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Abstract 

The physiological condition of the human cardiovascular system is primarily determined 

from the electrocardiogram (ECG) and blood pressure signals. Diagnostic and 

therapeutic medical procedures and the operation of various medical devices often rely 

on the temporal location of various events observed in these signals. The QRS complex 

(R wave) is one distinguishing characteristic of the ECG waveform; whereas the systolic 

peak, upstroke and the dicrotic notch are the most prominent events in the arterial blood 

pressure signal. Detection of these waveform characteristics may be used for calculating 
I 

heart rate and the systolic time intervals including the pre-ejection period (PEP), left 

ventricular ejection time (L VET) and electromechanical systole (QS2). 

This report describes an algorithm which accurately and consistently locates the 

dicrotic notch in the arterial blood pressure waveform for a range of heart rates, 

arrhythmias and irregular pressure waveforms (including baseline drift, catheter artifact, 

signal damping and noise) using the dyadic wavelet transform (DyWT). Simultaneous 

occurrences of minima in the DyWT across several successive dyadic scales indicates a 

transient in the pressure waveform, from which the corresponding temporal location of 

the dicrotic notch is determined for each cardiac cycle. 

The dyadic wavelet transform scheme for dicrotic notch detection has been tested on 

arterial blood pressure waveforms (radial, femoral, and axillary) with various heart rates, 

ranging from 40 to 140 beats per minute (bpm). Algorithm performance was evaluated 

using 71 patient data files from the Massachusetts General Hospital (MGH) database 

which includes simultaneous ECG and arterial pressure recordings. Four criteria were 



used to indicate detection performance: sensitivity, positive productivity, false positive 

rate and false negative rate. The accuracy of the proposed DyWT based dicrotic notch 

detection algorithm outperformed five previously published detection algorithms in terms 

of each of the four performance criteria. The Dy WT based detection algorithm achieved 

a sensitivity of 84%, a positive productivity of 85%, a false positive rate of 15 % and a 

false negative rate of 16% when tested 72 patient arterial blood pressure files of various 

waveform types, illustrative of a clinical environment. The next highest performers 

achieved a sensitivity as high as 66%, positive productivity of 72%, a false positive rate 

as low as 25 %, and a false negative rate of34%. 
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Chapter 1 

Introduction 

1.1 Justification of Study 

The blood pressure waveform reflects the mechanical function of the myocardium as 

well as of the arteries and veins and represents the hemodynamic pressures generated by 

the heart muscle throughout the systolic and diastolic cycles. The most commonly used 

features in the arterial waveform are systolic upstroke, systolic peak and the dicrotic 

notch. The dicrotic notch is observed in arterial pressure waveforms as a consequence 

of the closing of the aortic valve, after left ventricular ejection, indicating the start of the 

diastolic cycle. Locating the dicrotic notch is critical for analyzing systolic time interval 

(STI) [1-10], for determining the heart rate relative to the beginning of the diastolic cycle 

and for determining the proper inflation time of an intraaortic balloon [ 11-21]. 

The detection of the dicrotic notch is non-trivial in that the blood pressure signal may 

be corrupted by noise, contain motion artifacts, respiratory modulation, or change 

abruptly with arrhythmias; and in sick patients, the pressure curve may deviate greatly 

from the norm. The blood pressure waveform also varies depending on which part of 

the circulatory system is being monitored, (aortic, radial, brachial, femoral, pedal or 

axillary pressures) and is dependent upon the fidelity of the pressure sensor. Previously 

developed dicrotic notch detection algorithms have accommodated some but not all of 

these waveform irregularities. 
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One signal processing technique, the dyadic wavelet transform, has been applied to 

detect the dicrotic notch in a variety of pressure signals available in the Massachusetts 

General Hospital (MGR) clinical waveform database [22]. Physiological signals such as 

the blood pressure, are classified as time varying or non-stationary. The wavelet 

transform provides local frequency information of a signal and is used for analyzing a 

waveform according to its changing spectral position by altering the filter function 

according to the local spectral information in the signal [23-30]. The wavelet transform 

is well suited to process non-stationary signals that exhibit transient behavior and for 

time-frequency analysis where linear time invariant systems fail. Application of the 

wavelet transform allows high frequency components of a signal to be studied with 

sharper time resolution than low frequency components [31] . 

The dyadic wavelet transform uses scaled and translated versions of the mother 

wavelet. This scaling produces variable length windows, providing variable resolution in 

the time or frequency domain. Thus, varying the scale of the wavelet allows for a 

multiresolution view of a signal. Application of the wavelet transform therefore provides 

a means of analyzing a range of time varying signals, such as slow, fast and arrhythmic 

heart rhythms, to observe both high frequency transient information from lower 

frequency signal behavior [25-28]. Signal transients or discontinuities, such as the 

dicrotic notch, can be isolated from background noise by comparing the DyWT across 

successive dyadic scales, thus making the DyWT an appropriate method for dicrotic 

notch detection. Band limited noise whose spectra lies outside of the frequency 

resolution of any of the dyadic wavelet scales will not correlate between scales of the 

dyadic wavelet transform. For such cases, actual events such as the dicrotic notch can 

be detected in relatively noisy signals. The ability of the dyadic wavelet based algorithm 

to detect the dicrotic notch in non-stationary and noisy signals enhances its performance 

over the preexisting detection algorithms. 
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The dyadic wavelet transform detection method provides non-stationary temporal 

information on the dicrotic notch by applying three time dilated scales of the mother 

wavelet to the pressure signal. Simultaneous occurrences of minima in the wavelet 

transform across the three successive dyadic scales indicates a transient in the pressure 

waveform. This idea is based on the work by Mallat [32-35] who developed an 

algorithm to detect rapidly varying signal components such as edges in images and an 

algorithm for efficient coding using a smoothing wavelet function. The algorithm has 

since been modified and applied to a range of signal analysis tasks. Various scientific 

disciplines have applied the wavelet transform to analyze an assortment of signals, 

including image processing and coding, analysis of acoustic signals, physiological signals, 

and astronomical data, as discussed in section 2.3. 
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1.2 Physiological Background 

The human heart is a hollow muscle whose contractile motion controls blood flow 

through the circulatory system. The heart contains four muscular chambers: the left and 

right atria and the left and right ventricles, which are each separated from the remaining 

cardiac system by one way valves as shown in figure l. I [36]. The rnitral valve 

separates the left atrium from the left ventricle; the tricuspid valve separates the right 

atrium from the right ventricle; the aortic valve enables blood flow out from the left 

ventricle into the aorta; and the pulmonary valve controls the blood flow out of the right 

ventricle into the vena cava. 

The function of the heart muscle is governed by electrical impulses that contract the 

muscle fibers . Each of the four chambers of the heart contains a certain blood volume. 

When a cardiac chamber receives an electrical signal, the muscle contracts and blood is 

forced out of the chamber. The left ventricle (L V) is responsible for forcing blood into 

the aorta (through the aortic valve) with enough pressure to allow circulation of blood 

throughout the body. The arterial pressure waveform is the pressure of the blood flow 

out of the L V into the aorta and through the arterial system over time. 

The complete series of cardiac events which occur in a single heartbeat is referred to 

as a cardiac cycle. An outline of the events in the cardiac cycle are listed in table I . I 

[3 7] including the 8 phases of each cycle, the events at the onset, during and at the end 

of each phase. Also provided are the durations (in seconds) of each of the 8 phases for 

both man and dog. Figure 1.2 [37] shows the coordination of the electrocardiogram, left 

ventricular, left atrial and aortic pressure curves, the heart sounds and the left ventricular 

volume curve, according to the phases of the cardiac cycle listed in table I. I . The 

approximate duration of the various events in both the systolic and diastolic portions of 

the cardiac cycle in man are labeled accordingly for a heart rate of 75 bpm. Typical 

heart rates for adult humans can range from 40 to 200 bpm. 
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Superior 
vena cava ........_ ,,. 

,._: 

Right 
atrium 

Aorta 

Pulmonary vein 

Left atrium 

Left ventricle 

Figure 1.1 Structure of the human heart, depicting the four cardiac chambers and the 

four valves and the direction of blood flow. [36] 

Table 1.1 

Events of the Cardiac Cycle [37] 

Ph:ise 

Ph:i5c Event at Onset of Ph:isc ltfain Event During Ph:ise Event :it End of Ph:ise 
Dur:ition 

sec 
Man Dog 

1 lsovolumic Onset of left ventricular Rap.id rise ofleft ventricular pres- Opening of aortic valve 0.06 0.05 
con traction U contraction sure with no volume change 

2 Maximum Opening of aortic valve Rapid outflow of blood from Peak left ventricular pressure 0.12 0.10 
ejection left ventricle 

3 Reduced ejec- Peak left ventricular pres- Decreasing outflow of blood End of left ventricular cjec- 0.14 0.12 
tion sure from left ventricle tion 

4 Protodi:istole End of left ventricular Rapid decrease in left ventric- Closure of :iortic v:ilve 0.03 0.02 
ejection ular pressure i 

5 lsovolumic Closure of aortic valve Continued relaxation of left ven Opening of mitr:il v:ilve 0.09 0.05 
rc!axationU tricle, with no volume change 

6 Rapid inOow Opening of mitral v:ilve Rapid now of blood from left Slowing of innow from left 0.09 0.06 
atrium to left ventricle atrium to left ventricle 

7 Diast:isis Slowing of inOow from left Continued slower now from left Onset of left atri:il contr.ic- 10.16 0.29 
atrium to left ventricle atrium to left ventricle ti on 

8 Atrial systole Onset of left atri:il con- Increased now from left :itrium I End of left :itri:il contr:iction 0.11 0.11 
tr:iction to left ventricle and onset of left ventricu-

l:ir con traction 
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Figure 1.2 Events during a cardiac cycle. Temporal coordination of aortic, left 

ventricular and left atrial pressures with the heart sounds, left ventricular volume and the 

ECG. [37] 
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The cardiac cycle begins with an electrical signal generated by the Sino-Atrial (SA) 

node, located in the right atrium. This signal, which is recorded on the 

electrocardiogram, propagates to the atrioventricular (AV) node where it is delayed so 

the left atrium can adequately empty its blood volume into the left ventricle. The signal 

then travels along the AV bundle (or Bundle of His) which stimulates contraction of the 

ventricle, defining the onset of the systolic cycle [38]. Contraction of the left ventricle 

corresponds with the QRS complex observed in the ECG waveform. The time between 

the generated electrical impulse and actual contraction of the left ventricle is called the 

pre-ejection period (PEP). 

Once the left ventricle generates enough pressure relative to the aortic root pressure, 

the aortic valve opens. Left ventricular ejection into the arterial system increases to a 

maximum, observed on the left ventricular and aortic pressures as the systolic peak, then 

decreases as the remaining blood volume empties into the aorta. Once the aortic and left 

ventricular pressures equalize, the aortic valve closes, defining the end of systole and the 

beginning of the diastolic cycle. As the aortic valve closes, there is a slight retraction of 

blood flow and a dip in the pressure waveform. After valve closure, blood flow continues 

forward into the arterial system and the pressure increases slightly. The result of the 

aortic valve closure appears as a · notch (dicrotic notch (DN)) in the arterial blood 

pressure (BP) waveform. Blood then flows through the systemic circulation while the 

left atrium refills the left ventricle for the next cardiac cycle, shown as a gradual decay in 

the aortic pressure. 

The pressure waveform represents the pressure state during both the systolic and 

diastolic phases of the cardiac cycle. A peak systolic pressure (PSP) of 120 mmHg and a 

diastolic pressure of 60 mmHg is typical for a healthy adult human. The contour of the 

pressure waveform varies depending on which part of the circulatory system is being 

monitored. Figure 1.3 a-f [22] show the typical waveform shape at various points along 
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the circulatory track, with the locations of the systolic peak and the dicrotic notch 

labeled. 

Arterial Pressure versus Time 

Figure 1.3 MGH database files illustrating typical pressure waveform contours at 

various points along the circulatory track. (a) aortic, (b) radial, (c) brachia!, (d) femoral, 

( e) pedal and (f) axillary pressures, [22] depicting the locations of the systolic peak and 

theDN. 
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1.3 Clinical Implications 

Locating the dicrotic notch in arterial blood pressure signals has several clinically 

important applications. The location of the dicrotic notch indicates the closure of the 

aortic valve which occurs at the end of left ventricular ejection. Thus, the dicrotic notch 

represents the end of the systolic phase and the start of diastole and left ventricular 

relaxation. The duration of the systolic phases, including pre-ejection and left ventricular 

ejection, provides valuable diagnostic information of the condition of the myocardium 

and of cardiac performance. Locating the dicrotic notch is also important for evaluating 

the accuracy of a set of linear regression equations used to predict systolic time interval 

according to heart rate. The information of the regression equation is also used in the 

intraaortic balloon pump cardiac assistance device for determining the proper inflation 

time of an intraaortic balloon at the end of the systolic cycle [ 14]. 

1.3.1 Systolic Time Intervals 

Information of the systolic time intervals are useful in assessing cardiac condition and 

various cardiac disease states (including L V failure, myocardial infarction, coronary 

artery disease, and valve disorders) in man. The time intervals of the various stages of 

the cardiac cycle have been observed to change under cardiac disease conditions and 

pharmacological influence [1-10]. 

The three basic systolic time intervals are the pre-ejection period (PEP), left 

ventricular ejection time (L VET) and total electromechanical systole (QS2). The first 

stage of the systolic cycle, referred to as the pre-ejection period, involves an 

electromechanical delay (30 to 40 msec) followed by initial isovolumetric contraction of 

the left ventricle (60 to 80 msec). The PEP is immediately followed by left ventricular 

ejection which lasts throughout the remaining systolic cycle. The entire systolic cycle 

time is defined from the Q wave of the ECG to the occurrence of the second heart sound 
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in the phonocardiogram signal or the dicrotic notch in the arterial blood pressure signal. 

Thus, the duration of QS2 includes both the PEP and the L VET as shown in figure 1.4 

[ 1]. 

The PEP is effected by a change in the rise of left ventricular pressure (L VP). The 

PEP is shortened by lower L V isovolumetric pressure and more forceful ventricular 

contraction; and becomes longer in duration during L V failure, L V conduction delay, 

diminished preload and reduced L V contractile intensity. Left ventricular ejection time is 

shortened by nearly all deviations from a normal cardiac state, including L V failure, a 

decrease in stroke volume relative to end diastolic volume, or by a more rapid rate of 

ejection. The QS2 provides information on the increased contractile motion (inotropic 

stimulation) since both the PEP and the L VET are shortened. 

Linear relationships between heart rate and the duration of the systolic phases of the 

left ventricle have been derived from patient observations [1, 2, 4, 6]. These regression 

equations predict the durations of the systolic time intervals according to the heart rate, 

as shown in equations (1.1) to (1.3) for normal patient conditions. Thus, the existence 

and extent of cardiac dysfunction can be observed through the systolic time intervals. 

Information of the temporal location of the dicrotic notch, in relation to the QRS 

complex of the electrocardiogram, is critical for evaluating the STI if the 

phonocardiogram is unavailable and determining the accuracy of the linear regression 

equations. 

PEP = -0. 0004 *HR + 0.126 

LVET = -0.0016 *HR+ 0.394 

QS2 =-0 .020*HR+0.522 

10 
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(1.2) 
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Figure 1.4 Schematic of the left ventricular events which comprise the STI, including the 

PEP, L VET and the QS2 from the combination of the ECG, L VP, aortic pressure and 

phonocardiogram signals [ 1] 

1.3.2 Intraaortic Balloon Pump Timing 

Hemodynamic benefit from the intraaortic balloon pump (IABP) is achieved by 

allowing inflation and deflation of the balloon to occur relative to the function of the left 

ventricle. Since the IABP is used for life saving circulatory assistance, it is vital that the 

device correctly time balloon inflation and deflation. The intraaortic balloon should be 

inflated at the closing of the aortic valve, thus, knowledge of the temporal location of the 

dicrotic notch in the pressure signal is crucial. 

IABP is most extensively applied in cases of cardiac pump failure which includes 

cardiogenic shock, myocardial infarction, weaning from bypass and low output 

syndrome. With an estimated 800,000 myocardial infarctions occurring annually in the 
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United States, [39] the potential use of IABP therapy for this and related symptoms is 

quite large and increasing. Since the first clinical use of the IABP in 1967 for the 

treatment of cardiogenic shock, the complication rate has been reduced and its clinical 

usage has broadened. Clinical experience with IABP has grown from more than 50,000 

insertions between 1968 and 1980, [40] to more than 300,000 by 1989, [41] with an 

estimated 70,000 IABP procedures performed annually [11] . 

The intraaortic balloon pump's counterpulsating action is used to manipulate arterial 

blood flow to augment systemic and coronary circulation while attempting to balance the 

myocardial oxygen supply/demand ratio by decreasing oxygen demand and increasing 

oxygen supply to the myocardium. Potential benefits from IABP, which have been 

experimentally verified, include decreased systolic and left ventricular end diastolic 

pressures, increased diastolic arterial pressure and cardiac output and changes in 

coronary flow and cardiac work. Increasing diastolic arterial pressure may increase 

coronary perfusion and improve the oxygen supply to the myocardium, whereas reducing 

left ventricular end diastolic pressure decreases afterload, cardiac work and myocardial 

oxygen consumption, and increases cardiac output. The likelihood and magnitude of 

hemodynamic benefit, especially coronary perfusion,. depends upon a patient's cardiac 

condition prior to IABP and a partially functional L V. If, however, over 40% of the 

cardiac muscle is necrotic, then IABP alone will not be effective. 

Current IABP systems initiate balloon inflation at aortic valve closure ( dicrotic 

notch), and final balloon deflation occurs just prior to left ventricular ejection. Once the 

IABP console generates a signal to trigger balloon inflation or deflation, there is a fixed 

time delay of approximately 40 msec before the balloon is actually activated. It is this 

pneumatic delay which forces the controlling electronics to predict the start of the next 

cardiac cycle based on the previous R waves and the systolic time interval, QS2. 
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Once the left ventricle has emptied its blood volume into the aorta and the aortic 

valve closes, the balloon is inflated. This action, occurring at the beginning of diastole, 

displaces blood both back towards the ascending aorta, into the coronary arteries, to 

enhance coronary artery perfusion, and outward along the descending aorta to enhance 

the systemic circulation. If inflation occurs much before this, the balloon would present 

a resistance to the blood flow out of the L V and make the L V work harder to empty, 

with the added risk of pushing blood up into the brachiocephalic, subclavian or carotid 

arteries. Early inflation would also cause a reduction is stroke volume, and an increase 

in end systolic volume, effecting ventricular preload. 

The IAB is deflated for left ventricular ejection. The effect of reduced afterload is a 

decrease in cardiac work and myocardial oxygen consumption and an increase in cardiac 

output. Balloon deflation occurring much beyond this point imposes a resistance to the 

ensuing ventricular ejection, create intraventricular wall stress and effects the amount of 

stroke volume; (slightly late deflation has been shown to be acceptable). 
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1.4 Rationale for Selecting the Dy WT 

1.4.1 Signal Processing Requirements 

The dyadic wavelet transform dicrotic notch detection scheme has been designed 

to accommodate various types of arterial blood pressure waveforms, with various heart 

rates, arrhythmias and signal irregularities, encountered in a clinical setting. No 

assumptions of catheter type or signal acquisition method were made since prerecorded 

MGH patient clinical data was used to verify the performance of the detection algorithm. 

Originally, it was hypothesized that since the aortic valve resonates upon closure at a 

characteristic frequency, that this frequency, once detected, would provide the temporal 

location of the dicrotic notch. Also, the algorithm used in this regard would therefore 

have to be robust for nonstationary signals. The Fourier transform (FT), short time 

Fourier transform (STFT) and eventually the wavelet transform methods were 

considere.d. Research into the FT and STFT led to the discovery of the wavelet 

transform as a possible method of detecting the dicrotic notch frequency. However, it 

was also observed at this time that there was no distinctive frequency content of the 

dicrotic notch in the arterial pressure waveform, except for the possibility of defining 

dicrotic notch frequency related to the velocity of valve closure. Otherwise, the desired 

notch frequency, referred to as the second heart sound, may be found with the FT and 

STFT if applied to a patient's phonocardiogram rather than the blood pressure signal 

[ 42-50]. Rather than locating the time in which the resonant frequency occurs, the task 

of detecting the event of notch closure focused on observing the change in the contour 

of the pressure waveform that corresponded to the dicrotic notch. 

Since the arterial pressure is a time varying or non stationary signal, and changes 

with patient condition and sensor drifting, a detection scheme that could accommodate 

both time varying and noisy signals would be the most advantageous. The wavelet 

14 



transform technique for waveform analysis does accommodate nonstationary signal 

behavior and is able to locate rapidly changing signals, such as with preventricular 

contractions (PVCs) or arrhythmias. For example, ifthe frequency of the dicrotic notch 

changes in a patient for any reason, the wavelet method would still be able to track that 

frequency. 

