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Abstract 

Spores of the marine red alga, Champja parvu!a, attached initially to 

plastic or glass cover slips by extracellular mucilage. Adhesive rhizoids 

emerged from germinating spores, provided a further basis of attachment and 

rhizoidal division formed the holdfast. Mucilage of holdfasts and attached 

spores stained for sulfated and carboxylated polysaccharides. Rhizoids and 

holdfast cells but not mucilage stained for protein. Removal of holdfasts with 

HCI revealed protein anchors in holdfast cell remnants. Spores detached 

when incubated in the following enzymes: 13-galactosidase, protease, 

ce!!u!ase, a-amylase, hya!uronidase, sulfatase, and mannosidase. The FITC- . 

lectins Con A, LCA, PNA, SBA, and the lectin from ~ yi!!osa, were used to 

probe the mucilage of attached spores to detect the sugar haptens a-D

mannose, a-0-glucose, ~D-galactose, and N-acetylgalactosamine, whereas 

probing with WGA, Phyto!acca amerjcana mitogen (PWM), and UEA did not 

detect N-acetylglucosamine or a-L-fucose 

Adhesion of newly released, floating tetraspores was inhibited by 

cycloheximide, tunicamycin, sodium molybdate, and Con A. These results 

indicate that proteins, glycoproteins, sulfated polysaccharides, and a-0-

mannose or a-0-g!ucose, respectively, are all necessary for adhesion. 

Tetraspores remained attached in the presence of the inhibitors, suggesting 

that they do not maintain adhesion via synthesis of proteins, glycoproteins, or 

sulfated polysaccharides. Tetraspores killed with H2S04 or sodium azide did 

not attach; therefore tetraspores must be alive to attach. Tetraspores did not 

detach when killed with sodium azide or DIH20. Death did not result in 

detachment unless the mucilage was damaged by H2S04. 



Glycoproteins with a-0-mannose and or a-0-glucose sugar moieties may 

detect the substrate upon contact and convey messages to the cytoplasm 

which translates spatial information about adhesion into germination and 

rhizoid production. The sugar moieties may recognize cellular surfaces of 

hosts on which .Q.. parvula is epiphytic. These glycoproteins are probably 

embedded in a matrix of adhesive, sulfated polysaccharides which may be 

cross-linked with proteins, suggesting that several classes of molecules may 

interact to facilitate adhesion. 



Acknowledgements 

There are many people that I wish to acknowledge for their help with this 

work. Let me start with Dr. Marilyn M. Harlin. As my major professor, she 

provided much encouragement and enthusiasm. She also imparted much 

phycological knowledge and an introduction to the field. Hats off to Marilyn 

Harlin I 

Dr. Joanna Norris was also quite helpful. I was fortunate to be able to do 

protein analysis in her plant molecular biology lab. Her insights and 

knowledge were very helpful to me. 

Dr. Linda Hufnagel provided the helpful idea of using FITC-lectins as 

probes. 

Dr. Glen Thursby provided valuable assistance with culturing. I am very 

thankful to him for getting a new batch of tetrasporophytes going after my 

cultures crashed. 

Thanks to Dr. Eric Roberts for his helpful comments and for serving on my 

defense committee. 

Thanks to Dr. Yuzuru Shimuzu for acting as chairman of the defense. 

iv 



Paul Johnson of the electron microscopy facility could easily be called 

"The Wizard of EM." I appreciated his technical expertise while I was learning 

to do scanning electron microscopy. 

The Environmental Protection Agency in Narragansett, Rhode Island 

allowed me to obtain filtered seawater at their facility. Mark Tagliabue donated 

nutrients and cultures. Alex Frost and Mary Beth Abel helped me to collect 

seawater. 

Thanks to Andy Cary, Linda Bowerman-Grosskurth, Sardha 

Suriyappuruma, and Alex Frost for changing my cultures. 

I am thankful to the Graduate School for a Graduate Fellowship. 

The Botany Department provided financial assistance in the form of 

teaching assistantships and tuition waivers, which have been much 

appreciated. Many thanks to all of the botanists for many mirthful times! 

Thanks to Liz Ferguson for her expert childcare. 

I would also like to thank my previous educators, the Botany Department at 

the University of Montana for providing me with a botanical background and 

many enduring friendships. 

My parents, Phyllis and Richard Apple, supported my scientific endeavours 

by riding the train from Paris to Brest, France to attend my presentation at the 

v 



International Seaweed Symposium. My grandmother, Phyllis Gorham, my 

brothers, Richard Apple and Charles Apple, their spouses, Susan Apple and 

Susan Inscore, M. D., and my nieces, Sarah and Kristin Apple, have also 

been encouraging. Thanks to Susan Gallagher, phycologist and mother-in

law, for her enthusiasm and advice on algal cultures. 

To my husband, James Gallagher, for his tangible input to this work by 

being my resident computer expert and graphics assistant. Also, he has been 

very encouraging and supportive. 

And thanks to my son, Charlie Apple, age 6, for helping me to take care of 

the seaweed and for his cheeriness! 

vi 



TABLE OF CONTENTS 

Abstract ........................................................................................................................... ii 

Acknowledgements ...................................................................................................... iv 

TABLE OF CONTENTS ............................................................................................... vii 

LIST OF TABLES .......................................................................................................... x 

LIST OF FIGURES ........................................................................................................ xi 

INTRODUCTION ........................................................................................................... 2 

Red Algal Mucilage and Initial Spore Attachment. ..................................... 3 

Polysaccharides in Red Algal Cell Adhesion .............................................. 6 

Glycoproteins in Red Algal Cell Adhesion ................................................... 7 

Interactions Between Adhesive Molecules .................................................. 8 

Adhesion of Brown Algae ............................................................................... 9 

Adhesion of Diatoms ........................................................................................ 1 6 

Adhesion of Euglenoids .................................................................................. 18 

Adhesio·n of Fungi ............................................................................................ 19 

Adhesion of Marine Bacteria .......................................................................... 20 

Adhesion of Animals ......................................................................................... 20 

Influence of the Substrate on Algal Spore Adhesion ................................ 24 

Cell-substrate Contact Influences Differentiation ....................................... 26 

Lectins Can Influence Adhesion .................................................................... 27 

Inhibitors of Adhesion ...................................................................................... 30 

Biofouling ........................................................................................................... 32 

Champia parvula .............................................................................................. 35 

MATERIALS AND METHODS .................................................................................... 38 

Culture ................................................................................................................ 38 

vii 



Phases of the Life Cyde .................................................................................. 38 

Collection of Spores ........................................................................................ 39 

Spore Adhesion - Anatomy ............................................................................ 39 

Spore Adhesion - Histochemistry .................................................................. 40 

Composition of Mucilage ................................................................................ 40 

Spore Adhesion and Detachment.. ............................................................... 43 

RESULTS ...................................................................................................................... 45 

Anatomy of Spore Adhesion .......................................................................... 45 

Biochemical Composition of Spore Mucilage and Rhizoids .................... 51 

Histochemical Stains of Spores, Rhizoids, and Mucilage ........................ 60 

Maintenance of Spore Adhesion ................................................................... 67 

Detachment of T etraspores ............................................................................ 73 

Inhibition of Tetraspore Adhesion ................................................................. 75 

DISCUSSION ............................................................................................................... 81 

Spore Adhesion - Anatomy ............................................................................ 81 

Tetrad Adhesion and Coalescence .............................................................. 82 

Composition of Spore Mucilage .................................................................... 84 

FITC-lectins ........................................................................................................ 84 

Histochemical Stains of Spore Mucilage and Rhizoids ............................ 87 

Enzymatic Analysis of Adhesion .................................................................... 90 

Spore Adhesion Initiation and Adhesion Maintenance ............................ 93 

Analysis of Spore Adhesion using Cycloheximide .................................... 93 

Analysis of Spore adhesion using Tunicamycin ........................................ 94 

Analysis of Spore Adhesion using Sodium Molybdate ............................. 95 

Analysis of Spore Adhesion using Con A. ................................................... 96 

Spore Adhesion - Viability .............................................................................. 97 

Spore Detachment ........................................................................................... 98 

viii 



Summary ............................................................................................................ 1 00 

LITERATURE CITED .................................................................................................... 1 02 

APPENDIX 1. PROTEINS IN THE LIFE CYCLE OF CHAMPIA 

PABVULA. ...................................................................................................................... 139 

APPENDIX 2. PROTOCOLS ....................................................................................... 161 

APPENDIX 3. LIST OF ORGANISMS ....................................................................... 186 

BIBLIOGRAPHY ............................................................................................................ 190 

ix 



LIST OF FIGURES 

PLATE 1. Light micrographs of Champia parvula. Scale bars= 1 O µm ............. 47 

Fig. 1 - Tetrad attached with mucilage (M) as a unit of four 

tetraspores (T) to a plastic cover slip ............................................................ 4 7 

Fig. 2.- Spores of a tetrad that have germinated and produced 

rhizoids (R) ......................................................................................................... 4 7 

PLATE 2. Scanning electron micrographs of Champia parvula. Scale 

bars= 10 µm .................................................................................................................. 49 

Fig. 3 - mucilage (M) of tetraspores (T) of attached tetrad ........................ 49 

Fig. 4 - positions of rhizoids (arrow) within mucilage (M) that 

remained on slide after removal of tetrad .................................................... 49 

Fig. 5 - mucilage (M), holdfast cells (H), upright branch (B) and 

hair cell (arrow) of a detached sporeling ..................................................... 49 

Fig. 6 - basal view of the detached sporeling showing mucilage 

(M) and disrupted holdfast (H) ....................................................................... 49 

PLATE 3. Fluorescent light micrographs of spores of Champia parvula, 

in which the mucilage surrounding the spores did not fluoresce 

following incubation in a. FITC-lectins or b. control (preincubation in 

competing monosaccharide followed by incubation in FITC-lectins). 

Scale bars= 50 µm ...................................................................................................... 54 

Fig. 8 - a. WGA, b. N-Acetyl-D-glucosamine and WGA ............................. 54 

Fig. 9 - a. Phytolacca americana (PWM) mitogen, b. D-galactose 

and Phytolacca americana (PWM) mitogen ................................................ 54 

PLATE 4. Fluorescent light micrographs of spores of Champia parvula 

following incubation in FITC-Con A (Figs. 1 O - 11, 13, and 15 - 17), or 

x 



-

control, (Figs. 12 and 14), (preincubation in competing monosaccharide 

followed by incubation in FITC-Con A), green fluorescence (arrows). 

Scale bars = 50 µm ...................................................................................................... 56 

Fig. 11 - release of tetrads.(T), arrows point to green 

fluorescence at original sites of tetrads within tetrasporophytic 

branch (B) .......................................................................................................... 56 

Fig. 12 - control, attached tetrads (T) ............................................................ 56 

Fig.13 - attached tetrads .................................................................................. 56 

Fig. 14 - control, germinated tetrad with rhizoids.(R) ................................. 56 

Fig. 15 - basal view of developing holdfasts.with mucilage (M) 

and rhizoids (R) with adhesive mucilage ..................................................... 56 

Fig. 16 - detached sporeling (SL) with holdfast cells (H) and 

mucilage (M) ...................................................................................................... 56 

Fig. 17 - basal view of a branch (8) and holdfast (H) with 

mucilage (M) ...................................................................................................... 56 

PLATE 5. Fluorescent light micrographs of spores of Champia parvula 

following incubation in a., FITC-lectins or b., control (preincubation in 

competing monosaccharide followed _ by incubation in FITC-lectins), 

green fluorescence (arrows). Scale bars =50 µm .................................................. 58 

Fig. 19 - a. PNA, b. D-galactose and PNA. .................................................. 58 

Fig. 20 - a. ~ yil!osa agglutinin, b. D-galactose and ~ 

yillosa agglutinin ............................................................................................... 58 

Fig. 21 - a. SBA, b. D-galactose and SBA ................................................... 58 

Fig. 22. Autofluorescing spores ..................................................................... 58 

PLATE 6. Histochemical staining of Champia parvula. Scale bars = 50 

µm .................................................................................................................................... 63 

xi · 



Fig. 23 - rhizoids (R) and spores (S) stained for protein with fast 

green ................................................................................................................... 63 

Fig. 24 - with coomassie blue ......................................................................... 63 

Fig. 25 - rhizoids (R) but not mucilage (M) stained for neutral 

polysaccharides with PAS .............................................................................. 63 

Fig. 26 - mucilage (M) of spores stained for carboxylated 

polysaccharides with alcian yellow ............................................................... 63 

Fig. 27 - mucilage (M) of sporelings (SL) stained for sulfated 

polysaccharides with alcian blue HCI, pH 0.5 ............................................ 63 

Fig. 28 - with alcian blue MgCl2 .................................................................... 63 

Fig. 29 - with alcian blue acetic acid pH 2.5 ................................................ 63 

Fig. 30 - with toluidine blue ............................................................................. 63 

PLATE 7. Histochemical staining of Champja parvula. Scale bars= 50 

µm .................................................................................................................................... 65 

Fig. 31 - mucilage (M) of holdfast (H) stained for sulfated 

polysaccharides with Heath's neutral red .................................................... 65 

Fig. 32 - mucilage (M), spores (S), and rhizoids (R) stained for 

sulfated polysaccharides with _Heath's methylene blue ............................ 65 

Fig. 33 - with Heath's toluidine blue .............................................................. 65 

Fig. 34 - mucilage (M) of spores (S) stained for cellulose with IKl-

H2S04-··············································································································· 65 

Fig. 35 - with Biofluor White ............................................................................ 65 

Fig. 36 - spores (S) stained for starch with IKI.. ........................................... 65 

Fig. 37 - protein anchors (PA) staining with fast green in 

remnants of holdfast following its removal with a 24 h exposure 

to 7°/o HCI. .......................................................................................................... 65 

xii 



Fig. 38 - Toluidine blue stained mucilage (M) and fast green 

stained holdfast cells (H) of sporeling detached with a 24 h 

exposure to 7o/o HCI ......................................................................................... 65 

PLATE 8. Light micrographs of Champia parvula after exposure to 

enzymes. Scale bars = 50 µm .................................................................................... 71 

Fig. 39 - Alcian blue stained mucilage (M) that remained after 24 

h incubation in 1 mg protease per ml DIH20, pH 8.0, 37° C .................... 71 

Fig. 40 - spores (S) detaching to leave behind mucilaginous 

sockets (MS) after 24 h incubation in 1 mg a-amylase per ml 

DIH20, pH 8.0, 37° C ....................................................................................... 71 

Fig. 41 - spores (S) that detached upon touch after 24 h 

incubation in 8.5 mg sulfatase per ml DIH20, pH 5.0, 37° C .................... 71 

FIGURE 42. Average percent of adhesion(+/- standard deviation) of 

newly released, free floating Champia parvula tetraspores to plastic 

cover slips during 24 h incubations in cycloheximide, (N=15), a protein 

synthesis inhibitor ......................................................................................................... 77 

FIGURE 43. Average percent of adhesion (+/-standard deviation) of 

newly released, free floating Champi.a parvula tetraspores to plastic 

cover slips during a 24 h incubation in tunicamycin, (N = 15) a 

glycoprotein synthesis inhibitor ................................................................................. 78 

FIGURE 44. Average percent of adhesion (+/-standard deviation) of 

newly released, free floating Champia parvula tetraspores to plastic 

cover slips during a 24 h incubation in the a-D-mannose/a-0-glucose 

specific lectin Con A, (N = 15) .................................................................................... 79 

FIGURE 45. Average percent of adhesion (+/-standard deviation) of 

newly released, free floating Champia parvula tetraspores to plastic 

xiii 



cover slips during a 24 h incubation in sodium molybdate, (N = 15) an 

inhibitor of sulfation of polysaccharides ................................................................... 80 

xiv 



LIST OF TABLES 

Table 1.Fluorescence of the mucilage of Champia parvula spores with 

FITC-lectins .............................................................................................................. 53 

Table 2. Staining of Champia parvula mucilage, spores, and rhizoids ............. 62 

Table 3. Detachment of Champia parvula spores incubated in enzymes 

at 37° C ................................................................................................................. 70 

xv 



HISTOCHEMISTRY OF SPORE MUCILAGE AND 

INHIBITION OF SPORE ADHESION IN CHAMPIA PARVULA, 

A MARINE RED ALGA. 
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INTRODUCTION 

Spores are dispersal and attachment units. They are the bridges between 

macroalgal life cycle phases. Establishment of attached adult plants depends 

on spore adhesion (Chamberlain and Evans 1981 ). Spores are highly 

vulnerable immediately after attachment; yet little is known about their 

survivorship during establishment (Brawley and Johnson 1991; Flavier and 

Zingmark 1993). Spore attachment must be strong enough to withstand wave 

action and spores must attach to substrata that receive enough light for 

photosynthesis (Norton and Mathieson 1983). The ability to be epiphytic as 

well as attached to other substrata confers the advantage of an increased 

range of possible habitats (Hay 1986). Even though spores are the primary 

reproductive unit of the macroalgae, little is known about their biology in 

general, and settlement in particular (Amsler and Neushul 1991 ). The 

mechanisms and histochemistry of red algal spore attachment are relatively 

unknown when compared to attachment of brown or green algae or of marine 

invertebrates. Knowledge g·ained from investigations of red algal spore 

attachment can be used to increase our understanding of algal spore biology 

(Pueschel 1990), host-epiphyte relationships, and biofouling. Such 

knowledge will also make a necessary contribution to the intriguing, 

significant, but as yet understudied field of red algal biology (Woelkerling 

1990). 
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Red Algal Mucilage and lnltlal Spore Attachment 

Red algal spores have what has been called "a ubiquitous mucilage" 

(Boney 1981 ). There is little argument that this encompassing mucilage 

functions in spore adhesion, especially because red algal spores are 

nonmotile (Fletcher and Callow 1992). They sink very slowly (Okuda and 

Neushul 1981) but do not have far to fall from their relatively small parent 

plants (Kain and Norton 1990) and the thicker the mucilage layer, the faster 

the spore settlement (Carrier 1984). The mucilage sticks to the substratum 

upon contact to provide initial, albeit insecure adhesion (Sawada et al. 1972). 

Attachment of almost all red algal spores becomes progressively firmer with 

time (Chamberlain 1976). Initial attachment of Ceramjum spores is probably 

by the viscous mucilage envelope (Chamberlain and Evans 1981 ); attached 

spores are easily washed off their substrate at this stage. Adhesive secreted 

from golgi vesicles after spore release forms a resistant attachment pad and 

further anchorage is provided by rhizoid development. 

Mucilage and vesicles which probably contain adhesives are formed 

during sporogenesis by a variety of red algae. Mucilage is produced by the 

golgi apparatus and sometimes by the endoplasmic reticulum. Starch 

accumulates and adhesive vesicles form during sporogenesis of Haliptilon 

cuyjed (Vesk and Borowitska 1984). Golgi vesicles change appearance from 

striated to fibrous and are involved in protein turnover during 

carposporogenesis in Polysjphonja noyae-angliae (Wetherbee and West 

1977). Proteinaceous crystalloids accumulate in vegetative cells but 

disappear upon sporogenesis in Wrangelia plumosa (Wetherbee et al. 1984). 
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Pueschel and Cole (1985) found that attached spores of Porphyra yarjegata 

did not have adhesive vesicles, but were coated with a substance that filled an 

indentation of the spore and resembled the vesicle contents; a true cell wall 

formed after initial attachment. 

Attachment is mediated by sheaths of extracellular mucilage that develop 

after release to surround spores of Chondrus crtspus (Chen and Taylor 1975). 

Within the sheath, attached carpospores and tetraspores divide and form disc

like sporelings that expand radially and form erect fronds. Without a sheath, 

sporelings form loosely attached semifilaments. Sheaths may provide 

physical conditions that are conducive to disc formation. Coalescence can 

occur between sporelings and between sheaths of adjacent sporelings 

(Tveter and Mathieson 1976), and may increase the chances for 

establishment of perenniating .Q.. crjspus holdfasts, which can regenerate up 

to 25% of their area if necessary (Taylor et al. 1981 ). Germinating spores also 

coalesce in lrjdaea laminarioides, forming common basal discs for frond and 

stipe emergence, with vigorous growth in the center of the disc (Martinez and 

Santelices 1992). 

Encrusting coralline red algae have a number of ways to ensure their 

tenacious attachment. When Phymatolithon lenormandjj, ~ laeyjgatum, ~ 

polymorphum, Lithothamnion glaciale, Lithophyllum jncrustans, and 

Lithophyllum ~. were cultured on glass slides, spore mucilage provided 

initial adhesion but was invisible after the algae became calcified (Walker and 

Moss 1984). As the algal crust developed, hypothallial filaments provided 

further attachment by flattening onto the smooth glass slides. On rough 
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substrate, hypothallial filaments moulded to and penetrated surface 

irregularities. Any spaces that remained or developed between the algal crust 

and the substrate were filled by a layer of aragonite crystals bound with an 

organic component, which was probably secreted by the cells. If the corallines 

were deliberately removed, material left behind stained positively for 

polysaccharides. 

Spore mucilage and rhizoids are important in host-epiphyte and host

parasite interactions. Initial attachment of the epiphyte Polysjphonja lanosa 

onto Ascophyllum nodosum or Fucus yesjculosjs is an interaction between 

spore and host mucilage (Pearson and Evans 1990). The epiphyte releases 

adhesive vesicles and penetrates the host with unicellular rhizoids. More 

spores survive on & nodosum than on .E.. yesjculosjs because lateral pit and 

axil sites provide shelter. Rhizoids deeply penetrate the host and remain 

attached after A. nodosum sheds its outer surface (Filion-Myklebust and 

Norton 1981 ). Choreocolax spores have enlarged vacuoles which may push 

the spore contents into the rhizoid when it . penetrates the host (Goff and 

Coleman 1984). Some parasitic spores of Harveyella mjrabilis attach with 

extensions of their outer coverings to walls of wounded cells of Odonthalia 

floccosa: others germinate in ruptured cytoplasm and attach with rhizoids that 

grow into the sulfated polysaccharide rich cortical cell walls (Goff and Cole 

1976). Ultrastructural studies of parasitic red algal rhizoids revealed abundant 

rough and smooth endoplasmic reticulum that connects with the 

plasmalemma, numerous ribosomes, protein bodies, mitochondria, and 

protein staining microbody-like organelles (Goff 1982). 
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In addition to adhesion, a myriad of other functions are attributed to red 

algal spore mucilage. These include metal chelation (Tanaka et al. 1971 ), 

nutrient absorption (Percival and McDowell 1967), light absorption, resistance 

to abrasion, protection from physical and chemical changes (Boney 1981 ), 

protection from toxic compounds (Decho 1990), protection against mechanical 

injury (Davis 1972; Characklis and Cooksey 1983), antipredation (Percival 

1979), antibiotic (Kugrens and West 1973), reproduction, and intercellular 

communication (Characklis and Cooksey 1983); Sulfated mucilage serves as 

an ionic regulator (Kloereg and Quatrano 1988). Deformation of the mucilage 

could dissipate the forces of waves, thereby maintaining adhesion (Boney 

1975). The mucilage also functions in dispersal. For example, mucilage of 

lrjdaea lamjnadojdes carpospores sticks to legs of the amphipod Hyale SQ..., or 

the carpospores travel unharmed through the digestive tract (Buschmann and 

Bravo 1990, Buschmann and Vergara 1993). 

Polysaccharides In Red Algal Cell Adhesion 

Carpospores and tetraspores of- Ceramjum are thought to attach with a 

polysacchadde that becomes hydrated and forms a viscous, macro-molecular 

hydrocolloid that disperses upon contact with seawater (Chamberlain and 

Evans 1981 ). Spores detached when polysaccharides were degraded with 

periodic acid and sodium tetraborate. Although stains for proteins were 

positive in the mucilage of unreleased spores of Ceramjum but negative 

following spore release, Chamberlain and Evans (1981) concluded that the 

adhesive was not proteinaceous because agents that disrupt proteins did not 

cause spore detachment. The mucilage of Hypnea muscjformjs, Polysjphonja 
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geusta, and Halarachnjon ligulatum contains a highly sulfated acidic polymer 

(Diannelidis and Kristen 1988) which may be adhesive. 

