studies are inherently limited both spatially and temporally, and numerical simulations provide the larger space and time window required for a deeper dynamical understanding. For example, we ultimately seek to determine what triggers the growth of long-wavelength low-frequency meanders, the role of topography in stabilizing or destabilizing the LC, and how topography dictates the pathways of the deep energy generated during LCE formation. This preliminary 3D intercomparison is a necessary first step in order to use the model for dynamical interpretation.

A detailed description of the observations, model, and methodologies used in this study is provided in Section 1.2. Section 1.3 outlines the findings of our time series and point-to-point statistical comparisons, followed by the results of broad-scale spatial comparisons (SSH variance and EKE distributions) in Section 1.4. In Section 1.5, we present a phenomenological comparison of a subset of the processes involved in the LCE cycle. The results of this study are discussed in the broader context of the literature in Section 1.6.

1.2 Data & Methods

1.2.1 Observations

Observations derive from the comprehensive DynLoop field study in the GOM, which included a large mooring array centered near 26° N 87°W (Figure 1.2). This array produced a unique dataset: the array, deployed for nominally 30 months from April 2009 to November 2011, captured three LCE separations and the initial detachment of a fourth LCE, the instrumentation provided full-water column observations, and the instrument spacing resolved the mesoscale circulation. Details regarding the full suite of instrumentation and processing are provided in Hamilton et al. (2014).

Nine tall moorings sampled the full water column. Point current meters recorded velocities
at 600, 900, 1300, and 2000 meters depth, with additional current meters located 100 meters above bottom (mab). Near-surface currents were profiled by an upward-looking 75 kHz ADCP situated at 450 meters depth. Temperature sensors were located at 75, 150, 250, 350, 525, 600, 750, 900, 1100, 1300, 1500, and 2000 meters depth, as well as 100 mab. Seven additional near-bottom moorings had a single current meter 100 mab. Twenty-five pressure sensing inverted echo sounders (PIES) were deployed with horizontal resolution of ∼53 km. PIES, moored at the ocean floor, record bottom pressure and the round trip travel time, τ, of emitted 12 kHz sound pulses. Mooring velocity, temperature, τ, and bottom pressure were filtered with a 72-hour 4th order Butterworth filter and subsampled at 24-hour intervals. A subset of PIES and tall moorings were aligned along altimeter ground tracks (Figure 1.2).

Vertical profiles of temperature, salinity, and specific volume anomaly were calculated from τ using a look-up table constructed from historical hydrography. Through optimal interpolation (OI; Bretherton et al. 1976) mapping, horizontal gradients of specific volume anomaly yielded mapped geostrophic velocity referenced to zero at the ocean bottom. We term this field baroclinic referenced to the bottom or bcb. Simultaneous OI mapping of deep currents and pressure were used to reference the geostrophic velocities. We term this field reference or ref. Absolute SSH was determined with PIES by combining a reference level sea surface height (SSH_{ref}), 3000-dbar pressures converted to height (pressure divided by gravity and density), with baroclinic SSH referenced to the bottom (SSH_{bcb}), surface geopotentials referenced to 3000 dbar converted to height (geopotential divided by gravity). Estimated PIES SSH error is 5.7 cm (Hamilton et al., 2014). In this work, we use absolute SSH for the model comparisons. While the SSH_{ref} has important dynamic contributions, for the DynLoop PIES sites the variance of the SSH signal is dominated by SSH_{bcb}: 98% of the total SSH variance and 96% of mesoscale band (100–3 day) SSH variance is due to variance in SSH_{bcb}.

The DynLoop array provides daily maps of temperature, density, sea surface height, and geostrophic velocity at mesoscale resolution. Hamilton et al. (2014) compared PIES-derived temperature and found correlations greater than 0.92 at all depths and above 0.975 between 250 and 750 meters. Their comparisons for velocity found correlation coefficients above 0.89. These
comparisons give a high level of confidence in the mapped fields.

The Colorado Center for Astrodynamics Research (CCAR) objectively mapped historical mesoscale altimeter data reanalysis product (Leben et al., 2002) was used to determine the position of the LC in the Gulf. The satellite altimeter data available for the historical reanalysis during the observational program included Jason-1, Envisat, and OSTM/Jason-2 satellite altimeters. Jason-1 tandem mission was operating during the program. Envisat transitioned from its nominal 35-day repeat orbit to a 30-day repeat orbit on 22 October 2010. A detailed description of the processing of the GOM SSH dataset can be found in Hamilton et al. (2014). Separation of LCEs from the LC was identified by the breaking of the 17-cm SSH contour in the CCAR GOM historical SSH data product. In this product, the 17-cm SSH contour closely tracks the LC (Leben, 2005).

1.2.2 Model

This study evaluates outputs from the data-assimilative 1/25° GOM HYbrid Coordinate Ocean Model (HYCOM) expt_31.0. This particular model has 1/25° horizontal resolution (≈3.5 km grid spacing) and uses 20 vertical coordinate surfaces. The model uses a hybrid vertical layering system, employing isopycnal layers in the stratified open ocean, bottom-following σ-coordinates in coastal areas, and fixed pressure-coordinates in the mixed layer (Bleck, 2002). Interface depths change at each time step to reflect thermohaline variability, and layers are more closely spaced in the upper ocean. Outputs are interpolated to a nominal latitude-longitude-depth grid and archived in NetCDF format. The model is run in near real time at the Naval Oceanographic Office (NAVOCEANO) Major Shared Resource Center to produce seven-day forecasts and four-day hindcasts. Here, analysis is performed on archived hindcast data spanning 15 May 2009 to 23 October 2011. This range was chosen to encompass available model output during a unified period of high data return from mooring instruments. Hourly hindcast data are publicly available on the COAPS HYCOM data server (http://hycom.org/dataserver). For a detailed description of the model and its outputs, the reader is referred to http://hycom.org/data/gom10pt04/expt-31pt0. For a detailed description of HYCOM, the reader is referred to Bleck (2002), Chassignet et al.
HYCOM31.0 uses the 3D-V AR Navy Coupled Ocean Data Assimilation (NCODA) system (Cummings, 2005; Cummings and Smedstad, 2013). NCODA assimilates all available observations. These include surface information from satellites (SST and SSH), plus in situ temperature and salinity profiles from XBTs (expendable bathythermographs), CTDs (conductivity-temperature-depth), gliders and Argo floats (Chassignet et al., 2007, 2009; Cummings and Smedstad, 2013; Metzger et al., 2014). Satellite altimetry for NCODA comes from the NAVOCEANO Altimeter Data Fusion Center, which combines SSH from Jason-1, OSTM/Jason-2, Geosat, and Envisat. Vertical projection of the surface observations is achieved via generation of synthetic profiles using the Modular Ocean Data Analysis System (MODAS; Fox et al. 2002).

