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Abstract 

We investigate a variety of convergence phenomena for measures on the unit circle associated 

with certain discrete time stationary stochastic processes, and for the class of Szego polynomials 

orthogonal with respect to such measures. 

Szego polynomials, which form the basis of autoregressive (AR) methods in spectral analysis , 

are not uniquely defined when the degree is less than the number of points on which the spectral 

measure is supported; that is, when the spectral measure corresponds to a sum of complex sinusoids, 

the number of which is less than the degree. We consider the asymptotic behavior of Szego 

polynomials of fixed degree for certain sequences of measures which converge weakly to such a sum 

of point masses. 

The sequence of measures can be formed in various ways, one of which is by convolving point 

mass sums with approximate identities, or kernels . In signal processing applications, this corre­

sponds to "windowing" a signal composed of complex sinusoids. The Poisson and Fejer kernels 

are considered. Another way to form the measures is to add an absolutely continuous measure to 

a sum of point masses, thus obtaining a spectral measure for sinusoids with additive noise, where 

the noise coloration is described by the density of the absolutely continuous part. We characterize 

a limit polynomial for several different classes of sequences of measures. Some special cases are 

used to interpret research done by others in the field. 

Situat ions where the polynomial degree approaches infinity are considered for fixed measures 

with a rational spectral density. These measures are the spectral measures for autoregressive 

moving average (ARMA) random processes. We study the asymptotic behaviors of the reflection 

coefficients, or constant terms, of the polynomials, and the zero-distribution measures, which consist 

of point masses at each of the polynomial zeros. These analyses help describe the behavior of the 

"non-signal" zeros observed in some signal processing situations. 
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1 Introduction 

Given a measure on the unit circle there is an associated sequence of polynomials in the complex 

variable z , called Szego polynomials, which are orthogonal on the unit circle with respect to the 

measure. Szego polynomials minimize the integral of the squared modulus, over monic polynomials 

of degree k, with respect to the measure. These polynomials have many applications in analysis 

and applied mathematics, and their properties have been studied extensively. The classic references 

for much of the early work include Grenander and Szego ([GS]), and Geronimus ([Gl], [G2]). 

In recent decades there has been much interest in Szego polynomials by researchers in signal 

processing and control theory due to their intimate connection with problems in linear prediction 

and spectral estimation. The book by Kay ([K]) includes many examples of their use, as well as 

an abundance of references to the related engineering literature. 

Szego polynomials are not defined when the degree of the polynomial exceeds the number of 

points on which the measure is supported. Such "point mass" measures can arise, for example, 

as the spectral measure of signals consisting of a finite number of complex sinusoids. However , 

we can approximate such measures by other absolutely continuous measures, for which the Szego 

polynomials are defined, and study the polynomials as the approximation improves. Sections 3 

and 4 deal with the questions of uniqueness and existence of limits for Szego polynomials of fixed 

degree with respect to a sequence, or family, of measures which converges, in some sense, to a sum 

of point mass measures. A sequence of absolutely continuous measures cannot converge to a finite 

sum of point masses in the usual sense; that is, in total variation norm on measures. We consider 

a weaker type of convergence, which can be seen to arise naturally in applications. 

Suppose we have a sequence of measures converging in some sense to a sum of point mass 

measures. Fix k, with k greater than the number of point masses, and consider the sequence 

of Szego polynomials of degree k corresponding to the converging measures. The convergence of 

a sequence of measures , in either the usual sense or in the weaker sense we consider , does not 

guarantee convergence of the associated Szego polynomials if the degree k is less than the number 

1 



of point masses. We show that any limit point, in polynomial space, of these Szego polynomials 

must have zeros at the point mass locations. Any limit point will thus have an " extra" factor 

with degree equal to the difference of the polynomial degree k and the number of point masses. 

One such condition under which a unique limit does exist is that the Fourier coefficients of the 

sequence of measures parametrized by h, where h approaches zero, depend analytically on h. 

The two main results of Section 3.2 deal with families of measures formed by convolving the 

familiar Poisson and Fejer kernels with point mass measures. These kernels are examples of ap­

proximate identities whose Fourier coefficients have analytic dependence on h. In Theorems 3.4 

and 3.5 we characterize the limit polynomial for convolution with the Poisson and Fejer kernels, 

respectively, and show that, in each case, the extra factor is actually a Szego polynomial with 

respect to an absolutely continuous measure, which we specify. Furthermore, we obtain the same 

limit polynomial in each case. Comparison of the analytic dependence of the Fourier coefficients 

of these kernels on h, in particular, the agreement of the linear terms in h, suggest that this might 

hold, but the proofs require detailed analysis of exploiting two properties: The orthogonality of 

the Szego polynomials and the rate of convergence of zeros of the Szego polynomials to the point 

mass locations. 

Recent work involving sequences of convergent measures and the associated Szego polynomials 

includes that of Pan and Saff ([PS]), Jones, Njasted and. Saff ([JNS]) , and Jones , Njasted and 

Waadeland ([JNW]) . In Section 3.2.2, we use arguments of Pan and Saff to address the convergence 

rate of the zeros for a general situation where the sequence of measures satisfies two properties, 

one of which is analytic dependence on h. The cases of convolution with the Poisson and Fejer 

kernels are then considered separately. 

We also consider, in Section 4, families of measures formed by adding a multiple, h, of a fixed 

absolutely continuous measure to a sum of point mass measures. We characterize limits of the 

Szego polynomials of degree k, with k greater than the number of point masses. Again we find 

that the extra factor is the Szego polynomial with respect to an absolutely continuous measure. 

This situation differs from that of convolution of approximate identities with point masses, in 
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that the sequence of measures here does converge in total variation norm. We give a method of 

constructing sequences of measures that converge in total variation norm but whose associated 

Szego polynomials do not converge. 

Another situation which has received attention is where the degree, k, of the Szego polynomials 

with respect to a fixed measure, approaches infinity. The behavior of the constant term, or reflection 

coefficient, Rki of the Szego polynomial of degree k has been of particular interest. Since IRkll/k is 

the geometric mean of the modulus of the zeros of the Szego polynomial of degree k, information 

about the reflection coefficients can help describe the asymptotic behavior of the polynomial zeros. 

The work of Pakula ([P]), Nevai and Totik ([NT]), Saff ([SJ), Petersen ([Pe2]), and others addresses 

this situation. As in the previously described case of polynomials of fixed degree with respect to 

sequences of measures, the question of existence of limits is a central concern. 

In Section 5 we consider absolutely continuous measures whose densities can be expressed as 

the squared modulus of a rational function on the unit circle. Such measures arise in applications 

as the spectral measures of certain random processes. Our main result here is Theorem 5.2, which 

is an extension of a result in [P], where measures whose densities can be expressed as the squared 

modulus of a polynomial are considered. A phenomenon which has been observed in the literature 

by Kumaresan, in [Ku], and others, is that the zeros of the Szego polynomials with respect to certain 

measures appear to accumulate on a circle of a certain radius. This phenomenon is interpreted in 

[P] as the convergence of a sequence of measures related to the Szego polynomials, and applies to 

a general class of measures which includes those with rational densities . 

Theorem 5.2 states that, for measures with rational densities, under certain assumptions, 

IRk 1

1/k approaches a limit as k --+ oo; this limit being the modulus of the largest zero of the 

numerator of the density. Results in [P] are then used to draw conclusions about the behavior 

of the zeros of the Szego polynomial of degree k as k --+ oo. The examples of Section 3.2.5 are 

special cases of Theorem 5.2. Here, they are also interpreted in the context of Theorems 3.4 and 

3.5, and we attempt to make some connections between the situation with Szego polynomials of 
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fixed degree with respect to sequences of measures, and that of fixed measures with polynomial 

degree approaching infinity. 

A related situation considered by Kumaresan and Tufts in [KTl] and [KT2], that of a signal 

consisting of damped exponentials, arises in modeling of speech. In Section 5.4, a sequence of 

measures is formed from a sum of damped exponentials. This sequence converges to a measure 

with rational density. This is interpreted in light of Theorem 5.2 , and observations are made 

regarding the behavior of the zeros of the associated Szego polynomials. 
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2 Background 

1 The Moment Problem 2. 

The classical trigonometric moment problem (see, eg., [GS], [L], [A]) will serve as a starting point 

for our discussions. It is stated as follows: 

Given a sequence {re}l'', _00 of complex numbers, when is a representation of the form 

re = .l7r7r exp( it:B) dµ( B) (1) 

possible for some positive measure µ? 

A necessary condition for (1) to hold is that {re} must be a positive semi-definite sequence. That 

is, given any finite sequence { ce} of complex numbers we must have 

L CjCer1-e 2 0. 
j,f 

(2) 

This can be seen upon substitution of (1) into (2). Conversely, if {re} is positive semi-definite 

there exists a unique positive measureµ satisfying (1). This result is often referred to as Herglotz's 

Theorem ([Ka]) , but there are also proofs due to Caratheodory, Toeplitz , F . Riesz, and Krein ([A]). 

Thus there is a one-to-one correspondence between positive semi-definite sequences and positive 

measures on the unit circle. The re are the Fourier coefficients1
, or trigonometric moments ofµ; 

re = P,(£) . We will henceforth regardµ as a measure on th~ unit circle. 

2.2 Stationary Processes. 

A stochastic process is a sequence, {Xn};::'=_
00

, of real or complex random variables on a probability 

space (D, M). We will assume that for all n, 

(3) 

Let Hx denote the closure in L2 (D, M) of the span of {Xn}· The process is wide-sense stationary 

if for all integers £ and n , 

re:= 1 Xn(w)Xn+e(w) dM(w) 
i . n 

. The Founer coefficients are sometimes defined with a normalization factor of l / 2n. or l / .;2; in front of the 
mtegral in (1). ' 
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is independent of n and 

lo Xn(w) dM(w) = 0 

for all n. One can show that the sequence re is positive semi-definite. Thus by Herglotz's theorem 

there exists a positive measure µ such that the representation (1) holds. This measure is called 

the spectral measure of the process. A Hilbert space isomorphism between Hx and L 2 (dµ) is 

established by extending the mapping X n ( w) -+ e ine to all of L2 
( dµ) using linearity and density 

arguments. 

A time series , or discrete time signal, is a realization of a stochastic process , that is , a sequence 

{xn} where Xj = Xj(w) for some fixed value of w. The spectral measure describes the spectral, or 

frequency content of the signal. For example, if Xn = L',~ 1 a1 e i (ne.i+¢i) where the a 1 are positive 

and tha ¢1 are independent and unformly distributed on [- Ir , Ir) , then the associated spectral 

measure is L,~ 1 a1<5e j , where <5ej is the point mass measure at B.i, corresponding to the fact that 

the signal comprises m complex sampled sinusoids with frequencies Bj . On the other hand, if 

{Xn} are independent identically distributed Gaussian random variables , the associated spectral 

measure is a multiple of the uniform Lebesgue measure, and the signal { xn} can be viewed as 

comprising a white noise. 

2.3 Szego Polynomials 

2.3.1 Definition and Properties 

Let Ak denotes the space of monic polynomials of degree k, and let µ be a positive measure on 

[-Ir, Ir). We will refer to the polynomials Pk(z, µ), k = 1, 2, 3, ... in the complex variable z of degree 

k satisfying 

(4) 

as Szego polynomials. The Pk(z,µ) are uniquely defined ifµ is supported on more thank points. 

This will be discussed further in subsequent sections. Szego polynomials appear widely in the 

classical literature ([GS],[Ge],[Sz]) , and have applications in signal processing, where µ is the 

spectral measure of some process ([DG],[JNS],[JN],[K]). The absolutely continuous measures µk 
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defined by 

(5) 

where O"k are normalization constants, are the basis for autoregressive (AR) spectral estimates . In 

the AR approach, one uses µk to estimate µ. For k large, µk is "close to" µ in the sense of the 

following well-known result , which can be found in (GS] 

Theorem: The measures µn in (5) converge to µ in the weak-star (denoted weak-*) sense 

[GS}, {Lj. That is, 

(6) 

for all continuous J on the unit circle. 

Situations where (6) holds will be studied in Section 3. We remark that weak-* convergence is 

weaker than convergence in total variation norm on measures (see, for example, Theorem 3.1 and 

the remarks which follow). The above theorem can be proved using the characterization (23) of 

Section 3.1 and the Weiner-Kinchin Theorem, which can be found in [K]. 

Similarly, ( 4) can be seen to justify the AR approach in fr equency estimation, where one uses 

the arguments of the largest zeros of Pn(µ , z) as frequency estimates [K]. Let µ be a measure of 

mixed type. That is 
M 

µ = L aj Soi + '"Y 
j=l 

(7) 

where Bj E [-7r, 7r), Soj is the point mass at Bj and '"'f is absolutely continuous. The measureµ is 

then the spectral measure of a time series comprised of complex sinusoids with additive noise. In 

order to achieve the minimum in (4) one expects Pk(µ,z) to have zeros close to ei8j for large n ([SJ, 

(PS]). Indeed, if '"Y = 0 it is clear that any polynomial with zeros at z = ei8j for j = 1, 2, 3, ... , m 

will attain the minimum of zero in (4). 

The property (4) can also be interpreted from the perspective of linear prediction. If we 

wish to estimate the random variable Xn in the least squares sense using a linear combination of 

Xo, X1, ... , Xn-l , we can write 

n - 1 rr n-1 

llXn - L an-eXn-ell 2 = 1 leinO - L an- eei(n- e)o l2 dµ(B). 
b l -rr bl 
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(4) we see that the prediction coefficients, aj coincide with the coefficients of Pk. In this 
From ' 

t P represents the prediction error filter of order n , and the minimum in ( 4) is called the contex k 

2 
prediction error power 

It is easy to see that the Pk (z, µ) are multiples of the orthonormal polynomials of degree k 

with respect to µ obtained by performing the Gram-Schmidt procedure on 1, z , z2
, . . . . One simply 

expands an arbitrary p E Ak in terms of these orthogonal basis polynomials and observes that 

the minimum in (4) is achieved for a multiple of the kth basis element. Thus Pk(z, µ) J_ Ak_ 1 , 

and we have the following orthogonality property, which characterizes Pk(z, µ) (assuming that it 

is well-defined). 