In addition to their role in adhesion, polysaccharides are important 

structural elements of cell walls of red algae (Craigie 1990). The viscous 

mucilage of Rhodella reticulata is thought to serve as protection; its production 

increased as growth stopped (Kroen and Ramus 1990). The polysaccharide 

component of this mucilage is synthesized and ·sulfated in the golgi apparatus, 

while its protein component is thought to be secreted through ducts in the 

endoplasmic reticulum that are fused to the plasma membrane (Callow and 

Evans 1981 ). Dessication is prevented by sulfated capsular polysaccharides 

of Porphyridjum aerugineum (Ramus 1974); in which the golgi complex 

incorporates approximately half of the cellular sulfate into polysaccharides 

(Ramus and Groves 1972; Ramus and Groves 1974). Protein rich extracellular 

secretions of Njzymenja australjs that contain sulfated and carboxylated 

polysaccharides are thought to facilitate the release of spermatia and provide 

protection from epiphytes and pathogens (Bhatia and Vijayaraghavan 1990). 

Glycoproteins In Red Algal Cell Adhesion 

Glycoproteins have been shown to be involved in adhesion of red algal 

cells: in spore adhesion (Pueschel 1979), in reproduction (Kim and Fritz 

1993a,b; Kaska et al.1988), and in wound healing (Kim and Fritz 1993c; 

Watson and Waaland 1983). 
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Little is known about the role of glycoproteins in red algal spore 

attachment. Red algae may have proteins or glycoproteins that are unique to 

and involved in spore adhesion. Spores may carry only those proteins or 

glycoproteins necessary to insure their attachment, germination, and viability. 

Glycoproteins, along with sulfated and acidic polysaccharides are probably 

adhesive molecules in tetraspores of Palmaria palmata (Pueschel 1979). 

Glycoproteins are active in red algal reproduction. A glycoprotein with a

D-methyl mannose residues is found on the outer surfaces of spermatia of 

Antjthamnjon njpponjcum, and binds with a receptor in the trichogyne to 

mediate gamete recognition (Kim and Fritz 1993b). Glycoproteins differ 

between male and female reproductive tissue in Porphyra perforata and in 

morphologically and functionally distinct regions of the thallus (Kaska et al. 

1988). 

Wound healing involves cell adhesion. A glycoprotein is thought to 

mediate wound healing in Antjthamnjon sparsum (Kim and Fritz 1993c). The 

hormone rhodomorphin is a · glycoprotein with a-D-mannose and/or a-D

glucose sugar haptens that is necessary for wound healing in Grjtfithsja 

pacjfjca (Watson and Waaland 1983). 

Interactions Between Adhesive Molecules 

Adhesion may involve interactions between classes of molecules. 

Although red algal cell walls contain a proportionately smaller amount of 

proteins than carbohydrates (Craigie 1990), most algal adhesives studied 
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thus far are variations of polysaccharide-protein complexes that are at least 

partially synthesized in the golgi apparatus (Willey and Giancarlo 1986). 

There may be more than one adhesive or one adhesive may become 

functional when it is cross-linked (Wigglesworth-Cooksey and Cooksey 1992). 

Increases in the strength of red algal adhesion over time are thought to result 

from a "curing" process which may be polymerization or cross-linking (BrAten 

1975, Chamberlain 1976, Heaney-Kieras et al. 1977), possibly between 

sulfated polysaccharides or glycoproteins and · the divalent cations Ca2+ or 

Mg2+ (Jones et al. 1982; Craigie et al. 1992). 

It appears that red algal adhesion is an interaction between sulfated and 

acidic polysaccharides, proteins, and glycoproteins. Golgi vesicles secrete 

mucilage rich in sulfated and acidic polysaccharides during tetraspore 

development of Palmarja palmata (Pueschel 1979). After mucilage deposition 

ceases, the golgi apparatus makes vesicles with glycoprotein rich contents. 

These vesicles are abundant in released tetraspores and probably have 

adhesive material for spore attachment. . Both proteins and sulfated 

polysaccharides are found in vesicles produced by the Golgi apparatus in 

differentiating carposporangia of Chondda tenujssjma (Tsekos 1985). 

Adhesion of Brown Algae 

The adhesion of brown algal zygotes has been investigated extensively 

(Crayton et al. 1974, Hardy and Moss 1978, 1979a,b,c; Evans et al. 1979; 

Ouatrano et al. 1979; Brawley and Quatrano 1979a; Moss 1981; Brawley and 

Robinson 1985; Kropf et al. 1989; Wagner et al. 1992; Vreeland et al. 1992, 
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1993). Initial attachment of zygotes generally occurs with adhesive mucilage 

supplemented by adhesive zygotic walls, followed by secondary attachment 

with rhizoids (Hardy and Moss 1979a; Moss 1981; Vreeland et al.1993). 

pelyetja canaliculata provides an example of such attachment. Zygotes are 

anchored with an enclosing mesochiton that can be said to correspond with 

the mucilage of red algal spores (Boney 1975) by countering water 

movements and assisting settlement. The mesochiton stains with alcian blue 

to suggest sulfated polysaccharides as initial adhesives; secondary adhesion 

occurs when the rhizoids provide further anchorage (Hardy and Moss 1979a). 

Initially, Halidrys sjliguosa zygotes are attached by a rigid, alcian blue 

staining, adhesive wall that is secreted by the golgi apparatus and surrounds 

the zygote. Because the adhesive is also part of the wall, failure is likely to 

occur only at the adhesive-substrate interface, and not at the zygote-adhesive 

interface. The adhesive wall is shed once the rhizoids appear, which is not 

until several days after initial attachment. The four primary rhizoids and their 

derivatives have adhesive mucilage, and while the thallus grows their 

continued division eventually forms the holdfast (Hardy and Moss 1978). 

Adhesion is similar in Bifurcaria bifurcata (Hardy and Moss 1979b). 

Zygotes of Eucus and Ascophyllum follow the pattern of attaching initially 

by exuding mucilage and secondarily by the primary rhizoid which produces 

alcian blue staining mucilage at its tip. If the substrate is smooth, this mucilage 

will spread to form an adhesive, suction-like "foot". New adhesive feet are 

produced in pulses as the rhizoid grows. On non-smooth surfaces the rhizoid 

grows down into the substratum through any available crevices. The basal 

embryo cells produce secondary rhizoids which fan out to provide further 
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anchorage (Moss 1981 ). Glass coverslips provide an artificial substrate that 

differs greatly from that supplied by intertidal rocks to which Eucus adheres in 

nature. Rhizoids of Eucus plants grown on glass were long, thin, and tapered 

while those grown on rocks were more stout for a greater contact area and 

firmer attachment (Hardy and Moss 1979c). Eucus zygotes attach more firmly 

when rhizoids can penetrate interstices in substrates such as porous rock and 

wood, and less firmly on smooth substrates such as glass where rhizoids 

cannot penetrate. 

Eucus rhizoids are anchored by a highly sulfated fucan glycoprotein, (E2), 

(Brawley and Quatrano 1979a) which must be sulfated before adhesion will 

occur; Eucus embryos grown without sulfate formed rhizoids but did not 

adhere. Those grown with sulfate did adhere and sulfated polysaccharides 

were detected at the rhizoid tips with toluidine blue and the 0-galactose 

specific lectin EITC-RCAI (Crayton et al. 1974). If embryos are grown without 

sulfate, E2 will not be sulfated or localized in the rhizoid (Quatrano et al. 

1979). E2 is sulfated in the golgi apparatus, through which it is secreted 

(Evans et al. 1979) and then transported via an actin network to the rhizoid tip 

(Brawley and Robinson 1985; Kropf et al. 1989) with a vitronectin like 

glycoprotein, (Vn-E) (Wagner et al. 1992). Vn-E may begin its association with 

F2 during travel through the golgi apparatus. Vn-E is localized in the 

extracellular matrix of the elongating rhizoid tip, which anchors the zygote to 

the substrate. When two-celled Fucus embryos were cultured without sulfate, 

Vn-f was not localized in the rhizoid tip and the embryos did not adhere in the 

presence of the Vn antibody (Wagner et al. 1992). 
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It is noteworthy that a vitronectin-like glycoprotein has been found in the 

algae. Vitronectin and fibronectin are found in humans and other mammals 

(Singer et al. 1988; Underwood and Bennett 1989), and a homolog of 

vitronectin has been found in angiosperms (Sanders et al. 1991 ). A 

vitronectin-like protein on the surface of carrot cells is used by the pathogenic 

bacterium Agrobacterjum tumefacjens as a receptor when it attaches to carrot 

cells (Wagner and Matthysse 1992). Vitronectin and fibronectin are adhesive 

proteins found on the external side of the · plasma membrane in focal 

adhesions, which are membranous connections between the extracellular 

matrix and the cytoskeleton (Burridge 1988). 

Adhesive formation increased with the addition of 1 µM vanadate to Fucus 

zygotes cultured in artificial seawater (Vreeland et al. 1992). A peroxidase that 

requires vanadate may catalyze cross linkages between cell wall 

carbohydrates and phenolics to place the now cross linked phenolics at 

adhesive sites. Peroxidase activity and extracellular phenolics were found in 

the cell wall during initial adhesion and in the rhizoid tip after germination. 

Microspheres bound to the mucilage of Fucus gardnerj zygotes to show 

localized patches of adhesive 3-6 h after fertilization (Vreeland et al. 1993); 

this corresponds with the localization of cross-linked phenolics at adhesive 

sites in the presence of vanadate. More microspheres bound as zygote 

development progressed, showing that more adhesive was being produced 

by the zygote. The patches of adhesive eventually grew to cover the 

hemisphere of the zygote oriented towards the substrate and the rhizoid upon 

its emergence. Because the adhesive appeared in patches, it was probably 

produced by cytoplasmic vesicles. The cell wall was anchored by strands of 
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adhesive polymers. Microspheres detached from rhizoids in the presence of 

calcium chelators, implying the necessity of divalent cations in adhesion. It 

appears that adhesion of Eucus rhizoids is an interaction between many 

factors: mucilage, phenolics, the sulfated fucan E2, the adhesive glycoprotein 

vn-E, divalent cations, and positioning of these adhesive molecules through 

transport, cross-linking and enzyme catalysis. 

Adhesion of Green 'Algae 

Acidic polysaccharides (BrAten 1975; Bingham and Schiff 1979; Rogers 

Domozych et al. 1993), glycoproteins (Musgrave 1987; Sekimoto and Fujii 

1992; Goodenough et al. 1993), mucopolysaccharides (Christie et al. 1970) 

and protein (Tosteson and Corpe 1975) have all been implicated as 

adhesives in the green algae. In addition, Ca2+ has been associated with 

adhesive events such as mucilage secretion (Rogers Domozych et al. 1993) 

and mating reactions (Pasquale and Goodenough 1987; Goodenough et al. 

1993). 

Zoospores of Enteromorpha intestinalis from different parent sources have 

different adhesive abilities but detach similarly when exposed to trypsin, 

pronase, and ex-amylase (Christie et al. 1970). Because the effects of trypsin 

mirrored those of ex-amylase, the adhesive is thought to be a 

mucopolysaccharide. Within minutes of substrate contact, the adhesive is 

secreted. Newly attached spores were most susceptible to enzyme induced 

detachment but became more resistant over time. 

13 



The initial adhesive of the zygote of ~ mutabilis differs from that of the 

rhizoid, which provides secondary adhesion (Brc\ten 1975). Just before 

gametes are released, their cytoplasm contains small, electron dense 

vesicles. Once the zygotes form, their adhesive is probably secreted through 

these vesicles onto the substrate. This adhesive stains with ruthenium red for 

acidic polysaccharides and can be removed with pronase and a-amylase, but 

not with hyaluronidase or ruthenium red, which binds with acidic 

polysaccharides The rhizoid cells differentiate several days after the initial 

adhesion of the zygote and produce adhesive continuously as they grow. The 

resistant adhesive of the rhizoid does not stain with ruthenium red or detach 

with enzymes and is therefore thought to have a different chemical 

composition than that of the initial, zygotic adhesive . 

.u.JY.a ruru:ta and Enteromorpha compressa are often epiphytic on Gracilarja 

chjlensjs. Santelices and Varela (1993) found that exudates from the culture 

medium of ~ chilensis stimulated settlement of spores of both green algal 

species. Upon analysis, the exudate was found to contain sulfated galactans. 

The mechanism of response by the· epiphytes to the host exudate is not yet 

known. A high epiphyte load can be detrimental to the farming of a, chilensjs 

(Buschmann and Gomez 1993), as the added weight can cause the host to 

detach. These epiphytes can compete for nutrients, light, and dissolved gases. 

They can also exude allelopathic substances that are either harmful or 

beneficial to the host (Harlin 1987). 

Exudate containing protein and carbohydrate enhances adhesion of 

unicellular Chlorella vulgaris to glass (Tosteson and Corpe 1975). This non-
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diffusible material originates from the following sources: 1) ~ yulgarjs, 2) 

fouled marine surfaces, 3) marine bacterial cultures and 4) natural seawater, 

with the latter two being the most effective. The exudate may induce adhesive 

polymer synthesis, stimulate secretion of the adhesive, stabilize the adhesive, 

or act as an adhesive substitute. ~ yulgarjs cells adhered less but began to 

agglutinate in a lectin induced manner when C..... yulgarjs exudate 

concentrations were above 0.2 ng/cell. More washed cells than unwashed 

cells adhered when exudate was added; washing may expose more adhesive 

sites or change the physiological state of the cell. Maximal adhesion of ~ 

yulgarjs occurs in the G2 period of interphase (Zaidi and Tosteson 1972), 

possibly because the cell surface may be altered by biochemical changes 

between cell cycle phases. Increased adhesion may be related to possible 

changes in the cell proteins within the cell cycle, which in turn may influence 

the composition of the proteinaceous exudate, which may be adhesive or 

have its synthesis catalyzed by a protein (Tosteson and Corpe 1975). 

Agglutinating glycoproteins on the flagellar surfaces of Chlamydomonas 

eugametos gametes are intrinsic ·to the membrane and have differently 

shaped ends; one is knoblike and the other is hooklike (Musgrave 1987), 

which may facilitate their mediation of flagellar adhesion between + and -

gametes. Adhesion of the flagellae initiates travel of a signal from the 

membrane to the cytoplasm of the paired cells, which fuse upon receipt of the 

signal. Ca2+ and cAMP interact as the messengers for this signal (Pasquale 

and Goodenough 1987; Goodenough et al. 1993). Upon adhesion, intracellur 

cAMP levels increase sharply. Gametes will mate if given di-butyryl-cAMP. 

This effect was blocked by inhibitors of Ca2+ transport or utilization. 
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Elongated cells of the desmid Closterjum glide on substrates by mucilage 

that is secreted from the pole opposite the direction of motion (Rogers 

Domozych et al. 1993). The mucilage is an acidic polysaccharide that stains 

with Ruthenium red. Dense cored vesicles from the golgi apparatus associate 

with microtubules and are secreted out of the cell through flask-shaped pores 

in the cell wall (Domozych and Rogers Domozych 1993). Labeling with 

chlorotetracycline showed that these pores are associated with calcium rich 

areas on the cell surface (Rogers Domozych et al. 1993). Pores in the poles of 

Closterjum ehrenbergjj cell walls secrete receptors for the ~-D-galactose 

specific lectin RCA120 as part of the mucilage (v. Sengbusch et al. 1982); 

therefore carbohydrate recognition by lectins may be part of the adhesive 

process for these desmids, as lectins have been found in the Chlorophyta 

(Blunden and Rogers 1990). 

Adhesion of Diatoms 

The pennate marine diatom, Amphora coffeaformis, glides on adhesive 

mucilage containing acidic polysaccharides that is secreted from golgi 

vesicles through the raphe fissure (Drum and Hopkins 1966; Daniel et al. 

1980; Webster et al. 1985). Binding of 0-glucose to chemosensory receptors 

on the plasma membrane may signal release of inositol triphosphate as a 

transducer, which then binds to a further receptor to signal release of bound 

Ca2+, opening of Ca2+ channels in the membrane, and an increase in 

cytoplasmic Ca2+ concentrations (Cooksey and Cooksey 1980;Cooksey 

1981 ; Berridge and Irvine 1984; Cooksey and Cooksey 1986; Wigglesworth-
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Cooksey and Cooksey 1992). Elevated cytoplasmic Ca2+ levels activate 

cytoplasmic transducers to translate the Ca2+ message into release of 

mucilage, hence adhesion. The mucilage probably remains attached to the 

cytoplasm through plasmalemma at the raphe; in this way it maintains contact 

with bundles of actin filaments that may translate adhesion into motility by 

moving the site of mucilage attachment along the raphe (Edgar and Pickett

Heaps 1984). 

Adhesion and motility were prevented when &. coffeaformjs was given 

podophyllotoxin to depolymerize microtubules (Cooksey and Cooksey 1988) 

and the energy uncoupler, carbonyl cyanide-3-chlorophenyl (CCCP), to 

indicate that adhesion requires cellular energy. When Ca2+ transport was 

blocked with cx-isopropyl-cx-[(N-methyl-N-homoveratryl)-cx-amino propyl]-

3,4,5-trimethoxyphenylacetonitrile (D-600), adhesion and motility were 

inhibited (Cooksey and Cooksey 1980; Cooksey 1981 ). Sr2+ could substitute 

for Ca2+ as a requirement for adhesion but not as a requirement for motility. 

These diatoms detached and left adhesive "footpads" behind in the presence 

of the Ca2+ chelator, ethylene glycol-bis((3-amino-ethyl ether) N,N,N',N'

tetraacetic acid (EGTA), to suggest that external Ca2+ may maintain adhesion 

by cross-linking negative charges in the extracellular matrix (Cooksey and 

Cooksey 1986). Glycoproteins and proteins may be part of the adhesive or 

may synthesize the adhesive, as adhesion was reduced when glycoprotein 

and protein synthesis were inhibited with tunicamycin and cycloheximide, 

respectively. Because polysaccharides have been found repeatedly in the 

extracellular polymers of diatoms and proteins have not often been detected, it 
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is likely that the adhesive of diatoms is chiefly polysaccharide (Hoaglund et al. 

1993). 

The pennate marine diatom, Ardjssonea crystallina, has a different means 

of motility (Pickett-Heaps et al. 1991 ). It can change direction as it glides on 

mucilage that adheres to the substrate, stains with alcian blue and is secreted 

through terminal grooves in the trailing end of the cell. The elastic mucilage 

may swell after release and push the cell in the direction of travel, which is 

similar to the effect of mucilage on desmids. A. crystallina can also attach with 

thick stalks that stain with alcian blue to indicate sulfated polysaccharides as 

adhesives in this diatom. Diatoms with stalks were found to be more abundant 

in the upper, well lit but more turbulent reaches of a reservoir than were 

diatoms without stalks (Hoaglund and Peterson 1990). Stalked diatoms were 

able to survive in both the upper and the lower reaches of the reservoir while 

unstalked diatoms did not fare well in the upper reaches. 

Adhesion of Euglenoids 

Colacium libellae migrates and attaches to freshwater arthropods. After 

travelling through the golgi apparatus, a polymer is extruded from pores in the 

anterior pellicle to form an adhesive disc which stains for sulfated 

polysaccharides with alcian blue but not for neutral polysaccharides with 

periodic acid-Schiff (PAS) (Willey and Giancarlo 1986). Next, a flexible stalk 

forms between the adhesive disc and the euglena cell. The core of the stalk 

stains with PAS and its periphery stains with alcian blue. Differential staining 

signifies different adhesive polymers. Both the adhesive disc and stalk resist 
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pronase digestion and remain attached to indicate polysaccharide in 

adhesion rather than the protein-polysaccharide complex generally found in 

algal cells (Chamberlain 1976). 

Adhesion of Fungi 

Ascospores of marine ascomycetes have a variety of attachment 

mechanisms (Hyde and Jones 1989). These include: 1) release of a mucilage 

drop from a polar end chamber to form an adhesive pad, 2) long, viscous 

threads which form when cap-like appendages uncoil, 3) sticky mucilagenous 

sheaths which may expand upon contact with water, 4) sticky vermiculate 

appendages, 5) tufts of fibrillar appendages which trap the spores on jagged 

substrate edges such as wood, 6) amorphous appendages which rely on 

contact with a large surface area of the substrate for adhesion, 7) adhesive 

spore walls with a sticky, fibrillar layer, and 8) combinations of the above. 

Marine fungi attach to substrata by chemical or physical forces and the greater 

the area of contact with the substrate, the greater the attachment. The 

appendages of marine fungi increase the area of substrate contact. 

Spores of the plant pathogen, Nectrja haematococca attach by their apices 

with "macroconidial tip mucilage" that labels with FITC-Con A only when the 

fungus is cultured in a medium that promotes adhesion (Kwon and Epstein 

1988). Further investigation of the mucilage of adherent macroconidia with 

SDS-polyacrylamide gel electrophoresis revealed a 90 kDa glycoprotein that 

binds with Con A. Spores detached when exposed to protease and did not 

attach in the presence of Con A. 
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Adhesion of Marine Bacteria 

Adhesive polysaccharides in bacterial mucilage attach to glycoproteins of 

the marine conditioning layer that becomes adsorbed to underwater marine 

surfaces (Baier 1980; Dempsey 1981 ). More bacteria attached to biofilms of 

previously attached bacteria of the same species than to biofilms of other 

species or to glass (Banks and Bryars 1992). Depending on the shape of the 

bacterium, adhesion will occur via mucilage to fill in the space between the 

substrate and the cell wall. Rods and cocci attach with strands and sheets, or 

less frequently with pads and capsules. Stalked bacteria attach with basal 

mucilage pads. Continuous colonial growth results in a film of bacteria with 

accompanying mucilage (Dempsey 1981 ). 

Adhesion of Animals 

Marine mussels, Mytjlus ~-. attach to .surfaces by forming a byssus 

composed of a bundle of threads ·connecting the mussel to an adhesive 

plaque with a water resistant polyphenolic protein (Rzepecki et al. 1992) that 

attaches the plaque to the substrate (Benedict and Waite 1986b). The core of 

the byssal threads forms from collagenous secretions of the collagen gland 

(Vitellaro-Zuccarello 1980); the accessory gland then secretes a protective 

coating composed of a proteinaceous resin and a curing enzyme, 

catecholoxidase (Brown 1952; Vitellaro-Zuccarello 1981 ), which converts 3,4-

dihydroxyphenylalanine (DOPA) in the resin to peptidyl DOPa-quinone, 

which probably acts as a cross-linker to harden the adhesive (Waite 1983; 
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Benedict and Waite 1986a; Waite 1990). M.. caljfornjanus lives in exposed, 

turbulent places and has a less porous byssus, stronger attachment strength 

and an adhesive with a different protein composition than that of M.. edulis, 

which inhabits calm, sheltered environs (Waite 1986). 

phragmatopoma caljfornjca. a marine polychaete, has a stable and 

insoluble proteinaceous adhesive (Jensen 1992). The adhesive connects 

hard particles so that a tube can be made for the polychaete to live in. Three 

percent of the adhesive's amino acid residues are 3,4-

dihydroxyphenylalanine (DOPA). DOPA extracted from the adhesive signaled 

planktonic larvae off... caljfornjca to induce attachment and metamorphosis, 

thereby expanding concretions of marine polychaetes. 