Midnight snapshots were used for this study: 00z model hindcasts were compiled into time series and low-passed with a 72-hour 4th order Butterworth filter. This filtering paralleled the treatment of the DynLoop observations. For point-to-point temperature and model-to-mooring velocity comparisons at tall mooring sites, model data from the nearest model grid point to the tall mooring was used. Differences between mooring locations and nearest model grid point were less than 2.2 km. The tall moorings experienced “blow-down” or “draw-down” during time periods of strong currents. This drew instrumentation below its nominal depth. Therefore, measurement depth \(p(t) \) varied with time. For point comparisons, model temperature and velocity were also vertically interpolated to \(p(t) \) for each moored sensor. If a companion pressure measurement did not exist for a current meter or temperature sensor, \(p(t) \) was constructed by linear interpolation of pressure records above and below the sensor.

Following Leben (2005) and Dukhovskoy et al. (2015), the position of the LC is tracked using the 17-cm contour in the demeaned SSH fields. Note that in this work, the SSH contours are used qualitatively to place statistical quantities, such as eddy kinetic energy and SSH variance, into the context of the LC position.
1.2.3 Methodology

Taylor diagrams display the simultaneous comparison of multiple time series (Taylor, 2001). In the Taylor diagram representation, comparisons are made to a “reference” time series. Here, the reference time series are the observations: to compare 900 m temperature at mooring a1, for example, the observational time series at this location and depth is used as a reference for comparison with the modeled equivalent. A comparison at one depth and location yields a single point on the Taylor diagram indicating correlation coefficient and root-mean-squared difference (RMSD) between the modeled and observed time series, as well as the ratio of their standard deviations ($\sigma_{hyc}/\sigma_{obs}$). Hence, the ideal comparison has a correlation of 1.0, zero RMSD, and $\sigma_{hyc}/\sigma_{obs} = 1.0$. Note that RMSD is normalized by the standard deviation of the reference series, and that this normalized value will be referred to herein simply as RMSD. Because the RMSD is normalized by standard deviation its inverse is a proxy for signal-to-noise ratio. The ratio $\sigma_{hyc}/\sigma_{obs}$ evaluates the relative magnitude of variance of a modeled time series compared to the corresponding observation (Taylor, 2001).

Array-mean site-to-site coherence was calculated from mean cross- and auto-spectral density functions using the equation:

$$C_{avg} = \frac{|\langle P_{xy} \rangle|^2}{\langle P_{xx} \rangle \langle P_{xy} \rangle},$$ \hspace{1cm} (1.1)

where C_{avg} is the array-averaged mean-squared coherence, P_{xy} is the cross spectral density between HYCOM31.0 and PIES, and P_{xx} and P_{yy} are the power spectral densities of HYCOM31.0 and PIES, respectively, at each PIES site. Angled brackets indicated a spatial average over all sites. P_{xx}, P_{yy}, and P_{xy} were calculated using Welch’s method with a 128-day Hanning window and 50% overlap (see Bendat and Piersol 2000). Error is estimated by the 95% confidence limit following Harris (1978) and Thompson (1979).

Complex Empirical Orthogonal Functions (CEOF) of mapped PIES and HYCOM31.0 SSH fields were generated for each eddy event and for four frequency bands to quantify meander propagation. CEOF spatial phase was used to determine a propagation phase speed from

$$c_p = \frac{\omega}{\delta\phi/\delta s}$$ \hspace{1cm} (1.2)
where ω is the central frequency of a given frequency band, ϕ is the spatial phase field, s is distance, and $\delta \phi/\delta s$ is the spatial phase gradient, i.e. $|k|$. Following the comparable analysis in Hamilton et al. (2014), for each CEOF, the spatial phase gradient is calculated for regions where the corresponding normalized CEOF spatial amplitude is greater than 0.5.

Model mapped stream function fields were generated by optimally interpolating HYCOM31.0 velocity fields using a process adapted from Bretherton et al. (1976), detailed in Watts et al. (1989, 2001), and applied to the DynLoop observations (Hamilton et al., 2014). A correlation length scale of 50 km was used.