Orthogonality Property: If p(z) is any polynomial of degree less than k, then 

(8) 

We will make extensive use of this property in the proofs of Theorems 3.4 and 3.5, which are 

the main results of Section 3. 

Given a polynomial p(z), of degree k , we define the reverse polynomial p* (z) := zkp(z- 1 ), so 

that 

(9) 

Thus, for example, if Pk(Z, µ) = rr:=l (z - Zj), then Pf:(z, µ) = rr:=l (1 - ZZj) and the zeros of 

Pf: , are obtained from those of Pk by reflection in the unit circle. It is well-known that if µ is 

supported on more thank points, then Pk(z, µ)i s defined and the zeros of Pk(z, µ) lie in the open 

unit disk. There are many proofs of this minimum phase property (see, for eg, [KP],[S],[L]). That 

the zeros lie in the closed disk is a consequence of Fejer's Convex Hull Theorem ([Ka]): 

The zeros of the polynomials orthogonal with respect to a m easure are contained in the 

closed convex hull of the support of the measure. 
2 In th · · · e engmeermg literature, the prediction error power is usually defined as 

1 1" iO 2 - IPk(e ,µ)I dµ. 
27r - rr 
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that Pk(z µ) = CT(z - Wj)· Then PJ;(z,µ) = n z(l/z - Wj) = CT(l - ZWj)· Thus the 
Suppose ' 

f P* are obtained from those of Pk by reflecting them with respect to the unit circle, and 
zeros o k 

therefore have modulus greater than 1. Note also that 

3 2 Representation of Pk(z, µ) 2 . . 

Letµ be a finite measure on the unit circle, with moments /1(£). The Toeplitz matrix 

( /)(0) 
/1(1) . . . 

jl(n) ) 
~(-1) /1(0) . .. ~(n - 1) 

Cn := {/l(i - j,n)} = 

/1(-n) /1(-n + 1) ... /?(O) 

(10) 

(11) 

is positive semi-definite, and is strictly positive definite for all n if logµ' is integrable, where µ' 

is the density of the absolutely continuous part ofµ (with respect to Lebesgue measure), and in 

which caseµ is said to satisfy Szego's condition. See [GS], [HJ, or [JNS] for further discussion. The 

following equivalent conditions are well known, and can be found in [JNS]. 

1. The measure µ satisfies Szego's condition; that is, 

j logµ' dB> -oo. 

2. 

lim /1Pk(z,µ)J 2 dµ>O. 
k--+oo 

3. There exists an analytic function g(z) with no zeros in lzl < 1 and g(O) > 0 such that 

lim Jg(rei8 )12 = µ'(B) almost everywhere. 
r-71-

(12) 

(13) 

(14) 

Spectral Factorization The function g(z) in (14) is sometimes called the Szego function for 

µ. This function is in the Hardy space H 2 . Furthermore, Jg(rei8 )12 can be factored so that g(z) 

has no zeros inside the unit circle; that is , g is an outer function. This factorization is called the 

spectral factorization of dµ/ dB. See [GS] or [HJ for further discussion. In particular, if dµ/ dB is 
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't' trigonometric polynomial, it can be factored as the square of a polynomial in z of the 
a pos1 ive 

d gree This result is due to Riesz and Fejer (see [GS], Sec. 1.12). 
same e · 

The matrix Cn is often referred to as either the autocorrelation, or ACF, matrix. It is also 

referred to as the covariance matrix. This terminology is due to two methods used to estimate the 

µ(£) from the data; that is, from a realization of a random process with spectral measureµ (see, 

eg. [K] Ch. 7) . In this context, the sequence of moments is often referred to as the autocorrelation 

(ACF) function. This terminology also follows naturally from the relations (1) and (3). 

We shall denote, by D n (µ), the determinant of {µ ( i - j, n)}: 

Dn(µ) := det({µ(i -j,n)}) (15) 

By the above remarks, Dn(µ) is non-zero ifµ satisfies Szego's condition. On the other hand, ifµ 

is supported on m points , then Dn(µ) -::/: 0 for n < m, while Dn(µ) = 0 for n 2 m. 

If we replace the last row in the right-hand side of ( 11) with the vector ( 1, z, z 2
, .. . , zn), we get 

a matrix whose determinant is a polynomial in z. If we define 

'Dn(z,µ) := 

jl(O) 
j?(-1) 

µ(1) 
µ(O) 

jl(n) 
jl(n - 1) 

j?(-n+l) µ(-n+2) j?(l) 
1 Z Zn 

we obtain the well-known representation ([GS], [JNS]) 

p ( ) _ Vk(z,µ) 
kZ,µ-D ()' 

k-1 µ 

We shall refer to (17) as the determinant representation of Pk(z,µ). 

(16) 

(17) 

The polynomials Pk(z, µ) can also be generated by the computationally efficient Levinson's 

recursion ([GS]): 

(18) 

where Po(z, µ) = 1, and the reflection coefficients Rk(µ) are the constant terms defined by 

(19) 
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Conventions 

We adopt the conventions throughout this paper that ( = eie denotes an arbitrary point on 

the unit circle , and that all integrals are over [-7r , 7r) unless indicated otherwise. We will also, as 

in Section 2.3, define the prediction error power as the minimum in ( 4) , noting tha t this differs 

from the usual definition by a factor of 1/27r. 

11 



3 

3.1 

Sequences of Measures 

Introduction 

Let 60 be the point mass measure at e and let µ be a weighted sum of m of these , 

m 

µ := L ajDej , 

j =l 

(20) 

with CTj > o and the ej distinct. In the next sections we will consider absolutely continuous 

measures µh, on the unit circle such that 

(21) 

where the convergence is with respect to the weak-* topology on probability measures characterized 

in (6). For convenience, we restate this characterization for measures µh parametrized by h > 0. 

The measures µh converge to µ in the weak-* sense if and only if 

lim J f dµh = J f dµ for all continuous f. 
h-+0 

(22) 

It is well-known, and not hard to show, that a necessary and sufficient condition for (22) to hold 

is that the moments of µh converge to those of µ: 

'fh ( C) ---+ ii( C) for all £. (23) 

We will study the family {Pk (z, µh)} h>O of Szego polynomials as h ---+ 0 where µh is an ab-

solutely continuous family which approaches a sum of point masses, as in (21). We will consider 

cases where µh is obtained by convolution of absolutely continuous measures with point masses 

of the form (20), and also for measures consisting of a sum of point masses plus an absolutely 

continuous part. 

The Limit Points of {Pk(z, µh)} 

If k > m , then Pk(z,µ) is not defined, since Dk_ 1 (µ) in the denominator of (17) is zero but 

note that any polynomial of the form 

m 

p(z) = Q(z) fI (z - ei8J), (24) 
j = l 
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. Q E A has norm in £ 2 (dµ) equal to zero in (4) . We will show that for fixed k > m , all 
with k- m 

. ·nts ash--+ 0 in the space of polynomials of degree k, of the family {Pk( z, µh)} , have the 
limit pm ' ' 

form (24). 

Remark: If his a continuous parameter, we will call a decreasing sequence {he} whose limit 

. ro a discretization of h. Thus Pk(z) is a limit point of {Pk(z, µh)} if and only if there exists a 
1s ze 

discretization hn such that 

(25) 

A discretization is simply a subsequence if h is discrete. 

Suppose that (21) holds and k > m. Equation (17) gives 

(26) 

which is well defined for h > 0 if µh is supported on an infinite set. The zeros of the Pk (z, µh) lie 

inside the open unit disk. Since the Pk are monic, the family {Pk(z,µh)} is uniformly bounded in 

the closed k - 1 dimensional space Ak, in any norm we choose. So {Pk (z, µh)} has limit points in 

Proposition 1 Suppose (21) holds, for a family of measures µh , and suppose that k > m. Then 

all the limit points of {Pk( z, µh)} are of the form Q(z ) n;:1 (z - ei6
; ) , where Q E Ak- m· 

Proof: Suppose that Pk( z ) is a limit p~int of {Pk (z, µh)} with (25) holding for some discretization, 

or subsequence, {hn} · For brevity, we define 

m 

P := Pk(z ); Ph := Pk(z, µh) ; µ := L a-j8o; . 
j=l 

We need to show that P has zeros at the eili;. It suffices to show that 

I IPl2dµ = 0. 
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To this end we write 

I/ JPJ 2 
dµ - J 1Phl2 

dµhl < I/ IPl2 
dµ- J IPl 2 

dµhl 

+ If JPJ2 dµh - J JP1il2 dµhl. (27) 

The first term on the right-hand side of (27) approaches zero as h approaches zero by weak-* 

gence of µh Since µ1i -+ µ we must have µh[-11" , 1l") < M for some M > 0 and all h. Thus conver · -

the second integral on the right-hand side of (27) is less than MJ J JPJ2 
- JPh J2JI, which approaches 

zero as h -t 0 since the uniform convergence, JPhJ 2 -t JPJ 2 on Jzl = 1 follows from uniform 

convergence of P1i on JzJ = 1. Thus the Lemma will be proved if we show that J JPhJ 2 dµh -t 0. 

If Q E Ak-m is arbitrary, by the minimization property ( 4) of Ph , we have 

J Jhl 2 dµh :S: J JQ(z)J2 IT Jz - e;o, J2 dµh. 
J=I 

Again, by weak-star convergence of µh , the right-hand side of the above approaches 

Thus, under the conditions of Proposition 1, if limh_,o Pk(z, µh) exists, then at least m of the 

zeros of Pk (z , µh) approach the e;o', and we can write 

We shall suppose, without loss of gen~rality, that w)") -t e;o, for j 1, 2, ... , m. Our aim is to 

study Qh(z) ash -t 0. 

In the context of the frequency estimation problem in signal processing, the w)") are often 

called signal zeros, while those of Q h are called non-signal, or extraneous zeros. Information about 

the zeros of any limit point , Q, of Qh could be useful in discerning which of the zeros of Pk(z, µh) 

correspond to signal fr equencies. 

If the moments "jh,(C) are analytic functions of h, we can say more. 
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.t. n 2 Suppose (21) holds and that the moments /J,h( f ) are functions of h which are 
Propos1 JO 

analytic on some disk of radius E about h = 0. 

Q E Ak-m such that 

Then for k > m there exists Pk E A ki and 

m 

P f . Let o < h < E . Since the determinant of a matrix is a polynomial function of its entries, roo. 

if the µh(f) are analytic functions of h then Dk (z, µh) and Dk(µh) in (15) and (16) will also be an 

analytic functions of h. For h > 0, µh satisfies Szego's condition , so Dk #- 0, and we see from the 

representation (17) that Pk (z , µh) is an analytic function of h of the form 

p ( ) _ T(z)hP + f3 (h, z) 
kZ,µh- Mhn+ 'Y(h) ' (28) 

where Mis a constant , T(z) is a polynomial in z, f3(h, z) is a polynomial in h consisting only 

of terms with degree larger than p , and 'Y(h) is a polynomial in h consisting only of terms with 

degree larger than n. The coefficients of f3 ( h, z) are functions of z. We must have n ::; p , otherwise 

Pk(z,µh) is unbounded ash---+ 0. On the other hand, ifn < p , then lim1i--+oPk(z ,µ1i) = 0 which 

cannot happen by Proposition l. D 

3.2 Convolution with Approximate Identities 

One way to construct measures µh that converge as in (21), is to convolve point mass measures 

of the form (20) with an approximate identity, or kernel. If v and µ are two measures, and v is 

absolutely continuous with density f (8), the convolution of v andµ , written v *µ,is the absolutley 

continuous measure with desity 

J f(e - t)dµ(t) . 

In particular, ifµ= L,7~ 1 CY.jJe,) then v *µhas density L,;:l CY.jf(e - ej). 

We consider the convolution of point masses with the Poisson kernel, 

1- r 2 

1/Jr(B) := j( _ rj 2 0 < r < 1, (29) 

15 



d 'th the Fejer kernel , an w1 

{ 

1_ [ sin (nO / 2) ] 
2 

</Jn(B) := n sin(0 / 2) 

n 

Specifically, we will show that 

e =1 o 
e = o. 

n = 1,2,3 , .. . 

m m 

lim Pk(z , 'l/Jr *"" CXjOo ) = lim Pk(z , <Pn *"" .ajOo ) 
-t I L ' n-too L ' 

r j = l j = l 

M Ver we will characterize the limit polynomial. oreo , 

(30) 

(31) 

We begin, in Section 3.2. 1, by studying some properties of approximate identities, establishing 

a basic result and giving two simple examples. In Section 3.2 .2 we will show that the convergence of 

signal zeros of Szego polynomials with respect to convolution of point masses with an approximate 

identity is of the rate O(h) if the approximate identity satisfies Properties 1 and 2. We will use 

some arguments from (PS], where a situation in which Property 2 holds is considered. In sections 

3.2.3 and 3.2.4, 'l/Jr and <Pn are considered separately, Properties 1 and 2 are shown to hold, and, 

using the O(h) convergence rate of signal zeros, limits are characterized and (3 1) is shown to hold. 

17 . 5 

15 

1 2 . 

7 . 

- 3 - 2 3. 

Figure 1: The Poisson kernel, 'l/Jr(B), for r = 
0.5, 0.6, 0.9. 

3.2.1 Approximate Identities 

12 

11 

-3 -2 - 1 

Figure 2: The Fejer kernel , <Pn ( B), for n = 
3, 5, 12. 