This is accomplished by evaluating and comparing the DyWT calculated with several 

dyadically time scaled versions of the wavelet function . Scaling the mother wavelet is the 

means by which the DyWT accommodates various signal transients, according to the 

transient duration. As the scale is increased, the width of the wavelet is expanded in time 

allowing the DyWT to focus in on increasingly longer duration transients (having lower 

frequency spectral content) providing information on the overall signal behavior. 

Smaller scale wavelets are compressed in time and the resulting DyWT would therefore 

accentuate higher frequency transients of shorter duration, such as edges in images or 

sudden signal discontinuities. The dyadic wavelet transform detection method can 

therefore provide a multiresolution (or multi spectral) view of a signal and be used to 

isolate a portion of the actual signal from background noise [23-35]. It is these two 

aspects of the wavelet transform method, (time varying signal analysis and noise 

reduction capabilities), that prompted a feasibility study for the dyadic wavelet transform 

dicrotic notch detection scheme. 

1.4.2 Feasibility Study 

Several signal processing methods for time varying signals were found from a search 

of the current literature, including the wavelet transform, Fourier transform and short 

time Fourier transform analysis techniques [29,31 , 51-70]. Although other signal 

processing techniques were explored [71], it appeared that the dyadic wavelet transform 
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method would provide the best detection scheme for normal, arrhythmic and noisy time 

varying signals. Thus, the dyadic wavelet transform approach was taken to detect the 

dicrotic notch in the pressure signal. Initial feasibility tests indicated successful dicrotic 

notch detection with the dyadic wavelet technique for a radial pressure signal containing 

preventricular contractions (PVC), and with added broad band white noise, as shown in 

figure 1.5 a and 1.5 b, respectively, where the solid vertical lines indicate the estimated 

locations of the dicrotic notches and the dotted vertical lines indicate the locations of the 

systolic peaks for each cardiac cycle. 

The feasibility study [72] demonstrated that it was possible to distinguish signal 

transients, such as the dicrotic notch, systolic peak and the upstroke following end 

diastole, from background noise by comparing the DyWT across several successive 

dyadic scales. The cubic spline, Mexican Hat, Morlet, Harr and Shannon wavelet 

functions were tried in early feasibility tests of the wavelet analysis method, of which the 

cubic spline and the Mexican Hat wavelets showed the best results. Since the specific 

frequency bandwidth of the dicrotic notch does not overlap with any of the other 

characteristics of the arterial blood pressure signal, such as the systolic peak or end 

diastole, the DyWT was found to be applicable for dicrotic notch detection. 

The dicrotic notch detection algorithm based on the dyadic wavelet transform is able 

to detect the dicrotic notch in cases of non-stationary circumstances of changing patient 

condition which is reflected in changing pressure waveform characteristics. This is 

accomplished by calculating the DyWT with several time dilated scales of the wavelet 

function. Also, since the clinical environment is sensitive to its surroundings and the 

fidelity of its sensor equipment, noise is always a factor in the recorded signals. Since 

band limited noise does not correlate between scales, this method of dicrotic notch 

detection is appropriate for the clinical environment. 
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Various methods of signal analysis were initially applied to evaluate the pressure 

signal [71], including the fast Fourier transform (FFT), power spectral density (PSD), 

auto and cross covariance and the first and second derivatives of the pressure signal [52-

53]. These signal analysis tools were applied to pig blood pressure data. The results 

provided information on the waveform's FFT, power spectral density and derivatives and 

on the catheter effects on signal measurement. No algorithms for dicrotic notch 

detection were devised from these results. This information led to the testing of several 

methods (including Butterworth filtering, inverse FFT, signal damping, Jackson's Poles 

method [73], and Prony's method) to clean the pressure signal of unwanted oscillations 

from IABP for future for dicrotic notch detection. 
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Figure 1. 5 Results of Dy WT algorithm feasibility study on radial blood pressure 

waveform containing a (a) premature ventricular contraction; (b) with added white 

Gaussian noise. The solid vertical lines indicate the estimated locations of the dicrotic 

notches, and the dotted vertical lines indicate the locations of the systolic peaks for each 

cardiac cycle. 
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Chapter 2 

Introduction to the Dyadic Wavelet Transform 

2.1 Motivation 

Typical methods of dicrotic notch detection rely on slope characteristics of the 

arterial pressure waveform. An alternative observation of the signal can be made on the 

signal analyzed in terms of its frequency content. It was originally hypothesized that 

aortic valve closure would correspond to a unique frequency; and once the frequency 

was detected, the location of the dicrotic notch would be found . Dicrotic notch 

frequency is defined as either valve closure vibrations or the velocity of valvular closure, 

(not heart rate), whichever would be characteristic of the dicrotic notch and be 

observable in the physiological signal of interest, (arterial pressure or phonocardiogram) 

[42-50]. Thus, signal processing techniques, such as .the Fourier transform [51-52, 74], 

the short time Fourier transform {30-31, 54-57, 67, 76-78] and eventually the dyadic 

wavelet transform were explored for the purpose of dicrotic notch detection [29-35, 59-

71 , 79-81]. This section describes the mathematics of the time domain to frequency 

domain transformations according to their relative applicability to dicrotic notch 

detection. 
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2.2 Time Varying Signal Analysis 

The Fourier transform, FTx(t), of a signal x(t), shown in equation (2.1) [51] is 

typically used for frequency analysis of stationary signals, whose characteristics do not 

change with time [51-52]. The magnitude of the FT provides information on the 

frequency content of the original signal. Since the FT represents a signal as the 

decomposition of a basis of complex sinusoidal functions of infinite extent, ( e-j2nft), any 

temporal variation in the waveform is spread out over the entire frequency plane. Thus, 

although the frequency corresponding to the dicrotic notch may be discerned, the actual 

temporal location of the dicrotic notch is not available. Therefore, the FT method does 

not provide any information regarding the time of notch closure, but rather the existence 

of it in terms of acknowledgment that its frequency was present in the analyzed signal. 

Figure 2.1 [82] pictorially describes the lack of temporal resolution in the resulting FT 

magnitude spectrum for a signal containing three different frequencies. 

+ 00 

FF x ( f ) = J x ( t ) e - i 2 
:r ft dt (2.1) 

- 00 

By applying the Fourier transform to a portion of the signal x(t), isolated using a 

sliding temporal window function, h(t), frequency · information can be located as a 

function of the time in which these frequencies occurred [29-30, 54-58]. For example, a 

change in the pattern of the waveform's slope, such as with the dicrotic notch, the 

systolic peak or the upstroke following end diastole, would indicate a change in the 

waveform's frequency pattern. The time of this frequency change would be recorded at 

the time in which it occurred. This method, known as the windowed Fourier transform 

[29, 31] or the short time Fourier transform, STFTx('t,t), shown in equation (2.2) [30], is 

a two dimensional, (time versus frequency) representation of a signal. 
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STFI' x ( r , f ) = J x ( t) h ( t - r) e - 1 2 "ft dt (2.2) 
- <Xl 

The frequency information is obtained for the portion of the waveform which 

overlaps the time duration of the window function, where 't is the center time of the 

window function . In this time window, time varying signals are approximated as 

stationary (the signal is assumed to be quasi-stationary where the spectral properties of 

the signal do not vary within the analysis window length) [57]. The STFT is computed 

each time the window is shifted. Translation of the window in time provides a frequency 

analysis of the entire data string localized within each time frame. Thus, temporal 

resolution of each frequency contained in the analyzed signal depends upon the duration 

of the window function. Good time resolution is obtained with small windows at the 

cost of reduced frequency resolution, due to the Heisenberg uncertainty principle [30, 

75, 83-84] which establishes a lower bound on the time-bandwidth product, shown in 

equation (2.3) [30]. Higher frequencies are resolved using windows of shorter 

duration; and as the window duration is increased, lower signal frequencies are resolved 

with the STFT method. The STFT calculated using a Gaussian window function 

provides a good compromise for both frequency and temporal resolution, and is referred 

to as the Gabor transform [29, 3 i, 67, 75, 85]. Along with expressing a local FT, the 

STFT can be interpreted as the time-frequency filtered output (low or band pass) of the 

signal with the window function or as an inner product of the signal with the window 

function. 

Timel Bandwidth Product = M/1f ?::'. 
4
1
,, (2.3) 

The STFT however, is limited by the constant duration of the window h(t), resulting 

in the same signal time-frequency resolution (filter pass band) for all signal frequencies at 
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all times. Thus, the STFT would not be an adequate analysis tool for accommodating 

changing patient conditions. It is desirable to have a window function which can be 

altered to accommodate a variety of possible frequencies, (varying filter band). In this 

regard, the wavelet transform is an extension of the STFT incorporating various window 

durations for a multiresolution view of the signal and its frequency content. Figure 2.2 

[30] window durations corresponding to the various frequencies for both the STFT and 

the wavelet transform (WT). Notice that the STFT windows have the same duration 

regardless of the signal frequency being analyzed. Whereas, the wavelet transform uses 

modified window durations for difference frequencies. By having smaller window widths 

for higher frequencies and longer window durations for lower frequencies, the WT has 

improved frequency resolution over a larger spectral range than the STFT. 
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Figure 2.2. Coverage of the time-frequency plane for the (a) STFT; (b) for WT [30]. 
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2.3 The W av el et Transform 

The wavelet transform overcomes the limitations of the fixed time-frequency 

resolution of the STFT, for analyzing non-stationary signals. The multiresolution 

capabilities of the wavelet transform are realized through the use of various size 

windows, obtained by first time-scaling then time-translating a wavelet function . The 

wavelet transform provides better (high frequency) time resolution with smaller scale 

wavelets (narrower wavelets), and good (low frequency) spectral resolution at larger 

scales, with dilated wavelets [30-31]. 

2.3. l Historical Background 

The concept of looking at a signal at various scales and analyzing it with various 

resolutions has emerged independently in different scientific fields . Mathematical 

constructs of what is now referred to as wavelet theory had been presented 

mathematically in the early twentieth century [86-87], with application to harmonic 

analysis [87]. Wavelet transform mathematics were introduced by Calderon [88] in 1964 

and have been developed under various names, including scale-space transforms [89]. 

The mathematical formulation and terminology of a wavelet as a decomposition of a 

signal into dilated and translated basis functions was introduced as a signal processing 

tool by Grossmann and Morlet [79] in 1984. Mathematical development of the 

continuous wavelet transform by Grossmann and Morlet [79, 90] and maJor 

contributions from Daubechies [31, 63, 91-96] and Mallat [26-29] have increased the 

utility and application of the wavelet transform in numerous disciplines. 

24 



2.3.2 Applications of the Wavelet Transform 

Various scientific disciplines have applied the wavelet transform to analyze an 

assortment of signals, including image processing and coding, analysis of acoustic 

signals, physiological signals, and astronomical data. Mallat demonstrated the utility of 

the multiresolution wavelet transform for edge detection, represented as high frequency 

signal transients, and outlined fast algorithms for analyzing 1 and 2 dimensional signals 

[33]. Mallat showed that high frequency signal components produce local maxima in the 

dyadic wavelet transform which occur simultaneously across several consecutive scales 

using a smoothing wavelet function [33]. Applications of similar algorithms using the 

wavelet transform are presented in table 2.1. 

Table 2.1 

Applications of the Wavelet Transform 

• Edge detection [33-35] 

• Pitch detection in speech [81, 97-100] 

• Analysis of acoustical signals [ 101-105] 

• Medical applications include detection of the onset of the QRS complex in the 

electrocardiogram signal [82, 106-108], ventricular late potentials [ 109-11 O] and 

analysis of other biomedical signals [ 111-117]. 

• Seismic data interpretation [ 118-119] 

• Astronomical data [ 120-123] 

• Image processing [124-132] ; and image coding [133-139]; 

• Radar applications [140-143] 

• Detection of various transients signals [ 144-149] . 

• Random processes, fractional Brownian motion [150-151]; and fractals [152-157] 

• 

• 

Electromagnetics applications [ 158-159] 

Applications to fluid dynamics and turbulence [160-162] 
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2.3.3 Definition and Significance 

Physiological signals, such as the blood pressure and the electrocardiogram are 

classified as time-varying or nonstationary. Since physiological signals, in general can 

exhibit erratic behavior due to changing patient condition, the wavelet transform is more 

appropriate than the FT and the STFT for analyzing these time-varying signals. The 

wavelet transform technique for waveform analysis accommodates nonstationary signals 

and is able to resolve low and high frequency information by incorporating windows of 

various widths (scaled wavelet functions) in the signal analysis. Also, in general, band 

limited noise does not correlate between the various transform scales and thus, frequency 

content as a function of the wavelet transform scale is obtained. The wavelet transform 

provides time-scale information. The time-scale representation of a signal implicitly 

depends on frequency through the scale parameter. The frequency content of the 

wavelet transform can be obtained by substituting a = 1, where f0 is the center frequency 

of the magnitude of the Fourier transform of the mother wavelet [30, 98, 111]. The 

mother wavelet, however, must have a unimodal spectrum, such as the Mexican Hat 

wavelet function . 

The continuous wavelet transform (CWT), shown in equation (2.4), gives local 

frequency information, like the STFT, but differs in that it utilizes scaled and translated 

versions of the "mother" wavelet function g(t/a) as basis functions [30-33, 60-71]. The 

g· (1~b ) in equation (2.3) indicates the complex conjugate of the wavelet g(1~b ) . Scaling 

of the mother wavelet produces multiple length windows, providing variable resolution 

in the time or frequency domain. Scaling and subsequent translation of the mother 

wavelet is the means by which the wavelet transform accommodates various durations of 

the transient being analyzed or various frequency ranges of interest. Variations, 

transients or changes in the slope pattern in the time domain signal, (or changes in the 

signal's frequency content) can thus be detected by comparing the results from the 
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wavelet transform calculated using progressively dilated wavelets obtained by increasing 

the scale of the wavelet function. The combination of WT results from various scales 

allows for a multiresolution view of the signal. Thus, signal transients can be isolated 

from background noise by comparing the wavelet transform across several scales. 

where: 

1 +Joo •(t-b t 
WTX(b,a) = M x(t)g ---;;-rt 

- 00 

a E IR+ 

b E IR 

time scale of wavelet function 

time shift of wavelet function 

(2.4) 

The scale parameter, a , allows expansion or contraction of the wavelet function in 

time. The WT has good spectral resolution at large scale values with dilated wavelets 

(larger window durations for lower frequency resolution), and good temporal resolution 

at smaller scales with compressed wavelets (smaller window durations for higher 

frequency resolution). Like the STFT, the temporal location of the window (wavelet 

function) is controlled by the time shift parameter, b which gives the position of the 

wavelet (in time) [31]. 

The integral expression in (2.4) is equivalent to the convolution in time of the two 

signals, shown in equation (2.5), where the factor ( _fa-i) is included for energy 

normalization, and * refers to the convolution operation between x(t) and the wavelet 

function. Thus, by application of Fourier transform properties, the WT convolution 

operation can also be calculated by taking the inverse Fourier transform of {the Fourier 

transform of the signal multiplied by the Fourier transform of the scaled version of the 

mother wavelet} [ 51]. 

1 ( (-t-b)) = M x(t)* g* -a- (2.5) 
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2.3.4 Discrete Wavelet Transform 

The continuous time wavelet transform is a function of both a continuous translation 

parameter and a continuous scale parameter, making the CWT computationally intensive. 

A discrete wavelet transform (DFT) of a continuous signal is obtained by discretizing 

both the scale and shift parameters [26, 29, 30, 31, 33, 35, 69, 163-167]. The 

development of the DWT led to the development of compactly supported wavelets with 

orthomormal bases [91-96]. The scale and shift parameters are discretized as [30]: 

a=a1 
0 b = ka~T 

where 1 and k are integers. The a0 and T determine the sampling density in the time-scale 

plane [82]. The DWT is shown in equation (2.6) in relation to the continuous wavelet 

transform, in equation (2.4). 

(2.6) 

The wavelet become discretized as shown in equation (2. 7) [82]. 

g[k.JJ ( r) =a! g(a~1 r-kT) (2.7) 

An alternative approach to describing and implementing the discrete time wavelet 

transform is through the use of filter banks [28, 30, 67, 168-172]. The wavelet can be 

interpreted as "the impulse response of a band-pass filter and the wavelet transform as a 

convolution with a band-pass filter which is dilated", [35]. The wavelet transform 

decomposition uses a cascade of constant Q, low pass and high pass quadrature mirror 

filters as shown in figure 2.3 [67]. The dyadic wavelet transform corresponds to an 
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octave band filter scheme (as in music where increasing a tone by an octave involves 

doubling the frequency) . The data decimation process corresponds to the dyadic scaling 

and the output of the high pass filters corresponds to the wavelet transform output. 

Although the DWT is more computationally efficient than the CWT, it is both scale 

and shift variant. However, by discretizing only the scale parameter, the complexity of 

the CWT computations can be reduced while maintaining the properties of scale and shift 

invariance, as outlined in section 2.4.2. 

j=2 
wavelet band 

Figure 2.3 Block diagram of the algorithmic approach for digital computation of the 

DyWT using low pass (H) and high pass (G) filters [67]. 
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2.4 The Dyadic Wavelet Transform 

2.4.1 Definition and Significance 

A reduction in computation is achieved by discretizing the scale parameter [173]. 

The dyadic wavelet transform (DyWT) [33,35, 81, 98] of a signal x(t), shown in 

equation (2.8) is mathematically equivalent to the wavelet transform with a dyadic time 

scale, a=2m, where mis an integer. 

m 1 +Joo *(f-b) 
DyWJ' x (b , 2 ) = Fl -oo x(t)g ~ dt (2.8) 

Since the spectral resolution of the WT depends on the time duration and bandwidth 

of the wavelet, scaling the mother wavelet has the effect of changing the center 

frequency and bandwidth of the wavelet, as observed in its Fourier transform. As the 

scale is increased, the center frequency of the equivalent band pass filter is reduced and 

the bandwidth becomes narrower. The effect of dyadically scaling the cubic spline 

wavelet function is shown in figure 2.4a for the dyadic scales, m = 1, 2, 3. The width of 

the wavelet function is doubled in time as the scale is dyadically increased. The 

magnitude of the FT of these three scaled versions of the mother wavelet is shown in 

figure 2.4b. As the scale is dyadically increased, the FT magnitude becomes narrower 

and has a lower center frequency which is half of the center frequency of the previous 

scaled version. Thus, as the scale is increased dyadically, the wavelet is expanded in time 

(doubled) and compressed in frequency, (halved). 

30 



Cubic Spline Wavelet Function g( ~) 
Scale m=1 Scalem=2 Scale m=3 

40..--..---..--...--. 40..--..---..---,--, 40..--..---..---..--. 

., 
"C 
:J 

30 

20 

a 10 
E 
< 

-10 

30 30 

20 20 

10 10 

-10 -10 

-20'--.___....____..__. -20'--'---'-----''--' -20 '--'---'-----''---' 
-0.2 o o2 -0.2 0 0.2 -0.2 0 0.2 

Time {sec) 

!Fourier Transform! ol cubic spline wavelet function at scales 1, 2, 3 
soo..---..,..---.---r---r----.--,---.,.---..,..----.----. 

450 .. ... • ~ · ··· ·· ·+ ··· · · ·· ·?·· · ··· ·+····· ···~····· · ··~······ · ·~·· ·· ·sig~~· ··· ··· · 
. : : : : : : . . . . . . . . 

400 · · ·· ·· · 1· e t·3·······t········t· .. ·· ·· ··~· · ·· · ·· ·· ·~· - ······ · ·~· -· ··•· u·~· ···· · ·· ·! ·· ···· · · 

350 ... · - -~ ......... ; ......... ; ...... .. ~ ........ -:-·· ...... .; ........ ~ - ........ ~- ...... . 
: . : : : . : 

. . : . : : : . : 
300 .. .• . ··1·· .. · ··~ ·· · sca~e- ·2.·· ·t· · .. ····t········t··· ·· ···t-·······1·········( ······ 

1250 .... · ··~·· · ··· ·~· · ·· .. ) ........ .:. ....... ~·· · ·· · · · -:- ·· · · ·· · ·+ · · · ·····j ......... j ....... . 
~ 

2.00 

150 

. . 
· ·~··· ·· · ···; · · ······:····· ···T····· ···-:-·· · · · · · t· · · ·· ···{· · ··· ·· ·· ~·· · · · ··· 
. . . . 