1.3 Time-Series Point Comparisons

Time series of temperature, zonal, and meridional velocity from moorings and model were compared visually and statistically. Figure 1.3 provides examples of the time series at mooring a1. Time series matched well for upper-ocean temperature records (Figure 1.3a); correlation coefficients are 0.88 at 150 and 500 m depths, and 0.82 for the 900 m depth record. Note that temperatures below the thermocline (~ 900 m depth) are quite uniform, therefore temperature comparisons were restricted to the upper 900 m of the water column. Velocity time series near the surface (Figure 1.3b,c 150 m depth) also track each other well, although the correlation coefficients of 0.52 and 0.81 for zonal and meridional velocity, respectively, are slightly reduced compared those of the temperature records. Multiple time scales are evident in the temperature and 150 m velocity time series. There was a low-frequency (> 300 day) signal associated with the intrusion and retreat of the LC. In the mesoscale (100–3 day band), relatively high-frequency oscillations, $\sim 20–3$ day, tended to occur in this record as the LC entered the array, for example in May/June 2010, followed by lower-frequency variability between 100–40 day. At depth, model and velocity time series differed (Figure 1.3b,c 900 and 2900 m). Correlation coefficients dropped markedly and are not statistically different than zero. Both model and observations showed increased eddy variability during the LCE separation events, however, this enhancement was more dramatic in the observations; for example, the strong pulses in October 2009 during Eddy Ekman’s separation and August 2011 during Eddy Hadal’s separation.
Figure 1.3. Time series of observed (black) and modeled (gray) (a) temperature, (b) zonal, and (c) meridional velocity. Nominal depths are noted along the right side of each panel. Correlation coefficients between observed and modeled velocity time series are given in the lower left corners. Temperature correlation coefficients are 0.88 for the 500 and 900 m depths and 0.82 for the 900 m record. Note that y-axis limits vary.
Figure 1.4 summarizes the point-to-point statistics. Temperature comparisons above the thermocline (~600–900 m depth) were excellent (Figure 1.4c). Correlation coefficients for all moorings and depths ranged from 0.75 to 0.98, with an array average of 0.92. Degrees of freedom were determined from autocorrelations of the measurements following the methodology discussed in Bendat and Piersol (2000). The average degrees of freedom for the temperature time series was near 15. All correlations were greater than 0.482, the criteria for 95% statistical significance. Standard deviation ratios range between 0.62 and 1.27, with a slight tendency for model records deeper than ~600 m depth to have reduced variance relative to observations. The majority of temperature time-series comparisons yielded normalized RMSDs below 0.5, indicating high signal-to-noise ratio and small deviations from observations.

Comparisons between observed and modeled velocity showed mixed results with a marked distinction between upper and deep levels in both correlation and RMSD (Figure 1.4a,b): mean correlation for records above 900 m was 0.62 and 0.74, whereas at and below 900 m depth, mean correlation was 0.30 and 0.12 for zonal and meridional velocity, respectively. The average degrees of freedom for the velocity time series varied with depth reflecting the larger contribution of low-frequency variability in the upper-ocean spectra. In the upper-ocean for depths above 900 m, degrees of freedom were near 25 and correlations greater than 0.381 were significant at the 95% level. Below and at 900 m, the degrees of freedom were near 60, with 0.250 as the criteria for 95% statistical significance. Therefore, most, but not all, upper-level velocity correlations were significant. In the deep, only a handful of sites had significant correlations. RMSD were between 0.5 and 1.0 for depths less than 450 m, in contrast, RMSD were greater than 1.0 for the majority of the velocity comparison below 600 m depth. In general, ratios of modeled to observed standard deviation fell mostly below $\frac{\sigma_{hyc}}{\sigma_{ref}} = 1$ indicating that modeled velocity variance was less than observed variance, and again, this was especially so for depths greater than 900 depth (Figure 1.4). Curiously, there were differences between zonal and meridional comparison statistics. For depths above 500 m, meridional velocities had standard deviations closer to zero, smaller RMSD, and higher correlation coefficients than did zonal velocity. In contrast, for depths greater than 500 m, zonal velocity correlation coefficients, RMSD, stan-
Figure 1.4. Taylor diagram of observation-to-model correlation (blue labeled axis), normalized RMS difference (red labeled axis), and standard-deviation ratio (black labeled axis) for (a) zonal velocity, (b) meridional velocity, (c) temperature at tall-mooring sites, and (d) SSH comparisons at PIES sites. Time series depths denoted by color scaling, key provided below panels a,b for velocity and below panel c for temperature. The black dot in each panel indicates the reference point. Green (purple) filled circles in the SSH comparison (panel d) indicate PIES sites co-located (not co-located) with OSTM/Jason-2 altimeter tracks. Red and blue lines in panels a,b indicate 95% statistical significance above and below 900 m, respectively, and blue line in c shows 95% significance for all temperature comparisons.
standard deviation ratios indicated better overall agreement with observations than for meridional velocities. The reasons for this are not well understood at this time.

Our final point-to-point comparisons were between model and PIES SSH (Figure 1.4d). Similar to the upper-ocean temperature comparisons, modeled and PIES SSH agree well with one another. Correlation coefficients ranged between 0.84 and 0.97 with mean value of 0.93. Standard deviation ratios ranged from 0.82 to 1.26 with a mean of 1.03. Note, however, that comparisons at 18 of the 25 PIES sites yielded ratios greater than one (Figure 1.4d). All comparisons resulted in RMSD values lower than 0.58, with a minimum of 0.26. No distinction in statistics were found for sites on or off the OSTM/Jason-2 altimeter ground tracks. The reason for this is that, in general, high correlation coefficients occurred at points with high variance, and most of the variance derived from low-frequency variability associated with the LC intrusion and retreat cycles.

To investigate the agreement between model and observations as a function of frequency, mean-squared coherence between HYCOM31.0 and PIES SSH was calculated. At all PIES sites, coherence decreased as frequency increased (Figure 1.5). Many of the individual site-to-site coherences fell below the 95% confidence limit near a frequency of 1/20 days$^{-1}$. Array-mean coherence also fell sharply at this frequency, which corresponds to the Nyquist frequency of the Jason-1 and OSTM/Jason-2 altimetry missions that provided data assimilated by HYCOM31.0. Note that the variability for frequencies higher than 1/20 days$^{-1}$ represented a small fraction, < 2%, of the total variability, and only ~8% of the variance for mesoscale frequencies (100–3 day). While there was a sharp decrease in coherence below 1/20 d$^{-1}$, statistically significant coherence did exist at some sites for the high frequencies. We explore the spatial distribution of SSH variance further in section 1.4.1.