Barnacles, ~ (Balanus) balanojdes, disperse and explore the substrate 

during the cyprid stage of metamorphosis and use a temporary proteinaceous 

adhesive for this initial phase of attachment (Neal and Yule 1992). Settlement 

occurred with greater frequency on slate. coated with proteins called 

arthropodins which were extracted ·from .fL. balanojdes than on noncoated 

slate or slate coated with bovine serum albumin. Within 24 h of selection of a 

final settlement site they complete metamorphosis and a more permanent 

proteinaceous adhesive with a higher bonding strength is formed (Yule and 

Walker 1984). Barnacle adhesive is notable because of its tenacity (greater on 

slate than that of limpets or mussels on slate), ability to spread along fissures 

and attach to a variety of surfaces, and resistance to biodegradation. Although 

adhesion of barnacles is tenacious it is not instantaneous and enzymes 
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probably catalyze reactions that convert water-soluble adhesive proteins to an 

insoluble state (Yamamoto et al. 1989). 

Chemical inducers of settlement and metamorphosis have been found in a 

variety of marine animals. It is of interest that the red algal pigment 

phycoerythrobilin contains structural analogs of the neurotransmitter gamma

aminobutyric acid (GABA), and that GABA induces metamorphosis in the red 

abalone Haliotis rubescens (Morse et al. 1979). Three crustose coralline red 

algal genera, Lithothamnjum, Lithophyllum, and Hildenbrandja are specific 

substrata for the red abalone. Another crustose coralline red alga, Hydrolithon 

boergesenji. produces a specific morphogen that induces attachment and 

metamorphosis in the coral, Agarica humilis (Morse and Morse 1991 ). Lectin

like receptors on the coral probably bind with multiple N-acetylglucosamine 

and galactose residues on the morphogen, which is associated with a sulfated 

glycosaminoglycan. Adults of the oyster, Crassostrea yjrgjnjca. and bacterial 

biofilms on oyster shells produce ammonium as a metabolite that induces 

settlement of oyster larvae (Tamburri et al. 1992). 

Coelomocytes of the sea cucumber, Holothurja QQ.lli, require cations for 

adhesion to glass coverslips (Canicatti et al. 1992). Mg2+ ions were more 

effective than Ca2+ ions. Adhesion was not inhibited by the metabolic 

inhibitors potassium cyanide or sodium azide, but was inhibited by the 

inhibitor of microtubules, vinblastine. Adhesion was enhanced by coating 

glass coverslips with coelomic fluid or with purified 220 kDa coelomocyte 

aggregating factor, which is produced by coelomocytes and may e similar to 

fibronectin. 
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An elevation of intracellular pH by 0.2 - 0.3 units acts as a signal to the 

cytoplasm of mammalian cells that a substrate has been encountered and 

adhesion has taken place (Galkina et al. 1992). If the Na+/H+ antiport that 

facilitates the substrate dependent pH change in mouse fibroblasts or 

neutrophils (Margolis et al. 1988) is blocked by amiloride, mammalian cells 

will adhere but will not follow the sequence of events leading to proliferation 

(Galkina et al. 1992). In this sequence, cellular extensions known as 

lamellapodia develop and provide further anchorage, the round cells flatten 

and spread onto the substrate; spreading is then used as a signal for the cells 

to enter the S phase of mitosis and proliferate (Vasiliev 1985). Collisions 

between fibroblasts on the substrate will raise the pH, possibly because 

adhesive sites on the cell surface are occupied. The pH elevation was 

reversed when cells were detached with trypsin or EDTA. Adhesion of 

mammalian cells is mediated by integrins, which are transmembrane proteins 

that bind to the amino acid sequence Arg-Gly-Asp (RGD) on the adhesive 

glycoproteins vitronectin and fibronectin in the extracellular matrix (Hynes 

1987). Binding of the RGD p·eptide ·to plasma membrane integrins will raise 

the pH in the same manner as will adhesion to a substrate (Galkina et al. 

1992). lntegrins in turn require the divalent cations Mg2+ or Ca2+ to bind to 

the RGD peptide (Gailit and Ruoslahti 1988) and chlorotetracycline, a 

fluorescent calcium chelator, was used to localize Ca2+ at attachment points 

of cell membranes in neural crest cells from the salamander, Ambystoma 

maculatum (Moran 1984). 
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Glycoproteins from mammalian cell membranes and extracellular matrices 

characterize and influence the development of different tissue types and are 

involved in cellular recognition (Moscona 1974). Glycoproteins of rat cells are 

supplied with mannose in the endoplasmic reticulum and with galactose and 

fucose in the golgi apparatus before being transported to the cell surface in 

vesicles that release their glycoproteins to fuse with the plasma membrane. In 

this way, glycoproteins reach the cell surface. 

Changes in adhesives on the cell surface can be important factors in 

diseases of animals (Travis 1993). The adhesive molecules of metastatic 

cancer cells differ from those of nonmetastasizing cells and these adhesive 

changes may be what allows metastasizing cells to break away from primary 

tumors, travel through the bloodstream, and start new tumors. On a surface 

groove of HIV viral particles there is a glycoprotein which binds with CD4, a 

receptor protein of human cells (Moffat 1993). If the viral particles will bind to a 

mimic of CD4, infection could be prevented. Initial events in phagocytosis by 

disease fighting macrophages involve adhesion (Aggeler and Werb 1992) 

and adhesive glycoproteins have been found in macrophages of mice (Tomita 

and Ishikawa 1992). 

Influence of the Substrate on Algal Spore Adhesion 

Because adhesives must bond with the substrate to attach firmly, 

compatibility of the substrate and adhesive is crucial (Fletcher and Callow 

1992). One characteristic of the substrate that probably influences spore 

adhesion is surface free energy. If a substrate is hydrophobic and has high 
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surface tension, it has low wettability and low surface free energy. On a 

hydrophobic Teflon surface, Fucus rhizoids were elongated and did not attach 

securely (Hardy and Moss 1979c). Spores of Enteromorpha settled on 

hydrophobic surfaces more readily when they were pressed with coverslips 

(Christie 1973). Surface tension varied between algal species and on different 

parts of a thallus; it may determine which epiphytes attach (Linskens 1963). 

Scjrpus yalidus supported more algal epiphytes in the fall than earlier in the 

growing season, possibly because the necrotic culms had higher surface free 

energy due to the breakdown of the hydrophobic cuticle (Goldsborough and 

Hickman 1991 ). 

Surface texture may also influence spore attachment (Harlin and 

Lindbergh 1977; Fletcher and Callow 1992). Spores may detect small 

differences in surface profile and attachment to one of the many planes of 

rough surfaces increases the chances of survival by providing shelter from 

waves and currents. Larger spores may require large pits on rough surfaces 

for attachment, while smaller spores may attach to small pits on smooth 

surfaces (Rees 1940) to avoid dislodgement by turbulent water beyond the 

boundary layer (Okuda and Neushul 1981 ). Pelyetia fastigata embryo survival 

rates were greater in small depressions of red algal turf than on ridges or flat 

areas where the embryos would not be constantly immersed (Brawley and 

Johnson 1991 ). Harlin and Lindbergh (1977) found that initial settlement of 

seaweeds did not differ on acrylic discs bolted to intertidal rocks and divided 

into quadrants; one was left smooth, while three were coated with 0.1-0.5 mm, 

0.5-1.0 mm, or 1.0- 2.0 mm particles of hard silicon dioxide. Over time, 

patterns of species distribution developed on the quadrants. Chondrus crispus 
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and ~ Lactuca were abundant on the larger grades but scarce on the 

smooth surface. Polysjphonja harveyj was found equally on all three particle 

grades but was also scarce on the smooth quadrant. Corallina officjnalis 

thrived on the smallest particles; when it appeared on the smooth surface it 

did not form upright, articulated branches. 

Cell-substrate Contact Influences Differentiation 

The act of adhering to a substrate has profound effects on the structure and 

behavior of cells (Hanein et al. 1993). Cell-substrate interactions trigger 

molecular interactions which determine and regulate cell morphology, motility, 

growth, and metabolism (Grinnell 1978, Ben-Ze'ev 1991 ). Increases in 

knowledge are necessary on the perception of surfaces by cells (Cooksey 

1992). The cytoskeleton and proteins in the membrane may interact to detect 

the surface free energy and other characteristics of a substrate upon contact 

(Van Kooten 1992) to determine if adhesion and subsequent developmental 

changes take place (Hanein et al.1993). Amphora coffeaformjs, a pennate 

diatom, synthesizes small amounts of an extracellular, water-soluble, possibly 

acidic polysaccharide which diffuses into the water column and may act as a 

substrate detector by becoming more concentrated when diffusion is blocked 

as the cell approaches a substrate (Wigglesworth-Cooksey and Cooksey 

1992). Swimmer cells of the bacterium Vibrio parahaemolytjcus transform to 

swarmer cells if they are grown on or embedded in solid media, suggesting 

that contact with a surface or confinement are developmental cues which may 

induce bacteria to switch genes on or off to produce different phenotypes 

(McCarter et al. 1992). 

26 



Lectins Can Influence Adhesion 

Lectins are proteins or glycoproteins that function in cell adhesion, cell-cell 

recognition, and cell agglutination by binding to complementary 

carbohydrates (Liener et al. 1986). The word lectin is from the latin legere, 

meaning to pick out or choose. Lectins have a greater affinity for 

oligosaccharides or glycoproteins than for their corresponding sugar haptens 

(von Sengbusch et al. 1982). All lectins that have been found in marine red 

algae will bind with glycoproteins (Blunden and Rogers 1990; Rogers and 

Hori 1993). Those with molecular weights above 60 kDa tend to have a 

requirement for divalent cations and will bind to monosaccharides such as D

galactose, N-acetylgalactosamine, N-acetylglucosamine, or D-fucose. 

Haemagglutination varied between lectins from tetrasporangial and 

cystocarpic plants of Chylocladja vertjcillata (Rogers et al. 1980). Because ~ 

yertjcillata is in the same family as Charopja parvula, lectins may be present in 

the mucilage of Q... parvula spores. Most algal. lectin literature does not focus 

on possible ecological or physiological functions of the lectins. Questions that 

arise are: 1) What is the role of marine red algal lectins?, 2) Might it be in 

substrate recognition during host-epiphyte interactions?, and 3) Might they be 

involved in spore adhesion in the intertidal realm? 

An unknown chemical cue for parasitic spore attachment of Harveyella 

mirabiljs originates with its host, Odonthalia floccosa (Goff and Cole 1976) 

and may involve enzymatic degration of sulfated polysaccharides in cell walls 

of the host. A substance from the host may stimulate parasitic spores to 
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release the adhesive contents of their vesicles (Goff 1982). Spore attachment 

may be initiated by carbohydrates on host cells that bind with receptors on 

spores: this suggests that lectins are involved in attachment of this parasitic 

alga. 

Baier (1980) suggested that there is a glycoproteinaceous conditioning 

layer that is adsorbed to all marine surfaces. If so, lectins or other plasma 

membrane receptors of adhesive organisms 'may interact with appropriate 

sugar haptens of glycoproteins in the conditioning layer to detect surfaces and 

then adhere (Wigglesworth-Cooksey and Cooksey 1992). Lectins may 

mediate in the settlement of larvae of Janua (Dexiospira) brasiliensjs, a 

marine polychaete, by binding with bacterial polysaccharides or glycoproteins 

of the surface film (Kirchman et al. 1982). Enhanced tetraspore adhesion 

occurred in Champja parvula spores in seawater pre-conditioned by ~ 

paryula tetrasporophytes (Dworetsky 1983), although a compound that 

enhances adhesion was not found. Perhaps the parent plants produce 

glycoproteins to form a marine conditioning layer that is recognized by lectins 

on ~ parvula spore surfaces. · 

Fluorescein isothiocyanate (FITC) lectin binding reflected species-specific 

biochemical diversity expressed at cell surfaces in a variety of algal species 

(von Sengbusch and Muller 1983) and differentiated between clones of 

unicellular algae (Costas et al. 1993). Therefore, differences exist in cell 

surfaces that may contribute to lectin/receptor interactions. Callow et al. (1981) 

found that egg-sperm recognition in Fucus serratus is mediated by fucosyl and 

mannosyl containing ligands on the egg surface which bind with protein on 
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the sperm surface to suggest a lectin and sugar interaction. There is also 

evidence of intraspecific variation in lectin binding. In Fucus spjralis, FITC

lectins were used to demonstrate that the glycan moieties of the cell surface 

differ between spermatozoa, oocytes, zygotes, and embryos (Costas et al. 

1994). 

Lectins mediate adhesion in angiosperms, fungi, and bacteria. Lectin 

receptors in plants have been found to be glycoproteins, and glycolipids, 

phenolic glycosides, or glycosides of secondary metabolites (Etzler 1986). 

Gladiolus gandayensjs stigmas contain (3-glycosyl specific lectins which 

adhere to pollen grains and probably recognize the appropriate pollen so that 

self pollination can be avoided (Knox et al. 1976). The cx-0-mannose/cx-D

glucose specific lectin concanavalin A, (Con A), from Canayalia ensiformis 

reacted with receptors on the stigma surface of .G... gandayensjs to inhibit 

penetration of the stigma by the pollen tube, possibly by blocking pollen

stigma interaction. Phaseolus yulgarjs lectin and Con A stimulated in vitro 

germination of Lilium longiflorum pollen (Southworth 1975). Lectin from the 

potato plant inhibited hyphal extension and spore germination in Botrytjs 

cjnerea (Callow 1977) and wheat germ lectin bound to spores of chitinous 

fungi (Barkai-Golan et al. 1978). Lectins are involved in attachment of the 

symbiotic bacteria, Bhizobjum leguminosarum, to root hair tips of peas (Kijine 

et al. 1988). 
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Inhibitors of Adhesion 

Within an organism, disruption of many biosynthetic and metabolic 

processes can interfere with adhesion, as in Amphora coffeaformjs (Cooksey 

1981; Cooksey and Cooksey 1986,1988) where adhesion was inhibited by 

tunicamycin, a glycoprotein synthesis inhibitor; cycloheximide, a protein 

synthesis inhibitor; D-600, a Ca2+ transport inhibitor; podophyllotoxin, a 

depolymerizer of microtubules, and CCCP, an energy uncoupler. This 

implicated glycoproteins, proteins, calcium transport, the cytoskeleton, and 

energy as necessities for adhesion. 

Biosynthesis inhibitors restricted adhesion and germination in other 

organisms. Chlorella yulgaris did not adhere when treated with actinomycin D, 

which inhibits DNA dependent RNA synthesis, and adhesion was reduced by 

36% with puromycin, a protein synthesis inhibitor (Zaidi and Tosteson 1972). 

This suggests that protein synthesis is less important than production of 

messenger RNA in .C.. yulgaris (Zaidi and Tosteson 1972). Spore adhesion but 

not spore germination of the plant pathogenic fungus, Nectria haematococca 

was inhibited by Con A (Kwon and Epstein 1993). Spore germination of the 

freshwater fungus Aphanomyces astacj was inhibited by actinomycin D and 

by cycloheximide, which inhibits translation on cytoplasmic ribosomes 

(Soderhall and Cerenius 1983). 

Cell-cell recognition leading to gamete pairing can also be inhibited . 

.C.hlamydomonas reinhardti gametes did not form pairs when synthesis of 

glycpproteins on their flagellar surfaces was inhibited with tunicamycin£. 
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although mutants that are resistant to tunicamycin will form pairs when 

exposed to tunicamycin (Dutcher and Gibbons 1988). In the dinophyte, 

A1exandrjum Qatenella, gamete pairing was inhibited by tunicamycin and by 

con A, although Con A inhibition was reversible with the addition of a-D

mannose or a-D-glucose (Sawayama et al. 1993) 

Adhesion of animals can also be inhibited. The red abalone, Haliotis 

r_ubescens, did not undergo metamorphosi'S in the presence of Con A 

(Kirchman et al. 1982). This suggests that glucose or mannose haptens are 

involved in substrate identification, which must take place prior to adhesion 

and subsequent metamorphosis. Coelomocytes of the sea cucumber 

Holothuria Willi attached in the presence of cytochalasin 8, which disrupts 

microfilaments, but not in the presence of the anti-tubulin cytoskeletal inhibitor, 

vinblastine (Canicatti et al. 1992). Therefore, microtubules but not 

microfilaments may be involved in attachment of coelomocytes. Metabolic 

energy may not be required for coelomocyte attachment, as it was not 

inhibited by the metabolic inhibitors potassium cyanide and sodium azide. It is 

possible that the microtubules were in place before metabolism was blocked. 

Molybdate is a competitive inhibitor of the ATP sulfurylase reaction, the first 

step in sulfate activation (Wilson and Bandurski 1958). Inside the cell, 

molybdate is transported by the sulfate carrier system to inhibit the formation 

of adenosine 3'-phosphate 5'-phosphosulfate, the activated donor for sulfate 

transfer reactions. In this way, molybdate blocks sulfate transfer to 

polysaccharides en route to the cell surface (Ramus 1974). In Porphyrjdjum 

aerugineum, sulfation of polysaccharides was inhibited by molybdate, and 
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inhibition was reversed by the removal of molybdate (Ramus 1974). Adhesion 

was reduced when molybdate was added to mechanically separated cells of 

erasjola stipitata. and was reversed by the addition of sulfate before or during 

molybdate addition (Bingham and Schiff 1979). Because molybdate competes 

with ATP sulfurylase, enzymes can be important catalysts of the synthesis of 

adhesives. 

Sulfation is not the only process necessary for adhesion in Prasjola 

stipjtata. Protein synthesis and photosynthesis are also required (Bingham 

and Schiff 1979). Cycloheximide inhibits translation on cytoplasmic ribosomes 

and chloramphenicol inhibits translation on plastid ribosomes. Addition of 

these inhibitors to Prasiola stjpjtata resulted in 90% and 40% inhibition of 

adhesion, respectively. Inhibition of photosynthesis can also reduce adhesion. 

Inhibition of photosynthesis with 3, (3,4 dichlorophenyl) 1, 1 dimethyl urea 

(DCMU) resulted in reduced adhesion to implicate photosynthetic energy in 

attachment. 

Biofouling 

Biofouling can be defined as the attachment of marine organisms to 

anthropogenic structures placed in oceans (Dempsey 1981 ). Marine algae 

can attach to these structures to become biofouling organisms (Terry and 

Pickens 1986, Callow 1986, Oshurkov 1992). Biofouling communities may be 

established successionally: first, a layer of non-living material becomes 

attached to submerged surfaces. Bacteria attach to this layer, followed by 

diatoms and other microorganisms (Floodgate 1971 ). The attachment and 
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development of algal spores and animal larvae forms the mature biofouling 

community, but the presence of seaweed and animal larvae can by delayed 

until a surface coated with an antifoulant loses toxicity (Dempsey 1981 ). 

Biofouling increases the frictional resistance of ships, which reduces 

speed and decreases engine and fuel efficiency. Supertankers and other 

vessels must be drydocked every 1-2.5 years to remove biofouling organisms 

and to apply new antifouling paint (Dempsey 1981 ). In 1981 the U. S. Navy 

spent $360 million on biofouling related drydocking and an additional $1 00 

million a year is spent by the U. S. Navy on hull cleaning, paint removal, 

repainting, and toxic water and grit disposal (Alberta et al. 1992). Time spent 

on biofouling control is also critical. 

To control biofouling organisms, an agent must interfere with adhesion or 

other cellular processes of potential biofoulers. Unfortunately, such 

interference is often toxic to biofouling and other organisms. Traditionally, 

such compounds as tributyl tin have been used, but these are not 

environmentally acceptable (Cooksey 1992). By reducing surface free energy 

and weakening attachment strength, hydrophobic coatings have potential as 

antifoulants (Callow et al. 1986) The synergistic combination of silicone and 

fatty acid mixtures is now in wide use as an antifoulant (Goto et al. 1992). One 

course that may lead to safe, efficient biofouling control is that of using 

molecules similar to those that are peceived by cells as extracellular signals to 

adhere, but that would instead signal cells not to adhere (Wigglesworth

Cooksey and Cooksey 1992). 
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Another potential type of antifoulant is the non-leaching biocide that 

adsorbs to surfaces by ion exchange and kills potential foulers upon contact 

(Clarkson and Evans 1992). By definition, fouling organisms would be most 

likely to contact the coated surface and encounter the biocide. Therefore, 

untargeted organisms would not be effected by the biocide, provided that it did 

not leach into the water. One example of such a biocide is 3-(trimethoxysilyl)

propyloctadecyl-dimethyl ammonium chloride (Dow Corning 5700) which was 

found to be toxic to biofoulants. This "non-leaching" biocide had the 

disadvantage of leaching into solutions and reducing growth of test 

populations of Amphora and Dunaljella by 10% and 30%, respectively. An 

improved method of bonding the biocide to surfaces would prevent leaching. 

More barnacles, Balanus balanoides. and blue mussels, Mytilus edulis, 

grew in tidepools dominated by Hildenbrandja prototypus than in those 

dominated by Balfsia yerrucosa (Conover and Sieburth 1966). Tannins 

isolated from Eucus yesjculosjs and Ralfsja yerrucosa were toxic to plankton. 

The branch tips of Sargassum natans and ·.S... flujtans have antibacterial 

activity, are essentially free of epibiota, and contain tannin (Sieburth and 

Conover 1966). Epifauna, and especially hydroids, died when exposed to 

homogenates of the branch tips with 0.1 -0.8% tannic acid. Paint and varnish 

with 4-8% tannic acid on panels inhibited barnacles and algae. Seawater is 

an excellent medium for tannin toxicity because the alkaline pH favors algal 

tannin extraction and salt acts with the tannins to precipitate proteins (Conover 

and Sieburth 1966). Antifoulants with kelp or tannins were patented from 1880 

to 1900 (Sieburth and Conover 1966). Algal tannins appear to be quite viable 

as marine antifoulants. 
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Extracts from marine animals may also become important controls of 

biofouling. The gorgonian coral, Pseudopterogorgja acerosa, is almost never 

host to biofouling organisms (Stochaj and Targett 1993). When polar organic 

metabolites were extracted from the coral, dissolved in methanol, and 

administered to the fouling diatom species, Njtzchia, for 48 h at 48 µg/ml, 

chlorophyll was lost, photosystems I and II were possibly disrupted, there was 

a decrease in cell carbohydrate, and no photosynthesis or growth took place. 

Fatty acids isolated from the marine sponge, Phyllospongja papyracea. have 

been shown to have antifouling activity against Mytilus edulis (Goto et al. 

1992). This sponge also has few epibionts. Limpets may prove useful in 

biofouling control as they are grazers of attached algae and reduced 

biofouling cover by 80-90% when transplanted to submerged panels of 

shipping steel (Safriel et al. 1993). 

Hopes for a biological and environmentally safe biofouling control agent 

have long been voiced (Sieburth 1965; Christie et al. 1970; Moss 1992; 

Fletcher and Callow 1992; Stochaj and Targett 1993) and an understanding 

of the biology of red algal spore adhesion will be useful in attaining this goal. 

Champja paryula 

The organism used in this study of spore adhesion was Champja parvula 

(C. Ag.) Harvey, a temperate and tropical marine red macroalga (Taylor 1957) 

that can be free floating, epiphytic, or attached. In the seagrass beds of 

Biscayne Bay, Florida, its most common substrate is Thalassja testudjnum 
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(Humm 1964). It can attach to rocks or to anthropogenic marine surfaces 

(Norton and Mathieson 1983, Lethbridge et al. 1988) and can therefore be 

used as a means by which to determine the mechanisms of biofouling. It lives 

as an annual in Narragansett Bay, Rhode Island (Villalard-Bohnsack et al. 

1 ga8), where its habitat varies from open ocean to estuary to tidepool, 

although it appears to prefer oceanic water (Harlin and Rines1993). 

