
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Dissertations

1994

Data Partition and Migration for High Performance Computation Data Partition and Migration for High Performance Computation

in Distributed Memory Multiprocessors in Distributed Memory Multiprocessors

Nagesh Anupindi
University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Anupindi, Nagesh, "Data Partition and Migration for High Performance Computation in Distributed
Memory Multiprocessors" (1994). Open Access Dissertations. Paper 779.
https://digitalcommons.uri.edu/oa_diss/779

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/779?utm_source=digitalcommons.uri.edu%2Foa_diss%2F779&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

DATA PARTITION AND MIGRATION FOR HIGH PERFORMANCE

COMPUTATION IN DISTRIBUTED MEMORY MULTIPROCESSORS

BY

NAGESH ANUPINDI

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

ELECTRICAL AND COMPUTER ENGINEERING

MAJOR PROFESSOR: QING YANG

THE UNIVERSITY OF RHODE ISLAND

1994

APPROVED:

DOCTOR OF PHILOSOPHY DISSERTATION

OF

NAGESH ANUPINDI

Dissertation Committee

Major Professor

~a.~~
Professor Edmund Lamagna

Professor Ravikumar Bala

DEAN OF THE GRADUATE SCHOOL

THE UNIVERSITY OF RHODE ISLAND

1994

TO

MASTERS EK AND CVV,

AMMA, NAANNA, AND SUNDAR

Abstract

Data-partition and migration for efficient communication in distributed memory ar­

chitectures are critical for performance of data parallel algorithms. This research

presents a formal methodology for the process of data-distribution _and redistribution

using tensor products and stride permutations as mathematical tools. The algebraic

expressions representing data-partition and migration directly operate on a data vec­

tor, and hence can be conveniently embedded into an algorithm. It is also shown

that these expressions are useful for a clear understanding and to efficiently interleave

problems that involve different data-distributions at different phases. This compati­

bility made us successfully utilize these expressions in developing and demonstrating

matrix transpose and fast Fourier transform algorithms. Usage of these expressions

for data interface generated efficient parallel implementation to solve Euler partial

differential equation. An endeavor to minimize communication cost using expressions

for data-distribution disclosed a routing scheme for Fourier transform evaluation. Re­

sults promised that for large parallel machines, this scheme is a solution to today's

problems which feature enormous data. Finally, a unique data-distribution tech­

nique that effectively uses transpose algorithms for multiplication of two rectangular

matrices is derived. Performance of these algorithms are evaluated by carrying out

implementations on Intel's i860 based iPSC/860, Touchstone Delta, Gamma, and

Paragon supercomputers.

Acknowledgments

This is most pleasant part of writing for I get a chance to thank all those who helped

make this dissertation an enjoyable one. I thank Professor James W. Cooley for

inspiring the idea of Fourier transform algorithms with respect to parallel machines,

for several helpful suggestions, and for recommending me for departmental finan­

cial assistance. I also thank Professor Qing Yang for providing financial support

through NSF grant MIP-9208041, and for his valuable discussions and suggestions.

He also introduced me to the area of high performance computing, and helped me to

present this work in an elegant form. Special thanks to Professor Richard Tolimieri

and Professor Myoung An for their valuable discussions, moral support, friendship,

and financial support through Aware Inc., Cambridge, MA. I am also thankful to

Prof. John Weiss at Aware Inc., for introducing and guiding me through the partial

differential equation solvers.

I am grateful to the faculty/ staff members and fellow students in the Department

of Electrical Engineering, who never hesitated to offer timely assistance and warm

friendship. I am also grateful to all members of my thesis committee, Professor Ram­

das Kumaresan, Professor Edmund Lamagna, and Professor Jein-Chung Lo for their

precious time and efforts. I would like to thank Professor Ravikumar Bala for being

the chairman of the committee. I thank University of Rhode Island, and Intel Inc. ,

for making their computer power available to carry out the necessary experiments in

this dissertation without which this work is not feasible. Special thanks to Dr. Dane

P. Kottke for his assistance.

I am indebted to my parents Mr. Kameswara Rao Anupindi and Mrs. Kameswari

Anupindi for devoting their souls to give me this beautiful life, and my brother

Mr. Sundar Ram Anupindi for memories of a life time.

N agesh Anupindi

lll

Preface

The demand for high speed computers has been more than existing computing power

at any time in the computer era. Even very impressive electronic components could

not satisfy today's thirst for performing enormous number of calculations involved in

most of the practical applications. With these challenges, parallel processing is the

way to achieve desired computing speeds. A parallel computer consists of a collection

of processing units that assist together to solve an application. Architects of parallel

computers have the freedom to select number of processing units, to link processors

through various interconnections, to have shared or distributed memory, to design

synchronous or asynchronous operations, etcetera.

For academic researchers, access to supercomputers is still limited. Nonetheless,

usage of supercomputers by the community of scientists is increasing every year,

and research projects performed on these became more ambitious and sophisticated.

To solve problems once thought impractical, supercomputers have become friendly

tools.

This dissertation addresses aspects in parallel systems which have distributed

memory and feature independence from underlying interconnection network. The

problems studied in this dissertation are based on mathematical tools which can

represent algorithms for parallel systems. Examples are used as often as possible

to illustrate these tools. Distributing the problem onto processors is modeled using

these tools while they were proven to be helpful to optimize old solutions as well as

to derive new solutions. A list of references to publications where related problems

and algorithms are treated is provided at the end.

Nagesh Anupindi

iv

Contents

Abstract

Acknowledgments

Preface

Table of Contents

List of Tables

List of Figures

1 Introduction

2 Preliminaries and Related Work

2.1 Introduction ~ .

2.2 Operators Mat and Vect

2.3 Stride Permutation

2.4 Tensor Product . .

2.5 Some Useful Theorems

2.6 Existing Data-Partition Representations

2.7 Existing Multidimensional FFT Algorithms

2.8 Survey of Matrix Algorithms .

2.9 Experimental Environment .

2.10 Conclusion

v

11

llI

IV

v

VllI

IX

1

7

7

8

8

9

13

15

16

18

19

21

3 Data Partition and Migration: Formal Definitions

3.1 Storing Data in Distributed Memories

3.2 Moving Data Among Distributed Memories

22

22

26

3.2.1 Performance Evaluation of Three Transpose Algorithms . 31

3.3 An Example . 33

3.4 Comparison of Our Definitions with Related Work . 36

3.5 Conclusion . 38

4 Switching Data Partition Schemes Within An Application

4.1 Introduction

4.2 Brief Description of Application

39

39

40

4.3 Switching Between Data-Partitions 42

4.3.1 2D-FFT from Mesh-Division via Column-Division: Algorithm-1 42

4.3.2 2D-FFT from Mesh-Division via Column-Division: Algorithm-2 45

4.4 Effect of Varying Data Structures on Overall Performance: Results

and Conclusion .

5 A New Approach for FFT Algorithm with Mesh-Division

5.1 Introduction ..

5.2 New Approach

5.2.l Proof ..

5.3 Performance Evaluation and Comparison

5.4 Conclusion

47

51

51

53

58

60

61

6 Parallel Matrix Multiplication Algorithm For Rectangular Arrays 63

6.1 Introduction . 63

6.2 Broadcast-and-Shift Matrix Multiplication Algorithm

6.3 Two Extremes of Broadcast-and-Shift Algorithm . . .

6.4 New Approach : Taking Advantage of Two Extremes.

6.5 Performance Evaluation

6.6 Conclusion

VI

64

66

68

71

73

7 Conclusions and Future Research

A Tensor Product Representation of 3D-FFT

B Three Dimensional FFT using New Approach

List of References

Bibliography

Vll

76

78

81

82

90

List of Tables

1.1 Results of experiments to determine the start-up and transmission times 5

3.2 Pseudo-code for message passing in transpose algorithms for either

row-division or column-division partitions 28

3.3 Experimental results of transpose algorithms on Intel's Paragon 31

3.4 Experimental results of transpose algorithms on Intel's Touchstone

Delta . 32

4.5 Two-dimensional double-precision complex FFT implementation re­

sults for (1) iPSC/860 library code, (2) Interface routines appended

at input and output, (3) Algorithm-1, and (4) Algorithm-2. . 46

4.6 Timing results for 128 x 128 size vorticity computations . . . 50

5. 7 Implementation results of FFT using new approach on Intel's Touch-

stone Delta. 62

6.8 Timing results for routing scheme in new matrix multiplication algo­

rithm for 2, 4, 8 and 16-node partitions. 71

6.9 Timing results for routing schemes in matrix multiplication algorithms

on Intel's Paragon with 16-processors. 72

6.10 Timing results for routing schemes in matrix multiplication algorithms

on Touchstone Delta with 16-processors. 74

6.11 Timing results for routing schemes in matrix multiplication algorithms

on iP SC /860 with 16-processors. 75

Vlll

List of Figures

3.1 Action of data-partition algebraic expressions onto a 4-processor ma-

chine 25

4.2 Flow Chart for computation of coefficients of Vorticity 41

4.3 Contour plots of the Initial vorticity function and for time steps 200,

400, and 600. 48

4.4 Contour plots of the vorticity functions for time steps 800, 1000, 1200,

and 1400. 49

5.5 Mapping of 2-D array J(x,y) onto 6-D array.. 54

6.6 Broadcast-and-Shift Matrix Multiplication Algorithm on 16-processors 64

6. 7 Broadcast-and-Shift Multiplication using 4-processor machine (a) for

row-division with no broadcasts in A and (b) for column-division with

no shifts in B. 67

6.8 New Approach for Matrix Multiplication Algorithm on 4-processors 68

A.I Data-partitioning for Intel 's 3D-FFT algorithm 78

IX

Chapter 1

Introduction

Many scientific computations such as engineering, energy resource, medical, military,

artificial intelligence, and basic research areas demand fast processing computers to

achieve required computational performance. Without the existence of superpower

computers , the study of many of these applications and the efforts to meet today's

challenges could hardly be realized. Since device characteristics are approaching

the physical limit, parallel processing is the only way to improve computing power

further in order to meet its ever increasing demand. Research in cost-effective, high­

speed, massively parallel, and reliable supercomputers has become a very active field

in computer engineering.

Two distinct and important parallel computer architectures are shared-memory,

and message-passing systems [1, 2]. A shared-memory machine has a single global

memory accessible to all processors such as IBM RP3, Encore Multimax, Cray X-MP,

and many workstations. Its important feature is that communication between nodes

is done by reading from and writing into the shared-memory. However, the shared­

memory builds a barrier for increasing number of processing elements. Message­

passing systems, also known as distributed memory system, allocate a stipulated

amount of memory to each processing element but data does not form a single ad­

dress space [3]. Communication among processors is done through message-passing.

Intel iPSC, nCube, and Caltech Mark II hypercube belong to this category. In this

1

architecture, if an application shares data at distinct nodes, a programmer specifi­

cally commands to port data from one node to another. Since no resources such as

data, cache, CPU time, etc., are globally shared besides the links (a link is accessible

to a very limited number of processors), message-passing systems are scalable and

preferred by researchers for solving larger problems.

One important characteristic of message-passing machines (also known as dis­

tributed memory systems) is that there is a significant timing difference between

local and remote data accesses. Remote data access involves message-passing among

processors. This message-passing process takes a significant amount of total execu­

tion time of a computational procedure. The amount of remote data accesses needed

to accomplish a given computation mainly depends upon how data are initially allo­

cated to processors. We refer to this initial data allocation as data-partition. Efficient

data-partition in distributed memory systems is essential for achieving high perfor­

mance of data parallel programs. An optimal data-partition for one individual algo­

rithm (computation module) may not be optimal for others. Therefore, optimized

data-partition for applications that involve a number of computation algorithms or

modules present an interesting challenge to parallel processing researchers.

Optimization of data-partition is achieved mainly by constraining to a rule that

number of message-passings should be minimum for a given system architecture.

The system architecture of a distributed memory system is mainly determined by its

interconnection structure. Various interconnection networks and evaluation of their

performance have been reported in the literature [4, 5, 6, 7] . Some well known net­

work schemes for message-passing systems are ring, tree, mesh, hypercube and star

connections. Processors that are directly connected are called neighbors. Processors

that are not connected through a direct link are called non-neighbors . Distance be­

tween processors is calculated based on the minimum number of processors through

which they are connected. It was also observed that the farther the node is, the

longer it takes to port data. Hence, the performance of an implementation can be

optimized by minimizing the distance a node has to travel to get data. Extensive

2

efforts have been put forth in minimizing communication distance among processors

in a research field called parallel programming [8, 9].

Recently, a very important technological advancement has occurred in interconnec­

tion networks to minimize communication cost known as wormhole routing [10, 11].

In this scheme, a message is divided into a number of flits (flow control digits). Once

the header flit of a message acquires a channel, it governs the route of that message

and the remaining flits follow in a pipelined fashion. This pipelined nature of worm­

hole routing procedures resulted in a network latency that is relatively insensitive to

the distance between processors [12], which in turn has made communication cost

to predominantly depend upon message lengths and the number of messages. These

features have attracted commercial multicomputers such as the Intel's Touchstone

Delta and Intel's Paragon which use wormhole routing in a 2D mesh, and MIT's

J-machine which uses wormhole routing in 3D mesh. Ametek 2010 used a mesh net­

work renamed as Symult 2010 after adopting wormhole routing. The nCube-2 which

originally used hypercube topology has now adopted wormhole routing.

With wormhole routing, passing a message from one node to another reqmres

a specific start-up (overhead) time, tstart, and a transmission time that depends

upon the length of the message. Let telement be the time for an 8-byte data to pass

through an acquired channel. Then a simple model for total communication time for

a message of !-bytes is given by

itotal tstart + (l/8) telement· (1.1)

We conducted experiments to determine the relationship between start-up time and

transmission time on several machines. Table 1.1 shows the results of our experiments

to obtain start-up time and time to communicate 8-bytes (one complex number) of

data on Intel's Paragon, Gamma, and Touchstone Delta. Results are obtained by

averaging observed timings over 100 samples for passing a message from each node

to every other node. Possible machine-partitions (machine-partition is a cluster of

nodes that is subset of all the nodes on a machine. For example, a cluster of 16

3

nodes on 512-node Touchstone Delta is a 16-node machine-partition) are considered

for each machine to observe the effect of node's distance on total communication

time. It is observed that the ratio between start-up time and transmission time

remains almost constant irrespective of physical distance between nodes , implying

performance results close to a fully connected distributed system. Understanding

such features of new machines with respect to their latency of message-passing helps

parallel programmers to develop efficient algorithms.

Because of the importance of data-partition in data parallel programs, we focused

our attention on the study of partitioning an application and migrating the necessary

data among processors. This dissertation formulates the data-partitioning schemes

and derives variants of migrating schemes in distributed memory multiprocessor sys­

tems using tensor algebra. The essential feature of this formulation is that data­

partition and migration are represented using simple tensor algebraic expressions.

Therefore, they can form parts of an algorithm that is already written in tensor alge­

braic notation. Furthermore, by using tensor notation and stride permutations, our

formulation is simple and compact without having to deal with complicated indices

in complex data structures. Such a clear mathematical representation of storage

schemes helps parallel programmers greatly to look into inherent structure(s) of an

algorithm and the associated communication cos~.

With the newly proposed formulations, optimal data-migration at interfaces be­

tween computation modules become straightforward algebraic manipulations. This

research demonstrates the manipulations of fast Fourier transform (FFT) algorithms

for efficient implementations. These algorithms are applied to an application that

solves Euler partial differential equation using wavelet-Galerkin method and achieved

a significant improvement in the overall performance. Then, we have designed an

efficient two-dimensional FFT algorithm for distributed systems using algebraic ex­

pressions for mesh-division data-partitioning. This design is shown to be a solution

to the problems featuring huge data size, large machines and higher dimensional­

ity. Optimal data-partition is considered also for matrix multiplication algorithms

4

Number of Paragon Gamma Delta
Nodes t start te1ement t start telement t start te1ement

(msec) (µsec) (msec) (µsec) (msec) (µsec)

4 4.330 0.922 2.753 5.734 1.046 2.560
8 4.411 0.939 2.981 6.357 1.355 3.328

16 4.445 0.934 1.548 3.757
32 4.503 0.985 1.777 4.541
64 4.512 0.989 1.831 4.521

128 1.910 4.658
256 1.921 4.708

Table 1.1 : Results of experiments to determine the start-up and transmission times

where we have shown that distributed transpose algorithms can be efficiently used

for multiplying two rectangular arrays.

In order to demonstrate the usefulness and significance of our data-partition ex­

pressions, we carried out implementations of our algorithms and applications on

Intel's supercomputers: iPSC/ 860, Paragon, Gamma, and Touchstone Delta.

This dissertation is organized as follows: Chapter 2 reviews the tensor algebraic

notation, and related theorems that are required· for a better understanding of the

concepts in our contributions. It also presents a survey of the existing literature that

is related to this dissertation. Chapter 3 presents definitions for three data-allocation

schemes in tensor algebraic notation. Demonstration of these expressions is presented

for the case of matrix transpose algorithms using all the three distinct data-allocation

schemes . This chapter also presents tensor product formulation of two-dimensional

discrete Fourier transform (2D-DFT) for row-division data-partition using the trans­

pose algorithms. Computation of vorticity and stream functions in two-dimensional

fluid turbulence using 2D-DFT is carried out in Chapter 4 to demonstrate the us­

age of data-allocation expressions to efficiently interface two computation modules

5

that are efficient for two different data-partition schemes. A new and highly effi­

cient approach to evaluate large 2D-DFTs using large parallel computers is derived

using tensor algebra in Chapter 5. Chapter 6 considers the matrix multiplication

algorithms for distributed memory systems via matrix transpose algorithm by pre­

senting a unique data allocation scheme for rectangular multiplicands. Chapter 7

discusses future research and possible extensions of the methods developed in this

work to other algorithms.

6

Chapter 2

Preliminaries and Related "Work

2.1 Introduction

In a distributed environment, implementation procedure for most of the applications

involves dividing the main computational task into (a) local tasks that depend upon

data residing at a node 's local memory, and (b) global tasks that depend upon data

residing at more than one node. Such an identification and separation gives an

estimation of the degree of node balance in an implementation and also the inherent

message-passing overheads. Tensor algebra is a mathematical language that aids

to identify, express, and analyze these tasks in an algorithm. Two most important

operations in tensor algebra are tensor products, and stride permutations. In the

following sections, we introduce these operations and demonstrate their importance

with respect to parallel machines. This notation is used in Chapter 3 to develop a

set of formal definitions for data-partition schemes. Later parts of Chapter 3 use

the same notation to express matrix transpose algorithms, and multidimensional

fast Fourier transform (FFT) calculations with an emphasis on their implementation

aspects for a distributed memory system. Also, Chapters 4 and 5 deal with variants

of FFT algorithms using the same notation.

