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Abstract 

Data-partition and migration for efficient communication in distributed memory ar­

chitectures are critical for performance of data parallel algorithms. This research 

presents a formal methodology for the process of data-distribution _and redistribution 

using tensor products and stride permutations as mathematical tools. The algebraic 

expressions representing data-partition and migration directly operate on a data vec­

tor, and hence can be conveniently embedded into an algorithm. It is also shown 

that these expressions are useful for a clear understanding and to efficiently interleave 

problems that involve different data-distributions at different phases. This compati­

bility made us successfully utilize these expressions in developing and demonstrating 

matrix transpose and fast Fourier transform algorithms. Usage of these expressions 

for data interface generated efficient parallel implementation to solve Euler partial 

differential equation. An endeavor to minimize communication cost using expressions 

for data-distribution disclosed a routing scheme for Fourier transform evaluation. Re­

sults promised that for large parallel machines, this scheme is a solution to today's 

problems which feature enormous data. Finally, a unique data-distribution tech­

nique that effectively uses transpose algorithms for multiplication of two rectangular 

matrices is derived. Performance of these algorithms are evaluated by carrying out 

implementations on Intel's i860 based iPSC/860, Touchstone Delta, Gamma, and 

Paragon supercomputers. 
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Preface 

The demand for high speed computers has been more than existing computing power 

at any time in the computer era. Even very impressive electronic components could 

not satisfy today's thirst for performing enormous number of calculations involved in 

most of the practical applications. With these challenges, parallel processing is the 

way to achieve desired computing speeds. A parallel computer consists of a collection 

of processing units that assist together to solve an application. Architects of parallel 

computers have the freedom to select number of processing units, to link processors 

through various interconnections, to have shared or distributed memory, to design 

synchronous or asynchronous operations, etcetera. 

For academic researchers, access to supercomputers is still limited. Nonetheless, 

usage of supercomputers by the community of scientists is increasing every year, 

and research projects performed on these became more ambitious and sophisticated. 

To solve problems once thought impractical, supercomputers have become friendly 

tools. 

This dissertation addresses aspects in parallel systems which have distributed 

memory and feature independence from underlying interconnection network. The 

problems studied in this dissertation are based on mathematical tools which can 

represent algorithms for parallel systems. Examples are used as often as possible 

to illustrate these tools. Distributing the problem onto processors is modeled using 

these tools while they were proven to be helpful to optimize old solutions as well as 

to derive new solutions. A list of references to publications where related problems 

and algorithms are treated is provided at the end. 
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Chapter 1 

Introduction 

Many scientific computations such as engineering, energy resource, medical, military, 

artificial intelligence, and basic research areas demand fast processing computers to 

achieve required computational performance. Without the existence of superpower 

computers , the study of many of these applications and the efforts to meet today's 

challenges could hardly be realized. Since device characteristics are approaching 

the physical limit, parallel processing is the only way to improve computing power 

further in order to meet its ever increasing demand. Research in cost-effective, high­

speed, massively parallel, and reliable supercomputers has become a very active field 

in computer engineering. 

Two distinct and important parallel computer architectures are shared-memory, 

and message-passing systems [1, 2]. A shared-memory machine has a single global 

memory accessible to all processors such as IBM RP3, Encore Multimax, Cray X-MP, 

and many workstations. Its important feature is that communication between nodes 

is done by reading from and writing into the shared-memory. However, the shared­

memory builds a barrier for increasing number of processing elements. Message­

passing systems, also known as distributed memory system, allocate a stipulated 

amount of memory to each processing element but data does not form a single ad­

dress space [3]. Communication among processors is done through message-passing. 

Intel iPSC, nCube, and Caltech Mark II hypercube belong to this category. In this 
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architecture, if an application shares data at distinct nodes, a programmer specifi­

cally commands to port data from one node to another. Since no resources such as 

data, cache, CPU time, etc., are globally shared besides the links (a link is accessible 

to a very limited number of processors), message-passing systems are scalable and 

preferred by researchers for solving larger problems. 

One important characteristic of message-passing machines (also known as dis­

tributed memory systems) is that there is a significant timing difference between 

local and remote data accesses. Remote data access involves message-passing among 

processors. This message-passing process takes a significant amount of total execu­

tion time of a computational procedure. The amount of remote data accesses needed 

to accomplish a given computation mainly depends upon how data are initially allo­

cated to processors. We refer to this initial data allocation as data-partition. Efficient 

data-partition in distributed memory systems is essential for achieving high perfor­

mance of data parallel programs. An optimal data-partition for one individual algo­

rithm (computation module) may not be optimal for others. Therefore, optimized 

data-partition for applications that involve a number of computation algorithms or 

modules present an interesting challenge to parallel processing researchers. 

Optimization of data-partition is achieved mainly by constraining to a rule that 

number of message-passings should be minimum for a given system architecture. 

The system architecture of a distributed memory system is mainly determined by its 

interconnection structure. Various interconnection networks and evaluation of their 

performance have been reported in the literature [4, 5, 6, 7] . Some well known net­

work schemes for message-passing systems are ring, tree, mesh, hypercube and star 

connections. Processors that are directly connected are called neighbors. Processors 

that are not connected through a direct link are called non-neighbors . Distance be­

tween processors is calculated based on the minimum number of processors through 

which they are connected. It was also observed that the farther the node is, the 

longer it takes to port data. Hence, the performance of an implementation can be 

optimized by minimizing the distance a node has to travel to get data. Extensive 
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efforts have been put forth in minimizing communication distance among processors 

in a research field called parallel programming [8, 9]. 

Recently, a very important technological advancement has occurred in interconnec­

tion networks to minimize communication cost known as wormhole routing [10, 11]. 

In this scheme, a message is divided into a number of flits (flow control digits). Once 

the header flit of a message acquires a channel, it governs the route of that message 

and the remaining flits follow in a pipelined fashion. This pipelined nature of worm­

hole routing procedures resulted in a network latency that is relatively insensitive to 

the distance between processors [12], which in turn has made communication cost 

to predominantly depend upon message lengths and the number of messages. These 

features have attracted commercial multicomputers such as the Intel's Touchstone 

Delta and Intel's Paragon which use wormhole routing in a 2D mesh, and MIT's 

J-machine which uses wormhole routing in 3D mesh. Ametek 2010 used a mesh net­

work renamed as Symult 2010 after adopting wormhole routing. The nCube-2 which 

originally used hypercube topology has now adopted wormhole routing. 

With wormhole routing, passing a message from one node to another reqmres 

a specific start-up (overhead) time, tstart, and a transmission time that depends 

upon the length of the message. Let telement be the time for an 8-byte data to pass 

through an acquired channel. Then a simple model for total communication time for 

a message of !-bytes is given by 

itotal tstart + (l/8) telement· ( 1.1) 

We conducted experiments to determine the relationship between start-up time and 

transmission time on several machines. Table 1.1 shows the results of our experiments 

to obtain start-up time and time to communicate 8-bytes (one complex number) of 

data on Intel's Paragon, Gamma, and Touchstone Delta. Results are obtained by 

averaging observed timings over 100 samples for passing a message from each node 

to every other node. Possible machine-partitions (machine-partition is a cluster of 

nodes that is subset of all the nodes on a machine. For example, a cluster of 16 
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nodes on 512-node Touchstone Delta is a 16-node machine-partition) are considered 

for each machine to observe the effect of node's distance on total communication 

time. It is observed that the ratio between start-up time and transmission time 

remains almost constant irrespective of physical distance between nodes , implying 

performance results close to a fully connected distributed system. Understanding 

such features of new machines with respect to their latency of message-passing helps 

parallel programmers to develop efficient algorithms. 

Because of the importance of data-partition in data parallel programs, we focused 

our attention on the study of partitioning an application and migrating the necessary 

data among processors. This dissertation formulates the data-partitioning schemes 

and derives variants of migrating schemes in distributed memory multiprocessor sys­

tems using tensor algebra. The essential feature of this formulation is that data­

partition and migration are represented using simple tensor algebraic expressions. 

Therefore, they can form parts of an algorithm that is already written in tensor alge­

braic notation. Furthermore, by using tensor notation and stride permutations, our 

formulation is simple and compact without having to deal with complicated indices 

in complex data structures. Such a clear mathematical representation of storage 

schemes helps parallel programmers greatly to look into inherent structure( s) of an 

algorithm and the associated communication cos~. 

With the newly proposed formulations, optimal data-migration at interfaces be­

tween computation modules become straightforward algebraic manipulations. This 

research demonstrates the manipulations of fast Fourier transform (FFT) algorithms 

for efficient implementations. These algorithms are applied to an application that 

solves Euler partial differential equation using wavelet-Galerkin method and achieved 

a significant improvement in the overall performance. Then, we have designed an 

efficient two-dimensional FFT algorithm for distributed systems using algebraic ex­

pressions for mesh-division data-partitioning. This design is shown to be a solution 

to the problems featuring huge data size, large machines and higher dimensional­

ity. Optimal data-partition is considered also for matrix multiplication algorithms 
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Number of Paragon Gamma Delta 
Nodes t start te1ement t start telement t start te1ement 

(msec) (µsec) (msec) (µsec) (msec) (µsec) 

4 4.330 0.922 2.753 5.734 1.046 2.560 
8 4.411 0.939 2.981 6.357 1.355 3.328 

16 4.445 0.934 1.548 3.757 
32 4.503 0.985 1.777 4.541 
64 4.512 0.989 1.831 4.521 

128 1.910 4.658 
256 1.921 4.708 

Table 1.1 : Results of experiments to determine the start-up and transmission times 

where we have shown that distributed transpose algorithms can be efficiently used 

for multiplying two rectangular arrays. 

In order to demonstrate the usefulness and significance of our data-partition ex­

pressions, we carried out implementations of our algorithms and applications on 

Intel's supercomputers: iPSC/ 860, Paragon, Gamma, and Touchstone Delta. 

This dissertation is organized as follows: Chapter 2 reviews the tensor algebraic 

notation, and related theorems that are required· for a better understanding of the 

concepts in our contributions. It also presents a survey of the existing literature that 

is related to this dissertation. Chapter 3 presents definitions for three data-allocation 

schemes in tensor algebraic notation. Demonstration of these expressions is presented 

for the case of matrix transpose algorithms using all the three distinct data-allocation 

schemes . This chapter also presents tensor product formulation of two-dimensional 

discrete Fourier transform (2D-DFT) for row-division data-partition using the trans­

pose algorithms. Computation of vorticity and stream functions in two-dimensional 

fluid turbulence using 2D-DFT is carried out in Chapter 4 to demonstrate the us­

age of data-allocation expressions to efficiently interface two computation modules 
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that are efficient for two different data-partition schemes. A new and highly effi­

cient approach to evaluate large 2D-DFTs using large parallel computers is derived 

using tensor algebra in Chapter 5. Chapter 6 considers the matrix multiplication 

algorithms for distributed memory systems via matrix transpose algorithm by pre­

senting a unique data allocation scheme for rectangular multiplicands. Chapter 7 

discusses future research and possible extensions of the methods developed in this 

work to other algorithms. 
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Chapter 2 

Preliminaries and Related "Work 

2.1 Introduction 

In a distributed environment, implementation procedure for most of the applications 

involves dividing the main computational task into (a) local tasks that depend upon 

data residing at a node 's local memory, and (b) global tasks that depend upon data 

residing at more than one node. Such an identification and separation gives an 

estimation of the degree of node balance in an implementation and also the inherent 

message-passing overheads. Tensor algebra is a mathematical language that aids 

to identify, express, and analyze these tasks in an algorithm. Two most important 

operations in tensor algebra are tensor products, and stride permutations. In the 

following sections, we introduce these operations and demonstrate their importance 

with respect to parallel machines. This notation is used in Chapter 3 to develop a 

set of formal definitions for data-partition schemes. Later parts of Chapter 3 use 

the same notation to express matrix transpose algorithms, and multidimensional 

fast Fourier transform (FFT) calculations with an emphasis on their implementation 

aspects for a distributed memory system. Also, Chapters 4 and 5 deal with variants 

of FFT algorithms using the same notation. 
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Sections 2.2 through 2.5 review the necessary notation and relevant theorems 

to this dissertation from tensor algebra. Survey of the literature related to data­

partitioning schemes is presented in Section 2.6 while that for FFT algorithms and 

matrix computations are presented in Sections 2. 7 and 2.8, respectively. Section 2.9 

gives a brief description of the machines on which experiments in this dissertation 

are conducted. Section 2.10 concludes the chapter. 

2.2 Operators Mat and Vect 

Let x be Kl-element vector: [xo X1 . .. , XKJJT. The matrix operator, MaiKxJ, 

converts x into a ]{ x J matrix as follows. 

Xo XK X(J-l)K 

X1 XK+l X(J-l)K+l 

X = M aiKxJ(x) = X2 XK+2 X(J-1)K+2 (2.2) 

XK -1 X2K-l XJK-1 

The inverse operation of Mat, VeciKJ, forms a linear array according to column­

major scheme as follows. 

Xo XK X(J-l)K 

X1 XK+l X(J-l)K+l 

x = VectKJ(X) = VectJK X2 XK+2 X(J-1)K+2 (2.3) 

XK-1 X2K-1 XJK-1 

2.3 Stride Permutation 

Stride permutations are natural way of representing data-shuffling operations. We 

use P(Lx, S) to represent a stride permutation operation on a vector of length Lx 

with stride S. Let x be an L5 S-element vector and Lx = L 5 S. Then, the stride 
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permutation, y = P(Lx, S)x, performs the following operations. The first Ls ele­

ments of y are obtained by picking up elements of x starting at x 0 and then each Sth 

element of x: that is, { xo, xs, . .. X(L.-1)S}. The next Ls elements of y are obtained 

in the same way starting at X1 of x: { X1, xs+i, . .. , X(L.-l)S+l}, and so on. Therefore, 

the stride permutation operation, P(Lx, S), is an Lx x Lx size matrix that is filled 

with zeros and ones. 

Example 2.1 Permutation matrix P(6, 3) shown below is operating on vector x = 

[xo x 1 x2 X3 X4 xs]T, and denoted as y = P(6, 3)x. 