The families 'l/Jr ( B) and <Pn ( B) are examples of approximate identities for L 1 (- 7r , 7r). That is , each 

can be viewed as a family of continuous functions, {Kh(B)}, where either h = l /n or h = 1 - r, 

with the following properties: 

2. I Kh(B) dB= l. 

16 



. K (B) = O uniformly outside any open interval containing B = O. 
3. hm h 

h~O 

A well-known property of both 'l/Jr and </>n is reflected in the following, resul t which can be 

found in [R]. 

Theorem 3.1 Let Kh (B) be an approximate identity f or .C1 [-;r, ;r) , and let v be a finite measure 

on the unit circle. Then the convolution v * Kh converges in the weak-* sense to v ash--+ O. 

Remark: Ifµ is a discrete measure, as in (20), and van absolutely continuous measure, then 

IIµ - vii= 11µ11 + llvll, 

where II. II is the total variation norm, which induces the usual topology on measures. Thus, an 

absolutely continuous family cannot converge in the strong sense (i.e., in total variation norm) to 

a discrete measure. 

Let Kh be any approximate identity and define 

m 

µh := Kh * L o:Joe,. 
j = l 

By Proposition 1 all limit polynomials of { Pk(z, µh) }h have the form 

m 

Q(z) IT (z - eie' ) 
j = l 

(32) 

(33) 

where Q(z) E Ak-m· Since the Pk(z, flh) are polynomials of fixed degree equal k with all zeros 

inside the unit disk , the convergence of any convergent subsequence is uniform on compact sets in 

the complex plane, C. If { hn} is a discretization such that 

m 

lim Pk(z,µhJ = Pk(z ) = Q(z) IT(z - ei8
') , 

n-+= 
(34) 

j = l 

we can write 

(35) 

and suppose, without loss of generality, that w)hn) --+ eie, for j = 1, 2, .. ., m. Our aim, then, is to 

study Qhn (z) as n--+ oo. 

17 



Two Examples: 

We compare the Szego polynomial limits with respect to two approximate identities. Note that 

since (f * bo)(B) = f(B) for any £ 1 function f this correspond to finding the Szego polynomial 

. .t 
1
·th respect to convolution of each identity with the point mass at e = 0. We find that the hmI SW 

limit is the same in each case. Comparing the moments of each approximate identity, we find that 

they agree to first nonconstant terms when expanded as Taylor series in h. (We set h = l/n .) 

Let lA be the indicator function for the set A. Define 

nl[ - l / 2n,l / 2n] 

9n(B) 
27r 1 1 

n(l - --:;; + n2 )1[- l/2n ,l/2n) + ;:;:1[-7r,-l/2n) U(l /2n,7r]· 

The kernels Fn and Yn are shown in Figures 3 and 4 for several values of n. 

Figure 3: The "stovepipe" kernel Fn for 
n = 1, 3, 7. 

Figure 4: The "tophat" kernel 9n for n = 
2,3, 7 

Note that the weak-* limit of both Fn and 9n is point mass at e = 0. By Proposition 1, we 

know that every limit point of both {Pk(z,Fn)} and {Pk(z,Qn)} have z - las a factor. We have 

the following: 

This follows from Fejer's Convex Hull Theorem (see Section 2.3.1). 

Direct computation of Pk(z, 9n), for example, using Maple, for various n and k suggest that 

limn--+oo Pk(z, Yn) = (z - l)k as well. Computing the moments of the two kernels we find, with 

h = l/n, 

£2h2 
1- -6- + di(h ,£); 

18 



d (h £)and d2 (h , £)both contain only terms in h of degree higher that 2. Thus, with suitable 
where 1 , 

trization of h the moments of the two kernels agree to first non-constant term in h and 
reparame ' 

f. We will see that this is the case with the moments of the Poisson and Fejer kernels in 3.2.3 and 

3.2.4. 

3.2.2 Convergence of Signal Zeros 

We will show that for a certain class of kernels, the zeros w)hn) converge at the rate (at least) 

O(hn)· To do this, we will use some of the arguments of Pan and Saff in [PS]. There a discrete 

time signal { x( n)} ':'00 is considered, where 

I 

x(n) = L CXjeinO; , 

j = -I 

and where e_j = -Bi and CX-j = CXj -::/: 0. Thus the signal consists of I+ 1 real sinusoids. It is 

also assumed that the frequencies ej are distinct. Let {xN(n)} be the N-truncated signal; that is, 

XN(n) = x(n) for n = 0, 1, 2, ... , N - 1, and XN(n) = 0 for n ~ N. The Z-transform of the signal is 

N-1 

XN = L x(n)z- n. (36) 
n = l 

The measures vN, where dvN = 1JJXNJ 2 dB , are not of the form (32) , but they do converge weak-* 

to a sum of point masses at the signal frequencies ([JNS]): 

(37) 

If k > 2I + 1 the Szego polynomials Pk (z, VN) do not , in general, approach a limit as N ---+ oo, 

but all limit polynomials are of the form (33) for some Q E A21+i-k, the zeros of which are 

necessarily on Jzj :::; 1. In the proof of Theorem 2.4 in [PS] it is shown that the zeros of any such 

Q are strictly inside the unit circle. The assertion is that this is sufficient to prove the Theorem 

2.4, which states that the 2I + 1 zeros of largest modulus of Pk (z, VN) approach the e;e,. It would 

thus be po "bl d" . ssi e to 1scern the 2I + 1 signal zeros from the extraneous zeros for a large sample 

(large N). But if there are an infinite number of limit points , Pk(Z,vN) it can happen that the 
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l
. .t factors Q(z) get arbitrarily close to the unit circle. What is actually needed to prove 

zeros of um 

2 4 is that all limit factors Q(z) have all zeros uniformly bounded away from the unit 
Theorem · 

circle. 

When k :::: 21 + 1, 

and it is shown in [PS] that the rate of this convergence, as well as that of the moments of VN , its 

prediction error power, and the zeros of Pk(Z,vN), is 0(1/N). 

For the situation addressed here, note that the measure in (20) corresponds to m complex 

sinusoids. Also, by Proposition 2, if the moments 'j),h(C) are analytic functions of h, as is the case 

for the Poisson and Fejer kernels, limh--+O Pk(z, µh) exists , and the problem of (asymptotically) 

discerning signal zeros from extraneous zeros does not arise. Vve will , however , use the proof of 

Pan and Saff to show that the zeros of any limit factor Q(z) lie strictly inside the unit circle . 

Let Ph,k denote the prediction error power for Pk (z, µh) defined as the minimum in ( 4) of 

Section 2.3.1. 3 With (32) we have 

Ph,k I 1Pk((,µh) l
2 

dµh (38) 

f aj J 1Pk((,µh)l2Kh(~ - ej) de. 
j= l 

(39) 

As we will later show, the following properties hold for the measures when Kh :::: 'I/Jr and Kh = ¢n· 

They will be assumed here for otherwise arbitrary Kh, with µh defined in (32). 

Property 1 The approximate identity {Kh(B)} (and therefore µh) has moments, Kh(C) , which are 

analytic /unctions of h at h = O. 

Property 2 Let Ph,k be as defined in (38). There exist constants c and C, with 0 < c < C , such 

that for all h > 0 and all k > m 
I 

ch::::; Ph,k::::; Ch. (40) 

3
R.ecall our convent· f · · . . . · · ion o om1ttmg t he factor of l /2n m the defimt10n of t he pred1ct10n error power. 
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. h t Property 1 holds, by Proposition 2 limh-+O Pk (z, µ1i ) exists. Using the notation of 
Assummg t a 

(34) and (35) we can write 

m 

( 41) 

and 

(42) 

h 
(hn ) -t e iO; for j = 1, 2, .. ., m. We will use some of the arguments of Pan and Saff to show w ere wj 

that the rate of convergence of the signal zeros w) h) in ( 42) is a t least 0 ( h). 

We can use the relation 

IPz+1(0,µh)i 2 = 1- Ph,l+l, 
Ph ,l 

(43) 

found in [GS] and elsewhere, to bound the reflection coefficients, P1+ 1 (0, µh ), away from the unit 

circle uniformly in both k and h. The following is an immediate consequence of (40) and (43). 

Lemma 3.1 Suppose that µ1i has Properly 2. Then for all k > m and h > 0 

(44) 

We now study the convergence of Pk(z ,µh) in (41) . If /Ch has moments which are analytic 

functions of h, by Proposition 2 and its proof (see eq. (28)) , we can write 

p ( ) _ T( z )hP + (J (h ,z) 
k z , µh - MhP + 1 (h ) , (45) 

where Mis a constant , T(z ) is a polynomial in z, and (J (h ,z) and 1 (h ) are polynomials in h 

consisting only of terms with degree larger than p. Evidently, Pk(z) = TJ:l . This yields 

I
M (J (h , z ) - T(z)!(h) I 

M 2 hP + M 1 (h) 
IT(h , z)I 

where T(h , z) and K(h) are polynomials in h consisting only of terms of degree at least 1. 
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Thus we have 

2 Suppose that Property 1 holds. Then there exis ts a constant N > 0, such that, for 
Theorem 3. 

(46) 

for all lzl ~ 1. 

Remark: 

Recall that the denominator in the determinant representation for Pk(z, µ,, ), (17), is the k x k 

matrix Dk-I(µ,,). Equation (40) with the representation 

(47) 

found in (G+S], p. 71 , give 

for some constants c and C, and for all h > 0. It follows immediately that 

for constants C1 and C1 . Since limh-+0 Dm-1 (µ,,) = D m-1 c2:::::;1 O'. jOe;) > 0 (see the remarks 

accompanying (15)), we have 

h k-m D ( ) C I k- m C2 ~ k-1 µh ~ 2 1 (48) 

for constants c2 and C2 . From the proof of Proposition 2, we must also have 

h k-m V ( ) C hk-m C3 ~ k Z, µh '.S 3 · (49) 

We conclude from the above and (17) that p = k - m is the smallest integer for which ( 45) holds. 

Before we address the convergence of the signal zeros, w( h), we will need to show that all the 
.1 

zeros of Q(z) in (41) lie in the open unit disk . To do this we use the proof of Theorem 2.4 in [PS] . 
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3 3 Assume that Property 2 holds. Then all the zeros of the limit factor Q(z) in (41) 
'fbeorem · 

. 1 . side the open unit disk. 
lie strict y zn 

(p nd Saff) We prove this by induction on k 2: m. The theorem is vacuously true 
Proof: an a 

_ Assume that it is true for k > m. Using the Levinson recursion we can write 
fork - m. 

(50) 

By (41) we have 

(51) 

for some R(z) in Ak+J-m· Define II(z) := II~ 1 (z - eiO; ) . Then (41), (50), and (51) yield 

Pk+l (z) = II* (z)Q* (z) + zPk+1 (O)II(z)Q(z) 

II*(z) (;.(tl) Q*(z) + zPk+ 1 (O)II (z) Q(z)) (52) 

(53) 

By (51) and (53), 

R*(z) = ;.(tl) Q*(z) + zPk+ 1 (0)II(z)Q(z). 

Define r(z) := i/}()). Writing 

m z - eiO; 1 z - eiO; 

r(z) = Il 1 -·e = IT-·n ·o , - ze i J e- iu; e' ;-z 
j = l 

we see that r(z) is a constant of modulus 1 on C - U~1 eiO; with removable singularities at the 

eW;. We can then write 

R*(z) = rQ*(z) + zPk+1 (O)Q(z), (54) 

where T = n e -~•; . The theorem will be proved if we show that all the zeros of R* (z) lie in lz I > 1. 

We do this by contradiction. Suppose that R(zo) = 0 with lzol :::; 1. We have, from (54) , 

IQ*(zo)I = lzoPk+i(O)Q(zo) I. 

By the induction hypothesis, Q* has all its zeros outside the circle, so zo and Q* are both different 

from zero. Thus, by Lemma 3.1 

1 = lz p . (0) Q(zo) I < Ip (0) Q(zo) I < I Q(zo) I · 
o k+ 1 Q*(zo) - k+l Q*(zo) Q*(zo) 
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. ..902,. is a Blaschke product , I gJ(;j) I ~ 1. This contradiction completes the proof. D 
Since Q·(zo) 

Finally, we have the following 

3 2 Suppos e that Properties 1 and 2 hold. Then the zeros of Pk(z, µh) approach the e;e, 
Lemma · 

the the rate O(h). That is, there exists a constant, NJ, such that 

(55) 

Proof: It follows from (41) and Theorem 3.2 that 

(56) 

Write 

I (h) _ ;e, I - I Pk(e;e,, µ h) I 
wJ e - Qh(eie,) rr;#J(w)h) - eiBp) . 

(57) 

By Theorem 3.3, limh->O Qh(e;e,) =/= 0. Since w )h) -t e;e, for j = 1, 2,. . ., m , the denominator of 

(57) converges to a non-zero constant, so (56) and (57) give (55). D 

3.2.3 The Poisson Kerne l 

We now let h = 1 - r and consider the convolution of the Poisson kernel with the sum of point 

masses in (20). In the present context (32) becomes 

m 

µr := 'l/Jr * L aJDe,. 
j = l 

(58) 

We will show that Property 1 holds for 'l/Jr- The main result of this section is Theorem 3.4, 

which characterizes the limit Pk in (41) for the measure µr. First , we consider the convergence of 

the moments, :;j;r and µr . 

Recall that the moments of 'l/Jr are 

(59) 

Note 'lj;r thus has Property 1. By Proposition 2, limr->l Pk(z , µr) exists, and (42) and (41) become, 

respectively 

(60) 
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m 

Pk(z ) = lim Pk(z, µr) = Q(z ) IT (z - e;e'). 
r--+ I 

j = l 

3 3 For all /!, and r < 1, we have 
Lennna . 

l ~r (C) - ll :::; 1£1(1 - r) 

Proof: Write 

l ~r (C) - 11 = lr lf l - 11 = (1 + r + r 2 + ... + r lf l- 1 )(1 - r ):::; 1£1(1 - r) . 