7

Sections 2.2 through 2.5 review the necessary notation and relevant theorems

to this dissertation from tensor algebra. Survey of the literature related to data­

partitioning schemes is presented in Section 2.6 while that for FFT algorithms and

matrix computations are presented in Sections 2. 7 and 2.8, respectively. Section 2.9

gives a brief description of the machines on which experiments in this dissertation

are conducted. Section 2.10 concludes the chapter.

2.2 Operators Mat and Vect

Let x be Kl-element vector: [xo X1 . .. , XKJJT. The matrix operator, MaiKxJ,

converts x into a]{ x J matrix as follows.

Xo XK X(J-l)K

X1 XK+l X(J-l)K+l

X = M aiKxJ(x) = X2 XK+2 X(J-1)K+2 (2.2)

XK -1 X2K-l XJK-1

The inverse operation of Mat, VeciKJ, forms a linear array according to column­

major scheme as follows.

Xo XK X(J-l)K

X1 XK+l X(J-l)K+l

x = VectKJ(X) = VectJK X2 XK+2 X(J-1)K+2 (2.3)

XK-1 X2K-1 XJK-1

2.3 Stride Permutation

Stride permutations are natural way of representing data-shuffling operations. We

use P(Lx, S) to represent a stride permutation operation on a vector of length Lx

with stride S. Let x be an L5 S-element vector and Lx = L 5 S. Then, the stride

8

permutation, y = P(Lx, S)x, performs the following operations. The first Ls ele­

ments of y are obtained by picking up elements of x starting at x 0 and then each Sth

element of x: that is, { xo, xs, . .. X(L.-1)S}. The next Ls elements of y are obtained

in the same way starting at X1 of x: { X1, xs+i, . .. , X(L.-l)S+l}, and so on. Therefore,

the stride permutation operation, P(Lx, S), is an Lx x Lx size matrix that is filled

with zeros and ones.

Example 2.1 Permutation matrix P(6, 3) shown below is operating on vector x =

[xo x 1 x2 X3 X4 xs]T, and denoted as y = P(6, 3)x.

Xo 1 0 0 0 0 0 Xo

X3 0 0 0 1 0 0 X1

X1 0 1 0 0 0 0 Xz
y= (2.4)

X4 0 0 0 0 1 0 X3

Xz 0 0 1 0 0 0 X4

X5 0 0 0 0 0 1 X5

P(6, 3)

2.4 Tensor Product

Tensor product is a binary operator between two matrices of any size. Given two

matrices A and B of sizes MA x NA and MB x NB , respectively, a new matrix, C,

dimensioned MAME x NANB can be generated by tensor product of A and Bas:

a(o ,o)B a(o ,1)B a(o,z)B a(o ,Nrl)B

a(1,o)B a(1 ,1)B a(1,2)B a(1,Nr1)B

C=A ®B= a(2 ,o)B a(2 ,1)B a(2,2)B a(2,Nr1)B (2.5)

a(MA-1,o)B a(MA-1 ,1)B a(MA-1,2)B a(MA-1 ,NA-l)B

where a(i,j) is the element at ith row and jth column of A, and a(i ,j)B is scalar matrix

multiplication. In other words , tensor product is a list of all possible combinations

of multiplications of one matrix's elements with the other's.

9

Example 2.2 Consider two matrices A and B as:

A= u: l and B = [10 11
12 l

13 14 15

Then

10 11 12 20 22 24

C=A O B= [*] 13 14 15 26 28 30

3B 4B 30 33 36 40 44 48

39 42 45 52 56 60

according to equation {2.5).

Two types of tensor products are of special interest to us here from the point of

parallel computations. One has an identity matrix on the left-hand side of the tensor

product as I ® A, called prior identity matrix, and the other has an identity matrix

on the right-hand side such as A x I, referred as post identity matrix. For the rest

of the discussion in this section, let a vector x be of length Lx = J NA, vector y be

of length Ly= J MA , matrix IJ be identity matrix of size J x J, and 0MA x NA be

a null matrix of size MA x NA.

When tensor product of an identity matrix IJ with a matrix A of size MA x NA is

applied on a vector x, it can be written as

(2.6)

The above equation can be expanded using the definition of tensor product as

Yo AMAxNA 0MAxNA 0MA XNA 0MAXNA Xo

Y1 0MA XNA AMA XNA 0MA xNA 0MAxNA X1

Y2 0MA xNA 0MA xNA AMA X NA 0MAXNA X2 (2.7)

YLy-1 0MAXNA 0MAxNA 0MAXNA AMAXNA XLx-1

which can also be expressed using operators Mat and V ect as

(2.8)

10

On a]-processor architecture, this representation gives a mechanism of simulta­

neously operating matrix A on different parts of input data by different processors.

Example 2.3 Consider a 4-processor machine and the following operational matrix

A to be operated on vector x:

A= [: _: l
Then) y = (:4 0 A) x =

Xo + X 1

Xo - X 1

1 1 0

1 -1 0

0 0 1

0 0

0 0

1 0

0 0

0 0

0

0

0 0 1 -1 0

0 0

0 0

0

0

0

0

0

0

0 0

0 0

0 0

0 0

0 1 1 0

0 1 -1 0

0 0 0 1

0

0

1

0 0 0 1 -1

Xo

X 2

X 5

Here) each processor executes one addition and one subtraction on a different part

of x J where the node boundaries are represented. by horizontal lin es . Execution of

the same task on 2-processor machine can be written as [12 0 (12 0 A)] representing

double amount of computation by each processor.

Therefore, these t ensor products with prior identity matrices can be used to deter­

mine the existence of local (parallel) tasks . In general , on a k-processor distributed

memory machine, execution of (IJ 0 A) would imply k local tasks , where J = nk

and n is a positive integer greater than zero.

If an identity matrix appears on the right-hand side of a tensor product, it is

performed in a natural way for vector computers, that is, performing an operation

11

2.5 Some Useful Theorems

A number of properties that tensor products hold in combination with stride per­

mutations will be useful in developing variants of a parallel algorithm. We will

present these properties here without proof. Interested readers can find their proofs

in [13, 14] . Similar to the notation in algebra of matrices, a complex tensor product

formulation should be read from right to left.

Theorem 2.1 Associative Law: Tensor product on a set of matrices is associa­

tive.

(2.12)

Theorem 2.2 Distributive Laws: When two matrices A and B are of the same

size, following additive distribution law holds true irrespective of the size of matrix

C .

(AMxN + BM x N) ® CMcxNc

= (AMxN ® CMcxNc) + (BMxN ® CMcxNc) (2.13)

Similarly, when two matrices B and C are of the same size, following additive dis­

tribution law holds true irrespective of the size of. matrix A.

AMA xNA ® (BMxN + CM xN)

= (AMA x NA ® BM xN) + (AMAxNA ® CM xN) (2.14)

Theorem 2.3 Multiplication of Tensor Products: If Nx = MA and Ny =

MB, then the following multiplication theorem holds true.

(XMxxNx ® Y My x Ny) (AMA xNA ® BMB XNB)

= (XMxxNx AMA xNA) ® (Y MyxNy BMB xNB) (2.15)

This theorem is quite often used to derive parallel or vector computations when

identity matrices appear in the product.

13

Theorem 2.4 Commutative Law: Interchanging the order of tensor product pa­

rameters results in permutations.

(AMAXNA 0 BMBXNB) = P(MAMB, MA) (BMBXNB 0 AMAXNA) P(NANB, NB)

(2.16)

This theorem is quite useful in generating different communication structures of an

algorithm.

Theorem 2.5 Inverse of Tensor Products: Unlike the case in inverse of multi­

plication of two matrices1 inverse of tensor product of two matrices does not change

the order of its parameters.

(2.17)

Theorem 2.6 Multiplication Theorem of Stride Permutations: Any simple­

stride permutation can be decomposed into two stride permutations when stride is a

multiple of two integers.

(2.18)

Theorem 2. 7 Parallel-Vector Tensor Factorization of Stride Permutations:

(2.19)

This is one of the very important theorems for implementation of a permutation on

distributed memory systems to uncover extent of communication complexity hidden

in that permutation. When parameter NA is an integral multiple of number of

processing elements, this theorem extracts local operations from operations that

depend upon non-local data. A stride permutation can also be factorized in a different

way leading to the following theorem:

Theorem 2.8 Vector-Parallel Tensor Factorization of Stride Permutations:

(2.20)

14

Theorem 2.9 Inverse Stride Permutation:

(2.21)

Theorem 2.10 Identity Stride Permutations:

(2.22)

2.6 Existing Data-Partition Representations

It is well known that data-distribution in distributed memory multiprocessors is es­

sential to achieve high performance of data-parallel programs. Extensive research

has been reported on data-decomposition optimization for distributed memory ma­

chines [15, 16, 17, 18, 19]. Research in this area can be crudely classified into two

categories. One aims at finding optimal data-partitioning schemes for parallel loop

constructs as part of compiler. It has been shown that the problem of finding an op­

timal data-partition is NP-complete [17, 20, 15]. Therefore, researchers have to rely

on heuristic methods [20, 21, 22, 16, 23]. The other effort aims at special-purpose

implementations and a large work force for developing optimal implementation of

individual algorithms is reported [24, 25, 26].

Typically, an application requires a number of computation modules linked to­

gether to accomplish a specific computation. Global optimization depends not only

on optimal implementation of the computational modules, but at least equally on

the interface between these implementations as determined by the data partition and

migration across processors.

In this dissertation, we present a systematic formulation for data-partition and

migration on distributed memory multiprocessors in terms of tensor product no­

tation and stride permutations [27]. Data-partition and migration are represented

using simple tensor algebraic expressions highlighting the computational and com­

munication complexity of parallel algorithms. Therefore, optimal data-partition and

15

migration at interfaces between different algorithms becomes straightforward tensor

algebraic manipulations with the aid of well-established theorems in this field. Fur­

thermore, due to the conciseness of the underlying algebra, definitions are simple and

compact without having to deal with complicated indices in complex data structures.

In order to demonstrate the significance and usefulness of our framework , we have

carried out experiments on existing distributed memory multiprocessors such as In­

tel's Paragon, and Touchstone Delta. Initially, our formal definitions are incorpo­

rated in three application problems: matrix transpose algorithm, two dimensional

discrete Fourier transform algorithm, and solution of Euler partial differential equa­

tion using wavelet-Galer kin approach. Then, simple algebraic manipulations on these

expressions are carried out to derive optimal data-partition and migration schemes.

Experimental timing results on these machines show that such simple algebraic ma­

nipulations result in performance improvement ranging from 30% to 600%.

2.7 Existing Multidimensional FFT Algorithms

The Fourier transform of large multidimensional data sets is an essential compu­

tation in many scientific and engineering fields , including seismology, meteorology,

x-ray crystallography, radar, sonar and medical .imaging. Such fields require mul­

tidimensional arrays and large . data set for complete and faithful modeling. The

development of powerful parallel computers has given scientists a means of studying

problems with greater complexity and higher dimensionality. Classically, a set of

data is processed one dimension at a time, permitting control over the size of the

computation and calling on well-established one-dimensional programs. Multidimen­

sional processing offers a wider range of possible implementations as compared to

one-dimensional processing, due to the greater flexibility of movement in the data in­

dexing set. This increased freedom, along with large sized data sets typically found

in multidimensional applications, places intensive demands on the communication

aspects of the computation. Therefore, parallel programmers are facing greater chal­

lenges to develop efficient parallel FFT algorithms with minimum communication

16

overheads.

Because of its inherent algorithm structure, FFT lends itself naturally to paral­

lel computation . There is a substantial amount of literature in parallelizing FFT,

[28, 29 , 30 , 31, 32 , 33 , 34] to mention a few. In [28, 29 , 30 , 31] implementations

of one-dimensional parallel FFTs on various multiprocessors were studied. In [32],

implementation of high radix FFT on Boolean cube networks such as the Connection

Machine was considered. Swarztrauber [34] investigated parallel FFT on general hy­

percube multiprocessors . He has derived an unordered parallel FFT algorithm on

hypercube multiprocessors that has a minimum number of parallel data transfers

between neighboring processors. This is performed by computing a one-dimensional

FFT, which spans over processors. On the other hand, an existing two-dimensional

FFT [35] in which FFTs on each dimension are computed by collecting all the re­

quired data and hence a computation is always within a node.

In Chapter 5, we presented an approach for computing multidimensional DFT on

distributed memory systems that effectively utilizes the fact that today's distributed

memory systems use wormhole routing for interprocessor communications. An ap­

proach to extend the algorithm for three or more dimensional problems using stride

permutation and tensor product matrices has been presented that facilitates finding

an efficient data-partitioning and network setup on distributed memory multiproces­

sors . Data-partitioning scheme is suitable and should be aimed at boundary value

problems in fluid dynamics, finite element analysis etcetera. Results showed that our

algorithm is more than six times as fast as the existing algorithm for certain cases.

Moreover, higher the parallelism is , the better the performance of new algorithm

will be. Given the fact that physical limits on memory exist at each processor , our

new algorithm is a solution to today's large problems that involve multidimensional

Fourier transform computations on massively parallel machines.

17

2.8 Survey of Matrix Algorithms

Many applications have numerical solutions in which computational burden is re­

duced partly or fully to matrix operations. One of the most elementary operations

involving matrices is multiplication of two matrices. However, since matrix multi­

plication requires substantially more data movements than most other operations,

algorithms that address efficient data movements are crucial to the effective imple­

mentation on concurrent computers.

For shared-memory systems, efficient parallel matrix computations are discussed in

[36] with a theoretical package for parallel random access machines (PRAM). With­

out any optimization techniques, scalar operations in multiplication of two N x N

matrices is in order of O(N3
). However, Strassen [37] discovered an algorithm that

only uses O(N10
g2

7
) scalar operations. Tensor product formulations of Strassen's

algorithm are presented in [38, 39] along with capability to translate their mathe­

matically equivalent tensor product formulations onto shared-memory architectures.

Among algorithms constructed with an underlying topology in mind, Gentleman

[40] has shown that for a mesh topology at least 0.35N routing steps are needed to

compute product of two N x N matrices while O(log N) routes are necessary for a

hypercube topology. For vector processors, Hayes [41] presented a technique at an

element-by-element level for matrix-vector multiplication to solve systems of equa­

tions using iterative methods. She carried out implementation results on CYBER 205

demonstrating effectiveness for irregular problems.

For distributed memory systems, communication between nodes is done through

message passings. If two or more nodes try to access same data, the requests will

be queued and each node will get the message in a different time slot. This fact

is pronounced in [42]. However, it is assumed in [43, 44] that simultaneous mem­

ory requests by all processors can be served within the same time slot. In Chap­

ter 6, we reviewed Fox et al' s broadcast-and-shift matrix multiplication algorithm

[25 , 45] for message-passing architectures. This algorithm assumes mesh-division

18

data-partitioning for the underlying data. Multiplication algorithms in [42, 25 , 45]

require data movement of multiplicands irrespective of the size of the resulting ma­

trix. Recently, Johnsson proposed an algorithm [46] to minimize the communication

time in matrix multiplication. This algorithm is an evolution of considering two ex­

treme cases of multiprocessor algorithm presented in [25, 45] but still requires data

movement of multiplicands while results are accumulated in place.

Most existing research that has been reported in the literature for parallel matrix

multiplications concentrates on mapping of the algorithm onto different topological

structures. With the development of wormhole routing, algorithm performance be­

comes more sensitive to amount of data movements than the topological structures

of the parallel machines being considered. Furthermore, all existing parallel matrix

algorithms requires moving one or both multiplicands. In Chapter 6, we present an

efficient algorithm [4 7] that requires no access of multiplicands by other processors

due to the consideration of the unique data decomposition strategy. Only partial

results need to be moved among processors. When compared to the algorithms in

[25 , 45 , 46] , messages in this algorithm are comparably shorter for the case of rect­

angular arrays. Performance improvements up to 440% have been observed over the

algorithm in [25 , 45] in actual implementations on Intel's Paragon and iPSC/860.

2.9 Experimental Environment

Intel's concurrent supercomputers are the cost-effective solution for large-scale ap­

plications. Experiments in this dissertation are performed on iPSC/860, Touchstone

Delta, and Paragon supercomputers. All these systems consist of a set of process­

ing nodes, I/O nodes, peripheral units, and a front-end processor. Each processing

node uses one or more of the i860 multiprocessor. Message passing among nodes

does not require any "store and forward" because of the Direct-Connect Module™

(DCM). With the DCM, one can view these systems as an ensemble of fully con­

nected nodes with a uniform message latency. This means that programmers do

not have to structure their application 's communication according to the underlying

19

topology (physical connections between nodes) . On each node, a node system soft­

ware runs to provide message-passing capabilities, memory management, and process

management.

The iPSC/S60 uses hypercube topology for physical connection to link 64 nodes .

Each node is a processor/memory pair with memory size SM bytes. The runtime

software on iPSC is NX operating system. The Touchstone Delta uses mesh topology

for physical connection to link 512 nodes . Again , each node is a processor /memory

pair with possible memory sizes SM bytes and 16M bytes. The runtime software

on Touchstone Delta is NX/1 operating system. The Paragon also uses mesh con­

nectivity to connect 64 nodes. However , each node has two iS60 processors one

to perform computations and another to perform the necessary communication in­

structions. Hence, Paragon provides higher communication bandwidth than iPSC or

Delta. Memory assignment for each can be 16M bytes or 32M bytes. Also , Paragon

uses a more advanced runtime software called OSF /1 provided by Open Software

Foundation.

The runtime environment consists of a set of user interface commands that can

be issued at the UNIX prompt and a set of system calls that are available to host

and node programs. The most common programming model used with these super­

computers is the "single program, multiple data" (SPMD) model. In this model, the

same program runs on each node in the application, but each node works on only

part of the data. Any requirements of the data for a node from another node is ob­

tained using their corresponding runtime software. Due to the underlying assembly

coded routing-scheme and uniform message latency characteristics, we assumed in

our analysis that a message-passing between two nodes, irrespective of the nodes,

will have same communication time.

20

2.10 Conclusion

Notation involved in a mathematical language to express, to segregate an applica­

tion, and to allocate tasks on parallel systems is explained with relevant theorems .

Survey of existing data-partition schemes, existing multiprocessor Fourier transform

and matrix multiplication algorithms is presented. A brief description about the

platforms on which experiments in this dissertation are conducted is presented.

21

Chapter 3

Data Partition and Migration: Formal

Definitions

3.1 Storing Data in Distributed Memories

Most large scale applications of scientific computing involve manipulations of data

that are expressed in terms of matrices and vectors. This is natural because matrix

notation gives a compact way to express computation. Moreover, storing matrices

or vectors in the memory of a computer system is the first step of any computation.