10 20 30 40 50 60 70 80 90 100 
Frequency (Hz) 

Figure 2.4( a) Cubic spline wavelet function at dyadic scales m = 1, 2, 3; (b) FT 

magnitude of each of the scaled versions of the cubic spline wavelet in (a). 
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Each of the scaled versions of the mother wavelet are convolved with the signal x(t) 

to achieve the dyadic wavelet decompositions of the signal at various levels of frequency 

resolution. Therefore, successful implementation of the dyadic wavelet transform for a 

particular application is dependent upon the choice of the wavelet function and the 

magnitude of the time scaling. 

The term 'wavelet' refers to a portion of an oscillating wave. The wavelet function, 

in general, follows several constraints. The mother wavelet must be a zero mean 

function, therefore, it must oscillate in time. The wavelet function must also be 

absolutely integrable and have finite energy as in equations (2.9a) and (2.9b) [81]. For 

signal reconstruction purposes, (not necessary for dicrotic notch detection) the 

magnitude of the Fourier transform of the wavelet function must not contain any de (co = 

2nf = 0), according to the admissibility condition in equation (2.9c) [30, 35, 79, 81], by 

virtue of energy conservation, where G(2m co) is the FT of the wavelet function. This 

constraint also ensures that the WT represents the signal as a complete set of basis 

functions that encompass the entire frequency axis [35]. As with the FT, where 

si.l}usoidal basis functions to expand nonperiodic signals, time shifted and time scaled 

versions of the mother wavelet incorporate the set of basis functions for the wavelet 

transform. 

Absolutely Integrable: (2.9a) 
-00 

+ oo 

Finite Energy: f lg(1J)l2
dt <oo (2.9b) 

-00 

Admissibility Condition: (2.9c) 
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2.4.2 Properties 

The wavelet transform and therefore the dyadic wavelet transform possess several 

desirable properties consistent with the properties of the continuous wavelet transform 

(CWT) as listed in table 2.2. The proofs for the properties are found in references [26, 

34, 79, 81-82, 103]. 

Table 2.2 

Properties of the Dy WT 

i) Linearity v) Convolution to Multiplication (FT) 

ii) Scale Invariant vi) Transient Localization 

iii) Time Shift Invariant vii) Signal Reconstruction 

iv) Conservation of Energy (Isometric) viii) Real Input/Real Output 

i) Linearity allows a signal x(t) which is composed of several weighted signals to have 

a Dy WT equal to the sum of each individual weighted Dy WT (of weight ai), as shown in 

equation 2.10. 

n 

DyWJ' x( t )(b ,2m) =I a;DyWI' x,(t )(b ,2m ) (2.10) 
; ~ 1 

ii) The DyWT is scale invariant. A scale change in the input corresponds to a change in 

both the scale and shift parameters of the DyWT, to within a magnitude factor (M) as 

shown in equation (2.11). Scaling the wavelet function changes the center frequency and 

bandwidth of its Fourier transform. The wavelet is compressed in time for small scales 

and expanded in time for larger scales. Thus, varying the scale parameter allows for low 

or high frequency analysis for a multi resolution characterization of a signal. Analysis of 
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the DyWT at several dyadic scales is the mechanism by which the DyWT adjusts to the 

specific time and frequency characteristics of a particular signal. Transient detection 

based on the DyWT is based on calculating the DyWT across several dyadic scales and 

comparing the DyWT outputs for simultaneous peaks across consecutive dyadic scales. 

The property is also useful for wideband Doppler analysis where moving targets produce 

scale changes in reflected signals. This property is also useful for fractal analysis (where 

certain properties exist regardless of scale) and for analyzing the cochlea and other such 

octave band systems [ 174]. 

DyWT x(at) DyWT x(t)(ab,a2m) (2.11) 

iii) The DyWT is time shift invariant. Thus, the DyWT preserves a shift in the original 

signal x(t-t0 ) as translations of the wavelet function by the shift parameter of the DyWT 

by an equivalent "delay" (b - t0 ) as shown in equation (2.12). The shifted wavelets act as 

a sliding window for different values of t0 . This property is useful for transient detection 

in a signal or for edge detection in image analysis. The translation parameter, b, along 

with the scale parameter, 2m,defines a set (basis) of wavelet functions from the mother 

wavelet. Morlet proposed the use of scaled and translated versions of a single function 

to analyze seismic data [ 68, 163]. 

(2.12) 

iv) The DyWT operation preserves the energy, (E) of a signal. Thus, the transform 

operator is isometric in that the energy in the time domain is equal to the energy in the 

wavelet domain as shown in equation (2.13). Since the DyWT is an alternate 
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representation of a signal, it should maintain the energy characteristics of the signal. For 

signal reconstruction, it is important that the signal and its Dy WT are of finite energy and 

that the Dy WT operation does not alter the energy of the signal. 

(2.13) 

v) The Fourier transform property in which the convolution of two signals in the time 

domain is equivalent to multiplication in the frequency domain is applicable to the 

DyWT operation as shown in equation (2.14). The DyWT is the inverse FFT of the 

product between the FFT of the signal, (X(f)) and the FFT of the wavelet function, 

(G(f)) . This property allows more efficient computation of the DyWT, especially when 

the scale parameter is large and the wavelet function is compressed in frequency. Thus, 

there are fewer multiplications involved in computing the DyWT in terms of the 

frequency representation than with the convolution procedure in the time domain. 

(2.14) 

vi) Use of the Dirac delta function (8(t)) highlights the transient localization ability of 

the DyWT in that the DyWT can focus in on short time fluctuations (transients) or 

slowly varying spectral components. Time resolution then depends upon the bandwidth 

of the mother wavelet and the inverse of the scale parameter. The DyWT of a signal 

x(t)=8(t-t0) is a modified wavelet function with translation replacing the time parameter 

as shown in equation (2.15). Transient localization is achieved since the modulus of the 

DyWT of a signal x(t) exhibits local maxima around transients or points of discontinuity 
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that are contained in the signal. "Lines of constant phase of the Dy WT converge toward 

the points of discontinuity" at, t-t0 [81, 90]. 

+oo 

I J b( ) • ( r- b )d _ ] • ( 10 -b ) 
~ - oo T- t 0 g ~ T - ~ g -z,;;- (2.15) 

vii) Under certain constraints on the signal x(t) and the mother wavelet g(t/2m), the 

original signal can be reconstructed from its Dy WT as shown in equation (2.16) where 

g-(t) = g(-t). The Fourier transform of the wavelet function G(2mf) must be zero at de 

and the signal x(t) must be of finite energy. Thus, the DyWT is a one to one transform 

which is critical for most mathematical analysis and synthesis. 

00 00 

x(t) = L J DyWTx(t)(b,2m) 2lm g-( 1;: ~b (2.16) 
m=-00_00 

ix) If a signal x( t) and the wavelet function are real valued, then the Dy WT is real. 

36 



Chapter 3 

Methodology 

3.1 Motivation 

A reliable dicrotic notch detection algorithm provides physiological information 

useful in the diagnosis of cardiac condition as patient condition changes, through such 

tools as the systolic time interval. The development of intelligent cardiovascular 

monitoring devices with robust signal processing algorithms is increasingly important. 

Monitors that can detect pathological condition and differentiate true signal events and 

fluctuations from artifacts are necessary for this task. 

The dicrotic notch is observed in arterial pressure waveforms as a change in slope, as 

a consequence of the closing of the aortic valve, following left ventricular ejection, 

indicating the end of systole and the start of the diastolic cycle. Detection of the dicrotic 

notch is non-trivial in that the blood pressure signal may be damped, corrupted by noise, 

contain motion artifacts, respiratory modulation, or change abruptly due to 

preventricular contractions (PVCs) or arrhythmias. Figures 3. la-d [22] demonstrates 

four cases in which dicrotic notch detection is problematic compared to a classic arterial 

blood pressure waveform shown in figure 3 .1 e. Figure 3 .1 a indicates a pulsus alternans 

condition, where a weak pulse alternates with a strong one. Algorithms based on a 

threshold of the signal amplitude usually fail on signals containing alternating pressure 

amplitudes, arrhythmias and baseline drifts. The pressure waveform is subject to 

physiological variations due to patient condition and may be corruption by noise 
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(especially noise which resembles the dicrotic notch) possibly from the sensing catheter 

as in figure 3. 1 b. Damping of the pressure signal, shown in figure 3 .1 c, makes it is 

visually difficult to locate any notch inflection; and in sick patients, the pressure curve 

may deviate greatly from the classical shape shown in figure 1. 3. Figure 3 .1 d involves a 

slight inflection of the curve prior to the actual dicrotic notch. Although the waveform 

in figure 3. 1 d has a well defined notch, it is difficult for a program to distinguish a 

damped notch inflection from the real notch. The application of the DyWT attempts to 

overcome the majority of these and other signal irregularities, (which are mainly due to 

signal non-stationarity and superimposed noise), to consistently and accurately detect the 

temporal location of the dicrotic notch. 
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(a) MGH File019: Pulsus Altemans 
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Figure 3 .1 MGH database blood pressure waveforms illustrating four difficult cases for 

dicrotic notch detection algorithms. (a) pulsus altemans, (b) catheter artifact, (c) 

damped signal, ( d) signal shape irregularity, ( e) classic arterial blood pressure waveform. 
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3.2 Application of the DyWT to Dicrotic Notch Detection 

The dyadic wavelet transform algorithm has been developed using the Matlab 

programming environment version 4.2 on both a personal computer and a UNIX based 

Spare station. The proposed detection algorithm, outlined in the block diagram in figure 

3 .2 finds the temporal locations of the dicrotic notch in the blood pressure signal using 

the dyadic wavelet transform method. Three dyadic scales of the Dy WT were computed 

using the Mexican Hat wavelet function. The dicrotic notch locations are estimated by 

nearly simultaneous minima across consecutive dyadic scales of the DyWT. 

The Mexican Hat wavelet function is precalculated for each of the three dyadic 

scales. The quantity of wavelet sample points, generated with the same sample rate as 

the recorded MGH blood pressure data to be analyzed (180 Hz or 360 Hz depending on 

which database file), are stored in memory and are subsequently accessed by the dyadic 

wavelet dicrotic notch detection program. The algorithm starts by loading the wavelet 

function samples and a portion of an MGH blood pressure file [22] (approximately 30 

seconds of data) into memory. The pressure waveform is immediately preprocessed 

using a 4th order low pass Butterworth filter, with cutoff frequency of 20 Hz. The 

dyadic wavelet transform is then calculated for each of the three dyadic scales using 

discrete convolution as outlined in the flow chart in figure 3.3. 

Since the convolution operation contains the number of points equal to the (length of 

the pressure signal plus the quantity of wavelet sample points minus one), In order to 

achieve correct sample number placement of the resulting DyWT points, relative to the 

original blood pressure signal, each resulting DyWT is truncated in relation to the length 

of the wavelet function. This process is outlined in the flow chart in figure 3 .3 and 

described further in section 3 .3 .2. This manipulation of the sample points is the method 

used to keep track of the sample number placement of the DyWT results and is a 

consequence of the form of the generated wavelet points (which include zero entries) 
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and the application of the discrete convolution between the blood pressure and wavelet 

data arrays. 

A global search for all R waves in the ECG within the 30 seconds of patient data is 

performed using a simple threshold algorithm, adapted from Elghazzawi et al [175] as 

outlined in figure 3.4. Once all of the R waves have been determined, each cardiac cycle 

of the DyWT (defined between R waves) is individually searched for the temporal 

location of the dicrotic notch. Simultaneous occurrences of minima in the Dy WT across 

several dyadic scales indicates a transient in the pressure waveform from which the 

corresponding temporal location of the dicrotic notch is determined. 

The dicrotic notch in each cardiac cycle is represented by a local minimum in the 

DyWT. The algorithm therefore examines the three scaled versions of the DyWT for 

minima which exist within a neighborhood of± 50 milliseconds (msec) across dyadic 

scales and selects the appropriate minimum as the dicrotic notch for each cardiac cycle. 

The dicrotic notch detection algorithm contains three major sections as outlined in figure 

3.5, (A, B and C, respectively). The first section (A) locates the sample numbers of all 

minima in each cardiac cycle for each scale of the DyWT. The second section (B) 

compares minima between scales, and saves those minima which occur within± 50 msec 

across consecutive dyadic scales. · The last portion of the algorithm selects which valid 

minimum point is the dicrotic notch for each cardiac cycle. If there are no minima found 

for any given cardiac cycle, in any of the Dy WT scales, the algorithm defines this cardiac 

cycle to have no dicrotic notch then continues the minima search on the next cardiac 

cycle. 

A portion of each cardiac cycle, between the time of the systolic peak in the BP 

waveform and the time of the ensuing R wave in the ECG signal, is defined as the search 

window for possible dicrotic notch (minima) points. A simple algorithm, which locates 

the maximum in the amplitude of the blood pressure signal contained between the two 
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consecutive R waves of the ECG, is used to approximate the systolic peak location. All 

minima in the search window are found by locating all zero crossings of the DyWT then 

determining the minimum between consecutive zero crossings. Once all of the cardiac 

cycles of one DyWT scale have been found, the cardiac cycles in the next DyWT scale 

are examined for minima. 

Once all of the available minima have been found for all cardiac cycles in all of the 

DyWT scales, the sample locations of the minima are compared between dyadic scales. 

For a given cardiac cycle, the algorithm will locate all minima which occur within a 

neighborhood of ± 50 milliseconds (msec) across consecutive dyadic scales. This 

neighborhood is evaluated in terms of sample numbers and for a sample rate of 180 Hz, 

± 50 msec becomes ± 9 data samples and for a sample rate of 360 Hz, ± 50 msec 

becomes ± 18 data samples. If there are minima that exist across dyadic scales within the 

given neighborhood, the sample number of the minima of the higher scale is retained. 

All minima which do not exist within ± 50 msec between consecutive dyadic scales are 

eliminated. The surviving minima are the sample locations of all possible dicrotic notches 

for all of the cardiac cycles in the data file stored in computer memory. 

The dicrotic notch is defined as the first minima in each cardiac cycle which exceeds 

a threshold. The threshold is equal to 65% of the local minimum amplitude of the 

Dy WT (of the highest scale) defined within the search window for that particular cardiac 

cycle. Once the dicrotic notch is found for a given cardiac cycle, then the next cycle is 

evaluated. The temporal locations of the dicrotic notches are obtained directly from the 

sample numbers in terms of the sample rate in which the data was recorded. 
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Load Blood Presssure Data and Wavelet Coefficients J 
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~ Detect R waves from ECG 1 
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Figure 3.2 Block diagram of the DyWT dicrotic notch detection algorithm. 
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Load BP and Mexican Hat 
wavelet coefficients for 

dyadic scales m = l, 2 and 3 

Compute ith scale Dy WT by discrete convolution: 

ith scale Dy WT = BP * (ith scale Mexican Hat wavelet) 

Alignment technique for DyWT sample points relative to BP sample points: 

Truncate unnecessary points of the ith scale DyWT 
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I, Length of convolution result -i 
E I I I I .. 

(Li) out (Li+ 1) out 
Final points in ith scale DyWT 

No 

Yes 

Save results from all scales 

(scales 1, 2 and 3) 

of the DyWT 
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Figure 3.3 Flow chart of the DyWT discrete convolution calculation procedure. 
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START 

Load ECG Patient Data 

Compute global maximum of ECG Amplitude 

Calculate threshold = 60 % of global maximum 

Locate threshold crossings of ECG 

R Waves= sample numbers of the ECG signal of the maximum 

in each section above threshold between each consecutive 

upslope and downslope crossing. 

Calculate heart rate based on consecutive R waves 

Save R Wave sample number locations 

END 

Figure 3.4 Flow chart of the R wave detection algorithm. 
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Figure 3.5 Flow chart of the DyWT based dicrotic notch detection algorithm. 
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3.3 Rationale 

3.3.1 Selection of the Wavelet Function 

Multiresolution analysis can be obtained using the dyadic wavelet transform from 

scaled and translated versions of a variety of mother wavelet functions g ( r~b) . The issue 

of wavelet function selection depends upon the particular application of the wavelet 

transform [61 , 176-180]. This section discusses the rationale for selecting the Mexican 

Hat, the parameters defining the wavelet function equation and the process used to 

generate the wavelet sample points. The wavelet parameters include the shift and scaling 

factors, band a, respectively. 

Several wavelet functions, Haar, Shannon, Morlet, Mexican Hat, Meyer and the 

cubic spline are shown in figure 3.6a-f [31, 180-181]. Each of the wavelet functions 

oscillates in time and has no de content. Both the temporal and spectral characteristics 

were considered when selecting the wavelet function. A wavelet function acts as both a 

time window and a filtering device when implemented into the wavelet transform. The 

wavelet function (referred to as 'wavelet') is of finite duration, thus, it is part of a 

continuous oscillating wave. In this regard, the wavelet acts as a finite duration window. 

The continuous wavelet transform, equation (2.3), rewritten in equation (3 .1 ), is the 

correlation between the signal x(t) and the scaled version of the mother wavelet [30]. 

The correlation provides a measure of the similarity between two signals. Thus, 

wavelets having similar shape to the analysis signal correlate better and effectively slope 

changes in the signal are accentuated. The DyWT dicrotic notch detection algorithm, 

presented in this research correlates the scaled versions of the mother wavelet with the 

filtered pressure signal. Since the dicrotic notch can be a rather subtle slope change in 

the pressure signal, a higher correlation between the signal and the wavelet helps to 
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emphasize the notch area. Therefore, the Mexican Hat [31] was selected as the mother 

wavelet since it best approximated the shape of the pressure signal. 

WT x( b , a ) 1 +Joo •(f-b) ~ _ 

00 

x ( t ) g -
0

- dt (3 .1) 

The scale (a) parameter is used to control the temporal and spectral resolution of the 

mother wavelet as well as the dyadically scaled (a = 2m) versions of the Mexican Hat 

wavelet chosen such that the main lobe of the scaled wavelets are narrower (in time) than 

the dicrotic notch. If the width of oscillation is larger, the wavelet will effectively pass 

right over the notch area; the correlation will be small and the notch frequency will not 

be resolved. 

The corresponding spectral resolution of each of the scaled versions of the wavelet is 

observed in its Fourier transform. The magnitude of a wavelet's FT indicates its center 

frequency and bandwidth. Thus, the DyWT operation, from each dyadically scaled 

version of the wavelet, acts as a band pass filter on the data. The scaling operation is the 

mechanism by which the DyWT is adjusted to the duration of the transient being 

analyzed, which in this case is the dicrotic notch. As scale is increased the magnitude of 

the FT has a narrower bandwidth and a lower center frequency, as demonstrated in 

figure 2.3 for the cubic spline wavelet. 

The center frequency (and bandwidth) of the scaled wavelets were chosen in 

coordination with the desired frequency filtering necessary to resolve the dicrotic notch 

from the pressure waveform. These three scales provided a wide and narrow enough 

spectral range for the appearance of the dicrotic notch for the MGH database arterial 

pressure signals tested. Dyadic scales were chosen to span the range of possible 
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frequencies in the blood pressure signal and to reduce the mathematical complexity of 

calculating a continuous range of scales. 

The FT magnitude of the scaled versions of the Mexican Hat wavelet showed no de 

components. The presence of a de component would not affect the performance of the 

wavelet for dicrotic notch detection. However, it would affect signal reconstruction, 

which is not important for dicrotic notch detection. The constraint on the choice of 

wavelet regarding de content can therefore be relaxed with the tradeoff that the Dy WT is 

no longer a one to one representation, rather the wavelet decomposition does not form a 

complete and independent basis set for reconstructing the original signal from the 

transform domain. 

The number of non-zero sample points for each scaled wavelet, generated with a 180 

Hz sample frequency, are 21, 43, and 85 for the first, second and third scales, 

respectively. For a sample rate of 360 Hz, there are 43 , 87, and 171 non zero wavelet 

sample points for the first, second and third scales, respectively. A zero value 

implemented on the computer has been defined as less than 10-10. The relatively small 

scales produces somewhat sharp (impulsive) wavelet shape, symmetric about the origin, 

which quickly tends to zero. As the scale is increased dyadically, the wavelet is 

expanded in time (by 2), with twice as many non-zero points and the frequency, 

observed in the FT magnitude, is compressed by Yz. Figure 3. 7 shows the three scales of 

the Mexican Hat wavelet function, generated with a sample rate of 360 Hz. 
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Figure 3.6 Graphical representation of the wavelet functions: (a) Haar; (b) Shannon; (c) 

Morlet; (d) Mexican Hat; (e) Meyer; and (f) the cubic spline. 
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Figure 3. 7 Three dyadic scales of the Mexican Hat wavelet function, generated with a 

sample rate of 3 60 Hz. 
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3.3.2 Selection of Algorithm Procedures 

The dicrotic notch detection algorithm, outlined in the block diagram in figure 3 .2, 

prefilters the input pressure signal. The filtered signal is then convolved with the scaled 

versions of the mother wavelet and the algorithm proceeds to locate the dicrotic notches 

from the DyWT results. The rationale for each of the steps in this procedure is presented. 