D 

Define 

m 

m 

µ := L aJrSe,. 
j=l 

Since ji(C) = L aje;ee,, the moments ofµ* 'l/Jr(B) are 
j = l 

m 

(µ:;:;j},.) (£) = L CXjrl t leifO;, 
j = l 

and we have, for all £ and r < 1, 

m 

l(µ:;:;j},.)(£) - ji(C)I = (1 - r lf l)I L CXj e;ee, 1. 
j = l 

So by Lemma 3.3 we have 

Corollary 3.1 

m 

l(µ:;:;j},.)(£) - /i(C)I :::; (1- r)ll' I L CX j. 
j = l 

We can express the convolution of 'l/Jr and µ explicitly: 

m 
d (B) 2 " CXj µr := (µ* 'l/Jr )(B) = (l- r)~ l(- re;e,12 dB 

°"m a· IIm ·l(- r ei0pl2 
= (1 - r 2 ) U J= l 3 P#J . . dB. 

I1fa=1 I( - reie; 12 
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Define, for j == 1, 2, .. . , m, 

X;·( z ) :== ( 1 ·e ) ; XJ~(z) := (1 1 - ·e ) . z - re• ' - zr e i 1 

(!)J == JX*(()J. (Compare with Pk, in (9) and accompanying remarks.) Using (66), the 
Then IXi " 1 

. . or power in (38) can then be written 
pred1ct10n err 

Pk,r = (1 - r
2

) f O'.j J JPk,((, µr)l2 JXj(()J2 dB. 
j = l 

(68) 

Recall that Pk,r is the minimum in (4) for the measure µr . We now prove that 'I/Jr has 

Property 2. 

Lemma 3.4 For all r < 1 and all k > m, 

m m 

(1- r 2
) L O'.j '.S: Pr,k '.S: 4m- 1 (l - r 2

) L O'.j . (69) 
j = l j = l 

Proof: Since Pk,(z,µr) and X j (z ) are analytic in lzl < 1 + E for some E > 0, each integrand in 

the right-hand side of (68) is subharmonic in that region. Thus 

(70) 

This, with (68) proves the left-hand side inequality in (69) . 

To finish the proof, since Pk,r is the minimum in (4) and zk-m f17~ 1 (z - rei9') E Ak , the 

representation (67), gives 

m 

j = l 

m 

4m-1(1- r2) L O'.j. 

j = l 
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letes the proof. D 'fhis com P 

· fi s Properties 1 and 2, Lemma 3.2 and (55) gives 
Since 1/Jr sat1s e 

. (67) nd the orthogonality property (8), we have, for any T E Ak- l, 
Usmg a 

In particular, if T(z) = q(z )II~ 1 (z - rei8i), with q(z) E Ak-m-1 arbitrary, (73) gives 

I ITm ( - wY) Q (;-) (1") Lm nm I;- . i8p 12 de - 0 ·e -) r .,, q.,, Ctj pc;Fj.,, - re - . 
. ((-re'' . 

J = l J=l 

(71) 

(72) 

(73) 

(74) 

In studying the limit factor Q(z) of Pk(Z,µr) in (41) we would like to take limits under the 

integral sign in (74). The next result concerns the convergence of the rational function in the 

integrand of (74), and is the key idea used in the proof of Theorem 3.4 , our first main result. 

(r) 

Lemma 3.5 Let w(r) satisfy (55). The function II
1
'!':_ 1 /-u',.) converges to 1 in Li[-7r,7r] as 

J - (-re J • 

r-+ 1. 

(-w(r) . 

Proof: Clearly, II~ 1 ((-re '"i) converges pointwise to 1 for ( -::j: e'8;, j = 1, 2, .. . , m. We show that 

the function is uniformly bounded on lz I = 1 for r < 1. The lemma will then follow from the 

Lebesgue Bounded Convergence Theorem. 

Using Lemma 3.2 and the fact that I( - reiwl?: leiw - r eiw l = 1- r, we have 

--.::....
1

_- - 1 = 1 . < 1 = N·. 
I 
( - w (r ) I I w(r) - reiei I N·(l - r) 
( - re'e ( - re'8 I - 1 - r 1 

So 1 (-w(r) I (r) 

(-r; .. :S 1 + Nj. Thus III~ 1 ( ~~~;";)I::; II~ 1 (1 + Nj)· This proves the lemma. D 

We come now, to the first main result of this work. Lemma 3.5 will allow us to let 

' approach 1 under the integral sign in (74), and we can now characterize the limit polynomial , 

'P,, in (4l) . We will see that the "extra" factor Q(z) , in (41), is actually a Szego polynomial of 

degree k - m w·th 1 respect to an absolutely continuous measure , which we specify. 
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4 Let µr be given in (58) 
Theorem 3. 

m 

Pk(z ) := lim Pk(z ,µr) = Pk-m(z, v) IT (z - ei8'), 
r --+ 1 

· the absolutely continuous measure with 
where v is 

j = l 

dv Lm ·e 2 
-= rrm .a·l r - e'" I de P# J J ~ . 

j = l 

(75) 

(76) 

Proof: We need to show that the factor Q(z ), in (41), is the Szego polynomial Pk-m(z , v). 

We will show that Q(z ) has the orthogonality property (8), which characterizes Pk-m(z, v). 

Consider the factors in the integrand of (74). With the exception of IT1~ 1 ( <-w;:l , which 
- (-re ') 

converges in £ 1 , all converge uniformly on lzl = l. Thus the entire integrand in (74) converges in 

l 1 to 
m 

Q(z )q(z) L rr;#jaj I( - eiBp 12 . 
j = l 

Now replace the integrand in (74) with its £ 1 limit to obtain 

j Q(z )q(z) f. IT;4JaJ I( - eiep 12 de = 0. 
j = l 

(77) 

and obtain Since q(z ) E A k- m-l is arbitrary, Q has the desired orthogonality property and thus 

m 

Q(z ) = Pk-m(z , L IT;4jaJ I( - eiOp 12 ). 

j=l 

This, along with the definition of Q(z ) in (41) proves the theorem . D 

3.2.4 The Fejer Kernel 

We now let h = l/n and consider the convolution of the Fejer kernel with the sum of point masses 

µ. Here, (32) becomes 

m 

µn :=</Jn* L CTjbe, . 
j = l 

Recall that the Fourier coeffi cients of </Jn are given by 

~ {1 ill </Jn(f ) = 0 - n 

28 

lf l :Sn 
1£1 > n · 

(78) 

(79) 



J.. has Property l. Thus, as in the last section, Proposition 2 applies. Equations ( 42) 
Note that '!'n 

and (41) become, respectively 

(80) 
m 

lim Pk(z,µn) = Q(z) IT (z - ei81). 
n-+oo 

(81) 
j=i 

The Fourier Coefficients of <Pn 

We will see that the Poisson and Fejer kernels have a similar character. In fact we will show 

that the Szego polynomials with respect to either of these kernels have the same limit; that is , 

the limit in (41) is the same limit found in Theorem 3.4 with a change of parameter from the 

continuous r -t 1 in the case of the Poisson kernel, to the discrete n -t oo in the present case. 

One starting point for comparison is the respective Fourier coefficients. To compare those of 

'I/Jr with (79) we substitute r = 1 - l/n in (59) to obtain 

1 - hl£1+ 1 (n) (82) 

where/ contains only terms in 1/n of order larger than l. Upon comparison with (79), we see 

that the moments of the two kernels agree up to linear terms in h = l / n = 1 - r . 
m 

Again, defineµ:= I:;:i CXJOe1 . Sinceµ(£) = L Ctjeite1 , the moments ofµ* </>n are 
j=i 

--- { (1 _ill) "'m a ·eite1 
(µ * ¢n)(£) = O n L..1 = i J 

Thus we have, with h = l/n 

1(~)(£) _ f CXJeite1
1 = { ~1£1 

j=i 

1£1 :S: n 
1£1 > n 

(83) 

(84) 

as the analog of (65). We see that (~)(£) of (64) also agrees up to linear term in h with 

(;;;¢;.)(£). We can thus consider(~)(£) and(;;;¢;,)(£) as polynomials in h = l/n , with the 

latter as linear a · · f · ( · } ·h d fi d pproximat10ns o the former. Jn either case that is, for 1. = 1 - r wit µ r e ne 

in (SS) or for h = l/n with µn defined in (78)) , we see from (15) and (16) that both Dk(z, µ1i) 
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( ) are polynomial functions of h. With the determinant representation (17), equations 
and Dk-1 µh 

(
3

l) and (28), in light of these remarks, suggest that only the constant and linear terms, 1 - hl£1, 

2) 
ntribute in the limit Pk(z) found in Theorem 3.4. 

of (8 , co 

We will prove directly that limn-too Pk (z, µn) = Pk (z) by exploiting the analytical properties 

of the Fejer kernel and the orthogonality of the Pk(z, </>n) · A key point will be the convergence of 

the signal zeros, w)n) --+ eiO;, which has as counterpart the rate of convergence in (71). 

The Measures </>n * I: O:jOe; 

From (30) it is easy to see that 

.J. (B) = ~ (1 - cosnB) 
'f'n n 1(-112 ' 

and hence that 

2 L:;:1 O:j(l - cosn(B - Bj)) IT~~i I( - ei8pl2 

~n=- . . ~. 
n II.f'=1 I( - e•O; 12 

From (30) we also have the representation 

</>n = 
_!_ [ ein8 /2 - e- in8 /2 ] 2 
n eie/2 _ e-i8/2 

]:_ I ein8 - 11 2 
n e'8 - 1 

_!_ I .c_-=--!_ 12 
n (-1 

The above yield two more representations for µn . From (87) and (20) follows 

1 m I ein(0-8;) - 11 2 
- '""'o:j ·(e e l dB n L..., e' - ' - 1 j=l 

1 m I (n - ei8; 12 
- '""'o:j ( .8 dB , n L..., - e•' j=l 

and from (88) and (20) follows 

dµn ; f O:j lei(n-l)(e - ei) + ei(n-2)(8-8;) + ... + ll 2 dB 

j=l 

; f o:ilei(n-1)0; (Cn-1) + ei(n - 2)0; ( Cn-2) + ... + l l2 dB 

j= l 

= ; f o:j l((n-1) + ei8j ( (n-2) + . .. + ei (n-1)8; 12 dB . 

j= l 
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h density in (90) is a non-negative trigonometric polynomial, and has spectral factor­
Now, t e 

. (see Sec. 2.3.2) izat10n 

lgn(z)l2 = ~ f O'.jlz(n-1) + eiO; z(n-2) + ... + ei(n-l)O; 
1
2 

j=l 

(91) 

( ) is a polynomial of degree n - 1 with all its zeros outside the unit circle, which is 
where 9n z 

. I defined with the requirement that gn(O) > 0. 
unique Y 

We can now show that Property 2 holds for the Fejer kernel. In the present context, (38) 

becomes 

Pn ,k J IPk((, µn)l2 dµn (92) 

1_: 1P;((,µn)l2lgn(()l2 dB , (93) 

where we have used (91) and the properties of Pl ((, µn)· Since the integrand in (93) is subhar-

monic, (90), (91), and (93) give 

* 2 2 1 m 
Pn,k 2: IPdO, µn)I lgn(O)I = - '°' O'.j. n L..., 

j =l 

This proves one half of the following analog of Lemma 3.4. The remainder of the proof is similar 

to that of Lemma 3.4, and is omitted. Note, however, the additional factor of 4. 

Lemma 3.6 For all n = 1, 2, 3, ... and all k > m, 

1 m 4m m 

-'°'a·<p k<-'°'a·. n L..., J ~ n, - n L..., J 
j = l j = l 

By Lemma 3.2 and (55) we now have 

for constants NJ > o. 

A Limit for Pk(z, µn) 

By the orthogonality condition (8) characterizing Pk(z, µn) , we have, using (80) and (86), 
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b.t ary In particular, if T(z) 
for T(z) E Ak-1 ar I r . 

arbitrarY we have 

J 1(n, ()dB= 0, 

where we define 

(96) 

(97) 

We write down some simple bounds for future reference which hold for all n = 1, 2, ... ; and 

j = l, 2, .. . , m. As a result of the relationship between chord length and arc length between points 

on the unit circle we have 

(98) 

As a result of (95) and the fact that Jw)n) I :S 1 we have 

and 

Thus 

J( - w
1
(n) I :S ~in{2, JB - Bj J + NJ} . 

n 
(99) 

To prove Theorem 3.4 of the last section, we used the £ 1 convergence of the integrand to 

h (-w( r ) 

exc ange integration and limit operations in (74) . In particular, the factors ~ converge 
( - r e ' 

pointwise except (possibly) at the Bj, where they are bounded uniformly in r. The other factors 

of the integrand converges uniformly. 

The present case, with (96) as the analog of (74), will require a different approach. Factors 

which appear in 1(n, () of the form 

(100) 
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. l 2 m do not converge in £1, due to the cos n( 8 - 8j) term. We must also carefully 
forJ == ', ... , ' 

. h behavior of Zj ( n, 8) near 8 j . Since 
consider t e 

we have 

. 1 - cosn(8 - 8j) 
hm ( ·n = 0, 

6 --+6 j - e'" i 

lim Zj(n,8) = 0. 
6--+ 6 j 

So for each n = 1, 2, ... ,and j = 1, 2, ... , m, Zj(n, 8) can be made continuous by defining Zj(n, 8j) = 

O. We now show that the Zj (n, 8) are also bounded uniformly in n. 

L h (n) c i6j b · (95) f · - 1 2 Th · t Lemma 3. 7 et t e convergence w j -, e e as zn or J - , , ... , m. ere exzs con-

stants, M1 , M2 , .. . , such that for all 8, and for all n = 1, 2, ... , such that 

1
((- w (n)) 1- cosn(8 - 8.i) I< M 

J ( - e '6j - J 
(101) 

Proof: Assume without loss of generality that 8i = 0. The function Zi (n ,8) defined above takes 

the form Zj(n, 8) = (( - w )n) ) 1 -(_':.s1ne . Suppose first that 0 < 181 :::; ~ - Using (98) , and (99) we 

obtain 

Now observe that 

0 
{1

1-cosn81} {n(l - cos8)} < max = max < n, 
161<1/ n 8 161<1 8 

where the inequality follows since 1 -~0s 6 < 1 for all 8. Equations (102) and (103) now give 

I 
( n ) 1 - cos n8 I 

(( - wj ) ( _ 
1 

< 2(Nj + 1) for 181 :::; l/n. 