Tetrasporophytes of .C... parvula are found in summer (Davis 1892, Villalard

Bohnsack et al. 1988, Harlin et al. 1992a). This alga has been widely used in 

toxicity studies because its reproduction is as sensitive to the heavy metals 

Ag, Cd, Cu, and Pb as are the most sensitive marine animals, and it is also 

sensitive to cyanide, arsenite and arsenate (Steele and Thursby 1983, 

Thursby and Steele 1984, Thursby et al. 1985). Finally, .Q.. paryula has 

potential for use in genetic studies (Steele et al. 1986) because of 

spontaneous mutations that affect morphology and pigmentation and follow 

Mendelian patterns of transmission. 

As early as 1892, Davis published an illustration of a spore with its 

mucilage (Davis 1892). Champja· paryula produces two sets of spores; 

carpospores and tetraspores. Both sets of spores must attach before they can 

germinate (Dworetsky 1983) and establish adult plants; therefore spore 

adhesion is vital for completion of the life cycle. Attachment may act as a 

signal for germination and its accompanying physiological and morphological 

changes. 

Because spore adhesion is a crucial stage in the life cycle of .C... parvula, 

and because spores can be easily obtained in culture, this alga was selected 
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to examine mechanisms of spore adhesion. Light and scanning electron 

microscopy, histochemical studies, and interference with adhesion via 

inhibitors of biochemical pathways were used to investigate: 1) anatomical 

changes occurring during spore adhesion and germination, 2) the 

composition of the extracellular mucilage, and 3) the classes of molecules 

involved in initiation and maintainence of spore adhesion. 
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MATERIALS AND METHODS 

Culture 

Qhampja paryula was obtained from the Environmental Protection Agency 

and Science Applications International Corporation in Narragansett, Rhode 

Island. Champja paryula was cultured in Percival Growth Chambers at 20° C, 

+ or - 2° C with cool white light at 60 - 80 microeinsteins illuminated from 

above and below on a 16:8 light-dark regime. The culture vessels were 

aerated 500 or1000 ml flasks of filtered seawater from Narragansett Bay. The 

seawater was autoclaved (20 min, 121° C) to insure a unialgal culture. One ml 

modified 'f' medium per 100 ml seawater was added after autoclaving. 

Modified 'f medium is also known as GP2 and consists of 6.35 g sodium 

nitrate, 0.64 g sodium phosphate, 133 mg EDTA, 51 mg sodium citrate, 9. 75 

mg iron, and 1 O ml vitamin solution (2.0 g thiamine-HCI, 1.0 mg biotin, 1.0 mg 

812 in 100 ml DIH20) in 1 liter DIH20 (Guillard and Ryther 1962; Thursby and 

Steele 1986). Nutrients and seawater were changed weekly and excess 

algae discarded. Flasks were acid washed with 1 O - 15% HCI or washed with 

RBS 35 (Pierce Co.), rinsed 5 min with DIH20 to eliminate any lethal traces of 

detergent and autoclaved 20 min at 121° C. 

Phases of the Life Cycle 

Carpogonia of female gametophytes were fertilized by spermatia of male 

gametophytes to obtain carposporophytes, which grew within the female 
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gametophyte and produced cystocarps, inside of which were formed 

carpospores. These carpospores were released and attached to cover slips 

and germinated to form tetrasporophytes which underwent meiosis to produce 

tetraspores. After release, the tetraspores attached to cover slips and 

germinated to produce male and female gametophytes, thereby completing 

the life cycle. 

Collection of Spores 

Unattached spores were collected by placing spore bearing plants in petri 

dishes with seawater 5-1 O min while they released spores. Attached spores 

were collected with their substratum - plastic cover slips placed in the bottom 

of culture flasks. 

Spore Adhesion - Anatomy 

SEM. Spores and germinated spores attached to plastic cover slips were 

fixed in 1.0% TEM grade gluteraldehyde and 0.1 % osmium tetroxide with 

seawater as a buffer. Specimens were washed, dehydrated in an ethanol 

series, and dried in Peldri II (Ted Pella Company). Double stick mounting tape 

attached to mounted specimens was peeled off, inverted, and mounted. This 

enabled the bottoms of specimens detached by peeling the tape to be viewed 

(Bozzola and Russel 1991 ). Specimens were sputter coated with gold and 

viewed with a JEOL scanning electron microscope and photographed with 

Polaroid 55 Positive/Negative film. 
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LIGHT MICROSCOPY. While floating, newly released spores were 

examined with a Zeiss Universal light microscope for the presence of 

extracellular mucilage, and after attachment for adhesive pad and holdfast 

formation, germination, appearance of rhizoids, cell division, branching, and 

hair cell presence. 

Spore Adhesion - Histochemistry 

Composition of Mucilage 

LECTINS. Spores and sporelings were incubated with 100 µg/ml FITC 

(fluorescein isothiocyanate) lectin in 0.6 M sorbitol with 10 mM CaCl2 in 

DIH20 for 1 h and rinsed with DIH20 before viewing. As a control, FITC-lectin 

was added to 0.1 M competing monosaccharides with 0.2 M glucose, 0.4 M 

sorbitol, and 1 O mM CaCl2 in DIH20 and preincubated 15 min before adding 

to spores in 0.6 M sorbitol/1 O mM CaCl2 . Calcium was used in the incubation 

medium because certain lectins are known . to have a high affinity metal 

binding site and to require divalent· cations such as calcium for saccharide 

binding activity (Walko et al. 1987). Green fluorescence was visible when 

FITC-lectins bound with specific sugars in the mucilage and was observed 

with a Zeiss Universal epifluorescence microscope with mercury lamp 

illumination, a 436-520 nm filter. Spores were photographed with a Nikon FX-

35A camera with Ektachrome T 160 or Vericolor 100 film. Lectins tested and 

their competing monosaccharides were: Con A - Canavalia ensiformis 

agglutinin, a-methyl-D-mannoside; LCA - Wms culjnarjs agglutinin, a-methyl

D-mannoside; UEA 1 - !J.J.il europaeus agglutinin, a-L-fucose; WGA -
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Idticum yulgaris agglutinin, N-acetyl-0-glucosamine; Phytolacca americana 

mitogen (PWM), N-acetyl-D-glucosamine; PNA - Arachjs hypogaea agglutinin, 

D-galactose; Yicia yillosa agglutinin, D-galactose; and SBA - Glycine max 

agglutinin, D-galactose. FITC-lectins and sugars were obtained from Sigma 

Chemical Co. 

STAINS. Attached spores, germinated spores, and plants on plastic cover 

slips were stained with the following: 0.5% alcian blue HCI pH 0.5, 30 min, 

DIH20 rinse, for sulfated polysaccharides; 0.5% alcian yellow HCI pH 2.5, 30 

min, DIH20 rinse, for carboxylated polysaccharides (Parker and Diboll 1966; 

McCully et al. 1980); 0.3% alcian blue pH 1.0 in 0.9 M MgCl2, 30 min, DIH20 

rinse, for sulfated polysaccharides; 0.3% alcian blue pH 2.5 in 3% acetic acid, 

30 min, DIH20 rinse, for sulfated and carboxylated polysaccharides (Sheath 

and Cole 1990); 0.5% toluidine blue 0 pH 1.0, 1 min, DIH20 rinse, for sulfated 

polysaccharides; and 0.1 % Heath's neutral red, Heath's methylene blue, and 

Heath's toluidine blue, 5 min, for sulfated polysaccharides (Heath 1961 ). PAS 

(periodic acid-Schiff) stained for neutral polysaccharides (Cole et al. 1985). 

Coomassie blue (0.1 %) G-250, 5 min, DIH20 rinse, (Smith 1984) and 0.1 % 

fast green, 1 min, DIH20 rinse, stained for proteins (Klein and Klein 1970), and 

potassium iodine, IKI, 5-1 o min stained for starch (Klein and Klein 1970). Blue 

fluorescence in algae cultured 24 h in 0.0025% Biofluor indicated cellulose, 

as did a blue stain resulting from placing algae in IKI 30 min, followed by 1 

drop 65% H2S04 between the cover slip and microscope slide (Klein and 

Klein 1970). 
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HCI. Attached spores were soaked in 7% HCI for 1 hr to detach branches 

from developing holdfasts. This concentration was used because it was high 

enough to detach branches but low enough to leave holdfast remnants 

behind. Holdfast remnants resulting from this treatment were stained with fast 

green and alcian blue as described above. 

ENZYMES. Spores and germinated spores attached to plastic cover slips 

were incubated in a 1 .0 mg/ml enzyme and DIH20 or autoclaved seawater 

solution at 37° C for 1 h, following the methods of BrAten (1975). Enzymes 

tested were protease (0.7 - 1.0 units/mg), trypsin (10,000 units/mg), pepsin 

(3,200 - 4,500 units/mg), a-amylase (700 - 1,400 units/mg) and cellulase (1 -

10 units/mg) at pH 8.0, hyaluronidase (300 units/mg) at pH 5.5 and 8.0, 

polygalacturonase (500 - 2,000 units/mg) at pH 5.0, J3-galactosidase (600 -

1,200 units/mg) at pH 7.3, sulfatase (5 - 15 units/mg) at pH 5.0 and 8.0, and a

mannosidase (20 units/mg) at pH 4.5 and 8.0 (Sigma Chemical Co.). The pH 

was adjusted with HCI and NaOH. A control group was incubated under 

similar conditions without the enzyme. If the algae remained attached after 1 

h, incubation continued an additional 23 h. Cover slips were rinsed with 

DIH20 or seawater and placed on a shaker at 100 rpm for 24 h and examined 

for remaining spores, germinated spores, adhesive pads, or holdfasts. 

Remaining algal material was stained with fast green, alcian blue, toluidine 

blue, or IKI and examined with a Zeiss Universal light microscope and 

photographed with Ektachrome T ASA 160 or Vericolor Ill ASA 100. 
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Spore Adhesion and Detachment 

INHIBITORS. To determine their effects on spore adhesion and 

detachment, cycloheximide (a protein synthesis inhibitor), tunicamycin (a 

glycoprotein synthesis inhibitor), sodium molybdate (a polysaccharide 

sulfation inhibitor), the a-D-mannose/a-D-glucose specific lectin Con A, 

sulfuric acid, deionized water, and 0.01 % sodium azide (the latter three of 

which are lethal to~ parvula) were added to spores. Because cycloheximide 

and tunicamycin are insoluble in seawater, they were first dissolved in 100 µI 

DMSO. Molybdate forms a precipitate in seawater, so molybdate assays were 

conducted in 1 ml GP2/100 ml DIH20. Inhibitors were added to either 1) free 

floating spores to assess inhibition of attachment, or to 2) spores attached to 

plastic cover slips to assess detachment of spores. Spores were placed in 1 O 

X 1 O mm gridded plastic petri dishes with 1 O ml seawater and were counted 

through a dissecting microscope. A 24 h incubation (in light and at room 

temperature) followed; this timing is based on Dworetsky's 1983 finding that 

90% of tetraspores of .C.... paryula adhered after 6 h and this percentage 

remained constant through 48 h. After 24 h, the incubation solution was 

decanted and the petri dish was rinsed with 1 O ml seawater, which was then 

discarded. Five ml of new seawater was added. Attached spores were then 

counted and the percent of attached spores was calculated and compared 

with the percent of attached spores in the 100 µI DMS0/1 O ml seawater and 

10 ml seawater controls. All inhibitors were tested over a range of 

concentrations to generate a dose/response curve. Four or five replicates of 

each concentration were tested in each of the experimental repetitions. As 50 

µg/ml cycloheximide inhibits algal growth in culture, (Zehnder and Hughes 

43 



1 g58). the concentrations of cycloheximide and tunicamycin ranged from 0.5 

µg/ml to 20 µg/ml to minimize spore death. Spore viability after exposure to 

the above agents and in a control group was determined by assessing spores 

for color change from red to green or white, and using a dye exclusion assay 

by staining dead tissue with 0.5% trypan blue (Cooksey 1986) dissolved in 

seawater so that the trypan blue solution would not be lethal to the spores. 
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RESULTS 

Anatomy of Spore Adhesion 

Tetrads of tetraspores were released as a unit and did not separate upon 

adhesion. Extracellular mucilage was found on free floating tetraspores and 

carpospores immediately after spore release.when observed with a dissecting 

or compound microscope. Within 24 h of release, spores attached with this 

mucilage. After initial attachment, the spores germinated and produced 

cellular rhizoids as a secondary means of attachment (Figs. 1 - 2). Tetraspores 

viewed with SEM had a mucilage pad extending 20-25 µm around the base of 

the tetrads, which were 40-45 µm in diameter. This smooth and sheetlike 

mucilage (Fig. 3) appeared to increase in diameter as cell division began. 

Each spore of the tetrad produced one rhizoid upon germination. In Fig. 4, a 

germinated spore was peeled off to reveal the positions of the rhizoids within 

the remaining pad of mucilage. Fig. 5. depicts a detached sporeling with 

mucilage, holdfast cells, and · an upright branch with a hair cell. Fig. 6 is a 

basal view of the detached sporeling; it appears that the mucilage had 

adhered tightly to the substrate. 

After germination, the spores began cell division and formed the first 

branch of the germling tetrasporophyte or gametophyte. While the branches 

formed, the rhizoids divided and began formation of the holdfast. Rhizoids and 

their derivative holdfast cells all had extracellular mucilage. Rhizoids were not 

directly visible with SEM because the mucilage became opaque when coated 
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with metal and because the rhizoids emerged and grew downwards from 

spore bases which were surrounded by mucilage. The holdfast cells 

continued to divide and provided a base of attachment as the germlings 

developed. 
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PLATE 1. Light micrographs of Champia parvula. Scale bars= 10 µm. 
Fig. 1 - Tetrad attached with mucilage (M) as a unit of four tetraspores (T) 
to a plastic cover slip. Fig. 2.- Spores of a tetrad that have germinated 
and produced rhizoids (R). 
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PLATE 2. Scanning electron micrographs of Champia parvula. Scale 
bars = 1 O µm. Fig. 3 - mucilage (M) of tetraspores (T) of attached tetrad ; 
Fig. 4 - positions of rhizoids (arrow) within mucilage (M) that remained on 
slide after removal of tetrad; Fig. 5 - mucilage (M), holdfast cells (H), 
upright branch (B) and hair cell (arrow) of a detached sporeling, Fig. 6 -
basal view of the detached sporeling showing mucilage (M) and 
disrupted holdfast (H). 
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Biochemical Composition of Spore Mucilage and Rhlzoids 

FITC-LECTINS 

To test the hypothesis that the mucilage of Q.. parvula spores and holdfasts 

contains a variety of sugar haptens, FITC-lectins were used as probes. 

Following incubation in FITC-lectins, the mucilage of .Q... parvula spores and 

holdfasts fluoresced with 5 of the 8 lectins tested (Table 1 ). Because 

fluorescence occurred with lectins of differing specificities, I conclude that 

there is a variety of sugar haptens in the mucilage of the spores and holdfasts. 

Three of the lectins tested resulted in little to no fluorescence; indicating 

that their specific sugars are not present, are present in minimal quantities, or 

were inaccessible in the spore mucilage. The lectins that did not cause 

fluorescence are a-L-fucose specific UEA 1, (Fig. 7), and the (N-acetyl-~(1-

4)-D-glucosamine)2 or N-acetylglucosamine specific lectins WGA, (Fig. 8) and 

Phytolacca amerjcana mitogen (PWM). (Fig. 9). 

In the mucilage of .Q.. paryula a-D-mannose and a-D-glucose were 

abundant The a-D-mannose and a-D-glucose specific lectin Con A 

produced green fluorescence in the mucilage around spores, sporelings, 

around the perimeters of holdfasts, and on branches. The mucilage of tetrads 

did not fluoresce before release (Fig. 1 O), but began to fluoresce just after 

release (Fig. 11 ). Mucilage of attached spores fluoresces (Fig. 12), but not in 

the control, (Fig. 13). In Fig. 14, also a control, the rhizoids have appeared. A 
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coverslip was inverted to reveal the bases of two developing holdfasts; 

fluorescent, adhesive mucilage of the rhizoids is visible in the holdfast on the 

right (Fig. 15). Fluorescent mucilage of a sporeling is illustrated in Fig. 16, and 

in Fig. 17, a basal view of the fluorescence of a holdfast. The spore mucilage 

fluoresced with an additional a-D-mannose and a-D-glucose specific lectin, 

LCA (Fig. 18). 

Spore mucilage fluoresced in the presence of FITC-labelled peanut 

agglutinin (PNA), ~ yillosa lectin and soybean agglutinin (SBA), all of 

which are in the N-acetylgalactosamine/galactose group (Figs.19-21 ). 

Therefore, sugars in this group appear to be well represented in the mucilage 

of .C... parvula spores. 

Without FITC-lectin incubation, spore mucilage did not autofluoresce. 

Spores had orange-yellow autofluorescence (Fig. 22). Spores used as 

controls (preincubated in competing monosaccharides before exposure to 

FITC-lectins) autofluoresced but did not have autofluorescent mucilage. 
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Table 1 
Fluorescence of the mucilage of Champja paryula spores with FITC-lectins 

+=fluorescence; - =no fluorescence 

LECTIN SPECIFICITY FLUORESCENCE 

Con A 

LCA 

a.-D-mannose > a.-D-glucose.> 
N-acetylglucosamine 1 

a.-D-mannose > a.-D-glucose > 
N-acetylglucosamine 1 

WGA N-acetylglucosamine 2 

N-acetyl-~(1-4)-D-glucosamine 

(N-acetyl-~(1-4)-D-glucosamine)2 3 4 

phytolacca ~(1-3)-galactose, 

PNA 

SBA 

N-acetyl-~(1-4)-D-glucosamine 

(N-acetyl-~(1-4)-D-glucosamine)21 

galactosyl (~ 1,3) N-acetylgalactosamine > 
a.-D-galactose 1 

N-acetylgalactosamine > 
a.-D-galactose 1 

. . 

a. or f3 N-acetylgalactosamine > 
a. or ~D-galactose 1 

UEA 1 a.-L-fucose 2 3 

! Goldstein and Poretz 1986 

3 
Kaska et al. 1988 

4 
von Sengbusch 1982 
Wako et al. 1987 
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PLATE 3. Fluorescent light micrographs of spores of Champja parvula, in 
which the mucilage surrounding the spores did not fluoresce following 
incubation in a. FITC-lectins or b. control (preincubation in competing 
monosaccharide followed by incubation in FITC-lectins). Scale bars= 50 
µm. Fig. 7 - a. UEA 1, b. a-L-fucose and UEA . 1. Fig. 8 - a. WGA, b. N
Acetyl-D-glucosamine and WGA. Fig. 9 - a. Phytolacca americana (PWM) 
mitogen, b. D-galactose and Phytolacca americana (PWM) mitogen; 
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PLATE 4. Fluorescent light micrographs of spores of Champia parvula 
following incubation in FITC-Con A (Figs. 10 - 11, 13, and 15 - 17), or 
control, (Figs. 12 and 14), (preincubation in competing monosaccharide 
followed by incubation in FITC-Con A), green fluorescence (arrows). 
Scale bars = 50 µm. Fig. 10 - tetrads (T) before release.from 
tetrasporophytic branch (8) Fig. 11 - release of tetrads.(T), arrows point to 
green fluorescence at original sites of tetrads within tetrasporophytic 
branch (B) Fig. 12 - control, attached tetrads (T). Fig.13 - attached tetrads. 
Fig. 14 - control, germinated tetrad with rhizoids.(R) Fig. 15 - basal view 
of developing holdfasts.with mucilage (M) and rhizoids (R) with adhesive 
mucilage Fig. 16 - detached sporeling (SL) with holdfast cells (H) and 
mucilage (M). Fig. 17 - basal view of a branch (8) and holdfast (H) with 
mucilage (M) .. 
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PLATE 5. Fluorescent light micrographs of spores of Champja parvula 
following incubation in a., FITC-lectins or b., control (preincubation in 
competing monosaccharide followed by incubation in FITC-lectins), 
green fluorescence (arrows). Scale bars =50 µm. Fig. 18 - a. LCA, b. a
o-methyl-mannoside and LCA. Fig. 19 - a. PNA, b. D-galactose and PNA. 
Fig. 20 - a. Y.i.ci.a yi!losa agglutinin, b. D-galactose and ~ yjllosa 
agglutinin. Fig. 21 - a. SBA, b. D-galactose and SBA. Fig. 22. 
Autofluorescing spores. 
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Histochemical Stains of Spores, Rhizoids, and Mucilage 

The results of histochemical staining of extracellular mucilage, spores, and 

rhizoids of .C... parvula.are summarized in Table 2. Staining of the rhizoids was 

consistent with that of the spores but different than that of the mucilage. One 

major difference was that the rhizoids and spores stained for protein with fast 

green (Fig. 23) and coomassie blue (Fig. 24) whereas the mucilage did not. In 

addition, the polysaccharide composition of the mucilage differed from that of 

the rhizoids and spores. Rhizoids and spores stained for neutral 

polysaccharides (Fig. 25) with PAS but did not stain for carboxylated 

polysaccharides.with alcian yellow. Mucilage did not stain for neutral 

polysaccharides but did stain for carboxylated polysaccharides (Fig. 26). 

Sulfated polysaccharides appear to be present in the spores, mucilage 

and rhizoids. The mucilage stained positively for sulfated polysaccharides 

with all seven of the stains (Figs. 27 - 33). ·The rhizoids did not stain as 

consistently for sulfated polysaccharides as did the mucilage. The three 

Heath's stains were positive in the rhizoids (Figs. 31 - 33) whereas alcian blue 

(HCI pH 0.5) and toluidine blue O did not detect polysaccharides in the 

rhizoids and spores. 

Cellulose appears to be a component of the mucilage, spores and 

rhizoids, as it was detected with IKl-H2S04 and Biofluor White in all three 

structures (Figs. 34 - 35). Starch was detected in the spores and rhizoids but 

not in the extracellular mucilage with IKI (Fig. 36). 
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sporelings soaked in 7% HCI for 24 h detached intact from the substrate or 

broke at the branch-holdfast juncture. Holdfast remnants had fast green 

staining proteinaceous attachment points which appear to anchor the rhizoid 

and holdfast cells to the substrate. Protein anchors can be seen at the sites of 

rhizoid attachment (Fig. 37). The mucilaginous portion of the holdfast 

remnants stained for sulfated polysaccharides with toluidine blue (Fig. 38), or 

with alcian blue HCI pH 1.0. 
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Table 2 
Staining of Champja parvula mucilage, spores, and rhizoids 

STAIN COMPOUND STAINED MUCILAGE SPORES/RHIZOIDS 

-PAS neutral polysaccharide + 
Alcian Yellow carboxylated polysaccharides + 
Alcian blue: 
HCI pH 0.5 sulfated polysaccharides + 
MgCl2 pH 1 sulfated polysaccharides + + 
acetic acid sulfated/carboxylated 
pH 2.5 polysaccharides + + 

Alcian yellow carboxylated polysaccharides + 
Toluidine blue 0 sulfated polysaccharides + 
Heath's: 
neutral red sulfated polysaccharides + + 
methylene blue sulfated polysaccharides + + 
toluidine blue sulfated polysaccharides + + 

Biofluor white cellulose + + 
H2S04-IKI cellulose + + 
IKI starch + 
Fast green protein + 
Coomassie blue protein + 
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PLATE 6. Histochemical staining of Champia parvula. Scale bars = 50 
µm. Fig. 23 - rhizoids (R) and spores (S) stained for protein with fast 
green; Fig. 24 - with coomassie blue. Fig. 25 - rhizoids (R) but not 
mucilage (M) stained for neutral polysaccharides with PAS. Fig. 26 -
mucilage (M) of spores stained for carboxylated polysaccharides with 
alcian yellow. Fig. 27 - mucilage (M) of sporelings (SL) stained for 
sulfated polysaccharides with alcian blue HCI, pH 0.5; Fig. 28 - with 
alcian blue MgCl2; Fig. 29 - with alcian blue acetic acid pH 2.5; Fig. 30 -
with toluidine blue. 
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PLATE 7. Histochemical staining of Champia parvula. Scale bars = 50 
µm. Fig. 31 - mucilage (M) of holdfast (H) stained for sulfated 
polysaccharides with Heath's neutral red. Fig. 32 - mucilage (M), spores 
(S}, and rhizoids (R) stained for sulfated polysaccharides with Heath's 
methylene blue. Fig. 33 - with Heath's toluidine blue. Fig. 34 - mucilage 
(M} of spores (S) stained for cellulose with IKl-H2S04. Fig. 35 - with 
Biofluor White. Fig. 36 - spores (S) stained for starch with IKI. Fig. 37 -
protein anchors (PA) staining with fast green in remnants of holdfast 
following its removal with a 24 h exposure to 7% HCI. Fig. 38 - Toluidine 
blue stained mucilage (M) and fast green stained holdfast cells (H) of 
sporeling detached with a 24 h exposure to 7% HCI. 
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Maintenance of Spore Adhesion 

Enzymes were used to determine which classes of molecules play a role in 

maintaining adhesion. While exposure to all of the enzymes tested resulted in 

at least some spore detachment, the quantity and pattern of detachment 

varied among enzymes (Table 3). Spores detached at the mucilage/substrate 

interface or at the spore/mucilage interface to· teave behind a spore socket, 

which appeared to be an adhesive disc of mucilage. There were no 

differences in detachment observed between tetraspores and carpospores. 