Prefilter 

The original work of the wavelet feasibility test were performed without any 

prefiltering. It was shown that the dyadic wavelet could be used to resolve the dicrotic 

notch for relatively normal and noiseless waveforms. Further testing of the algorithm 

involved adding white Gaussian noise to the pressure signal. The algorithm was not 

accurate below a signal to noise ratio (SNR) of 30 dB. The DyWT detection scheme 

with the prefiltered signal was more accurate than the notch detection algorithm without 

the prefilter for noisy signals containing oscillations within the same frequency band of 

the dicrotic notch. Also, the detection of the temporal location of the dicrotic notch was 

nearly identical on highly damped signals with and without the prefilter. 

A 4th order Butterworth low pass filter with a cµtoff frequency (fc) of 20 Hz was 

added from which the algorithm attained better noise performance. A Butterworth filter 

was selected because it has a magnitude response that is maximally flat in the pass band 

and has a smooth but not exceedingly steep roll off [ 67]. The pole zero plot of this 

Butterworth filter is shown in figure 3.8. The filter's frequency response, magnitude and 

phase are shown in figure 3.9a and b, respectively, generated with a sample rate of 180 

Hz. The zero phase Butterworth filter was implemented in the detection algorithm using 

a digital filtering process. 
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Pole/Zero Plot for 4th order Butterworth Filter 
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Figure 3.8 Pole/zero plot of the 4th order Butterworth prefilter with fc=20 Hz. 
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Figure 3.9 (a) Magnitude response; (b) Phase response of the 4th order Butterworth 

prefilter with cutoff frequency of 20 Hz, generated with a sample rate of 180 Hz. 
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Calculation of the DyWT 

The DyWT can be evaluated either by discrete convolution or with the use of the 

FFT. The convolution technique involves the complex discrete convolution of the BP 

and the wavelet function . Thus, the total number of calculations involves additions and 

multiplies for a total number of output points equal to the sum of the number of points in 

the BP and the wavelet. Using the convolution property of the FT, the temporal 

convolution of the BP signal with the wavelet can be evaluated in the spectral domain 

with an equivalent spectral multiplication. In general, the FFT method would allow a 

more efficient computation of the DyWT, especially when the scale parameter is large 

and the wavelet function is compressed in frequency. Thus, there are fewer 

multiplications involved in computing the DyWT in terms of the frequency 

representation than with the convolution procedure in the time domain. Either method 

would benefit from the fact that both the BP and the wavelet function are real valued. 

Each scaled wavelet has an increasing number of non-zero sample points with 

increasing scale. Since the number of wavelet samples is relatively small for each of the 

three dyadic scales calculated (at most 171 non-zero sample points comprising the 

Mexican Hat wavelet at dyadic scale 3 with a sample rate of 360 Hz), the discrete 

convolution method was implemented. The discrete convolution operation between the 

wavelet function and the BP signal results in a data string containing a total number of 

data points equal to the number of data points in the BP signal plus the number of sample 

points (L) of the wavelet function . Thus, the result is longer than necessary as shown in 

figure 3 .10 for MGH file003, where the number of points in the signal is larger than the 

number of wavelet function samples. 

To access the correct portion of the output of (L + BP signal) data points for each 

dyadic scale, the first and last (L/4) data points of the DyWT are removed and the 

remaining points correspond to the actual DyWT result at the proper time. L is the 
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number of wavelet sample points generated at a particular dyadic scale; and L is 

increasingly larger as the dyadic scale is increased. The number of data points which 

should be discarded in the wavelet transform results after the convolution has been 

calculated and is equal to the (number of points of the wavelet function -1), (the -1 is 

due to the Matlab convolution process). These points are eliminated from the result 

symmetrically on each end of the convolution result (half on each side) as indicated in the 

flow chart in figure 3 .3. 

The end effects of the discrete convolution are observed in several Dy WT results due 

to the abrupt cessation of data and the non-causal wavelet, as observed in figure 3.10. 

The results show spikes at the ends of the DyWT, especially for scales 1 and 2. 

Detection of the dicrotic notch is not affected by these spikes since the algorithm does 

not take a global minimum of the data for threshold purposes but rather a local 

minimum between consecutive R waves. These spikes have been discarded in the plots 

of the Dy WT algorithm performance. 

ECG R wave Detection Algorithm 

The R wave is used by the dicrotic notch detection algorithm to locate the start and 

end of each cardiac cycle. The cardiac cycle is used as reference in determining the 

search window for minima in the DyWT as possible dicrotic notch locations which will 

be used for comparison across dyadic scales. The R wave detection algorithm has been 

modified from that proposed by Elghazzawi et al [175] finding peaks above 60% of a 

global maximum threshold. Where this algorithm fails, the ECG has been manually 

observed and the locations of the R waves predetermined for a patient file . Although 

there exists a robust method of detecting the R wave using the wavelet transform [82], it 

was not necessary to involve a more developed detection algorithm. 
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Figure 3.10 (a) Radial pressure waveform MGH file003, plotted as pressure (mmHg) 

versus sample number; (b-d) results of the discrete convolution calculation of the dyadic 

wavelet transform for scales 1, 2 and 3, respectively, plotted as amplitude versus sample 

number. 
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Search Windows 

Two types of search windows are discussed. The first partitions a time segment of 

each cardiac cycle to focus the search for minima in the DyWT. The second search 

"window" defines the time range of data for comparison of the minima across dyadic 

scales of the Dy WT. The eventual location of the dicrotic notch for a given cardiac cycle 

will be a minimum which lies within the search window of the cardiac cycle (first search 

window), and exists within a neighborhood of ± 50 msec samples (second search 

window) across dyadic scales. 

A limited portion of each cardiac cycle is searched for the dicrotic notch. The 

dicrotic notch will occur between the time of maximum left ventricle pressure (systolic 

peak) and the start of the next ventricular contraction (the next R wave). This window 

length was chosen also to accommodate blood pressure waveforms recorded from 

various points along the arterial system (as shown in figure 1.3). The further the 

pressure reading is from the aortic root, the longer the delay between the systolic peak 

and the dicrotic notch. Thus, the algorithm can examine waveforms from various 

locations including the aorta, radial artery, femoral artery or pedal locations. The systolic 

peak is relatively easy to detect and R wave informati~n is readily available. A relatively 

simple algorithm is used to estimate the location of the peak systolic pressure for each 

cardiac cycle. The systolic peak algorithm locates a maximum in the blood pressure 

waveform between the times of consecutive R waves in the ECG signal. 

Minima which occur in the DyWT within the search window for each cardiac cycle 

are compared across dyadic scales. Minima which exist within ± 50 msec between 

dyadic scales (± 9 data samples for sample frequency= 180 Hz and ± 18 data samples 

for sample frequency= 360 Hz) is retained while all other minima are discarded from the 

total set of minima found in the cardiac cycle search window. A first estimate of ± 5 

data samples was used for the detection algorithm based on the algorithm for pitch 
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detection [98]. This range, tested on files recorded at a rate of 180 Hz, was found to be 

too small . Inspection of the resulting Dy WT coefficients for several files indicated that 

± 9 samples, (± 50 msec), would suffice. If increased much beyond this point, minima in 

the DyWT representing different transients would be compared across dyadic scales, and 

this is to be avoided. 

Threshold Level 

The dicrotic notch location for each cardiac cycle is defined as the first minima, that 

survived the DyWT comparison across dyadic scales, which has a magnitude greater 

than 65 % of the local minimum amplitude of the DyWT. The local amplitude of the 

DyWT is defined within the confines of the search window for that cardiac cycle. The 

threshold method was used such that the detection algorithm did not falsely select the 

minimum due to minor inflections in the curve located between the systolic peak and the 

actual dicrotic notch, (as was the case in figure 3 .1 d). The actual dicrotic notch is more 

transient and is represented in the DyWT as a minimum with a higher absolute amplitude. 

The threshold is set relatively low such that minima due to oscillatory noise in roughly 

the same frequency band as the dicrotic notch are not detected. A range of threshold 

levels were tested between 40 and 90 % and the threshold of 65 % seemed to provide 

the best results. If there are no minima which exist above the threshold, then the first 

minimum in the search window is selected. This occurs if the blood pressure waveform 

is very damped or the dicrotic notch is a very subtle inflection in the signal. 
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3.4 Previously Published Dicrotic Notch Detection 

Algorithms 

3.4.1 Introduction 

Various methods of dicrotic notch detection have been found in the literature [175 , 

182-185] and a summary of these detection techniques is presented. Predominantly, 

dicrotic notch detection techniques rely on slope characteristics of the pressure 

waveform [175, 183-184, 186]. Analysis using the derivative of the pressure signal is 

prone to error with noisy signals in which minor changes in slope are accentuated. 

Various computational methods were devised to obtain the signal's relative minimum and 

reduce the effects of oscillatory disturbances around the dicrotic notch detection area 

using amplitude threshold and slope bar curve fitting techniques [183 , 185]. Also, the 

use of the ECG in defining a search window for locating the dicrotic notch in the arterial 

blood pressure signal has been published [ 175]. After the detection of the R-wave, a 

search for a zero crossing in the derivative waveform is initiated to find the location of 

the dicrotic notch. Although these methods may accommodate somewhat noisy signals, 

they are primarily not designed to characterize a wider range of irregular waveforms. 

The five leading dicrotic notch detection algorithms [175, 182-185] which operate on 

the arterial pressure waveform were reprogrammed (in the Matlab environment). These 

algorithms, identified in table 3 .1 by reference number, author and a brief description of 

the detection · method, were tested on the MGH patient database files and their 

performance has been compared to the proposed dyadic wavelet based dicrotic notch 

detection algorithm. 
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Table 3.1 

Previously Published Dicrotic Notch Detection Algorithms 

Ref# Author 

175 Elghazzawi 

182 Lee 

(3 

183 Jundanian 

184 Martino 

185 Kinias 

Algorithm Description 

Slope analysis with ECG windowing of dicrotic notch search 

Threshold peak then analysis of global (11 data samples) and local 

data samples) operators locate notch as "slope changes" 

Iterative use of slope bars to detect systolic peak and dicrotic notch 

Identify negative slope after intersection of pressure wave with 

delayed filtered wave 

Identify curvature zones of bent points using slope bar iteration 

Several algorithms localize the systolic peak [182-183], ECG R wave [175] or other 

characteristics in the pressure signal derivative [185] to define the beginning of a search 

range for the dicrotic notch. Once a reference point in a cardiac cycle is defined, the 

algorithm selectively searches a given region of time in the signal for the slope changes 

corresponding to the dicrotic notch. A windowed search for the dicrotic notch is 

important because the dicrotic notch is a rather subtle point in the blood pressure 

waveform compared to the upstroke between end diastole and peak systole or the 

minimum (end diastole) or maximum (systolic peak) of the waveform which are more 

easily detected. 

Dicrotic notch detection has also been applied to the derivative of the left ventricular 

pressure waveform [42], and to arterial flow [186], and valve closure resonance has been 

rendered from the second heart sound detected form non invasive phonocardiograms 

(PCGs) [43-47]. 

Attempting to define the mean cardiac cycle of aortic flow and pressure during 

steady state conditions, Burattini et al [186] designed an algorithm to single out the 
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dicrotic notch from aortic flow. This was used to separate consecutive cardiac cycles 

during steady state conditions. The algorithm is based on a double threshold method 

applied to previously digitized recordings of aortic flow and pressure. The locatjpn of the 

dicrotic notch is determined using a technique to find the minimum of the curve between 

two maxima defined above a certain threshold value, as outlined in the flow diagram in 

figure 3 .11. The dicrotic notch follows a rapid flow declination from its maximum and 

precedes a relatively long period of virtually zero flow. Aortic flow assumes its minimal 

value at the tip of the dicrotic notch and thus the minima of the data sequence 

corresponds to the dicrotic notch. 

Among other dicrotic notch detection schemes found in the literature, Smith and 

Craige [ 42] compared canine aortic pressure, left ventricular dP/dt and aortic surface 

vibrations. The comparison showed that the maximal negative spike ofLV dP/dt seems 

to consistently occur just after the notch. Also, a US patented circuit design for 

detecting the dicrotic notch has been devised by Gebber and Welch in 1974 [187]. 
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Figure 3 .11 Dicrotic notch detection algorithm by Burratini displaying an arterial flow 

waveform superimposed with the double threshold detection method. [ 186]. 
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3.4.2 Lee Algorithm 

Lee et al [182] first locate a negative to positive change in the pressure derivative 

which is declared as the "foot" (end diastolic pressure (EDP). After each foot , a maxima 

above a threshold equal to 85% of maximum pressure amplitude is declared as the 

systolic peak. The particular threshold of 85% was used in order to avoid recognizing 

an anacronic notch as the systolic peak. 

First a global search for the dicrotic notch, from the systolic peak to 280 msec 

thereafter, identifies potential notch points. The global search starts with a pointer 

placed at the beginning of the search range. The global search involves weighting a 

group of 11 consecutive data samples, centered about the pointer. A summation of the 

weighted samples is calculated and the pointer is advanced until the end of the search 

range is reached. The sample location of the pointer which has the maximum sum is 

declared the potential dicrotic notch. A second a more localized search involving 

weighting a group of 3 consecutive data samples, within 34 msec about the potential 

notch point found with the global search, resolves the actual dicrotic notch. This 

process is repeated until the end of the search range is reached. The summation 

performed in the local search produces a second difference. The sample point with the 

maximum second difference is the dicrotic notch. 

This particular algorithm works well in noisy environments but does not locate the 

dicrotic notch on arrhythmic beats or low pressure beats following higher amplitude 

beats due to the amplitude threshold governing the systolic peak detection. The 

algorithm has relatively good noise performance since it evaluates the first difference 

with a global operator (reducing higher frequency noise content). 
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3.4.3 Jundanian Algorithm 

Jundanian et al [183] devised a slope analysis method to detect systolic peak and the 

"diastolic value" from arterial blood pressure waveforms. The diastolic value is 

determined by sliding a 40 msec slope bar along the pressure waveform where the 

derivative of the arterial pressure is negative, as outlined in figure 3 .12. Results of 

testing this algorithm on the MGH database reveal that the diastolic value detection 

sometimes locates the dicrotic notch or locates end diastole or both. Due to the 

ambiguity of the definition of the "diastolic value", this algorithm tends to have a higher 

false positive rate, especially with noisy signals. This is a consequence of taking 

"diastolic value" to mean the dicrotic notch location and when the algorithm locates end 

diastole, it is considered as a false positive notch determination. However, the algorithm 

can track most low pressure beats (PVCs and arrhythmias) as well as adjacent higher 

pressure beats. BLOOD PRESSURE SIGNAL SAMPLING AND SLOPE ANALYSIS 
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Figure 3.12 Dicrotic notch detection algorithm by Jundanian et al [183] displaying 

arterial pressure signal superimposed with proposed 40 msec slope bar detection method. 
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3.4.4 Martino Algorithm 

A real time (80 msec) algorithm for detecting dicrotic notch and systolic upstroke 

developed by Martino and Risso [ 184] uses a first order digital (or analog) filter scheme 

with a cut-off frequency at 1.2 Hz (reprogrammed with a lowpass Butterworth filter 

design). The algorithm then identifies the intersections between the original and filtered 

(delayed) signals. The original pressure signal rises above the filtered signal during 

upstroke and falls below the filtered signal just prior to the dicrotic notch. Figure 3.13a 

shows the raw and filtered arterial pressure waveforms along with a step indicating 

systolic upstroke when the raw signal is greater in magnitude than the filtered signal. 

The upstroke determination is used to set a search window for the location of the 

dicrotic notch since the blood pressure signal falls below the filtered signal just prior to 

the notch. The detection of dicrotic notch is performed using the step waveform 

using four consecutive positive slopes in the first derivative, dP/dt. Figure 3 .13b shows 

arterial blood pressure, pulse annotations indicating systolic upstroke and dicrotic notch, 

ECG and initial points of the QRS complex for three different heart rhythms. The tall 

pulses indicate upstroke and the short pulses indicate the locations of the dicrotic 

notches. This algorithm, although able to resolve m_ost low amplitude beats (PVCs), it 

was typically early in locating the dicrotic notch in each cycle due to the generalization of 

four consecutive positive slopes and therefore incurred false positive and false negative 

rates above 25%. 
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Figure 3 .13 Dicrotic notch detection algorithm by Martino et al (a) Comparison of 

original and filtered waveforms; (b) blood pressure and ECG signals with estimated 

locations of systolic peaks and dicrotic notches [ 184]. 
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3.4.5 Kinias Algorithm 

Kinias et al [185] developed a bent point selection method to analyze a digitized blood 

pressure waveform filtered such that high frequency components (such as the dicrotic 

notch) are retained. The algorithm proceeds to detect the dicrotic notch based on an 

iterative bent point selection which identifies critical points where the curve changes in 

direction or concavity. The algorithm finds curvature zones, changes in the direction of 

the pressure derivative identified by an iterative "chord" approach, which uses successive 

chords with different lengths which slide along the pressure waveform, as shown in 

figure 3 .14. When the difference of two successive chord lengths suggests a change in 

direction of the waveform, the length of the chord is reduced until the end of the iterative 

algorithm is reached. The final points obtained through this iterative procedure are 

referred to as bent points, or points indicating a change in curvature. Through a 

systematic and defined series of bent point combinations (upstroke, downstroke and 

inflection points), the bent point corresponding to the dicrotic notch for each cardiac 

cycle is determined. 

The algorithm was shown by the authors to be accurate to within 11 msec in the 

placement of the dicrotic notch, but has not been a~ successful on the reprogrammed 

version tested on the MGH database files. The bent points were not technically on the 

maxima or minima and therefore the bent points corresponding to the dicrotic notch 

were offset from the actual notch area (the degree of offset is dependent on the chord 

length). Thus, the algorithm suffer high false positive and false negative rates. One 

author, H. A F ozzard, was contacted to obtain the bent point selection algorithm code. 

However, the code which was written and optimized for a PDP-11 computer system was 

no longer available. 

The BIOSPEAD program developed by Oppenheim et al [188] utilizes a combination 

of the bent point selection algorithm developed by Kinias and the negative spike of the 
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first derivative of aortic pressure to locate dicrotic notch in real time in n01sy 

environments. The program employs parallel processing with variable filtering of the 

arterial pressure waveform to perform contour analysis using the first an~ second 

derivatives of the arterial pressure for extracting the location of systole, diastole and the 

dicrotic notch. The hybrid combination of the detection algorithms proved more reliable 

than either the Kinias or derivative algorithms alone. 

p (I) 
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Figure 3 .14 Dicrotic notch detection algorithm by Kinias et al displaying the dicrotic 

notch portion of an arterial pressure signal superimposed with proposed minima 'bent 

point' selection detection method [ 185]. 
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3.4.6 Elghazzawi Algorithm 

Elghazzawi et al [175] have developed a program to locate end diastole and the 

systolic peak. Within a period of time after the recognition of the ECG R wave, end 

diastole is declared as the last minimum in this time window by identifying the maximum 

amplitude of a negative to positive slope change for a given cardiac cycle. The peak 

systolic pressure is then identified as the last maximum in a defined time interval after the 

ECG R wave. The minima and maxima are determined from the slope of the arterial 

pressure waveform. This slope characterization of the critical points in the pressure 

waveform has been expanded to also locate the dicrotic notch. 

The dicrotic notch algorithm was not published by Elghazzawi, but has been inferred 

from their method of signal analysis using the derivative of the pressure signal with the 

use of an appropriate search window within each cardiac cycle. In general, the algorithm 

performed well, except for the cases in which the blood pressure signal contained noise 

within the search window or when the signal was very damped. The R wave detection 

algorithm worked moderately well for relatively normal ECG waveform recordings. The 

locations of the R waves were provided for the dicrotic notch detection algorithm when 

the R wave detection algorithm failed (for proper comparison with the DyWT detection 

results). 
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Chapter 4 

Simulations 

4.1 Introduction 

The methodology for generating a waveform test set and validating the performance 

of the Dy WT based dicrotic notch detection algorithm and the five additional algorithms 

reprogrammed from the literature is demonstrated. All detection algorithms were tested 

on 3 test groups of MGH database files. The files were selected as an illustrative group 

of waveforms representative of a range of clinical and physiological conditions, including 

respiratory variations, ventricular tachycardias, catheter artifacts and other noise factors 

as well as on some noise free waveforms with normal sinus rhythms. The three test sets 

were generated to validate the detection algorithms and provide converging results 

indicative of algorithm performance. Performance criteria for determining the accuracy 

of the detection algorithms is defined and evaluated. 