Now suppose that 181 > l/n. With (95) and (98) we obtain 

---"-] - < 1 + __,J'-----

I 
( - W (n ) I lw(n) - ll 

( - 1 - 1(-11 

2N(l.) < 1 + J n 
8 

1 + 2Nj, for 1/ n:::; 181. 
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Thus 

I 
(n ) 1 - cosnB I 

((-w ) (-l :s; 2(1+2NJ)· (105) 

. (104) and (105) now give (101) with MJ = 2 + 4NJ. D 
Equations 

n~ (( (,·) ) 
3 5 of the last section addressed the £1 convergence of the factor i =

1

1 
-u.~ ~ . of (7 4). 

Lemma · n7= 1 ( -1·e ' 12 
m (' ( n)) 

1: tor fL=1 ,-wi" . of the present section is neither bounded, nor does it converge in £ 1. 
The 1ac IT.i=• (( - e' 1) 

H r W
e have the following result, which is one of the key ideas used in the proof Theorem 

oweve, 

3.5, the second main result of this work. 

Lemma 3.8 Let IJ(b) =(BJ - b,Bj + 6) and let Xo be the indicator function for the 

set [11', 11') \ UJ=
1 
JJ(b). Let the convergence w)n) --+ ei

8
i be as in (95) for· j = 1, 2, ... , m. Then 

nm ((-w(n )) . . 
Proof: Since rr£1

,((-el"i) XnP--+ 1 pomtw1se for p < 0, except at the BJ, we need only show that 

the function is bounded for -1 :::; p < l. The lemma will then follow from Lebesgue's Bounded 

Convergence Theorem. 

( -w(n) 
Suppose that -1 :::; p < 0. Clearly, it suffices to show that ~ ..-YnP is bounded for each 

(-e ' 

j = 1, 2, .. . , m. With (98), the convergence in (95) gives 

< 

< 

0 

We will need one more simple lemma before proceeding. 
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3 9 Let j --t fin .C1(dB) , and let gn be a bounded sequence with lgn(B)I :::= M fo r all n 
Lenuna . n 

and 8. Then 

·ded the limits exist. provz 

Proof: We have 

I/ f ngn dB - J fgn dBi < J lfngn - J gnl dB 

< M J If n - f I dB · 

Letting n --t 00 gives the lemma. D 

We can now state and prove our second main result ; that the limit Pk(z) defined in (81) is the 

same as that found in the case of the Poisson kernel of the last section. 

Theorem 3.5 Let µn be given in (78). Then 

where 

m 

Pk(z ) := lim Pk(z, µn) = Pk-m(z, v) II (z - eiB' ), 
n -+ oo 

j = l 

m m 

dv '"""' II w 2 dB = L..., O'.J I( - e p I . 
j = l p#j 

(106) 

(107) 

Proof: By the orthogonality characterization, (8), of the Pk(z, v), the result will be proved if we 

can show that 

j Q(()t(() f O'.J IT I( - eiep 12 dB= 0, 
j=l p#j 

(108) 

where Q(() is the uniform limit of Qn(() defined in (81) and (80), and t (z) E Ak-m-1 is arbitrary. 

Let IJ(c5) = (BJ - c5, BJ+ c5) , where c5 > 0 is small so that the IJ are disjoint. Let X0(B) be the 

indicator function for [- 7r , 7r) \ UJ!=
1 
r1 ( c5). Then (96) gives 

0 = j 1(n,() dB= J 1(n,()X0 (B) dB+ .lj;, J ,(o) 1(n,() dB. (109) 
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.
11 

Lemma 3.7 to show that 1 (n, () is bounded on U't= 1 I1 (<5) uniformly inn, and therefore 
We WI use 

h fi st integral on the right hand side of (109) is small if <5 is small. 
that t e r 

. t we rewrite 1(n, () . Fors E {1 , 2,. . ., m }, we can write 
f!fS , 

and 

In the sum appearing on the right hand side of the above, j i- s . Thus each of t he products which 

appear in the terms of the sum contain the factor I( - eie, 12 . Therefore this sum can be written 

Hence 

1(n, () = 

( )
- ( ) Ti i't,(( -w~n)) { ((-w(n) ) ( i8 2 

Qn ( t ( ITj,,,(( - e;"'l ( - e;•, c:Ys 1 - cosn(O - Bs)) IT P#s f( - e pl 

+ ((-win) )(( - eie,) l::#s a1( l - cosn(O - 81)) IT#j,s f( - eiep 1
2 } . (110) 

Now suppose that 8 E ! 8 ( <5). Lemma 3. 7 with (98) and (99) now give 

Now Qn(()t(() is bounded uniformly inn and e by uniform convergence, so we see from (111) that 

1' is bounded uniformly inn for 8 E ! 5 (<5) for s = 1, 2, .. ., m. Since / is clearly bounded uniformly 

on [-11., 7l') \ Ul1 ( <5) , there exists M such that 

l1 (n, ()I ::::: M for all n and e. (112) 

It follows from (112) and (109) that 

1!1(n ,8)X0 del = IJ 1(n ,8)d81 :::; Afm<5. 
u I,(o) 
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With fJ == -k we have 

lim J 1( n, B)X1 ;n dB = 0. 
n-+co 

(113) 

h t the integrand 1(n, B)X1;n does not converge in £1 since the factors Z(n, B) do not 
Note t a 

as previously observed. We can, however, express 1(n, B)X1 ;n as the sum of two terms, 
converge, 

f Which does converge in £1. one o 

To this end we write 

By Lemma 3.8 and the uniform convergence of Qn we see that 

_ m ((-w(n)) _ 
Qn(()t(()]] (( _ e;B;) X1 ;n -----+ Q(()t(() m 

Thus, regarding the first term on the right hand side of (114) , we have 

_ m (( _ ~n)) m m 

J~ f Qn(()t(() II (( _ :;B;) L O:j II I( - eiBp 1
2 

,'1:'1 / n dB 
J = l J = l p#J 

= j Q(()t(() £= O:J IT I( - eiBp 12 dB. 
j=l p#j 

(114) 

(115) 

(116) 

Regarding the second term on the right hand side of (114) , we use Lemma 3.9 with (115) and the 

fact that 2=~1 O:j cos n(B - Bj) n;#j I( - eiBp 12 is uniformly b0tmded in n and B to write 

I 
_ m ((-w(n)) m m .. 

J~n;, Qn(()t(()II ((-efe;) LO:jCOsn(B-Bj)II1( -e'8Pl2X1 ;n dB 
J=l J =l P# J 

= J':,~ j Q(()t(() f O:J cosn(B - BJ) IT I( - ei8pl 2 dB. (117) 
j=l p# j 

Claim: The limit, (111), is zero. 

To prove the claim, let J(B) = Q(()t(() n;#j I( - ei8pl 2 , and let Re{!} and Im{!} be the real 

and imaginary parts of f , respectively. Then 

f O:j I Re{f(B)}ein(B-8;) dB= f O:jeinB;ile{J}(n). 
j = l j=l 

(118) 

Since Re{J} · 2 is an L function, by the Riemann-Lebesgue Lemma, 

lim ile{J}(n) = 0. 
n-+co 

(119) 
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From (US) and (119) we have 

lim f CY.j I Re{f(B)}(cosn(B - Bj) + i sin n(B - Bj )) dB= 0. 
n-too 

j = l 

. 1 and imaginary parts of (120) equal to zero we obtain 
Set tmg re a 

lim f ai f ne{f(B)} cosn(B - Bi) dB= 0. 
n-too 

j=l 

Similarly, one can show that 

lim ~ a1 jrm{f(B)} cosn(B - B1) dB= 0. 
n-+oo L..J 

j = l 

The claim follows from adding (121) and (122). 

(120) 

(121) 

(122) 

With the claim and equations (113), (114), and (116) , we see that (116) is zero. Thus (108) 

holds and the theorem is proved. D 

The following is immediate. 

Corollary 3.2 
m m 

limPk(z,~r* '°"' a1be) = lim Pk(Z,cPn* '°"' a1be,). 
r -t l L....., ' n-too L....., 

j = l j = l 

3.2.5 Special Cases and Related Results 

In this section we will consider the measure v(B) of Theorems 3.·4 and 3.5 and relate these results to 

a result in [P] concerning the limit of the reflection coefficients of Szego polynomials, with respect 

to a measure whose density is the squared modulus of a polynomial, as k ---+ oo. We then consider 

convolution of m point masses with either the Poisson or Fejer kernel, for m = 1 and m = 2. 

For m = 1 we exhibit the limit polynomial Pk characterized in Theorems 3.4 and 3.5. For the 

case m = 2, we factor the density ~~ of Theorems 3.4 and 3.5 as the squared modulus of a linear 

function. Using results in [P] we relate the modulus of the zero of this function to the distribution 

of the zeros of Pk- 2 (z, v) ask ---+ oo. The explicit form of the limit Pk is given for a "degenerate" 

case. The m = 2 situation, in light of Theorems 3'.4 and 3.5 and the results in [P], is used to 

interpret . an example of Petersen m [Pe2]. 
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d 
·ty dv of Theorems 3.4 and 3.5 is a non-negative trigonometric polynomial of degree 

The ens1 dB 

R 11 from Section 2.3.2 , that this density can be factored as the square of a polynomial m- 1. eca , 

f d ee rn _ 1 on the unit circle, with no zeros inside the unit circle. Thus, if 
g(z) o egr 

m m 

dv/dB = L O'.j II I( - ei8p 12' 
j=I p # j 

then there exists g (z) of the form 

m-1 

lg(z)l 2 = c II i(z -v1)12 
j = l 

such that 
m m 

lg(()i2 = dv/dB =Lai II 1(- ei8pl2. 
j=I p#j 

(123) 

(124) 

It is easy to see that for arbitrary zo, I( - zo l2 = I(( - zo)((Zo - 1)1. Thus, we have the spectral 

factorization of v on the unit circle: 

m - 1 

dv/dB = lg(() l2 c II I(( - v1)i 2 

j = l 

m-1 

c II I(( -v1HC:V1 - l) I, (125) 
j = l 

where c is a positive constant . Now the zeros of crr;:--;- 1 (z - Vj)(zv :i - 1) are symmetric with 

respect to the unit circle, and those of modulus equal 1 are of even multiplicity. We therefore can 

specify that 
· m- 1 

g(z) = Vc II (z -v:i), (126) 
j = l 

so that lv1I ::; 1 for j = 1, 2, ... m - 1. 

Densities of the form (125), and the associated Szego polynomials are considered by in [P]. 

There, the asymptotic behavior as k-+ oo of the zeros of Pk(z, v) is studied. Suppose that (123) 

and (126) hold , and assume the following: 

1. The vi are distinct. 

2
· There is a unique v1 of maximum modulus; without loss of generality 
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5 f [P] states that if v has a density that can be factored in the form (126) on the unit 
Lemma o 

h e Assumptions 1 and 2 hold, then 
circle w er 

lim !Pk (0, v) 11
/ k = r. 

n-+oo 
(127) 

t ·ons 1 and 2 are key considerations here. As discussed in [P], if they do not hold it may 
Assump 1 

only be the case that 

The reflection coefficient IPk(O , v)l 1
/ k is the geometric mean of the zeros of Pk(z, v) , and (127) 

gives information about the modulus of the zeros of Pk for large k. 

It has been observed ((Ku], [SJ) that for several different processes , including damped sinusoids 

(which we consider in Section 5.4) the zeros of polynomials used in AR estimation tend to become 

uniformly distributed on circles of various radii when the polynomial degree is large. In an attempt 

to interpret this observed phenomenon, Pakula, in (P] , defines the zero-distribution measure, 

t L;~= I SwJ, consisting of point masses of weight 1/k at each of the zeros , w 1 , w 2 , ... , Wk, of Pk(z, v). 

This is a measure on the unit disk. We have the following (Theorem 4 of (P]) 

Theorem 3.6 (Pakula) Suppose {1 21} holds. Then the zero distribution m easures of Pk (z, v) 

converge in the weak- * sense to the uniform measure on the circle of radius r. 

Recall that the main results of Sections· 3.2.3 and 3.2.4 depend on an assumption analogous to 

Assumption 1 above; the Bj of the point mass measure defined in (20) of Section 3.1 were assumed 

distinct. This was used in the proof of Lemma 3.2. 

We now consider the zeros of g and the the limit factor Pk- m (z, v) in (75) and (106) more 

closely. 

Denote, by Rk the kth reflection coefficient for the limit polynomial Pk in (75) and (106). Since 

pk has m zeros of modulus 1, we have IRkll/k = IPk-m(O, v)l 1/k, so that 

lim IRkll /k = lim IPk-m(O , v)ll /k = lim IPk -m (O , v)l 1
/ k -m . 

h oo h oc h oo 
(128) 

s . 
o, Ill studying the behavior of the Rk , we need only consider the reflection coeffi cients of Pn (z , v). 
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d 
'ty of the form (125) is called a moving average spectral density. Suppose that g(z ) = 

A ens1 

m-I b .zi . The following nonlinear relationship between the coeffi cients, bj and the moments of 
Er=o 1 

b 
c und in [G+S], sec. l.12 , p .21 , and in [K], sec. 5.4, p.116). 

v can e 10 

l/(£) = { c0 2:,';~l-Cbcbe+j 0 :::; £:::; m - 1 ( ) 
e ~ m 129 

We will use (129) to perform the spectral factorization for measure v of Theorems 3.4 and 3.5 

for the case m = 2. First, we consider the simplest case. 