Point-to-point comparisons are demanding: a model may correctly simulate circulation features, but a spatial or temporal offset from observations could spoil the point-to-point comparison. Moreover, point-to-point comparisons offer limited insight into how well a model simulates a specific oceanic process. Taking this into consideration, the remainder of this paper focuses on broad-scale and feature-based intercomparison.
Figure 1.5. Site-to-site (thin lines) and array-mean (thick line) mean-squared SSH coherence between HYCOM31.0 and PIES. 95% confidence limits for individual site (horizontal dashed line) and array-mean (horizontal dash-dot line) give estimates of significance. Coherence drops around $1/20 \text{ days}^{-1}$ (vertical dashed line), near the Nyquist frequency of the Jason-1 and OSTM/Jason-2 altimetry satellites. PIES co-located (not co-located) with OSTM/Jason-2 altimeter ground tracks are denoted by black (gray) thin lines.
1.4 Broad-Scale Spatial Patterns

In the upper ocean, observed and modeled EKE compared well in terms of both spatial structure and strength. Observed and modeled EKE at 200 m depth is shown in Figure 1.6. Both fields exhibit bands of high EKE along the mean path of the LC. Amplitudes of array-averaged 200 m EKE from mapped PIES and HYCOM31.0 were comparable, with time-mean values of ~ 580 cm2 s$^{-2}$ and ~ 600 cm2 s$^{-2}$, respectively. Time series of observed and modeled array-averaged EKE match well (Figure 1.6c): peaks occurred together during time periods when the LC is positioned within the array; the correlation between the series is 0.72.

Figure 1.6. (a) Observed and (b) modeled eddy kinetic energy (EKE; contours) at 200 m depth and velocity (vectors) averaged over 15 May 2009 to 23 Oct. 2011. PIES (circles), tall-mooring (diamonds), and near-bottom mooring (triangles) locations are plotted along with bathymetry contoured at 1000, 2000, 3000 m depth (thin contours) and mean Loop Current position (blue line). (c) Time series of array-mean observed (blue) and HYCOM31.0 (red) 200 m EKE averaged over the same region, and LC area (dashed) from the CCAR SSH product.

A time series of modeled array-averaged deep (2500 m) EKE shows peaks consistent with observations prior to and during eddy separations, but with half (53%) the observed amplitude.
Correlation between the two array-averaged time series was 0.68. Spatial patterns of EKE agree in the sense that both model and observations showed enhanced deep eddy variability in the eastern portion of the array, but these maps showed again that modeled deep EKE was approximately half that of observations (Figure 1.7a,b). Note that the mean fields both showed deep mean anticyclonic circulation in the northwestern array, and a deep cyclone in the northeast corner. The model, however, showed features that were not present in observations: a deep northern flow just offshore of the West Florida Shelf, and a deep anticyclone in the southern array.

Figure 1.7. Same as Figure 1.6, but for 2500 m depth and here the mean Loop Current position is plotted in purple rather than blue.

1.4.1 Sea Surface Height Variance in Frequency Space

SSH variance was dominated by the intrusion and retreat of the LC associated with the LCE cycle (Figure 1.8a,f). Periodicities larger longer than 100 days accounted for \sim80% of the SSH variance, however, shorter-period mesoscale (100–3 day) meanders have been shown to play an
important role in LCE separation; deriving their energy from baroclinic instability (Hamilton et al., 2014). To investigate spatial patterns as a function of frequency, SSH fields were band-passed into four frequency bands. Cut-off frequencies for the bands followed Hamilton et al. (2014) and were based upon peaks in array-measured SSH spectra near 1/60, 1/30, and 1/15 \(\text{d}^{-1} \). The four bands include two low-frequency bands corresponding to periods of 100–40 and 40–20 days, and two high-frequency bands with periods of 20–10 and 10–3 days. The mesoscale band, 100–3 days, represented 12% and 13% of modeled and observed total SSH variance, respectively, within the mapping array. In the mesoscale band and within the mapping array, modeled variance was distributed as follows: 64%, 22%, 9%, and 5% of variance in the 100–40, 40–20, 20–10, and 10–3 day bands, respectively. This is compared to 70%, 21%, 6%, and 2% for observations. Note that Hamilton et al. (2014) assessed bottom-referenced baroclinic SSH \(\text{SSH}_{\text{bcb}} \), rather than total SSH, hence percent variance cited here for observations differ slightly.

Figure 1.8. Standard deviation of PIES (top row) and HYCOM31.0 (middle row) band-passed SSH, with increasing band frequency from left to right. Black dots show PIES locations. Similar magnitudes and patterns of variance are seen between datasets. Bottom panels map the correlation coefficient between the two series. Satellite altimeter tracks are also plotted on each map: OSTM/Jason-2 (green), Jason-1 Tandem Mission (red), and ERS (blue).
Maps of standard deviation of band-passed HYCOM31.0 SSH fields (Figure 1.8g–j) revealed similar spatial distributions of variance to those found by Hamilton et al. (2014) (Figure 1.8b–e). In the two low-frequency bands, variance was highest along the east and southeastern side of the array, while in contrast, the two high-frequency bands had elevated variance along the north-northwest portion of the array. In the mesoscale band, meanders along the LC path, including adjacent frontal eddies, were responsible for the variance distribution. The CEOF analysis of Hamilton et al. (2014) was repeated using modeled and observed SSH fields to document wavelengths and phase speeds associated with these spatial patterns (see Section 1.5.1).

The bottom panels of Figure 1.8 show correlation between observed and HYCOM31.0 SSH. As expected from Figure 1.5, correlations decreased as frequency increased, with marginally significant correlations for the highest frequency band. In each frequency band, regions of high variance and high correlations were co-located. No obvious relationship between satellite tracks and correlation was found.