Xo 1 0 0 0 0 0 Xo 

X3 0 0 0 1 0 0 X1 

X1 0 1 0 0 0 0 Xz 
y= (2.4) 

X4 0 0 0 0 1 0 X3 

Xz 0 0 1 0 0 0 X4 

X5 0 0 0 0 0 1 X5 

P(6, 3) 

2.4 Tensor Product 

Tensor product is a binary operator between two matrices of any size. Given two 

matrices A and B of sizes MA x NA and MB x NB , respectively, a new matrix, C, 

dimensioned MAME x NANB can be generated by tensor product of A and Bas: 

a(o ,o)B a(o ,1)B a(o,z)B a(o ,Nrl)B 

a(1,o)B a(1 ,1)B a(1,2)B a(1,Nr1)B 

C=A ®B= a(2 ,o)B a(2 ,1)B a(2,2)B a(2,Nr1)B (2.5) 

a(MA-1,o)B a(MA-1 ,1)B a(MA-1,2)B a(MA-1 ,NA-l)B 

where a(i,j) is the element at ith row and jth column of A, and a(i ,j)B is scalar matrix 

multiplication. In other words , tensor product is a list of all possible combinations 

of multiplications of one matrix's elements with the other's. 
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Example 2.2 Consider two matrices A and B as: 

A= u: l and B = [ 10 11 
12 l 

13 14 15 

Then 

10 11 12 20 22 24 

C=A O B= [*] 13 14 15 26 28 30 

3B 4B 30 33 36 40 44 48 

39 42 45 52 56 60 

according to equation {2.5). 

Two types of tensor products are of special interest to us here from the point of 

parallel computations. One has an identity matrix on the left-hand side of the tensor 

product as I ® A, called prior identity matrix, and the other has an identity matrix 

on the right-hand side such as A x I, referred as post identity matrix. For the rest 

of the discussion in this section, let a vector x be of length Lx = J NA, vector y be 

of length Ly= J MA , matrix IJ be identity matrix of size J x J, and 0MA x NA be 

a null matrix of size MA x NA. 

When tensor product of an identity matrix IJ with a matrix A of size MA x NA is 

applied on a vector x, it can be written as 

(2.6) 

The above equation can be expanded using the definition of tensor product as 

Yo AMAxNA 0MAxNA 0MA XNA 0MAXNA Xo 

Y1 0MA XNA AMA XNA 0MA xNA 0MAxNA X1 

Y2 0MA xNA 0MA xNA AMA X NA 0MAXNA X2 (2.7) 

YLy-1 0MAXNA 0MAxNA 0MAXNA AMAXNA XLx-1 

which can also be expressed using operators Mat and V ect as 

(2.8) 
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On a ]-processor architecture, this representation gives a mechanism of simulta­

neously operating matrix A on different parts of input data by different processors. 

Example 2.3 Consider a 4-processor machine and the following operational matrix 

A to be operated on vector x: 

A= [: _: l 
Then) y = (:4 0 A) x = 

Xo + X 1 

Xo - X 1 

1 1 0 

1 -1 0 

0 0 1 

0 0 

0 0 

1 0 

0 0 

0 0 

0 

0 

0 0 1 -1 0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 1 1 0 

0 1 -1 0 

0 0 0 1 

0 

0 

1 

0 0 0 1 -1 

Xo 

X 2 

X 5 

Here) each processor executes one addition and one subtraction on a different part 

of x J where the node boundaries are represented. by horizontal lin es . Execution of 

the same task on 2-processor machine can be written as [12 0 (12 0 A)] representing 

double amount of computation by each processor. 

Therefore, these t ensor products with prior identity matrices can be used to deter­

mine the existence of local (parallel) tasks . In general , on a k-processor distributed 

memory machine, execution of (IJ 0 A) would imply k local tasks , where J = nk 

and n is a positive integer greater than zero. 

If an identity matrix appears on the right-hand side of a tensor product, it is 

performed in a natural way for vector computers, that is, performing an operation 
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2.5 Some Useful Theorems 

A number of properties that tensor products hold in combination with stride per­

mutations will be useful in developing variants of a parallel algorithm. We will 

present these properties here without proof. Interested readers can find their proofs 

in [13, 14] . Similar to the notation in algebra of matrices, a complex tensor product 

formulation should be read from right to left. 

Theorem 2.1 Associative Law: Tensor product on a set of matrices is associa­

tive. 

(2.12) 

Theorem 2.2 Distributive Laws: When two matrices A and B are of the same 

size, following additive distribution law holds true irrespective of the size of matrix 

C . 

(AMxN + BM x N) ® CMcxNc 

= (AMxN ® CMcxNc) + (BMxN ® CMcxNc) (2.13) 

Similarly, when two matrices B and C are of the same size, following additive dis­

tribution law holds true irrespective of the size of. matrix A. 

AMA xNA ® (BMxN + CM xN) 

= (AMA x NA ® BM xN ) + (AMAxNA ® CM xN) (2.14) 

Theorem 2.3 Multiplication of Tensor Products: If Nx = MA and Ny = 

MB, then the following multiplication theorem holds true. 

(XMxxNx ® Y My x Ny) ( AMA xNA ® BMB XNB) 

= (XMxxNx AMA xNA) ® (Y MyxNy BMB xNB) (2.15) 

This theorem is quite often used to derive parallel or vector computations when 

identity matrices appear in the product. 
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Theorem 2.4 Commutative Law: Interchanging the order of tensor product pa­

rameters results in permutations. 

(AMAXNA 0 BMBXNB) = P(MAMB, MA) (BMBXNB 0 AMAXNA) P(NANB, NB) 

(2.16) 

This theorem is quite useful in generating different communication structures of an 

algorithm. 

Theorem 2.5 Inverse of Tensor Products: Unlike the case in inverse of multi­

plication of two matrices1 inverse of tensor product of two matrices does not change 

the order of its parameters. 

(2.17) 

Theorem 2.6 Multiplication Theorem of Stride Permutations: Any simple­

stride permutation can be decomposed into two stride permutations when stride is a 

multiple of two integers. 

(2.18) 

Theorem 2. 7 Parallel-Vector Tensor Factorization of Stride Permutations: 

(2.19) 

This is one of the very important theorems for implementation of a permutation on 

distributed memory systems to uncover extent of communication complexity hidden 

in that permutation. When parameter NA is an integral multiple of number of 

processing elements, this theorem extracts local operations from operations that 

depend upon non-local data. A stride permutation can also be factorized in a different 

way leading to the following theorem: 

Theorem 2.8 Vector-Parallel Tensor Factorization of Stride Permutations: 

(2.20) 
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Theorem 2.9 Inverse Stride Permutation: 

(2.21) 

Theorem 2.10 Identity Stride Permutations: 

(2.22) 

2.6 Existing Data-Partition Representations 

It is well known that data-distribution in distributed memory multiprocessors is es­

sential to achieve high performance of data-parallel programs. Extensive research 

has been reported on data-decomposition optimization for distributed memory ma­

chines [15, 16, 17, 18, 19]. Research in this area can be crudely classified into two 

categories. One aims at finding optimal data-partitioning schemes for parallel loop 

constructs as part of compiler. It has been shown that the problem of finding an op­

timal data-partition is NP-complete [17, 20, 15]. Therefore, researchers have to rely 

on heuristic methods [20, 21, 22, 16, 23]. The other effort aims at special-purpose 

implementations and a large work force for developing optimal implementation of 

individual algorithms is reported [24, 25, 26]. 

Typically, an application requires a number of computation modules linked to­

gether to accomplish a specific computation. Global optimization depends not only 

on optimal implementation of the computational modules, but at least equally on 

the interface between these implementations as determined by the data partition and 

migration across processors. 

In this dissertation, we present a systematic formulation for data-partition and 

migration on distributed memory multiprocessors in terms of tensor product no­

tation and stride permutations [27]. Data-partition and migration are represented 

using simple tensor algebraic expressions highlighting the computational and com­

munication complexity of parallel algorithms. Therefore, optimal data-partition and 
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migration at interfaces between different algorithms becomes straightforward tensor 

algebraic manipulations with the aid of well-established theorems in this field. Fur­

thermore, due to the conciseness of the underlying algebra, definitions are simple and 

compact without having to deal with complicated indices in complex data structures. 

In order to demonstrate the significance and usefulness of our framework , we have 

carried out experiments on existing distributed memory multiprocessors such as In­

tel's Paragon, and Touchstone Delta. Initially, our formal definitions are incorpo­

rated in three application problems: matrix transpose algorithm, two dimensional 

discrete Fourier transform algorithm, and solution of Euler partial differential equa­

tion using wavelet-Galer kin approach. Then, simple algebraic manipulations on these 

expressions are carried out to derive optimal data-partition and migration schemes. 

Experimental timing results on these machines show that such simple algebraic ma­

nipulations result in performance improvement ranging from 30% to 600%. 

2.7 Existing Multidimensional FFT Algorithms 

The Fourier transform of large multidimensional data sets is an essential compu­

tation in many scientific and engineering fields , including seismology, meteorology, 

x-ray crystallography, radar, sonar and medical .imaging. Such fields require mul­

tidimensional arrays and large . data set for complete and faithful modeling. The 

development of powerful parallel computers has given scientists a means of studying 

problems with greater complexity and higher dimensionality. Classically, a set of 

data is processed one dimension at a time, permitting control over the size of the 

computation and calling on well-established one-dimensional programs. Multidimen­

sional processing offers a wider range of possible implementations as compared to 

one-dimensional processing, due to the greater flexibility of movement in the data in­

dexing set. This increased freedom, along with large sized data sets typically found 

in multidimensional applications, places intensive demands on the communication 

aspects of the computation. Therefore, parallel programmers are facing greater chal­

lenges to develop efficient parallel FFT algorithms with minimum communication 
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overheads. 

Because of its inherent algorithm structure, FFT lends itself naturally to paral­

lel computation . There is a substantial amount of literature in parallelizing FFT, 

[28, 29 , 30 , 31, 32 , 33 , 34] to mention a few. In [28, 29 , 30 , 31] implementations 

of one-dimensional parallel FFTs on various multiprocessors were studied. In [32], 

implementation of high radix FFT on Boolean cube networks such as the Connection 

Machine was considered. Swarztrauber [34] investigated parallel FFT on general hy­

percube multiprocessors . He has derived an unordered parallel FFT algorithm on 

hypercube multiprocessors that has a minimum number of parallel data transfers 

between neighboring processors. This is performed by computing a one-dimensional 

FFT, which spans over processors. On the other hand, an existing two-dimensional 

FFT [35] in which FFTs on each dimension are computed by collecting all the re­

quired data and hence a computation is always within a node. 

In Chapter 5, we presented an approach for computing multidimensional DFT on 

distributed memory systems that effectively utilizes the fact that today's distributed 

memory systems use wormhole routing for interprocessor communications. An ap­

proach to extend the algorithm for three or more dimensional problems using stride 

permutation and tensor product matrices has been presented that facilitates finding 

an efficient data-partitioning and network setup on distributed memory multiproces­

sors . Data-partitioning scheme is suitable and should be aimed at boundary value 

problems in fluid dynamics, finite element analysis etcetera. Results showed that our 

algorithm is more than six times as fast as the existing algorithm for certain cases. 

Moreover, higher the parallelism is , the better the performance of new algorithm 

will be. Given the fact that physical limits on memory exist at each processor , our 

new algorithm is a solution to today's large problems that involve multidimensional 

Fourier transform computations on massively parallel machines. 
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2.8 Survey of Matrix Algorithms 

Many applications have numerical solutions in which computational burden is re­

duced partly or fully to matrix operations. One of the most elementary operations 

involving matrices is multiplication of two matrices. However, since matrix multi­

plication requires substantially more data movements than most other operations, 

algorithms that address efficient data movements are crucial to the effective imple­

mentation on concurrent computers. 

For shared-memory systems, efficient parallel matrix computations are discussed in 

[36] with a theoretical package for parallel random access machines (PRAM). With­

out any optimization techniques, scalar operations in multiplication of two N x N 

matrices is in order of O(N3
). However, Strassen [37] discovered an algorithm that 

only uses O(N10
g2 

7
) scalar operations. Tensor product formulations of Strassen's 

algorithm are presented in [38, 39] along with capability to translate their mathe­

matically equivalent tensor product formulations onto shared-memory architectures. 

Among algorithms constructed with an underlying topology in mind, Gentleman 

[40] has shown that for a mesh topology at least 0.35N routing steps are needed to 

compute product of two N x N matrices while O(log N) routes are necessary for a 

hypercube topology. For vector processors, Hayes [41] presented a technique at an 

element-by-element level for matrix-vector multiplication to solve systems of equa­

tions using iterative methods. She carried out implementation results on CYBER 205 

demonstrating effectiveness for irregular problems. 

For distributed memory systems, communication between nodes is done through 

message passings. If two or more nodes try to access same data, the requests will 

be queued and each node will get the message in a different time slot. This fact 

is pronounced in [42]. However, it is assumed in [43, 44] that simultaneous mem­

ory requests by all processors can be served within the same time slot. In Chap­

ter 6, we reviewed Fox et al' s broadcast-and-shift matrix multiplication algorithm 

[25 , 45] for message-passing architectures. This algorithm assumes mesh-division 
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data-partitioning for the underlying data. Multiplication algorithms in [42, 25 , 45] 

require data movement of multiplicands irrespective of the size of the resulting ma­

trix. Recently, Johnsson proposed an algorithm [46] to minimize the communication 

time in matrix multiplication. This algorithm is an evolution of considering two ex­

treme cases of multiprocessor algorithm presented in [25, 45] but still requires data 

movement of multiplicands while results are accumulated in place. 

Most existing research that has been reported in the literature for parallel matrix 

multiplications concentrates on mapping of the algorithm onto different topological 

structures. With the development of wormhole routing, algorithm performance be­

comes more sensitive to amount of data movements than the topological structures 

of the parallel machines being considered. Furthermore, all existing parallel matrix 

algorithms requires moving one or both multiplicands. In Chapter 6, we present an 

efficient algorithm [4 7] that requires no access of multiplicands by other processors 

due to the consideration of the unique data decomposition strategy. Only partial 

results need to be moved among processors. When compared to the algorithms in 

[25 , 45 , 46] , messages in this algorithm are comparably shorter for the case of rect­

angular arrays. Performance improvements up to 440% have been observed over the 

algorithm in [25 , 45] in actual implementations on Intel's Paragon and iPSC/860. 

2.9 Experimental Environment 

Intel's concurrent supercomputers are the cost-effective solution for large-scale ap­

plications. Experiments in this dissertation are performed on iPSC/860, Touchstone 

Delta, and Paragon supercomputers. All these systems consist of a set of process­

ing nodes, I/O nodes, peripheral units, and a front-end processor. Each processing 

node uses one or more of the i860 multiprocessor. Message passing among nodes 

does not require any "store and forward" because of the Direct-Connect Module™ 

(DCM). With the DCM, one can view these systems as an ensemble of fully con­

nected nodes with a uniform message latency. This means that programmers do 

not have to structure their application 's communication according to the underlying 
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topology (physical connections between nodes) . On each node, a node system soft­

ware runs to provide message-passing capabilities, memory management, and process 

management. 