The Case m = 1. We consider the case m = 1, corresponding to one point mass convolved 

with the approximate identity Kh; either the Fejer or the Poisson kernel. With a := a 1 , w := 81 

(32} becomes 

and vdO:::::: o: dB, that is, a constant multiple of Lebesgue measure. Since 1, z, z 2
, ... are monic and 

orthogonal on the unit circle with respect to Lebesgue measure, Theorems 3.4 and 3.5 give 

Thus, all the non-signal zeros approach the origin. 

The Case m = 2. With m = 2, the measure µh in (32) becomes 

(130) 

We will assume without loss of generality that 81 = 0, define w := 82 and use the normalization 

ct1 := o: E (O , 1) and o:2 = 1 - a. We thus consider 

(131) 

In this case, the measure v defined in (75) and (106) becomes 

From (l24) and (125) we have 

(132) 

(133) 
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. (z) = bo + b1z and obtain the Fourier coefficients v(£) , we can solve the system (129) 
If we wnte g 

d b In this simple case, we solve a quadratic equation and obtain 
forboan l · 

1 ± .j2CY(l - cosw)( l - CY) 
VO= · · 1 - CY + CYe- iw 

'f · g that lvol < 1 leads to g(z) = y'c(z - vo) where Spec1 ym -

1- .j2CY(l - cosw)(l - CY) 
Vo= 1 - CY + CYe- iw 

Figures 5 and 6 show how Vo and varies with CY for various values of w . 

- 0 . 5 

- 0 . 5 

(134) 

(135) 

Figure 5: The zero v0 as a function of CY E 
[0,1] for w = Jr/6 , Jr/2, and 3Jr/4. 

Figure 6: The modulus of v0 as a fun \:tion 
of CY E [O , 1] for w = Jr / 6, Jr /2 , 3Jr /4 , and Jr. 

The case o: = 1/2, w =Jr may be considered "degenerate" .in the sense that , from (132), we 

see that lg(()l 2 = 2 is constant. That is, g(z) is constant. So this situation is like the case m = 1, 

where we saw that all the the extraneous zeros of Pk (z, µh) approach the origin, and Theorems 3.4 

and 3.5 give 

Since Y is constant, it has no zeros. This is reflected in the fact that v0 is undefined in (135). 

However, we have 

lim Vo = 0. 
o.-+ 1 /2 

F' 
igure 7 shows Vo, which is real, as a function of CY for CY E [O , 1] . This includes the "degenerate" 

case a= 1/2. 
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1 

0 .5 

- 0 .5 

- 1 

Figure 7: The zero of Fig 5, which is real for w = 7r, plotted for a E (0, 1) . 

Returning to the general situation form= 2, with µh defined in (131), Theorems 3.4 and 3.5 

give 

where v0 is given in (135). 

Now consider the situation with k -too. With (128), Lemma 5 [P] gives 

. I ll / k I I 1 - .J2a(l - cosw)( l - a) 
hm Rk = Vo = · 

k-+oo .Jl + 2(1- a) 2 (1 - cosw) 
(136) 

Furthermore, by Theorem 4 of [P], the zero distribution measur.es for Pk- 2 (z, v) converge weak-* to 

the uniform measure on lzl = lvol- Now the two zeros of the limit polynomial Pk (from Theorems 

3.4 and 3.5) on the unit circle will not contribute asymptotically to the zero-distribution measure 

for Pk. Thus it follows from Theorem 4 of [P] that 

The zero-distribution measures for Pk converge in the weak-* sense to the uniform 

measure on the circle lzl = lvol, where v0 is given by (135). 

An example considered by Petersen [Pe2] can be seen as a special case of the above situation. 

Recall the real signal 

I 

x(n) = L O'.j e inOi' 

j = -I 
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asures VN = -*' 1XNl2 formed from the Z-transform of the signal , defined in (36) , (37) , 
and the me 

and the remarks preceding. We have ao > 0, a-1 = 7i1, and 8_1 = -81. Thus the signal can be 

represented as 
I 

x (n) = ao + l::)la1 I cos(nBJ + '"'(j) 
j = l 

where the 'YJ = arg(aJ)· 

Let VN( £) be the gth moment for the measure VN. Jones, Njasted, and Waadeland [ J NW], in 

an effort to address the non-uniqueness of limit , as N --+ oo of the Pk (z, VN), define the R-process 

by replacing VN(f) with rl l liJN(f) for 0 < r < 1. The measure whose moments are thus defined is 

the convolution of VN with the density whose moments are rl l l: the Poisson kernel 'I/Jr defined in 

(29). That is, if 

(138) 

then 

(139) 

By (37) and the convergence of moments of a weak-* convergent sequence, (139) gives 

(140) 

which is of the form (58). Thus the R-process , in the limiting case N = oo, can be seen as a 

specialization to real signals, of (58), and therefore, a special case of (32). We remark that in 

[JNS], a limit for the polynomials Pk(z, Xr ,N), for fixed k , as r --+ 1 and N --+ oo is neither 

exhibited nor characterized , as we do here in Theorem 3.4 for the case N = oo . Furthermore, that 

a limit, merely exists as r --+ 1 for the case N = oo is easily established by Proposition 1, which is 

quite simple and general. On the other hand, Petersen, in [Pel], does prove the existence of limit 

as both N--+ oo and r --+ 1 in a prescribed manner. The fact that the signal is real is exploited in 

the proof, and the limit is not characterized. 

Now consider the reflection coefficients Rk, of Pk(z, Xr ,oo ) approaching infinity. Shortly, we 

collect tw · d" 0 1mme iate consequences of Theorem 3.4 and Lemma 5, [P] for the case where the 

limits are t k . . . a en m the order N --+ oo, r --+ 1, k -+ oo. Jn [Pe2], Petersen finds an exphc1t form 
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flection coefficients, where the limits are taken in this order, for what is seen as a special 
for the re 

f them= 2 case just considered in (130). Petersen considers a signal of the form 
instance o 

1 . 1 . G. 
x(n) = J2 einw + J2 e-inw = v2cos nw, (141) 

and uses the R-process with N = oo. The associated measure is , from (140) 

(142) 

Thus, Xr, oo = µh of (130), where a1 = a2 = 1/2, 81 = -B2, and K1i. = 'I/Jr · The moments of (141) 

are 
~ e 
Xr,oo (t') = r cos Cw. 

It is shown (Proposition 2, [Pe]) that 

1. 1· IP (0 v )1 1/(k- 2) - I cosw l lm lm k , "-r oo - . 
k-+oor-+l ' l+ s1nw 

Using (128) and the definition of Rk this can be written as 

1. IR 11 / k - I cos wl lm k ----
k-+ oo 1 + sin w 

(143) 

This is readily seen to agree with (136) . Letting 81 = w, and 82 = - w in (130), equation (135) 

becomes 

1-2(sinw)~ 
Vo= eiw - 2ia sin w 

So with a= 1/2, eq. (136) becomes 

lim IRkll/k 
k-+ oo 

1 - sinw 

Ji - sin2 w 

1 - sin w 

I cosw l ' 

which, if we define volw=,,.; 2 = 0, is equivalent to (143) . 

To summarize and place the example [Pe2] in the present context , observe that , with X r ,oo 

defined in (142) and µ r = Xr ,oo, the measure v , of Theorem 3.4, is simply a rotation of the 

measure (134) with a = 1/2. (Recall that we assumed, without loss of generality, that B1 = 0 and 

defined w :== B2 in (130) .) The measure v has density jg(()l 2 whi ch is a rotation of (132) , which 

can be factored as Vcl ( _ Vo 12. 
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G eral Case; a Conjecture The en 

that m is arbitrary and let v of Theorems 3.4 and 3.5 have density dv = lg(() 12 with Suppose 

. by (126). Let Rk(h) denote the kth reflection coefficient of Pk(z, µh) , and denote , by 
g(z) given 

k) the zero-distribution measure for Pk (z , µh) . Equations (75) and (106) become 
µ(h, , 

m m-1 

lim Pk (z, µh) = II (z - eiB; )Pk-m(z, c II I( - Vj 12 ) , 

h_,0 j=l j = l 

h We can assume that all the Vj are contained in the closed unit disk. If, additionally, the Vj w ere 

are distinct and jv1 I > !vii for i = 2, 3, .. ., m - 1, Lemma 5 [P], with (128) and the remarks that 

follow now give 

Corollary 3.3 

lim lim IRk(h)j 1
/k = lv1 I· 

k_, oo h_,O 

By Theorem 3.6, we can thus conclude that 

Corollary 3.4 

lim lim µ(h, k) = / 
k_,oo h_,O 

where 'Y is the uniform measure on z = lv1 I· 

The restriction on the Vj can be stated a different way. The v1 are a continuous function of the O:j 

and (Ji. Vectors of the form ( o:1 , o:2 , . . ., O:m, 81 , 82 , ... , 8m) which result in non-distinct v1 or multiple 

Vj of maximum modulus form a set of measU:re zero in ~2m. Thus the above statements hold for 

almost every choice of the signal zeros 8J, and masses CXJ · We note that the above results apply to 

the generalization of the example in (Pe2], considered previously, tom complex sinusoids. 

We wish to consider the situation where h --+ 0 and k --+ oo simultaneously. The above remarks 

suggest that if k--+ oo slowly enough, the measures µ(h, k) may converge. We make the following 

c . 
OllJecture: Let / be the uniform measure on z = jv1 j. For almost every choice of the signal 

zeros (Ji ' and masses a· 
.JJ 

limµ(h , k) = /, 

where the I' .t . 
zmz is taken as h --+ 0 and k --+ oo in a manner to be determined. 
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mptotic behavior of reflection coefficients for measures with rational densities will be 
The asy 

. d. Section 5. We will also consider the reflection coefficients for a related measure associated 
stud1e Ill 

d 
ed sinusoidal signals in Section 5.4. with amp 
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4 
A Mixed Spectral Measure 

h 
way to construct measures µh where (21) holds is to take a discrete measure of the form 

Anot er 

d add an absolutely continuous measure which converges to zero as h ~ O. Let 
(20) an 

m 

µh = L aJboj + h1 
j=l 

(144) 

h 
,.., is an absolutely continuous measure. Here, the "mixed" measure µh is the spectral were , 

measure of a sum of complex sinusoids with additive noise, where / is the density of the noise 

process. Jn the case of white noise, for example, / is the uniform measure on the circle. We remark 

that, in contrast to measures obtained by convolution of point masses with approximate identities 

discussed in Section 3.2, measures of the form (144) actually converge in the strong sense; that 

is, in total variation norm, thus µh clearly satisfies (21). By Proposition 1, for k > m all limit 

points of Pk(z,µh) are of the form (24). We remark that the fact that (21) holds for a measure of 

mixed type says little about the existence of a limit of the associated Szego polynomials . We will 

comment further on this shortly. However in the present case we have 

Theorem 4.1 Let µh be given in (144). Ash~ 0, Pk(z, µh) appmaches a unique limit, Pki 

where 

m 

Pk(z ) := lim Pk(z, µn) = Pk-m(z, v) IT (z - ei8j) , 
h--tO 

j = l 

m 

dv(B) =IT I( - eiBj 12 d1(B). 
j = l 

(145) 

(146) 

Proof: By the orthogonality property, (8) , which characterizes the Pk(z , µh) we have, for any 

With (144) , we have 

(147) 
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. 1 r (147) holds for q(z) = IIJ,;, 1 (z - ei8')r(z) where r E Ak-m-l · Thus, for all h > 0 we 
In part1cu a , 

(148) 

have J Pk(( , µh)r(() ft (( -ei81) dr = 0. 
k=l 

that h is a discretization such that 
Suppose n 

m 

By simple compactness arguments, there are such convergent sequences (see Section 3.1). The 

convergence in the above limit is uniform on lz l = l. So, since (148) holds for all h, we have 

o = lim/Pk((,µh)r(()Ilm ((-ei81)d1 
h---tO j=l 

(149) 

J ft ((- eie' )Q(()r(() ft (( -eiB1) d1 
j=l j=l 

(150) 

j Q(()r(() ft I( - eie, 12 dr. 
j=l 

(151) 

Since r E Ak-m-1 is arbitrary, Q J_ Ak-m-1 with respect to the measure IIJ,;,11( - ei811 2 dr. By the 

orthogonality property (8), Q is the unique Szego polynomial; Q(z) = Pk-m(z, rr.~ 1 lz - eie, l2 d1). 

0 

Theorem 4.1 suggests a way to construct µh, where µh ---+ L Ctj6e, strongly, but such that 

P1c(z ,µh) does not converge. Let 
m 

µh = L aj6e, + hr h 
j=l 

where /h, is a non-convergent family of probability measures, and suppose that { heJi=o and 

{h,.iJ~o are two discretizations of h such that 

and 

Then by Theorem 4.1, 

.Jim /f; = r1 weak - * 
i---too 

hm /n; = r2 weak - *· 
i---too 

m m 

hm P(z , µh, ) = Pk-m(z, IT I( - eie, 12 df 1 ) IT( z - eie, ), 
i,oo i 

j=l j=l 
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while m m 

lirg P(z, µhn) = Pk-m(z, II I( - eio, 12 df2) II (z - ei
9') . 

nE 2 j = l j = l 

1 using this construction, examples where an infinite number of limit points of Pk (z, µh) 
Cleary, 

exist can be constructed. 
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5 

5.1 

Reflection Coefficients for Rational Densities 

Introduction and Statement of Main Result 

In this section we consider a fixed spectral measure with rational spectral density, and study the 

totic behavior of the reflection coefficients, Rk = Pk (0 , µ) as k ---+ oo. This was considered in 
asymp 

Section 3.2.5 for measures with densities of the form rr;:1 1( - wJ j2 . Lemma 5, [P] , and Theorem 3.6 

(Theorem 4 in [P]) describe asymptotic behavior of the reflection coeffi cients and zero dist ribution 

measures, respectively, of Pk(z, µ) in this case. We seek to generalize these results to measures 

with rational densities. The main result of this section is an extension of Lemma 5 in [P] regarding 

lim JRnl1 /n. The idea of the proof is sketched in [P]. The significance of our result is that the 

Jim IRnll /n exists , and not merely the limsup IRnJ1fn . As a corollary we will have an extension of 

Theorem 3.6 to rational spectral densities. 