1.5 Phenomenological Comparisons

1.5.1 LC Meander Characteristics

To investigate the propagation characteristics of LC meanders, CEOFS were determined with observed and modeled SSH for four time periods when the LC was positioned within the DynLoop array and for the four frequency bands used to partition the mesoscale variance in Figure 1.8. We term the time periods by the LCE event: Ekman May 1 – September 1, 2009; Franklin February 1 – September 1, 2010; Hadal May 1 – August 1, 2011; and Icarus September 1 – October 23, 2011. For these sixteen CEOFs, we considered only the first CEOF mode. Variance explained by the first mode exceeded twice the variance explained by the second mode, with one exception for the observations: Ekman 20–10 day band; and four exceptions for the model: Ekman, Franklin, Hadal 20-10 day band, and Icarus 10-3 day band (Table 1.1). Spatial amplitude and phase are shown in Figures 1.9 through 1.12. Note this was a slightly different analysis than Hamilton et al. (2014), where the bottom-reference baroclinic SSH was used rather than total SSH. Nevertheless, the overall patterns and phase speeds were quite similar: phase speeds from
Hamilton et al. (2014) ranged from 8 to 50 km day$^{-1}$ and those presented here spanned a range of 8 to 51 km day$^{-1}$.

Modeled and observed CEOFs agreed well for the low-frequency bands: 100–40 and 40–20 day. In the 100–40 day band (Figures 1.9–1.12; panels a–d), spatial amplitudes were high along the eastern side of the LC; propagation was clockwise. In the 40–20 day band (Figures 1.9–1.12; panels e–h), modeled and observed CEOF spatial peaks matched well, with clockwise propagation along the LC. Note that for Eddy Icarus (Figure 1.12), observations showed a mode with propagation restricted to the northwest portion of the array, while the model displayed propagation along the full length of the LC within the array.

For the high-frequency bands (20–10 and 10–3 day), the model and observations differed from one another. This discrepancy was most notable for Eddy Ekman (Figure 1.9), where high spatial amplitudes in observations were confined to the northwestern portion of the array along the LC mean path, while the modeled peak was displaced slightly inward of the LC path. However, both model and observations show that these high-frequency meanders were strongest along the northeast portion of the array, except for Eddy Hadal, where the LC was located noticeably more to the west than during other eddy events and high-frequency meanders were found along the eastern LC path. Propagation in the high-frequency bands was clockwise for all eddy events, yet the phase gradient differed between model and observations. Overall, the model showed little change in spatial phase, indicating fast propagation. This was most apparent for eddies Ekman and Franklin. The comparison was slightly better for Eddy Icarus.

To quantify propagation patterns seen in CEOFs, phase speed was calculated from the CEOF phase fields. Phase speeds for each combination of eddy and frequency band are plotted against wavenumber in Figure 1.13 and tabulated in Table 1.2. As band frequency increased, phase speeds increased and wavelengths decreased. In the 100–40 and 40–20 day bands, HYCOM31.0 phase speeds agreed remarkably well with those from observations. However, the HYCOM31.0 CEOF phase speeds were not plotted in Figure 1.13 for the two high-frequency bands because they were unrealistically large (see Table 1.2).

In order to investigate whether data assimilation played a role in the discrepancies ob-
Figure 1.9. SSH CEOFs for the Ekman time period by frequency band. Bands are labeled at the top of each four-panel band-group. Normalized CEOF amplitude is presented in the left panels of each band-group, and phase (in degrees) in the right panels. PIES and model results are shown in the upper and lower panels of each band-group, respectively. For all panels: Bathymetry (gray contours; 1000 m intervals) and mean Loop Current position (red line) are included. Percentage of total variance explained by the first mode is indicated in the upper-right of each amplitude plot.
Figure 1.10. Same as Figure 1.9, but for Eddy Franklin.
Figure 1.11. Same as Figure 1.9, but for Eddy Hadal.
Figure 1.12. Same as Figure 1.9, but for Eddy Icarus.
Table 1.1. Percentage of total CEOF variance explained by the first / second mode for each eddy event and frequency band from CEOFs of PIES and HYCOM sea surface height fields.

<table>
<thead>
<tr>
<th>Band</th>
<th>PIES</th>
<th>HYCOM31.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mode-1 / Mode-2</td>
<td>Mode-1 / Mode-2</td>
</tr>
<tr>
<td>Ekman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>89.2% / 9.60%</td>
<td>87.6% / 9.6%</td>
</tr>
<tr>
<td>40–20</td>
<td>62.6% / 30.0%</td>
<td>63.5% / 30.0%</td>
</tr>
<tr>
<td>20–10</td>
<td>48.8% / 28.9%</td>
<td>56.3% / 28.9%</td>
</tr>
<tr>
<td>10–3</td>
<td>69.0% / 12.8%</td>
<td>41.5% / 12.8%</td>
</tr>
<tr>
<td>Franklin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Feb. 2010 – 01 Sep. 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>79.6% / 14.6%</td>
<td>70.0% / 14.6%</td>
</tr>
<tr>
<td>40–20</td>
<td>57.2% / 21.4%</td>
<td>57.1% / 21.4%</td>
</tr>
<tr>
<td>20–10</td>
<td>53.5% / 21.1%</td>
<td>32.9% / 21.1%</td>
</tr>
<tr>
<td>10–3</td>
<td>54.9% / 14.5%</td>
<td>39.6% / 14.5%</td>
</tr>
<tr>
<td>Hadal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Mar. 2011 – 01 Aug. 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>85.3% / 12.5%</td>
<td>83.6% / 12.5%</td>
</tr>
<tr>
<td>40–20</td>
<td>65.9% / 21.3%</td>
<td>72.7% / 21.3%</td>
</tr>
<tr>
<td>20–10</td>
<td>50.7% / 22.0%</td>
<td>32.9% / 21.1%</td>
</tr>
<tr>
<td>10–3</td>
<td>35.7% / 16.9%</td>
<td>34.5% / 16.9%</td>
</tr>
<tr>
<td>Icarus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>97.4% / 2.50%</td>
<td>97.0% / 2.50%</td>
</tr>
<tr>
<td>40–20</td>
<td>76.2% / 21.0%</td>
<td>80.5% / 21.0%</td>
</tr>
<tr>
<td>20–10</td>
<td>77.2% / 13.0%</td>
<td>52.1% / 13.0%</td>
</tr>
<tr>
<td>10–3</td>
<td>56.3% / 23.1%</td>
<td>36.2% / 23.1%</td>
</tr>
</tbody>
</table>

Table 1.2. Loop Current meander phase speed (c_p), wavenumber (k), and wavelength (λ) for each combination of eddy (first column) and band (second column) derived from SSH CEOF phase fields from PIES and HYCOM31.0. Italicized values were considered unreasonable and not included in Figure 1.13.