Control groups of spores in seawater or DIH20 at pH 4.5, 5.0, 5.5, 7.3 or 8.0 

had only 0-10% detachment following 24 h of 37° C incubation or shaking, or 

with incubation followed by shaking. Control groups of spores did not detach 

when touched with a dissecting needle. 

The cell walls and mucilage of spores and sporelings were disrupted and 

destroyed after exposure to cellulase. Spores incubated in cellulase detached 

completely without being shaken and left no remnants of holdfasts on the 

cover slips. Cells of attached sporelings separated from each other. 

Spores detached at the spore-mucilage interface following exposure to 

protease, trypsin, pepsin, a-amylase and polygalacturonase. The detachment 

pattern varied among these enzymes. With the proteolytic enzymes, adhesive 

discs which stained for sulfated polysaccharides with alcian or toluidine blue 

were left behind (Fig. 39). These discs and any remaining attached spores or 

sporelings detached after 24 h of shaking. 
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With a-amylase, adhesive discs were left on the cover slips when spores 

detached (Fig. 40). Sporelings often detached at the holdfast-branch juncture, 

leaving behind the developing holdfast. After shaking, only faint traces of 

spore mucilage or sporeling holdfasts remained and stained for sulfated 

polysaccharides with alcian blue. Branches of sporelings broke off of 

holdfasts and spores detached to leave behind their adhesive discs, or spore 

sockets, after polygalacturonase exposure. However, fewer than 25% of the 

spores detached and the spore sockets remained attached after shaking. 

Of the enzymes which resulted in detachment at the mucilage-coverslip 

interface, J}-galactosidase was the most effective. All spores and sporelings 

detached after incubation and shaking. Spores exposed to hyaluronidase at 

pH 8.0 had only limited detachment. Branches broke off sporelings and left 

behind the holdfasts, and spores detached at the spore-mucilage interface. 

The remaining spore sockets stained with alcian blue. At pH 5.5, they 

detached upon touch at the mucilage -substrate interface after exposure but 

before shaking. As with hyaluronidase, a decrease in the pH of mannosidase 

from 8.0 to 4.5 resulted in increased detachment of spores and sporelings. 

The algae detached at the mucilage-cover slip interface and did not detach 

unless touched. 

Only 10-25% of the spores detached when exposed to 1.0 or 8.5 mg/ml 

sulfatase at pH 8.0. At pH 5.0, detachment did not increase to 50-75% until the 

concentration was increased to 8.5 mg/ml. Even so, the spores did not detach 

until after being shaken for 24 h and not unless they were touched. Spores 
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exposed to sulfatase at either pH detached at the mucilage-cover slip 

interface and not at the spore-mucilage interface (Fig. 41 ). 
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Table 3 
Detachment of .C... paryula spores incubated in enzymes at 37° C 

ENZVME: SOURCE & SIGMA# pH % DETACHMENT 

Control 4.5-8.0 0-10 

Protease 8.0 75-100 
,Streptomyces caespjtosus P0384 

Trypsin 8.0 75-100 
Bovine pancreas T8003 

Pepsin 8.0 50-75 
Porcine stomach mucosa P6887 

Hyaluronidase 5.5 75-100 
Bovine testes H3506 8.0 10-25 

a-Amylase 8.0 75-100 
Porcine pancreas A6255 

Cellulase 8.0 90-100 
Aspergjllus n.ig,w: C2415 

Polygalacturonase 5.0 10-25 
Aspergillus .nig,w: P3429 

a-Mannosidase 4.5 50-75 
Jack beans M7257 8.0 0-10 

~galactosidase 7.3 90-100 
E. kQli G5635 

Sulfatase 5.0 50-75 
Patella yulgaris S8629 8.0 10-25 
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PLATE 8. Light micrographs of Champja parvula after exposure to 
enzymes. Scale bars = 50 µm .. Fig. 39 - Alcian blue stained mucilage (M) 
that remained after 24 h incubation in 1 mg protease per ml DIH20, pH 
a.o, 37° C. Fig. 40 - spores (S) detaching to leave behind mucilaginous 
sockets (MS) after 24 h incubation in 1 mg a-amylase per ml DIH20, pH 
8.0, 37° C. Fig. 41 - spores (S) that detached upon touch after 24 h 
incubation in 8.5 mg sulfatase per ml DIH20. pH 5.0, 37° C. 
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Detachment of Tetraspores 

Attached tetraspores did not detach in the presence of the biosynthesis 

inhibitors cycloheximide, tunicamycin, or sodium molybdate (N = 15), data not 

shown. Nor did tetraspores detach after exposure to Con A. The ranges of 

concentrations for tetraspore detachment assays were the same as those 

used in the tetraspore adhesion inhibition assays in the next unit.. 

Tetraspores soaked for 24 h in H2S04 or HCI over a lethal pH range of 0.8 

to 1.6 detached from plastic cover slips. The mucilage was visibly eroded after 

24 h. Detachment because of cell death and detachment because of corrosion 

were indistinguishable in this case. Detachment occurred at the cover slip

mucilage interface and not at the spore-mucilage interface. At pH 1.4 or 1 .6, 

holdfasts of sporelings remained attached but tetraspores detached. 

Therefore, holdfasts were more resistant to detachment than tetraspores were. 

Tetraspores remained attached in seawater from pH 4.5 to pH 7.5-8.0. 

Tetraspores killed by soaking in DIH20 for 24 h did not detach, (N = 30), 

data not shown. Tetraspores turned white but remained attached even after 

submersion in DIH20 for 2 months. Tetraspores soaked in 0.01 % sodium 

azide for 24 h were dead but did not detach. Therefore, tetraspores did not 

need to be living to maintain adhesion, although only viable tetraspores could 

initiate adhesion. Tetraspores did not attach after 24 h exposures to 0.01 % 

sodium azide in seawater. This is evidence that tetraspores must be viable to 

attach. The acids H2S04 or HCI (pH 0.8, 1.4, and1 .6) are lethal to tetraspores 
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and attachment was extremely limited in their presence. However, the acids 

are corrosive to the mucilage so treatment with acid did not differentiate 

between mucilage destruction and cell death. What little attachment that did 

occur probably took place before the acid could contact and damage the 

tetraspores, which were added to the seawater before the acid was so that 

parent plants would not be destroyed by the acid. 

74 



Inhibition of Tetraspore Adhesion 

Tetraspore adhesion was inhibited following exposure to cycloheximide 

(Fig. 42), tunicamycin (Fig. 43), Con A (Fig. 44), and sodium molybdate (Fig. 

45). The percentage of tetraspores that attached decreased with increasing 

concentrations of all four agents. Of the four, cycloheximide was the most 

potent inhibitor of adhesion. Tetraspore adhesion dropped from the control 

value of 50 - 60% to an average of below 20% at 0.5 µg cycloheximide per ml 

seawater. One µg of tunicamycin and 5.0-10.0 µg of Con A per ml seawater 

were required to reduce average tetraspore adhesion to less than 20%. 

Much greater concentrations of sodium molybdate (0.1 M) were necessary 

to reduce adhesion to below 20%. Adhesion averaged 14% at 0.2 M, (48.0 

mg) sodium molybdate per ml deionized water. Because sodium molybdate 

precipitates in seawater, the assays were conducted in 1 ml GP2/100 ml 

DIH20, in which the tetraspores remained viable for 24 h, the length of the 

assay. Although tetraspore adhesion was reduced from an average of 50 -

60% in seawater to 45 - 50% in 1 ml GP2/100 ml DIH20. spore adhesion 

averaged 26.0% less in 0.05 M sodium molybdate, the lowest concentration 

tested. 

Because cycloheximide and tunicamycin are insoluble in seawater, they 

were first dissolved in dimethyl sulfoxide (DMSO) to make a stock solution of 1 

mg inhibitor/ml DMSO. As a control, 100 µI DMSO per ml seawater was 

administered to free floating tetraspores. It did not interfere with attachment 
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and was not lethal to tetraspores. This is evidence that the inhibitors did not 

interfere with attachment solely by their physical presence. 

To determine if the doses of cycloheximide, tunicamycin, Con A, and 

sodium molybdate that were administered in the adhesion assays were lethal 

to tetraspores, 0.5% trypan blue stain was used. Tetraspores killed with 0.01 % 

sodium azide or DIH20 stained with 0.5% trypan blue, whereas tetraspores 

that were exposed to the inhibitors did not stain with 0.5% trypan blue at the 

concentrations used in the adhesion assay. Nor did exposed tetraspores 

change color from red to green, an indication of viability. These compounds 

were therefore not lethal to tetraspores at the tested concentrations. 

76 



70 

60 

I 
z; 

50 .. 
N 

~ 

"i 40 

i • 
I 

I 30 

l .,. 20 

10 I l I I 
0 

0 0.1 0.25 0 .5 1.0 5.0 10.0 20.0 
µg cycloheximide per ml seawater 

FIGURE 42. Average percent of adhesion (+/- standard deviation) of newly 
released, free floating Champia parvula tetraspores to plastic cover slips 
during 24 h incubations in cycloheximide, (N=15), a protein synthesis 
inhibitor. 
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FIGURE 43. Average percent of adhesion (+/- standard deviation) of newly 
released, free floating Champja parvula tetraspores to plastic cover slips 
during a 24 h incubation in tunicamycin, (N = 15) a glycoprotein synthesis 
inhibitor. 
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FIGURE 44. Average percent of adhesion (+/- standard deviation) of newly 
released, free floating Champja paryula tetraspores to plastic cover slips 
during a 24 h incubation in the a-0-mannose/a-D-glucose specific lectin Con 
A, {N = 15). 
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FIGURE 45. Average percent of adhesion (+/- standard deviation) of newly 
released, free floating Champja parvula tetraspores to plastic cover slips 
during a 24 h incubation in sodium molybdate, (N = 15) an inhibitor of 
sulfation of polysaccharides. 
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DISCUSSION 

Spore attachment in C. parvula is mediated in a number of ways. First, the 

spores are surrounded by extracellular mucilage. Upon attachment, this 

mucilage forms a circular attachment pad with sides that slope down from the 

spore to the perimeter of the pad. Second, cellular rhizoids with their own 

mucilage are formed upon germination and provide secondary anchorage. 

These rhizoids will undergo cell division, forming the holdfast. Third, although 

the mucilage is smooth and uniform in appearance, it actually has a complex 

composition. Adhesion involves several classes of molecules which may 

interact and facilitate adhesion. These are sulfated polysaccharides, proteins, 

and glycoproteins. The sugar moieties cx-D-mannose or cx-D-glucose appear 

to be necessary for adhesion. Fourth, the spores must be living in order to 

attach. Therefore, adhesion is based on more than one characteristic of the 

spores. 

Spore Adhesion - Anatomy 

The mucilage of .Q... parvula spores is smooth and sheetlike; it forms the 

basis of initial attachment. The emergence of one cellular rhizoid per spore 

upon germination provides further anchorage. While the sporeling holdfast 

develops from rhizoidal cell division, upright branches form from non rhizoidal 

cells. This differs from the sporeling ontogeny of Chondrus crjspus, in which 

the spore undergoes division and forms a multilayered discoid sporeling 

before branches are formed (Taylor and Chen 1975). 
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The edge of the mucilage appears to stick tightly to the substrate upon 

examination with SEM or light microscopy. It may be that the edge of the 

mucilage and its interaction with the cover slip are important in maintaining 

adhesion, possibly by a mechanism similar to that of a suction cup. 

Substrate differences can influence spore adhesion in red algae. Boney 

(1978) found that spores of Porphyra schjzophylla attached more slowly to 

negatively charged plastic cover slips than ·to uncharged cotton strings. 

Because spores of .Q... paryula can attach to plastic that is probably neutrally 

charged and hydrophobic, and to glass that is probably negatively charged 

and hydrophilic, to rocks, and because this alga can be epiphytic, .Q... parvula 

can attach to surfaces with a variety of chemical characteristics. 

Tetrad Adhesion and Coalescence 

In culture, the four spores composing .C.... paryula tetrads were released 

together and did not separate before germination. This observation supports 

those of Steele et al. (1986); Each spore within the tetrad germinated to 

produce one rhizoid. The cells derived from the original four spores coalesced 

to form a germling gametophyte. Sporeling coalescence occurs in Gracilaria 

~rrucosa, Gjgartjna stellata, and Chondrus crjspus (Tveter and Mathieson 

1976). In parasitic marine red algae, genetically different vegetative filaments 

can fuse into pseudoparenchyma, resulting in different reproductive stages on 

the same thallus (Goff 1982). While the coalescence of Q.. parvula sporelings 

originates from non-separation of the four spores of the tetrad, .C.... crjspus 

coalescence is a result of a high density of spores or sporelings growing 
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together. As ~ crjspus coalesced sporelings are enclosed by a common 

cuticle (Tveter and Mathieson 1976), coalesced sporelings of .Q... parvula are 

surrounded by common extracellular mucilage. In ~ crjspus. juvenile 

tetrasporophytes coalesce more than sporeling gametophytes do . .Q... paryula 

carpospores are released singly and do not coalesce after germination into 

juvenile tetrasporophytes. Coalescence of gametophytic sporelings of .Q... 

g,aryula originates from non-separated tetrads and occurs frequently, if not 

always in culture. However, wave action in the intertidal.zone probably 

separates the spores of the tetrad before they attach. 

If the spores of the tetrad do not separate in the intertidal zone, then 

coalescence in ~ parvula may confer advantages to sporelings as they 

establish themselves in intertidal marine habitats. One possibility is that an 

immediately larger sporeling size may contribute to faster growth. Adjacent, 

coalesced sporelings of .Q... crispus grow faster with more upright, branched 

fronds than non-coalesced sporelings do and also have secondary pit 

connections (Tveter and Mathieson 1976). The mucilaginous spore coating in 

.C.. crjspus has been thought to increase spore cohesiveness and longevity 

(Maggs and Cheney 1990). In the sand scoured habitat of a yerrucosa. Jones 

(1956) observed rafts of coalescing sporelings with the ecological advantages 

of speedier initiation and faster growth of fronds. 
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Composition of Spore Mucilage 

FITC-lectlns 

FITC-lectins bound to a variety of sugars in the spore mucilage (Table 1 ). 

Because lectins have a greater affinity for sugar haptens of glycoproteins than 

for unincorporated sugars (von Sengbusch et al. 1982), it is likely that the 

FITC-lectins bound with sugar moieties of glycoproteins in the spore mucilage. 

Con A and LCA are specific for a-0-mannose, and to a lesser extent, a-0-

glucose (von Sengbusch 1982, Walko et al. 1987, Goldstein and Poretz 

1986). Spore mucilage and the mucilage around the periphery of developing 

holdfasts fluoresced with both Con A and LCA. Compared to Con A, LCA has 

a weaker affinity for polysaccharides and a greater affinity for glycoproteins 

(Goldstein and Poretz 1986), suggesting that glycoproteins with a-0-

mannose or a-0-glucose haptens are adhesive components of the spore 

mucilage in .C... parvula. In other organisms, a-0-mannose and a-0-glucose 

have been found in outer cell walls and are involved in cell adhesion (Herth et 

al. 1982; Watson and Waaland 1983; Gingell and Owens 1992; Kim and Fritz 

1993b; Kwon and Epstein 1993). Con A bound to cuticle, cell walls and 

intercellular mucilage of Polysiphonja (Oiannelidis and Kristen 1988). In 

Antitharnnion nipponjcurn, Con A can inhibit gametic binding (Kim and Fritz 

1993b). Con A demonstrated that a-0-mannose and/or a-0-glucose are 

constituents of the red algal hormone rhodomorphin, found in Grjffithsja 

.D.acjfic.a. (Watson and Waaland 1983). The spikes of Acanthosphaera 

zacharjasi_ (Chlorococcales) are bundles of cellulosic microfibrils which are 
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extensions of the outer cell wall layer and bind with FITC-Con A at their bases 

(Herth et al. 1982). In Djctyostelium amoebae, Con A labelled membrane 

glycoproteins at the site of initial cell settling and spreading and on the edges 

or beneath the ultrathin lamellae (Gingell and Owens 1992). 

y;c;a yjllosa lectin and SBA are two lectins from the N

acetylgalactosamine/galactose group which gave positive results with ~ 

garyula mucilage. It is of interest that the lectin from ~ villosa is also specific 

for glycoproteins with one or two terminal N-acetyl-a-galactosamine groups 

linked to serine or threonine (Goldstein and Peretz 1986) and SBA has 

specificity for oligosaccharide molecules with terminal a or b linked N

acetylgalactosamine (Kaska et al. 1988). This is further evidence that 

glycoproteins are found in the mucilage of C... paryula spores, although 

polysaccharides are present. 

FITC-lectins revealed no differences in fluorescence among the mucilage 

of spores, holdfasts, and branches, which can also adhere to plastic or glass 

This differed from Antithamnion nipponicum, in which Kim and Fritz (1993a) 

used FITC-lectins and lectin gold labelling to find that N-acetyl-glucosamine, 

P-D-galactose, and a-L-fucose in the spermatial cell walls but not in the 

vegetative cell walls. Herth et al. (1982) found that cell walls and spike bases 

of Acanthosphaera zachariasj bound with the lectins Con A, RCa-1, PNA, to a 

lesser extent with WGA, and not with UEA, while the distal ends of the 

cellulosic spikes did not bind with any of the lectins. Spatial differences in 

sugars which bound to FITC-lectins were minimal in Q.. paryula, although PNA 

Yielded scattered fluorescence near the periphery of the spore mucilage to 
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indicate patches of a- D-galactose or galactosyl (~ -1,3) N

acetylgalactosamine. Fluorescence with all other FITC-lectins that were tested 

indicated that the variety of sugars present in the mucilage of .Q,_ parvula were 

otherwise distributed evenly within the mucilage. 

Q... paryula did not bind with the n-acetyl glucosamine specific lectin WGA, 

the (N-acetyl-~-(1-4)-D-glucosamine)2 specific lectin from Phytolacca 

,americana, or the a-L-fucose specific UEA. ' In another marine red alga, 

for:phyra perforata, extracted glycoproteins did not bind with biotinylated WGA 

but did bind with UEA (Kaska et al.1988), and glycoproteins differed between 

morphologically distinct regions of the thallus. While this work did not analyze 

spore mucilage, glycoproteins (18-68 kD) from the holdfast bound with Con A 

and an18 kD glycoprotein bound to n-acetyl galactosamine specific SBA. If 

the glycoproteins were adhesive, then a-D-mannose, a-D-glucose and n

acetyl galactosamine may be adhesive sugar moieties in the holdfast of .P... 

perforata. 

The mucilage of .Q,_ parvula has a uniform appearance. However, it binds 

with lectins of different specificities, indicating a complex composition. This is 

in accordance with the findings of von Sengbusch and Muller (1983), who 

used lectin binding to demonstrate that many algal species with visually 

uniform sheaths or mucilage were composed of molecular mosaics and that 

variations were species-specific. Furthermore, lectin binding patterns varied 

between developmental states in some algae. von Sengbusch and Muller 

(1983) postulate that such variation is useful in intracellular communication 

and as a means for a cell to recognize "self and non self". 
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Histochemical Stains of Spore Mucilage and Rhlzoids 

In .c.. parvula, anchorage provided by the cellular rhizoids appears to be 

biochemically different from the initial attachment pad formed by the mucilage 

(Table 2.) Rhizoids of germinated spores stained for proteins; mucilage of 

ungerminated and germinated spores did not. The spore mucilage, and to a 

lesser extent the rhizoids, stained for ·sulfated and carboxylated 

polysaccharides. These polysaccharides may be the initial adhesive 

molecules. Protein anchors of rhizoids and cells of developing holdfasts (Fig. 

37) provide further evidence of the importance of proteins in adhesion. Both 

the spore and the rhizoids are cells surrounded by adhesive mucilage. 

However, the cytoplasm of the spore does not contact the substrate upon 

initial adhesion, whereas protein anchors of rhizoid and holdfast cells do 

contact the substrate. Spore mucilage and rhizoids are temporally and 

spatially separated, as the spore mucilage is present before the rhizoids are 

formed and the rhizoids have their own mucilage. 

It may be that small amounts of proteins and glycoproteins which were not 

detectable with fast green or coomassie blue acted within a matrix of 

polysaccharides to facilitate adhesion. The extracellular mucilage of 

forpbyrjdium cruentum consists largely of polysaccharide, but 1-2 % of the 

mucilage is protein covalently linked to the polysaccharide (Heaney-Kieras 

1977). In three red algal species, Diannelidis and Kristen (1988) found that 

alcian blue stained the mucilage while coomassie blue did not. It is possible 

that protein-polysaccharide bonds or heavily glycosylated proteins obscured 
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the binding sites of the protein stains (Chamberlain and Evans 1981, 

Oiannelidis and Kristen 1988). If proteins are indeed present in the mucilage, 

then rhizoid and mucilage adhesive composition may be more similar than 

suggested by histochemical stains. Because rhizoids and not mucilage 

stained with fast green and coomassie blue, proteins may be present in 

greater quantity in the rhizoids than in the mucilage. Another possibility is that 

proteins are not present in the mucilage but appear with the rhizoids upon 

germination when they participate in adhesion. · · 

With PAS, the mucilage did not stain but the rhizoids did stain. It may be 

that the sulfated mucilage did not stain with PAS because sulfation blocks the 

relevant hydroxyl groups necessary for periodate oxidation (Gordon and 

McCandless 1973). Positive staining of the rhizoid with Heath's stains and 

with some of the alcian blue stains is evidence that the rhizoids do have 

sulfated polysaccharides. PAS staining was not blocked in the rhizoids. 

Sulfated polysaccharides of the mucilage would probably not have blocked 

PAS staining. Therefore, neutral polysaccharides would not be found in the 

mucilage. This is similar to the findings of Diannelidis and Kristen (1988), in 

which the mucilage of Hypnea muscjformjs did not stain with PAS but the cell 

walls did stain. 