The iPSC/S60 uses hypercube topology for physical connection to link 64 nodes . 

Each node is a processor/memory pair with memory size SM bytes. The runtime 

software on iPSC is NX operating system. The Touchstone Delta uses mesh topology 

for physical connection to link 512 nodes . Again , each node is a processor /memory 

pair with possible memory sizes SM bytes and 16M bytes. The runtime software 

on Touchstone Delta is NX/1 operating system. The Paragon also uses mesh con­

nectivity to connect 64 nodes. However , each node has two iS60 processors one 

to perform computations and another to perform the necessary communication in­

structions. Hence, Paragon provides higher communication bandwidth than iPSC or 

Delta. Memory assignment for each can be 16M bytes or 32M bytes. Also , Paragon 

uses a more advanced runtime software called OSF /1 provided by Open Software 

Foundation. 

The runtime environment consists of a set of user interface commands that can 

be issued at the UNIX prompt and a set of system calls that are available to host 

and node programs. The most common programming model used with these super­

computers is the "single program, multiple data" (SPMD) model. In this model, the 

same program runs on each node in the application, but each node works on only 

part of the data. Any requirements of the data for a node from another node is ob­

tained using their corresponding runtime software. Due to the underlying assembly 

coded routing-scheme and uniform message latency characteristics, we assumed in 

our analysis that a message-passing between two nodes, irrespective of the nodes, 

will have same communication time. 
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2.10 Conclusion 

Notation involved in a mathematical language to express, to segregate an applica­

tion, and to allocate tasks on parallel systems is explained with relevant theorems . 

Survey of existing data-partition schemes, existing multiprocessor Fourier transform 

and matrix multiplication algorithms is presented. A brief description about the 

platforms on which experiments in this dissertation are conducted is presented. 
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Chapter 3 

Data Partition and Migration: Formal 

Definitions 

3.1 Storing Data in Distributed Memories 

Most large scale applications of scientific computing involve manipulations of data 

that are expressed in terms of matrices and vectors. This is natural because matrix 

notation gives a compact way to express computation. Moreover, storing matrices 

or vectors in the memory of a computer system is the first step of any computation. 

Different ways of storing data may result in different algorithmic structures as well as 

different computational performance. While methodology and algebraic formulations 

for storing matrices in a linear memory space of a single processor system exist, such 

as row-major and column-major, there is neither a formal and commonly agreed 

way of addressing data stored in distributed memory multiprocessor systems, nor 

an agreed formal description for various storage schemes. Programmers for parallel 

machines usually organize data in a way based on their convenience and efficiency of 

a specific algorithm. As a result, data-allocation and -partition in parallel processing 

are very diversified. Therefore, there is a need for a unified approach for formalizing 

data-allocation and -partitioning in parallel machines, and for a clear and convenient 

mathematical representation of various data-storage schemes. In parallel computers, 

particularly in distributed memory multiprocessors, communication costs are directly 

related to various data-storage schemes. Clear representation of storage schemes 
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helps parallel programmer greatly to look into structures of implementations and 

communication costs associated with algorithms. 

Consider a message-passing multiprocessor system with k processors labeled from 0 

to k-1, where k = ki k2. We would like to partition and store a two-dimensional (2D) 

matrix, denoted by A onto this system. For the purpose of simplicity and clarity of 

our presentation, we present only the cases [27] where the data can be evenly divided 

into k subsets and concentrate on our main interest of algebraic representation of 

partitioning the matrix and storing them into processors' memories. 

Definition 3.1 Row-Division: Let A be an M x N matrix. We define row-division 

onto k processors as follows. Partition A into k sets of complete rows such that i-th 

set of rows (top-down) is allocated to i-th processor. In matrix notation1 row-division 

can be represented as operating by 

PR(M,N,k) = P(Nk,k) 0IM/k (3.23) 

on a vector a that is formed as VectMN(A) . 

We use bold faced "P" (P) with appropriate subscript to represent our data­

partition definitions while italic "P" ( P) to represent operation of stride permutation 

that explained in Section 2.3. 

Definition 3.2 Column-Division: Let A be an M x N matrix. We define column­

division onto k processors as follows. Partitioning matrix A into k sets of complete 

columns such that i-th set of columns (left-right) is allocated to i-th processor. In 

matrix notation1 column-division is represented as operating by 

Pc(M, N, k) = IMN (3.24) 

on a vector a that is formed as VectMN(A). 

Definition 3.3 Mesh-Division: Let A be an M x N matrix. We define mesh­

division of A onto a system with k1 x k2 processors as follows. Partition M rows 
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of A into k1 equal sets of rows {top-down) and then partition each set of rows into 

k
2 

equal subsets (left-right). Each subset is a M / k1 x N / k2 size matrix but will 

have neither complete rows nor complete columns. Allocation of these subsets to 

k processors is performed anti-lexicographically {top-down and then left-right). In 

matrix notation1 mesh-division is defined as 

(3.25) 

Following three equations represent inverse operations of the above three definitions 

which can be derived using theorems 2.5 and 2.9. 

PR1(M,N, k) 

P01(M,N,k) 

P-;j(M, N, ki, kz) 

P(Nk, N) ® IM/k 

IMN 

(3.26) 

(3.27) 

(3.28) 

Example 3.1 This example demonstrates data partitioning of an 8 x 8 matrix1 A 1 

onto a 4-processor machine. Figure 3.1 shows how a 64-element vector a formed by 

Vect64(A) is partitioned in row-division1 column-division1 and mesh-division based 

on Definitions 3.1-3.3. In case of row-division1 12 on the right-hand side of P R(8, 8, 4) 

represents moving vectors of length 2 according to the permutation matrix P(32, 4). 

When this permutation is applied1 resulting data a"t processor-0 is shown with dotted­

line. For column-division data partitioning1 since input permutation is an identity 

matrix1 no action needs to be performed1 and the vector a is just segmented into four 

parts for allocating to four processors. For mesh-division data partitioning1 12 on the 

left-hand side of PM(8, 8, 2, 2) represents an action to divide the vector a into two 

equal sets and perform the vector-stride action P(8, 2) ® 14 on each set. However1 

this vector-stride further divides each set into eight small subvectors of length 4 and 

shuffl,e them according to the permutation P(8, 2). Once again1 data residing at 

processor-0 after the action of input permutation is shown with dotted-line. 

General Usage of Data-Partition Definitions 

Consider any computational procedure that is expressed by an operational matrix 
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% (8,8,4)= 

P(32,4l@l 2 

:.······'.; ..-·:t.··=··:!: . ..-:t .. <~···~ 
2 10 18 26 34 42 50 58 

3 11 19 27 35 43 51 59 

4 12 20 28 36 44 52 60 

5 13 21 29 37 45 53 61 

6 14 22 30 38 46 54 62 

7 15 23 31 39 47 55 63 

Proc-0 

Proc-1 

Proc-2 

Proc-3 

0 8 16 24 32 40 48 56 

1 9 17 25 33 41 49 57 

2 10 18 26 34 42 50 58 

3 11 19 27 35 43 51 59 

4 12 20 28 36 44 52 60 

5 13 21 29 37 45 53 61 

614223038465462 

7 15 23 31 39 47 55 63 

Pc (8,8,4) 

p :~ 16 24 32 40 48 56 

1 i ~ 17 25 33 41 49 57 

k iii 18 26 34 42 50 58 

~ !1~ 19 27 35 43 51 . 59 

~ j 1~ 20 28 36 44 52 60 

k! 1~ 21 29 37 45 53 61 

w 1~ 22 30 38 46 54 62 

~ ,,k 23 31 39 47 55 63 ' ...,. 

Proc-0 Proc-2 

Proc-1 Proc-3 

JM(8, 8, 2, 2) = 

12 @ P(8,2)@ 14 

Proc-0 Proc-2 

: ' ' : p /~ !~ ~ 32 40 48 56 

U16!~~.1: :: : :: :: 
k 1:; 1~ : 35 43 51 59 

4 12 20 28 36 44 52 60 

5 13 21 29 37 45 53 61 

6 14 22 30 38 46 54 62 

7 15 23 31 39 47 55 63 

Proc-1 Proc-3 

Figure 3.1: Action of data-partition algebraic expressions onto a 4-processor machine 
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G operating on a vector a to obtain vector b: 

b =Ga. (3.29) 

This equation ignores the underlying data-partition necessary to carryout the compu­

tation in distributed memory multiprocessor system. To bring out the data-partition, 

let a(= Q 1a) be a desired data partition of a among the processors where Q 1 is one 

of the data partition schemes (PR, Pc, or PM) defined above. If one expects the 

output data to be in a particular partition after the computation, then resultant 

data is of the form b where b = Q 2b and Q2 is also one of the definitions PR, Pc, 

or PM defined above. Then equation (3.29) can be rewritten as: 

(3.30) 

Therefore, G = Q2 G Q11 is the actual-operational matrix that takes into account 

the complexity of considered data partition. 

3.2 Moving Data Among Distributed Memories 

Once input data is partitioned among the processors, data migrations at the in­

terfaces between individual algorithms may be necessary in order to achieve global 

optimal performance of an application. One frequently used data migration in nu­

merical applications is well known matrix transpose. Let a= VectMN(AM xN ), and 

b = VectNM(BNxM ) , where BNxM is the transpose of AMxN· Then, 

b = P(MN,M) a. (3.31) 

Hence P(M N, M) is the operational matrix for transpose algorithms, that is, 

G = P(M N, M). When data partition schemes are to be incorporated, the actual­

operational matrix becomes G (see equation (3.30) ). That is, 

(3.32) 

and the equation (3.31) becomes 

b Ga, (3.33) 
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where G = Q 2P(M N, M)Q11
. In the following, we will show how to derive the 

operational matrices, G, required to transpose a matrix using the data-partitions 

defined in previous section (assume Qi = Q2 for simplicity) and discuss their imple­

mentation aspects via the tensor product formulations. 

ROW-DIVISION 

For row-division data partition, we have 

G = PR(N,M,k)P(MN,M)P"i/(M,N,k). (3.34) 

According to Definition 3.1, we have 

G = [P(Mk, k) 0 IN/k] P(M N, M) [P(Nk, N) 0 IM/k] ' (3.35) 

(or) 

G = P(M N, M) = [P(Mk , M) 0 IN/k] G [P(Nk , k) 0 IM/k] . (3.36) 

Then, we can obtain expression for G by dissecting G = P(M N, M) as : 

P(MN,M) [P(Mk, M) 0 IN/k] [lk 0 P(MN/k, M)] 

by theorem 2. 7 

P(MN,M) = PR_1 (N,M,k) [Ip 0 P(MN/k2 ,M/k)] 

[(lk 0 P(N, k)) 0 IM/k] 

by theorem 2.8 and equation (3.26) 

P(MN,M) = PR_1 (N,M,k) [1k 0 1k 0 P(MN/k2 ,M/k)] 

[P(k2
, k) 0 IN/k 0 IM/k] [P(Nk , k) 0 IM/k] 

by applying theorem 2.7 toP(Nk, k) 

P(M N , M) PR_1 (N, M, k) [1k 0 lk 0 P(M N/k2
, M/k)] 

[P(k 2
, k) 0 IMN/k2] Pin(row, M, N, k) (3.37) 

by Definition 3.1 

P(MN,M) 
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·me= my node number 
for index = 1 to k - 1 

myswap = xor(me,index) 
Send block-myswap of my associated vector a to processor-myswap 
Receive message from processor-myswap 
Store message at block-myswap of my associated vector a 

end 

Table 3.2: Pseudo-code for message passing in transpose algorithms for either row­
division or column-division partitions 

Therefore, the actual-operational matrix in equation (3.33) for row-division partition 

can be expressed as two stages: 

(3.38) 

The first stage, P( k2 , k) ® IMN/kz, is a global-task that involves message-passings 

among processors since the expression does not contain an identity matrix, Ik , on 

left-hand side. The size of each message being passed is (MN/ k2
) which is ( 1 / k )th 

of the size of the data set residing at a processor. This is reflected in the above 

tensor product expression by IMN/k2. The factor P(k2
, k) in the expression indicates 

that each processor has (k - 1) subblocks to send out. Such message passings are 

carried out in ( k - 1) stages with one sub block being kept within a processor. The 

pseudo-code implementation for this stage is shown in Table 3.2. 

The second stage, Ik ® Ik ® P( MN/ k2, M / k) , represents a local-task due to the 

identity matrix Ik on the left-hand side. Each processor performs the parallel-stride 

operation [Ik ® P( MN/ k2 , M / k )] locally. 

COLUMN-DIVISION 

For column-division data partition, we have 

G = Pc(N, M, k)P(M N, M)Pc1 (!vl, N, k) (3 .39) 
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According to Definition 3.2, we have 

G = IMNP(M N, M)IMN = P(M N, M) = G. 

Then, we can obtain expression for G as: 

P(MN, M) = [Ik 0 P(M Njk, M/k)] [P(Nk, k) 0 IM!k] 

by theorem 2. 7 

(3.40) 

P(M N, M) = [Ik 0 P(M Njk, Mjk)] [{ (P(k 2
, k) 0 IN/k) (Ik 0 P(N, k))} 0 IM/k] 

by theorem 2.8 

P(MN,M) = [Ik ® P(MN/k,Mjk)] [P(k2 ,k) ® IMN/k2] 

[Ik 0 P(N, k) 0 IM/k] . (3.41) 

Therefore, the actual-operational matrix in equation (3.33) for column-division par­

titioning can be expressed as three stages: 

(3.42) 

The first stage, Ik 0 P(N, k) 0 IM/k, represents local data permutations without 

message-passing due to the prior identity Ik . Each processor performs the vector­

stride operation [P(N, k) 0 IM/k] which moves N vectors with stride k, each vector 

is of length (M / k ). 

The second stage, P(k2
, k) ® IMN/k2 , is a global-task that is similar to message­

passing stage explained in row-division transpose algorithm. Hence the total com­

munication is again ( k - 1) messages, each message is of length (MN/ k2
). 

The final stage, Ik 0 P( MN/ k, M / k) , is a and simple-stride permutation stage 

with stride ( M / k) local to each processor. All processors carry out the same opera­

tion in parallel without communication. 

MESH-DIVISION 

For mesh-division partition, we have 

(3.43) 
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According to Definition 3.3, we have 

G = [1k1 0 P(Mk2/ki, k2) 0 IN/k2] P(M N, M) [1k2 0 P(Nki/k2, N/k2) 0 IM/k1]' 
(3.44) 

(or) 

P(MN,M) = [1k1 0 P(Mk2/k1,M/k1)01N/k2] G [1k2 0P(Nki/k2,k1) 0 1M/k1]. 