Different ways of storing data may result in different algorithmic structures as well as

different computational performance. While methodology and algebraic formulations

for storing matrices in a linear memory space of a single processor system exist, such

as row-major and column-major, there is neither a formal and commonly agreed

way of addressing data stored in distributed memory multiprocessor systems, nor

an agreed formal description for various storage schemes. Programmers for parallel

machines usually organize data in a way based on their convenience and efficiency of

a specific algorithm. As a result, data-allocation and -partition in parallel processing

are very diversified. Therefore, there is a need for a unified approach for formalizing

data-allocation and -partitioning in parallel machines, and for a clear and convenient

mathematical representation of various data-storage schemes. In parallel computers,

particularly in distributed memory multiprocessors, communication costs are directly

related to various data-storage schemes. Clear representation of storage schemes

22

helps parallel programmer greatly to look into structures of implementations and

communication costs associated with algorithms.

Consider a message-passing multiprocessor system with k processors labeled from 0

to k-1, where k = ki k2. We would like to partition and store a two-dimensional (2D)

matrix, denoted by A onto this system. For the purpose of simplicity and clarity of

our presentation, we present only the cases [27] where the data can be evenly divided

into k subsets and concentrate on our main interest of algebraic representation of

partitioning the matrix and storing them into processors' memories.

Definition 3.1 Row-Division: Let A be an M x N matrix. We define row-division

onto k processors as follows. Partition A into k sets of complete rows such that i-th

set of rows (top-down) is allocated to i-th processor. In matrix notation1 row-division

can be represented as operating by

PR(M,N,k) = P(Nk,k) 0IM/k (3.23)

on a vector a that is formed as VectMN(A) .

We use bold faced "P" (P) with appropriate subscript to represent our data­

partition definitions while italic "P" (P) to represent operation of stride permutation

that explained in Section 2.3.

Definition 3.2 Column-Division: Let A be an M x N matrix. We define column­

division onto k processors as follows. Partitioning matrix A into k sets of complete

columns such that i-th set of columns (left-right) is allocated to i-th processor. In

matrix notation1 column-division is represented as operating by

Pc(M, N, k) = IMN (3.24)

on a vector a that is formed as VectMN(A).

Definition 3.3 Mesh-Division: Let A be an M x N matrix. We define mesh­

division of A onto a system with k1 x k2 processors as follows. Partition M rows

23

of A into k1 equal sets of rows {top-down) and then partition each set of rows into

k
2

equal subsets (left-right). Each subset is a M / k1 x N / k2 size matrix but will

have neither complete rows nor complete columns. Allocation of these subsets to

k processors is performed anti-lexicographically {top-down and then left-right). In

matrix notation1 mesh-division is defined as

(3.25)

Following three equations represent inverse operations of the above three definitions

which can be derived using theorems 2.5 and 2.9.

PR1(M,N, k)

P01(M,N,k)

P-;j(M, N, ki, kz)

P(Nk, N) ® IM/k

IMN

(3.26)

(3.27)

(3.28)

Example 3.1 This example demonstrates data partitioning of an 8 x 8 matrix1 A 1

onto a 4-processor machine. Figure 3.1 shows how a 64-element vector a formed by

Vect64(A) is partitioned in row-division1 column-division1 and mesh-division based

on Definitions 3.1-3.3. In case of row-division1 12 on the right-hand side of P R(8, 8, 4)

represents moving vectors of length 2 according to the permutation matrix P(32, 4).

When this permutation is applied1 resulting data a"t processor-0 is shown with dotted­

line. For column-division data partitioning1 since input permutation is an identity

matrix1 no action needs to be performed1 and the vector a is just segmented into four

parts for allocating to four processors. For mesh-division data partitioning1 12 on the

left-hand side of PM(8, 8, 2, 2) represents an action to divide the vector a into two

equal sets and perform the vector-stride action P(8, 2) ® 14 on each set. However1

this vector-stride further divides each set into eight small subvectors of length 4 and

shuffl,e them according to the permutation P(8, 2). Once again1 data residing at

processor-0 after the action of input permutation is shown with dotted-line.

General Usage of Data-Partition Definitions

Consider any computational procedure that is expressed by an operational matrix

24

% (8,8,4)=

P(32,4l@l 2

:.······'.; ..-·:t.··=··:!: . ..-:t .. <~···~
2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

Proc-0

Proc-1

Proc-2

Proc-3

0 8 16 24 32 40 48 56

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

614223038465462

7 15 23 31 39 47 55 63

Pc (8,8,4)

p :~ 16 24 32 40 48 56

1 i ~ 17 25 33 41 49 57

k iii 18 26 34 42 50 58

~ !1~ 19 27 35 43 51 . 59

~ j 1~ 20 28 36 44 52 60

k! 1~ 21 29 37 45 53 61

w 1~ 22 30 38 46 54 62

~ ,,k 23 31 39 47 55 63 ' ...,.

Proc-0 Proc-2

Proc-1 Proc-3

JM(8, 8, 2, 2) =

12 @ P(8,2)@ 14

Proc-0 Proc-2

: ' ' : p /~ !~ ~ 32 40 48 56

U16!~~.1: :: : :: ::
k 1:; 1~ : 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

Proc-1 Proc-3

Figure 3.1: Action of data-partition algebraic expressions onto a 4-processor machine

25

G operating on a vector a to obtain vector b:

b =Ga. (3.29)

This equation ignores the underlying data-partition necessary to carryout the compu­

tation in distributed memory multiprocessor system. To bring out the data-partition,

let a(= Q 1a) be a desired data partition of a among the processors where Q 1 is one

of the data partition schemes (PR, Pc, or PM) defined above. If one expects the

output data to be in a particular partition after the computation, then resultant

data is of the form b where b = Q 2b and Q2 is also one of the definitions PR, Pc,

or PM defined above. Then equation (3.29) can be rewritten as:

(3.30)

Therefore, G = Q2 G Q11 is the actual-operational matrix that takes into account

the complexity of considered data partition.

3.2 Moving Data Among Distributed Memories

Once input data is partitioned among the processors, data migrations at the in­

terfaces between individual algorithms may be necessary in order to achieve global

optimal performance of an application. One frequently used data migration in nu­

merical applications is well known matrix transpose. Let a= VectMN(AM xN), and

b = VectNM(BNxM) , where BNxM is the transpose of AMxN· Then,

b = P(MN,M) a. (3.31)

Hence P(M N, M) is the operational matrix for transpose algorithms, that is,

G = P(M N, M). When data partition schemes are to be incorporated, the actual­

operational matrix becomes G (see equation (3.30)). That is,

(3.32)

and the equation (3.31) becomes

b Ga, (3.33)

26

where G = Q 2P(M N, M)Q11
. In the following, we will show how to derive the

operational matrices, G, required to transpose a matrix using the data-partitions

defined in previous section (assume Qi = Q2 for simplicity) and discuss their imple­

mentation aspects via the tensor product formulations.

ROW-DIVISION

For row-division data partition, we have

G = PR(N,M,k)P(MN,M)P"i/(M,N,k). (3.34)

According to Definition 3.1, we have

G = [P(Mk, k) 0 IN/k] P(M N, M) [P(Nk, N) 0 IM/k] ' (3.35)

(or)

G = P(M N, M) = [P(Mk , M) 0 IN/k] G [P(Nk , k) 0 IM/k] . (3.36)

Then, we can obtain expression for G by dissecting G = P(M N, M) as :

P(MN,M) [P(Mk, M) 0 IN/k] [lk 0 P(MN/k, M)]

by theorem 2. 7

P(MN,M) = PR_1 (N,M,k) [Ip 0 P(MN/k2 ,M/k)]

[(lk 0 P(N, k)) 0 IM/k]

by theorem 2.8 and equation (3.26)

P(MN,M) = PR_1 (N,M,k) [1k 0 1k 0 P(MN/k2 ,M/k)]

[P(k2
, k) 0 IN/k 0 IM/k] [P(Nk , k) 0 IM/k]

by applying theorem 2.7 toP(Nk, k)

P(M N , M) PR_1 (N, M, k) [1k 0 lk 0 P(M N/k2
, M/k)]

[P(k 2
, k) 0 IMN/k2] Pin(row, M, N, k) (3.37)

by Definition 3.1

P(MN,M)

27

·me= my node number
for index = 1 to k - 1

myswap = xor(me,index)
Send block-myswap of my associated vector a to processor-myswap
Receive message from processor-myswap
Store message at block-myswap of my associated vector a

end

Table 3.2: Pseudo-code for message passing in transpose algorithms for either row­
division or column-division partitions

Therefore, the actual-operational matrix in equation (3.33) for row-division partition

can be expressed as two stages:

(3.38)

The first stage, P(k2 , k) ® IMN/kz, is a global-task that involves message-passings

among processors since the expression does not contain an identity matrix, Ik , on

left-hand side. The size of each message being passed is (MN/ k2
) which is (1 / k)th

of the size of the data set residing at a processor. This is reflected in the above

tensor product expression by IMN/k2. The factor P(k2
, k) in the expression indicates

that each processor has (k - 1) subblocks to send out. Such message passings are

carried out in (k - 1) stages with one sub block being kept within a processor. The

pseudo-code implementation for this stage is shown in Table 3.2.

The second stage, Ik ® Ik ® P(MN/ k2, M / k) , represents a local-task due to the

identity matrix Ik on the left-hand side. Each processor performs the parallel-stride

operation [Ik ® P(MN/ k2 , M / k)] locally.

COLUMN-DIVISION

For column-division data partition, we have

G = Pc(N, M, k)P(M N, M)Pc1 (!vl, N, k) (3 .39)

28

According to Definition 3.2, we have

G = IMNP(M N, M)IMN = P(M N, M) = G.

Then, we can obtain expression for G as:

P(MN, M) = [Ik 0 P(M Njk, M/k)] [P(Nk, k) 0 IM!k]

by theorem 2. 7

(3.40)

P(M N, M) = [Ik 0 P(M Njk, Mjk)] [{ (P(k 2
, k) 0 IN/k) (Ik 0 P(N, k))} 0 IM/k]

by theorem 2.8

P(MN,M) = [Ik ® P(MN/k,Mjk)] [P(k2 ,k) ® IMN/k2]

[Ik 0 P(N, k) 0 IM/k] . (3.41)

Therefore, the actual-operational matrix in equation (3.33) for column-division par­

titioning can be expressed as three stages:

(3.42)

The first stage, Ik 0 P(N, k) 0 IM/k, represents local data permutations without

message-passing due to the prior identity Ik . Each processor performs the vector­

stride operation [P(N, k) 0 IM/k] which moves N vectors with stride k, each vector

is of length (M / k).

The second stage, P(k2
, k) ® IMN/k2 , is a global-task that is similar to message­

passing stage explained in row-division transpose algorithm. Hence the total com­

munication is again (k - 1) messages, each message is of length (MN/ k2
).

The final stage, Ik 0 P(MN/ k, M / k) , is a and simple-stride permutation stage

with stride (M / k) local to each processor. All processors carry out the same opera­

tion in parallel without communication.

MESH-DIVISION

For mesh-division partition, we have

(3.43)

29

According to Definition 3.3, we have

G = [1k1 0 P(Mk2/ki, k2) 0 IN/k2] P(M N, M) [1k2 0 P(Nki/k2, N/k2) 0 IM/k1]'
(3.44)

(or)

P(MN,M) = [1k1 0 P(Mk2/k1,M/k1)01N/k2] G [1k2 0P(Nki/k2,k1) 0 1M/k1].

(3.45)

Then we can obtain expression for G by decomposing G = P(M N , M) as follows.

P(MN,M) = [Ik1 0 P(MN/k1,M/k1)] [P(Nki,k1) 0 1M/ki]

by theorem 2. 7

P(MN,M) = [1k1 0 P(Mk2/ki,M/k1) 0 1N;k2] [Ik 0 P(MN/k,M/ki)]

[P(k, ki) 0 IMN/k] [1k2 0 P(Nki/k2, ki) 0 IM/k1] (3.46)

by theorem 2.8 on P(MN/ k1 , M / k1)and by theorem 2. 7 on P(N k1 , k1)

P(M N, M) = P-;)(N, M, k2, ki) [Ik 0 P(M N/k, M/k1)]

[P(k, ki) 0 IMN/k] PM(M, N, ki' k2)

by equation (3.28) and Definition 3.3

P(M N, M) = P-;)(N, M, k2 , ki) [P(k, ki) 0 IMN/k]

[Ik 0 P(M N/k, M/k1)] PM(M, N, ki, k2)

by commutative law

P(MN,M) = PA] G PM

(3.4 7)

(3.48)

Therefore, the actual-operational matrix in equation (3.33) for mesh-division par­

tition can be expressed as two stages in two different ways (equations (3.4 7) and

(3.48)).

(a) G = [Ik 0 P(M N/ k) , M/ki)] [P(k , ki) 0 IMN/k], and

(b) G = [P(k, ki) 0 IMN/kl [Ik 0 P(M N/k, M/ki)].

In case of (a) , the first stage, P(k , ki) 0 IMN/ki is a global-task involving message­

passings since there is no prior identity matrix. In fact, it is a single message-passing

30

M N Row-Division Col-Division Mesh-Division
(msec) (msec) (msec)

128 128 5.236 6.172 1.316
128 256 5.902 7.051 2.028
128 512 9.031 10.409 2.159
128 1024 12.356 15.312 3.866
256 128 5.501 6.665 1.825
256 256 8.283 9.746 2.301
256 512 11.483 14.027 4.018
256 1024 20.076 22.503 7.548
512 128 8.310 9.432 3.450
512 256 11.555 13.359 5.905
512 512 18.536 21.122 7.954
512 1024 39.628 38.529 16.434

1024 128 11.228 13.132 5.815
1024 256 17.526 20.616 10.631
1024 512 31.211 37.445 20.889
1024 1024 50.936 66.403 49.274

Table 3.3: Experimental results of transpose algorithms on Intel 's Paragon

routine with message size being (MN/ k) as compared to (k - 1) messages each of

size (MN/ k2) in either row-division or column-division transpose algorithms.

The second stage, I k 0 P(M N/ k, M / k1), represents that each processor executes

a local simple-stride permutation because of prior identity matrix Ik. In fact, if we

consider data at each processor to be a matrix of size M / k1 x N / k2 , then action to be

performed in this stage is k local matrix transposes that are performed simultaneously

on k processors.

3.2.1 Performance Evaluation of Three Transpose Algo­

rithms

Transpose algorithms derived in Section 3.2 are implemented on Intel's Paragon

and Touchstone Delta, and results are tabulated in Tables 3.3 and 3.4, respectively.

31

M N Row-Division Col-Division Mesh-Division
(msec) (msec) (msec)

128 128 8.092 8.865 2.681
128 256 10.042 12.280 5.769
128 512 13.988 18.980 11.702
128 1024 23.909 33.014 20.018
256 128 10.065 12.016 5.041
256 256 14.228 18.150 11.554
256 512 23.030 31.237 20.088
256 1024 43.458 59.109 36.009
512 128 13.982 17.920 9.822
512 256 23.002 30.593 19.637
512 512 44.178 57.799 36.091
512 1024 95.145 114.215 79.681

1024 128 22.743 30.400 19.507
1024 256 42.197 57.171 36.109
1024 512 83.011 113.416 79.492
1024 1024 187.484 223.287 167.497

Table 3.4: Experimental results of transpose algorithms on Intel's Touchstone Delta

From the derivations in equations (3.38), (3.41) , (3.47), and (3.48), we have seen

that to transpose a matrix of size M x N on a k-p_rocessor machine for row-division

and column-division partitionings each requires (k - 1) number of communications,

each communication is of size (MN/ k2
) while mesh-division partitioning requires one

communication that is of size (MN/ k). Though message length in mesh-division is

k times more than that of any message in either row-division or column-division ,

results in Tables 3.3 and 3.4 clearly show that transpose algorithm for mesh-division

eliminates the overheads to initiate a communication. These results also show that

unlike uniprocessor algorithms, variations in data-decompositions can have a great

impact on the performance of an algorithm.

32

3.3 An Example

As an example of applying our definition of data partitioning and migration, this sec­

tion presents a typical two-dimensional (2D) fast Fourier transform (FFT) algorithm

in a distributed memory system using our new formalism [48].

The summation form of the 2D-DFT on a matrix X of size M x N is given by:

M-1 [N-1 l Y(k, l) = 2:::: L X(m, n)e-j
2

';,;'
1

e-j
2
";;k

m=O n=O

(3.49)

while tensor product representation of equation (3.49) can be written as:

(3.50)

where F J is a J x J matrix with ith row, jth column entry equals to exp(-j27rik/ J) ,

j = J=I, y = VectMN(Y), x = VectMN(X), and G is the operational matrix.

To compute the equation (3.50) on a k-processor parallel machine, we first

parallelize the operational matrix by inserting identity matrices, assuming k di­

vides both M and N. There are two ways of decomposing the equation (3.50):

(a) y = [IN 0 FM][FN 0 IM] x whiT first computes Fourier transforms of columns

followed by transforms of rows , and .(b) y = [F N 0 IM][IN 0 FM] x, which performs

transformation on rows followed by that on columns. Consider the first decompo­

sition (a). The factor on the left-hand side represents a parallel computation of

FM because of preceding identity matrix IN while the factor on the right-hand side

cannot be done in parallel. To parallelize this stage of computation, we apply the

commutative law presented in theorem 2.4, resulting in

(3.51)

If it is required that the Fourier transformed data be in the same data-partition

scheme as the original data, then input data is x = PR x and output data is y =
PR Y · In such a case, equations (3.5~1) can be rewritten as :

(3.52)

33

Note that if we used second parallelization (b) , we would have obtained

(3.53)

In the following , we will see how we utilize our new definitions on data partition and

migration to maximize the parallelism and minimize the communication cost while

computing equation (3 .52).

Consider row-division partitioning and start with the first stage operator (the right

most factor) of equation (3.52). Recall that PR1 = [P(Nk, N) 0 IM/k] from Equa­

tion (3.23) . It appears from equation (3.52) that neither PR1 = [P(Nk , N) 0 IM/k]

nor P(M N, M) has a prior identity matrix Ik implying that both operations involve

message-passings. However, simple algebra manipulations of this computation stage

based on our definitions can lead to a completely parallel computation. Decomposing

P(MN, M)PR1 in a different way, we have

P(MN, M)PR1 P(k(M/k)N, k(M/k))PR1

[Ik 0 P(M N/k, M/k)] [P(Nk, k) 0 IM/k] PR1

[Ik 0 P(M N/k, M/k)] (3.54)

Z1

No communication! For notational convenience, we use Zi to denote the ith com­

putation stage. We will see shortly in this section that all the involved computation

stages are directly computable using the existing subroutines in machine libraries of

a commercial distributed memory multiprocessor.