The behavior of reflection coeffi cients is considered in [SJ and [NT], where we have the following 

Theorem 5.1 (Nevai and Totik): Letµ satisfy S zego 's condition and suppose that g( z ) is the 

function defined in (14) . Then limsup IRnJ 1 fn = r where r is the smallest number su ch that 1/ g(z) 

has an analytic continuation to the disk lz l < 1/r . 

For example, if 

dµ 

(152) 

then 

(153) 

and 1/g(z) is analytic on lz l < 1/r where r =max lwJ I· Thus limsup IRnJ 1fn = r. 

We now state the main result of this section. 
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5 2 Suppos e thatµ has a rational density of the form (152) . Let R k(µ) be the kth 
Theorem · 

t . for the measure µ , as defined in (19). We assume, without loss of generality, that all 
reftec ion 

. of p(z ) and q(z) li e within th e closed unit disk, and that Wj =j:. 0 for j = 1, 2, ... ,£ . W e the zeros 

further assume the following : 

J. The zeros Wj are distin ct. 

2. There is a unique Wj of maximum modulus, this being strictly less than 1: 

Then 

(154) 

The proof of the theorem , though elementary, is quite technical, and we will need some results 

about the form of the inverse of the autocorelation matrix defined in Section 2.3.2 for the measure 

µdefined in (152). Therefore for clarity, before proving the theorem we will sketch the main ideas. 

Sketch of Proof: Let n = k + £ and define 

B(z ) : Pk(z, µ)p( z) 

(155) 

By the minimization characterization, ( 4) , of Pk (z, µ) , B(z ) satisfi es 

where Ak+e s;; Ak+e consists of monic polynomials having £ zeros at the w1. Since lbn l 

IRk(µ) n~= l Wjl , it is easy to see that 

lim 1Rk(µ)l 1/n 
n-t e<:> 

(157) 
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. ffices to show that So 1t su 

(158) 

1 of the proof is to obtain a suitable expression for bn. In fact, we will see ( eq. (198)) that 
The goa 

we can write 
e 

bn = Laiwf (159) 
i= l 

where the a; are bounded. The a; depend on the coefficients of the polynomials p and q appearing 

in the density dµ , as well as th Wj and n. With the aid of Theorem 5.1 we then show that a1 =/:- O. 

To show that limn-too lbn l1 / n = lw1 I is then straightforward, and the theorem follows from (157). 

To get an expression of the form (159) , we recast the minimum property, (156), for B, in matrix 

form. Define 
1 0 0 0 
0 n-1 

W1 
n- 2 

W1 1 
0 n-l n-2 1 W·- W2 W2 (160) 

0 n-l 
We 

n-2 
We 1 

d := [1 wn - 1 -w~ -w[f, (161) 

and 

(162) 

where we suppress then-dependence for the vectors d and b , and for the matrix W. In light of 

(165) and the remarks of sec. 5.2.1, the condition (156), is satisfied if and only if bCnb * is a 

minimum, subject to Wb = d, over all vectors [1 a1 a 2 . .. an] , where Cn is the covariance matrix 

for the measuredµ= lq(()l-2 dB, as defined in (11). It follows that 

We now study the form of the matrix C;;1. 

5.2 The Autocorrelation Matrix 
5·2·1 Eigenvalues 

(163) 

Letµ be an absolutely continuous measure on the unit circle with d1-i = j (B)dB and suppose that 

0 < m :SJ (B) :S M < oo. (164) 
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C 
be the ACF matrix defined in (11) of section 2.3.2. We briefly consider an isometry between 

Let n 

e of polynomials of degree n in .C2 (dµ) and nn+l . 
the spac 

To each polynomial A(z), of degree n, associate the vector of coefficients, a= [ao a 1 . .. ant 

so that A(z) = a0 zn + a1zn- l + ... +an . If A(z) and B(z) are two polynomials of degree n we 

can express the .C2 (dµ) inner product (see, for example, [L]) as 

< A(z) , B(z) > .c2(dµ) I A(()B(()dµ 

J t t ambf ei(C- m)e dµ (B) 
m=O f=O 

LL ambf I ei(e-m)e dµ(B) 
m e . 

I:: I:: amb;µ(e - m) 
m 

(165) 

Thus, the space of polynomials of degree n in .C2 
( dµ) is isometrically isomorphic to R n+ 1 with the 

inner product defined in (165), and we have 

llA(z)ll 2 = a*Cn a. 

Using results in [GS, sec. 5.2] we find bounds for the eigenvalues of Cn with µ bounded as 

above. Suppose that J IA(()l2 dB= l. Interpreting this in light of (165) , with dµ =dB and Cn as 

the identity matrix (or simply by direct computation), we have a * a = l. Now (164) and (165) give 

(166) 

If e is an eigenvector of Cn normalized so that e*e = 1 with corresponding eigenvalue .A. Then 

(167) 

So that 

m:::;.A:::;M. (168) 

Note that these bounds are independent of n. 
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2 
Inverses for a Class of ACF Matrices 

5.2. 

Let q(z) :::: D7==i lz - Vj l2 and let Cn be the ACF matrix defined in (11) of Section 2.3.2 for the 

measure lq(()i-2 d8. We will need some results for the form of C;; 1
. Spectral measures of the form 

lq(()i-2de correspond to autoregressive processes of order m. The properties of C;; 1 have been 

studied extensively ([K], [KVM], [Si]). Write q(z) = zm + Q1Zm- l + ... + qm, and denote, by Pn , 

the prediction error power defined in ( 4): 

For n > m, we have Pn = Pm (see, eg, [K], p.176). The following representation is due to Burg 

([BJ) . 

1 qi 
0 1 

0 
Qn = 0 

0 
0 

and 

fln = 

c;;l = Qnfl;;lQ~ 
q2 
qi q2 

0 1 
0 

1 0 
0 P1 

q;,, 

qi 
1 

0 

0 

0 ... 
q;,, 0 

qi 

0 
0 

Pm 0 

0 
0 

q;,, 0 
q::C, 

0 1 qi 
0 1 

0 0 Pm 

Note that Cn, Qn, and !ln are (n + 1) x (n + 1) matrices whose elements depend on n. 

(169) 

(170) 

(171) 

Define qf. := 0 for ~ > n and ~ < 0. We will denote the { i, j} entry of a matrix A by {A } i,j . 

The Toeplitz-like character of C;; 1 is reflected in the following , due to Trench ([T]): 

(172) 

It follows from (172) that 

(173) 
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C -1 has a Toeplitz structure in its central portion. From the representation (169) we see 
Thus n 

. general the elements of c;;1 are products of vectors of the form [1 q1 . . . qm] and its 
that in ' 

. ate possibly truncated, prepended and/or appended with zeros , and divided by the PJ , and 
conJug ' 

have the form 

{C;;-'}i,J = [O, . . . 0, Pi-.!I> q~Pi 1 , • • • q;,.p-;;,,_~ i -1' 0 .. . O][O .. . 01, q1 , ... qm , 0 .. . of. (174) 

where Po := 1. Here, the first i - 1 entries of the first vector on the right-hand side are zero, as 

are the last n + 1 - i - m entries. The first j - 1 entries of the second vector are zero, as are the 

last n + 1 - j - m entries. More precisely, if we define q~ = 0 for ~ < 0 and ~ > m, we have the 

following, due to Siddiqui [Sd], which can also be found in [K], p . 176: 

(175) 

From the form (174) we see that each { c;; 1 }i,J has at most m + 1 (possibly nondistinct) nonzero 

terms of the form q~q(. From (175) we have 

{C;;1};,j=O for li-j j2'. m+l. (176) 

Since c;; 1 is Hermitian, it follows from (176) that C;; 1 is a band matrix with bandwidth 2m + 1. 

From (175) one can also show that 

{C,:;-~ 1 };,j = {C;;1 
}i,j for i or j < n - (m + 1) (177) 

and 

(178) 

Additionally, the matrix C;; 1 is persymmetric, that is, it is symmetric with respect to the principal 

cross-diagonal (see [K]) . This can be also be proved using ( 175) , and is reflected in the relation 

{C;;1 }i,J = {C;;1 
}n+l-i,n+l - .i · (179) 

Now (178) and (179) give 

{ c;;-~dn+2 ,n+2-j = { c;; 1 
}n+2 ,n+l - j. (180) 
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Thus, {C,:;-1 }n+l,n+l -j is constant inn. The salient points, for our purposes, of preceding discussion 

be summarized as follows: C,:;- 1 is a persymmetric band matrix of bandwidth 2m + 1. Each can 

element, { C,:;- 1 }i,j , is a sum of at most m + 1 not necessarily distinct terms of the form q~q(. Also, 

for n > m + 1, the vectors Tj do not change with n. This is evident from the form (174) and from 

(177) and (178). 

5.3 Reflection Coefficients Revisited 

We now proceed with the proof of the main result of the section. 

Proof of Theorem 5.2: 

We first consider the form of C,:;:- 1W*. In light of (160), for i, j > 1 we can represent the i,j 

entry of W * as {W*}i,j = (wj_1)n- (i-l ), so that the elements of C,:;-1 W* are of the form 

We have 

c;;: 1w· = 

( 

{C,:;-1 }i ,1 

{C,:;-1}2 ,1 

{c;;:-1 }n+1,1 

~{c-1 }. (w* )n-(~-1) 
L....., n "~ 3-l 

~ 

"""°"n ( *)n-j{c-1} L.. j = l W1 n n+l ,j+l 

for i,j > 1. 

"""°"n ( *)n- j {c-1} L.. j = l We n n+ l ,j+ l 

) 

(181) 

(182) 

From the observations of Section 5.2.2, the summation in any element of (182) is over at most 

2m + 1 terms, each in turn consisting of at most m + 1 terms of the form Piqjqk,. Moreover, 

the elements of C,:;- 1 W *, considered as polynomials in the qJ and qj, have products of the Pj and 

powers of the wj as coefficients, and as n increases it is only the powers of the wj that may change. 

Indeed, from the form of c; 1 and inspection of the the matrix w' for i and j fixed , the powers 

of w{ appearing as coeffi cients increase with n . Since each of the w{ have modulus less than 1, 

each {C;1 W *}i,J is the partial sum of a convergent geometric sequence. 

On the other hand, if i is fixed, then for n > i + m the last i rows of C,:;- 1 W* are constant inn. 

In particular , by (176), {C;1} n+l ,J = O for j ::; n+ 1-m, so that the terms in each of the sums 

in the last row of (182) are non-zero only for j > n + 1 - m. We can thus express the last row of 
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(182) as 
m 

[O, ·~::)w;)J {C;1 
}n+1,n+1 - J, 

j = O 

... ' 
m 

z)w£)J {C;1 
}n+1,n+1- J]· 

j=O 

By (180), {C;;-1 }n+l ,n+1 - j is constant inn. It follows that each element of the last row of C;;-1 W * 

is constant inn and we can now express the last row of C;;- 1 W* as 

(183) 

where a 1 , a 2 , .. . , ae are constants. 

Define q = (q1 , Q2,. . ., qm , qi , q2 , .. .,q;,,). Using the above arguments we write , suppressing 

the dependence upon the PJ, 

{C;;_-1h,1 T1(w1, q) T1 (we, q) 
{C;;_-1h,1 T2(w1, q) T2(w e, q) 

c;1w· = {C;;_- 1 }m+1 ,1 Tm+1(w1,q) Tm+l (we, q) (184) 
0 Tm+2(w1, q) Tm+2(we, q ) 

0 Tn+ l (w1, q) Tn+1(we, q) 

where Ti( Wj, q) is a polynomial in the elements of q whose coefficients are powers of wj. Keep in 

mind that Tn+1 (wj , q) = O:j. 

Multiplying C;;_- 1 W * on the left by W we obtain 

wc;;- 1w· = 

( 

{C;;_- 1 }i ,1 
"'m+l n+l-i{c-1} . 
L......i= 2 W 1 n z, 1 

"'m+l n+l-i{c-1}. 
L...... i = 2 We n z,l 

"'n+l n+l -iT ( ) 
L...... i = 2 We i W1' q "'n+l n+l - iT ( ) 

L...... i = 2 We i we, q 
) 

(185) 

Note that the sums in the first column are from i = 2 tom+ 1 since, by (176) , {C;;_-1}i,l = 0 for 

i > m + 1. Thus, for j = 1, 2, . . . , C the smallest power of Wj appearing in {lVC;;_- 1 T;V*}J+ 1,1 is 

n - m. Denoting U := WC;;_- 1 W*we can write 

m+l 
'""'wn+l - i{c-1}. L 1 n i,1 

i=2 

m+l 
n- m '""' m+l-i{c-1} . 

Wj L Wj n i ,1 

i = 2 
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h (3 . is a polynomial in the elements of q. Since, by (177), {C;:;- 1 }i 1 is constant in n , (Ji w ere J ' 

is also constant in n. The remaining elements of U either do not change with n, or are partial 

sums of convergent geometric series which converge to polynomials in the elements of q . Thus 

U ·= limn_,00 U exists. 
00 • 

Claim 1: The eigenvalues of WC;:;- 1 W* are bounded away from zero as n---+ oo. 