(3.45) 

Then we can obtain expression for G by decomposing G = P(M N , M) as follows. 

P(MN,M) = [Ik1 0 P(MN/k1,M/k1)] [P(Nki,k1) 0 1M/ki] 

by theorem 2. 7 

P(MN,M) = [1k1 0 P(Mk2/ki,M/k1) 0 1N;k2] [Ik 0 P(MN/k,M/ki)] 

[P(k, ki) 0 IMN/k] [1k2 0 P(Nki/k2, ki) 0 IM/k1] (3.46) 

by theorem 2.8 on P( MN/ k1 , M / k1 )and by theorem 2. 7 on P( N k1 , k1 ) 

P(M N, M) = P-;)(N, M, k2, ki) [Ik 0 P(M N/k, M/k1 )] 

[P(k, ki) 0 IMN/k] PM(M, N, ki' k2) 

by equation (3.28) and Definition 3.3 

P(M N, M) = P-;)(N, M, k2 , ki) [P(k, ki) 0 IMN/k] 

[Ik 0 P(M N/k, M/k1 )] PM(M, N, ki, k2) 

by commutative law 

P(MN,M) = PA] G PM 

(3.4 7) 

(3.48) 

Therefore, the actual-operational matrix in equation (3.33) for mesh-division par­

tition can be expressed as two stages in two different ways (equations (3.4 7) and 

(3.48)). 

(a) G = [Ik 0 P(M N/ k) , M/ki)] [P(k , ki) 0 IMN/k], and 

(b) G = [P(k, ki) 0 IMN/kl [Ik 0 P(M N/k, M/ki)]. 

In case of (a) , the first stage, P(k , ki) 0 IMN/ki is a global-task involving message­

passings since there is no prior identity matrix. In fact, it is a single message-passing 
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M N Row-Division Col-Division Mesh-Division 
(msec) (msec) (msec) 

128 128 5.236 6.172 1.316 
128 256 5.902 7.051 2.028 
128 512 9.031 10.409 2.159 
128 1024 12.356 15.312 3.866 
256 128 5.501 6.665 1.825 
256 256 8.283 9.746 2.301 
256 512 11.483 14.027 4.018 
256 1024 20.076 22.503 7.548 
512 128 8.310 9.432 3.450 
512 256 11.555 13.359 5.905 
512 512 18.536 21.122 7.954 
512 1024 39.628 38.529 16.434 

1024 128 11.228 13.132 5.815 
1024 256 17.526 20.616 10.631 
1024 512 31.211 37.445 20.889 
1024 1024 50.936 66.403 49.274 

Table 3.3: Experimental results of transpose algorithms on Intel 's Paragon 

routine with message size being (MN/ k) as compared to ( k - 1) messages each of 

size (MN/ k2) in either row-division or column-division transpose algorithms. 

The second stage, I k 0 P(M N/ k, M / k1 ), represents that each processor executes 

a local simple-stride permutation because of prior identity matrix Ik. In fact, if we 

consider data at each processor to be a matrix of size M / k1 x N / k2 , then action to be 

performed in this stage is k local matrix transposes that are performed simultaneously 

on k processors. 

3.2.1 Performance Evaluation of Three Transpose Algo­

rithms 

Transpose algorithms derived in Section 3.2 are implemented on Intel's Paragon 

and Touchstone Delta, and results are tabulated in Tables 3.3 and 3.4, respectively. 
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M N Row-Division Col-Division Mesh-Division 
(msec) (msec) (msec) 

128 128 8.092 8.865 2.681 
128 256 10.042 12.280 5.769 
128 512 13.988 18.980 11.702 
128 1024 23.909 33.014 20.018 
256 128 10.065 12.016 5.041 
256 256 14.228 18.150 11.554 
256 512 23.030 31.237 20.088 
256 1024 43.458 59.109 36.009 
512 128 13.982 17.920 9.822 
512 256 23.002 30.593 19.637 
512 512 44.178 57.799 36.091 
512 1024 95.145 114.215 79.681 

1024 128 22.743 30.400 19.507 
1024 256 42.197 57.171 36.109 
1024 512 83.011 113.416 79.492 
1024 1024 187.484 223.287 167.497 

Table 3.4: Experimental results of transpose algorithms on Intel's Touchstone Delta 

From the derivations in equations (3.38), (3.41) , (3.47), and (3.48), we have seen 

that to transpose a matrix of size M x N on a k-p_rocessor machine for row-division 

and column-division partitionings each requires ( k - 1) number of communications, 

each communication is of size (MN/ k2
) while mesh-division partitioning requires one 

communication that is of size (MN/ k). Though message length in mesh-division is 

k times more than that of any message in either row-division or column-division , 

results in Tables 3.3 and 3.4 clearly show that transpose algorithm for mesh-division 

eliminates the overheads to initiate a communication. These results also show that 

unlike uniprocessor algorithms, variations in data-decompositions can have a great 

impact on the performance of an algorithm. 
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3.3 An Example 

As an example of applying our definition of data partitioning and migration, this sec­

tion presents a typical two-dimensional (2D) fast Fourier transform (FFT) algorithm 

in a distributed memory system using our new formalism [48]. 

The summation form of the 2D-DFT on a matrix X of size M x N is given by: 

M-1 [N-1 l Y(k, l) = 2:::: L X(m, n)e-j
2

';,;'
1 

e-j
2
";;k 

m=O n=O 

(3.49) 

while tensor product representation of equation (3.49) can be written as: 

(3.50) 

where F J is a J x J matrix with ith row, jth column entry equals to exp(-j27rik/ J) , 

j = J=I, y = VectMN(Y), x = VectMN(X), and G is the operational matrix. 

To compute the equation (3.50) on a k-processor parallel machine, we first 

parallelize the operational matrix by inserting identity matrices, assuming k di­

vides both M and N. There are two ways of decomposing the equation (3.50): 

(a) y = [IN 0 FM][FN 0 IM] x whiT first computes Fourier transforms of columns 

followed by transforms of rows , and .(b) y = [F N 0 IM ][IN 0 FM] x, which performs 

transformation on rows followed by that on columns. Consider the first decompo­

sition (a). The factor on the left-hand side represents a parallel computation of 

FM because of preceding identity matrix IN while the factor on the right-hand side 

cannot be done in parallel. To parallelize this stage of computation, we apply the 

commutative law presented in theorem 2.4, resulting in 

(3.51) 

If it is required that the Fourier transformed data be in the same data-partition 

scheme as the original data, then input data is x = PR x and output data is y = 
PR Y · In such a case, equations (3.5~1) can be rewritten as : 

(3.52) 
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Note that if we used second parallelization (b) , we would have obtained 

(3.53) 

In the following , we will see how we utilize our new definitions on data partition and 

migration to maximize the parallelism and minimize the communication cost while 

computing equation (3 .52). 

Consider row-division partitioning and start with the first stage operator (the right 

most factor) of equation (3.52). Recall that PR1 = [P(Nk, N) 0 IM/k] from Equa­

tion (3.23) . It appears from equation (3.52) that neither PR1 = [P(Nk , N) 0 IM/k] 

nor P(M N, M) has a prior identity matrix Ik implying that both operations involve 

message-passings. However, simple algebra manipulations of this computation stage 

based on our definitions can lead to a completely parallel computation. Decomposing 

P( MN, M)PR1 in a different way, we have 

P(MN, M)PR1 P(k(M/k)N, k(M/k))PR1 

[Ik 0 P(M N/k, M/k)] [P(Nk, k) 0 IM/k] PR1 

[Ik 0 P(M N/k, M/k)] (3.54) 

Z1 

No communication! For notational convenience, we use Zi to denote the ith com­

putation stage. We will see shortly in this section that all the involved computation 

stages are directly computable using the existing subroutines in machine libraries of 

a commercial distributed memory multiprocessor. 

The second stage of computation in equation (3 .52) is obviously a parallel compu­

tation because of IM. The next stage, P(M N , N) , can be factored as 

P(MN,N) = [P(Nk , N) ® IM/k] [Ik ® P(MN/k,N)] 

z3 
[{[Ik 0 P(N, Njk)] [P(k2

, k) 0 IN/k]} 0 IM/k] Z 3 
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[Ik ® P(N, N/k) ® IM/k] [P(k2
, k) ® IMN/k2] Z3 

z4 
[Ik®P(MN/k,Njk)] [Ik®Ik®P(MN/k 2 ,M/k)] Z 4 Z 3 (3.55) 

Note that P(MN,N) = [P(Nk,N) ®IM/k] [Ik ®P(MN/k,N)] according to theo­

rem 2.8. From the definition of P_R1 (M, N, k) we have 

P(M N, N) = P_R1 [Ik ® P(M N/k, N)]. 

Left multiplying PR and right multiplying P(M N, M) on both sides of above equa­

tion, we obtain 

PR = [Ik®P(MN/k,N)]P(MN,M) 

To expand P(M N, M), we use equation (3.55) but interchange the roles of M and 

N. We have 

(3.56) 

Now we summarize the above decompositions and recombine them in association 

with the three submodules (a) bfft, (b) global23, and ( c) local12 that are available in 

a library in Intel's supercomputers. 

Y = [PR] [IN ® FN][P(M N , N)] [IM® FN] [P(M N, M)PR1
] x .._,_., '-...---' 

Z1 Z2 
[Z10Z9Zs] [Z1] [Z6ZsZ4Z3] [Z2] [Z1] x 
[Z10] [Zg] [ZsZ1Z6] [Zs] [Z4] [Z3Z2Z1] x (3.57) 
~ ___,.....,, "-.,..-' ___,.....,, ___,.....,, '-,,.--' 

local12 global23 bfft local12 global23 bfft 
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Module Description: 

local12: Local Permutations 

bfft: Local permutations+ (N/k) number of M-point FFTs or (M/k) number of 

N-point FFTs + local permutations. 

global23: Block transpose algorithm involving ( k - 1) number of node-to-node com­

munications each of size (MN/ k2) as seen in transpose algorithms. 

3.4 Comparison of Our Definitions with Related 

Work 

Data organization is the key to successful parallelization of data parallel programs. 

As indicated in the introduction, there are two tracks of efforts in data-partition and 

migration in distributed memory multiprocessors: automatic data-partitioning for 

general loop constructs as part of compiler and optimal partitioning for a specific 

algorithm. In this section, we briefly summarize the existing works in this field as 

related to our work presented in this dissertation. For more comprehensive review 

of previous work in data-partitioning and redistribution, readers are referred to [17, 

16, 19]. 

Ramanujam and Sadayappan [16] studied compile-time techniques for data­

partitioning in distributed memory systems. They presented an analysis of 

communication-free partitions with a nice geometric demonstration. The research 

work performed by Li and Chen [20] focused on minimizing data movement among 

processors due to cross-references of multiple distributed arrays (alignment of multi­

ple data structures). They have also presented a method of automatically generating 

efficient message-passing routines in parallel programs [20]. Gupta and Banerjee in­

troduced the notion of constraints on data-partitioning to obtain good performance. 

In [23], a compiler algorithm was described to automatically finds optimal parallelism 

and optimal locality in general loop nesting. All these studies aimed at optimizing 
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data-partition and data alignments as part of compiler. It is known that such op­

timization problem is NP-complete. A number of heuristics have been proposed 

[20, 21, 22, 16, 49, 15]. 

The use of tensor product notation to describe parallel algorithms has a long 

history beginning with Pease [50]. Johnson et al [33] presented a comprehensive 

discussion on how to use tensor notations to design, modify and implement FFT al­

gorithms on various computer architectures. Attempts to derive variants of FFT al­

gorithms keeping the underlying architecture in mind have proven successful [24, 13]. 

Huang, Johnson and Johnson [38] have recently used tensor notations for formulat­

ing Strassen 's matrix multiplication algorithm. Using the tensor representation, they 

derived three variant programs and compared their performance characteristics for 

shared memory multiprocessors. 

Kaushik, Huang, Johnson and Sadayappan have proposed a very nice approach 

for data redistribution in distributed memory systems, which appeared recently in 

[19]. While their approach also utilizes the tensor notation as a tool, our work differs 

in several aspects. First of all , our definitions are expressed in matrix forms while 

theirs are in terms of indices (tensor bases). With their model one can estimate 

communication cost of a computation precisely while with our formulations one can 

easily manipulate the communication structures of a computation to achieve optimal 

performance. Deriving variants of an algorithm using our definitions are relatively 

simple because the data communication is easily visible. Secondly, all the defini­

tions presented in [19] such as cyclic, block, and block cyclic can be defined using 

our formulations as evidenced in Section 3, whereas some of data-partitions such as 

mesh-division cannot be easily expressed using the notations in [19]. In addition, 

our representation acts directly on data vector a( 0 : N - 1) to achieve the required 

data-partition and migration scheme while their representation presents ways to ma­

nipulate data indices from one distribution to the other (redistribution). Unlike their 

representation, we can embed our expressions for data distribution into an algorithm. 

As a result , global optimization of an application consisting of several computation 
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modules become straightforward by just manipulating the algebraic expression at 

the interfaces between individual algorithms. 

3.5 Conclusion 

This chapter introduced a unified approach for formalizing data-allocation and -

partitioning in parallel machines , and for a clear and convenient mathematical ex­

pressions of various data storage schemes. These expressions are successfully used 

in expressing, deriving, and implementing matrix transpose algorithms. In turn, 

expressions derived for transpose algorithms are used in representation of existing 

multiprocessor two-dimensional FFT algorithm. Representation for existing three­

dimensional FFT algorithm at Intel's supercomputers is presented in Appendix A. 
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Chapter 4 

Switching Data Partition Schemes 

Within An Application 

4.1 Introduction 

In this chapter we consider the implementation of an application in which we solve 

Euler partial differential equation (PDE) for two-dimensional case using wavelet­

Galerkin method [26, 51, 52]. The two most important computation modules in this 

solution require two different data-partitions for their optimal implementation. Such 

a situation demands switching data-partiti9n that might involve message-passing 

stages among processors. This chapter evidences benefit of the algebraic expressions 

defined in Chapter 3 in such a situation. 

First module, Helmholtz, involves two-dimensional filtering with forward and in­

verse two-dimensional Fourier transform (2D-FFT) techniques. It is seen in previous 

chapter that efficient multiprocessor 2D-FFT algorithm exists for row-division or 

column-division data-partitioning. 

The second module computes Jacobian that consists of numerous small intra­

node matrix multiplications. The module Jacobian requires boundary data from 

other nodes, but if we neglect for the moment the necessity for neighboring spatial 

regions to exchange data, choice of any data-partitioning shows ideal concurrency, 
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with no sequential dependence of one processor's calculation on other's. Departure 

from ideal speedup in evolution of Jacobian arises because the elements on four 

sides, considering mesh-division data-partition, or the elements on two sides if we 

consider either row or column-division data-partition, of any particular processor 

require boundary elements from its geometrically neighboring processors. 