<table>
<thead>
<tr>
<th>Band</th>
<th>PIES</th>
<th>HYCOM31.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c_p (m s$^{-1}$)</td>
<td>k (×10$^{-2}$ km$^{-1}$)</td>
</tr>
<tr>
<td>Ekman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>0.11</td>
<td>1.26</td>
</tr>
<tr>
<td>40–20</td>
<td>0.19</td>
<td>1.81</td>
</tr>
<tr>
<td>20–10</td>
<td>0.22</td>
<td>2.59</td>
</tr>
<tr>
<td>10–3</td>
<td>0.58</td>
<td>2.82</td>
</tr>
<tr>
<td>Franklin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Feb. 2010 – 01 Sep. 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>0.09</td>
<td>1.52</td>
</tr>
<tr>
<td>40–20</td>
<td>0.24</td>
<td>1.62</td>
</tr>
<tr>
<td>20–10</td>
<td>0.22</td>
<td>2.54</td>
</tr>
<tr>
<td>10–3</td>
<td>0.59</td>
<td>2.75</td>
</tr>
<tr>
<td>Hadal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 Mar. 2011 – 01 Aug. 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>0.11</td>
<td>1.39</td>
</tr>
<tr>
<td>40–20</td>
<td>0.16</td>
<td>1.81</td>
</tr>
<tr>
<td>20–10</td>
<td>0.25</td>
<td>2.25</td>
</tr>
<tr>
<td>10–3</td>
<td>0.52</td>
<td>3.26</td>
</tr>
<tr>
<td>Icarus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>0.14</td>
<td>1.09</td>
</tr>
<tr>
<td>40–20</td>
<td>0.22</td>
<td>1.45</td>
</tr>
<tr>
<td>20–10</td>
<td>0.29</td>
<td>2.08</td>
</tr>
<tr>
<td>10–3</td>
<td>0.59</td>
<td>2.78</td>
</tr>
</tbody>
</table>
Figure 1.13. Phase speed vs. wavenumber estimates from HYCOM31.0 (gray) and PIES (black) SSH CEOFs. Error bars are standard error. Groupings from bottom to top correspond to 100–40, 40–20, 20–10, and 10–3 day frequency bands.

served between HYCOM31.0 and DynLoop results at high frequencies (20–3 day band), a non data-assimilative (free running) HYCOM configuration was examined. The free running model, HYCOM GOMl0.04 experiment 02.2, utilized the same horizontal resolution and number of hybrid vertical layers as HYCOM31.0 (see Dukhovskoy et al. (2015) for a detailed description). Three LCE eddy events were identified that resembled the DynLoop observational period. SSH CEOFs were calculated for each of these three eddies in the four frequency bands, and these were used to compute phase speed and wavenumbers. The first mode CEOFs are shown in Figures 1.15 through 1.17, and Table 1.4 provides the variance explained by the first two CEOF modes in each frequency band. Because of the large amplitude (high variance) signals occurring on the West Florida Shelf, the highest frequency band, 10–3 day, CEOFs excluded model data east of 84°W. Phase speeds and wavenumbers derived from expt.02.2 matched well with those from PIES observations for all four frequency bands (Figure 1.14). This implies that the high-frequency altimeter sampling and assimilation significantly impacts the phase speeds in the
<table>
<thead>
<tr>
<th>Wavenumber (km$^{-1}$)</th>
<th>Phase Speed (m s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>628 km</td>
<td>0.7</td>
</tr>
<tr>
<td>314 km</td>
<td>0.6</td>
</tr>
<tr>
<td>209 km</td>
<td>0.5</td>
</tr>
<tr>
<td>157 km</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Figure 1.14. Phase speed vs. wavenumber comparison derived from CEOFs of assimilated (gray circles) and free-running HYCOM (gray diamonds) and PIES (black) sea surface height for each frequency band. Error bars are standard error. Groupings from bottom to top correspond to 100–40, 40–20, 20–10, and 10–3 day frequency bands.
data-assimilative HYCOM — this needs to be further investigated by the HYCOM development team.

Table 1.3. Same as Table 1.2, but for three eddy periods from free-running expt_02.2.

<table>
<thead>
<tr>
<th>Band</th>
<th>c_p (m s$^{-1}$)</th>
<th>k $(10^{-2}$ km$^{-1}$)</th>
<th>λ (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jan. – 15 Mar. 1957</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>0.09</td>
<td>1.48</td>
<td>424.4</td>
</tr>
<tr>
<td>40–20</td>
<td>0.17</td>
<td>1.81</td>
<td>346.7</td>
</tr>
<tr>
<td>20–10</td>
<td>0.28</td>
<td>2.11</td>
<td>298.1</td>
</tr>
<tr>
<td>10–3</td>
<td>0.49</td>
<td>3.31</td>
<td>190.0</td>
</tr>
<tr>
<td>1 May. – 1 Aug. 1957</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>0.11</td>
<td>1.36</td>
<td>461.9</td>
</tr>
<tr>
<td>40–20</td>
<td>0.19</td>
<td>1.53</td>
<td>409.7</td>
</tr>
<tr>
<td>20–10</td>
<td>0.28</td>
<td>2.07</td>
<td>304.1</td>
</tr>
<tr>
<td>10–3</td>
<td>0.52</td>
<td>3.14</td>
<td>200.2</td>
</tr>
<tr>
<td>1 Apr. – 15 Jul. 1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100–40</td>
<td>0.09</td>
<td>1.59</td>
<td>395.0</td>
</tr>
<tr>
<td>40–20</td>
<td>0.20</td>
<td>1.51</td>
<td>417.5</td>
</tr>
<tr>
<td>20–10</td>
<td>0.25</td>
<td>2.28</td>
<td>275.4</td>
</tr>
<tr>
<td>10–3</td>
<td>0.54</td>
<td>3.01</td>
<td>208.4</td>
</tr>
</tbody>
</table>