Proof of Claim 1: The zeros of q(z) lie strictly inside the unit circle, so there exist positive 

constants M 1 and M2 such that M1 < lq(() l-2 < M2. By (168) , if.\ is an eigenvalue of C;:;- 1
, then 

(187) 

Since c;:;- 1 is also Hermitian and the zeros , Wj , of p(z) are distinct, we see that wc;:;- 1 W* is a 

positive definite Hermitian matrix for all n. By the Rayleigh-Ritz theorem , to prove Claim 1 it 

suffices to show that there exists a positive constant E such that 

t *WC;:;- 1W*t ----'--'---- > E for all t and all n. 
t •t 

Of course, it would also follow that the limit matrix is invertible. We write 

(W*t )*C;:;- 1 (W*t) t *WW*t 
(W* t )*(W*t) t •t 

Rayleigh-Ritz and (188) applied to the first factor on the right-hand side of (189) yield 

(W*t) *C;:;- 1 (W*t) 1 
---~--- > -
(W* t) ~ (W*t) - M 2 . 

Thus, (188) will be proved if we show that there exists a positive constant E such that 

t *WW* t ---- > E for all t and all n. 
t*t 

(188) 

(189) 

(190) 

Again, using Rayleigh-Ritz, (190) will hold if all eigen values of WW* are bounded away from 

zero, or, equivalently, if limn_,00 WW* is invertible. 

This is similar to the situation addressed in [P]. Note that WW* is positive definite and 

Hermitian. We see that 
1 0 0 
0 

WW* = J (191) 

0 
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n . "th 1 - "°'n-l n - E( *)n- E Th l" 1 1 Th where 1 is an e x {, matnx Wl i ,j - DE= O W; WE . us lmn--+oo i, j = l-WiWJ . at 

J 
·:::: limn--+oo 1 is invertible is proved in the proof of Lemma 5, [PJ. For completeness, we sketch 

IX) • 

the argument here. Define fJ( z) = 1_;w;. If l oo were not invertible, there would exist constants 

Cj such that function 
m 

f(z) = L CJ!J(z ) 
j = l 

has e distinct zeros at the Wj· This is impossible since f (z ) can be expressed as a rational function 

with numerator of degree stricly less than £. Thus 100 is invertible. It follows that limn--+ oo WW* 

is also invertible, thus (190) holds and the claim is proved. 

Now consider the elements of the first column of u-1
. Let Ui be the matrix U with the ith 

column replaced with the vector [1 0 0 ... Of. By Cramer's rule, we have 

u-:-l = det ui 
"

1 det U · 
(192) 

Let H; be the matrix obtained by striking the first row and ith column from Ui, and let V(i,j) be 

the matrix obtained by striking the first column and jth row from H;. For i ;::: 2 we may write 

detU; 

where we have used ( 186). 

(-l)i+ 1 det H; 

e 
(-1)H 1 L_ uJ+1 ,1 detV(i, j) 

j = l 

e 
(~l)i+ 1 L wj f3J det V(i, j) 

j = l 

Now using (183), the first element of the last row of c;; 1 W*, which we denote by 8 1 , is 

(c-1w·u- 1) n l+ l ,l 

1 e . e 
-d- L o:i(-1)'+ 1 L wj f3J det V(i,j) 

et U i= I j = l 

1 e e . 
-d UL wjf3J L o:;( -1) '+ 1 det V(i,j) 

et . . 
J = l i = l 

1 e 

detU L,wj/J 
j=l 

where the / j converge to polynomials in the elements of q . 
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In general, the elements ui~/ can be expressed as 

u:-.I = r(i,j) 
•,J det U (196) 

where 7 ( i, j) is a sum of determinants of principal minors of U, so the r ( i, j) likewise converge to 

polynomials in the elements of q. 

Let 8j denote the jth element of the last row of C;; 1 W * , with 8 1 defined in (195). Using (183) 

and (196) , we can write 

1 e 
det UL air(i + 1, j) 

i= l 

"'i-I for j 2 2 
detU 

(197) 

where "'i -I is again a polynomial in the elements of q. Note that with this notation, the indices 

on the "'~ run from 1 to £. With b and d defined in (162) and (161), (163) now gives bn = 

[01 8 2 . .. 0 e+1 ][l - wf w~ . . . - w(f so that 

(198) 

where r i = /i - "'i · By the Claim 1, det U is bounded away from zero, t hus it converges to a 

positive constant. The f; converge to polynomials in the elements of q. 

Claim 2: f 1 -::/:- 0. 

Proof of Claim 2: Suppose to the contrary that rd -::/:- 0, for some d > 1, but r i = 0, for 

i = 1, 2, .. , d-1. Also suppose, without loss of generality, that lwd l 2'. lwi I for i = d+ 1, .. . , C. Then it 

is easy to see from (198) that lbnl '.S Klwdln for some K > 0. But then Jim sup lbnlI/n '.S lwdl < lwr I· 

This, with (157) contradicts Theorem 5.1 and the claim is proved. 

Now write 
e 

lb I = lw1 In ~ r ( I n) 
n det u r I + L j W j Wr 

j=2 

(199) 

As argued in the proof of Lemma 4 [P], since lwi I < lw 1 I for j = 2, 3, ... , C, 
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and it follows , taking nth roots, that 

e 
lim (r1+ ""r1(w1/w1r)1ln=1. 

n--+ oo ~ 
j = 2 

This, with (199) gives of q , 

which, along with (158), proves the theorem. 

Recall the zero-distribution measure of Pk(z, µ),defined in the remarks preceding Theorem 3.6 , 

which assigns mass l/k at each of the zeros of Pk(z ,µ). From Theorems 5.2 and 3.6 follows 

Corollary 5.1 Letµ satisfy the hypotheses of Theorem 5. 2. Then the zero distribution measures 

of pk (z , µ) converge in the weak-* sense to the uniform measure on the circle of radius r. 

Example: The following example shows that Theorem 5.2 is false if we relax the requirement 

that there is a unique WJ of maximum modulus . Let 

where 181 - 82 I = Jr. Then by direct computation using Mathematica, we find 

{ 
n/ °"'n 2n 

IR I = r 6J= O r 
n 0 n odd 

n even 

Thus limlRnl 1/n = r while limlRnll/n = 0. 

5.4 A Signal Consisting of Damped Sinusoids 

We now consider a signal consisting of damped sinusoids . Let 

[( 

Xn = L O:.JVj 
j = l 

for n = 1, 2 (200) 

where lv1I < 1 and o:.1 are complex. We can write o:.1 = a1eiw, and v1 = p1eie', for j = 1, 2, .. . , K, 

where the aJ are real amplitudes, PJ < 1 are damping factors, and the BJ and WJ are frequencies and 

Phases, respectively. Several methods exist for exactly determining amplitudes, damping factors, 

frequencies, and phases for the signal (200) given at least K of the X n (see [K], p. 224). Modern 
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techniques such as the covariance method are variations of Prony's method, which dates to 1795. 

Several methods have been investigated for determining signal zeros for damped sinusoids when 

noise is present ((KTl, KT2]). Our interest here is in the mathematical properties of the Szego 

polynomials, and to illuminate the behavior of AR techniques, rather than to propose alternate 

means of determining signal zeros in applications. 

We consider a related sequence of measures derived from the signal (200) and illustrate some 

connections with the results of Section 5. Recall that ( = eie represents an arbitrary point on the 

unit circle. We form an analog of the periodogram (see, eg. (K], Sec 4.3) by defining 

(201) 

where XN(z) is the z-transform of the signal (200) 

N 

XN(Z) = L XnZ-n. (202) 
n=O 

The moments of µN are then 

N N J (k L xmCm LXn(nde 
m=O n=O 

N N 

l=o ~ (/ (k+n - m dB) XmXn 

N-k 

(203) 

The iiN(k) are seen to be multiples of the ACF function estimates used in the autocorrelation 

method (see (K], Sec 7.3). Given a signal x0 ,x1 , ... , of the form (200) , this method is equivalent 

to using the arguments of the zeros of Pk(Z, µN) as estimates of the frequencies , eJ· Multiplying 

(201) by 1/ N yields the standard form for the periodogram, which is the basis for classical spectral 

estimation techniques ((K], Ch. 4). A factor of l/N in (201) would in turn result in a factor of 

l/N in (203). 

The reason for not normalizing is that we wish to consider the behavior of µ N as N -+ oo. 

Since lvJI < 1, XN is bounded in N. On the other hand, (1/ N)µN -+ 0. More precisely, from 
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(202) we have 

so that 

Thus 

N I< 

L z - m L ajvj 
m=O j = l 

I< N 

LL z - mCXjVj 
j = l m=O 

I< N 

LL a1(v1z- l)m, 
j =l m=O 

J( 

L a· 
lim X N ( Z) = J 

1 
. 

N-t= l- v·z-
J= l J 

The numerator in (205) is a polynomial of degree K - 1, and can be factored as 

I 
I<-1 12 

d 1. d C rrj= l (( - Wj) -'8 µ := lm µN = I< a , 
N-t= f1j= l((-Vj) 

(204) 

(205) 

(206) 

where C > 0 and where , without loss of generality, the Jw1 I :::; 1 (see Sec. 2.3.2). The w1 depend 

on the both the signal zeros v1 and the a1. Since a1 = a1 eiw;, the Wj depend on the phases of the 

frequency components of the signal. Write 

d = c Ip( o 1
2 

de 
µ q(() (207) 

where p(z) = rrf=~ 1 ( ( - Wj) and q(z) = ITf=1 ( ( - Vj). Thus, the asymptotic situation is the same 

as that considered in Sec. 5. In particular , if there is a unique Wj of maximum modulus , which is 

less than 1, Theorem 5.2 holds, and by Corollary 5.1, the zero distribution measures of Pk(z, µ N) 

converge in the weak-* sense to the uniform measure on lzl = r . We make the following conjecture: 

Conjecture: Let Xn and µN be defined in (200) , (201), and (202), and assume that the 

VJ and Wj in (206) are distinct and less than one in modulus, with 1 > r = lw1 I > Jw1 I for 

j = 2, 3, .. . , K - 1. Then as N and k approach infinity in a manner to be determined, the zero 

distribution measures of Pk(z, µ N ) converge in the weak-* sense to the uniform m easure on lzl = r. 
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Note that the conjecture is true if we first let N ---+ oo while holding n constant. 

Convergence of zeros of Pn(z , µ) 

We now consider convergence of the zeros of Pn(z, µ) to signal zeros Vj . Suppose tha t the 

hypotheses of the the above conjecture hold, and that lvJ I > r for j = 1, 2, ... , d, and lvj I :::; r for 

j = d + 1, .. . , K. We will expand upon the remarks on p . 575, (PJ, and show that that as n ---t oo 

the d largest zeros of Pn(z, µ) converge to the Vj for j = 1, 2, .. . , d. 

Let kn be defined so that <Pn (z) := knPn(z,µ) has L 2 (dµ) norm equal 1, so that the ef>n(() are 

orthonormal with respect toµ, and let en := ef>n(O) be the constant . Then the reflection coefficients 

are Rn= ln/kn and k;; 2 = llPn((,µ) 11 2 is the prediction error power defined in Section 2.3. Since 

µ satisfies Szegi:i's condition (see Sec. 2.3.2), 

lim kn> 0, 
n-+oo 

(208) 

so that 

lim IRnll/n = lim llnl 1 /n 
n-+ oo n-+oo 

(209) 

if the limit exists . Recall , also from Section 2.3, the reverse polynomial , ¢~ (z) := zn¢n (z- 1 ). The 

following hold ([GS], Secs. 2.2 , 3.4): 

n 

_LYj </>j(z) = knef>~(z), 
j=O 

lim knef>~(z) = (O)l ( ) for lzl < 1, 
n-+oo g g Z 

lim z-n</>n(z) = _( 
1
_ 1 ) for lzl > 1 

n -+oo g z 

where g(z) is defined in Section 2.3.2. Here, 

where C is defined so that g(O) > 0. 

- cf1(z -w;; l) 
g(z) - TI ( --1), z - vk 

(210) 

(211) 

(212) 

Let l/r > p > 1, and let L =max jl/g(z-1 )I on lzl = IP( I = p > l. Then, by (212), given 

E: > 0 there exists M such that, 

l</>n(p()j < (L + E:) pn for n > M . 
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By the maximum modulus principle the above bound holds for all lzl :::; p; that is 

l<Pn(z)I < (L + E)pn fori z l :::; p and n > M . 

By Theorem 5.2 and (208) , limn-;= IRNll / n = r. So (209) and (213) give 

lim lln <f>n(z)l 1/n < lim rlpn(L + c)l l /n < 1 

(213) 

(214) 

for izl :::; p < 1/r. Thus, by (210) , (214) , and the root test kn<f>~ (z ) converges uniformly on lz l :::; p. 

The limit function is analytic, and, by (211) , is the analytic continuation of 1/ g(O)g(z). 

We further restrict p so that only the d smallest zeros of 1/ g(O)g (z) fall inside iz l < p. Since 

kn</>~ (z)-+ 1/ g(O)g(z) uniformly on iz l:::; p, for large n kn<f>~ (z ) will have no zeros on iz l = p. By 

Hurwitz' Theorem, kn<f>~(z ) has exactly d zeros inside izl < p for large n . Since the zeros of <f>* (z) 

are those of <f>(z) reflected in the unit circle, letting p-+ 1/ r yields the following: <f>n (z) has exactly 

d zeros in iz l > r; these approach v1, ... , vd . 

In the context of estimating the signal zeros, v1, via autocorrelation method, the preceding 

remarks suggest that for large N, the largest zeros of Pn (z, µN) will be close to those v1 which lie 

outside iz l = r = maxw1 in (206). Since the w1 depend on the a 1, and thus upon the relative 

phases w1, in (200) , it would be of interest to determine the exact nature of the dependence of the 

WJ upon the phases, w1. For example, what conditions on the phases guarantee that one or more 

of the Vj lie outside r ? There do not seem to be general results in this area, but the following 

corollary of Lucas' Theorem can be found in [MJ. 

Theorem: (Lucas) Suppos e a1 > 0 for j = 1, 2, ... , K. Th en the zeros of (204) lie inside the 

closed convex hull of the VJ. 
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