4.2 MGH Database of Clinical Recordings 

The Massachesetts General Hospital (MGH) Database [22] contains 250 patient files 

each with roughly 1 hour worth of data, contained on a total of 10 CDROMs (25 patient 

files per CDROM). Selected epochs of each file numbered 1 to 200, illustrative of the 

file's physiological content, were stored on the UNIX mainframe at URI in Matlab 

format in the directory /bob3/mghdb. Due to limited computer storage space, only a 
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portion of each file was stored on the UNIX system, (there exists a tape backup which 

contains the entire archived data sets for CDROMs 1-6, all stored with a sample rate of 

360 Hz). Files 1 to 50 were stored with a sample rate of 180 Hz; whereas files 51 to 200 

were stored at 360 Hz, all with 12 bit accuracy. 

Each patient file contains 8 channels of physiological data. Each patient file contains 

data for four physiological signals in column vector form as outlined in table 4.1: 

Table 4.1 

Column Vector Designation for the Physiological Signals in each MGH File 

Column 1: Data sample number counter starting at 1 

Column 2 : ECG trace (millivolts) 

Column 3: Arterial blood pressure (mmHg) 

Column 4: Central venous pressure ( mmHg) 

The files chosen for each of the three test sets for evaluating dicrotic notch algorithm 

performance are listed in tables 4.2 a, b and c, respectively according to the file number 

provided by the MGH database guide [22]. The three test sets were compiled to 

represent a range of different clinical conditions from nearly normal to irregular 

pathologies recorded from various points along the arterial system. The three test sets 

were compiled as: (A) 30 files, averaging 9 cardiac cycles per file (duplicate file 

numbers listed in table 4.21 , indexed with lower case letters pertain to different time 

epochs of the same database file having slightly different waveshapes); (B) 50 files, with 

an average of 23 cardiac cycles per file, (includes all files in test set A, but with a larger 

number of cardiac cycles); and (C) 71 patient files averaging 22 cycles per file (includes 

all files in test sets A and B). Pressure recordings with circulatory assistance, although 

available in the database, were not included in the test sets due to the augmentation of 
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the arterial pressure waveform around the area of the dicrotic notch. Tables 4.2d lists 

the MGH filenames of all three test sets combined, according to their physiological 

description given in the MGH database patient guide [22] and by there observable 

waveform pattern. 

Table 4.2 a 

List of 30 MGH Database Files used to Test Performance ofDicrotic Notch 

Detection Algorithms (Test Set A) 

file003 file009 file021 file032 file089 filel26a 

file004 fileOlO file022 file033 filel 13b filel26b 

file005 fileOl 5 file023 file034 filel20a filel28 

file007 file019 file027 file036 filel20b filel36 

file008 file020 file03 l file046 filel21 filel37 

Table 4.2 b 

List of 50 MGH Database Files used to Test Performance ofDicrotic Notch 

Detection Algorithms (Test Set B) 

fileOOl file015 file035 file090 filel21 

file003 file016 file037 file091 filel27 

file005 file019 file039 file095 file130 

file007 file020 file069 filelOl file132 

file009 file021 file076 file102 file139 

fileOlO file023 file077 filel08 filel40 

fileOl l file027 file082 filell2 filel 41 

file012 file029 file084 filel 13 filel45 

file013 file03 l file088 filel 15 filel46 

file014 file034 file089 filell 7 filel47 
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Table 4.2 c 

List of 21 Additional MGH Database Files used to Test Performance of Dicrotic 

Notch Detection Algorithms (Test Set C) 

fileOOl file023 file078 filel 15 

file003 file027 file082 filel 16 

file004 file029 file084 filell 7 

file005 file030 file085 filel20 

file007 file031 file088 filel21 

file008 file032 file089 filel26 

file009 file033 file090 file127 

fileO 10 file034 file091 filel30 

fileO 11 file035 file094 file132 

file012 file036 file095 file137 

fileO 13 file037 filel 00 file138 

file014 file039 filelO.l file139 

file015 file046 file102 filel40 

file016 file060 file103 file141 

file019 file069 filel04 filel45 

file020 file071 filel08 filel46 

file021 file076 filel 12 filel47 

file022 file077 filel 13 filel49 
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Table 4.2d 

List of MGH Database Files used to Test Performance of Dicrotic Notch Detection 

Algorithms (Test Sets A, Band C) According to Waveform Pathology 

Waveform Description 

Atrial fibrillation/flutter 

Axillary 

Baseline wander 

Brachial artery 

Bradycardia 

Damped pressure 

Fem oral artery 

Hypertension 

Hypotension 

Irregular pressures 

Motion variation 

Noisy pressure signal 

Normal sinus rhythm 

Pedal 

Pulsus paradoxus 

Respiratory variation 

Tachycardia 

File Number Identification 

019, 023, 069, 120, 126, 130, 139, 141, 145-147, 149 

032, 095, 104, 132 

001,020, 094, 095, 100, 145 

086 

001, 034 

003,020,009,013,039, 084,085,088, 137, 146 

021,084,089 

035, 085 

108 

021,082, 090, 126, 140 

005, 02~03~ 077,078, 082, 08~ 102, 108, 11~ 112, 

140 

013, 039, 060, 076, 082, 084, 089, 108, 113 

007, 016, 029, 033, 034, 035, 036, 069, 091, 101, 104, 

127 ' 130, 136, 138 

030 

003, 004, 00~011, 01~ 108, 141 

008, 011, 012,071, 077, 102 

003, 005,009, 010,020, 022, 027, 031,046,076,077, 

082, 085, 091, 100, 103, 108, 115, 116, 117, 121, 128, 

136, 137 
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4.3 Performance Criteria 

The original portions of the blood pressure waveforms, (which have been applied to 

the Dy WT and each of the previously published dicrotic notch detection algorithms), 

were examined by Dr. W. Ohley, who annotated the dicrotic notch locations. 

Annotations were made on the original MGH file BP waveforms, prior to algorithm 

simulations. 

The algorithm test results have been normalized in that each algorithm was evaluated 

for the same group of cardiac cycles for each patient file. The detection algorithms were 

considered to have successful detection of the dicrotic notch if they came within ± 3 3 

msec of the actual dicrotic notch. The ± 33 msec range of acceptability for the dicrotic 

notch estimation(± 6 data samples for files with a sample frequency of 180 Hz, and ± 

12 samples for files with a sample frequency of 360 Hz) was chosen since the dicrotic 

notch is represented in the majority of pressure waveforms as a curve or inflection. The 

minimum of the curve, or the initial change in curvature representing the start of aortic 

valve closure are possible correct solutions to estimating the dicrotic notch location. 

Therefore, a fair assessment for all of the algorithms tested, (the DyWT based algorithm 

and five others from the literature) was achieved with the± 33 msec error range. Also, 

the error in the annotation is estimated to be ± 1 data samples, due to the system of 

notch location through the use of Matlab programming for user input. The dicrotic 

notch locations were actually recorded in terms of sample numbers which are easily 

converted to the time of occurrance, as shown in equation ( 4.1 ). 

. ( d ) ( sample number ) tlme secon s = 
sample rate (Hz) 

(4.1) 

The results were recorded in terms of true positives (TP), false positives (FP) and 

false negatives (FN). A computer spreadsheet algorithm [65] was designed for 
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determining the number of TP, FP and FN by comparing the results of the sample 

number locations of the detected dicrotic notches to the sample numbers of the 

annotations and for computing each algorithm's statistical performance. Statistical 

performance measured the percentage of sensitivity, positive productivity, false positive 

rate and false negative rate based on the TP, FP and FN. The equations used for these 

statistical indicators are shown in equations (4.2) to (4.5) . TP (true positive) indicates 

that the algorithm correctly identified a dicrotic notch event; FP (false positive) indicates 

that a dicrotic notch event was estimated in a wrong location; and FN (false negative) 

indicates that a dicrotic notch event was not detected. Optimum performance would be 

signified by 100% sensitivity, 100% positive productivity, and 0% false positive and false 

negative rates. 

S 
. . . TP i / 

ens1tiv1ty= •lOO(~o) 
# cardiac cycles 

(4.2) 

TP 
Positive Productivity = ( ) * 100 (%) 

TP+FP 
(4.3) 

FP Rate = FP •100 (%) 
# cardiac cycles 

(4.4) 

FN Rate = FN •100 (%) 
# cardiac cycles 

(4.5) 
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4.4 Illustrative Examples of DyWT Dicrotic Notch 

Detection 

This section presents the results of the performance of the DyWT based dicrotic 

notch detection algorithm for several problematic waveform types. For each example, 

the portion of the MGH blood pressure waveform is shown along with the 

corresponding DyWT decompositions for the three dyadic scales used in determining the 

temporal locations of the dicrotic notches. The annotated locations of the dicrotic 

notches, in the pressure versus time graph for each illustrated MGH file, is indicated by 

dotted vertical lines extending from the time axis to the upper graph boundary. The 

detected locations of the dicrotic notches are identified by solid vertical lines extending 

from the time axis to the upper graph boundary. 

Also provided for each example is the graphical description of the application of the 

dicrotic notch detection results in determining the QS2 systolic time interval. The QS2 

value calculated from the detected dicrotic notch is superimposed on the plot of the QS2 

value derived from the regression equations given in equation (1.3), rewritten in equation 

(4.6). The QS2 value is calculated as the time between the detected R wave to the 

dicrotic notch. The regression equation results have be.en plotted using the HR (R to R 

interval) generated by the DyWT program. There is approxiamtely a 20 msec difference 

between the QS2 derived from the regression equation and that evaluated using the 

algorithm's estimated dicrotic notch location. This difference is due to the fact that the 

QS2 calculated by regression equation is the duration from the Q wave of the ECG to 

the predicted location of the dicrotic notch. Whereas, the duration between the R wave 

of the ECG and the estimated dicrotic notch location is less than the regression result by 

an amount equal to the time difference between the Q and R waves, which is 

approximately 20 msec inmmost of the cases presented. 
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QS2 =-0.020*HR+0.522 (4.6) 

The illustrative examples of signal irregularities include: a damped pressure signal 

(MGH file 009); pulsus altemans (MGH file 019); a sensor baseline variation (MGH file 

077); a continuously changing HR (MGR file 023); noisy signal (MGR file 060); and a 

signal with irregular notching with major inflections in the waveform in the same 

frequency band as the dicrotic notch (MGR file 021 ). 
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Damped Pressure Signal: MGH file 009 

Figure 4.1 demonstrates the effectiveness of the DyWT based dicrotic notch 

detection algorithm to locate minor fluctuations in the blood pressure waveform. The 

pressure signal is shown in figure 4.1 a and the 3 scales of the DyWT are shown in 

figures 4.1 c-d. The radial artery blood pressure signal of MGH file 009 is extremely 

damped and contains a small level of noise, some of which is in the same frequency band 

as the actual dicrotic notch. The waveform also exhibits a decreasing level of peak 

systolic pressure. Figure 4. la provides the entire range of cardiac cycles examined in 

the QS2 calculation; whereas figure 4.1 e-h show a focused view of several of the 

cardiac cycles. Figure 4.2 compares the calculation of QS2 using dicrotic notch 

information, to the regression equation calculation, based on HR. 

The performance of each of the dicrotic notch detection algorithms is presented in 

table 4.3, based on 48 cardiac cycles. 

Table 4.3 

Performance of Detection Algorithms on a D~mped Pressure Signal 

(MGH file 009) 

Algorithm Sensitivity Positive False Positive False Negative 
(%) Productivity (%) Rate(%) Rate(%) 

Wavelet 100 100 0 0 
Lee 96 100 0 4 
Jundanian 6 3 221 94 
Martino 100 100 0 0 
Kinias 90 90 18 18 
Elghazzawi 15 15 85 85 
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Figure 4.1 (a) MGR file 009 damped radial artery pressure signal; (b-d) DyWT 

decompositions for dyadic scales 1, 2 and 3, respectively. The dashed vertical lines 

indicate the annotated location of the dicrotic notch; whereas the solid vertical lines 

indicate the algorithm's estimation of the dicrotic notch locations. 
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Ci Arterial Blood Pressure (Wavelet) FileDD9 
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Figure 4 .1 ( e) Enlarged view of the MGR file 009 damped radial artery pressure signal; 

(f-h) DyWT decompositions for dyadic scales 1, 2 and 3, respectively. The dashed 

vertical lines indicate the annotated location of the dicrotic notch; whereas the solid 

vertical lines indicate the algorithm's estimation of the dicrotic notch locations. 
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Figure 4.2 Comparison between the calculation of QS2 usmg the dicrotic notch 

information estimated by the detection algorithm, (dashed line), and using the regression 

equation based on HR (solid line), for MGH file 009. 
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Pressure Signal with Pulsus Alternans: MGH file 019 

Figure 4.3 demonstrates the effectiveness of the DyWT based dicrotic notch 

detection algorithm to locate accommodate waveforms having peak amplitude variations. 

The pressure signal is shown in figure 4.3 a and the 3 scales of the DyWT are shown in 

figures 4. 3 c-d. The radial artery blood pressure signal of MGH file 019 contains weak 

beats alternating with strong ones, but does not contain signal artifacts. Figure 4. 3 a 

provides the entire range of cardiac cycles examined in the QS2 calculation; whereas 

figure 4.3 e-h show a focused view of several of the cardiac cycles of figure 4.3 a-d. 

Figure 4.4 compares the calculation of QS2 using dicrotic notch information, to the 

regression equation calculation, based on HR. 

The statistical performance of each of the dicrotic notch detection algorithms 1s 

presented in table 4.4, based on 35 cardiac cycles. 

Table 4.4 

Performance of Detection Algorithms on a Pressure Signal with Pulsus Alternans 

(MGH file 019) 

Algorithm Sensitivity Positive False Positive False Negative 
(%) Productivity (%) Rate(%) Rate(%) 

Wavelet 100 97 3 0 
Lee 31 100 0 69 
Jundanian 51 51 49 49 
Martino 23 23 77 77 
Kinias 29 29 71 71 
Elghazzawi 83 88 11 17 
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Figure 4.3 (a) MGR file 019 radial artery pressure signal containing pulsus altemans; (b­

d) DyWT decompositions for dyadic scales 1, 2 and 3, respectively. The dashed vertical 

lines indicate the annotated location of the dicrotic notch; whereas the solid vertical lines 

indicate the algorithm's estimation of the dicrotic notch locations. 
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Figure 4.3 (e) Enlarged view of the MGH file 019 radial artery pressure signal 

containing pulsus altemans; (f-h) DyWT decompositions for dyadic scales 1, 2 and 3, 

respectively. The dashed vertical lines indicate the annotated location of the dicrotic 

notch; whereas the solid vertical lines indicate the algorithm's estimation of the dicrotic 

notch locations. 
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Figure 4.4 Comparison between the calculation of QS2 usmg the dicrotic notch 

information estimated by the detection algorithm, (dashed line), and using the regression 

equation based on HR (solid line), for MGH file 019. 
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Baseline Variation: MGH file 077 

Figure 4.5 demonstrates the performance of the DyWT based dicrotic notch 

detection algorithm on a signal containing baseline drift. The pressure signal is shown in 

figure 4.5 a and the 3 scales of the DyWT are shown in figures 4.5 c-d. This example 

demonstrates the ability of the DyWT algorithm to resolve the dicrotic notch variation 

which modulated by a lower frequency variation. Figure 4.5a provides the entire range 

of cardiac cycles examined in the QS2 calculation; whereas figure 4.5 e-h show a 

focused view of several of the cardiac cycles of figure 4.5 a-d. Figure 4.6 compares the 

calculation of QS2 using dicrotic notch information, to the regression equation 

calculation, based on HR. 

The statistical performance of each of the dicrotic notch detection algorithms 1s 

presented in table 4.5, based on 24 cardiac cycles. 

Table 4.5 

Performance of Detection Algorithms on a Pressure Signal with a Low Frequency 

Baseline Variation (MGHfile 077) 

Algorithm Sensitivity Positive False Positive False Negative 
(%) Productivity (%) Rate(%) Rate(%) 

Wavelet 100 100 0 0 
Lee 0 0 54 100 
Jundanian 100 35 188 0 
Martino 0 0 104 100 
Kinias 4 10 38 96 
Elghazzawi 100 100 0 0 
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Figure 4.5 (a) MGH file 077 radial artery pressure signal containging a low frequency 

modulation; (b-d) DyWT decompositions for dyadic scales 1, 2 and 3, respectively. The 

dashed vertical lines indicate the annotated location of the dicrotic notch; whereas the 

solid vertical lines indicate the algorithm's estimation of the dicrotic notch locations. 
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Figure 4.5 (e) Enlarged view of the MGH file 077 radial artery pressure signal 

containging a low frequency modulation; (f-h) DyWT decompositions for dyadic scales 

1, 2 and 3, respectively. The dashed vertical lines indicate the annotated location of the 

dicrotic notch; whereas the solid vertical lines indicate the algorithm's estimation of the 

dicrotic notch locations. 
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Figure 4.6 Comparison between the calculation of QS2 usmg the dicrotic notch 

information estimated by the detection algorithm, (dashed line), and using the regression 

equation based on HR (solid line), for a signal with a low frequency modulation, MGH 

file 077. 
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Pressure Signal with an Irregular Heart Rate: MGH file 023 

Figure 4.7 demonstrates the effectiveness of the DyWT based dicrotic notch 

detection algorithm on a non stationary signal containing an irregular HR. The signal is 

non stationary but mostly free of noise with a slight inflection at the dicrotic notch. 

Figure 4. 7a provides the entire range of cardiac cycles examined in the QS2 calculation; 

whereas figure 4. 7 e-h show a focused view of several of the cardiac cycles of figure 4. 7 

a-d. Figure 4.8 compares the calculation of QS2 using dicrotic notch information, to the 

regression equation calculation, based on HR. Notice that the QS2 calculation based on 

the dicrotic notch detection algorithm results exhibits fluctuations between several 

cardiac cycles. The QS2 systolic time interval is decreasing as the heart rate increases. 

Since the detection algorithm has correctly identified each dicrotic notch in figure 4. 7, 

the benefit of a background verification dicrotic notch location for determining the 

accuracy of the regression equation is appreciated. Such results would prompt a 

reevaluation of the regression equation offset parameter in equation (1.3). 

The statistical performance of each of the dicrotic notch detection algorithms 1s 

presented in table 4.6, based on 11 cardiac cycles. 

Table 4.6 

Performance of Detection Algorithms on a Pressure Signal with an Irregular 

Heart Rate (MGH file 023) 

Algorithm Sensitivity Positive False Positive False Negative 
(%) Productivity (%) Rate(%) Rate(%) 

Wavelet 100 100 0 0 
Lee 36 100 0 64 
Jundanian 0 0 136 100 
Martino 82 90 9 18 
Kinias 73 73 27 27 
Elghazzawi 9 9 91 91 
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Figure 4.7 (a) MGH file 023 radial artery pressure signal exhibiting an irregular HR; (b­

d) DyWT decompositions for dyadic scales 1, 2 and 3, respectively. The dashed vertical 

lines indicate the annotated location of the dicrotic notch; whereas the solid vertical lines 

indicate the algorithm's estimation of the dicrotic notch locations. 
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Figure 4.7 (e) Enlarged view of the MGH file 023 radial artery pressure signal exhibiting 

an irregular HR; (f-h) DyWT decompositions for dyadic scales 1, 2 and 3, respectively. 

The dashed vertical lines indicate the annotated location of the dicrotic notch; whereas 

the solid vertical lines indicate the algorithm's estimation of the dicrotic notch locations. 
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Figure 4.8 Comparison between the calculation of QS2 usmg the dicrotic notch 

information estimated by the detection algorithm, (dashed line), and using the regression 

equation based on HR (solid line), for a pressure signal exhibiting an irregular HR, MGH 

file 023. The dashed lines provide a more accurate estimation of the fluctuation in the 

QS2 systolic time interval, due to the changing heart rate. 
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Femoral Artery Pressure Signal with Noise: MGH file 060 

Figure 4.9 demonstrates the performance of the DyWT based dicrotic notch 

detection algorithm on a femoral artery pressure signal containing noise. The noise is 

partially in the same frequency band as the dicrotic notch and is contained in the same 

temporal area as the dicrotic notch. This illustrates the ability of the Dy WT algorithm to 

sift through noise whose spectral content does not correlate between the three scales of 

the DyWT. Noise content within the same frequency band as the dicrotic notch, 

however, would correlate between the scales of the DyWT and compromise the 

performacne of the algorithm. Figure 4.9a provides the entire range of cardiac cycles 

examined in the QS2 calculation; whereas figure 4.9 e-h show a focused view of several 

of the cardiac cycles of figure 4.9 a-d. Figure 4.10 compares the calculation of QS2 

using dicrotic notch information, to the regression equation calculation, based on HR. 