Therefore, Jacobian is optimal for mesh-division data-partition considering the fact 

that size of data to be shared by other processors is less compared to the size of data 

to be shared by other processors in either row- or column-division data-partitions. 

To make use of the peak performances of these modules individually, switching be­

tween row-division and mesh-division data-partitions would be an overhead. This 

chapter ·deals with the minimization of this overhead by combining the data-partition 

expressions with the 2D-FFT algorithms. 

Section 4.2 presents a brief description of an algorithm to solve a PDE usmg 

wavelet-Galerkin method (see flowchart shown in Figure 4.2). Readers interested 

in details of wavelet-Galerkin method can refer to [26, 52). Then, Sections 4.3.1 

and 4.3.2 derive two variants of two-dimensional FFT algorithms that start from 

mesh-division data-partitioning but go through column-division partitioning to retain 

the efficiency of message-passing in row- or column-division partition, and come 

back to mesh-division data-partitioning to compute Jacobian. Section 4.4 presents 

implementation results of these FFT algorithms compared to the FFT algorithm 

seen in Section 3.3 for row-division partition. It also presents results on overall 

performance on application which show up to 43.613 reduction in time. 

4.2 Brief Description of Application 

Since we are not interested in exact computational details here but switching data­

partition among the modules, we present only the required details and concentrate 

on data structure compatibility. Figure 4.2 shows the flowchart for evaluating the 

coefficients for vorticity in fluid mechanics at each time-step. In this procedure, major 
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Figure 4.2: Flow Chart for computation of coefficients of Vorticity 

computation blocks are Jacobian and Helmholtz, and minor computation modules 

are Error Check, and the computation of vorticity coefficients in next step (LJ.t). 

The module Jacobian results in the so called wavelet-Galerkin operator 8 that 

depends on vorticity function field, C, stream function field, W, and wavelet base 

matrices !1100 and n°01 . The vorticity and stream function fields are assumed to be 

periodic wrap around square matrices, and C(p, q) and W(p, q) are m x m matrices 

each, for an odd integer m, with entries from C and W centered at the (p, q) element. 

Then the evaluation of (p, q) element of wavelet-Galer kin operator 8 is expressed as 

m m 

G(p, q) = LL H(p, q)(j,k) 
j=l k=l 

m m 

L, L, { [n1ooc(p, q) . * W(p, q)noo1] 
j=l k=l 

_ [noo1C(p, q) . * W(p, q)n100]} (i,j) ( 4.58) 
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d * is the element-by-element product of two matrices. Fast algorithm for com­an · 
utation of 8 is based on a recursion relating if (p, q) to if (p - 1, q) and if (p, q - 1). 

p A 

Optimization in Jacobian is based on observations such as, if we know !V 0°C(p, q), 

then n1ooc(p, q + 1) = n100 
{ C(p, q)b + S(p, q + 1)} where fJ is the matrix that 

shifts the columns to the left by one and assigns the null column to the last one and 

S(p, q+ 1) is the matrix with null columns except the last one which is the last column 

of C(p, q + 1). This process reduces the evaluation of n 10°C(p, q + 1) to a sequence 

of shifts and one matrix-vector multiplication. Similarly, ir(p, q )n°01 can be reduced 

to a sequence of matrix-vector multiplications and shifts. The module Helmholtz 

performs two-dimensional filtering of vorticity function with the Laplacian matrix, 

b.-1, via discrete Fourier transform methods. 

4.3 Switching Between Data-Partitions 

When an algorithm is to be designed in row-division for a data that is already 

partitioned in mesh-division, it is necessary to apply inverse mesh-division data­

partitioning operation (see equation (3.28)) followed by forward column-division 

data-partitioning operation (see equation (3.24)): Pc P!) = P!) because, Pc is 

an identity matrix. Similarly, when the output data of an algorithm is in column­

division but the required partition is mesh-division, then inverse column-division 

data-partitioning operation (see equation (3.27)) should be followed by forward mesh­

division data-partitioning operation: PM P(/ = PM because, P(/ is an identity 

matrix. Assume that data is a two-dimensional array of size M x N, and its mesh­

division partition is performed on ks x ks grid, where k; = k. 

4.3.1 2D-FFT from Mesh-Division via Column-Division: 

Algorithm-1 

Starting at the equation similar to equation (3.53) for computing 2D-FFT using 

mesh-division data-partitioning (substitute PM in place of PR in equation (3.53)), 

42 



we derive complexity of P"i} as follows: 

P"i) = [Ik.®P(N,N/ks) ® IM/k,] 

by equation (3.28) and by theorem 2. 7 

P"i] = [Ik ® P(N/ks,N/k) ® IM/k.] [ik.® P(k ,ks) ® IMN/k~] ( 4.59) 

Hence complexity of P"i} involves two stages. The first stage, Z 1 , involves (ks - 1) 

number of communications with respect to each processor. This is nothing but trans­

pose algorithm within ks-processors that belong to a column of processors. Similar 

transpose algorithms are performed simultaneously at ks number of columns of pro­

cessors where each column of processors consists of ks processors. The second stage, 

Z2, is a local vector-stride data-shuffling. 

From the above discussion on P"i} , it can be easily found that PM for mesh­

division would also have same complexity (use (AB)-1 = B-1 A- 1 and theorem 2.5 

to equation (4.59). Hence [PMP(MN,N)] at the output would require (k +ks -

2) communications in an unoptimized version because P(M N, N) requires (refer 

Section 3.2) (k - 1) stages of message-passing. Complexity of P(M N, M) stays the 

same as the complexity of transpose algorithm for column-division partition as shown 

in equation (3.41). Optimization of communication at the output can be performed 

according to the following derivation: 

PMP(MN,N) 

[Iks ® P(N, ks) ® IM/k,] [P(Nks, N) ® IM/ ks ] 

[Ik. 0 P(MN/ks,N)] 

by theorem 2.8 and Definition 3.3 

[P(k , ks) ® IMN/k] [Ik. ® P(M N/ks, N)] 

Z11 

Z11 [Ik, ® P(Nks,N) ® IM/k] [Ik ® P(MN/k,N)] 

Zs 
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( 4.60) 

From first stage of transpose algorithm derived for mesh-division partition in Sec­

tion 3.2, we know that Zn represents one single communication. Also, Z 9 is a trans­

pose algorithm similar to the one seen in Z1 that requires (ks - 1) communication 

calls. 

Hence, the total number of communications required for column-division are re­

duced from (2k - 2) to (k + 2ks - 2) in mesh-division FFT algorithm. The final 

algorithm can be written as: 

y [PMP(M N, N)] [IM 0 FN][P(M N, M)] [IN 0 FM] [PAJ] x 
'-.-' . '-.-' 

Z7 Z6ZsZ4 Z3 
[ZnZ10ZgZs] [Z7] [Z6ZsZ4] [Z3] [Z2Z1] x 

Zn Z10 Zg Zs Z7 Z6 Zs Z4 Z3 Z2 Z1 x, (4.61) .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., .._.,...., 
global3 v global! 5 afft 5 global23 v afft v global! 

where modules Z 4, Zs, and Z 6 are explained as block transpose algorithm in Sec­

tion 3.2. 

Module Description: 

s, v: Local permutations: Simple and vector-stride permutations, respectively. 

global!: (ks - 1) number of inter-node communications each of size (MN/kn 

ks(M N/ k2). All these communications are one-to-one. 

global23: ( k - 1) number of message passings, each of size (MN/ k2
). All these 

communications are one-to-one. 

global3: One node-to-node communication of size (MN/k) of type one-to-one. 

afft: Routine to compute a sequence of one-dimensional FFTs. 
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2 2D-FFT from Mesh-Division via Column-Division: 4.3. 

Algorithm-2 

This method differs from algorithm-1 in the way we restructure at the output. So, we 

present here a different decomposition of last stage, [PMP(M N, N)], of algorithm-1, 

first we derive a variant for P(M N, N). 

Hence, 

P(M N, N) = [Ik. 0 P(M N/ks, N/ks)] [P(Mks, ks) 0 IN/ks] 

by theorem 2. 7 

= [1k. 0 (P(N, N/ks) 0 IM/ks) (Ik. 0 P(M N/k, N/ks))] 

[P(Mks, ks) 0 IN/ks] 

by theorem 2.8 onP(MN/ks,N/ks) 

= P-;} [Ik 0 P(M N/ k, N/ks)] [P(Mks, ks) 0 IN/ks] 

by equation (3 .28) 

[Ik 0 P(M N/k, N/ks)] [P(Mks, ks) 0 IN/ks] 

[Ik ® P(MN/k, N/ks)] [P(k;, ks)® IMN/k~] 
Z10 

[1k ® P(M/ks, ks) 0 iN/k.] 

Zs 
by theorem 2.8 

Therefore, final implementation becomes: 

( 4.62) 

( 4.63) 

( 4.64) 

y = Z10 Zg Zs Z1 Z6 Z5 Z4 Z3 Z2 Z1 x, ( 4.65) 
'-..,-' '-..,-' '-..,-' '-..,-' '-..,-' '-..,-' '-..,-' '-..,-' '-..,-' '-..,-' 

5 global4 v afft 5 global23 v afft v globall 

where modules Z 1 to Z 7 are explained in previous section. Once again we reduced 

total communication cost from (2k - 1) to ( k +ks - 3), eliminating the one large and 

final communication in algorithm-1. 
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Problem Size Nodes Intel Interface Algorithm-1 Algorithm-2 
( msecs) ( msecs) ( msecs) ( msecs) 

32 x 32 4 0.06054 0.13752 0.12409 0.08476 
16 0.12427 0.25118 0.20137 0.13195 

64 x 64 4 0.15091 0.31761 0.28070 0.23038 
16 0.13451 0.26424 0.23804 0.17571 
64 0.48014 0.72160 0.53387 0.39570 

128 x 128 4 0.50754 0.96545 0.86153 0.76560 
16 0.24929 0.44145 0.42941 0.33604 
64 0.49421 0.76185 0.58775 0.43177 

256 x 256 4 1.94816 3.43353 3.17574 2.91836 
16 0.60610 1.13566 1.15002 1.00119 
64 0.57530 0.94583 0.82859 0.64410 

256 1.96009 2.73886 1.66710 1.54402 
512 x 512 4 8.58407 14.55625 13.08064 12.30499 

16 2.37530 4.07935 4.16807 3.81806 
64 1.09181 2.17609 1.92430 1.63670 

256 2.54740 2.90163 2.29605 1.96358 

Table 4.5: Two-dimensional double-precision complex FFT implementation results 
for (1) iP SC /860 library code, (2) Interface routines appended at input and output, 
(3) Algorithm-I, and (4) Algorithm-2. 

Module Description: 

global4: (ks -1) number of node-to-node communications each of size (MN/k;) = 

ks(M N/ k2
). Communications in globall , and global23 are one-to-one implying 

two nodes form as a pair and swap contents between them. Types of communi­

cations in this module involve more than two nodes. For example, on a 16-node 

partition , communications at a stage are 0 ~ 4 ~ 5 ~ 9 ~ 10 ~ 14 ~ 15 ~ 

3 ~ 0, and 1 ~ 8 ~ 6 ~ 13 ~ 11 ~ 2 ~ 12 ~ 7 ~ 1. Ideally, timings 

for such communications involving more than two nodes are not different from 

one-to-one communications, but depend upon the communications system that 

is present in the machine. 
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4.4 Effect of Varying Data Structures on Overall 

Performance: Results and Conclusion 

Figures 4.3 and 4.4 show the contour plots of the vorticity functions obtained through 

the computational procedure shown in Figure 4.2 for various time steps. Each time 

step is initiated to 25 msecs and computation is carried out with tolerance of 10-4
. 

Performance results of FFT algorithms presented in Sections 4.3.I and 4.3 .2 versus 

the existing parallel FFT algorithm are presented in Table 4.5 for various sizes of 

data and machines. Third column represents the timings of FFT for row-division 

partition available in Intel 's library while fourth column represents timings for FFT 

interfaced in unoptimized version. Columns 5 and 6 represent timings for algorithms-

1 and 2 derived in Sections 4.3.I and 4.3.2. It can be seen that algorithms-I and 

2 perform better than unoptimized version as expected. Moreover, for the case of 

256-processor implementations, it is observed that these algorithms perform even 

better than FFT for row-division. This motivated us to derive another variant of 

FFT which is presented in the next chapter by eliminating block-transpose algorithm 

within all the processors. 

Overall effect of the Jacobian computations are presented for row and mesh­

division in second and third columns of Table 4.6 .. It is to be observed that speed-up 

is more linear as machine size increases in case of mesh-division data-partitioning 

compared to row-division data-partitioning. This enabled improvement of the over­

all performance of the application. Columns 4, 5, and 6 present timing results for 

evaluating two-dimensional filtering in Helmholtz module using different FFT algo­

rithms. Improvements of PDE solution using FFT algorithms-I and 2 that start with 

mesh-division partitioned data are presented in last two columns of the Table 4.6. 

Shown results are averaged over entire computational procedure and up to 43.6I % 

reduction in time is achieved. Hence, we conclude that the choice of data-partition 

and efficient manipulation of our algebraic definitions for data-partition indeed helps 

to improve the overall performance of an application. 
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Figure 4.3: Contour plots of the Initial vorticity function and for time steps 200, 400, 
and 600. 
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Figure 4.4: Contour plots of the vorticity functions for time steps 800, 1000, 1200, 
and 1400. 
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Nodes Jacobian Helmholtz Total 
row-D Mesh row-D Meshl Mesh2 row-D Meshl Mesh2 

4 2.8317 2.7939 0.11216 0.18218 0.16298 2.9438 2.9761 2.9568 
16 0.8128 0.7310 0.06094 0.09950 0.07688 0.8738 0.8305 0.8079 
64 0.3095 0.1996 0.10510 0.12022 0.08916 0.4146 0.3198 0.2887 

Table 4.6: Timing results for 128 x 128 size vorticity computations 
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Chapter 5 

A New Approach for FFT Algorithm 

with Mesh-Division 

5.1 Introduction 

This chapter presents a new and optimal parallel implementation of multidimen­

sional fast Fourier transform algorithm on distributed memory multiprocessors based 

on variations in communication strategies. Its optimality is obtained by minimizing 

the number of necessary message-passings at the cost of increase in message length. 