1.5.2 Stream Function Case Study: Upper-Deep Layer Coupling

Our stream function case studies focus on the 100–40 day band because observations showed coherent upper-deep structure in stream function with a 90° along-stream phase offset consistent with baroclinic instability (Hamilton et al., 2014). Figures 1.18–1.20 show three case studies of upper (200 m relative to 2500 m) and deep (2500 m) 100–40 day band-passed stream function for eddies Ekman, Franklin, and Hadal, respectively. All three cases demonstrated the strong deep eddies that occur during LCE formation. Additionally, each deep cyclone (anticyclone) tended to be paired, but offset downstream from an upper cyclone (anticyclone) in a pattern indicative of baroclinic instability (Cushman-Roisin, 1994). These patterns, seen in observations, were reproduced by HYCOM31.0. In each case study, examples of these upper-deep pairs are identified in the following descriptions, with the deep cyclone or anticyclone denoted by letters A–D in each figure.

During Eddy Ekman’s separation, an upper-deep cyclone pair (A) entered the mapping array from the north on 22 June 2009 and propagated clockwise along the eastern edge of the array to arrive in the southeast portion of the array on 22 July 2009 (Figure 1.18a–f). At that time, a
Figure 1.15. CEOFs of band-passed SSH from free-running HYCOM expt_02.2 during model dates 01 Jan. to 15 Mar. 1957. Frequency bands (rows) increase in frequency from top to bottom. CEOF amplitude (left column) and phase in degrees (right column) are overlaid with mean Loop Current position (red line) from model SSH and bathymetry (gray contours; 1000 m interval). Percentage of total variance explained by the first mode is printed in the upper-right of each phase plot. Propagation is in the direction of increasing phase (light to dark; right panels).
01 May 1957 to 01 Aug 1957

Amplitude

Phase

Figure 1.16. Same as Figure 1.15, but for free-running model dates 01 May – 01 Aug. 1957.
Figure 1.17. Same as Figure 1.15, but for free-running model dates 01 Apr. – 15 Jul. 1958.
Table 1.4. Same as Table 1.1, but for three eddy time periods from free-running expt_02.2.

<table>
<thead>
<tr>
<th></th>
<th>Band</th>
<th>Mode Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Band</td>
<td>Mode-1 / Mode-2</td>
</tr>
<tr>
<td>1 Jan. – 15 Mar. 1957</td>
<td>100–40 day</td>
<td>77.5% / 20.3%</td>
</tr>
<tr>
<td></td>
<td>40–20 day</td>
<td>63.2% / 26.7%</td>
</tr>
<tr>
<td></td>
<td>20–10 day</td>
<td>52.2% / 28.7%</td>
</tr>
<tr>
<td></td>
<td>10–3 day</td>
<td>37.6% / 21.4%</td>
</tr>
<tr>
<td>1 May. – 1 Aug. 1957</td>
<td>100–40 day</td>
<td>71.8% / 25.2%</td>
</tr>
<tr>
<td></td>
<td>40–20 day</td>
<td>70.2% / 22.1%</td>
</tr>
<tr>
<td></td>
<td>20–10 day</td>
<td>41.1% / 27.9%</td>
</tr>
<tr>
<td></td>
<td>10–3 day</td>
<td>38.4% / 20.9%</td>
</tr>
<tr>
<td>1 Apr. – 15 Jul. 1958</td>
<td>100–40 day</td>
<td>84.6% / 12.6%</td>
</tr>
<tr>
<td></td>
<td>40–20 day</td>
<td>64.0% / 24.6%</td>
</tr>
<tr>
<td></td>
<td>20–10 day</td>
<td>56.8% / 18.8%</td>
</tr>
<tr>
<td></td>
<td>10–3 day</td>
<td>34.3% / 18.7%</td>
</tr>
</tbody>
</table>
second upper-deep pair (B), an anticyclonic pair, entered the array from the north. The features were seen in stream function fields from both observations and HYCOM31.0, and matched well in amplitude, shape, size, and position. Anticyclone pair B followed a similar trajectory to that of A and was found in the central eastern array on 3 August 2009 (Figure 1.18 f–h), at which time eddy pair A appeared to have dissipated in HYCOM31.0. Maps of observed stream function on August 3rd showed A exiting the array to the south, but its fate was unclear due to the spatial limits of the array. From these maps, it seems likely that A and/or B played a role in the first detachment of Ekman: as the deep cyclone associated with pair A exited the array, the LC experienced a necking down and eventual detachment on 9 August 2009. On 3 August 2009, upper-deep cyclone pair C entered at the base of the Mississippi Fan near the northwest corner of the array, propagated southward, and appeared to dissipate after Eddy Ekman underwent a detachment around 9 August.

Two offset upper-deep eddy pairs, A and B, were present on 19 May 2010, the first day of the Eddy Franklin case study (Figure 1.19a), in addition to a more southern cyclone pair seen clearly in HYCOM31.0. Eddy pairs A and B propagated southward along the continental slope and appeared to facilitate Franklin’s first detachment around 12 June 2010 (Figures 1.19 b–e). Both features were well represented by HYCOM31.0. Anticyclone pair A dissipated around June 6th, while cyclone pair B continued to propagate southward followed by anticyclone pair C, which appeared on 18 June 2010. The latter two pairs assisted in a second detachment of Franklin between the 6th and 12th of July (Figure 1.19f–j). Cyclone pair D entered the array on the 18 July 2010 and played a role in the final separation of LCE Franklin.