The second stage of computation in equation (3 .52) is obviously a parallel compu­

tation because of IM. The next stage, P(M N , N) , can be factored as

P(MN,N) = [P(Nk , N) ® IM/k] [Ik ® P(MN/k,N)]

z3
[{[Ik 0 P(N, Njk)] [P(k2

, k) 0 IN/k]} 0 IM/k] Z 3

34

[Ik ® P(N, N/k) ® IM/k] [P(k2
, k) ® IMN/k2] Z3

z4
[Ik®P(MN/k,Njk)] [Ik®Ik®P(MN/k 2 ,M/k)] Z 4 Z 3 (3.55)

Note that P(MN,N) = [P(Nk,N) ®IM/k] [Ik ®P(MN/k,N)] according to theo­

rem 2.8. From the definition of P_R1 (M, N, k) we have

P(M N, N) = P_R1 [Ik ® P(M N/k, N)].

Left multiplying PR and right multiplying P(M N, M) on both sides of above equa­

tion, we obtain

PR = [Ik®P(MN/k,N)]P(MN,M)

To expand P(M N, M), we use equation (3.55) but interchange the roles of M and

N. We have

(3.56)

Now we summarize the above decompositions and recombine them in association

with the three submodules (a) bfft, (b) global23, and (c) local12 that are available in

a library in Intel's supercomputers.

Y = [PR] [IN ® FN][P(M N , N)] [IM® FN] [P(M N, M)PR1
] x .._,_., '-...---'

Z1 Z2
[Z10Z9Zs] [Z1] [Z6ZsZ4Z3] [Z2] [Z1] x
[Z10] [Zg] [ZsZ1Z6] [Zs] [Z4] [Z3Z2Z1] x (3.57)
~ ___,.....,, "-.,..-' ___,.....,, ___,.....,, '-,,.--'

local12 global23 bfft local12 global23 bfft

35

Module Description:

local12: Local Permutations

bfft: Local permutations+ (N/k) number of M-point FFTs or (M/k) number of

N-point FFTs + local permutations.

global23: Block transpose algorithm involving (k - 1) number of node-to-node com­

munications each of size (MN/ k2) as seen in transpose algorithms.

3.4 Comparison of Our Definitions with Related

Work

Data organization is the key to successful parallelization of data parallel programs.

As indicated in the introduction, there are two tracks of efforts in data-partition and

migration in distributed memory multiprocessors: automatic data-partitioning for

general loop constructs as part of compiler and optimal partitioning for a specific

algorithm. In this section, we briefly summarize the existing works in this field as

related to our work presented in this dissertation. For more comprehensive review

of previous work in data-partitioning and redistribution, readers are referred to [17,

16, 19].

Ramanujam and Sadayappan [16] studied compile-time techniques for data­

partitioning in distributed memory systems. They presented an analysis of

communication-free partitions with a nice geometric demonstration. The research

work performed by Li and Chen [20] focused on minimizing data movement among

processors due to cross-references of multiple distributed arrays (alignment of multi­

ple data structures). They have also presented a method of automatically generating

efficient message-passing routines in parallel programs [20]. Gupta and Banerjee in­

troduced the notion of constraints on data-partitioning to obtain good performance.

In [23], a compiler algorithm was described to automatically finds optimal parallelism

and optimal locality in general loop nesting. All these studies aimed at optimizing

36

data-partition and data alignments as part of compiler. It is known that such op­

timization problem is NP-complete. A number of heuristics have been proposed

[20, 21, 22, 16, 49, 15].

The use of tensor product notation to describe parallel algorithms has a long

history beginning with Pease [50]. Johnson et al [33] presented a comprehensive

discussion on how to use tensor notations to design, modify and implement FFT al­

gorithms on various computer architectures. Attempts to derive variants of FFT al­

gorithms keeping the underlying architecture in mind have proven successful [24, 13].

Huang, Johnson and Johnson [38] have recently used tensor notations for formulat­

ing Strassen 's matrix multiplication algorithm. Using the tensor representation, they

derived three variant programs and compared their performance characteristics for

shared memory multiprocessors.

Kaushik, Huang, Johnson and Sadayappan have proposed a very nice approach

for data redistribution in distributed memory systems, which appeared recently in

[19]. While their approach also utilizes the tensor notation as a tool, our work differs

in several aspects. First of all , our definitions are expressed in matrix forms while

theirs are in terms of indices (tensor bases). With their model one can estimate

communication cost of a computation precisely while with our formulations one can

easily manipulate the communication structures of a computation to achieve optimal

performance. Deriving variants of an algorithm using our definitions are relatively

simple because the data communication is easily visible. Secondly, all the defini­

tions presented in [19] such as cyclic, block, and block cyclic can be defined using

our formulations as evidenced in Section 3, whereas some of data-partitions such as

mesh-division cannot be easily expressed using the notations in [19]. In addition,

our representation acts directly on data vector a(0 : N - 1) to achieve the required

data-partition and migration scheme while their representation presents ways to ma­

nipulate data indices from one distribution to the other (redistribution). Unlike their

representation, we can embed our expressions for data distribution into an algorithm.

As a result , global optimization of an application consisting of several computation

37

modules become straightforward by just manipulating the algebraic expression at

the interfaces between individual algorithms.

3.5 Conclusion

This chapter introduced a unified approach for formalizing data-allocation and -

partitioning in parallel machines , and for a clear and convenient mathematical ex­

pressions of various data storage schemes. These expressions are successfully used

in expressing, deriving, and implementing matrix transpose algorithms. In turn,

expressions derived for transpose algorithms are used in representation of existing

multiprocessor two-dimensional FFT algorithm. Representation for existing three­

dimensional FFT algorithm at Intel's supercomputers is presented in Appendix A.

38

Chapter 4

Switching Data Partition Schemes

Within An Application

4.1 Introduction

In this chapter we consider the implementation of an application in which we solve

Euler partial differential equation (PDE) for two-dimensional case using wavelet­

Galerkin method [26, 51, 52]. The two most important computation modules in this

solution require two different data-partitions for their optimal implementation. Such

a situation demands switching data-partiti9n that might involve message-passing

stages among processors. This chapter evidences benefit of the algebraic expressions

defined in Chapter 3 in such a situation.

First module, Helmholtz, involves two-dimensional filtering with forward and in­

verse two-dimensional Fourier transform (2D-FFT) techniques. It is seen in previous

chapter that efficient multiprocessor 2D-FFT algorithm exists for row-division or

column-division data-partitioning.

The second module computes Jacobian that consists of numerous small intra­

node matrix multiplications. The module Jacobian requires boundary data from

other nodes, but if we neglect for the moment the necessity for neighboring spatial

regions to exchange data, choice of any data-partitioning shows ideal concurrency,

39

with no sequential dependence of one processor's calculation on other's. Departure

from ideal speedup in evolution of Jacobian arises because the elements on four

sides, considering mesh-division data-partition, or the elements on two sides if we

consider either row or column-division data-partition, of any particular processor

require boundary elements from its geometrically neighboring processors.

Therefore, Jacobian is optimal for mesh-division data-partition considering the fact

that size of data to be shared by other processors is less compared to the size of data

to be shared by other processors in either row- or column-division data-partitions.

To make use of the peak performances of these modules individually, switching be­

tween row-division and mesh-division data-partitions would be an overhead. This

chapter ·deals with the minimization of this overhead by combining the data-partition

expressions with the 2D-FFT algorithms.

Section 4.2 presents a brief description of an algorithm to solve a PDE usmg

wavelet-Galerkin method (see flowchart shown in Figure 4.2). Readers interested

in details of wavelet-Galerkin method can refer to [26, 52). Then, Sections 4.3.1

and 4.3.2 derive two variants of two-dimensional FFT algorithms that start from

mesh-division data-partitioning but go through column-division partitioning to retain

the efficiency of message-passing in row- or column-division partition, and come

back to mesh-division data-partitioning to compute Jacobian. Section 4.4 presents

implementation results of these FFT algorithms compared to the FFT algorithm

seen in Section 3.3 for row-division partition. It also presents results on overall

performance on application which show up to 43.613 reduction in time.

4.2 Brief Description of Application

Since we are not interested in exact computational details here but switching data­

partition among the modules, we present only the required details and concentrate

on data structure compatibility. Figure 4.2 shows the flowchart for evaluating the

coefficients for vorticity in fluid mechanics at each time-step. In this procedure, major

40

Co(t)

LJ. -1

Helmholtz
--------------------- ---------------------

~--~ ·
: '11

FFT IFFT
'-------'I 1 __ 1

c 0 (t+LJ.t) <--- c~ --"-es-<
Error
Check

n100 noo1

Jacobian

e

c~-1

Figure 4.2: Flow Chart for computation of coefficients of Vorticity

computation blocks are Jacobian and Helmholtz, and minor computation modules

are Error Check, and the computation of vorticity coefficients in next step (LJ.t).

The module Jacobian results in the so called wavelet-Galerkin operator 8 that

depends on vorticity function field, C, stream function field, W, and wavelet base

matrices !1100 and n°01 . The vorticity and stream function fields are assumed to be

periodic wrap around square matrices, and C(p, q) and W(p, q) are m x m matrices

each, for an odd integer m, with entries from C and W centered at the (p, q) element.

Then the evaluation of (p, q) element of wavelet-Galer kin operator 8 is expressed as

m m

G(p, q) = LL H(p, q)(j,k)
j=l k=l

m m

L, L, { [n1ooc(p, q) . * W(p, q)noo1]
j=l k=l

_ [noo1C(p, q) . * W(p, q)n100]} (i,j) (4.58)

41

d * is the element-by-element product of two matrices. Fast algorithm for com­an ·
utation of 8 is based on a recursion relating if (p, q) to if (p - 1, q) and if (p, q - 1).

p A

Optimization in Jacobian is based on observations such as, if we know !V 0°C(p, q),

then n1ooc(p, q + 1) = n100
{ C(p, q)b + S(p, q + 1)} where fJ is the matrix that

shifts the columns to the left by one and assigns the null column to the last one and

S(p, q+ 1) is the matrix with null columns except the last one which is the last column

of C(p, q + 1). This process reduces the evaluation of n 10°C(p, q + 1) to a sequence

of shifts and one matrix-vector multiplication. Similarly, ir(p, q)n°01 can be reduced

to a sequence of matrix-vector multiplications and shifts. The module Helmholtz

performs two-dimensional filtering of vorticity function with the Laplacian matrix,

b.-1, via discrete Fourier transform methods.

4.3 Switching Between Data-Partitions

When an algorithm is to be designed in row-division for a data that is already

partitioned in mesh-division, it is necessary to apply inverse mesh-division data­

partitioning operation (see equation (3.28)) followed by forward column-division

data-partitioning operation (see equation (3.24)): Pc P!) = P!) because, Pc is

an identity matrix. Similarly, when the output data of an algorithm is in column­

division but the required partition is mesh-division, then inverse column-division

data-partitioning operation (see equation (3.27)) should be followed by forward mesh­

division data-partitioning operation: PM P(/ = PM because, P(/ is an identity

matrix. Assume that data is a two-dimensional array of size M x N, and its mesh­

division partition is performed on ks x ks grid, where k; = k.

4.3.1 2D-FFT from Mesh-Division via Column-Division:

Algorithm-1

Starting at the equation similar to equation (3.53) for computing 2D-FFT using

mesh-division data-partitioning (substitute PM in place of PR in equation (3.53)),

42

we derive complexity of P"i} as follows:

P"i) = [Ik.®P(N,N/ks) ® IM/k,]

by equation (3.28) and by theorem 2. 7

P"i] = [Ik ® P(N/ks,N/k) ® IM/k.] [ik.® P(k ,ks) ® IMN/k~] (4.59)

Hence complexity of P"i} involves two stages. The first stage, Z 1 , involves (ks - 1)

number of communications with respect to each processor. This is nothing but trans­

pose algorithm within ks-processors that belong to a column of processors. Similar

transpose algorithms are performed simultaneously at ks number of columns of pro­

cessors where each column of processors consists of ks processors. The second stage,

Z2, is a local vector-stride data-shuffling.

From the above discussion on P"i} , it can be easily found that PM for mesh­

division would also have same complexity (use (AB)-1 = B-1 A- 1 and theorem 2.5

to equation (4.59). Hence [PMP(MN,N)] at the output would require (k +ks -

2) communications in an unoptimized version because P(M N, N) requires (refer

Section 3.2) (k - 1) stages of message-passing. Complexity of P(M N, M) stays the

same as the complexity of transpose algorithm for column-division partition as shown

in equation (3.41). Optimization of communication at the output can be performed

according to the following derivation:

PMP(MN,N)

[Iks ® P(N, ks) ® IM/k,] [P(Nks, N) ® IM/ ks]

[Ik. 0 P(MN/ks,N)]

by theorem 2.8 and Definition 3.3

[P(k , ks) ® IMN/k] [Ik. ® P(M N/ks, N)]

Z11

Z11 [Ik, ® P(Nks,N) ® IM/k] [Ik ® P(MN/k,N)]

Zs

43

(4.60)

From first stage of transpose algorithm derived for mesh-division partition in Sec­

tion 3.2, we know that Zn represents one single communication. Also, Z 9 is a trans­

pose algorithm similar to the one seen in Z1 that requires (ks - 1) communication

calls.

Hence, the total number of communications required for column-division are re­

duced from (2k - 2) to (k + 2ks - 2) in mesh-division FFT algorithm. The final

algorithm can be written as:

y [PMP(M N, N)] [IM 0 FN][P(M N, M)] [IN 0 FM] [PAJ] x
'-.-' . '-.-'

Z7 Z6ZsZ4 Z3
[ZnZ10ZgZs] [Z7] [Z6ZsZ4] [Z3] [Z2Z1] x

Zn Z10 Zg Zs Z7 Z6 Zs Z4 Z3 Z2 Z1 x, (4.61) .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,....,
global3 v global! 5 afft 5 global23 v afft v global!

where modules Z 4, Zs, and Z 6 are explained as block transpose algorithm in Sec­

tion 3.2.

Module Description:

s, v: Local permutations: Simple and vector-stride permutations, respectively.

global!: (ks - 1) number of inter-node communications each of size (MN/kn

ks(M N/ k2). All these communications are one-to-one.

global23: (k - 1) number of message passings, each of size (MN/ k2
). All these

communications are one-to-one.

global3: One node-to-node communication of size (MN/k) of type one-to-one.

afft: Routine to compute a sequence of one-dimensional FFTs.

44

2 2D-FFT from Mesh-Division via Column-Division: 4.3.

Algorithm-2

This method differs from algorithm-1 in the way we restructure at the output. So, we

present here a different decomposition of last stage, [PMP(M N, N)], of algorithm-1,

first we derive a variant for P(M N, N).

Hence,

P(M N, N) = [Ik. 0 P(M N/ks, N/ks)] [P(Mks, ks) 0 IN/ks]

by theorem 2. 7

= [1k. 0 (P(N, N/ks) 0 IM/ks) (Ik. 0 P(M N/k, N/ks))]

[P(Mks, ks) 0 IN/ks]

by theorem 2.8 onP(MN/ks,N/ks)

= P-;} [Ik 0 P(M N/ k, N/ks)] [P(Mks, ks) 0 IN/ks]

by equation (3 .28)

[Ik 0 P(M N/k, N/ks)] [P(Mks, ks) 0 IN/ks]

[Ik ® P(MN/k, N/ks)] [P(k;, ks)® IMN/k~]
Z10

[1k ® P(M/ks, ks) 0 iN/k.]

Zs
by theorem 2.8

Therefore, final implementation becomes:

(4.62)

(4.63)

(4.64)

y = Z10 Zg Zs Z1 Z6 Z5 Z4 Z3 Z2 Z1 x, (4.65)
'-..,-' '-..,-' '-..,-' '-..,-' '-..,-' '-..,-' '-..,-' '-..,-' '-..,-' '-..,-'

5 global4 v afft 5 global23 v afft v globall

where modules Z 1 to Z 7 are explained in previous section. Once again we reduced

total communication cost from (2k - 1) to (k +ks - 3), eliminating the one large and

final communication in algorithm-1.

45

Problem Size Nodes Intel Interface Algorithm-1 Algorithm-2
(msecs) (msecs) (msecs) (msecs)

32 x 32 4 0.06054 0.13752 0.12409 0.08476
16 0.12427 0.25118 0.20137 0.13195

64 x 64 4 0.15091 0.31761 0.28070 0.23038
16 0.13451 0.26424 0.23804 0.17571
64 0.48014 0.72160 0.53387 0.39570

128 x 128 4 0.50754 0.96545 0.86153 0.76560
16 0.24929 0.44145 0.42941 0.33604
64 0.49421 0.76185 0.58775 0.43177

256 x 256 4 1.94816 3.43353 3.17574 2.91836
16 0.60610 1.13566 1.15002 1.00119
64 0.57530 0.94583 0.82859 0.64410

256 1.96009 2.73886 1.66710 1.54402
512 x 512 4 8.58407 14.55625 13.08064 12.30499

16 2.37530 4.07935 4.16807 3.81806
64 1.09181 2.17609 1.92430 1.63670

256 2.54740 2.90163 2.29605 1.96358

Table 4.5: Two-dimensional double-precision complex FFT implementation results
for (1) iP SC /860 library code, (2) Interface routines appended at input and output,
(3) Algorithm-I, and (4) Algorithm-2.

Module Description:

global4: (ks -1) number of node-to-node communications each of size (MN/k;) =

ks(M N/ k2
). Communications in globall , and global23 are one-to-one implying

two nodes form as a pair and swap contents between them. Types of communi­

cations in this module involve more than two nodes. For example, on a 16-node

partition , communications at a stage are 0 ~ 4 ~ 5 ~ 9 ~ 10 ~ 14 ~ 15 ~

3 ~ 0, and 1 ~ 8 ~ 6 ~ 13 ~ 11 ~ 2 ~ 12 ~ 7 ~ 1. Ideally, timings

for such communications involving more than two nodes are not different from

one-to-one communications, but depend upon the communications system that

is present in the machine.

46

4.4 Effect of Varying Data Structures on Overall

Performance: Results and Conclusion

Figures 4.3 and 4.4 show the contour plots of the vorticity functions obtained through

the computational procedure shown in Figure 4.2 for various time steps. Each time

step is initiated to 25 msecs and computation is carried out with tolerance of 10-4
.