This distinctive feature of the new algorithm effectively utilizes the important archi­

tectural property of most today's distributed memory multiprocessors - wormhole 

routing for interprocessor communications. By using the algebra of stride permuta­

tions and tensor products as a mathematical tool, we are able to derive and formulate 

an efficient data-partition and communication scheme that reduces communication 

cost from 0( k) required for the best known FFT to 0( Vk) on an k-processor ma­

chine. The data-partition considered here (mesh) is natural and efficient for solving 

discretized boundary value problems such as partial differential equations and finite 

element analysis discussed in Chapter 4. To evaluate the actual performance of our 

new algorithm in comparison with other existing parallel FFT algorithms, we have 

carried out implementation experiments on the Intel's Touchstone Delta. Experi­

mental results show that our algorithm is highly efficient and runs up to 6 times 

faster than the existing algorithm on a 128 or 256 nodes machine for complex data 
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size ranging from 16K to lM points. What is more interesting is that the finer the 

parallelism is , the better the new algorithm performs than the existing [35] ones 

presented in Section 3.3. 

Consider distributed memory multiprocessor environment where communication 

is done through message-passing. Traditionally, research in this field has concen­

trated on localizing communications so that data messages are passed only between 

neighboring processors, processors that are directly connected by a physical link. 

The reason for such efforts is that most distributed shared memory multiprocessors 

are not fully connected like hypercube, mesh, or rings. Each processor is connected 

only to a few neighboring processors and communication between nonneighboring 

processors has to go through one or several intermediate nodes. It was believed 

that an algorithm that allows communication to be done only among neighboring 

processors will minimize communication cost. However, in most today's message­

passing multiprocessors , wormhole routing techniques are used to route messages 

among processors [12, 53). The pipelining nature of wormhole routing makes the 

network latency insensitive to path length. In other words, communication latency 

is virtually independent of the physical distance between two communicating pro­

cessors. Therefore, neighboring communication is no longer the key factor in an 

algorithm design and the traditional way of designing parallel algorithms may no 

longer give the optimal performance. Our objective here is to show that much more 

performance gains are possible by exploiting the new architectural features such as 

wormhole routing techniques in multiprocessor systems. 

Using the algebra of stride permutations and tensor products as mathematical 

tools , we have seen that one can easily manipulate the communication structure 

of an algorithm and derive a structure best tailored to the underlying architecture 

and develop an optimal communication structure. Such association between tensor 

notation and algorithm design provides a new way of understanding and developing 

efficient parallel algorithms. Our new parallel FFT algorithm that arises from such 

mathematical manipulation minimizes the total number of messages that have to be 
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passed among processors in the course of the FFT computation. This reduction of 

the total number of messages comes at the expense of increase in the length of each 

message. Since the network setup time in wormholE: routing plays more significant 

role in latency than message length due to pipelining, our algorithm shows significant 

better performance than existing parallel algorithms [35]. 

Using equation (1.1) and with the explanation in Section 3.3, one can estimate the 

total communication cost of the existing algorithm [35] on a k-node machine. Fourier 

transforming a two-dimensional data of size kN1 x kN2 involves inter-processor com­

munication cost given by 

(5.66) 

The chapter is organized as follows. In the following, we analyzed the performance 

bottlenecks of existing FFT algorithm to find where improvements are possible. Sec­

tion 5.2 presents our new algorithm using tensor notations, and proves its validity. 

Experiments and performance measurements will be presented in Section 5.3. Fi­

nally, Section 5.4 concludes our approach. 

5.2 New Approach 

Having analyzed the communication cost of the existing FFT algorithm for row­

division partition, we focus our effort at reducing the cost expressed in equation (5.66) 

[54]. It is clear that the parameter is is a major factor contributing to the total 

cost compared to the parameter ie. Our main objective is to minimize the role of 

network setup time in communication overhead. The main idea is similar to the 

classical divide-and-conquer strategy in algorithm designs. Suppose that the size 

of the machine can be represented by two factors, i.e., k = k1k2. With proper 

data-partitioning and allocation, we reduced the network setup time from 0( k1 k2) 

to O(k1 + k2) with an increase of a constant factor for the coefficient of ie (see 

equation (5.77) in the next section). 
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__________ , 

Node 
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Figure 5.5: Mapping of 2-D array f(x,y) onto 6-D array. 

Let the input data to be transformed be a two-dimensional array with size kN1 x 

kNz . If this computation is to be carried out on k-processor machine, then each 

processor would be assigned with kN1 N2 length sub-vectors. Such sub-vectors are 

obtained by tiling the two-dimensional array into k1 x k2 blocks of size kzN1 x k1 Nz. 

These ki x k2 blocks of size k2 N1 x k1 N2 are shown with dotted lines in Figure 5.5. 

We then allocate each sub-block to a processor. This process is typical in finite 

element analysis where finer the grid, higher the complexity of computation. With 

k1 X kz blocks, we imagine associated processors are being arranged in k2 columns , 
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each column consisting of k1 processors. These processors are numbered in anti­

lexicographic manner, that is, processors in the first column are numbered from 0 to 

(kl_ 1), those in the second column are numbered from k1 to (2k1 - 1), and so on. 

Similar to V ect operation in Section 2.2, we form a single vector x out of the input 

matrix by placing column-( i + 1) down the column-i, 1 :::; i :::; ( kN2 - 1) (column­

major). Then, shuffled vector x built with sub-vectors are assigned to processors 0 

to ( k - 1 ). The tensor product and stride permutation representing all the above 

data-partitioning is seen in equation (3.25) that can be represented as: 

x(O: J - 1) 

x(J: 21 - 1) 

x((k2 - 1)J: k2J - 1) 

x = [lk2 ®P(kiN2,k1) ®lk2 N1 ] x 

PM(kNi, kN2, ki, k2) 

P( kf N2, k1) ® lk2 N 1 

P( kf N2, k1) ® lk2N1 

0 

0 

(P(kf N2, k1) ® lk2 N 1 )x(O: J - 1) 

(P(kf N2, k1) ® lk2 N 1 )x(J: 2J - 1) 

(5.67) 

x 

where J = k2kfN1N2 and x(x1 : x2) represents sub-vector off formed with elements 

with subscripts from x 1 to x 2 . In the above matrix representation, each row de­

notes the operation that is being performed on an entire column of k1 processors. 

Recall that a tensor product with post identity matrix, lk2 N1 , represents operations 

on vectors of length k2N1, and with the operational matrix being P(kf N 2 , k1), it 

represents picking up vectors of length k2 N1 with stride k1 . Tensor product with 

prior identity matrix, Ik
2 

in equation (5.67), represents that similar operations are 

to be performed on each of the k2 columns of processors. Extension of such a data­

partition and allocation scheme for higher dimensional problems can be done in a 

similar way although the geometrical representation would be more complicated. 
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This is clear from zoomed part of Figure 5.5 in which we detailed the required parti­

tion for implementation with another grid of size k2 x k1 at each node for representing 

two-dimensional algorithm making a six-dimensional indexing instead of our tensor 

product formulation presented below. Each block in this grid would consist N 1 x N 2 

elements. 

With the data allocation made in above for computing two-dimensional DFT, the 

computation proceeds in stages that are explained in the following. Stride permu­

tations and tensor product are aid to clearly visualize the complexity and feasibility 

of execution on parallel machines. 

Rearrange I: 

(5.68) 

This stage involves simultaneous message-passing among all the processors that be­

long to the same column. In fact, any rearrangement that is not preceded by Ik would 

result in inter-processor communications. However, lk2 preceding the above expres­

sion indicating that k2 columns of processors are doing intra-column message-passings 

in parallel. Actual implementation involves message-passing from a node sender to 

a different node receiver. 

1. Node sender calling a procedure that sends a vector to node receiver with 

parameters (a) vector's name, (b) size, (c) address of the node to which data 

should be directed to, which is receiver in this case, and ( d) a user defined 

message number that should be same for all the global communications being 

performed at that time. 

2. Node receiver employing a routine for an asynchronous receive that initiates 

the receipt of a message from a process. 

3. Node receiver utilizing a message wait routine to block further execution of 

any instructions that are dependent upon data in transit until the transfer is 

complete. 
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Hence, this stage of global data shuffling involves a complexity of ( ki -1) number 

of messages to be passed by each processor, each message being of length k2 N1 N 2 . 

Rearrange II: 

(5.69) 

Compute I: 

(5.70) 

Rearrange III: 

(5.71) 

In Rearrange II, the tensor products have densely packed knowledge about the im­

plementation aspects. First of all, the occurrence of the identity matrix h on the 

left indicates parallel computations. Therefore, operation at a node is independent 

of any other node. The actual operations performed in parallel are data shuffling to 

obtain a complete column of the input matrix in order at each processor. As a result 

of this rearrangement, processor-0 contains the first N2 columns in the natural order, 

processor-I contains the next N2 columns in the natural order , and so forth. 

After N2 columns are obtained at each processor, Compute I performs N 2 number 

of kN1-point one-dimensional Fourier transforms on columns, using an efficient one­

dimensional transform routine called cfft1d developed by Kuck & Associates Inc. , 

for complex numbers. It is evident from theorems 2.9 and 2.5 in Section 2.5 that Re­

arrange III is the inverse operation of Rearrange II. It scatters back the transformed 

vectors of length k2 N1 with stride k1 to prepare for the global communications in the 

next stage. This step is once again independent of the data at other nodes and can 

be executed in parallel. 

Rearrange IV: 

(5.72) 

This stage is exactly the same as Rearrange I that has a complexity of ( k1 - 1) global 

communications , each message has the length k2 N1 N 2 . 
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Rearrange V: 
(5. 73) 

With h preceding this operation, this is nothing but local transpose of the matrices 

of size k2N1 x ki Nz at each processor. This transpose would prepare the data to 

perform similar stages as above on the next dimension. 

Following six stages are identical to the above six stages except that they are 

being performed on the second dimension. However, just for the purpose of valida­

tion through out the algorithm, terms [P(k, ki) ® lkN1 NJ and [P(k , k2) ® IkNiN2 ] are 

introduced, first before and then after the global communications in Rearrange VI 

and IX. However , they are not seen in actual implementation because destination 

processors are addressed with the necessary node numbers . 

Rearrange VI: fs = [Ik2 ® P(ki , kz) ® lk1N1N2 ] [P(k, ki) ® lkN1N2 ] f7. 

Rearrange VII: f9 = [Ik ® P(k2Ni, Ni)® lk1N2 ] fs. 

Compute II: f10 = [Ik ® FkN2] f9. 

Rearrange VIII: f11 = [Ik ® P(k2N, kz) ® lk1N2 ] f10. 

Rearrange IX: f12 = [P(k , kz) ® lkN1N2 ] [Ik2 ® P(ki, kz) ® lk1N1N2 ] f11. 

Rearrange X: y= [Ik ® P(kN1N2, kiN2)] f12. 

5.2.1 Proof 

If we consider data x of size kN1 x kN2 arranged on a k1 x k2 grid to be Fourier 

transformed to data y, then 

y = PM(kNi, kN2, ki , k2) [FkN2 ® FkN1l 

Pi} (kN1, kN2, ki, k2)x 

PM(kN1, kN2, ki, k2) [FkN2 ® IkN1l 

[IkN2 ® FkN1] Pi}(kN1, kN2, ki, k2)x 

PM(kN1 , kN2, ki , kz)P(k2 NiN2, kN2) [IkN1 ® FkN2] 
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Using equations (3.47) and (3.48) to expand matrix transposes P(k2 N1N2, kN2) and 

P(k2 N1N2, kN1), respectively, 

y = [Ik 0 P(kN1N2 , kiN2)] [P(k , kz) 0 lkN1NJ 

Rearrange X 

PM(kN2, kNi, kz , ki) [IkN1 0 FkN2] 

P'i}(kN2, kN1, kz, ki) [P(k, ki) 0 lkN1N2] 

[Ik 0 P(kN1N2, kzN1)] PM(kNi, kN2, ki, k2) 

Rearrange V 

[IkN1 0 FkN1l P'i}(kNi, kN2, ki, kz)x (5. 74) 

Counting steps from bottom to top in the above equation, steps 1-3 and 6-8 are 

dual and one can be obtained from the other by exchanging N 1 with N 2 , and k1 

with k2 . Consider an operational matrix A that consists the stages Rearrange I, II, 

Compute I, Rearrange III, and IV explained in the above section. Then we will prove 

that steps 1- 3 in above equation are equivalent to A . The steps 6-8 can be proved 

in a similar fashion to be equivalent to respective stages in the other dimension . 

P"i](kNi,kN2, k1, k2) A PM(kNi,kN2, ki,k2) 

[Ik2 0 P( ki Nz , ki Nz) 0 lk2N1] [Ik2 0 P( ki, ki) 0 lk2 N 1 N2] 

P'i} Rearrange IV 

[Ik 0 P(k1N2 , kt) 0 lk2 N1] [IkN2 0 FkN1] 

Rearrange III Compute I 

[lk 0 P( ki Nz, Nz) 0 lk2N1] [Ik2 0 P( ki, ki) 0 lk2N1N2] 

Rearrange II 

[Ik2 0 P(ki Nz , kt) 0 lk2 N1 ] 

PM 

Rearrange I 

(Ik2 0 { P(kiN2, ktN2 [P(ki, kt) 0 IN2] [Ik1 0 P(ktN2 , k1)J} 0 lk2 N1) 
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(Ik2 0 { (Ik1 0 P( kiN2, Nz)] [P( ki, ki) 0 IN2] P( ki Nz , ki)} 0 lk2N1) 

== [1k2 0 IkiN2 0 Ik2N1] [IkN2 0 FkN1] [1k2 0 IkiN2 0 Ik2N1] 

== [lkN2 0 FkN1] (5.75) 

Therefore, 

(5.76) 

Hence the proof. 

5.3 Performance Evaluation and Comparison 

In this section, we evaluate the performance of the new approach developed in the 

previous section. We will also compare its performance with the existing algorithm 

described in equation (5.66). It is clear that computational complexity is the same 

for both algorithms. We can estimate the inter-processor communication cost similar 

to equation (5.66) for the new algorithm. It is given by 

(5. 77) 

From equation (5.77), we can see that for our new approach to be efficient than 

the existing algorithm [35) , the following must hold . · 

(kN1)(kN2) < (t s/t e)(k)2 (5. 78) 

Data size < (ts/te)(Machine size)2. 

Experiments to measure the actual performance of the two algorithms on the Delta 

machine have been carried out . The measurements are reported in Table 5. 7. The 

results shown in this table are measured with a library routine called dclock() that 

returns a double precision number. Using this routine at the beginning and at the 

end of each of the algorithms, we obtained double precision time in milli-seconds. 

These timings are purely for execution of the FFT algorithm because processors 
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are not time-shared by multiple users. However, since each node would execute 

in a slightly different time due to the asynchronous communication network, we 

considered the maximum value of the times reported by all the nodes. Also, we have 

averaged timings over a set of one hundred experiments with forward and inverse 

two-dimensional transforms for each data size. 