Alcian blue at pH 0.5, 1.0, or 2.5 stained spores but was also effective at 

detaching them. While low pH will detach spores, it may be that alcian blue 

detaches spores by binding with adhesive sulfated polysaccharides. Alcian 

blue also stained holdfast remnants and spore sockets following exposure to 

a-amylase or protease. Positive alcian blue stain, spore detachment with 
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sulfatase, and inhibition of sulfation and spore attachment with molybdate all 

implicate sulfated polysaccharides as adhesive molecules or as molecules 

that form connections with adhesive molecules that are necessary for 

adhesion 

Proteins and polysaccharides appear to play a role in adhesion of ~ 

g,arvula, but in Ceramium polysaccharides and not proteins are thought to be 

adhesive (Chamberlain and Evans 1981 ). The mucilage of unreleased 

,eeramjum spores stained for polysaccharides and proteins; after spore 

release, polysaccharides but not proteins were detected in the mucilage. 

Chamberlain and Evans (1981) concluded that the lack of staining for proteins 

after spore release may be caused by 1) dilution of the proteins in seawater, 

2) unavailability of the now cross-linked proteins, 3) artifacts of staining, or 4) 

absence of proteins. Agents that disrupt protein bonds did not detach 

Ceramium spores or did so to only a limited extent, whereas disruption of 

polysaccharides led to detachment of spores. Perhaps proteins of Ceramjum 

spores play a non-adhesive role or are involved in initiating adhesion but not 

in maintenance of adhesion. · Diffe·rential staining suggesting variation in 

adhesives has also been found within the stalk of the euglenoid flagellate 

Colacium (Willey and Giancarlo 1986) and in the green alga ~ mutabilis, 

where staining differed between the zygote and rhizoids (Braten 1975). 

The fibrillar component of algal cell walls is generally cellulose but can be 

xylan or mannan (Diannelidis and Kristen 1988). The composition of 

reproductive and vegetative cell walls sometimes differs, as in Antjthamnion 

.Di.pponicum. in which the vegetative cells but not the spermatia were labelled 
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with Calcofluor white (Kim and Fritz 1993a). While ~ parvula spore, rhizoid, 

and branch cell walls stain for cellulose with H2S04-IKI and Biofluor white, it 

is as yet unknown whether spermatia contain cellulose. Such information 

would be useful in determining the similarities between gametes, spores, and 

other reproductive structures in C.. paryula. 

Enzymatic Analysis of Adhesion 

Enzyme, FITC-lectin, and stain data suggest that the mucilage of .C... 

Qarvula is composed of a variety of molecules and that adhesion is mediated 

by more than one class of molecule. A variety of enzymes were effective in 

detaching spores (Table 3). 

Proteins are instrumental in the maintenance of spore adhesion and their 

role in adhesion may include interactions with polysaccharides. Following 

exposure to protease or trypsin, spores detached from plastic cover slips only 

after 24 h of shaking. The adhesive was weakened but did not fail until an 

outside force was applied. This implies that spores have a means of 

attachment in addition to proteins. After shaking, spore sockets which stained 

for sulfated polysaccharides with alcian blue were left behind. Proteins may 

connect the spore with the mucilage or act as bridges between adhesive 

molecules contacting the substrate and the spore. 

Proteins and polysaccharides play adhesive roles in other species of 

algae. The Ceramjum adhesive often fails at the cell-adhesive interface 

(Chamberlain and Evans 1981 ). When the crustose coralline red alga, 
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f,twmatoljthon !aevjgatum, was removed from glass slides (Walker and Moss 

1g84) an inner circle which stained darkly with PAS was left behind. Loosely 

attached 3.5 h old Eucus zygotes detached from slides when shaken and left 

behind sticky rings which may contain the known mucilage components, 

alginate and fucan (Vreeland et al. 1993). In Colacium. cells were digested by 

pronase and trypsin but adhesive discs and stalks were left intact and stained 

with alcian blue (Willey and Giancarlo 1986). All of the above examples point 

to resistant adhesive discs in the algae. 

Spores of Q.. paryula resisted detachment in sulfatase. This may be 

because: 1) sulfated polysaccharides in the mucilage were so abundant that 

the enzyme could not act upon enough of them to cause detachment, or 2) 

sulfated polysaccharides adhered to the substrate and were inaccessible to 

sulfatase. Sulfatase treated spores did detach at the mucilage-substrate 

interface, implying that sulfatase broke the contact at the outer edge of the 

mucilage-substrate interface. Spores were less resistant to (3-galactosidase, 

which may have acted on the galactose portion of. a sulfated galactan. Limpets 

graze on Gelidium ~- (Stephenson and Stephenson 1972), and the sulfatase 

used in this work was purified from the limpet Patella yulgata. Perhaps grazing 

limpets dissolve or digest red algae with sulfatase and red algae have 

evolved a resistance to sulfatase. 

Hyaluronidase cleaves sulfated polysaccharide chains (Morse and Morse 

1991) and binds with glycoproteins to render ruthenium red staining 

impossible (Trelease 1980). It was effective in detaching spores of ~ parvula, 

possibly by disrupting sulfated polysaccharides or by binding with adhesive 
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proteins glycosylated with sulfated polysaccharide chains. Zygotes, but not 

rhizoids, of 1Jbra mutabilis detached in hyaluronidase (Braten 1975). 

Spores of~- parvula detached in mannosidase, a-amylase, and cellulase. 

Detachment of spores in mannosidase, spore mucilage fluoresced with a-D

mannose/a-0-glucose specific FITC-Con A, and Con A inhibited attachment 

of spores. This is evidence that a-0-mannose is present in the mucilage and 

necessary for adhesion and adhesion maintenance. Kim and Fritz (1993b) 

have found that a-D-methyl-mannose is necessary for sperm-trichogyne 

binding in Antithamnion nipponicum. Although spores detached at the 

mucilage - substrate interface in a-amylase,.rhizoids and spores but not 

spore mucilage stained with IKI for starch. Starch appears to play a role in 

maintaining spore adhesion in an as yet unknown manner. Zoospores of the 

green alga Enteromorpha had reduced adhesion in the presence of a

amylase (Christie et al. 1970). In cellulase, spores detached completely 

without being shaken and left no remainders on the cover slips. It is likely that 

cellulase degraded the cellulose in the cell walls, facilitating detachment. In 

Gracjlarja lemanaeformjs, cellulase produced microcracks in the external 

thallus wall and collapsed the internal cell walls (San Martin et al. 1988). A 

mixture of enzymes from digestive tracts of the sea snail Littorina littorea and 

cellulase was used to degrade the thallus sheath and cell walls of Porphyra 

leucosticta (Chen 1987). 
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spore Adhesion Initiation and Adhesion Maintenance 

Spore Adhesion using Cycloheximide 

Tetraspore adhesion in .C.. parvula was inhibited in the presence of 0.25 µI 

cycloheximide per ml seawater (Fig. 42) which inhibits protein synthesis by 

inhibiting translation on cytoplasmic ribosomes (Soderhall and Cerenius 

1983).thereby limiting the supply of new proteins. Proteins play a role in 

adhesion within 24 h of tetraspore release, the length of the incubation in 

cycloheximde. Adhesive proteins appear to be synthesized de novo after 

tetraspore release, which is when the cycloheximide contacted them to inhibit 

protein synthesis. This differs from Djctyosteljum, where gene expression, 

early synthesis and storage of proteins which coat tetraspores occurs well in 

advance of use of the proteins (Fosnaugh and Loomis 1993). 

If adhesive proteins had been present upon tetraspore release, adhesion 

probably would still have occurred because the cycloheximide would not have 

disrupted extant proteins. Another possibility is that cycloheximide would not 

inhibit adhesion if an adhesive protein was synthesized in advance and 

ubiquinated upon or prior to spore adhesion. Ubiquitin is a regulatory protein 

that complexes with other cellular proteins and is found in all eukaryotic cells. 

One ubiquitinated protein became more abundant during gamete induction in 

Cblamydomonas in the presence of cycloheximide (Shimogawara and Muto 

1991 ). 
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The vital stains neutral red and cresyl blue can enter red algal spores and 

leave the mucilage unaffected, which shows that the mucilage does not 

prevent substances from diffusing in and out of red algal spores (Boney 1975). 

This suggests that cycloheximide can diffuse into the cytoplasm of ~ parvula 

tetraspores, as does the resultant reduced adhesion in the presence of 

cycloheximide. 

Protein synthesis was also shown to play a role in the settlement of Haljotjs 

rutescens larvae. Settlement occurred in the presence of cycloheximide but 

did not occur in the presence of two other protein synthesis inhibitors, emetine 

and anisomycin (Fenteany and Morse 1993), which by virtue of their lipophilic 

structure may have been better able to diffuse into larval tissues. 

Spore adhesion using Tunicamycin 

Adhesion decreased in newly released, free floating tetraspores when 

glycoprotein synthesis was inhibited with 0.5 µg tunicamycin per ml seawater 

(Fig. 43). Glycoproteins play a role in adhesion within 24 h of spore release, 

the length of the incubation in tunicamycin. Glycoproteins must be synthesized 

de novo after tetraspore release for adhesion to occur, which is when the 

tunicamycin was in contact with the tetraspores. If the glycoproteins had been 

synthesized before tunicamycin contact, the tetraspores probably would have 

adhered because tunicamycin would not have disrupted extant glycoproteins. 

Tunicamycin is a competitive inhibitor of UDP-N-acetylglucosamine-1-P

transferase mediated asparagine-linked glycosylation (Dutcher and Gibbons 

1988). Asparagine linked glycosylation appears to be necessary for adhesion 
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in .C... garvula tetraspores, and it is perhaps this step in glycoprotein synthesis 

which occurs after tetraspore release. Proteins to be glycosylated must be 

present and able to be glycosylated after tetraspore release, but they would 

not necessarily need to be synthesized after tetraspore release, although 

cyctoheximide inhibition of protein synthesis shows that this is probably the 

case. The desmid Closterium has a glycoprotein which is involved in and 

synthesized prior to gamete release (Sekimoto and Fujii 1992), as shown by 

the addition of inhibitors of metabolism before release which then blocked 

subsequent gamete release . .C... parvula appears to differ from Closterjum in 

synthesizing its adhesive glycoproteins after tetraspore release. 

Although the rhizoids and not the mucilage stained for proteins, spores can 

attach with their mucilage before germination and appearance of the rhizoids. 

Cycloheximide and tunicamycin interfered with attachment in tetraspores that 

had not yet formed rhizoids, therefore proteins and glycoproteins play an 

adhesive role in the mucilage. If rhizoidal proteins were the sole adhesive 

proteins, then cycloheximide and tunicamycin would have blocked adhesion 

only when the rhizoids appeared. 

Spore Adhesion using Sodium Molybdate 

Tetraspore adhesion in .Q.. paryula was inhibited by the presence of 

sodium molybdate (Fig. 44). This is evidence that sulfation of polysaccharides 

is necessary within 24 h of tetraspore release for tetraspores to adhere. 

Tetraspores do not appear to have a sufficient store of sulfated 

Polysaccharides before release, or they would be able to adhere in the 

95 



presence of molybdate. Tetraspores given molybdate in 1 ml GP2 per ml 

deionized water were red and did not stain with trypan blue, implying viability. 

Although molybdate did not cause tetraspore color change or spore death, it 

appears that it did enter the cytoplasm because tetraspore adhesion was 

reduced in its presence. 

Spore Adhesion using Con A 

In the presence of Con A, attachment of tetraspores of ~ parvula was 

reduced (Fig. 45). As this lectin is a-0-mannose or a-0-glucose specific; it is 

possible that these sugars incorporated into glycoproteins are adhesive 

molecules. However, one must not overlook the possibility that Con A 

inhibited adhesion by altering a cellular function that was necessary for 

adhesion, as opposed to interfering with the actual adhesive. The inhibition of 

tetraspore adhesion by both Con A and tunicamycin points to glycoproteins as 

adhesive molecules with a-0-mannose and/or a-0-glucose sugar haptens. 

The sugars may contact the substrate and anchor the adhesive glycoproteins. 

In other organisms, a-0-mannose and/or a-0-glucose have been found to be 

necessary in reproduction and morphogenesis (Kirchman 1982; Kim and Fritz 

1993b; Sawayama et. al. 1993; Kwon and Epstein 1993). Antjthamnion 

nipponjcum bases sperm-trichogyne recognition on an interaction between 

surface carbohydrates and receptors on the gametes. This recognition was 

inhibited by Con A, which blocked spermatial binding to trichogynes, and by 

the corresponding carbohydrate, a-0-methyl mannose, which blocked 

trichogyne receptors (Kim and Fritz 1993b). In the dinoflagellate Alexandrjum 

~enella.. Con A and tunicamycin inhibited sexual attachment in gamete pairs 
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and the addition of a-0-mannose or a-0-glucose overcame inhibition by Con 

A to indicate these sugars as components of cellular agglutinins (Sawayama 

et al. 1993). Con A inhibited larval settlement and subsequent 

metamorphosis in the marine polychaete Janua (Dexjospjra) brasiliensjs 

(Kirchman 1982). Macroconidial adhesion of the plant pathogenic fungus, 

Nectrja baematococca, was blocked by Con A (Kwon and Epstein 1993). 

such inhibition is not limited to Con A. Fusion between male and female 

gametes of the brown alga, Ectocarpus siliculosus, was inhibited when WGA, 

a lectin from Trjticum yulgaris. was added to female gametes or when the 

complementary sugar, N-acetylglucosamine was added to male gametes 

(Schmid 1993). 

Spore Adhesion - Viability 

Tetraspores of .Q.. parvula must be alive in order to attach. Tetraspores 

killed with 0.01 % sodium azide did not attach. Sodium azide interferes with 

mitochondria but leaves the rest of the tetraspore relatively intact and does not 

disrupt the mucilage. Therefore, we know that tetraspore adhesion is an active 

process and does not rely solely on inherent stickiness of the mucilage. 

In a multicellular organism, most cells are either attached to other cells 

within the organism or to a cellular or noncellular substrate (Galkina et al. 

1992). Detection of substrata by attaching organisms is an area that deserves 

further exploration (Wigglesworth-Cooksey and Cooksey 1992). Spores may 

derive germination cues from the substrate. An as yet unknown molecular 

messenger may translate information about the substrate into adhesive 
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synthesis and subsequent spore germination. Polarity of rhizome emergence 

would be influenced by such a signal, as the rhizoids always germinate 

downward between the spore and the substrate. .Q... parvula spores sink 

through water to attach to a substrate; developmental signals to germinate 

may be cessation of sinking or a tactile response to contact with the substrate. 

Spores will attach to and germinate on tetrasporophytes and 

gametophytes. This implies that there is no antagonism between spore 

adhesives and the mucilage surrounding the branches of the adult plants. 

Adjacent cells within a .Q... paryula plant do not germinate, so they do not 

derive germination cues from adjacent cells. When C.. parvula branches come 

into contact with a substrate, they will produce rhizoids to form a holdfast. 

Therefore, the branch can perceive a cue from the substrate. 

Spore Detachment 

Tetraspores did not detach in the presence.of cycloheximide, tunicamycin, 

molybdate, or Con A. Therefore, continued synthesis of proteins, 

glycoproteins, and sulfated polysaccharides are not necessary for adhesion 

maintainence. Synthesis inhibitors could not disrupt previously synthesized 

molecules that were already in place as adhesives. Alpha-D-mannose and/or 

a-D-glucose would not be available for binding with Con A if they were 

adhering to the substrate; therefore Con A was not effective in detaching 

tetraspores. The adhesive disc did not detach without physical disruption by 

scraping or chemical disruption with the acids H2S04 and HCI or with 

enzyme exposure. Tetraspore viability is also not necessary for adhesion 
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maintainence, as attached tetraspores killed with 0.01 % sodium azide or by 

immersion for 2 months in DIH20 did not detach. 

When treated with enzymes, spores sometimes detached and left behind 

the adhesive disc or remnants thereof. This implies that once the spore has 

adhered and the adhesive is firmly attached to the substrate, the adhesive 

may be inert and independent of the spore. Enteromorpha jntestjnaljs 

zoospores which had settled for more than 5-1 O min did not contain 

•settlement vesicles" whereas swimming, (pre-settlement) spores did have 

these vesicles (Christie et al. 1970). When inhibitors of trypsin were added to 

spores which were already in the presence of trypsin, no increase in the 

number of settled spores was seen when the inhibitors were added later than 

5-10 min.after settlement. This suggests that adhesive synthesis occurs within 

minutes of settlement. Synthesis of sulfated polysaccharides is necessary for 

adhesion maintenance (Bingham and Schiff 1979) in Prasiola stjpjtata 

(Chlorophyta), in which the presence of molybdate led to cell detachment but 

was partially reduced by the addition of sulfate. It appears that in ~ parvula. 

synthesis of the adhesive occurs after tetraspore release and diminishes after 

adhesion, as synthesis inhibitors did not cause detachment. 

Spore sockets are formed when the spore detaches but leaves behind its 

adhesive material. Spore sockets can occur naturally when spores detach 

with no chemical treatment (Dworetsky 1983). Spore sockets may also result 

When the adhesive fails at the spore-mucilage interface. The adhesive

substrate interface may be maintained by interatomic forces (Chamberlain 

and Evans 1981 ). Such forces would explain why adhesive discs, or spore 
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sockets, can remain on the substrate after the spore is detached. Because the 

adhesive remains attached to the substrate, the adhesive is probably 

independent of the spore. This may allow the spore to remain attached to the 

substrate when it is no longer alive. One possibility is that remnants of the 

adhesive provide an attachment point for future spores of ~. parvula. 

Summary 

Inhibition of protein synthesis with cycloheximide, of glycoprotein synthesis 

with tunicamycin, of polysaccharide sulfation with molybdate, and binding of 

con A to a-D-mannose or a-D-glucose resulted in reduced tetraspore 

adhesion without cell death. The biosynthesis inhibitors and Con A were 

added to tetraspores immediately after tetraspore release, therefore adhesion 

probably relies on synthesis of proteins, glycoproteins, and sulfated 

polysaccharides and on the availability of a-D-mannose or a-D-glucose after 

release but before adhesion. If the inhibitors had not blocked adhesion, then 

adhesive molecules could be synthesized before tetraspore release. 

Adhesion of ~ parvula spores requires proteins, glycoproteins, sulfated 

polysaccharides, and a-0-mannose or a-0-glucose, which may be sugar 

moieties of adhesive glycoproteins. These classes of molecules may interact 

in as yet unknown ways to mediate spore attachment. Possible means of 

interaction include: 1) cross-linking of proteins and glycoproteins with 

polysaccharides, 2) embedding of proteins and glycoproteins in a matrix of 

sulfated polysaccharides, and 3) interpretation of and attachment to the 

substrate by a-0-mannose and a-0-glucose or other sugar moieties of 
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glycoproteins. These proposed means of interaction are not necessarily 

mutually exclusive. 

Further Investigations 

Fucoidan (F2) is a highly sulfated fucan glycoprotein (Wagner et al. 1992) 

which must be sulfated for the rhizoids of Eucus embryos to adhere (Crayton 

et al. 1974; Brawley and Robinson 1985; Kropf et al. 1989). F2 sulfation may 

be necessary for F2 to associate and co-localize in the rhizoid tip with Vn-F, a 

vitronectin-like glycoprotein (Wagner et al. 1992) and this co-localization may 

be reflected in the changes in the cell surface of Fucus zygotes and rhizoids 

as detected with FITC-lectins by Costas et al. (1994). The next question is 

whether sulfated or vitronectin-like glycoproteins are involved in .C... parvula 

rhizoid adhesion as they are in Fucus. While sulfation of polysaccharides and 

glycoprotein synthesis are important for~ parvula spore adhesion, it is not yet 

known whether sulfated glycoproteins are present and if so, adhesive. The 

rhizoids of germinated spores have 1) mucilage with sulfated polysaccharides 

and 2) anchor proteins. Further · investigation may reveal an F2/Vn-F 

localization type of system in the rhizoids that is involved in anchoring rhizoids 

and securing spores to the substrate. Mechanisms of interactions between 

adhesive molecules await exploration. 
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APPENDIX 1. PROTEINS IN THE LIFE CYCLE OF CHAMPIA 

PARVULA 

ABSTRACT 

Champja parvula, an intertidal marine red alga, was analyzed for proteins 

specific to stages in its life cycle. Electrophoresis did not reveal any changes 

in the proteins between male and female gametophytes, tetrasporophytes, 

and tetrasporophytic holdfasts. Unique proteins were not found in tetraspores. 

Glycoproteins were demonstrated in all phases of the life cycle with 

coomassie blue-silver dual staining of gels. It was concluded that shifts of 

proteins within the .C... parvula life cycle were not detectable with the methods 

used. Stage-specific proteins may exist in quantities that are too small to be 

detected with one and two dimensional electrophoresis. 
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INTRODUCTION 

The life cycle of Champja paryula. a temperate or tropical intertidal marine 

red alga (Taylor 1957), alternates isomorphic haploid and diploid generations 

which are connected by spores. When spermatia from the male gametophytes 

fertilize the carpogonia of the female gametophytes, carposporophytes form 

on the female gametophyte. The carposporophytes produce carpospores 

inside cystocarps. Upon germination, the carpospores form tetrasporophytes. 

These thalli undergo meiosis and create tetraspores, that germinate into male 

and female gametophytes, thereby completing the life cycle. In changing from 

one life cycle phase to the next, this alga undergoes morphological change. It 

is possible that there may be ecological or biochemical differences between 

the .Q.. parvula life cycle phases as well, as such differences have been found 

between isomorphic stages of the marine red alga lrjdaea lamjnarjojdes 

(Luxuro and Santelices 1989). Are the changes between life cycle stages 

accompanied by corresponding changes in the proteins or glycoproteins 

present in each life cycle stage of this alga? SDS PAGE electrophoresis and 

dual staining of the resultant gels with coomassie blue and silver were used to 

determine whether or not protein or glycoprotein change occurs between life 

cycle phases in this marine red alga. 

Proteins and Glycoprotelns In Algal Life Cycles 

There is evidence to suggest that protein and glycoprotein composition 

may change within the life cycle of an alga. Glycoproteins of Porphyra 
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~rtorata. a marine red alga, were found to differ in male and female 

reproductive tissue and in morphologically and functionally distinct regions of 

the thallus (Kaska et al. 1988). Even though Porphyra blades appear to be 

simple they are morphologically and physiologically complex. Isolates of cells 

from functionally different areas of the blade regenerated to form different thalli 

(Polne-Fuller and Gibor 1984). Proteins from cuticles of Chondrus crispus 

tetrasporophytes were not the same as those from male and female 

gametophytes (Craigie 1992). Synthesis of a few specific proteins was found 

to change during early embryogenesis in Fucus sp., a brown alga (Kropf et al. 

1989b). In Fucus serratus, monoclonal antibodies were used to show that 

glycoproteins on the egg surface are organized by differing composition and 

size (Stafford et al. 1993). 

Black (1949) found seasonal fluctuations in the protein levels of Fucus sp., 

and Pelvetia canaliculta. Seasonal increases in Euchema nudum protein 

quantity were more closely related to growth or reproductive stages of the alga 

than to environment (Dawes 1981 ). Amino acid composition changes during 

cyst formation, storage and subsequent germination in the dinoflagellate 

Scrjppsiella trochoidea (Lirdwitayaprasit et al. 1990). Haemagglutination, 

possibly caused by lectins (which are proteins or glycoproteins), differs 

between tetrasporophytic and cystocarpic plants of Chylocladja yertjcillata 

(Rogers et al. 1980). Therefore, it appears possible that .C.... parvula has 

temporal and stage-specific protein variation. 

Algae may have proteins or glycoproteins that are unique to and involved 

in spore adhesion or reproductive events. Spores may carry only those 

141 



proteins or glycoproteins necessary to insure their attachment, germination, 

and viability. In spermatial vesicles and on the outer spermatangial surface, a 

glycoprotein with a-D-methyl mannose residues accumulates and is involved 

in sperm-trichogyne recognition in Antithamnjon nipponicum (Kim and Fritz 

1993b). Gametes and zoospores of~ mutabilis were found to have a 51 .4 

kDa protein that may represent tubulin (Guliksen et al. 1982). Ubiquitin is a 

protein found in all eukaryotic cells that conjugates with other proteins to 

regulate cellular processes such as development and differentiation. The 28 

kDa ubiquinated protein level was elevated during gamete induction in 

Chlamydomonas while other ubiquinated protein levels decreased or 

remained the same (Shimogawara and Muto 1991 ). A glycoprotein induces 

the release of gametic protoplasts of the Closterjum peracerosum-strjgosum

littorale complex and its activity can be inhibited by metabolism inhibitors 

applied before the gametic protoplast release stage (Sekimoto and Fujii 

1992). 