The performance of each of the dicrotic notch detection algorithms is presented in 

table 4.7, based on 16 cardiac cycles. 

Table 4.7 

Performance of Detection Algorithms on a Pressure Signal Containing Noise 

(MGH file 060) 

Algorithm Sensitivity Positive False Positive False Negative 
(%) Productivity (%) Rate(%) Rate(%) 

Wavelet 94 94 6 6 
Lee 88 45 106 13 
Jundanian 100 186 437 0 
Martino 100 73 38 0 
Kinias 44 54 38 56 
Elghazzawi 6 6 94 94 
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Figure 4.9 (a) MGR file 060 femoral artery pressure signal containing n01se; (b-d) 

DyWT decompositions for dyadic scales 1, 2 and 3, respectively. The dashed vertical 

lines indicate the annotated location of the dicrotic notch; whereas the solid vertical lines 

indicate the algorithm's estimation of the dicrotic notch locations. 
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Figure 4.9 (e) Enlarged view of the MGH file 060 femoral artery pressure signal 

containing noise; (f-h) DyWT decompositions for dyadic scales 1, 2 and 3, respectively. 

The dashed vertical lines indicate the annotated location of the dicrotic notch; whereas 

the solid vertical lines indicate the algorithm's estimation of the dicrotic notch locations. 
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Figure 4 .10 Comparison between the calculation of QS2 using the dicrotic notch 

information estimated by the detection algorithm, (dashed line), and using the regression 

equation based on HR (solid line), for a femoral artery pressure signal containing noise, 

MGR file 060. 
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Pressure Signal with a Notch Artifact: MGH file 021 

Figure 4.11 demonstrates the performance of the DyWT based dicrotic notch 

detection algorithm on a signal containing artifacts that resemble the dicrotic notch. 

The signal is mostly free of random noise but contains a 'notch like' inflection between 

peak systole and the actual dicrotic notch. The artifact is possibly due to catheter 

motion. The example illustrates where the DyWT detection algorithm fails since it cannot 

distinguish non random oscillations from the true dicrotic notch contour. Notice that the 

artifact is not a random fluctuation and it occurs within the same frequency band as the 

actual dicrotic notch. Figure 4.1 la provides the entire range of cardiac cycles examined 

in the QS2 calculation; whereas figure 4.11 e-h show a focused view of several of the 

cardiac cycles of figure 4 .11 a-d. Figure 4 .10 compares the calculation of QS2 using 

dicrotic notch information, to the regression equation calculation, based on HR. Similar 

result wer obtained in MGH files 120 and 126 which also have irregular notching. This 

type of waveform presents the greatest problem to the Dy WT based detection algorithm. 

The statistical performance of each of the dicrotic notch detection algorithms is 

presented in table 4.8, based on 11 cardiac cycles. 

Table 4.8 

Performance of Detection Algorithms on a Pressure Signal with a Notch Artifact 

(MGH file 021) 

Algorithm Sensitivity Positive False Positive False Negative 
(%) Productivity (%) Rate(%) Rate(%) 

Wavelet 0 0 100 100 
Lee 27 27 73 73 
Jundanian 100 48 109 0 
Martino 100 92 9 0 
Kinias 0 0 73 100 
Elghazzawi 0 0 100 100 
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Figure 4 .11 (a) MGR file 021 radial artery pressure signal containing a notch artifact; (b­

d) DyWT decompositions for dyadic scales 1, 2 and 3, respectively. The dashed vertical 

lines indicate the annotated location of the dicrotic notch; whereas the solid vertical lines 

indicate the algorithm's estimation of the dicrotic notch locations. 
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Figure 4.11 (e) Enlarged vtew of the MGH file 021 radial artery pressure signal 

containing a notch artifact; (f-h) DyWT decompositions for dyadic scales 1, 2 and 3, 

respectively. The dashed vertical lines indicate the annotated location of the dicrotic 

notch; whereas the solid vertical lines indicate the algorithm's estimation of the dicrotic 

notch locations. 
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Figure 4.12 Comparison between the calculation of QS2 using the dicrotic notch 

information estimated by the detection algorithm, (dashed line), and using the regression 

equation based on HR (solid line), for a pressure signal containing a notch artifact, MGH 

file 02 1. 
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4.5 Statistical and Comparative Results of Simulation 

A summary of the results of the dyadic wavelet dicrotic notch detection algorithm 

performance is presented. The 5 leading published algorithms, written by Lee et al 

[182], Jundanian et al [183], Martino et al [184], Kinias et al [185] and Elghazzawi et al 

[175] have been programmed and evaluated on the MGR database for comparison with 

the dyadic wavelet method. All algorithms including the dyadic wavelet method were 

tested on three test sets containing: (A) 30 MGR database files, with a total of 284 

cardiac cycles, averaging 9 cardiac cycles per file; (B) 50 MGR patient files, with a total 

of 1301 cardiac cycles, which includes the files in set (A) but with an average of 26 

cardiac cycles per file; and (C) 72 MGR patient files, with a total of 1647 cardiac cycles, 

(with an average of 23 cardiac cycles per file), including all of the same files (and cycles) 

as in set (B). The files were selected to contain a variety of clinical situations, including 

respiratory variations, ventricular tachycardias, irregular notching, catheter artifacts and 

other noise factors as well as on some classic waveforms with normal sinus rhythms (as 

previously outlined in table 4.3). 

The results of notch detection results, in terms of TP, FP and FN for each of the six 

detection algorithms tested, is located in Appendix B, for each of the three test sets. The 

performance evaluation, indicating the accuracy of each of the six detection algorithms in 

terms of sensitivity, positive productivity, false positive rate and false negative rate, is 

provided in table 4.9 for the (A) 30 file, (B) 50 file, and (C) the 71 file test sets. The 

results in table 4.9 indicate that a stable or convergent representation of algorithm 

performance was achieved with test set B. Three algorithms [175,183,185] were stable 

to within ± 5 % of the statistics generated from the A to B test sets; whereas all 

algorithms maintained stable between test sets B and C to within ± 2 %. Desirable 

algorithm performance is shown with high percentages of sensitivity and positive 

productivity, and low FN and FP rates. Depending upon the strengths and weaknesses 
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of each algorithm, additional test files improved or degraded the performance percentage 

value. Thus, a wide range of waveform types (normal to irregular pathologies), is 

necessary for algorithm validation. The proposed waveform test sets B and C represent 

valid subsets of the entire MGH database appropriate to determine the validity of blood 

pressure evenet detection algorithms, such as the dicrotic notch, based on the observed 

convergence of each of the four performance criteria for all six detection algorithms. A 

histogram showing the performance of each of the dicrotic notch detection algorithms, 

for test set B, is provided in figure 4.13. 

The results have been normalized in that each algorithm was evaluated for the same 

group of cardiac cycles for each patient file. The graphical output results, of MGH 

database files illustrative of various clinical situations, for the Dy WT based dicrotic notch 

detection algorithm and the 5 algorithms, implemented from the literature, are located in 

appendix B. The file identification for each of the waveforms provided in Apendix Bis 

listed in table 4 .10. The graphs presented in appendix B indicate the annotated locations 

of the dicrotic notches by dashed, vertical lines extending from the time axis to the upper 

graph boundary terminated in a circle. The detected locations of the dicrotic notches are 

identified by solid, vertical lines extending from the time axis to the upper graph 

boundary. Where the two lines overlap, there is a solid line terminated with a circle. 

The wavelet decomposition (Dy WT results) for each of the three dyadic scales is also 

provided for each file. (Typically, the first and last cycles displayed in the graphical 

results in appendix B were not counted or evaluated for algorithm performance). 
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Figure 4.13 Histogram of the statistical results for all of the dicrotic notch detection 

algorithms. 
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Table 4.9 

Simulation Performance Results for each of the Dicrotic Notch Detection Algorithms for 

Test Sets (A) 30 files; (B) 50 files; (C) 72 files 

Algorithm Sensitivity Positive (%) False Positive False Negative 
(%) Productivity Rate(%) Rate(%) 

A B c A B c A B c A B c 
Wavelet 78 86 84 79 87 85 21 13 15 23 14 16 
Lee 45 50 51 52 67 66 42 24 26 55 50 49 
Jundanian 66 64 66 46 44 45 77 82 81 34 36 34 
Martino 61 53 51 61 51 50 38 50 51 39 47 49 
Kini as 29 33 31 36 37 36 50 56 56 71 67 69 
Elghazzawi 67 63 64 68 70 72 31 26 25 33 37 36 

Table 4.10 

Illustrative MGH Patient Files Whose Detection Results are Contained in Appendix C 

Fast heart rate (140 bpm) 003 

Damped pressure signal 009 

Pulsus Altemans 019 

Varying heart rate 020 

Irregular notching 021 

Slow heart rate 034 

Normal sinu~ rhythm, classic shape 036 

Fem oral pressure 089 

Irregular notching 120a 

Preventricular contraction 128 
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4.6 Observations 

There are several observed cases where the DyWT based dicrotic notch detection 

algorithm was not effective. 

• The R wave or systolic peak was not predetermined for a given cardiac cycle. Thus, 

there was no search window in that cardiac cycle for dicrotic notch detection. The 

search window spans from the time of the systolic peak in the BP signal to the time 

of the next R wave of the ECG signal. 

• The R wave of the next cardiac cycle occurs before aortic valve closure of the 

current cardiac cycle (some preventricular contractions), as shown in figure 4. l 4a, 

for MGH filel20. , This occurrs due to the definition of the dicrotic notch search 

window which terminates at the R wave of the next cardiac cycle. If the search 

window definition is altered to include BP signal beyond the R wave of the next 

cardiac cycle, then the dicrotic notch is acknowledged as indicated in figure 4. l 4b, 

which was generated by eliminating the detected occurance of the R wave for the 

next cardiac cycle. 

• The pressure waveform contour has irregularities ~hat resemble the dicrotic notch, in 

terms of its amplitude and spectral content, which are located in the search window 

between the systolic peak and the actual dicrotic notch. An example of this is shown 

in figure 4 .15, for MGH file02 l . 

• The dicrotic notch detection algorithm based on the DyWT has moderate success 

when the duration of the dicrotic notch is relatively long, as shown in figure 4. l 4a, 

for MGH file033 . The DyWT algorithm tends to locate the start of valve closure, as 

does the algorithms presented by Lee [182], Martino [184] and Kinias [185] as 

shown in figure 4.14 b, d and e. 
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Figure 4.14 MGH file033 displaying dicrotic notch detection results for a waveform 

with a notch of large radius of curvature. The dashed vertical lines indicate the 

annotated location of the dicrotic notch; whereas the solid vertical lines indicate the 

algorithm's estimation of the dicrotic notch locations. 
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Chapter 5 

Conclusion 

Reliable and consistent dicrotic notch detection of the arterial blood pressure signal 

has been accomplished by locating the consecutive minima and zero crossings of the 

pressure derivative across three consecutive dyadic scales of the dyadic wavelet 

transform using the Mexican Hat wavelet function . A computer program has been 

written and implemented on a PC and a UNIX based workstation using Matlab 4.2 and 

has been tested on 72 human blood pressure waveforms obtained from the MGH 

database incompassing a variety of clinical and patient conditions. 

The dicrotic notch is observed in arterial pressure waveforms as a consequence of the 

closing of the aortic valve, after left ventricular ejection, indicating the start of the 

diastolic cycle. The detection of the dicrotic notch is non-trivial in that the blood 

pressure signal may be corrupted by noise, contain motion artifacts, respirtaory 

modulation, change abruptly with arrhythmias or deviate from the classical arterial 

pressure wave shape, especially in sick patients. The dyadic wavelet transform method 

of dicrotic notch detection was devised to estimate the dicrotic notch location in arterial 

blood pressure signals for the various clinical situations. 

The dyadic wavelet transform method of signal analysis inherently filters out band 

limited noise and low frequency variations by the comparison of the Dy WT results across 

consecutive dyadic scales. Three consecutive dyadic scales of a Mexican Hat wavelet 

were generated and convolved with the arterial blood pressure signal to obtain the 

DyWT decompostion at these scales. The proposed dicrotic notch detection algorithm 
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locates minima which occur within a neighborhood of± 33 msec across consecutive 

dyadic scales of the Dy WT within a seach window, defined from the systolic peak in the 

blood pressure signal to the R wave of the next cardiac cycle in the ECG signal. This 

algorithm is robust for signals which are noisy, contain irregular heart rhythms and those 

which exhibit erratic behavior. The dyadic wavelet transform based detection algorithm 

had only moderate success when the pressure waveform contained irregularities that 

resembled the dicrotic notch in terms of amplitude and frequency, located between the 

systolic peak and the actual dicrotic notch. 

The dyadic wavelet transform method of detecting the dicrotic notch favorably 

compared and outperformed the five other leading detection algorithms found in the 

literature with respect to each of the four performance criteria: sensitivity (by 18% ), 

positive productivity (by 13%), false positive rate (by 11%) and false negative rate (by 

18%). The DyWT dicrotic notch detection algorithm has the highest sensitivity and 

positive productivity, and the lowest false positive and false negative rates, which are 

listed in table 5.1 for test set C (72 patient files), compared to the other leading detection 

algorithms. 

Table 5.1 

Performance Results of the DyWT Based Dicrotic Notch Detection Algorithm: Test Set 

c 
Sensitivity 84% 

Positive Productivity 85 % 

False Positive Rate 15 % 

False Negative Rate 16% 

The original premise of the project was that the dicrotic notch detection algorithm 

was to be implemented as a background verification system for the accuracy of the 

109 



regression equation used to predict the temporal location of the dicrotic notch from 

previous R-wave information from the electrocardiogram. Thus, a real time algorithm 

was not a concern, but optimization of algorithm speed and accuracy was taken into 

consideration. Also, the R wave detection and search window criteria were designed 

such that simple modifications would allow implementation into the medical device 

environment for evaluating systolic time interval or analyzing prerecorded physiological 

data. 

The QS2 systolic time interval calculated using the R wave to dicrotic notch duration 

favorably compared to the QS2 interval evaluated by the linear regression equation, 

based on the HR. The regression equations are considered valid indices under normal 

conditions. However, when heart rate changes, by roughly 10 bpm, then an adjustment 

in the regression prediction may be necessary. Thus, validation of the accuracy of the 

regression equation in the clinical environment, using a dicrotic notch detection scheme, 

is vital. 

The algorithm can be adapted to detect the dicrotic notch when the ECG is not 

available by using the DyWT to locate the systolic upstroke transient between end 

diastole and the rise in left ventricle pressure. This point in the pressure waveform 

approximates the temporal location of the R wave. The detection of systolic upstroke is 

similar to the algorithm presented except relative maxima above a threshold would be 

compared across dyadic scales, (rather than the minima which are used for dicrotic notch 

detection). Noise on the pressure signal is commonly mechanical in nature, whereas 

electrical noise interferes more with the ECG. Thus, this algorithm is valid m 

circumstances where electrical noise may render the ECG signal unreadable such as 

during the use of electrosurgical units. 
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Appendix A 
A.1 DyWT Based Dicrotic Notch Detection Matlab Program Code 

% This program analyzes a BP and ECG signals and determines the temporal !9cations of 

% the dicrotic notches in the BP waveform. 

% The Mexican Hat wavelet function coefficients for 3 dyadic scales were precalculated. 

%********************************************************************* 

% Calculate the DyWT using discrete convolution 

d 1 =real( conv(BP ,mexhat 1) ); 

d2=real( conv(BP ,mexhat2) ); 

d3=real(conv(BP,mexhat3)); 

% Truncated excess points from discrete convolution result relative to size of wavelet. 

L=round(length(mexhat0)/2); 

dywt 1 =dl (L:(round(length( d 1)-L+1 ))); 

dywt2=d2(L:(round(length(d2)-L+l))); 

dywt3=d3(L:(round(length(d3)-L+l))); 

%********************************************************************* 

% Program to find the R wave in the ECG using the Elghazzawi algorithm 

% ECG R wave detection algorithm (to set search window for end diastole) 

thresh=max(ecg)*0.60; % set 60% of global max threshold magnitude for R wave spike 

% Locate sample # of threshold crossings 

numups=O; 

numdowns=O; 

for i= 1 :nbp-1 

% # of threshold upslope crossings found 

% # of threshold downslope corssings found 

if ecg(i)<=thresh & ecg(i+ 1 )>=thresh 

numups=numups+ 1; 

upslope(numups )=i; % ordered sample #s of upslopes found 
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end; 

if ecg(i)>=thresh & ecg(i+ 1 )<=thresh 

numdowns=numdowns+ 1; 

dnslope( numdowns )=i; % ordered sample #s of downslopes found 

end; 

end; 

% Find sample# of max in each section found above threshold (upslope to downslope). 

if ((numups -=O)&(numdowns -=O)) % N~ed at least 1 threshold crossing pair 

% If analysis waveform has the 1st upslope detected before a downslope: 

if upslope( 1 )<dnslope(1) 

for i= 1 :numdowns 

[pks(i), offset(i) ]=max( ecg( upslope(i): dnslope(i)) ); 

if i>length(offset); break; end 

rwave(i)=upslope(i)+( offset(i)-1 ); 

end 

% If analysis wa~eform has the 1st downslope detected before an upslope: 

elseif dnslope(l )<upslope( 1) 

for i= 1 :numdowns-1 

[pks(i), offset(i) ]=max( ecg( upslope(i): dnslope(i+ 1)) ); 

end 

end 

end 

rwave(i)=upslope(i)+( offset(i)-1 ); % sample # of maxima 

% end of analyzing threshold crossing pairs 

%********************************************************************* 

% Calculate R to R interval (in time) 

for i=l:(length(rwave)-1) 
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RR(i)=(rwave(i+ I )-rwave(i) )/rate; 

HR(i)=IIRR(i)*60; 

% R to R wave time interval in seconds 

% heart rate (bpm) 

end; 

%********************************************************************** 

% Find DN using DyWT of a BP signal, Mexican Hat wavelet and R wave information 

% Locate minima <O ofDYWT(scale) and compare to minima ofDYWT(scale+ I) 

% Minima are retained if they occur within +/-50 msec across consecutive dyadic scales. 

range=round(0.05*rate); % range for comparing minima (+/-50 msec) 

dyadic=3; % the total # of dyadic scales to be evaluated in the wavelet transform 

for scale= I :dyadic 

totalmin=O; % initialize # of possible notch locations for all cardiac ~ycles in this scale 

% Distinguish which wavelet transform scale result is to be processed. 

if scale I; DYWT=dywtl; 

elseif scale 2; DYWT=dywt2; 

elseif scale 3; DYWT=dywt3; 

end 

% Locate zero crossings in the DYWT between consecutive R wave sample locations; 

% then find a minimum between consecutive zero crossings. 

% Set search window boundaries of cardiac cycle (start and stop) 

for cycle= I :length(rwave) 

miss( cycle )=O; % # of cardiac cycles which did not have a notch detected 

numups( cycle )=O; % # of up slopes counted for this cardiac cycle. 

if cycle length(rwave) % generate sample pts of search window for zero crossings 

stop( cycle )=length(BP); 

[P SP, offset ]=max(BP( rwave( cycle): stop( cycle))); 

else stop( cycle )=rwave( cycle+ I); 
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[PSP ,offset]=max(BP(rwave( cycle):rwave( cycle+ 1 ))); 

end 

start( cycle )=rwave( cycle )+offset; % start of search window relative to R to R interval 

% Initialize variables for minima search 

numneg=O; 

numpos=O; 

% #of negative going(+ to-) zero crossings ofDYWT found 

% #of positive going (-to+) zero crossings ofDYWT found 

nummin=O; % # of minima in consecutive scales 

% Locate zero crossings occurring within this cardiac cycle of the DYWT 

for n=start( cycle): (stop( cycle )-1) 

% Locate all zero crossings of the DYWT from negative slope(+ to-) in search window 

if (DYWT(n)>=O & DYWT(n+ 1 )<=O) 

numneg=numneg+ 1; 

negnulls( numneg)=n+ 1; % ordered sample #s of zero crossings 

end 

% Locate all zero crossings of the DYWT(scale) from positive slope (-to+) 

if(DYWT(n)<=O & DYWT(n+l) >=O) 

numpos=numpos+ 1; 

posnulls( numpos )=n+ 1; % ordered sample #s of zero crossings 

end 

end % for start:stop loop 

% Find sample # of the min in each section between zero crossings: ( + to -) and (- to +) 

% Sample# of min search must start at downslope(+ to-) and end at an upslope (-to+). 

if numneg -= 0 

for i=l :numneg 

if negnulls(i)<stop( cycle) 

% Need at least 1 (+to-) zero crossing 

dwnslope(i)=negnulls(i);% sample # of start of min search window 
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end 

if numpos -= 0 

for k=l:numpos 

if posnulls(k)>negnulls(i) 

upslope(i)=posnulls(k); % sample # of end of min search window 

numups( cycle )=numups( cycle)+ 1; 

break 

end 

end 

if numups( cycle )=O 

upslope(i)=stop( cycle); 

end 

% break out of for k=l:numpos loop 

else upslope(i)=stop( cycle); % no upslope detected so use last data point in cycle 

end % end if numpos -= 0 

end % end for i=l:numneg 

else miss( cycle )=miss( cycle)+ 1; % if no zero crossings; goto next cycle 

end % end if numneg-=O loop (have arrays dwnslope & upslope for this cycle) 

% Find minimum points between each dwnslope and upslope pair for this cardiac cycle 

if miss( cycle )=O 

% First, determine # of valid zero crossing pairs available for a minimum search 

if length( dwnslope )<=length( upslope) 

crosses= length( dwnslope ); 

else crosses=length( upslope); 

end 

for i= 1 : crosses 

[pks(i), offset(i) ]=min(D YWT( dwnslope(i) :upslope(i)) ); 
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minima(i)=dwnslope(i)+( offset(i)-1 ); 

end 

% Accumulate minimas in each cycle for this dyadic scale as possible notch loc_ations 

for i=l :length( minima) 

finalmin( scale, totalmin+i)=minima(i); 

end 

totalmin=totalmin+length(minima); % update# of possible notch locations for this scale 

end % end for miss(cycle)=O. Goto next cardiac cycle. 