Performance of two different algorithms are reported by executing them on 128-

node and 256-node machine-partitions. Various data sizes that we have tested are 

presented in the first column in Table 5. 7. The second and third columns represent 

timings for existing and new approaches, respectively, on 128-node machine while 

fourth and fifth columns are for the cases of 256-node machine. 

One can find a direct correlation between the theoretical estimation of perfor­

mance in equation (5. 77) and the results in Table 5. 7. It can be seen that as the 

machine size increases performance of new approach increases. This is because the 

complexity of network startups in the existing algorithm is 0( k1 k2 ) while that of 

the new approach is O(k1 + k2 ). In general, for an n-dimensional DFT computation 

on ( k1 k2 .•. kn)-processor machines , order of network startups for existing algorithm 

would be O(IIi=1 ki) while that of new approach would be O(L:i=1 ki)· Therefore, 

the data-partitioning scheme and communication setup described in new approach 

would be especially useful in the problems with the combination of huge data size, 

large machines, and higher dimensionality. 

5.4 Conclusion 

In Section 5.2, we presented an approach for computing multidimensional DFT on 

distributed memory systems that effectively utilizes the fact that today's distributed 

memory systems use wormhole routing for interprocessor communications. An ap­

proach to extend the algorithm for three or more dimensional problems using stride 

permutation and tensor product matrices has been presented that facilitates finding 
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Data Size 128 nodes 256 nodes 
Old New Old New 

M x N (msecs} (msecs} (msecs} (msecs} 

128 x 128 120.117 27.727 N/A 31. 711 
256 x 128 120.151 31.234 192.980 35.017 
256 x 256 121.681 34.165 245.634 39.499 
512 x 128 125.425 34.401 210.761 35.865 
512 x 256 129.847 44.944 254.412 44.948 

1024 x 128 128.236 44.883 227.441 43.225 
512 x 512 125.901 60.946 270.365 56.096 

1024 x 256 133.562 64.331 262.051 53.420 
1024 x 512 152.919 99.989 285.066 76.041 
1024 x 1024 211.274 177.306 294.038 119.288 

Table 5.7: Implementation results of FFT using new approach on Intel's Touchstone 
Delta. 

an efficient data-partitioning and network setup on distributed memory multiproces­

sors. Data-partitioning scheme is suitable and should be aimed at boundary value 

problems in fluid dynamics , finite element analysis etcetera. Results showed that our 

algorithm is more than six times as fast as the existing algorithm for certain cases . 

Moreover, higher the parallelism is, the better the performance of new algorithm 

will be. Given the fact that physical limits on memory exist at each processor, our 

new algorithm is a solution to today's large problems that involve multidimensional 

Fourier transform computations on massively parallel machines . 
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Chapter 6 

Parallel Matrix Multiplication 

Algorithm For Rectangular Arrays 

6.1 Introduction 

Many applications have numerical solutions in which computational burden is re­

duced partly or fully to matrix operations. One of the most elementary operations 

involving matrices is multiplication of two matrices. However, since matrix multi­

plication requires substantially more data movements than most other operations, 

algorithms that address efficient data movements are crucial to their effective imple­

mentation on concurrent computers. 

This chapter is organized as follows. Section 6.2 reviews an existing matrix mul­

tiplication algorithm that generates and accumulates partial results by moving mul­

tiplicands through a set of broadcasts and shifts. Section 6.3 considers the two 

extreme cases of the broadcast-and-shift multiplication algorithm arising from data 

decomposition strategies. These cases involve either only a set of broadcasts or only 

a set of shifts. We present a new approach in Section 6.4 that replaces broadcasts or 

shifts by matrix transpose. Identification of shortcomings in the two extreme cases 

of broadcast-and-shift algorithm and the fact that dot product of two vectors result 

in a single element is the motivation for this new approach. Then, to overcome the 
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Figure 6.6: Broadcast-and-Shift Matrix Multiplication Algorithm on 16-processors 

hurdles in memory requirement, we modified the algorithm for efficient data manip­

ulation with the aid of block transpose algorithm seen in Chapter 3. Section 6.5 

presents theoretical evaluation of communication costs of broadcast-and-shift algo­

rithm versus new approach and timing results of their implementations on Intel's 

Paragon, Touchstone Delta, and iPSC/860 which inferred that new approach is in­

deed efficient for rectangular arrays. Section 6.6 concludes the chapter. 

6.2 Broadcast-and-Shift Matrix Multiplication 

Algorithm 

This section reviews the broadcast-and-shift matrix multiplication algorithm that is 

presented in [25]. Related research can be found in [55, 56, 57]. Throughout this 

chapter, we consider computing C, where 

C=AB, 
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on concurrent processors. Let k be the number of processors in a distributed memory 

system. Assuming k to be a square of an integer, k = k;, we can use square sub block 

decomposition (mesh-division) as shown in Figure 6.6. Then, multiplicand matrices 

A and B are distributed piecewise in two-dimensions. Resultant matrix C is also 

expected to be distributed in the same fashion ·for further processing steps. Denote a 

processor belonging to ith row and jth column by p(i,j), 0 ~ i, j ~ (ks -1). Similarly, 

denote the sub blocks of matrices A, B, and C in processor p(i,j) by A (i,j), B(i,j), and 

cCiJ), respectively. The multiplication with respect to blocks can be written as 

(k.-1) 
C(i,j) = L (A (i,I) B (1,j)) . (6.79) 

l=O 

The above equation can be rewritten for implementation on a multiprocessor envi­

ronment as: 
(k.-1) 

C(i,j) = L (A(i,11) B(l1,j)) (6.80) 
l=O 

where 11 = (i + l) (mod ks), and ks is the number of processors in a row. Equa­

tion (6.80) represents operations to be performed at processor p(i,j). These opera-

tions are divided into ks stages of operations, one stage for each l, 0 ~ l ~ (ks -1), in 

the summation. Consider dividing each stage into two tasks: (a) task that involves 

message-passings to obtain A (i,li) and B(li.i) at processor p(i,j) and (b) task that in­

volves computation of the product A (i,li) B(li,j) at processor p(i,j) and accumulation 

of the result to C(i,j). To compute equation (6.80) in p(i,j) for j = 1 ···ks, all the ks 

processors belonging to the same row, with same index i, should obtain A (i,l 1), for 

all values of 11 where 11 = (i + l) (mod ks), and 0 ~ l ~ (ks - 1) . This is done by 

broadcasting from processor p(i,li) to all the processors in same row for each stage. 

To obtain B(li,i) at processor p(i,j) for each l, one needs to shift subblocks of B up 

after each stage, as shown in Figure 6.6. Once sub blocks A (i,l 1 ) and B(li,i) are ob­

tained at processor p(i,li), they are multiplied and accumulated to C(i,j). Note that 

no movement of the data at the resulting matrix, C, is necessary. All the message 

Passings are within multiplicands A and B. 
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For a k-processor machine, it is evident that the above algorithm is divided into 

ks stages. Each stage consists of communications and computations. Computations 

in all the stages are identical. Communication step in the first stage only involves 

broadcasting of A while rest of the stages involve both broadcasting of A and shifting 

of B. The number of message-passings of each broadcast from a processor to (ks -1) 

processors is clearly (ks - 1). Each shifting passes one message. Therefore, the total 

number of communications is given by [ks(ks - 1) + (ks - 1)] = (k - 1) . However, 

the sizes of the messages vary with respect to the sizes of matrices A and B . If 

multiplicands A and B are of sizes N1 x N2 and N2 x N3 , respectively, then total 

communication cost can be written as: 

tmesh (k - l)ts +[ks( ks - l)(N1N2/k) +(ks - l)(N2N3/k)J te 

(k - l)ts +(ks - l)(N2/k) [ksNI + N3] te (6.81) 

where ts is the start-up time for a communication and te is the communication time 

for one element. From equation (6.81), it is clear that the communication complexity 

is in the order of O(k). However, the size of multiplicand A has more pronouncing 

effect on communication cost than size of multiplicand B because of the underly­

ing broadcasts. An effort to eliminate either the broadcasts of left multiplicand or 

the shifts in right multiplicand results two extreme cases that are presented in the 

following section. 

6.3 Two Extremes of Broadcast-and-Shift Algo­

rithm 

When either row-division (a set of complete rows is allocated to each processor) 

or column-division (a set of complete columns is allocated to each processor) data­

allocations are considered for matrices A and B, either broadcasting A or shifting B 

can be eliminated. Figures 6. 7( a) and (b) present the block-diagrams for these cases 
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•••• J! ~i ~; ;i ••.. 
.... .... ~:: :: .. :: ::~:::.::~---·- --- --- -· ::: ::!r:: ~: ::: 

Matrix A Matrix II Matrix A Matrix II 
(a) 

(b) 

Figure 6.7: Broadcast-and-Shift Multiplication using 4-processor machine (a) for 
row-division with no broadcasts in A and (b) for column-division with no shifts in 

B. 

showing the communication complexity, respectively. In case of row-division parti­

tioning, matrix-vector multiplication would be efficient while in the case of column­

division structure, vector-matrix multiplication could be efficient. This can be clearly 

seen in the following evaluation of communication costs for these extreme cases. On 

a k-processor machine with matrices A and B of sizes N1 x N2 and N2 x N3 , respec­

tively, broadcast-and-shift algorithm for these decompositions maps into k stages of 

shifts for row-division (see Figure 6.7(a)) or k stages of broadcasts for column-division 

(see Figure 6.7(b)) unlike ks stages of broadcasts and shifts for mesh-division. Then, 

communication cost for row-division decomposition would be a result of shifts in B: 

(6.82) 

which is in the order of 0( k) while that for column-division decomposition can be 

derived from broadcasts in A as: 

(6.83) 

which is in the order of O(k2). However, when row-division partitioning is adopted 

for A and column-division decomposition is used for B, both the broadcast and shift 

communications are traded with communications of partial results of C that need to 

be accumulated. This case is studied in next section and compared to mesh-division 

broadcast-and-shift algorithm. 
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1(0) A(G,OJ 1(0) 

* 1(1) = A(l.1)1(1) 

A(U) 1(2) A(l.2)1(2) 

A(l,J) 1(3) A(l,3)1(3) 

A(0,1) 1(0) A(l.0)8(0) 

A(l.0) * 1(1) A(O,l)B(l) 

A(l.3) 1(2) A(:l,2)1(2) 

A(:l,l) 1(3) AlUJa(l) 

A(o,2) 1(0) A(2,0) l(O) 

A(l.3) * 1(1) = A(l,1)1(1) 

A(2,0) 1(2) A(0,2) 1(2) 
···· ·-·- ········ ....... . 
A(3,1) 1(3) A(l,3) 1(3) 

A(G,3) 1(0) A(3,0J l(OJ 
········ ········ ....... . 

ii_ A(2,1) 1(1) 

!t A(l,2)1(2) 

A(0,2) 1(1) 

* 
A(2,1) 1(2) 

A(3,0) 1(3) A(0,3)1(3) 

Figure 6.8: New Approach for Matrix Multiplication Algorithm on 4-processors 

6.4 New Approach: Taking Advantage of Two 

Extremes 

This section presents the unique domain decomposition of multiplicand matrices, A 

and B, that requires absolutely no messages being passed within multiplicands but 

involves only communication of partial results. Computational complexity is identical 

to that of broadcast-and-shift algorithm but communication complexity varies with 

sizes of multiplicand matrices. Moreover, storage requirements for new approach is 

less than that required in broadcast-and-shift algorithm since communication buffers 

are required for both the multiplicands in broadcast-and-shift algorithm while only 

a buffer as small as resulting matrix is required in our approach. Observing that 

dot product of two vectors result in one single element irrespective of length of the 

vectors, and considering the block transpose algorithm for row or column-division 

decompositions motivated us for this approach. 
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Consider two multiplicand matrices A and B of sizes Ni x N2 and N2 x N3 , re­

spectively, and C =AB. Let matrix A be decomposed using column-division while 

matrices B and C be decomposed with row-division. It is acknowledged that the 

data-partition considered here is not uniform for all the matrices A, B, and C. 

For embedding this algorithm into any computation would need necessary message­

passings overhead to switch between data-partitions. Association of parts of each 

matrix to each node on a k-processor machine would result processor-i to contain 
(i) B(i) d C(i) I .t. 11 ·t ld h h h d ANixN

2
/k' N2 /kxN3 , an NifkxN3 • m ia y, i wou seem t at w en eac no econ-

tains parts of matrices A and B of sizes Ni x N2/k and N2f k x N3 , resulting matrix 

that obtained by their multiplication at each node would be of size Ni x N3 , which is 

as large as the entire resulting matrix that is supposed to be residing at all the k pro­

cessors. However, using matrix transpose technique and further dividing the problem 

at each node, we can decompose algorithm into k successive compute, communicate, 

and accumulate stages, which would require a storage of size just Ni/k x N3 . Total 

number of communications is exactly same as that required in broadcast-and-shift 

matrix multiplication algorithm but message-length varies as the sizes of matrices A 

and B depart from being square matrices. Moreover, restriction on broadcast-and­

shift algorithm on number of processors to be square is no more applicable to this 

new approach. 

Figure 6.8 demonstrates the new approach for matrix multiplication using column­

division for left multiplicand A and row-division for right multiplicand B on a 4-

processor machine. On a k-processor machine, suppose that processors are numbered 

as p(o) ... p(k-i). Denote the part of matrix A that is allocated to processor i as 

A (i). Similarly, denote the part of matrix B that is allocated to processor i as B(i). 

Then, resulting matrix C can simply be expressed as 

k-i 
c = LA (l)B(l) 

l=O 

If we break-up the computations into k stages, then we can form k communication 

stages followed by computation stages. This is accomplished by breaking-up associ­

ating matrix A at jth processor into k subblocks as A(i,j) for 0:::; j:::; (k - 1). Then 
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k stages of computations are performed by multiplications: A (i,j)B(j) at processor 

j for i = 0 to (k - I). Then, (k - I) stages of block-transpose algorithm can be 

interleaved with k stages of computations. Following equation explicitly shows the 

block-transpose algorithm where the horizontal lines represent node boundaries. 