Biochemical changes between cell cycle phases may alter cell surface 

characteristics, and in unicellular -chlorella yulgaris. adhesion varies at 

different points throughout the cell cycle, with maximum adhesion in the G2 

period of interphase (Zaidi and Tosteson 1972). A proteinaceous adhesive or 

synthesis of an adhesive may reflect protein change in the cell cycle 

(Tosteson and Corpe 1975). 
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Change In Proteins and mRNAs of Angiosperms 

Proteins and their mRNAs can have spatial and temporal variation in 

expression. For example, Sterk et al. (1991) found cell-specific gene 

expression of the carrot EP2 lipid transfer protein. With protein gel blots EP2 

protein was found in cell walls and conditioned cell culture medium, and with 

RNA gel blots EP2 gene expression was found in embryogenic cell cultures, 

seedling shoot apices, developing flowers, and maturing seeds. In situ 

hybridization detected EP2 gene expression in somatic and zygotic embryo 

protoderm cells, and transient expression in leaf primordia epidermal cells 

and flower organs. In seeds of maize, lipid transfer protein mRNAs 

accumulated during both seed maturation and germination, and L TP mRNAs 

and most of the lipid transfer protein were localized in the outer epidermis of 

the coleoptile (Sossountov et al. 1991 ). 

Change In Proteins and Glycoproteins During Life Cycles of 

Animals 

Life cycle stage specific proteins and glycoproteins have been found in 

animals. The penaeid shrimp, Penaeus semisulcatus, was injected with 355 -

methionine through the thoracic cuticle in attempts to determine the fates of 

the lipoglycoprotein vitellin (Vt) of the oocyte cytoplasm, and the vitellin

immunoidentical protein vitellogenin (Vg) which is female-specific. 24 h after 

injection, free-labeled methionine remained in the hemolymph, ovary and 

hepatopancreas. This indicates that the shrimp had high endogeneous levels 
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of methionine which competed with 35S-methionine labeling of proteins 

(Shafir et al. 1992). 

Change in Proteins of Dlctyostellum 

Three major proteins compose the extracellular spore coat of Dictyostelium 

giscoideum. Synthesis of these proteins is temporally and cell type specific, as 

it occurs in prespore cells shortly after aggregation. Spore coat proteins are 

stored in pre-spore vesicles during the slug stage, and finally secreted during 

spore encapsulation (Fosnaugh and Loomis 1993). 

Cell Differentiation and Gene Expression 

Swimming cells differentiate into swarmer cells upon surface contact in the 

bacterium Vibrio parahaemolyticus. Signals from the substrate must be 

detected by sensors which then control expression of specific genes 

(Mccarter et al. 1992). Using laf:lux reporter gene fusions, Mccarter et al. 

(1992) detected luminescence when the cell differentiation genes were 

activated upon swarmer cell surface contact, demonstrating that differentiation 

involves activation of specific genes. Bacteria associated with surfaces may 

have different phenotypes than aqueous bacterial inhabitants because 

contact with the surface may be instrumental in switching certain genes on or 

off. 

In Porphyra tenera, polysaccharides and proteins differed between the 

thallus and conchocelis phases. The major amino acid of the conchocelis 
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phase is aspartic acid and in the thallus phase the major amino acids are 

glycine and alanine (Mukai et al. 1981 ). Amino acids are more acidic in the 

conchocelis. These biochemical differences may reflect different gene 

expression between the two life forms. 

Studies of protein change during life cycles are valuable because changes 

in proteins signify the onset of developmental events. 
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MATERIALS AND METHODS 

Culture 

Qhampia parvula was obtained from the Environmental Protection Agency 

and Science Applications International Corporation in Narragansett, Rhode 

Island. Champia parvula was cultured in Percival Growth Chambers at 20° C 

with 75 microeinsteins illuminated from above and below on a 16:8 light-dark 

regime in aerated 500-1000 ml flasks of filtered, autoclaved (20 min, 121° C) 

seawater, with 1 ml GP2 growth medium per 100 ml seawater added after 

autoclaving. GP2 consists of 6.35 g sodium nitrate, 0.64 g sodium phosphate, 

133 mg EDTA, 51 mg sodium citrate, 9.75 mg iron, and 10 ml vitamin solution 

(2.0 g thiamine-HCI, 1.0 mg biotin, 1.0 mg 812 in 100 ml DIH20) in 1 I DIH20 

(Thursby and Steele1986). Nutrients and seawater were changed weekly and 

excess algae discarded. Flasks were acid washed or washed with RBS 35. 

Phases of ·the Life Cycle 

Carpospores developed after female gametophytes were fertilized by male 

gametophytes. The carpospores germinated and produced tetrasporophytes 

which underwent meiosis and produced tetraspores, which then germinated 

and developed into male and female gametophytes. 
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Electrophoresis • Protein Analysis 

EXTRACTION. Each life cycle stage of Champja parvula was harvested 

immediately before protein extraction. 0.2 g samples (fresh weight, blotted dry) 

were placed in pre-chilled mortar and pestles filled with liquid nitrogen. After 

the liquid nitrogen boiled away, the frozen algae was ground to a powder and 

kept on ice. To each sample, 1.0 ml of protein extraction buffer consisting of 

0.121 g Tris, 0.5 ml Triton X-100, 0.5 g SDS and 1.0 ml J}-mercaptoethanol in 

100 ml DIH20 (Kropf et al. 1989b), with protease inhibitors (3.5 mg 

phenylmethylsulfonylfluoride, PMSF, 7.0 mg N-tosyl-L

phenylalaninechloromethyl ketone,TPCK, and 2.5 mg N-ethyl maleimide) 

dissolved in 20 ml of buffer used in each extraction was added. After further 

grinding and upon thawing, 1 ml of protein extraction buffer was added. The 

extract was centrifuged at 10,000 rpm, 1 O min, and the supernatant transferred 

to another centrifuge tube where 3-5 volumes of 4° C acetone were added, 

vortexed, and centrifuged at 10,000 rpm 1 O min. The acetone was removed, 

fresh acetone added, and centrifugation repeated (Kropf et al. 1989a,b ) until 

a pink pellet formed, which wa:s homogenized and dissolved in SDS sample 

buffer and stored at -80° C. 

ANALYSIS. Lowry protein determination (Lowry et al. 1951) yielded 

protein concentration in µg/µI and was used to calculate sample volumes for 

electrophoresis. 10% SDS 1.5 mm polyacrylamide1-D gels (Laemmli 1970) 

were stained with 0.1 % coomassie brilliant blue or dual stained with 0.1 % 

coomassie and silver (De Moreno et al. 1985) to detect modified proteins 

(Dzandu et al. 1984). Molecular weights were determined using Sigma 
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molecular weight standards (kOa range) and the gels were dried in a Hoefer 

"Easy Breeze" gel drier and photographed. Alternatively, Champja parvula 

was labeled with 1 µci/ml seawater 35S-Methionine or 14C-L-amino acid 

mixture (NEN) for 2 - 4 hours and the labeled proteins underwent SOS PAGE 

electrophoresis or were isoelectrically focused (O'Farrell 1975) with 20,000 or 

40,000 cpm in each lane or tube gel. 

RESULTS , 

When protein samples from male and female gametophytes and 

tetrasporophytes were compared with SOS-PAGE electrophoresis, proteins 

were not demonstrated to change between stages of the life cycle. Fig. 1. is a 

gel stained with coomassie blue and Fig. 2 is a coomassie blue and silver 

dual stained gel of comparisons between stages.of the life cycle. In Fig. 2, 

there is a protein of approximately 53 kOa in the tetrasporophytic tissue that 

appears as a thinner and more pale band in the male and female tissue. 

However, this is the only gel that showed this difference in concentration in the 

53 kOa protein. SOS-PAGE electrophoresis and subsequent coomassie-silver 

dual staining of basal portions of free floating tetrasporophytes and male and 

female gametophytes did not reveal any differences between basal proteins 

and those from whole floating plants. 

Glycoproteins were detected with silver staining in tetrasporophytes and in 

male and female gametophytes (Fig. 2). Bands on dual stained gels that 

turned brown are modified proteins, those that stained blue are not modified. 
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The most prevalent glycoproteins were 20 kDa, densely stained, thick 

bands.(Figs. 1 and 2). 
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Plate 1. Fig. 1. Coomassie blue stained SOS polyacrylamide gel of protein 
extracted from male (lanes 1-3), female (lanes 4-5 and 7-8), and 
tetrasporophytic (lanes 9-12) tissue of .Q. paryula. Molecular weight standards 
are in lane 6. Fig. 2. Coomassie blue and silver dual stained SOS 
polyacrylamide gel of protein extracted from male (lanes 1-5), female (lanes 6 
and 8-11 ), and tetrasporophytic (lanes 12-15) tissue of ~ parvula. Molecular 
weight standards are in lane 7. Arrow indicates prevalent 20 kOa glycoprotein 
and double arrow indicates 53 kOa protein. 
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Discussion 

One dimensional gel electrophoresis was more effective than isoelectric 

focusing in this work because t~e protein content of .Q.. parvula is not sufficient 

to warrant the analysis of a single sample spread over an entire gel, as is 

required for isoelectric focusing. One dimensional gels were also more 

effective because samples from different stages of the life cycle could be 

directly compared within a single gel. 

In .Q.. parvula. 35s-methionine labeling was weak, possibly because of the 

high level of sulfation in the extracellular mucilage. Apparently, the 35 S

methionine was incorporated into the extracellular mucilage. 14C-L-amino 

acid mixture also resulted in low levels of labelling in ~ paryula. which 

resulted from most of the label going to the spiritoaquaeous fraction. This is 

similar to what occurred in the red algae Gracilaria and Ahnfeltia, in which 

super 14C-galactose and super 14C-sodium bicarbonate labelling resulted in 

the following distribution of label: 1) spiritoaquaeous fraction, 2) 

polysaccharides, 3) proteins, and 4) cellulose (Prozumenshchikova et al. 

1989). In Rhodella (Callow and Evans 1981) used 14C-arginine to study 

synthesis of the protein component of the solubilized mucilage of this 

unicellular red alga because it is the only amino acid that Rhodella will use as 

a nitrogen source; Rhodella was grown without inorganic nitrogen. The 

labelled arginine was detectable in solubilized mucilage after 9-1 O h. 

Methionine levels were higher in conchocelis phases of the red alga Porphyra 

lenera than in thallus phases (Mukai et al. 1981 ). Kropf et al. (1989b) did not 

meet with success in their attempts to label proteins of Eucus zygotes with the 
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radioactive amino acids 3H-leucine and 35S-methionine, 3H labeled amino 

acid mixtures, and Na235so4. Higher specific activity was achieved with 

Na214C03, although different proteins may have been labeled with 

carbonate than would have been with radioactive amino acids 

It would be interesting to study the protein composition of the spore and 

spore mucilage to determine if there are proteins unique to the spore stage of 

the life cycle. Such proteins could be involved in development or they could 

be related to spore adhesion, as the spores must attach before they can 

germinate to establish the next life cycle phase (Dworetsky 1983). However, it 

is difficult to obtain spores in sufficient numbers for electrophoresis. Callow 

and Evans (1981) used polyacrylamide gel disc electrophoresis to fractionate 

14C-L-arginine and 35S04 labelled Rhodella mucilage. The mucilage was 

recovered by freeze-drying and dissolving 0.2% mucilage in electrophoresis 

running buffer. The mucilage would not form a true solution so not all of the 

sample could enter the gel and be electrophoresced . .Q.... paryula spore 

mucilage may be obtainable by freeze drying if sufficient quantities of spores 

were available. Electrophoresis of spore mucilage would be instrumental in 

determining the composition of the mucilage. Callow and Evans (1981) 

stained the 2.5% acrylamide Rhodella mucilage gels with PAS or toluidine 

blue for polysaccharides, amide black for protein, or assessed 14C-arginine 

(for protein) and 3Sso4 (for polysaccharides) labelling results by scintillation 

counting. 

Electrophoresis did not reveal any consistent protein or glycoprotein 

differences between male, female, and tetrasporophytic plants. There were 

153 



also no protein or glycoprotein differences found between basal and branch 

proteins of free floating male, female, and tetrasporophytic plants. Because 

sos-PAGE electrophoresis reveals the 30-50 most common proteins, it could 

be that there are existing protein differences, but that the proteins differing 

between life cycle phases are not within the 30-50 most common. The most 

prevalent proteins in .C... parvula have a molecular weight of approximately 20 

kDa, which corresponds with the molecular weight of the phycobiliproteins, 

phycoerythrin, phycocyanin, and allophycocyanin (Gantt 1990). 

While this work did not reveal any stage-specific proteins, it did provide a 

profile of the molecular weights of proteins and glycoproteins that are the most 

abundant in .C... parvula. Although the same proteins and glycoproteins were 

found throughout the life cycle, the roles they play in completing the life cycle 

of Champia parvula have yet to be discovered. 
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APPENDIX 2. PROTOCOLS 

Culture 

1. Obtain excised branch tips of male and female gametophytes and filtered 

seawater from SAIC or the EPA in Narragansett, Rhode Island. 

2. Autoclave seawater 20 min at121° C. 

3. Wash 500 ml and 1 I Erlenmeyer flasks in Alconox, acid wash in1 :5 solution 

of HCl:DH20, and rinse with DIH20. Alternatively, culture flasks may be 

washed in RBS 35 and rinsed with DIH20. 

4. Add 300 ml seawater to 500 ml flask or 800 ml seawater to 1 I flask. 

5. Add GP2 nutrients (10ml GP2/I seawater) and algae. 

6. Cap flasks with foam stoppers and insert pipette between flask wall and 

stopper. Attach aeration tube to pipette at one end, and to aquarium pump at 

other end. 

7. Place cultures in growth chamber at 20° Con a 16:8 light dark regime with 

75 microeinsteins illuminated from above and below. 

8. Change flasks, nutrients, and seawater weekly. 

9. To obtain carpospores, place excised male and female gametophytic 

branches in same flask. 

10. Tetrasporophytes are obtained from germinated carpospores. 

11 . Tetraspores are produced by tetrasporophytes almost continuously and 

germinate into male and female gametophytes. 
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12. Collect spores by placing plastic cover slips in flasks as substrates for 

spore adhesion. Free floating spores can be collected by placing spore 

bearing algae in a petri dish with seawater for 5-1 O min with gentle agitation. 

CUL TURING RECIPES 

GP2 nutrient solution 

To 1 I DIH20 add and stir in this order: 

0.64 g sodium phosphate NaH2P04-H20 

133 mg sodium EDTA Na2EDTa.-2H20 

*9.75 mg iron FeHCI 

51 mg sodium citrate C5H5Na307-2H20 

6.35 g sodium nitrate NaN03 

*Place 9.75 mg iron powder in 25 ml graduated cylinder, add 2 ml HCI. Let sit 

20 min, until iron dissolves and mixture is yellow. Bring volume to 19.5 ml with 

DIH20. 

Autoclave 1 O min at 121° C liquids, let cool and .add 1 O ml/LFS GP2 vitamin 

stock solution. 

GP2 vitamin stock solution 

To 100 ml DIH20 add: 

2.0 g Thiamine HCI (81) C12H1aC12N40S 

1.0 mg Biotin C10H15N203S 

1.0 mg Cyanocobalamin (B12) C53HaaCoN14014P 

Place 10.0 ml aliquots in test tubes and autoclave. Bring to 121° C and drop 

temp gauge to 0° C. to stop incoming heat. 
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Spore Adhesion - Histochemistry 

Inhibitors: 

Spore Attachment 

1. Place 1 O ml seawater in 15 1 O X 1 O mm gridded plastic petri dishes. 

2. Obtain free floating spores by swirling a tetraspore bearing branch in the 

water and waiting 5 min. 

3. Count the free floating spores through a dissecting scope. 

4. To 5 dishes, add the inhibitor being tested. To 5 more, add 100 µI DMSO, 

and to the remaining 5 add nothing. 

5. Incubate 24 h under a hood.in the light. 

6. Decant liquid, fill and decant with 1 O ml seawater to rinse, fill with 5 ml new 

seawater, and count #spores/attached per dish. 

7. Compare # spores attached between experimental and control dishes. 

Spore Detachment 

1. Place 1 O ml seawater in 15 1 O X 1 O mm gridded plastic petri dishes. 

2. Put one plastic cover slip with attached spores in each dish. 

3. Count the spores through a dissecting scope. 

4. To five dishes, add the inhibitor being tested. To 5 more, add 100 µI DMSO, 

and to the remaining 5 add nothing. 

5. Incubate 24 h under a hood. 

6. Decant liquid and count #spores remaining attached per dish. 
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1. compare # spores remaining attached between experimental and control 

dishes. 

Trypan Blue: Prepare a 0.5% solution in seawater. Stir 20 min. Stain will not 

dissolve completely. 

Lectins: 

1. Mix 100 µg/ml FITC-lectin into OIH20 with 0.6 M sorbitol and 1 O mM CaCl2. 

2. Incubate attached algae in fluorophore lectin conjugate (FITC-lectin) 1 hr 

with rotation. 

3. Wash cover slips in OIH20. 

4. Resuspend in the sorbitol medium to observe with a Zeiss Universal 

epifluorescence microscope with mercury lamp illumination, a 436-520 nm 

filter, and a Nikon FX-35A camera. 

5. Concurrently with steps 1-4, preincubate FITC-lectins in 0.1 M competing 

monosaccharide with 0.2 M glucose, 0.4 M sorbitol, 1 O mM CaCl2 in OIH20 for 

15 min, then add to control attached algae in 0.6 M sorbitol, 10 mM CaCl2 in 

DIH20, and follow steps 2-4. Competing monosaccharides were: Con-A (a

methyl-0-mannoside), PNA (D-galactose), WGA (N-acetyl-0-glucosamine), 

SBA (0-galactose), UEA 1 (L-fucose), Phytolacca amerjcana agglutinin (0-

galactose) and Vicia villosa agglutinin (0-galactose). 

6. Photograph with Ektachrome 160 Tungsten or Vericolor 100. 

7. Screen out autofluorescence with a chlorophyll filter. 

Lectin Monosaccharide Specificity 
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Lectin 

~anavalia ensiformjs (Con-A) 

Idticum vulgaris (WGA) 

fhytolacca americana 

A@chis hypogaea (PNA) 

Glycjne max (SBA) 

yjcja yillosa 

Ulex europaeus (UEA 1) 

Stains: 

Monosaccharide 

a.-0-mannose > a.-0-glucose 

(d-glcNAc)2, Neu NAc 

(d-glcNAc)3 

J3-0-galactose(1-3)-0-ga1Nac 

0-galNAc 

0-galNAc 

a.-L-fucose . · 

Spores, germinated spores, and plants attached to cover slips were stained 

with the following and examined with a Zeiss light microscope: 

1. 0.5% alcian blue adjusted to pH 0.5 with N HCI stains sulfated 

polysaccharides aqua. Immerse attached algae in AB for 30 min and rinse 

with OIH20. 

2. 0.5% alcian yellow adjusted to pH 2.5 with N HCI stains carboxylated 

polysaccharides yellow. Immerse attached algae in AB pH 0.5, 30 min, rinse 

with DIH20. transfer to AV pH 2.5, 30- min and rinse in OIH20. 

3. 0.3% alcian blue pH1 .0 with 0.9 M MgCl2 stains sulfated polysaccharides 

aqua. Immerse algae in AB MgCL2 30 min and rinse with OIH20. 

4. 0.3% alcian blue pH 2.5 in 3.0% acetic acid stains sulfated and 

carboxylated polysaccharides aqua. Immerse algae in AB acetic acid 30 min 

and rinse with OIH20. 

5. 0.05% toluidine blue O pH 1.0 stains sulfated polysaccharides red-purple. 

Immerse algae 1 min and rinse with OIH20. 
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6. Periodic acid Schiff (PAS) stains neutral polysaccharides magenta. Fix 

attached algae 1 min in 5 ml formaldehyde, 45 ml 95% ethanol solution, rinse 

1 min in slowly running DH20. Immerse slides 5 min in periodic acid-schiff 

solution (1 g/dl in DIH20), rinse 1 min in slowly running DH20, and immerse 

15 min in Schiffs reagent. Wash 5 min in running DH20 and air dry. 

1. Coomassie blue stains proteins blue. Immerse algae 5 min and rinse with 

DIH20. 

a. Fast green stains protein green. Immerse algae 1 min or less and rinse with 

OIH20. 

9. IKI stains starch blue-black. Immerse algae 5-1 O min and rinse with DIH20. 

1 o. IKl-H2S04 stains cellulose blue. Immerse algae in IKI for 30 min, invert 

cover slip onto microscope slide and place a drop of 65% H2S04 under the 

cover slip to diffuse into the tissues in 1-2 min. Observe quickly without rinsing. 

11. Cellulose emits blue fluorescence when stained with Biofluor. Algae was 

cultured with 0.0025% Biofluor for 24 h and examined with fluorescence 

microscopy. 

12. Heath's Neutral Red, Heath's Methylene Blue and Heath's Toluidine Blue 

- immerse algae in stain 5 min, rinse,-and observe. 

Enzymes: 

1. Mix 1 mg/ml enzyme with DIH20, adjust pH. 

2. Mix 1 mg/ml enzyme with autoclaved seawater, adjust pH. 

3. Divide each solution into 4 aliquots, each in a 25 ml beaker. 

4. Place the same volume of DIH20 in 4 beakers, and the same volume of 

autoclaved seawater in 4 beakers. 

5. Add algae attached to cover slips and cover with Parafilm. 
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6. Incubate in 37° C oven for 1 h. 

1. If algae remains attached, continue incubation for 24 h total. 

s. Check under microscope for detachment. 

9. Place on shaker for 24 h. 

10. Examine under microscope for detachment and for any remaining algal 

structures. 

11. Stain with fast green, alcian blue, toluidine blue, or IKI to determine 

composition of any remainders. 

12. Photograph with Ektachrome T 160 or Vericolor Ill. 

Sources of Enzymes 

Enzyme Source 

Protease Bovine Pancreas, Streptomyces caespitosus 

Trypsin Bovine Pancreas 

Pepsin Porcine stomach mucosa 

Cellulase Aspergillus niger . 

a-amylase Barley Malt, Porcine Pancreas 

l}-galactosidase E.coli 

Hyaluronidase Bovine Testes 

cx-mannosidase Jack Beans 

Sulfatase Limpets (Patella vulgata) 

Polygalacturonase Aspergillus niger 

All enzymes were obtained from Sigma Chemical Company, St. Louis, MO. 
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Spore Adhesion • Anatomy 

SEM: 

1. Fix spores and germinated spores attached to plastic cover slips in 1.0% 

TEM grade gluteraldehyde in a seawater buffer overnight in refrigerator. 

2. Rinse 3X 30 min in filtered seawater in refrigerator. 

3. Place in 0.1 % Os04 for 3 h in refrigerator. 

4. Rinse 30 min in DH20. 

s. Dehydrate in ethanol series: 30% - 1 h, 50% - 1 h, 75% - 1 h, 95% - 1 h, 

100% - 2 overnights. 

6. Equilibrate at 30° C for 1.5 h. 

7. Dry in 1 :1 100% Ethanol:Pell-Dri at 30° C for 1 h, followed by 2 1 h changes 

in 100% Pell-dri. Place specimens with Pell-dri in refrigerator 5 min to solidify. 