% clear for variable use in next cardiac cycle. Retain 'finalmin'(scale,i) 

clear pks offset negnulls posnulls minima dwnslope upslope 

end % end for cycle= I :length(rwave). Do next cycle for th}s scale DYWT 

end % end for scale I :dyadic. Do next scale 

%********************************************************************** 

% All potential sample locations ('finalmin(scale, :)') for the dicrotic notch have been 

% determined for each cardiac cycle in each dyadic scale. 

% Compare 'finalmin' bewteen dyadic scales to locate the dicrotic notch. 

for scale=l:dyadic 

% Initialize matrix from which to compare final minima across dyadic scales 

if scale I 

compmin(l,:)=finalmin(l,:); % initialize finalmin array for scale comparison 

end 

if scale>= 2 % if calculated 2 consecutive dyadic scales then compare for peaks 

% Locate minima ofDyWT within+/- 50 msec across consecutive dyadic scales 

for i= I : length( comp min( scale- I,:)) 

if compmin( scale-1,i) -= 0 

for n=l :length(finalmin(scale,:)) 
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if ((finalmin(scale,n) >= compmin(scale-1,i)-range) & (finalmin(scale,n) <= 

compmin( scale-1,i)+range)) 

end 

end 

end 

end 

nummin=nummin+ 1; 

compmin(scale,nummin)=finalmin(scale,n); 

ifnummin> 1 % eliminate duplicate entries 

if comp min( scale,nummin) = compmin( scale,nummin-1) 

compmin( scale,nummin )=O; 

nummin=nummin-1; 

end 

end 

% compmin(dyadic,:) is the final output containing the surviving minimum points 

% which are defined as valid possible dicrotic notch locations in all cardiac cycles 

end % end if scale>=2 loop 

end % end for scale= 1 :dyadic loop 

% eliminate all zero entries in compinin array (use final scale for analysis) 

index=find( compmin( scale,:)); 

nummin=length(index); 

% finds indices of non zero array elements 

for i=l :nummin 

notchl(i)=compmin(scale,index(i)); 

end 

% Find 1st valid notch 1 pt after systolic pk = the notch location for that cardiac cycle 

numnotch=O; % initialize # of valid di erotic notch locations 
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for i=l:cycle 

if miss(i)=O % do only cycles having valid notch 1 points 

end 

end 

extrema(i)=min(DYWT(start(i):stop(i))); 

thresh(i)=extrema(i)*0.65; % threshold= 65% of minima extrema for this cycle 

for n= 1 : length( notch I) 

if (notch 1 ( n )>start(i) & notch 1 ( n )<=stop(i)) 

ifDYWT(notchl(n))<=thresh(i) % threshold is a negative number 

end 

end 

end 

numnotch=numnotch+ 1; 

notch(nuffi!iotch)=notchl(n); % not all cycles have a notch found 

break % found notch for this cycle. Do next cycle 

for i=l :length( notch) 

if notch(i)=O % no minima exceeded threshold: use 1st minima after systolic peak 

end 

end 

for n=l :length(notchl) 

if (notchl(n)>start(i) & notchl(n)<=stop(i)) 

numnotch=numnotch+ 1; 

end 

end 

notch( numnotch )=notch 1 ( n ); 

break 
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A.2 Lee Algorithm 

% This program for dicrotic notch detection [52]. 

% Apply 4th order 10 Hz cutoff LP Butterworth filter to BP 

cuto:ff=lO/(rate/2); % filter parameter for cutoff freq= 10 Hz. 

[b,c]=butter(4,cutoff); % generate Butterworth filter coefficients 

BPfilt=filter(b,c,BP); % signal has no phase delay 

BPderiv=diff(BPfilt); % Calculate the first derivative of the BP waveform 

% Find where deriv goes from - to+ (for finding end diastole) 

numfoot=O; % # of end diastoles found 

for i=l:(length(BPderiv)-1) 

if BPderiv(i)<=O & BPderiv(i+ 1 )>=O 

numfoot=numfoot+ 1; 

foot( numfoot )=i; 

end; 

end; 

% Set threshold used to find systolic peak 

thresh=max(BPfilt)*0.85; % threshold = 85% of global max of filtered data samples 

% Find systolic peak by taking the max BP above a threshold following each foot 

numsyst=l; 

for i=l :numfoot 

n=f oot(i)+ 1; 

if BPderiv(n)>O % initialize systolic peak value 

maxima(numsyst)=BP(n); 

end 

if i=numfoot % set endpoint for sample range for + deriv tracking 
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endfoot(i)=(nbp-1 ); 

else endfoot(i)=foot(i+ 1 ); 

end 

for n=( foot(i)+ 1): endfoot(i) % track + derivative between detected 'foot' locations 

if BPderiv(n)>O 

ifBP(n)>=maxima(numsyst) 

maxima(numsyst)=BP(n); 

end 

elseif BPderiv(n)<O 

break % break from maxima search loop 

end 

end 

% Determine if maxima are above threshold 

if maxima( numsyst )>=thresh 

systole( numsyst )=n; 

numsyst=numsyst+ 1; 

end 

% array of systolic peak sample #s 

end; % end for 'foot' loop 

% redefine foot array as those feet immediately preceeding the detected systolic peaks 

% Define the global search windows to find the possible dicrotic notch points 

startl=round(0.034*rate); % start search for notch 34 ms after PSP (global search) 

end 1 =round(0.280*rate); % end search for notch 280 ms after PSP (global search) 

for i= l:length( systole) 

winstart 1(i)=systole(i)+start1; 

if winstart 1(i)>nbp-start1 

winstart 1(i)=nbp-start1; % ran out of data: :no samples in search window 
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end; 

end; 

for i=l:(length(systole)-1) 

win end 1(i)=systole(i)+end1; 

if win end 1(i)>systole(i+1) 

Winend 1(i)=systole(i+1 ); 

elseif winend 1 (i)>( nbp-start 1) 

winend 1(i)=nbp-start1; % ran out of data: :too few samples in search window 

end; 

end; 

win end 1 (length( systole) )=nbp-start 1; % end of search window for la~t cardiac cycle 

% Global search to find dicrotic notch (uses weighted sum of 11 samples in time window) 

for i=l:length(winstartl) 

. for n=winstartl(i):winendl(i); % search window for global search 

weightl(i,n)=BPfilt(n-5)+BPfilt(n-3)+BPfilt(n-l)-
; 

6*BPfilt(n+ 1 )+BPfilt(n+2)+BPfilt(n+4)+BPfilt(n+6); 

end; 

[globe(i),notchl(i)]=max(weightl(i,:)); 

end; 

% Set window durations for local search for the dicrotic notch 

for i=l:length(notchl) 

winstart2(i)=notch 1 (i)-5; 

if winstart2(i)<=O 

winstart2(i)=2; 

end; 
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winend2(i)=notch 1 (i)+5; 

if winend2(i)>length(BP:filt )-2 

winend2(i)=length(BP:filt )-2; 

end; 

end; 

% Local search to find the dicrotic notch (use weighted sum of3 sample pts in window) 

for i=l :length(winstart2) 

for n=winstart2(i):winend2(i); % search window for global search 

weight2(i,n)=BPfilt(n-1)-2*BPfilt(n+l)+BPfilt(n+2); 

end; 

[globe(i),notch(i)]=max(weight2(i,:) ); 

end; 

% END OF PROGRAM 
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A.3 Jundanian Algorithm 

% Systolic peak and diastolic value (end diastole) detection algorithms based on [53] 

% Sliding slope bars method 

% 80 msec slope bar= 14.4 samples 14 samples= 77.78 ms] (with sample rate= 180 Hz) 

% 40 msec slope bar= 7.2 samples [7 samples= 38.89 ms] (with sample rate= 180 Hz) 

% SYSTOLIC PEAK DETECTOR 

% test 80 ms slope bar condition (find slope between 2 pts: (i and i+14 points) 

% criteria: ((i+ 14) - i)/80 ms>= 16 mmHg/80 ms (0.2) 

% is approx: ((i+14)- i)/77.78 >= 15.56 mmHg/77.78 ms (0.20005) 

% then find next minimum (slope changes from + to -) 

numsyst=l; 

i=l; 

while i<=(nbp-14) 

if (BP(i+ 14)-BP(i)) >= 15.56 

i=i+ 14; 

maxima( ~umsyst )= BP(i-1 ); 

stop=O; 

while stop=O; 

if BP(i)>=maxima(numsyst) 

maxima( numsyst )=BP(i); 

i=i+ 1; 

if i>=length(BP) 

stop=l; 

end; 

else systole(numsyst)=i; 
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numsyst=numsyst+ 1; 

i=i+ I; 

stop= I; 

end; 

end; 

else i=i+ l; 

end; 

% end while: search for maximum point 

end; 

% DIASTOLIC VALUE DETECTOR 

% test 40 ms slope bar condition (find slope between 2 pts: (i and i+7 points) 

% criteria: ((i+7) - i)/40 ms<= -5 mmHg/40 ms (-0.125) 

% is approx: ((i+7) - i)/38.89 <= -4.861 mmHg/38.89 ms (-0.12499) 

% then find next minimum (slope changes from - to +) 

numnotch= 1; 

i=l ; 

while i<=(nbp-7) 

if (BP(i+7)-BP(i)) <= -4.861 

i=i+7; 

minima(numnotch)=BP(i-1 ); 

stop=O; 

while stop=O 

if BP(i)<=minima(numnotch) 

minima(numnotch)=BP(i); 

i=i+l; 

ifi=nbp 

stop=l; 
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end; 

else notch(numnotch)=i; 

end; 

end; 

else i=i+ l; 

end; 

end; 

numnotch=numnotch+ 1; 

i=i+l; 

stop=l; 
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A.4 Martino Algorithm 

% This program locates the dicrotic notch using the algorithm presented in [54] 

% Apply 2nd order 1.2 Hz cutoff LP Butterworth filter to BP 

cutoff=l.2/(rate/2); % filter parameter for cutoff freq= 1.2 Hz. 

[b,c]=butter(2,cutofi); % generate Butterworth filter coeffs 

BPfilt=filter(b,c,BP); % signal has no phase delay 

% Compare original data with filtered (shifted) version 

compare=O; 

for i=l:nbp 

· % initialization 

t(i)=i*(l/rate) - (I/rate); 

if BP(i) > BPfilt(i) 

compare(i)= 100; 

elseif BP(i) < BPfilt(i) 

compare(i)=O; 

end; 

end; 

% Determine sample# of upstrokes (when 'compare' goes from 0 to 1) 

% and the sample # of downstrokes (when 'compare' goes from 1 to 0) 

numups=O; 

numdowns=O; 

for i=l :(nbp-1) 

if compare(i)=O & compare(i+ 1 )>O 

numups=numups+ 1; 

upstroke(numups )=i+ 1; 

end; 
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if compare(i)>O & compare(i+ I )=O 

numdowns=numdowns+ I; 

dnstroke( numdowns )=i+ I; 

end; 

end; 

% Organize upstrokes with corresponding downstrokes 

numdowns=O; 

for i= l:length( upstroke) 

for n= l:length( dnstroke) 

if upstroke(i)<dnstroke( n) 

numdowns=numdowns+ I; 

downstroke( numdowns )=dnstroke( n ); 

break 

end; 

end; 

end; 

% Calculate the first difference of the filtered blood pressure waveform 

BPderiv=difl{BPfilt ); 

% Generate search window for the dicrotic notch 

window=0.200*rate; % dicrotic notch search window duration (in sample #s) 

% find notch location in time window (200 msec after each dnstroke) using derivative 

numnotch=O; 

for i= 1 :length( downstroke) 

counter=O; 

for n=downstroke(i) : min( ( downstroke(i)+window ),length(BPderiv)) 

if BPderiv(n)>O 
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end; 

end; 

counter=counter+ 1; 

end; 

if counte1 4 

numnotch=numnotch+ 1; 

notch( numnotch )=n; 

break 

elseif BPderiv(n)<O 

counter=O; 

end; 

% END OF PROGRAM 

128 



A.5 Kinias Algorithm 

% This program locates the dicrotic notch using the algorithm presented by [55]. 

P=BP; 

scale=3; 

n=2"scale; 

thresh=lO; 

numpoint=O; 

for k=l :(nbp-n) 

delP(k)=P(k+n)-P(k); 

% Blood pressure data 

% exponent for chord length 

% initial length of slope analysis chord (need a power of 2) 

% Threshold of blood pressure= 10 mmHg 

% initialize# of bent points found 

% do until all data points are exhausted (STEP 1) 

% n-difference at time k 

% Compare the magnitude of delP to the threshold to define the class of the n-difference 

if (delP(k)>O & (abs(delP(k))>thresh)) % class=+ (designated by 1) 

class(k )= 1 ; 

elseif (delP(k)>O & (abs(delP(k))<thresh)) % class= +O (designated by 10) 

class(k)=lO; 

elseif (delP(k)<O & (abs(delP(k))>thresh)) % class= - (designated by -1) 

class(k )=-1 ; 

elseif (delP(k)<O & (abs(delP(k))<thresh)) % class =-0 (designated by -10) 

class(k)=-1 O; 

end; 

end; 

for k=2:length(class) 

% end for k=l :(nbp-n) 

% (STEP 2) 

% test to see if class of delP(k-1) compared to class of delP(k) suggests a change of 

direction (Table 1) 

if class(k-1)=1 & abs(class(k))=IO 

action(k)=2; % class H2 

elseif class(k-1 )=-1 & class(k)= 10 
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action(k)=-2; % class L2 

elseif class(k-1)-= 1 & class(k)=l 

action(k)=-1; % class Ll 

elseif class(k-1 )=-1 & class(k)=-10 

action(k)=-2; % class L2 % changed from table 1 ( Ll to L2 class) 

elseif class(k-1) --= -1 & class(k)=-1 

action(k)=l; % class Hl 

else action(k)=O; % "no class" designation 

end; 

end; % end for k=2:length(class) 

k=2; % initialize start of class comparison time 

while k<=(length( delP)-1) % can analyze only available n differences -1 

if action(k)--= 0 % a change in direction has occurred else do next k = k+ 1 

% Start bent point selection process (STEP 3) 

start=k; 

finish=k+n; 

stop=O; 

% initialize interval for bent point search 

% set search time interval k to k+n 

while stop=O % bent point found if stop=l 

j=n/2; % length of sub chord in interval (k to k+n) 

if ((delP(start)>O & delP(start+l)<O) I (delP(start)<O & delP(start+l)>O)) 

ifj=l % change of sign occurs. Redefine search time interval 

else 

numpoint=numpoint+ 1; 

bentpt( numpoint, 1)=start+1; 

bentclass( numpoint )=action(k); 

stop=l; 
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start=start+ 1; 

finish=start+ 1 +j; 

end; 

else numpoint=numpoint+ 1; % no sign change. Take sample # of 1st point in 

interval as the bent point 

end; 

end; 

end; 

k=k+l; 

end; 

bentpt( numpoint, 1 )=start; 

bent class( numpoint )=action(k); 

stop=l; 

% end while stop = 0 search for bent point 

% end if action -=O loop 

% obtain next sample of data to analyze 

% end while k<=(length( delP)-1) 

% End of the search for bent points 

% Start search for characteristics of the BP (end diastole, systolic peak and dicrotic notch) 

% Generate u,(upstrokes) i (inflections) and d (downstroke) pts from bentpt array (Step 4) 

numd=O; % initialize # of 1d's found 

numi=O; % initialize # of 'i's found 

numu=O; % initialize # of 'u's found 

for m=2: length(bentpt(:, 1)) 

ifbentclass(m-1)=1 & bentclass(m)<O 

numd=numd+ 1; 

bentpt(m,2)=-1; % bentpt class = 'd' ( downstroke) 

delvd(numd, 1)=bentpt(m,1 ); % include sample # identification with delvd code 

delvd(numd,2)=P(bentpt((m-l),1))-P(bentpt((m),1)); % 'voltage' diff of 2 bent pts 

alphad(numd, 1 )=bentpt((m-1),1 ); % bentpt sample# of 1st pt in 'd' ID 
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alphad(numd,2)=bentpt(m, 1 ); % bentpt sample# of 2nd pt used in 'd' identification 

elseif bentclass( m-1 )=-1 & bentclass( m )>O 

numu=numu+ 1; 

bentpt(m,2)=1; % bentpt class= 'u' (upstroke) 

delvu(numu, 1)=bentpt(m,1 ); 

delvu(numu,2)=P(bentpt((m-1),1))-P(bentpt(m,1)); % 'voltage' diff of 2 bent pts 

alphau(numu,1)=bentpt((m-1),1); % bentpt sample# of 1st pt in 'u' ID 

alphau(numu,2)=bentpt(m,1); % bentpt sample# of 2nd point used in 'u' ID 

elseif abs(bentclass( m-1) )=2 & abs(bentclass( m) )= 1 

numi=numi+ 1; 

bentpt( m,2)=1 O; 

delvi(numi, 1)=bentpt(m, 1); 

% bentpt class= 'i' (inflec~ion point) 

delvi(numi,2)=P(bentpt((m-1),1))-P(bentpt(m,1)); % 'voltage' diff ofthe 2 bent pts 

alphai(numi,1)=bentpt((m-1),1); % bentpt sample# of 1st point used in 'i' ID 

alphai(numi,2)=bentpt(m,1); % bentpt sample# of 2nd point used in 'i' ID 

end; 

end; 

% Analyze array of'u's and generate array of accepted 'u's according to p.215. 

% Determine (for all 2 second zones) the acceptable 'u's 

numsamp=rate*2; % rate (Hz) * 2 sec = # of samples in 2 seconds 

numzones=round(nbp/numsamp); % #of avaliable 2 sec zones in BP data 

totalu=O; % initialize total # of accepted 'u's 

for zone=! :numzones 

samples=numsamp*zone; 

numu=O; 

% cumulative # of samples to the end of this zone 

% initialize # of selected 'u' s in zone 
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clear uindex orderP zoneu zoneP acceptu % clear previous zone information 

if zone 1 

% Step 5: Start of monitoring the first zone & test for acceptable ratios. 

% Truncate data for initial 2 sec interval 'starting zone'. Test zone for good ratios of 'u's 

% pairs. The last 'u' in this zone is used to define 'u' ratios for subsequent 2 sec zones. 