Performance results of FFT algorithms presented in Sections 4.3.I and 4.3 .2 versus

the existing parallel FFT algorithm are presented in Table 4.5 for various sizes of

data and machines. Third column represents the timings of FFT for row-division

partition available in Intel 's library while fourth column represents timings for FFT

interfaced in unoptimized version. Columns 5 and 6 represent timings for algorithms-

1 and 2 derived in Sections 4.3.I and 4.3.2. It can be seen that algorithms-I and

2 perform better than unoptimized version as expected. Moreover, for the case of

256-processor implementations, it is observed that these algorithms perform even

better than FFT for row-division. This motivated us to derive another variant of

FFT which is presented in the next chapter by eliminating block-transpose algorithm

within all the processors.

Overall effect of the Jacobian computations are presented for row and mesh­

division in second and third columns of Table 4.6 .. It is to be observed that speed-up

is more linear as machine size increases in case of mesh-division data-partitioning

compared to row-division data-partitioning. This enabled improvement of the over­

all performance of the application. Columns 4, 5, and 6 present timing results for

evaluating two-dimensional filtering in Helmholtz module using different FFT algo­

rithms. Improvements of PDE solution using FFT algorithms-I and 2 that start with

mesh-division partitioned data are presented in last two columns of the Table 4.6.

Shown results are averaged over entire computational procedure and up to 43.6I %

reduction in time is achieved. Hence, we conclude that the choice of data-partition

and efficient manipulation of our algebraic definitions for data-partition indeed helps

to improve the overall performance of an application.

47

lnitiaJ 200

20 40 60 80 100
Using Mesh Data Structure

400 600

40 60 80 100 120
Using Mesh Data Structure

Figure 4.3: Contour plots of the Initial vorticity function and for time steps 200, 400,
and 600.

48

I

I

800

20 40 60 80 . 100 120
Using Mesh Data Structure

1200 1400

40 60 80 100 120
Using Mesh Data Structure

Figure 4.4: Contour plots of the vorticity functions for time steps 800, 1000, 1200,
and 1400.

49

Nodes Jacobian Helmholtz Total
row-D Mesh row-D Meshl Mesh2 row-D Meshl Mesh2

4 2.8317 2.7939 0.11216 0.18218 0.16298 2.9438 2.9761 2.9568
16 0.8128 0.7310 0.06094 0.09950 0.07688 0.8738 0.8305 0.8079
64 0.3095 0.1996 0.10510 0.12022 0.08916 0.4146 0.3198 0.2887

Table 4.6: Timing results for 128 x 128 size vorticity computations

'

I i

50

11

Chapter 5

A New Approach for FFT Algorithm

with Mesh-Division

5.1 Introduction

This chapter presents a new and optimal parallel implementation of multidimen­

sional fast Fourier transform algorithm on distributed memory multiprocessors based

on variations in communication strategies. Its optimality is obtained by minimizing

the number of necessary message-passings at the cost of increase in message length.

This distinctive feature of the new algorithm effectively utilizes the important archi­

tectural property of most today's distributed memory multiprocessors - wormhole

routing for interprocessor communications. By using the algebra of stride permuta­

tions and tensor products as a mathematical tool, we are able to derive and formulate

an efficient data-partition and communication scheme that reduces communication

cost from 0(k) required for the best known FFT to 0(Vk) on an k-processor ma­

chine. The data-partition considered here (mesh) is natural and efficient for solving

discretized boundary value problems such as partial differential equations and finite

element analysis discussed in Chapter 4. To evaluate the actual performance of our

new algorithm in comparison with other existing parallel FFT algorithms, we have

carried out implementation experiments on the Intel's Touchstone Delta. Experi­

mental results show that our algorithm is highly efficient and runs up to 6 times

faster than the existing algorithm on a 128 or 256 nodes machine for complex data

51

1 1

size ranging from 16K to lM points. What is more interesting is that the finer the

parallelism is , the better the new algorithm performs than the existing [35] ones

presented in Section 3.3.

Consider distributed memory multiprocessor environment where communication

is done through message-passing. Traditionally, research in this field has concen­

trated on localizing communications so that data messages are passed only between

neighboring processors, processors that are directly connected by a physical link.

The reason for such efforts is that most distributed shared memory multiprocessors

are not fully connected like hypercube, mesh, or rings. Each processor is connected

only to a few neighboring processors and communication between nonneighboring

processors has to go through one or several intermediate nodes. It was believed

that an algorithm that allows communication to be done only among neighboring

processors will minimize communication cost. However, in most today's message­

passing multiprocessors , wormhole routing techniques are used to route messages

among processors [12, 53). The pipelining nature of wormhole routing makes the

network latency insensitive to path length. In other words, communication latency

is virtually independent of the physical distance between two communicating pro­

cessors. Therefore, neighboring communication is no longer the key factor in an

algorithm design and the traditional way of designing parallel algorithms may no

longer give the optimal performance. Our objective here is to show that much more

performance gains are possible by exploiting the new architectural features such as

wormhole routing techniques in multiprocessor systems.

Using the algebra of stride permutations and tensor products as mathematical

tools , we have seen that one can easily manipulate the communication structure

of an algorithm and derive a structure best tailored to the underlying architecture

and develop an optimal communication structure. Such association between tensor

notation and algorithm design provides a new way of understanding and developing

efficient parallel algorithms. Our new parallel FFT algorithm that arises from such

mathematical manipulation minimizes the total number of messages that have to be

52

passed among processors in the course of the FFT computation. This reduction of

the total number of messages comes at the expense of increase in the length of each

message. Since the network setup time in wormholE: routing plays more significant

role in latency than message length due to pipelining, our algorithm shows significant

better performance than existing parallel algorithms [35].

Using equation (1.1) and with the explanation in Section 3.3, one can estimate the

total communication cost of the existing algorithm [35] on a k-node machine. Fourier

transforming a two-dimensional data of size kN1 x kN2 involves inter-processor com­

munication cost given by

(5.66)

The chapter is organized as follows. In the following, we analyzed the performance

bottlenecks of existing FFT algorithm to find where improvements are possible. Sec­

tion 5.2 presents our new algorithm using tensor notations, and proves its validity.

Experiments and performance measurements will be presented in Section 5.3. Fi­

nally, Section 5.4 concludes our approach.

5.2 New Approach

Having analyzed the communication cost of the existing FFT algorithm for row­

division partition, we focus our effort at reducing the cost expressed in equation (5.66)

[54]. It is clear that the parameter is is a major factor contributing to the total

cost compared to the parameter ie. Our main objective is to minimize the role of

network setup time in communication overhead. The main idea is similar to the

classical divide-and-conquer strategy in algorithm designs. Suppose that the size

of the machine can be represented by two factors, i.e., k = k1k2. With proper

data-partitioning and allocation, we reduced the network setup time from 0(k1 k2)

to O(k1 + k2) with an increase of a constant factor for the coefficient of ie (see

equation (5.77) in the next section).

53

Total Processing Elements = k = ki_ k2

Node Boundaries

Node : Node ~· : Node
0 : k1 : : k. k1

---------~---------~------ ---------------- - -----~---------
' o I
I I I

' '

Node Node Node
1 : k1 +1

0
I k• k1 +1

0 0 I ---------r---------r--------- - --------------- - ---r------ - --

Node
(~-1)

'
'

' '
' ' ' '
__________ ,

Node
(k-1)

Figure 5.5: Mapping of 2-D array f(x,y) onto 6-D array.

Let the input data to be transformed be a two-dimensional array with size kN1 x

kNz . If this computation is to be carried out on k-processor machine, then each

processor would be assigned with kN1 N2 length sub-vectors. Such sub-vectors are

obtained by tiling the two-dimensional array into k1 x k2 blocks of size kzN1 x k1 Nz.

These ki x k2 blocks of size k2 N1 x k1 N2 are shown with dotted lines in Figure 5.5.

We then allocate each sub-block to a processor. This process is typical in finite

element analysis where finer the grid, higher the complexity of computation. With

k1 X kz blocks, we imagine associated processors are being arranged in k2 columns ,

54

~ I

each column consisting of k1 processors. These processors are numbered in anti­

lexicographic manner, that is, processors in the first column are numbered from 0 to

(kl_ 1), those in the second column are numbered from k1 to (2k1 - 1), and so on.

Similar to V ect operation in Section 2.2, we form a single vector x out of the input

matrix by placing column-(i + 1) down the column-i, 1 :::; i :::; (kN2 - 1) (column­

major). Then, shuffled vector x built with sub-vectors are assigned to processors 0

to (k - 1). The tensor product and stride permutation representing all the above

data-partitioning is seen in equation (3.25) that can be represented as:

x(O: J - 1)

x(J: 21 - 1)

x((k2 - 1)J: k2J - 1)

x = [lk2 ®P(kiN2,k1) ®lk2 N1] x

PM(kNi, kN2, ki, k2)

P(kf N2, k1) ® lk2 N 1

P(kf N2, k1) ® lk2N1

0

0

(P(kf N2, k1) ® lk2 N 1)x(O: J - 1)

(P(kf N2, k1) ® lk2 N 1)x(J: 2J - 1)

(5.67)

x

where J = k2kfN1N2 and x(x1 : x2) represents sub-vector off formed with elements

with subscripts from x 1 to x 2 . In the above matrix representation, each row de­

notes the operation that is being performed on an entire column of k1 processors.

Recall that a tensor product with post identity matrix, lk2 N1 , represents operations

on vectors of length k2N1, and with the operational matrix being P(kf N 2 , k1), it

represents picking up vectors of length k2 N1 with stride k1 . Tensor product with

prior identity matrix, Ik
2

in equation (5.67), represents that similar operations are

to be performed on each of the k2 columns of processors. Extension of such a data­

partition and allocation scheme for higher dimensional problems can be done in a

similar way although the geometrical representation would be more complicated.

55

This is clear from zoomed part of Figure 5.5 in which we detailed the required parti­

tion for implementation with another grid of size k2 x k1 at each node for representing

two-dimensional algorithm making a six-dimensional indexing instead of our tensor

product formulation presented below. Each block in this grid would consist N 1 x N 2

elements.

With the data allocation made in above for computing two-dimensional DFT, the

computation proceeds in stages that are explained in the following. Stride permu­

tations and tensor product are aid to clearly visualize the complexity and feasibility

of execution on parallel machines.

Rearrange I:

(5.68)

This stage involves simultaneous message-passing among all the processors that be­

long to the same column. In fact, any rearrangement that is not preceded by Ik would

result in inter-processor communications. However, lk2 preceding the above expres­

sion indicating that k2 columns of processors are doing intra-column message-passings

in parallel. Actual implementation involves message-passing from a node sender to

a different node receiver.

1. Node sender calling a procedure that sends a vector to node receiver with

parameters (a) vector's name, (b) size, (c) address of the node to which data

should be directed to, which is receiver in this case, and (d) a user defined

message number that should be same for all the global communications being

performed at that time.

2. Node receiver employing a routine for an asynchronous receive that initiates

the receipt of a message from a process.

3. Node receiver utilizing a message wait routine to block further execution of

any instructions that are dependent upon data in transit until the transfer is

complete.

56

I

11

I
I 1

Hence, this stage of global data shuffling involves a complexity of (ki -1) number

of messages to be passed by each processor, each message being of length k2 N1 N 2 .

Rearrange II:

(5.69)

Compute I:

(5.70)

Rearrange III:

(5.71)

In Rearrange II, the tensor products have densely packed knowledge about the im­

plementation aspects. First of all, the occurrence of the identity matrix h on the

left indicates parallel computations. Therefore, operation at a node is independent

of any other node. The actual operations performed in parallel are data shuffling to

obtain a complete column of the input matrix in order at each processor. As a result

of this rearrangement, processor-0 contains the first N2 columns in the natural order,

processor-I contains the next N2 columns in the natural order , and so forth.

After N2 columns are obtained at each processor, Compute I performs N 2 number

of kN1-point one-dimensional Fourier transforms on columns, using an efficient one­

dimensional transform routine called cfft1d developed by Kuck & Associates Inc. ,

for complex numbers. It is evident from theorems 2.9 and 2.5 in Section 2.5 that Re­

arrange III is the inverse operation of Rearrange II. It scatters back the transformed

vectors of length k2 N1 with stride k1 to prepare for the global communications in the

next stage. This step is once again independent of the data at other nodes and can

be executed in parallel.

Rearrange IV:

(5.72)

This stage is exactly the same as Rearrange I that has a complexity of (k1 - 1) global

communications , each message has the length k2 N1 N 2 .

57

Rearrange V:
(5. 73)

With h preceding this operation, this is nothing but local transpose of the matrices

of size k2N1 x ki Nz at each processor. This transpose would prepare the data to

perform similar stages as above on the next dimension.

Following six stages are identical to the above six stages except that they are

being performed on the second dimension. However, just for the purpose of valida­

tion through out the algorithm, terms [P(k, ki) ® lkN1 NJ and [P(k , k2) ® IkNiN2] are

introduced, first before and then after the global communications in Rearrange VI

and IX. However , they are not seen in actual implementation because destination

processors are addressed with the necessary node numbers .

Rearrange VI: fs = [Ik2 ® P(ki , kz) ® lk1N1N2] [P(k, ki) ® lkN1N2] f7.

Rearrange VII: f9 = [Ik ® P(k2Ni, Ni)® lk1N2] fs.

Compute II: f10 = [Ik ® FkN2] f9.

Rearrange VIII: f11 = [Ik ® P(k2N, kz) ® lk1N2] f10.

Rearrange IX: f12 = [P(k , kz) ® lkN1N2] [Ik2 ® P(ki, kz) ® lk1N1N2] f11.

Rearrange X: y= [Ik ® P(kN1N2, kiN2)] f12.

5.2.1 Proof

If we consider data x of size kN1 x kN2 arranged on a k1 x k2 grid to be Fourier

transformed to data y, then

y = PM(kNi, kN2, ki , k2) [FkN2 ® FkN1l

Pi} (kN1, kN2, ki, k2)x

PM(kN1, kN2, ki, k2) [FkN2 ® IkN1l

[IkN2 ® FkN1] Pi}(kN1, kN2, ki, k2)x

PM(kN1 , kN2, ki , kz)P(k2 NiN2, kN2) [IkN1 ® FkN2]

58

I.

Using equations (3.47) and (3.48) to expand matrix transposes P(k2 N1N2, kN2) and

P(k2 N1N2, kN1), respectively,

y = [Ik 0 P(kN1N2 , kiN2)] [P(k , kz) 0 lkN1NJ

Rearrange X

PM(kN2, kNi, kz , ki) [IkN1 0 FkN2]

P'i}(kN2, kN1, kz, ki) [P(k, ki) 0 lkN1N2]

[Ik 0 P(kN1N2, kzN1)] PM(kNi, kN2, ki, k2)

Rearrange V

[IkN1 0 FkN1l P'i}(kNi, kN2, ki, kz)x (5. 74)

Counting steps from bottom to top in the above equation, steps 1-3 and 6-8 are

dual and one can be obtained from the other by exchanging N 1 with N 2 , and k1

with k2 . Consider an operational matrix A that consists the stages Rearrange I, II,

Compute I, Rearrange III, and IV explained in the above section. Then we will prove

that steps 1- 3 in above equation are equivalent to A . The steps 6-8 can be proved

in a similar fashion to be equivalent to respective stages in the other dimension .

P"i](kNi,kN2, k1, k2) A PM(kNi,kN2, ki,k2)

[Ik2 0 P(ki Nz , ki Nz) 0 lk2N1] [Ik2 0 P(ki, ki) 0 lk2 N 1 N2]

P'i} Rearrange IV

[Ik 0 P(k1N2 , kt) 0 lk2 N1] [IkN2 0 FkN1]

Rearrange III Compute I

[lk 0 P(ki Nz, Nz) 0 lk2N1] [Ik2 0 P(ki, ki) 0 lk2N1N2]

Rearrange II

[Ik2 0 P(ki Nz , kt) 0 lk2 N1]

PM

Rearrange I

(Ik2 0 { P(kiN2, ktN2 [P(ki, kt) 0 IN2] [Ik1 0 P(ktN2 , k1)J} 0 lk2 N1)

59

: I

1,

'I

11 I

(Ik2 0 { (Ik1 0 P(kiN2, Nz)] [P(ki, ki) 0 IN2] P(ki Nz , ki)} 0 lk2N1)

== [1k2 0 IkiN2 0 Ik2N1] [IkN2 0 FkN1] [1k2 0 IkiN2 0 Ik2N1]

== [lkN2 0 FkN1] (5.75)

Therefore,

(5.76)

Hence the proof.

5.3 Performance Evaluation and Comparison

In this section, we evaluate the performance of the new approach developed in the

previous section. We will also compare its performance with the existing algorithm

described in equation (5.66). It is clear that computational complexity is the same

for both algorithms. We can estimate the inter-processor communication cost similar

to equation (5.66) for the new algorithm. It is given by

(5. 77)

From equation (5.77), we can see that for our new approach to be efficient than

the existing algorithm [35) , the following must hold . ·

(kN1)(kN2) < (t s/t e)(k)2 (5. 78)

Data size < (ts/te)(Machine size)2.

Experiments to measure the actual performance of the two algorithms on the Delta

machine have been carried out . The measurements are reported in Table 5. 7. The

results shown in this table are measured with a library routine called dclock() that

returns a double precision number. Using this routine at the beginning and at the

end of each of the algorithms, we obtained double precision time in milli-seconds.

These timings are purely for execution of the FFT algorithm because processors

60

I
I

11

11

are not time-shared by multiple users. However, since each node would execute

in a slightly different time due to the asynchronous communication network, we

considered the maximum value of the times reported by all the nodes. Also, we have

averaged timings over a set of one hundred experiments with forward and inverse

two-dimensional transforms for each data size.

Performance of two different algorithms are reported by executing them on 128-

node and 256-node machine-partitions. Various data sizes that we have tested are

presented in the first column in Table 5. 7. The second and third columns represent

timings for existing and new approaches, respectively, on 128-node machine while

fourth and fifth columns are for the cases of 256-node machine.

One can find a direct correlation between the theoretical estimation of perfor­

mance in equation (5. 77) and the results in Table 5. 7. It can be seen that as the

machine size increases performance of new approach increases. This is because the

complexity of network startups in the existing algorithm is 0(k1 k2) while that of

the new approach is O(k1 + k2). In general, for an n-dimensional DFT computation

on (k1 k2 .•. kn)-processor machines , order of network startups for existing algorithm

would be O(IIi=1 ki) while that of new approach would be O(L:i=1 ki)· Therefore,

the data-partitioning scheme and communication setup described in new approach

would be especially useful in the problems with the combination of huge data size,

large machines, and higher dimensionality.