8. Place under hood to sublimate Pell-dri. When sublimated, put samples in 

dessicator. 

9. Mount samples by cutting a strip of their substrate, attaching it to double 

stick tape, and fastening this to a mount. 

10. Attach double stick tape to mounted specimens, peel off, invert, and mount 

to expose bottoms of specimens. 

11. Coat with metal. 

11. View with a JEOL scanning electron microscope. 

12. Photograph with Polaroid 55 Positive/Negative film. 

13. Return samples to dessicator. 

Light microscopy: 

1. Culture as described above. 
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2. Collect free floating and attached spores. 

3. Place free floating spores in petri dish of seawater and examine under a 

dissecting microscope. 

4. Place a droplet of seawater with spores on microscope slide and examine 

under a Zeiss compound microscope. 

5. Place cover slip with attached spores on microscope slide, add a drop of 

seawater, and examine under a compound microscope, or invert cover slip to 

examine basal part of attachment structures. 

Electrophoresis - Protein Analysis 

Protein Extraction: 

1. Pre-chill mortars and pestles at -20° C. 

2. Dissolve protease inhibitors in 20 ml extraction buffer (45 min). 

3. Harvest 0.2 g of each life cycle stage to be sampled just before protein 

extraction and place in mortars and pestles. 

4. Add liquid nitrogen and keep samples on ice . . 

5. When liquid nitrogen has boiled away, grind samples to a powder. 

6. Add 1.0 ml extraction buffer to each sample and continue grinding. 

7. Upon thawing, add 1.0 ml extraction buffer to sample and transfer the 

mixture to centrifuge tube. 

8. Centrifuge 1 O min at 10,000 rpm. 

9. Transfer supernatant to another centrifuge tube. 

10. Add 4° C acetone to within 2 cm of tube's top and vortex. 

11. Centrifuge 1 o min at 10,000. 
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12. Remove acetone, add fresh acetone, mix, centrifuge, and repeat until a 

pink pellet remains. 

13. Dissolve and homogenize pellet in sample buffer and store at -80° C. 

Lowry Protein Determination: 

1. Make 0.1 % BSA (bovine serum albumin) solution and place 0.1 ml/100 µg, 

50 µ1150 µg, 25 µ1125 µg, and 10 µ1/10 µg aliquots in glass tubes as standards. 

2. Place 5, 1 O, and 20 µI aliquots of samples in glass tubes. 

3. Place 5, 10, and 20 µI aliquots of buffer without sample in glass tubes as 

blanks. 

4. Bring aliquot volume to 100 µI with DIH20. 

5. Add 1.5 ml Lowry reagent C (made by adding 1 ml Lowry reagent B 

dropwise with stirring to 100 ml Lowry reagent A). 

6. Mix and wait 10 minutes. 

7. Add 300 µI Lowry reagent D and wait 30 minutes. 

8. Read at A660 in spectrophotometer, calibrating with DIH20. 

9. Make standard curve by plotting ug BSA on x axis against absorbance on y 

axis. 

10. Subtract 5, 1 O and 20 µI blank values from 5, 1 O, and 20 µI sample values 

and plot these values along standard curve. 

11 . Read protein content of sample in µg/µI from graph and calculate sample 

volumes accordingly. For example, to load 35 µg of a 3.5 µg/µI sample, 

volume should be 1 O µI. .C... paryula extractions yielded about 3.5 µg/µI, and 

the sharpest bands were obtained with 70-140 µg samples, or 20-40 µI. 

1-D Gel: 
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Note: Acrylamide is a neurotoxin. Avoid contact. 

1. Clean glass plates with 95% ethanol. 

2. Orient any chipped plate surfaces toward the lower edge. 

3. Place teflon spacers (0.75 or 1.5 mm) between plates, keeping the spacers 

below the top of the plates. 

4. Clamp plates together, ensuring that the lower edge is straight, and fasten 

plate and clamp sandwich to electrophoresis unit. 

5. Mix running gel solution in a side arm flask but do not add catalysts. 

6. Withdraw 1.5 ml for plug and degas the remainder. 

7. Add TEMED and ammonium persulfate to plug solution and quickly pour 

with pasteur pipet between glass plates into base of unit. After rapid 

polymerization, rinse the plug with DH20 and absorb wate-r with whatman 

paper. 

8. Add 8 µI TEMED and 200 µI ammonium persulfate to the running gel 

solution and swirl. 

9. Pour running gel between glass plates to app. 12 cm with a 1 O ml pipette. 

10. Slowly overlay top of gel with enough DIH20 to make a 2 mm even layer of 

water. 

11. Allow 45 min to 1 hr for polymerization. If leaving overnight, wait for 

polymerization, remove DIH20, add 1 X lower tris as an over1ay and cover with 

foil. 

12. Rinse polymerized gel with DH20. Blot excess water with paper. 

13. Position comb for lane formation. 

14. Mix stacker gel. 

15. Pour stacker gel almost to top of glass. Overlay with DIH20 and let 

polymerize. 
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16. Remove comb and rinse with DH20. Blot excess water with lane-sized 

strips of filter paper. Transfer glass plate and gel sandwich to running part of 

electrophoresis unit. 

17. Thaw samples over ice and mix with vortex. 

18. Calculate sample volume in µI based on Lowry protein determination. 

19. Transfer sample volume to a microfuge tube. Pierce tube top with a needle 

to release pressure while boiling in #22. 

20. Dilute sample with DIH20 to bring 3X sample buffer to 1 X. 

21 . To 1.5 µI molecular weight standards (Sigma, type) add13.5 µI 3X SDS 

sample buffer, and 15 µI DIH20. 

22. Boil samples for 3 min. 

23. Spin in microcentrifuge in cold box for 1 min at 10,000 g. 

24. Carefully load samples into lanes. Load molecular weight standards into 

lane 7. 

25. Overlay samples with running buffer. 

26. Clamp electrophoresis unit top into place. 

27. Pour 500 ml running buffer into bottom chamber of electrophoresis unit. 

Add 2 or 3 drops bromophenol blue to remaining 500 ml, mix, and slowly pour 

into unit top. 

28. Fasten unit front into place. Connect electrodes. 

29. Turn on power supply. Run gels at 25 mAMPS until dye front reaches the 

bottom of the gel, app. 3-5 h. 

30. In sink, remove front and top of electrophoresis unit Separate glass plates 

by prying a flat spatula between spacer and plates. Have pyrex dish with 

solution ready and place glass plate with attached gel into solution. Gel 

should float off plate. 
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31. Clean electrophoresis unit and glass plates with DIH20. 

Coomassie - Silver Dual Staining: 

Put a 12.5% 1 .5mm SOS polyacrylamide gel in a clean square pyrex dish. 

Avoid handling gel, as fingerprints or foldmarks will appear on stained gel. 

Use enough of each solution to cover gel and change solutions with an 

aspirator. Place pyrex dish with gel on shaker at 40 rpm for all solutions. 

Omit steps 1.a., 1.b., and 1.c2. if silver staining only. 

1. Soak gel 3X 20 min in 40% methanol, 10% acetic acid. Gel can be left 

overnight in this solution. 

a. Stain with 0.1 % coomassie blue G-250 in 7% glacial acetic acid, 50% 

methanol 30 min. 

b. Destain 3X 1 O min with 5% TCA. 

c. Soak 2X 10 min in 40% methanol, 10% acetic acid. 

2. Soak 2X 10 min in 10% ethanol, 5% acetic acid. 

3. Soak 1 O min in 3.4 mM (0.5 g) potassium dichromate, 0.0032 N (0.1 ml) 

nitric acid in 500 ml DIH20 at 25° C. 

4. Wash in DIH20 3X 1 O min at 25° C until water is clear. 

5. Soak 30 min in 0.012 M (0.4 g) silver nitrate in 200 ml DIH20 at 25° C. 

Place close to uniform fluorescent room lighting for first 5 min. 

6. Remove silver nitrate solution by rinsing1 min or less with DIH20. 

7. Develop in three rinses of well dissolved 0.28 M (26.71 g) sodium 

carbonate, 0.45 ml formalin, and DIH20 to 0.9 I at 40° C. First rinse is rapid (1 

min) and traces of brownish vapor should appear. Second rinse is 1 - 2 min, 

and the third rinse is watched closely until brown protein bands appear and 
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then quickly removed. If development is too rapid, reduce concentration of 

sodium carbonate or decrease developer temperature. 

a. Stop development in 5% acetic acid 5 min. 

9. Immerse gel in D IH20. 

Coomassie Stain: 

1. Place in 0.1 % coomassie G-250 stain overnight and place on shaker. 

2. Pour off stain, add destain, and place on shaker 

3. Pour off destain and add fresh destain. 

4. Repeat until destain remains clear. 

Labeling: 

1. Establish cultures with minimal volume of seawater. 

2. Add 5 µI (50µci) thawed 35S-methionine (NEN) to each culture to obtain 

1 µci/ml (50 ml cultures). 

3. Or add 100 µI (1 O µci)14C-L-amino acid mixture (NEN) to each culture to 

obtain 1 µci/ml (1 O ml cultures). 

4. Incubate in growth chamber 4 h. 

5. Pour culture into Buchler funnel on large flask with Whatman paper filter. 

6. Wash with dH20 to remove unincorporated label. Liquid goes to radioactive 

waste, as do all aeration pipettes and pipetteman tips. Monitor area with 

Geiger counter. 

7. Freeze tissue in liquid N2 in mortar and grind to a powder with pestle. 

8. Continue grinding and add 0.5 ml extraction buffer with protease inhibitors. 

9. Transfer sample to microfuge tube and rinse mortar with 0.1 ml extraction 

buffer and add to sample. 
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1 o. Microfuge 1 O min at 12 k in cold box. Transfer supernatant to a new tube. 

11. Spot 2 µI sample on 1 cm2 Whatman 3M filter paper. 

12. Add 100% TCA (1 g TCA/1 ml H20) to supernatant to get a 1 :9 

TCA:supernatant ratio. 

13. Refrigerate at 4 ° C overnight. 

14. Microfuge 1 O min at 12 k in cold box. Keep pellet. 

15. Spot 2 µI sample of supernatant on filter; remainder goes to radioactive 

waste. 

16. Wash pellet with 5% cold TCA, vortex, microfuge 5 min at 12 k, and 

remove TCA. 

17. Wash pellet in 1 ml cold acetone and vortex. 

18. Microfuge 1 O min at 12 k in cold box, resuspend pellet in acetone, and 

repeat. Remove acetone. 

19. Dry on ice in hood for 1 h. 

20. Resuspend in 50 µI IEF focusing sample buffer (lysis buffer A) or in SDS

PAGE sample buffer. 

21. Spot 1 µI on filter. 

22. Store sample at -20° C. 

23. Allow all samples spotted onto filter paper to dry. Label each with pencil. 

24. Drop in10% TCA in 1 I beaker reserved for this purpose. Use 200 ml TCA 

for 1 O filters. 

25. Bring to a rolling boil in the hood. 

26. After 10 min remove from heat, add ice to cause filters to drop to bottom of 

beaker. 

27. Pour off TCA into radioactive sink. Rinse 2X with dH20. 2X with 95% 

ethanol, and 2X with acetone. 
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28. Place filters in scintillation vials and air dry. 

29. Add 100 µI dH20 + 500 µI Protosol. Heat in 45° C water bath 20 min, do 

not exceed 55° C. 

30. Add 1 O ml Econofluor using the hood and gloves. Chill. 

31. Count as 14c Channel 9 in Beckman LS 7500 13 spectrometer liquid 

scintillation counter. 

32. Calculate cpm (counts per minute) per µI sample by dividing cpm by 

volume in µI of sample counted. 3242.00 cpm ·divided by 2µ1=1621cpm/µI 

sample, or 16,210 cpm/10 µI sample. Load 20,000 or 40,000 counts per lane 

in 1-D gel wells or into tube gels for IEF. 

33. After 1 or 2-D gels are run, place running gel in Enhance (Dupont) for 1 hr, 

wash in DIH20 for 30 min on shaker, and dry gel. Place gel in contact with 

Kodak X-Omar-AR Diagnostic Film (Sigma) film in dark room, clamp folder 

shut and place in -80° C for 96 hours. 

34. Remove gel from film in darkroom. Develop film in Dektol, fixer, (Kodak) 

and 3% acetic acid stop bath. Hang to dry. 

35. Proteins will be represented as dark spots on film. 

lsoelectric Focusing (IEF): 

1st Dimension (Tube Gels) 

1. Place glass tubes in Dichromate overnight. 

2. Rinse with DIH20 and dry in oven. 

3. Mark tubes at 11 cm from bottom, wrap bottom with parafilm, and place 

tubes in rack. 

4. Mix gels and degas for 2 minutes only. Add remaining ingredients. 
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5. Pour gels into tubes with long pasteur pipet. Dislodge bubbles trapped in 

tubes. 

6. Overlay with 100 µI thawed solution H. Let polymerize for at least 3 h. 

7. Put 2 I of H3P04 solution into lower tank and jiggle to eliminate bubbles. 

s. Rinse gels, remove parafilm from tubes, and place on apparatus. 

9. Load into tubes:10,000-100,000 cpm (100 µI or less) of samples in lysis 

buffer A. 

1 o. Load 5 µI IEF standards onto standard gel. · · 

11. Overlay with at least 100 µI solution K, making sure K is not heavier than 

samples. 

12. Add 1 additional liter of H3P04 solution to lower tank and about 750 ml 

NaOH solution to upper tank, keeping levels of tanks even to avoid pressure. 

13. Run at 300 V overnight (at least 19 h), then turn up to 400 V 1.5-2 h. 

14. Remove gels with syringe and dH20. Place in screw top tube with sample 

buffer 0. Do not let gels fold over on themselves. Equilibrate 30 min on shaker 

and freeze in dry/ice Ethanol bath or carry them straight. 

15. Do not place IEF standard in sample buffer 0. Instead, fix in 10% TCA 

overnight, stain for 1 h in BioRad statn, and destain in BioRad destain. 

16. Store at -80° C. 

2nd Dimension Gels (Slab gels): 

1. Pour running gel and let polymerize. 

2. Remove tube gels from -80° C freezer and thaw in dish of water. 

3. Thaw ampersulfate. 

4. Mix enough stacker gel solution for 2 gels. 

5. Heat beaker of water in hood on hotplate. 
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6. If gels are thawed, place on shaker to mix gently. 

7. Rinse tops of running gels with DIH20 and blot dry. 

8. Add 6 µI TEMED to stacker mix, position comb teeth for molecular weight 

standards and pour stacker gel to almost top of plates with pasteur pipet. 

9. Overlay with 200 µI DIH20 very carefully across stacker and check position 

of comb. 

10. Melt agarose on hot plate. 

11. Prepare SOS-PAGE molecular weight standard 

12. Rinse top of stacker when polymerized and blot excess water. 

13. Microfuge standards for 30 sec at 1 O k in cold box. 

14. Move gels to hood. 

15. Load 16 µI of standards in each gel. 

16. Overlay with molten agar and remove bubbles with needle. 

17. Fasten on upper chamber. 

18. Position tube gel on concave spatula in dish. 

19. Fill slot with agarose and remove bubbles. Carefully flip gel from spatula 

into slot, making sure gel stays straight. Do not tug on gel. 

20. Allow agarose to harden in hood. Dish and tubes are rinsed in radioactive 

sink. 

21. Move gels to lower chamber and fill 1 /4 inch from top with electrode buffer. 

22. Add 2-3 drops of Bromophenol blue to buffer, mix, and pour gently into 

upper chamber. Fasten on apparatus lid. 

23. Run gels on constant current -24 mAMP, unlimited voltage beginning with 

70 V for 5 1 /2 h, or until dye front is 12.5 cm from top of slab. 

ELECTROPHORESIS RECIPES 
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Extraction buffer: (Modified from Kropf et al. 1989) 

0.121 g tris (1 OmM) 

o.5 ml Triton X-100 

0.5 g sos 
1.0 ml (3-mercaptoethanol 

Bring to 100 ml with OIH20. 

Into 20 ml add the following protease inhibitors:·· 

3.48 mg PMSF phenyl methyl sulfonyl fluoride (4° C) 

7.04 mg TPCK N-tosyl L-phenyl alanine chloromethyl ketone (-20° C) 

2.5 mg N-ethylmaleimide (4° C) 

3X 2% SOS Sample Buffer: 

7.5 ml glycerol 1.5 ml (3-mercaptoethanol 

7.5 ml 20% SOS 9.375 ml 4X upper tris 

Bring to 25 ml with OIH20, store at 4° C, use at room temp. 

20% SOS (w/v): 

20 g SOS, bring to 100 ml with OIH20, store at room temp. 

Lowry Reagent A: 

2.0% Na2C03, 0.02% Na Tartrate, 0.4% NaOH 

Lowry Reagent B: 

0.5% CuS04-H20 
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Lowry Reagent C: 

(make fresh daily) To 100 ml Reagent A add 1 ml Reagent B, dropwise with 

stirring. 

Lowry Reagent 0: 

o.5 N Folin Glacteau reagent (dilute 2 N stock 1/4) 

4X Lower Tris pH 8.8: 

18.17 g tris (1.5M) 

2 ml 20% SOS 

Bring to 100 ml with OIH20, pH, store at room temp. 

4X Upper Tris pH 6.8: 

6.06 g tris (0.5 M) 

2 ml 20% SOS 

Bring to 100 ml with OIH20, pH, store at room temp. 

Acrylamide: 

30 g acrylamide 

0.8 g bis-acrylamide 

Bring to 100 ml with OIH20, filter, store in dark at 4° C. 

Ammonium Persulfate: 

100 mg/ml OIH20. Make fresh daily. 

10% Acrylamide Gel (2 gels, 1.5 mm spacers): 
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20 ml 4X lower tris 

26.6 ml 30% acrylamide 

33.2 ml DIH20 

0.2 ml ammonium persulfate 

Remove enough for plug, degas remainder. 

Add 8 µI TEMED for each gel and pour. 

Stacker gel (2 gels): 

7.8 ml DIH20 

3.8 ml 4X upper tris 

2.5 ml 30% acrylamide 

50-75 µI ammonium persulfate 

6 ul TEMED 

4X Tris-Glycine buffer pH 8.3: 

12 g tris 

57.6 g glycine 

Bring to 1 liter with DIH20, check pH only, store at 4° C. 

Electrode Buffer (Running Buffer): 

250 ml Tris-Glycine buffer 

5 ml 20% SOS 

Bring to 1 liter with DIH20. 

Stain: 

2.0 g Coomassie Brilliant Blue (0.1 %) 
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140 ml (7%) glacial acetic acid 

1 L methanol 

860 ml DIH20 

Makes 2 liters. 

Oestain: 

280 ml glacial acetic acid 

800 ml methanol 

120 ml glycerol 

2800 ml DIH20 

Makes 4 liters. 

IEF Recipes: 

Lysis Buffer A: 

5.7 g Urea (9.5 M) 

2 ml 10% NP-40 (2% w/v) 

0.5 ml ampholines pH 5-8 (1.6%) 

0.125 ml ampholines pH 3-10 (0.4%) 

0.5 ml J3-mercaptoethanol (5%) 

Bring to 1 O ml with DIH20 and freeze. 

Acrylamide D (30%): 

7.1 g acrylamide 

0.4 g bis-acrylamide 

Bring to 25 ml with DIH20. 
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Gel Overlay H: 

4.8 g Urea (8 M) in 1 O ml OIH20 and freeze. 

Sample Overlay K: 

4.8 g Urea (8 M) 

0.25 ml ampholines pH 5-8 

62.5 µI ampholines pH 3-1 O 

Bring to 10 ml with OIH20 and freeze. 

Solution 0 SOS Sample Buffer: 

40 ml glycerol 

20 ml ~mercaptoethanol (add last) 

9.2 g sos 

50 ml 4X Upper tris or 3.03 g tris 

288 ml OIH20 

Bring to 400 ml with OIH20. 

Add 0.7 ml agarose for gel embedding. 

SOS-PAGE Standards for 2nd dimension gels: 

4 µI molecular weight standards 

17 µI 3X SOS dye 

15 µI DIH20 

Boil for 3 minutes. 

1st Dimension Gels (25 ml batch): 
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13.75 g Urea 

3.32 ml Acrylamide D 

5 ml 10% NP-40 (solution E - 10% w/v) 

Make in side arm flask in 37° C water bath. Remove from water bath and add: 

1.25 ml ampholi nes pH 5-8 

0.31 ml ampholines pH 3-10 

Degas 2 minutes only. Add: 

125 µI 0.1 % fresh riboflavin (1 O mg/1 O ml) 

37.5 µI 10% ampersulfate 

12.5 µITEMED. 

Anode Electrode Solution (+) (Bottom): 0.01 M H3P04 

0.68 ml 85% phosphoric acid/liter DIH20 

Cathode Electrode Solution (-)(Top): 

0.6 g of 0.02 M NaOH in 750 ml DIH20. Degas and store under vacuum. 

BioRad Stain: 

27 ml isopropanol 

10 ml glacial acetic acid 

40 mg coomassie R-250 

0.5 g CuS04 or 0.68 g CuS04-5H20 

63 ml DIH20 

BioRad Destain: 

12 ml isopropanol 

184 



7 ml glacial acetic acid 

0.5 g CuS04 

81 ml DIH20 
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APPENDIX 3. LIST OF ORGANISMS 

Ahnfeltia sp. 

Antithamnion nipponicum 

Antithamnion sparsum 

Ceramium sp. 

Champia parvula 

Chondria tenuissima 

Chondrus crispus 

Chylocladia verticillata 

Cora/Jina officinalis 

Coreocolax sp. 

Gelidium sp. 

Gigartina stellata 

Graci/aria chilensis 

Graci/aria lemanaetormis 

Graci/aria verrucosa 

Griffithsia pacifica 

Halarachnion ligulatum 

Haliptilon cuvieri 

Harveyella mirabilis 

Hildenbrandia sp. 

Hydrolithon boergesenii 

Hypnea musciformis 

Rhodophyta 
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Jridaea laminariodes 

Uthophyllum incrustans 

Lithophyllum sp. 

Uthothamnion glaciale 

Nizymenia australis 

Odonthalia floccosa 

Pa/maria pa/mata 

Phymatolithon laevigatum 

Phymatolithon lenormandii 

Phymatolithon polymorphum 

Polysiphonia deusta 

Polysiphonia harveyi 

Polysiphonia lanosa 

Polysiphonia novae-angliae 

Porphyra leucosticta 

Porphyra perforata 

Porphyra schizophylla 

Porphyra tenera 

Porphyra variegata 

Porphyridium aerugineum 

Porphyridium cruentum 

Rhode/la reticulata 

Wrangelia plumosa 
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Ascophyllum nodosum 

Bifurcaria bifurcata 

Ectocarpus siliculosus 

Euchema nudum 

Fucus gardneri 

Fucus serratus 

Fucus vesiculosis 

Halidrys siliquosa 

Hildenbrandia prototypus 

Pelvetia canaliculata 

Pelvetia fastigata 

Ralfsia verrucosa 

Sargassum fluitans 

Sargassum natans 

Acanthosphaera zachariasi 

Ch/ore/la vulgaris 

Chlamydomonas eugametos 

Chlamydomonas reinhardti 

Closterium ehrenbergii 

Phaeophyta 

· Chlorophyta 

Closterium peracerosum-strigosum-littorale 

Enteromorpha compressa 
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Enteromorpha intestinalis 

Prasiola stipitata 

Ulva lactuca 

Ulva mutabilis 

Ulva rigida 

Amphora coffeaformis 

Ardissonea crystal/ins 

Nitzchia sp. 

Colacium libellae 

Alexandrium catenella 

Scrippsiella trochoidea 

Baclllarlophyceae 

Euglenophyceae 

Dinophyceae . 
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