During Eddy Hadal, similar to the Ekman and Franklin cases, a series of southward-propagating cyclone and anticyclone pairs appeared (Figure 1.20). In the Eddy Hadal case study, the correspondence between observations and HYCOM31.0 was not as strong. Upper and deep eddies occurred in roughly the same location, but deep eddies in HYCOM31.0 appeared more elongated than those of observations.
Figure 1.18. Upper (200 m relative to 2500 m; shading) and deep (2500 m; contours) 100–40
day band-passed stream function comparison between observations and HYCOM31.0 at six-day
intervals during Eddy Ekman. Green contour indicates altimeter-measured and modeled Loop
Current mean position for PIES and HYCOM31.0, respectively. The mapping array is outlined
in black with PIES sites indicated by small circles. Gray contours show 1000, 2000, and 3000
m bathymetry.
Figure 1.19. Same as Figure 1.18, but for Eddy Franklin.
Figure 1.20. Same as Figure 1.18, but for Eddy Hadal using one-week intervals.
1.6 Discussion and Conclusion

A full-water-column mesoscale-resolving observational dataset that recorded four LC eddy shedding events permitted an in-depth model-data intercomparison. The 1/25° data-assimilative GOM HYCOM 31.0 was compared to observations in three categories of metrics: statistical point comparisons, broad-scale spatial comparisons, and process-based phenomenological comparisons. The first category sought to quantify correlations, root-mean-squared differences, and variance ratios. Because the overall aim of this study was to evaluate the model’s ability to accurately represent processes involved in the LCE formation/detachment cycle, the second and third metric categories focused on assessment of the model’s representation of LC meander variability, wavenumber-frequency characteristics, and upper-deep coupling during LCE formation.

Statistical point-comparisons showed that in the upper ocean HYCOM31.0 and DynLoop agreed quite well. This was especially true of temperature comparisons: above-thermocline array-averaged correlation was 0.93, normalized root-mean-squared differences ranged between 0.21 and 0.76, and variance was comparable between model and observations. Because the bulk of the SSH signal derived from the steric component, SSH comparisons between model and observations were likewise favorable. Model meridional velocity was better correlated to observations than zonal velocity, with array-averaged above-thermocline correlation coefficients of 0.75 and 0.63, respectively. This confirms that the NCODA vertical projection of synthetic profiles derived from SSH works well in the Gulf. Variances of the time series evaluated in point comparisons were dominated by the large array-scale nearly-annual cycle of LC advance and retreat; the PIES/HYCOM31.0 SSH time series comparison (summarized in Figure 1.4d), therefore, showed no statistical distinction between sites on or off OSTM/Jason-2 altimeter ground tracks.

To focus on the mesoscale circulation, the spatial pattern of SSH variance in four frequency bands was evaluated. In the 100–40 and 40–20 day bands, modeled and observed SSH revealed meanders that grew and propagated downstream along the eastern portion of the LC, with phase speeds between 0.09 and 0.24 m s\(^{-1}\) (see Table 1.2). Although the spatial variance pattern for the two high frequency bands, 20–10 and 10–3 day, looked similar, propagation speeds did not agree
well. Model phase speeds were unrealistically large. This was consistent with the result that SSH coherence between HYCOM31.0 and PIES SSH fell off rapidly for frequencies higher than 1/20 d\(^{-1}\). We speculate that, for the high-frequencies, altimeter sampling influences the agreement between observations and model, noting that phase speeds determined from a comparable free-running version of the GOM HYCOM compared well with observed values for all frequency bands. Outstanding questions, such as the one raised by the DynLoop program as to whether high-frequency meanders propagate along the full length of the LC, are therefore currently best addressed with a free-running model.

Observations and numerical models indicate that deep eddies play a major role in the separation of LCEs (Hurlburt and Thompson, 1980, 1982; Sturges et al., 1993; Welsh and Inoue, 2000; Oey, 2008; Hamilton et al., 2014). Both HYCOM31.0 and observations showed that deep EKE increased during LCE separation, although the amplitude of modeled deep EKE was about half that observed. A comparison of world-wide current meter observations to a free running 1/12\(^{\circ}\) global HYCOM configuration (Scott et al., 2010) showed that the deep kinetic energy was also significantly reduced (by up to a factor of three) when compared to observations, but that data assimilation brought the model kinetic energy close to observed levels. Scott et al. (2010) did suggest that the quadratic bottom drag value, \(C_d\), used in HYCOM may play a role in reduced model TKE. Higher resolution may also be necessary when modeling the GOM: recent modeling studies indicate that resolutions higher than 1/32\(^{\circ}\) may be necessary to properly resolve deep EKE (Hurlburt and Hogan 2000; Chassignet and Xu, personal communication).

Within the 100–40 day band, HYCOM31.0 reproduced patterns indicative of baroclinic instability, that is, a vertical offset between upper and deep stream function. While modeled deep eddies differed slightly spatially and temporally from observations, the joint development of an upper ocean meander along the eastern side of the LC and train of upper-deep cyclone/anticyclone pairs that precede separation were contained within the model solution.

Overall, the DynLoop/HYCOM31.0 3D intercomparison shows that the 1/25\(^{\circ}\) GOM data-assimilative HYCOM is well suited for the study of LCE formation and separation, offering a larger spatiotemporal window than observational arrays for additional detailed investigations.
For example, the trigger for the development of the long wavelength meander is not well understood. Do LC frontal eddies generate deep vorticity as they stretch and move off the Mississippi Fan as suggested by Le Hénaff et al. (2012) or do pre-existing external deep eddies generated near the West Florida Shelf interact with the LC? Interestingly, the HYCOM31.0 case studies in Figures 1.18–1.20 suggest that both mechanism might be operating. Model analysis would provide insight into the radiation of the deep energy generated during LCE separation. At the present time, the pathways of deep energy radiation, feedbacks between upper and deep circulation, especially in regions of steep topography, are not well understood due to limited observations; a data assimilative model, like HYCOM31.0, is well suited to pursue these questions.
List of References

Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft,

URL http://www.po.gso.uri.edu/dynamics/pub_index.html