5.4 Conclusion

In Section 5.2, we presented an approach for computing multidimensional DFT on

distributed memory systems that effectively utilizes the fact that today's distributed

memory systems use wormhole routing for interprocessor communications. An ap­

proach to extend the algorithm for three or more dimensional problems using stride

permutation and tensor product matrices has been presented that facilitates finding

61

111

Data Size 128 nodes 256 nodes
Old New Old New

M x N (msecs} (msecs} (msecs} (msecs}

128 x 128 120.117 27.727 N/A 31. 711
256 x 128 120.151 31.234 192.980 35.017
256 x 256 121.681 34.165 245.634 39.499
512 x 128 125.425 34.401 210.761 35.865
512 x 256 129.847 44.944 254.412 44.948

1024 x 128 128.236 44.883 227.441 43.225
512 x 512 125.901 60.946 270.365 56.096

1024 x 256 133.562 64.331 262.051 53.420
1024 x 512 152.919 99.989 285.066 76.041
1024 x 1024 211.274 177.306 294.038 119.288

Table 5.7: Implementation results of FFT using new approach on Intel's Touchstone
Delta.

an efficient data-partitioning and network setup on distributed memory multiproces­

sors. Data-partitioning scheme is suitable and should be aimed at boundary value

problems in fluid dynamics , finite element analysis etcetera. Results showed that our

algorithm is more than six times as fast as the existing algorithm for certain cases .

Moreover, higher the parallelism is, the better the performance of new algorithm

will be. Given the fact that physical limits on memory exist at each processor, our

new algorithm is a solution to today's large problems that involve multidimensional

Fourier transform computations on massively parallel machines .

62

Chapter 6

Parallel Matrix Multiplication

Algorithm For Rectangular Arrays

6.1 Introduction

Many applications have numerical solutions in which computational burden is re­

duced partly or fully to matrix operations. One of the most elementary operations

involving matrices is multiplication of two matrices. However, since matrix multi­

plication requires substantially more data movements than most other operations,

algorithms that address efficient data movements are crucial to their effective imple­

mentation on concurrent computers.

This chapter is organized as follows. Section 6.2 reviews an existing matrix mul­

tiplication algorithm that generates and accumulates partial results by moving mul­

tiplicands through a set of broadcasts and shifts. Section 6.3 considers the two

extreme cases of the broadcast-and-shift multiplication algorithm arising from data

decomposition strategies. These cases involve either only a set of broadcasts or only

a set of shifts. We present a new approach in Section 6.4 that replaces broadcasts or

shifts by matrix transpose. Identification of shortcomings in the two extreme cases

of broadcast-and-shift algorithm and the fact that dot product of two vectors result

in a single element is the motivation for this new approach. Then, to overcome the

63

A(0.1) -r= ~
A(l,21 -!--.= I:=

"'2.31

A(:i.ol
I=. =

A(0,21

--t:=F. -

A(3,1)

-+-==1=

A(l,01 ==
A(3,ll

~-

A(J.31

A(G,31

11(0.01 11(0.1) 11(0,l) ll(G,31

11(1.01 l(Ll) 11(1.21 11(1,31

* 11(2.01 1(2.1) 11(2.21 11(2.31

11(3,01 B(l,1) 11(3,21 11(3.31

*

11(1,01ll(ill11(1,2111(1.31

11(2.0l 11(2.ll 11(2.21 11(2.31

* ll(:i.ol 11(3,1) 11(3,21 1(3,31

11(0,0) 11(0,1) 11(0,ll ll(G,31

* 11(0.01 l(G.11 11(0,l) ll(G,31

1(1.01 ll(Lll 11(1.21 11(1.31

A(0,01 A(D,O) A(0.01 A(O,O)

8(0,D) 11(0.1) B(D.21 1(0,3)

A(l ,1) A.(1.1) A(l ,1) A(l.1)

11(1.01 1(1.11 1(1,21 1(1.31 = A(UI A(2.21 A(2.2) A(2.2)

8(2,0) 1(2.11 112.21 11(2.31

A(l,31 A(l,31 A(3,:ll A(3.31

11(3,01 11(3,11 1(3,2) 1(3,31

A(0.1) A(0,1) A(0,1) A(0,1)

8(1,0) ll(Lll 11(1,ll 11(1.31

A(UI A!UI A!UI A(l,21

=
11(2.0) 11(2.1) 11(2.21 11(2.31

"'2.31 "'2.31 AIUI "'2.31
ll(:i.ol 11(3.1) 11(3.21 1(3.31

A(:i.ol At:i.ol A(l.O) A(l,O)

1(0.01 1(0,11 11(11.21 1(0.31

A(0.21 A(0.21 A(ll.21 A(0.21

11(2.0I 11(2.1) 11(2.21 11(2.31

A(l.31 A(l,31 A(J.31 A(l.31

11(3,01 1(3,11 1(3.2) 1(3,31

A(2.01 A(2.01 A(l.01 A(2.01 =
8(0,0) B(O,t} 11(0.21 11(0,31

A(3,1) A(3,l l A(3,1) A(3,ll

1(1.01 B(l,1) 8(1,2) 1(1.31

A(0,31 A(G,31 A(0,31 A(0.31

1(3.01 llMI 1(3.21 1(3,31

A(l,O) A(l,01 A(l,OI A(l.01

8(0,0) 8(0,1) 1(0,21 1(0,31 = A(2.ll A(2.I) A(2.ll A(2.11

1(1,01 8(1,1) ll(U I 1(1.31

A(l.21 A(l.21 A(l.21 A(l.21

11(2.0I 11(2.11 11(2.2) 11(2.31

Figure 6.6: Broadcast-and-Shift Matrix Multiplication Algorithm on 16-processors

hurdles in memory requirement, we modified the algorithm for efficient data manip­

ulation with the aid of block transpose algorithm seen in Chapter 3. Section 6.5

presents theoretical evaluation of communication costs of broadcast-and-shift algo­

rithm versus new approach and timing results of their implementations on Intel's

Paragon, Touchstone Delta, and iPSC/860 which inferred that new approach is in­

deed efficient for rectangular arrays. Section 6.6 concludes the chapter.

6.2 Broadcast-and-Shift Matrix Multiplication

Algorithm

This section reviews the broadcast-and-shift matrix multiplication algorithm that is

presented in [25]. Related research can be found in [55, 56, 57]. Throughout this

chapter, we consider computing C, where

C=AB,

64

I 11 I

I

I
I I

on concurrent processors. Let k be the number of processors in a distributed memory

system. Assuming k to be a square of an integer, k = k;, we can use square sub block

decomposition (mesh-division) as shown in Figure 6.6. Then, multiplicand matrices

A and B are distributed piecewise in two-dimensions. Resultant matrix C is also

expected to be distributed in the same fashion ·for further processing steps. Denote a

processor belonging to ith row and jth column by p(i,j), 0 ~ i, j ~ (ks -1). Similarly,

denote the sub blocks of matrices A, B, and C in processor p(i,j) by A (i,j), B(i,j), and

cCiJ), respectively. The multiplication with respect to blocks can be written as

(k.-1)
C(i,j) = L (A (i,I) B (1,j)) . (6.79)

l=O

The above equation can be rewritten for implementation on a multiprocessor envi­

ronment as:
(k.-1)

C(i,j) = L (A(i,11) B(l1,j)) (6.80)
l=O

where 11 = (i + l) (mod ks), and ks is the number of processors in a row. Equa­

tion (6.80) represents operations to be performed at processor p(i,j). These opera-

tions are divided into ks stages of operations, one stage for each l, 0 ~ l ~ (ks -1), in

the summation. Consider dividing each stage into two tasks: (a) task that involves

message-passings to obtain A (i,li) and B(li.i) at processor p(i,j) and (b) task that in­

volves computation of the product A (i,li) B(li,j) at processor p(i,j) and accumulation

of the result to C(i,j). To compute equation (6.80) in p(i,j) for j = 1 ···ks, all the ks

processors belonging to the same row, with same index i, should obtain A (i,l 1), for

all values of 11 where 11 = (i + l) (mod ks), and 0 ~ l ~ (ks - 1) . This is done by

broadcasting from processor p(i,li) to all the processors in same row for each stage.

To obtain B(li,i) at processor p(i,j) for each l, one needs to shift subblocks of B up

after each stage, as shown in Figure 6.6. Once sub blocks A (i,l 1) and B(li,i) are ob­

tained at processor p(i,li), they are multiplied and accumulated to C(i,j). Note that

no movement of the data at the resulting matrix, C, is necessary. All the message

Passings are within multiplicands A and B.

65

111

I I

I I

For a k-processor machine, it is evident that the above algorithm is divided into

ks stages. Each stage consists of communications and computations. Computations

in all the stages are identical. Communication step in the first stage only involves

broadcasting of A while rest of the stages involve both broadcasting of A and shifting

of B. The number of message-passings of each broadcast from a processor to (ks -1)

processors is clearly (ks - 1). Each shifting passes one message. Therefore, the total

number of communications is given by [ks(ks - 1) + (ks - 1)] = (k - 1) . However,

the sizes of the messages vary with respect to the sizes of matrices A and B . If

multiplicands A and B are of sizes N1 x N2 and N2 x N3 , respectively, then total

communication cost can be written as:

tmesh (k - l)ts +[ks(ks - l)(N1N2/k) +(ks - l)(N2N3/k)J te

(k - l)ts +(ks - l)(N2/k) [ksNI + N3] te (6.81)

where ts is the start-up time for a communication and te is the communication time

for one element. From equation (6.81), it is clear that the communication complexity

is in the order of O(k). However, the size of multiplicand A has more pronouncing

effect on communication cost than size of multiplicand B because of the underly­

ing broadcasts. An effort to eliminate either the broadcasts of left multiplicand or

the shifts in right multiplicand results two extreme cases that are presented in the

following section.

6.3 Two Extremes of Broadcast-and-Shift Algo­

rithm

When either row-division (a set of complete rows is allocated to each processor)

or column-division (a set of complete columns is allocated to each processor) data­

allocations are considered for matrices A and B, either broadcasting A or shifting B

can be eliminated. Figures 6. 7(a) and (b) present the block-diagrams for these cases

66

I

II

I

•••• J! ~i ~; ;i ••..
.... ~:: :: .. :: ::~:::.::~---·- --- --- -· ::: ::!r:: ~: :::

Matrix A Matrix II Matrix A Matrix II
(a)

(b)

Figure 6.7: Broadcast-and-Shift Multiplication using 4-processor machine (a) for
row-division with no broadcasts in A and (b) for column-division with no shifts in

B.

showing the communication complexity, respectively. In case of row-division parti­

tioning, matrix-vector multiplication would be efficient while in the case of column­

division structure, vector-matrix multiplication could be efficient. This can be clearly

seen in the following evaluation of communication costs for these extreme cases. On

a k-processor machine with matrices A and B of sizes N1 x N2 and N2 x N3 , respec­

tively, broadcast-and-shift algorithm for these decompositions maps into k stages of

shifts for row-division (see Figure 6.7(a)) or k stages of broadcasts for column-division

(see Figure 6.7(b)) unlike ks stages of broadcasts and shifts for mesh-division. Then,

communication cost for row-division decomposition would be a result of shifts in B:

(6.82)

which is in the order of 0(k) while that for column-division decomposition can be

derived from broadcasts in A as:

(6.83)

which is in the order of O(k2). However, when row-division partitioning is adopted

for A and column-division decomposition is used for B, both the broadcast and shift

communications are traded with communications of partial results of C that need to

be accumulated. This case is studied in next section and compared to mesh-division

broadcast-and-shift algorithm.

67

1;

II I
11

I

1(0) A(G,OJ 1(0)

* 1(1) = A(l.1)1(1)

A(U) 1(2) A(l.2)1(2)

A(l,J) 1(3) A(l,3)1(3)

A(0,1) 1(0) A(l.0)8(0)

A(l.0) * 1(1) A(O,l)B(l)

A(l.3) 1(2) A(:l,2)1(2)

A(:l,l) 1(3) AlUJa(l)

A(o,2) 1(0) A(2,0) l(O)

A(l.3) * 1(1) = A(l,1)1(1)

A(2,0) 1(2) A(0,2) 1(2)
···· ·-·- ········
A(3,1) 1(3) A(l,3) 1(3)

A(G,3) 1(0) A(3,0J l(OJ
········ ········

ii_ A(2,1) 1(1)

!t A(l,2)1(2)

A(0,2) 1(1)

*
A(2,1) 1(2)

A(3,0) 1(3) A(0,3)1(3)

Figure 6.8: New Approach for Matrix Multiplication Algorithm on 4-processors

6.4 New Approach: Taking Advantage of Two

Extremes

This section presents the unique domain decomposition of multiplicand matrices, A

and B, that requires absolutely no messages being passed within multiplicands but

involves only communication of partial results. Computational complexity is identical

to that of broadcast-and-shift algorithm but communication complexity varies with

sizes of multiplicand matrices. Moreover, storage requirements for new approach is

less than that required in broadcast-and-shift algorithm since communication buffers

are required for both the multiplicands in broadcast-and-shift algorithm while only

a buffer as small as resulting matrix is required in our approach. Observing that

dot product of two vectors result in one single element irrespective of length of the

vectors, and considering the block transpose algorithm for row or column-division

decompositions motivated us for this approach.

68

111

[1

I
1l1

I 111

1111

Ii

I 11

] I

Consider two multiplicand matrices A and B of sizes Ni x N2 and N2 x N3 , re­

spectively, and C =AB. Let matrix A be decomposed using column-division while

matrices B and C be decomposed with row-division. It is acknowledged that the

data-partition considered here is not uniform for all the matrices A, B, and C.

For embedding this algorithm into any computation would need necessary message­

passings overhead to switch between data-partitions. Association of parts of each

matrix to each node on a k-processor machine would result processor-i to contain
(i) B(i) d C(i) I .t. 11 ·t ld h h h d ANixN

2
/k' N2 /kxN3 , an NifkxN3 • m ia y, i wou seem t at w en eac no econ-

tains parts of matrices A and B of sizes Ni x N2/k and N2f k x N3 , resulting matrix

that obtained by their multiplication at each node would be of size Ni x N3 , which is

as large as the entire resulting matrix that is supposed to be residing at all the k pro­

cessors. However, using matrix transpose technique and further dividing the problem

at each node, we can decompose algorithm into k successive compute, communicate,

and accumulate stages, which would require a storage of size just Ni/k x N3 . Total

number of communications is exactly same as that required in broadcast-and-shift

matrix multiplication algorithm but message-length varies as the sizes of matrices A

and B depart from being square matrices. Moreover, restriction on broadcast-and­

shift algorithm on number of processors to be square is no more applicable to this

new approach.

Figure 6.8 demonstrates the new approach for matrix multiplication using column­

division for left multiplicand A and row-division for right multiplicand B on a 4-

processor machine. On a k-processor machine, suppose that processors are numbered

as p(o) ... p(k-i). Denote the part of matrix A that is allocated to processor i as

A (i). Similarly, denote the part of matrix B that is allocated to processor i as B(i).

Then, resulting matrix C can simply be expressed as

k-i
c = LA (l)B(l)

l=O

If we break-up the computations into k stages, then we can form k communication

stages followed by computation stages. This is accomplished by breaking-up associ­

ating matrix A at jth processor into k subblocks as A(i,j) for 0:::; j:::; (k - 1). Then

69

k stages of computations are performed by multiplications: A (i,j)B(j) at processor

j for i = 0 to (k - I). Then, (k - I) stages of block-transpose algorithm can be

interleaved with k stages of computations. Following equation explicitly shows the

block-transpose algorithm where the horizontal lines represent node boundaries.

A(O,O)B(O) A(O,O)B(O)

A (O,l)B(l) A(l ,O)B(O)

A (O,k-l)B(k-1) A(k-1,0)B(O)

A (1,0)B(O) A(o,1)B(1)

A(1 ,1)B(1)
= [P(k 2

, k) 0 IN1N3/k2]
A(1,1)B(1) (6.84)

A (1 ,k-1)B(k-1) A(k-1,1)B(1)

A (k-1 ,k-1)B(k-1) A (k-1 ,k-1)B(k-1)

Note that first (top-down) (k-I) entries of right hand side matrix in equation (6.84)

can be computed at processor-0 because subblocks A(j,O) and B(0), 0 ::=:; j ::=:; (k-I), are

available at processor-0. Simultaneously, processor-I computes products A(j,l) B(l) ,

0 :::; j ::::; (k - I) , at processor-I , and so on. Then, after the transpose algorithm,

computation can be completed by the following accumulation.

C(O) l:::J:,~1) A(o,j)B(i)

C(1) l:::J:,~1) A(1 ,j)B(j)

C(i) 2:::):~1) A (i,i)B(j)
(6.85)

C(k-1) 2:::):~1) A (k-1,j)B(j)

70

I
I

1' I

I I

II N1 N2 N3 II 2-nodes I 4-nodes I 8-nodes I 16-nodes II
32 512 32 0.495 1.049 2.294 4.870
64 512 64 0.801 1.827 3.348 4.970

128 512 128 2.238 4.375 5.775 8.953
256 512 256 7.107 12.377 16.724 22.357
512 512 512 27.340 44.108 57.234 67.113

Table 6.8: Timing results for routing scheme in new matrix multiplication algorithm
for 2, 4, 8 and 16-node partitions.

6.5 Performance Evaluation

We have seen in Section (6.2) that the communication overhead in broadcast-and­

shift algorithm for running on k processors in equation (6.81). If we derive message­

passing overhead inherent in the new approach in analogous fashion, then for k

processors, implementation of multiplication of matrices of sizes N1 x N2 and N2 x N3
would involve a communication cost that can expressed as:

(6.86)

To compare the two algorithms, new approach performs better than broadcast-and­

shift algorithm if

imesh > .tnew

ks(ks - l)(N1N2/k) + (ks - l)(N2N3/k) > (k - 1) (N1N3/k)

N2
N3

(6.87) >
[1 (N3 - Ni)] + (ks+ l)N1

Note that both the algorithms have communication complexity that are in the

order of O(k) on a k-processor machine. Hence, the only difference arises from the

sizes of the multiplicands and the resulting matrix. Clearly, above inequality says

that if N2 is larger than N3 , then messages in new approach will be shorter than that

of communications in broadcast-and-shift algorithm. Tables 6.9, and 6.10 present

results of actual implementations demonstrating the validity of the inequality (6.87).

71

II

Ni N2 N3 B-S Algor. New App. Performance
Improvement

128 128 32 11.811 5.384 119.35
128 128 64 9.769 7.589 28.73
128 128 128 10.313 9.290 11.02
256 128 32 12.108 7.538 60.63
512 128 32 15.429 9.330 65.37

1024 128 32 22.604 13.469 67.82
128 256 32 11.185 5.355 108.88
128 256 64 11.753 7.573 55.19
128 256 128 12.853 9.359 37.33
256 256 32 14.466 7.530 92.10
256 256 64 14.993 9.339 60.53
512 256 32 20.114 9.341 115.33
512 256 64 20.618 13.529 52.40

1024 256 32 37.661 13.518 178.59
128 512 32 15.005 5.273 184.58
128 512 64 16.127 7.511 114.71
128 512 128 18.651 9.336 99.78
128 512 256 22.296 13.496 65.21
256 512 32 20.647 7.571 172.70
256 512 64 . 21.557 9.360 130.31
256 512 128 24.351 13.468 80.81
512 512 32 32.073 9.333 243.65
512 512 64 32.874 13.487 143.74

1024 512 32 66.446 13.524 391.31
1024 512 64 54.994 23.743 131.63

Table 6.9: Timing results for routing schemes in matrix multiplication algorithms on
Intel 's Paragon with 16-processors.