A(O,O)B(O) A(O,O)B(O) 

A (O,l)B(l) A(l ,O)B(O) 

A (O,k-l)B(k-1) A(k-1,0)B(O) 

A (1,0)B(O) A(o,1)B(1) 

A(1 ,1)B(1) 
= [P(k 2

, k) 0 IN1N3/k2] 
A(1,1)B(1) (6.84) 

A (1 ,k-1)B(k-1) A(k-1,1)B(1) 

A (k-1 ,k-1)B(k-1) A (k-1 ,k-1)B(k-1) 

Note that first (top-down) (k-I) entries of right hand side matrix in equation (6.84) 

can be computed at processor-0 because subblocks A(j,O) and B(0), 0 ::=:; j ::=:; (k-I), are 

available at processor-0. Simultaneously, processor-I computes products A(j,l) B(l) , 

0 :::; j ::::; ( k - I) , at processor-I , and so on. Then, after the transpose algorithm, 

computation can be completed by the following accumulation. 

C(O) l:::J:,~1) A(o,j)B(i) 

C(1) l:::J:,~1) A(1 ,j)B(j) 

C(i) 2:::):~1 ) A (i,i)B(j) 
(6.85) 

C(k-1) 2:::):~1) A (k-1,j)B(j) 
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II N1 N2 N3 II 2-nodes I 4-nodes I 8-nodes I 16-nodes II 
32 512 32 0.495 1.049 2.294 4.870 
64 512 64 0.801 1.827 3.348 4.970 

128 512 128 2.238 4.375 5.775 8.953 
256 512 256 7.107 12.377 16.724 22.357 
512 512 512 27.340 44.108 57.234 67.113 

Table 6.8: Timing results for routing scheme in new matrix multiplication algorithm 
for 2, 4, 8 and 16-node partitions. 

6.5 Performance Evaluation 

We have seen in Section (6.2) that the communication overhead in broadcast-and­

shift algorithm for running on k processors in equation (6.81). If we derive message­

passing overhead inherent in the new approach in analogous fashion, then for k 

processors, implementation of multiplication of matrices of sizes N1 x N2 and N2 x N3 
would involve a communication cost that can expressed as: 

(6.86) 

To compare the two algorithms, new approach performs better than broadcast-and­

shift algorithm if 

imesh > .tnew 

ks(ks - l)(N1N2/k) + (ks - l)(N2N3/k) > (k - 1) (N1N3/k) 

N2 
N3 

(6.87) > 
[1 ( N3 - Ni ) ] + (ks+ l)N1 

Note that both the algorithms have communication complexity that are in the 

order of O(k) on a k-processor machine. Hence, the only difference arises from the 

sizes of the multiplicands and the resulting matrix. Clearly, above inequality says 

that if N2 is larger than N3 , then messages in new approach will be shorter than that 

of communications in broadcast-and-shift algorithm. Tables 6.9, and 6.10 present 

results of actual implementations demonstrating the validity of the inequality (6.87). 

71 

II 



Ni N2 N3 B-S Algor. New App. Performance 
Improvement 

128 128 32 11.811 5.384 119.35 
128 128 64 9.769 7.589 28.73 
128 128 128 10.313 9.290 11.02 
256 128 32 12.108 7.538 60.63 
512 128 32 15.429 9.330 65.37 

1024 128 32 22.604 13.469 67.82 
128 256 32 11.185 5.355 108.88 
128 256 64 11.753 7.573 55.19 
128 256 128 12.853 9.359 37.33 
256 256 32 14.466 7.530 92.10 
256 256 64 14.993 9.339 60.53 
512 256 32 20.114 9.341 115.33 
512 256 64 20.618 13.529 52.40 

1024 256 32 37.661 13.518 178.59 
128 512 32 15.005 5.273 184.58 
128 512 64 16.127 7.511 114.71 
128 512 128 18.651 9.336 99.78 
128 512 256 22.296 13.496 65.21 
256 512 32 20.647 7.571 172.70 
256 512 64 . 21.557 9.360 130.31 
256 512 128 24.351 13.468 80.81 
512 512 32 32.073 9.333 243.65 
512 512 64 32.874 13.487 143.74 

1024 512 32 66.446 13.524 391.31 
1024 512 64 54.994 23.743 131.63 

Table 6.9: Timing results for routing schemes in matrix multiplication algorithms on 
Intel 's Paragon with 16-processors. 

72 

I
I II 

I I 

'I 

I ~ 

111 



Moreover, unlike broadcast-and-shift algorithm which is optimum for square number 

of processors [25], performance of new approach changes uniformly with increasing 

number of processors. This is demonstrated with our results in Table 6.5. 

6.6 Conclusion 

It is observed that variation of data-partitioning presents significant improvements 

in the performance of matrix multiplication algorithms for rectangular arrays. A 

clear analysis of an existing multiplication algorithm for distributed systems seeking 

minimum communication resulted in an efficient and new approach. Also, a quest to 

overcome the hurdles faced in memory requirements while developing this algorithm 

resulted in efficient utilizitation of the block-transpose algorithm seen in Chapter 3. 
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Ni N2 N3 B-S Algor. New App. Performance 
Improvement 

128 128 32 11. 742 7.265 61.62 
128 128 64 12.848 11.661 10.79 
256 128 32 18.404 11.661 57.82 
512 128 32 31.486 21.037 49.67 
128 256 32 19.511 7.325 166.67 
128 256 64 21.919 11.669 87.84 
128 256 128 26.588 21.128 25.84 
256 256 32 32.423 11.641 178.52 
256 256 64 34.938 21.032 66.12 
256 256 128 39.837 39.226 1.56 
512 256 32 59.338 20.973 182.93 
512 256 64 61.808 39.322 57.18 
128 512 32 34.936 7.302 378.44 
128 512 64 39.797 11.674 240.90 
128 512 128 49.139 21.112 132.75 
128 512 256 68.786 39.276 75.13 
128 512 512 109.143 75.203 45.13 
256 512 32 61.808 11.672 429.54 
256 512 64 66.710 21.108 216.04 
256 512 128 76.199 39.185 94.45 
256 512 256 96.222 75.287 27.81 
512 512 32 114.326 20.887 447.35 
512 512 64 119.239 39.229 203.96 
512 512 128 128.646 75.244 70.97 

Table 6.10: Timing results for routing schemes in matrix multiplication algorithms 
on Touchstone Delta with 16-processors. 
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Ni N2 N3 B-S Algor. New App. Performance 
Improvement 

128 128 32 26.504 18.586 42.60 
256 128 32 44.936 30.932 45.27 
512 128 32 80.056 55.328 44.69 
128 256 32 47.235 19.506 142.15 
128 256 64 53.787 30.849 74.35 
128 256 128 65.542 55.086 18.98 
256 256 32 82.382 30.829 167.22 
256 256 64 89.350 53.987 65.50 
512 256 32 152.873 55.152 177.18 
512 256 64 159.157 102.409 55.41 
128 512 32 88.714 18.271 385.54 
128 512 64 101.255 31.236 224.16 
128 512 128 124.579 55.067 126.23 
128 512 256 185.685 101.661 83.65 
128 512 512 304.817 198.436 53.61 
256 512 32 159.439 30.950 415.15 
256 512 64 171.299 55.5.32 208.47 
256 512 128 197.331 101.436 94.54 
256 512 256 245.848 198.612 23.78 
512 512 32 300.573 53.400 462.87 
512 512 64 312.586 102.097 206 .17 
512 512 128 339.101 199.487 69.97 

Table 6.11: Timing results for routing schemes in matrix multiplication algorithms 
on iP SC /860 with 16-processors. 
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Chapter 7 

Conclusions and F'uture Research 

It is well known that data-distribution in distributed memory multiprocessors is 

essential to achieving high performance of data parallel algorithms. The central 

feature of most implementations of these algorithms is the manner in which the 

expensive interprocessor communication is minimized. 

We defined a set of expressions for partitioning data in multiprocessor environ­

ments using tensor products and stride permutations. Unlike the existing data­

partitioning schemes, this representation can form a part of any algorithm that can 

be represented using tensor products and stride permutations. Hence, using the well 

established theorems in tensor algebra, one can eastly manipulate the algorithm to 

clearly visualize the data migration stages. 

The expressions defined for data-partitions have been used to demonstrate the rep­

resentation of existing matrix transpose and two-dimensional FFT algorithms. For a 

practical application in which switching data-partitions was needed, manipulation of 

algorithms and derivations to interface among them proven to be successful by using 

our definitions for process of data-partition. This is seen in computing vorticity and 

stream functions via a partial differential equation solver that used wavelet-Galerkin 

method. Then, a variant for routing scheme in two and three-dimensional FFTs is 

derived that is applicable for today's large computers to solve huge data sizes. Fi­

nally, a data-allocation scheme is presented for matrix multiplication via transpose 
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algorithms for distributed systems. It is seen that such a distribution is efficient for 

rectangular matrices. 

Tensor products and stride permutations have been extremely useful to transform 

an algebraic expression that is derived on paper into implementations on parallel 

machines. Algorithms derived and discussed in this dissertation were implemented 

on Intel's Paragon, Touchstone Delta, Gamma, and iPSC/860. 

An immediate direction for future work based on this research is to introduce no­

tation and develop relevant theorems required for parallel algorithms that cannot be 

represented using tensor products and stride permutations alone. Another research 

direction is to solve applications that have several computational modules which are 

efficient for distinct data-partition schemes to prove usefulness of our definitions for 

interfaces. 
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Appendix A 

Tensor Product Representation of 

3D-FFT 

If we consider rows, columns, and depths as three axes of a three dimensional array, 

this appendix describes an algorithm in which domain decomposition strategy in­

volves partitioning depth as shown in Figure A.I. Hence, each processor would have 

complete rows and complete columns but not complete depths. 

Consider a three-dimensional array, X, of size L x M x N distributed onto k­

processors as shown in Figure A.I. Then, similar to column-decomposition method, 

input and output data-shuffling matrices are identity matrices and hence do not 

affect the derivation . Then , 3D-DFT of X can be expressed using tensor notation 

l/ ...................................... :::: ::::::::: :::: .................... Processor-(k-1) 

M 
>·:::::::::::·.:·.::::::::::::::::::::::::::::::::::::::::::::::: ::: ........ . .. Processor-1 

... ..:·················· ························································ ... Processor-0 

L 

Figure A.l: Data-partitioning for Intel 's 3D-FFT algorithm 
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as: 

(A.l) 

where x = VectLMN(X) and y = VectLMN(Y) . Then, implementation of equa­

tion (A.1) can be derived as follows: 

[FN 0 FM 0 FL] = [FN 0 IML] [IN 0 FM 0 IL] [IMN 0 FL] (A.2) ,,___, ,,___, 
Z 3 Z2 Z1 

Then , 

(A.3) 

This is perfectly parallel with out any communications on p-processor machine. 

Z2 IN 0 FM ® IL 

IN 0 [P(LM,M) (IL 0 FM) P(LM,L)] 

lk 0 ([IN/k 0 P(LM,M)] [ILN/k 0 FM] [IN/k 0 P(LM,L)]) (A.4) 

This consists of three perfectly parallel stages, first and third being vector-stride 

permutations that are inverse to one another, and second stage is LN/k number of 

one dimensional computations , each on a vector that is of length M . 

P(LMN, N) (IML 0 FN) P(LMN,ML) (A.5) 

Clearly, first and third stages consist communications, while second stage can be 

rewritten as [Ik 0 (IML/k 0 FN)] implying that each of the k processors perform 

ML/ k number of N-point FFTs. Communications in first and third stages can be 

revealed by further decomposition as: 

P(LMN,ML) [Ik 0 P(LM N/k , LM/k)] [P(kN, k) 0 ILM/k] 

[Ik 0 P(LM N/k, LM/k)] [P(k 2
' k) 0 ILMN/k2] 

[1k 0 P(N, k) 0 ILM/k] 
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Hence, 

P(LMN,N) [P(LMN,ML)r1 

[1k ® P(N, N/k) ® ILM/k] [P(k2
, k) ® ILMN/k2] 

[Ik ® P(LMN/k, N)] (A.7) 

Hence, equations (A.6) and (A.7) have similar structure except the local permuta­

tions stages are reversed. In both equations, second stages represent global commu­

nication that are seen before in transpose algorithms row or mesh-division decom­

positions. Hence, putting together all the above derivations, we can represent tensor 

notation of 3D-FFT algorithm on a k-processor machine as follows. 

FN ®FM® FL = [1k ® P(N, N/k) ® ILM/k] 

[P(k2
, k) ® ILMN/k2] 

[Ik ® P(LM N/k, N)] 

[1k ® ILM/k ® FN] 

[Ik ® P(LMN/k, LM/k)] 

[P(k 2
, k) ® hMN/k2] 

[1k ® P(N, k) ® ILM/k] 

[Ik ® IN/k ® P(LM, M)] 

[1k ® ILN/k ®FM] 

[Ik ® IN/k ® P(LM, L)] 

[1k ® IMN/k ®FL] (A.8) 

The above representation involves only two stages of communications, each stage 

consisting a complexity of ( k - 1) number of messages, each message being a length 

of LMN/k2. 
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Appendix B 

Three Dimensional FFT using New 

Approach 

In chapter 5, we promised that tensor notation helps to extend the problem for 

higher dimensions easily. In section 5.2, clear and distinct stages for two-dimensional 

FFT algorithm are presented in two sets ( 1) Rearrange I through Rearrange V in 

equations (5.68)-(5.73), and (2) Rearrange VI through Rearrange X. These results are 

proved in section 5.2. l. In this section, we present tensor formulation of new approach 

without proof for the case of three-dimensional array similar to one presented in 

section 5.2 for two-dimensional array. 

Consider a three-dimensional data of size L x M x N being Fourier transformed 

on k processors where these processors are arranged in k1 x km x kn grid. Due to the 

distribution, segmentation stages before and after the communication stages in each 

dimension are required. 

Segment 

Rearrange I 

Rearrange II 

Compute I 

Rearrange III 

Ik @ P((N/kn)k1 , k1) @ILM/kfkm 

Jknkm @ P(kf l k1) @ILMN/kfkmkn 

Ik @ P((M/km)(N/kn), (M/km)/k1) @ IL/kz 

lk @IMN/k @ F(L) 

Ik @ P((M/km)(N/kn), (N/kn)k1) @ IL/kz 
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Rearrange IV 

Segment 

Rearrange V 

Jknkm@ P(kf, k1)@ JLMN/kfkmkn 

Ik 0 P((N/kn)k1, N/kn) 0 ILM/ktkm 

Ik 0 P(LMN/k,L/k1) 

We have seen that the second set of operations for two-dimensional case are 

obtained by interchanging k1 and kz and N1 and N 2 . However, in three dimensional 

case, we would need three sets. The second set is obtained with substitutions: M <­

L, N <-- M, and L <-- N; and km <-- k1, kn <-- km, and k1 <-- kn. Similarly, the third 

set is obtained with substitutions: N <-- L, L <-- M, and M <-- N; and kn <-- k1, 

k1 <-- km, and km <-- kn. Note that each set involves two communication stages, one 

computation stage, and rest are local permutations. 
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