72

I
I II

I I

'I

I ~

111

Moreover, unlike broadcast-and-shift algorithm which is optimum for square number

of processors [25], performance of new approach changes uniformly with increasing

number of processors. This is demonstrated with our results in Table 6.5.

6.6 Conclusion

It is observed that variation of data-partitioning presents significant improvements

in the performance of matrix multiplication algorithms for rectangular arrays. A

clear analysis of an existing multiplication algorithm for distributed systems seeking

minimum communication resulted in an efficient and new approach. Also, a quest to

overcome the hurdles faced in memory requirements while developing this algorithm

resulted in efficient utilizitation of the block-transpose algorithm seen in Chapter 3.

73

I

I

Ni N2 N3 B-S Algor. New App. Performance
Improvement

128 128 32 11. 742 7.265 61.62
128 128 64 12.848 11.661 10.79
256 128 32 18.404 11.661 57.82
512 128 32 31.486 21.037 49.67
128 256 32 19.511 7.325 166.67
128 256 64 21.919 11.669 87.84
128 256 128 26.588 21.128 25.84
256 256 32 32.423 11.641 178.52
256 256 64 34.938 21.032 66.12
256 256 128 39.837 39.226 1.56
512 256 32 59.338 20.973 182.93
512 256 64 61.808 39.322 57.18
128 512 32 34.936 7.302 378.44
128 512 64 39.797 11.674 240.90
128 512 128 49.139 21.112 132.75
128 512 256 68.786 39.276 75.13
128 512 512 109.143 75.203 45.13
256 512 32 61.808 11.672 429.54
256 512 64 66.710 21.108 216.04
256 512 128 76.199 39.185 94.45
256 512 256 96.222 75.287 27.81
512 512 32 114.326 20.887 447.35
512 512 64 119.239 39.229 203.96
512 512 128 128.646 75.244 70.97

Table 6.10: Timing results for routing schemes in matrix multiplication algorithms
on Touchstone Delta with 16-processors.

74

1

1

1 r
11 t

11

I

I

I

I

11

, I

I

Ni N2 N3 B-S Algor. New App. Performance
Improvement

128 128 32 26.504 18.586 42.60
256 128 32 44.936 30.932 45.27
512 128 32 80.056 55.328 44.69
128 256 32 47.235 19.506 142.15
128 256 64 53.787 30.849 74.35
128 256 128 65.542 55.086 18.98
256 256 32 82.382 30.829 167.22
256 256 64 89.350 53.987 65.50
512 256 32 152.873 55.152 177.18
512 256 64 159.157 102.409 55.41
128 512 32 88.714 18.271 385.54
128 512 64 101.255 31.236 224.16
128 512 128 124.579 55.067 126.23
128 512 256 185.685 101.661 83.65
128 512 512 304.817 198.436 53.61
256 512 32 159.439 30.950 415.15
256 512 64 171.299 55.5.32 208.47
256 512 128 197.331 101.436 94.54
256 512 256 245.848 198.612 23.78
512 512 32 300.573 53.400 462.87
512 512 64 312.586 102.097 206 .17
512 512 128 339.101 199.487 69.97

Table 6.11: Timing results for routing schemes in matrix multiplication algorithms
on iP SC /860 with 16-processors.

75

'

11

Chapter 7

Conclusions and F'uture Research

It is well known that data-distribution in distributed memory multiprocessors is

essential to achieving high performance of data parallel algorithms. The central

feature of most implementations of these algorithms is the manner in which the

expensive interprocessor communication is minimized.

We defined a set of expressions for partitioning data in multiprocessor environ­

ments using tensor products and stride permutations. Unlike the existing data­

partitioning schemes, this representation can form a part of any algorithm that can

be represented using tensor products and stride permutations. Hence, using the well

established theorems in tensor algebra, one can eastly manipulate the algorithm to

clearly visualize the data migration stages.

The expressions defined for data-partitions have been used to demonstrate the rep­

resentation of existing matrix transpose and two-dimensional FFT algorithms. For a

practical application in which switching data-partitions was needed, manipulation of

algorithms and derivations to interface among them proven to be successful by using

our definitions for process of data-partition. This is seen in computing vorticity and

stream functions via a partial differential equation solver that used wavelet-Galerkin

method. Then, a variant for routing scheme in two and three-dimensional FFTs is

derived that is applicable for today's large computers to solve huge data sizes. Fi­

nally, a data-allocation scheme is presented for matrix multiplication via transpose

76

11

II I

111

I

algorithms for distributed systems. It is seen that such a distribution is efficient for

rectangular matrices.

Tensor products and stride permutations have been extremely useful to transform

an algebraic expression that is derived on paper into implementations on parallel

machines. Algorithms derived and discussed in this dissertation were implemented

on Intel's Paragon, Touchstone Delta, Gamma, and iPSC/860.

An immediate direction for future work based on this research is to introduce no­

tation and develop relevant theorems required for parallel algorithms that cannot be

represented using tensor products and stride permutations alone. Another research

direction is to solve applications that have several computational modules which are

efficient for distinct data-partition schemes to prove usefulness of our definitions for

interfaces.

77

Appendix A

Tensor Product Representation of

3D-FFT

If we consider rows, columns, and depths as three axes of a three dimensional array,

this appendix describes an algorithm in which domain decomposition strategy in­

volves partitioning depth as shown in Figure A.I. Hence, each processor would have

complete rows and complete columns but not complete depths.

Consider a three-dimensional array, X, of size L x M x N distributed onto k­

processors as shown in Figure A.I. Then, similar to column-decomposition method,

input and output data-shuffling matrices are identity matrices and hence do not

affect the derivation . Then , 3D-DFT of X can be expressed using tensor notation

l/ :::: ::::::::: :::: Processor-(k-1)

M
>·:::::::::::·.:·.::: ::: Processor-1

... ..:·················· ·· ... Processor-0

L

Figure A.l: Data-partitioning for Intel 's 3D-FFT algorithm

78

I'
I

111

I

11

I

as:

(A.l)

where x = VectLMN(X) and y = VectLMN(Y) . Then, implementation of equa­

tion (A.1) can be derived as follows:

[FN 0 FM 0 FL] = [FN 0 IML] [IN 0 FM 0 IL] [IMN 0 FL] (A.2) ,,___, ,,___,
Z 3 Z2 Z1

Then ,

(A.3)

This is perfectly parallel with out any communications on p-processor machine.

Z2 IN 0 FM ® IL

IN 0 [P(LM,M) (IL 0 FM) P(LM,L)]

lk 0 ([IN/k 0 P(LM,M)] [ILN/k 0 FM] [IN/k 0 P(LM,L)]) (A.4)

This consists of three perfectly parallel stages, first and third being vector-stride

permutations that are inverse to one another, and second stage is LN/k number of

one dimensional computations , each on a vector that is of length M .

P(LMN, N) (IML 0 FN) P(LMN,ML) (A.5)

Clearly, first and third stages consist communications, while second stage can be

rewritten as [Ik 0 (IML/k 0 FN)] implying that each of the k processors perform

ML/ k number of N-point FFTs. Communications in first and third stages can be

revealed by further decomposition as:

P(LMN,ML) [Ik 0 P(LM N/k , LM/k)] [P(kN, k) 0 ILM/k]

[Ik 0 P(LM N/k, LM/k)] [P(k 2
' k) 0 ILMN/k2]

[1k 0 P(N, k) 0 ILM/k]

79

(A.6)

. I

Hence,

P(LMN,N) [P(LMN,ML)r1

[1k ® P(N, N/k) ® ILM/k] [P(k2
, k) ® ILMN/k2]

[Ik ® P(LMN/k, N)] (A.7)

Hence, equations (A.6) and (A.7) have similar structure except the local permuta­

tions stages are reversed. In both equations, second stages represent global commu­

nication that are seen before in transpose algorithms row or mesh-division decom­

positions. Hence, putting together all the above derivations, we can represent tensor

notation of 3D-FFT algorithm on a k-processor machine as follows.

FN ®FM® FL = [1k ® P(N, N/k) ® ILM/k]

[P(k2
, k) ® ILMN/k2]

[Ik ® P(LM N/k, N)]

[1k ® ILM/k ® FN]

[Ik ® P(LMN/k, LM/k)]

[P(k 2
, k) ® hMN/k2]

[1k ® P(N, k) ® ILM/k]

[Ik ® IN/k ® P(LM, M)]

[1k ® ILN/k ®FM]

[Ik ® IN/k ® P(LM, L)]

[1k ® IMN/k ®FL] (A.8)

The above representation involves only two stages of communications, each stage

consisting a complexity of (k - 1) number of messages, each message being a length

of LMN/k2.

80

I

I

Appendix B

Three Dimensional FFT using New

Approach

In chapter 5, we promised that tensor notation helps to extend the problem for

higher dimensions easily. In section 5.2, clear and distinct stages for two-dimensional

FFT algorithm are presented in two sets (1) Rearrange I through Rearrange V in

equations (5.68)-(5.73), and (2) Rearrange VI through Rearrange X. These results are

proved in section 5.2. l. In this section, we present tensor formulation of new approach

without proof for the case of three-dimensional array similar to one presented in

section 5.2 for two-dimensional array.

Consider a three-dimensional data of size L x M x N being Fourier transformed

on k processors where these processors are arranged in k1 x km x kn grid. Due to the

distribution, segmentation stages before and after the communication stages in each

dimension are required.

Segment

Rearrange I

Rearrange II

Compute I

Rearrange III

Ik @ P((N/kn)k1 , k1) @ILM/kfkm

Jknkm @ P(kf l k1) @ILMN/kfkmkn

Ik @ P((M/km)(N/kn), (M/km)/k1) @ IL/kz

lk @IMN/k @ F(L)

Ik @ P((M/km)(N/kn), (N/kn)k1) @ IL/kz

81

Rearrange IV

Segment

Rearrange V

Jknkm@ P(kf, k1)@ JLMN/kfkmkn

Ik 0 P((N/kn)k1, N/kn) 0 ILM/ktkm

Ik 0 P(LMN/k,L/k1)

We have seen that the second set of operations for two-dimensional case are

obtained by interchanging k1 and kz and N1 and N 2 . However, in three dimensional

case, we would need three sets. The second set is obtained with substitutions: M <­

L, N <-- M, and L <-- N; and km <-- k1, kn <-- km, and k1 <-- kn. Similarly, the third

set is obtained with substitutions: N <-- L, L <-- M, and M <-- N; and kn <-- k1,

k1 <-- km, and km <-- kn. Note that each set involves two communication stages, one

computation stage, and rest are local permutations.

82

References

[1] D. B. Skillicorn, "A Taxonomy for Computer Architectures," IEEE Computer,

pp. 46-57, Nov. 1988.

[2] R. Duncan, "A Survey of Parallel Computer Architectures," IEEE Computer,

pp. 5-16, Feb. 1990.

[3] M. Singhal and T. L. Casavant, "Distributed Computing Systems," IEEE Com­

puter, pp. 12-15, Aug. 1991.

[4] D. A. Reed and D. C. Grunwald, "The Performance of Multicomputer Intercon­

nection Networks," IEEE Computer, pp. 63-73, June 1987.

[5] L. N. Bhuyan, "An Analysis of Processor-Memory Interconnection Networks,"

IEEE Transactions on Computers, vol. C-34, pp. 279-283, Mar. 1985.

[6] L. N. Bhuyan and D. P. Agrawal, "Design and Performance of Generalized

Interconnection Networks," IEEE Transactions on Computers, vol. C-32, pp.

1081-1090, Dec. 1983.

[7] L. N. Bhuyan, Q. Yang, and D. P. Agrawal, "Performance of Multiprocessor

Interconnection Networks," IEEE Computer, pp. 25-37, Feb. 1989.

[8] A. S. Tanenbaum, M. Frans Kaashoek, and H. E. Bal, "Parallel Programming

Using Shared Objects and Broadcasting," IEEE Computer, pp. 10-19, Aug.

1992.

[9] A. H. Karp, "Programming for Parallelism," IEEE Computer, pp. 43-57, May

1987.

83

I I

I,

11

[10] W. J. Dally and C. L. Seitz, "The Torus Routing Chip," Journal of Parallel

and Distributed Computing, vol. 1, pp. 187-196, 1986.

[11] W. J. Dally and C. L. Seitz, "Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks," IEEE Transactions on Computers, vol. C-36, pp.

547-553, May 1987.

[12] L. M. Ni and P. K. McKinley, "A Survey of Wormhole Routing Techniques in

Direct Networks," IEEE Computer, pp. 62-76, 1993.

[13] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier Transform and

Convolution. Springer-Verlag Publishing Company, 1989.

[14] M. Davia, "Kronecker Products and Shuffie Algebra," IEEE Transactions on

Computers, vol. C-30, pp. 116-125, 1981.

[15] H. Xu and L. M. Ni, "Optimizing Data Decomposition for Data Parallel Pro­

grams," in International Conference on Parallel Processing, pp. 225-232, 1994.

[16] J. Ramanujam and P. Sadayappan, "Compile-Time Techniques for Data Distri­

bution in Distributed Memory Machines," IEEE Transactions on Parallel and

Distributed Systems, vol. 2, pp. 472-482, Oct. 1991.

[17] M. Gupta and P. Banerjee, "Demonstration of Automatic Data Partitioning

Techniques for Parallelizing Compiler on Multicomputers," IEEE Transactions

on Parallel and Distributed Systems, vol. 3, pp. 179-193, Mar. 1992.

[18] S. K. S. Gupta, S. D. Kaushik, S. Mufti, S. Sharma, C. H. Huang, and

P. Sadayappan, "On Compiling Array Expressions F Efficient Execution on

Distributed-Memory Machines," in Proceedings of International Conference on

Parallel Processing, pp. 301-305, 1993.

[19] S. D. Kaushik, C.-H. Huang, R. W. Johnson, and P. Sadayappan, "An Approach

to Communication-Efficient Data Redistribution," in Supercomputing 94, pp.

364-373, 1994.

84

[20] J. Li and M. Chen, "The Data Alignment Phase in Compiling Programs for

Distributed-Memory Machines," Journal of Parallel and Distributed Computing,

vol. 13, pp. 213-221, Oct. 1991.

[21] K. Knob, J. D. Lukas, and G. L. Steel, "Data Optimization: Allocation of

Arrays to Reduce Communication on SIMD Machines," Journal of Parallel and

Distributed Computing, vol. 3, pp. 102-118, Feb. 1990.

[22] S. Chatterjee, J. R. Gilbert, R. Schreiber, and S. H. Teng, "Automatic

Array Alignment in Data Parallel Algorithms," in Twentieth Annual ACM

SIGACT/SIGPLAN Symposium on Principles of Programming Languages, pp.

16-28, Jan. 1993.

[23] J. M. Anderson and M. S. Lam, "Global Optimization for Parallelism and Lo­

cality on Scalable Parallel Machines," in Proceedings of the ACM SIGPLAN'93

Conference on Programming Language Design and Implementation, pp. 112-

125, June 1993.

[24] M. An, I. Gertner, M. Rofheart, and R. Tolimieri, "Discrete Fast Fourier Trans­

form Algorithms: A Tutorial Survey," Advances in Electronics and Electron

Physics, vol. 80, 1991.

[25] G. Fox, A. J. C. Hey, and S. Otto, "Matrix Algorithms on the Hypercube I:

Matrix Multiplication," Parallel Computing, vol. 4, pp. 17-31 , 1987.

[26] Z. Qian and J. Weiss, "Wavelets and The Numerical Solution of Partial Dif­

ferential Equations," Journal of Computational Physics, vol. 106, pp. 155-175,

1993.

[27] N. Anupindi, M. An, and Q. Yang, "Formulating Data Partition and Migration

in Distributed Memory Multiprocessors," submitted to Journal of Parallel and

Distributed Systems, 1994.

85

[28] A. Averbuch, E. Gabber, B. Gordissky, and Y. Medan, "A Parallel FFT on

an MIMD Machine," in Proceedings of International Conference on Parallel

Processing, pp. III- 63-70, Aug. 1989.

[29] S. Horiguchi and T. Nakada, "Experimental Performance Evaluation of Parallel

FFT on a Multiprocessor Workstation," in Proceedings of International Confer­

ence on Parallel Processing, pp. III-97-101 , Aug. 1990.

[30] A. Norton and A. J. Silberger, "Parallelization and Performance Analysis of

The Cooley-Tukey FFT Algorithm for Shared-Memory Architectures ," IEEE

Transactions on Computers, vol. C-36, pp. 581-591, May 1987.

[31] C. P. Thacker, L. C. Stewart, and E. H. Satterthwaite, "Firefly: A Multipro­

cessor Workstation," IEEE Transactions on Computers, vol. C-37, pp. 909-920,

1988.

[32] S. L. Johnson, M. Jacquemin, and C. T. Ho, "High Radix FFT on Boolean Cube

Networks," Technical Report NA89-7, Thinking Machines Corporation, 1989.

[33] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, "A Methodology

for Designing, Modifying, and Implementing Fourier Transform Algorithms on

Various Architectures," IEEE Transactions on Circuits, Systems, and Signal

Processing, vol. 9, pp. 449-500, 1990.

[34] P. N. Swarztrauber, "Multiprocessor FFTs," Parallel Computing, vol. 5, pp.

197-210, 1987.

[35] R. Susann, ed., Parallel Programming. McGraw-Hill Inc., 1991.

[36] A. Borodin, J. V. Z. Gathen, and J. Hopcroft , "Fast Parallel Matrix and GCD

Computations," Information and Control, vol. 52, pp. 241-256, 1982.

[37] V. Strassen, "Gaussian Elimination is Not Optimal," Numerical Mathematics,

vol. 13, pp. 354-356, 1969.

86

[38] C.-H. Huang, J. R. Johnson, and R. W. Johnson, "A Tensor Product Fro­

mulation of Strassen's Matrix Multiplication Algorithm," Applied Mathematics

Letters, vol. 3, pp. 67-71, 1990.

[39] C.-H. Huang, J. R. Johnson, and R. W. Johnson, "Generating Parallel Pro­

grams from Tensor Product Formulas: A Case Study of Strassen's Matrix Mul­

tiplication algorithm," in Proceedings of International Conference on Parallel

Processing, pp. 104-108, 1992.

[40] W. M. Gentleman, "Some Complexity Results for Matrix Computations on

Parallel Processors," Journal of ACM, vol. 25, pp. 112-115, Jan. 1978.

[41] R. W. Numrich, ed., Supercomputer Applications, ch. A Vectorized Matrix­

Vector Multiply and Overlapping Block Iterative Method by Linda J. Hayes.

New York: Plenum Press, 1984.

[42] E. Dekel, D. Nassimi, and S. Sahni, "Parallel Matrix and Graph Algorithms,"

SIAM Journal of Computing, vol. 10, Nov. 1981.

[43] T. Agerwala and B. Lint, "Communication in Parallel Algorithms for Boolean

Matrix Multiplication," in Proceedings of International Conference on Parallel

Processing, pp. 146-153, 1978.

[44] R. P. Brent, "The Parallel Evaluation of General Arithmetic Expressions," Jour­

nal of ACM, vol. 21, pp. 20f-206, 1974.

[45] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving

Problems on Concurrent Processors, Volume I: General Techniques and Regular

Problems. Englewood Cliffs, New Jersy: Prentice Hall, 1988.

[46] S. L. Johnsson, "Minimizing the Communication Time for Matrix Multiplication

on Multiprocessors," Parallel Computing, vol. 19, pp. 1237-1257, 1993.

[47] N. Anupindi, Q. Yang, and M. An, "Parallel Matrix Multiplication for Rectan­

gular Arrays,'' submitted to International Conference on Parallel Processing-95,

1994.

87

[48] N. Anupindi, M. An, G. Kechriotis, and Q. Yang, "Generation of Distributed

2D-FFT Program using Tensor Algebra," Submitted to 9th International Sym­

posium on Parallel Processing-94 , 1994.

[49] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, "IBM system/360 model

91: Machine philosophy and instruction handling," IBM Journal of Research

and Development, pp. 8-24, Jan. 1967.

[50] M. C. Pease, "An adaptation of the fast Fourier transform for parallel process­

ing," Journal of ACM, vol. 15, pp. 252-264, Apr. 1968.

[51] Z. Qian and J. Weiss , "Wavelets and The Numerical Solution of Boundary Value

Problems," Applied Mathematics Letters, vol. 6, pp. 47-52, 1993.

[52] J . Weiss, "Wavelets and The Study of Two-Dimensional Turbulence," Technical

Report AD910628, Aware Inc., One Memorial Dr., Cambridge, MA 02142-1301 ,

1992. and the Proceedings of French-USA Workshop on Wavelets and Turbu­

lence, Princeton University, June 1991, Ed. Y. Maday, Springer-Verlag.

[53] K. Hwang, Advanced Computer Architecture. McGraw-Hill Book Company, Inc.,

1993.

[54] N. Anupindi, M. An, J . W. Cooley, and Q. Yang, "A New and Efficient FFT

Algorithm for Distributed Memory Systems," ·to appear in International Con­

ference on Parallel and Distributed Systems-94 , 1994.

[55] H. T. Kung and C. E. Leiserson, Introduction to VLSI Systems, ch. Section 8.3

by C. Mead and L. Conway. Reading, MA: Addison-Wesley, 1980.

[56] A. Sameh, "Numerical Algorithms on The Cedar Systems," in Second SIAM con­

ference on Vector and Parallel Processing in Scientific Computing, (Virginia),

20th November 1985.

[57] L. Johnsson and C.-T. Ho, "Matrix Multiplication on Boolean Cubes using

Generic Communication Primities," in Proceedings of the ARO workshop on

Parallel Processing and Medium-Scale Multiprocessors, 1986.

88

I

II
I

I

I

I

II

I

I

I

Bibliography

Agerwala, T. and Lint, B., "Communication in Parallel Algorithms for Boolean Ma­

trix Multiplication," in Proceedings of International Conference on Parallel Process­

ing, pp. 146-153, 1978.

An, M., Gertner, I., Rofbeart, M., and Tolimieri, R., "Discrete Fast Fourier Trans­

form Algorithms: A Tutorial Survey," Advances in Electronics and Electron Physics,

vol. 80, 1991.

Anderson, D. W., Sparacio, F. J., and Tomasulo, R. M., "IBM system/360 model

91: Machine philosophy and instruction handling," IBM Journal of Research and

Development, pp. 8-24, Jan. 1967.

Anderson, J. M. and Lam, M. S., "Global Optimization for Parallelism and Locality

on Scalable Parallel Machines," in Proceedings of the ACM SIGPLAN'93 Conference

on Programming Language Design and Implementation, pp. 112-125, June 1993.

Anupindi, N., An, M., Cooley, J. W., and Yang, Q., "A New and Efficient FFT

Algorithm for Distributed Memory Systems," to appear in International Conference

on Parallel and Distributed Systems-94, 1994.

Anupindi, N., An, M., Kechriotis, G., and Yang, Q., "Generation of Distributed 2D­

. FFT Program using Tensor Algebra," Submitted to 9th International Symposium on

Parallel Processing-94, 1994.

Anupindi, N., An, M., and Yang, Q., "Formulating Data Partition and Migration

in Distributed Memory Multiprocessors," submitted to Journal of Parallel and Dis­

tributed Systems, 1994.

89

Anupindi, N., Yang, Q., and An, M., "Parallel Matrix Multiplication for Rectangular

Arrays," submitted to International Conference on Parallel Processing-95, 1994.

Averbuch, A., Gabber, E., Gordissky, B., and Medan, Y., "A Parallel FFT on an

MIMD Machine," in Proceedings of International Conference on Parallel Processing,

pp. IIl-63-70, Aug. 1989.

Bhuyan, L. N., "An Analysis of Processor-Memory Interconnection Networks ," IEEE

Transactions on Computers, vol. C-34, pp. 279-283, Mar. 1985.

Bhuyan, L. N. and Agrawal , D. P., "Design and Performance of Generalized Inter­

connection Networks," IEEE Transactions on Computers, vol. C-32, pp. 1081-1090,

Dec. 1983.

Bhuyan, L. N., Yang, Q., and Agrawal, D. P. , "Performance of Multiprocessor Inter­

connection Networks," IEEE Computer, pp. 25-37, Feb. 1989.

Borodin, A. , Gathen, J. V. Z., and Hopcroft, J. , "Fast Parallel Matrix and GCD

Computations," Information and Control, vol. 52, pp. 241-256, 1982.

Brent , R. P., "The Parallel Evaluation of General Arithmetic Expressions," Journal

of ACM, vol. 21 , pp. 201- 206, 1974.

Chatterjee, S., Gilbert , J. R. , Schreiber, R. , and Teng, S. H. , "Automatic

Array Alignment in Data Parallel Algorithms," in Twentieth Annual ACM

SIGACT/SIGPLAN Symposium on Principles of Programming Languages, pp. 16-

28, Jan. 1993.

Dally, W. J. and Seitz, C. L., "Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks," IEEE Transactions on Computers, vol. C-36, pp. 547-

553, May 1987.

Dally, W. J. and Seitz, C. L. , "The Torus Routing Chip," Journal of Parallel and

Distributed Computing, vol. 1, pp. 187-196, 1986.

Davio, M. , "Kronecker Products and Shuffie Algebra," IEEE Transactions on Com­

puters, vol. C-30, pp. 116-125, 1981.

90

Dekel, E., Nassimi, D., and Sahni, S., "Parallel Matrix and Graph Algorithms,"

SIAM Journal of Computing, vol. 10, Nov. 1981.

Duncan, R., "A Survey of Parallel Computer Architectures," IEEE Computer, pp.

5-16, Feb. 1990.

Fox, G., Hey, A. J.C., and Otto, S., "Matrix Algorithms on the Hypercube I: Matrix

Multiplication," Parallel Computing, vol. 4, pp. 17-31, 1987.

Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J. , and Walker, D., Solv­

ing Problems on Concurrent Processors, Volume I: General Techniques and Regular

Problems. Englewood Cliffs, New Jersy: Prentice Hall, 1988.

Gentleman, W. M., "Some Complexity Results for Matrix Computations on Parallel

Processors," Journal of ACM, vol. 25, pp. 112-115, Jan. 1978.

Gupta, M. and Banerjee, P., "Demonstration of Automatic Data Partitioning Tech­

niques for Parallelizing Compiler on Multicomputers," IEEE Transactions on Par­

allel and Distributed Systems, vol. 3, pp. 179-193, Mar. 1992.

Gupta, S. K. S. , Kaushik, S. D. , Mufti, S., Sharma, S., Huang, C. H. , and Sadayap­

pan, P., "On Compiling Array Expressions F Efficient Execution on Distributed­

Memory Machines," in Proceedings of International Conference on Parallel Process­

ing, pp. 301- 305, 1993.

Horiguchi, S. and Nakada, T ., "Experimental Performance Evaluation of Parallel

FFT on a Multiprocessor Workstation," in Proceedings of International Conference

on Parallel Processing, pp. 111-97-101, Aug. 1990.

Huang, C.-H., Johnson, J. R. , and Johnson, R. W., "Generating Parallel Programs

from Tensor Product Formulas: A Case Study of Strassen's Matrix Multiplication

algorithm," in Proceedings of International Conference on Parallel Processing, pp.

104-108, 1992.

Huang, C.-H. , Johnson, J . R., and Johnson, R. W., "A Tensor Product Fromulation

of Strassen's Matrix Multiplication Algorithm," Applied Mathematics Letters, vol. 3,

pp. 67-71, 1990.

91

Hwang, K., Advanced Computer Architecture. McGraw-Hill Book Company, Inc.,

1993.

Johnson, J. R., Johnson, R. W. , Rodriguez, D., and Tolimieri, R., "A Methodology

for Designing, Modifying, and Implementing Fourier Transform Algorithms on Vari­

ous Architectures," IEEE Transactions on Circuits, Systems, and Signal Processing,

vol. 9, pp. 449-500, 1990.

Johnson, S. L. , Jacquemin, M., and Ho, C. T., "High Radix FFT on Boolean Cube

Networks," Technical Report NA89-7, Thinking Machines Corporation, 1989.

Johnsson, L. and Ho, C.-T., "Matrix Multiplication on Boolean Cubes using Generic

Communication Primities," in Proceedings of the ARO workshop on Parallel Pro­

cessing and Medium-Scale Multiprocessors, 1986.

Johnsson, S. L., "Minimizing the Communication Time for Matrix Multiplication on

Multiprocessors," Parallel Computing, vol. 19, pp. 1237-1257, 1993.

Karp, A.H., "Programming for Parallelism," IEEE Computer, pp. 43-57, May 1987.

Kaushik, S. D. , Huang, C.-H., Johnson, R. W., and Sadayappan, P. , "An Approach

to Communication-Efficient Data Redistribution," in Supercomputing 94, pp. 364-

373, 1994.

Knob, K., Lukas, J. D., and Steel, G. L., "Data Optimization: Allocation of Arrays

to Reduce Communication on SIMD Machines," Journal of Parallel and Distributed

Computing, vol. 3, pp. 102-118, Feb. 1990.

Kung, H. T. and Leiserson, C. E. , Introduction to VLSI Systems, ch. Section 8.3 by

C. Mead and L. Conway. Reading, MA: Addison-Wesley, 1980.

Li, J. and Chen, M., "The Data Alignment Phase in Compiling Programs for

Distributed-Memory Machines," Journal of Parallel and Distributed Computing,

vol. 13, pp. 213-221, Oct. 1991.

Ni , L. M. and McKinley, P. K., "A Survey of Wormhole Routing Techniques m

Direct Networks," IEEE Computer, pp. 62-76, 1993.

92

Norton, A. and Silberger, A. J., "Parallelization and Performance Analysis of The

Cooley-Tukey FFT Algorithm for Shared-Memory Architectures," IEEE Transac­

tions on Computers, vol. C-36, pp. 581-591, May 1987.

Numrich, R. W., ed., Supercomputer Applications, ch. A Vectorized Matrix-Vector

Multiply and Overlapping Block Iterative Method by Linda J. Hayes. New York:

Plenum Press, 1984.

Pease, M. C., "An adaptation of the fast Fourier transform for parallel processing,"

Journal of ACM, vol. 15, pp. 252-264, Apr. 1968.

Qian, Z. and Weiss, J., "Wavelets and The Numerical Solution of Boundary Value

Problems," Applied Mathematics Letters, vol. 6, pp. 47-52, 1993.

Qian, Z. and Weiss, J., "Wavelets and The Numerical Solution of Partial Differential

Equations," Journal of Computational Physics, vol. 106, pp. 155-175, 1993.

Ramanujam, J. and Sadayappan, P., "Compile-Time Techniques for Data Distri­

bution in Distributed Memory Machines," IEEE Transactions on Parallel and Dis­

tributed Systems, vol. 2, pp. 472-482, Oct. 1991.

Reed, D. A. and Grunwald, D. C., "The Performance of Multicomputer Interconnec­

tion Networks," IEEE Computer, pp. 63-73, June 1987.

Sameh, A., "Numerical Algorithms on The Cedar Systems," in Second SIAM con­

ference on Vector and Parallel Processing in Scieritific Computing, (Virginia), 20th

November 1985.

Singhal, M. and Casavant, T. L., "Distributed Computing Systems," IEEE Com­

puter, pp. 12-15, Aug. 1991.

Skillicorn, D. B., "A Taxonomy for Computer Architectures," IEEE Computer, pp.

46-57, Nov. 1988.

Strassen, V., "Gaussian Elimination is Not Optimal," Numerical Mathematics,

vol. 13, pp. 354-356, 1969.

Susann, R., ed., Parallel Programming. McGraw-Hill Inc., 1991.

93

Swarztrauber, P. N., "Multiprocessor FFTs," Parallel Computing, vol. 5, pp. 197-

210, 1987.

Tanenbaum, A. S., Frans Kaashoek, M., and Bal, H. E. , "Parallel Programming

Using Shared Objects and Broadcasting," IEEE Computer, pp. 10-19, Aug. 1992.

Thacker, C. P., Stewart, L. C., and Satterthwaite, E. H., "Firefly: A Multiprocessor

Workstation," IEEE Transactions on Computers, vol. C-37, pp. 909-920, 1988.

Tolimieri, R., An, M., and Lu, C., •·Algorithms for Discrete Fourier Transform and

Convolution. Springer-Verlag Publishing Company, 1989.

Weiss, J., "Wavelets and The Study of Two-Dimensional Turbulence," Technical

Report AD910628, Aware Inc. , One Memorial Dr. , Cambridge, MA 02142-1301 ,

1992. and the Proceedings of French-USA Workshop on Wavelets and Turbulence,

Princeton University, June 1991, Ed. Y. Maday, Springer-Verlag.

Xu, H. and Ni, L. M., "Optimizing Data Decomposition for Data Parallel Programs,"

in International Conference on Parallel Processing, pp. 225-232, 1994.

94

	Data Partition and Migration for High Performance Computation in Distributed Memory Multiprocessors
	Terms of Use
	Recommended Citation

	dissert_anupindi_1994_001
	dissert_anupindi_1994_002
	dissert_anupindi_1994_003
	dissert_anupindi_1994_004
	dissert_anupindi_1994_005
	dissert_anupindi_1994_006
	dissert_anupindi_1994_007
	dissert_anupindi_1994_008
	dissert_anupindi_1994_009
	dissert_anupindi_1994_010
	dissert_anupindi_1994_011
	dissert_anupindi_1994_012
	dissert_anupindi_1994_013
	dissert_anupindi_1994_014
	dissert_anupindi_1994_015
	dissert_anupindi_1994_016
	dissert_anupindi_1994_017
	dissert_anupindi_1994_018
	dissert_anupindi_1994_019
	dissert_anupindi_1994_020
	dissert_anupindi_1994_021
	dissert_anupindi_1994_022
	dissert_anupindi_1994_023
	dissert_anupindi_1994_024
	dissert_anupindi_1994_025
	dissert_anupindi_1994_026
	dissert_anupindi_1994_027
	dissert_anupindi_1994_028
	dissert_anupindi_1994_029
	dissert_anupindi_1994_030
	dissert_anupindi_1994_031
	dissert_anupindi_1994_032
	dissert_anupindi_1994_033
	dissert_anupindi_1994_034
	dissert_anupindi_1994_035
	dissert_anupindi_1994_036
	dissert_anupindi_1994_037
	dissert_anupindi_1994_038
	dissert_anupindi_1994_039
	dissert_anupindi_1994_040
	dissert_anupindi_1994_041
	dissert_anupindi_1994_042
	dissert_anupindi_1994_043
	dissert_anupindi_1994_044
	dissert_anupindi_1994_045
	dissert_anupindi_1994_046
	dissert_anupindi_1994_047
	dissert_anupindi_1994_048
	dissert_anupindi_1994_049
	dissert_anupindi_1994_050
	dissert_anupindi_1994_051
	dissert_anupindi_1994_052
	dissert_anupindi_1994_053
	dissert_anupindi_1994_054
	dissert_anupindi_1994_055
	dissert_anupindi_1994_056
	dissert_anupindi_1994_057
	dissert_anupindi_1994_058
	dissert_anupindi_1994_059
	dissert_anupindi_1994_060
	dissert_anupindi_1994_061
	dissert_anupindi_1994_062
	dissert_anupindi_1994_063
	dissert_anupindi_1994_064
	dissert_anupindi_1994_065
	dissert_anupindi_1994_066
	dissert_anupindi_1994_067
	dissert_anupindi_1994_068
	dissert_anupindi_1994_069
	dissert_anupindi_1994_070
	dissert_anupindi_1994_071
	dissert_anupindi_1994_072
	dissert_anupindi_1994_073
	dissert_anupindi_1994_074
	dissert_anupindi_1994_075
	dissert_anupindi_1994_076
	dissert_anupindi_1994_077
	dissert_anupindi_1994_078
	dissert_anupindi_1994_079
	dissert_anupindi_1994_080
	dissert_anupindi_1994_081
	dissert_anupindi_1994_082
	dissert_anupindi_1994_083
	dissert_anupindi_1994_084
	dissert_anupindi_1994_085
	dissert_anupindi_1994_086
	dissert_anupindi_1994_087
	dissert_anupindi_1994_088
	dissert_anupindi_1994_089
	dissert_anupindi_1994_090
	dissert_anupindi_1994_091
	dissert_anupindi_1994_092
	dissert_anupindi_1994_093
	dissert_anupindi_1994_094
	dissert_anupindi_1994_095
	dissert_anupindi_1994_096
	dissert_anupindi_1994_097
	dissert_anupindi_1994_098
	dissert_anupindi_1994_099
	dissert_anupindi_1994_100
	dissert_anupindi_1994_101
	dissert_anupindi_1994_102
	dissert_anupindi_1994_103
	dissert_anupindi_1994_104