% Up to 8 'u's (in zone) withe largest delv are arranged in order of magnitude. 

for i=l:length(alphau) % find all 'u' sin zone 

end; 

if (alphau(i,2) -=O & alphau(i,2)<=samples) % 'u' is w/in zone 

numu=numu+ 1; 

zoneu(numu)=alphau(i,2); 

zoneP(numu)=P(alphau(i,2)); 

end; 

ifnumu>8 

break; 

end; 

% # of'u' in this zone 

% pressure at 'u' location in this zone 

% only want to analyze a max of 8 'u' in zone 

% break out of for loop if have> 8 'u's 

[orderP,uindex]=sort(zoneP); % pressure and original index of'u' pts in this zone 

% The ratios of of the delv's of the ·ordered 'u' are computed (step 5.2): 

if length(uindex)> 1 

for i=2:length(uindex) 

ratio=delvu( uindex(i-1 ),2)/delvu( uindex(i),2); 

if ratio>2 % 'u's between uindex(i) and length(uindex) are rejected as 'u' 

end; 

uindex=uindex(l:(i-1)); % resize unidex eliminating rejected 'u's 

reject= I ; 

break; 

% flag indicating 'u' rejection has occurred 

% no need to check rest of 'u's in zone 
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end; 

end; % end iflength(uindex)>l 

elseif zone> 1 

for i=(totalu+ l):length(alphau) % find all 'u' s in zone 

if (alphau(i,2)>uO(zone-1) & (alphau(i,2)<=samples)) % 'u' is w/in zone 

end; 

numu=numu+ 1; % # of 'u' in this zone 

zoneu( numu )=alphau(i,2); 

zoneP(numu)=P(alphau(i,2)); % pressure (mmHg) at 'u' location in this zone 

end; 

ifnumu>8 % only want to analyze a max of 8 'u' in zone 

break; % break out of for loop if have > ~ 'u's 

end; 

[ orderP, uindex ]=sort(zoneP); % pressure & original index of 'u' points in this zone 

% The ratios of of the delv's of the ordered 'u' are computed (step 5.2): 

if length(uindex)> 1 

for i=2:length(uindex) 

ratio=delvu( ( totalu+uindex(i-1) ),2)/delvu( ( totalu+uindex(i) ),2); 

% 'u's between uindex(i) and length(uindex) are rejected as 'u' 

if ( delvu(totalu,2)>=(2*delvu(uindex(l ),2)) & ratio>2) 

end; 

end; 

end; 

uindex=uindex(l :(i-1)); % resize unidex eliminating rejected 'u's 

reject= I; 

break; 

% flag indicating 'u' rejection has occurred 

% no need to check rest of 'u's in zone 

% end iflength(uindex)> 1 
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end; % end if zone 1 

% Reorder 'u's (with appropriate 'u's removed) 

orderindex=sort( uindex ); 

for i=l:length(uindex) 

acceptu(i)=alphau(totalu+orderindex(i),2); 

finalu( totalu+i)=acceptu(i); 

% sample location of accepted 'u's 

% final arrary of accepted 'u's 

end; 

totalu=totalu+length( acceptu ); % accumulated total # of 'u's accepted thus far 

% The last entry in acceptu is the 'u' to compare the next zone 'u's 

uO( zone )=acceptu(length( acceptu) ); 

end; % for zone = 1 :numzones 

% Define cardiac "cycle" relative to accepted upstrokes ('u's). Start every cycle on 'u' 

thresh2=0.5; 

for i=l:length(finalu) 

for m=l :length(alphau) 

end; 

end; 

if alphau(m,2) finalu(i) 

if abs( delvu(m,2))>thresh2 

cycle(i)=finalu(i); 

end; 

end; 

% threshold for 'u's to define cycle 

% find matching delvu entry for finalu entry 

% found correct index for finalu entry 

% cycle starts at upstroke 'u' 

% Determine if proper character strings occur= dicrotic notch (diu, did, di or du) (step 6) 

c=l; 

while c<=length( cycle) 

numnotch 1 =O; 

% cardiac cycle # to start (in zone) 

% reset # of dicrotic notches found per cycle 
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for i=2: (length(bentpt )-1) 

if c=length( cycle) 

cyclend=nbp; 

% look at bentpts in selected area of interest (cycle) 

% organize end of cycle window for notch search 

else cyclend=cycle( c+ 1 ); 

end; 

if (bentpt(i, 1 )>=cycle( c) & bentpt(i, 1 )<cyclend) 

end; 

end; 

c=c+l; 

end; 

if(bentpt((i-1),2)=-1 & bentpt(i,2)=10 & bentpt((i+l),2)=1) % string= 1diu1 

numnotch 1=numnotch1+1; 

notch 1 ( c,numnotch 1 )=bentpt((i-1),1 ); % alphai(:,1) or alphad(:,2) 

elseif (bentpt((i-1),2)=-l&bentpt(i,2)=10 & bentpt((i+l),2)=1) % string= did 

numnotch 1=numnotch1+1; 

notch 1 ( c,numnotch 1 )=bentpt( (i-1),1 ); 

elseif (bentpt((i-1),2)=-1 & bentpt(i,2)=10) % string= 'di' 

numnotchl =numnotch 1+1; 

notch 1 ( c,numnotch 1 )=bentpt( (i-1),1 ); 

elseif (bentpt((i-1),2)=-1 & bentpt(i,2)=1) 

numnotch 1=numnotch1+1; 

notch 1 ( c,numnotch 1 )~bentpt( (i-1),1 ); 

end; 

% do next cycle 

% end while c < length( cycle )-1 

% If more than 1 did, diu etc sequence has appeared in a cycle, select the notch bentpt 

with % the largest slope curvature (step 7) 

for row=l:length(notchl(:,1))% for all rows in notch I(# of cycles) 
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notch2=find(notchl(row,:)); % determine# of nonzero elements in notchl (per cycle) 

iflength(notch2)>1 % if there are> 1 possible notches in this cycle 

for col=l :length(notchl(row,:)) 

for i=l:length(bentpt);% find bentpt index for notchl to calc slopes & curvature 

ifnotchl(row,col) bentpt(i,l) 

slope 1 =( delP(bentpt(i, 1 ))-delP(bentpt( (i+ 1),1)) )/(bentpt(i, 1 )-

bentpt( (i+ 1), I)); 

slope2=( delP(bentpt( (i+ 1),1) )-

delP(bentpt( (i+2), l)))/(bentpt((i+ 1), 1 )-bentpt((i+2), l)); 

curve(col)=abs(slopel *slope2); % calc curvature of character string 

break; % found slopes fo! this notch string 

end; 

end; % find curvature for next notch 1 string in this cycle 

end; 

[maxcurve,maxindex]=max(curve); % which notchl col has> curvature (in row) 

notch3(row)=notchl(row,maxindex); % notch pt is notchl with> curve in cycle 
; 

else notch3(row)=notchl(row, l); % if only 1 string found then notchl is the notch pt 

end; % end hatch selection for this cycle 

end; % end of notch array detennination 

% Eliminate zeros in notch3 array to achieve array of valid dicrotic notch sample locations 

index=find(notch3); % find indices of nnzero array elements 

numnotch=length(index); % #of valid notches(# of nonzero elements) 

for i=l :numnotch 

notch(i)=notch3 (index(i) ); 

end; 
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A.6 Elghazzawi Algorithm 

% This program locates the dicrotic notch using the algorithm presented by [5 lJ 

% ECG R wave detection algorithm (to set search window for end diastole) 

% R-wave =max of section above threshold (80% of global maximum) 

thresh=max(ecg)*0.70; % set threshold magnitude for R wave spike 

for i=l :nbp 

height(i)=thresh; 

end; 

% Locate sample# of threshold crossings 

numups=O; % # of threshold upslope crossings found 

numdowns=O; % # of threshold downslope corssings found 

for i=l :nbp-1 

if ecg(i)<=thresh & ecg(i+ 1 )>=thresh 

numups=numups+ 1; 

upslope(numups)=i; % ordered sample #s ofupslopes found 

end; 

if ecg(i)>=thresh & ecg(i+ 1 )<=thresh 

numdowns=numdowns+ 1; 

dnslope( numdowns )=i; % ordered sample #s of downslopes found 

end; 

end; 

% Find sample # of maximum in each section found above threshold 

% Sample # of max search must start at upslope and end at downslope threshold crossing 

if ((numups -=O)&(numdowns -=O)) % Need at least 1 threshold crossing pair 
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% If analysis waveform has the 1st upslope detected before a downslope: 

if upslope( 1)<dnslope(1) 

for i= 1 :numdowns 

[pks(i), offset(i) ]=max( ecg( upslope(i): dnslope(i)) ); 

rwave(i)=upslope(i)+( offset(i)-1 ); 

end; 

% If analysis waveform h~s the 1st downslope detected before an upslope: 

elseif dnslope( 1)<upslope(1) 

for i= 1 :numdowns-1 

[pks(i), offset(i) ]=max( ecg( upslope(i) : dnslope(i+ 1)) ); 

end; 

end; 

end; 

rwave(i)=upslope(i)+( offset(i)-1 ); 

% Calculate R to R interval (in time) 

for i=l:(length(rwave)-1) 

RR(i)=( rwave(i+ 1 )-rwave(i) )/rate; 

HR(i)= 1/RR(i)*60; 

rr(i)=rwave(i+ 1 )-rwave(i); 

end; 

% sample # of maxima 

% end of analyzing threshold crossing pairs 

% R to R wave time interval in seconds 

% heart rate (bpm) 

% R to R time interval in samples 

% Calculate the 1st derivative of the BP waveform 

BPderivl =diff(BP); 

% Locate PSP and ED by locating the maximum and minimum of the BP waveform 

% using zero crossings and change in slope direction of the derivative of the BP (dP/dt) . 

% Find where BPderivl goes from+ to - (for finding systolic peaks) 

numpeakl =O; % # of end diastoles found 
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end; 

end; 

% SYSTOLIC PEAK DETECTION 

% Locate last maximum in time window after Rwave::systolic peak detection 

systole(i)=rwave(i)+round(IT(i)*0.25); % initialization 

for n=( rwave(i)+round( IT(i) * 0 .25)): ( rwave(i)+round( IT(i) * 0. 60)) 

for m= 1 :Iength(posneg 1) 

end; 

if posnegl(m) 11 

end; 

end; 

if BP( n )>=BP( systole(i)) 

systole(i)=n; 

end; 

end; % end loop for IT cycles (finding all end diastoles and systolic peaks) 

for i=l:(length(IT)-1) % find dicrotic notches in all cycles 

% DICROTIC NOTCH DETECTION 

% Dicrotic notch detection using - to + slope change and search window principles 

% Locate 1st - to+ slope change between (systole+ 10%IT) to (systole+ 70% of IT) 

m=l; 

n=systole(i)+round(IT(i)*O. l O); 

stop=O; 

while stop=O 

if negposl(m)=n 

notch(i)=n; 

stop=l; 

% search window starts at 10% of IT after notch 
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for i= 1: (length(BPderiv 1 )-1) 

ifBPderivl(i)>=O & BPderivl(i+l)<=O 

end; 

end; 

numpeakl =numpeakl + 1; 

posneg 1 ( numpeak 1 )=i; 

% Find where BPderivl goes from - to+ (for finding end diastoles and dicrotic notches) 

numfootl=O; 

for i=l:(length(BPderivl)-1) 

ifBPderivl(i)<=O & BPderivl(i+l)>=O 

numfoot 1=numfootl+1; 

negpos 1 ( numfootl )=i; 

end; 

end; 

% # of end diastoles found 

% END DIASTOLE DETECTION 

% Locate last min in time window after Rwave by identifying the max amplitude sample# 

% of a - to + slope change within the appropriate time search window for each rr interval 

for i=l :length(rr) 

diastole(i)=rwave(i); % initialization of possible end diastole sample locations 

for n=rwave(i) :(rwave(i)+round(rr(i)*0.25)) %window=25% R-R intervals (in samples) 

for m=l:length(negposl) 

if negposl(m)=n 

ifBP(n)<=BP(diastole(i)) 

diastole(i)=n; 

end; 

end; 
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APPENDIXB 

Tabular Performance Results of the Dicrotic Notch Detection Algorithms for each 

of the test sets (A) 30 files; (B) 50 files; (C) 72 files. 

Filename #Cycles Wavelet Lee Jundanian Martino Kini as Elghazzawi 

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN 

FILE003 13 13 0 0 11 2 2 1 12 12 7 6 6 4 5 9 2 11 11 

FILE004 7 7 0 0 6 0 1 4 9 3 7 0 0 7 0 0 6 1 1 

FILE005 11 11 0 0 0 9 11 4 7 7 0 11 11 0 11 11 10 0 1 

FILE007 9 9 0 0 8 1 1 9 5 0 9 0 0 9 0 0 9 0 0 

FILE008 7 7 0 0 7 0 0 7 0 0 5 2 2 1 6 6 7 0 0 

FILE009 11 11 0 0 9 0 2 1 23 10 11 0 0 11 0 0 2 10 9 

FILEOlO 12 5 7 7 1 10 11 12 0 0 2 10 10 0 12 12 12 0 0 

FILE015 9 9 0 0 8 1 1 9 0 0 8 1 1 1 8 8 9 0 0 

FILE019 9 9 0 0 6 0 3 2 7 7 4 5 5 2 7 7 8 1 1 

FILE020 12 11 1 1 6 4 6 0 11 12 10 2 2 8 4 4 0 11 12 

FILE021 11 0 11 11 3 8 8 11 12 0 11 1 0 0 8 11 0 11 11 

FILE022 9 9 0 0 8 0 1 5 9 4 1 8 8 3 1 6 5 4 4 

FILE023 11 11 0 0 4 0 7 0 15 11 9 1 2 8 3 3 1 10 10 

FILE027 8 8 0 0 5 0 3 7 1 1 7 0 1 2 6 6 8 0 0 

FILE031 14 11 3 3 7 7 7 14 1 0 1 13 13 1 13 13 14 0 0 

FILE032 9 9 0 0 6 0 3 9 8 0 9 0 0 6 3 3 9 0 0 

FILE033 11 0 11 11 1 10 10 10 4 1 0 11 11 0 11 11 9 2 2 

FILE034 5 5 0 0 1 4 4 5 4 0 5 0 0 2 3 3 5 0 0 

FILE036 7 1 6 6 1 6 6 6 1 1 0 7 7 0 7 7 7 0 0 

FILE046 12 9 0 3 1 0 11 6 8 6 4 5 8 7 3 5 7 4 5 
FILE089 11 4 7 7 6 5 5 9 50 2 7 7 4 1 2 10 5 6 6 

FILE113 9 9 0 0 9 0 0 8 1 1 7 2 2 0 0 9 8 0 1 
FILE120a 8 4 3 4 0 5 8 8 6 0 6 2 2 2 4 6 6 3 2 

FILE120b 7 7 0 0 2 7 5 7 7 0 7 0 0 5 2 2 6 1 1 
FILE121 10 5 5 5 0 10 10 10 0 0 0 10 10 0 10 10 10 0 0 
FILE126a 6 5 1 1 2 6 4 6 5 0 5 1 1 0 5 6 2 3 4 

FILE126b 5 0 5 5 1 5 4 5 5 0 5 0 0 0 5 5 4 1 1 
FILE 128 10 10 0 0 0 6 10 10 0 0 8 1 2 1 3 9 10 0 0 
FILE136 12 12 0 0 0 .12 12 2 0 10 11 1 1 0 0 12 9 3 3 
FILE137 9 9 0 0 9 0 0 1 8 8 7 2 2 0 0 9 1 7 8 

Total 284 220 60 64 128 118 156 188 219 96 173 109 111 81 142 203 191 89 93 

Sensitivity % 77.5 45 66.2 61 29 67.3 
+Productivity % 78.6 52 46.2 61 36 68.2 

FP Rate % 21.1 42 77.1 38 50 31.3 
FN Rate % 22.5 55 33.8 39 71 32.7 
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Filename #Cycles Wavelet Lee Jundanian Martino Kini as Elghazzawi 
TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN 

FILEOOl 18 18 0 0 13 0 5 7 11 11 16 2 2 10 8 8 11 7 7 

FILE003 58 54 4 4 46 11 12 4 56 54 32 26 26 20 24 38 9 47 49 

FILE005 46 16 30 30 1 35 45 4 43 42 3 43 43 0 46 46 32 3 14 

FILE007 41 41 0 0 26 1 15 41 15 0 41 0 0 40 1 1 41 0 0 

FILE009 48 48 0 0 46 0 2 3 106 45 48 0 0 43 5 5 7 41 41 

FILEOlO 12 5 7 7 1 10 11 12 0 0 2 10 10 0 12 12 12 0 0 

FILEOll 33 30 3 3 22 2 11 0 33 33 25 2 8 5 28 28 15 17 18 

FILE012 49 47 2 2 35 3 14 38 13 11 11 38 38 3 46 46 36 5 13 

FILE013 34 29 4 5 0 0 34 14 42 20 29 6 5 1 6 33 3 12 31 

FILE014 43 38 1 5 17 4 26 43 31 0 40 3 3 32 11 11 39 0 4 

FILE015 35 35 0 0 13 0 22 34 1 1 33 2 2 15 20 20 30 5 5 

FILE016 23 16 7 7 5 17 18 23 0 0 3 20 20 0 23 23 23 0 0 

FILE019 35 35 1 0 11 0 24 18 17 17 8 27 27 10 25 25 29 4 6 

FILE020 47 23 24 24 12 21 35 0 47 47 6 41 41 44 3 3 0 33 47 

FILE021 11 0 11 11 3 8 8 11 12 0 11 1 0 0 8 11 0 11 11 

FILE023 11 11 ·o 0 4 0 7 0 15 11 9 l 2 8 3 3 1 10 10 

FILE027 35 35 0 0 20 0 15 31 4 4 34 0 1 18 17 17 32 2 3 

FILE029 41 41 0 0 40 0 1 41 41 0 25 15 16 33 8 8 39 1 2 

FILE031 56 52 5 4 42 8 14 56 12 0 13 43 43 2 54 54 49 3 7 

FILE034 25 25 0 0 16 9 9 25 24 0 25 0 0 5 20 20 25 0 0 

FILE035 20 20 0 0 9 11 11 19 2 1 0 20 20 1 19 19 16 1 4 

FILE037 30 28 2 2 23 2 7 30 0 0 2 28 28 0 30 30 9 4 21 
FILE039 28 23 5 5 15 3 13 15 74 13 25 31 3 10 19 18 16 12 12 

FILE069 22 1 21 21 0 9 22 4 18 18 0 22 22 0 '22 22 3 2 19 

FILE076 27 25 0 2 0 12 27 27 47 0 8 19 19 8 7 19 26 0 1 
FILE077 24 24 0 0 0 13 24 24 45 0 0 25 24 1 9 23 24 0 0 

FILE082 22 22 0 0 7 9 15 22 13 0 14 10 8 11 6 11 17 5 5 
FILE084 23 22 0 1 23 0 0 11 56 12 23 0 0 0 22 23 2 15 21 
FILE088 14 14 0 0 11 0 3 5 32 9 14 1 0 8 6 6 7 7 7 
FILE089 11 4 7 7 6 5 5 9 50 2 7 7 4 1 2 10 5 6 6 
FILE090 15 15 0 0 15 15 0 15 16 0 15 0 0 15 0 0 13 2 2 
FILE091 21 21 0 0 0 21 21 21 0 0 0 21 21 0 21 21 21 0 0 
FILE095 25 25 0 .o 16 7 9 25 25 0 25 10 0 19 13 6 25 0 0 
FILElOl 14 1 12 13 0 14 14 4 10 10 0 14 14 0 14 14 7 3 7 
FILE102 13 11 2 2 11 2 2 11 8 2 0 14 13 0 9 13 5 4 8 
FILE108 22 19 0 3 11 0 11 15 7 7 18 7 4 11 9 11 2 11 20 
FILE112 17 17 0 0 17 0 0 17 0 0 8 9 9 3 14 14 17 0 0 
FILE113 18 17 1 1 17 1 1 18 5 0 18 1 0 0 2 18 12 2 6 
FILE115 23 22 0 1 0 23 23 23 1 0 0 23 23 1 22 22 22 0 1 
FILE117 24 23 1 1 15 0 9 24 0 0 0 24 24 0 22 24 15 9 9 
FILE121 10 5 5 5 0 10 10 10 0 0 0 10 10 0 10 10 10 0 0 
FILE127 13 13 0 0 13 0 0 10 6 3 0 13 13 4 9 9 13 0 0 
FILE130 13 13 0 0 13 0 0 1 12 12 13 0 0 0 12 13 13 0 0 
FILE132 26 26 0 0 16 0 10 2 41 24 25 0 1 14 12 12 2 22 24 
FILE139 21 21 0 0 13 0 8 8 17 13 13 8 8 12 9 9 15 6 6 
FILE140 21 18 1 3 4 3 17 13 17 8 6 16 15 2 16 19 14 4 7 
FILE141 17 10 7 7 8 1 9 16 0 1 0 16 17 0 16 17 15 1 2 
FILE145 23 23 0 0 13 0 10 8 16 15 14 9 9 0 13 23 16 7 7 
FILE146 19 15 4 4 1 18 18 0 20 19 3 16 16 0 1 19 3 16 16 
FII...El47 24 24 0 0 0 7 24 24 1 0 22 0 2 22 1 2 19 3 5 

Total 1301 1121 167 180 650 315 651 836 1062 465 687 654 614 432 735 869 817 343 484 

Sensitivity % 86.2 50 64.3 53 33 62.8 
+Productivity % 87 67 44 51 37 70.4 
FPRate % 12.8 24 81.6 50 56 26.4 
FNRate % 13.8 50 35.7 47 67 37.2 
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Filename #Cycles Wavelet Lee Jundanian Martino Kini as Elghazzawi 
TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN 

FILEOOl 18 18 0 0 13 0 5 7 11 11 16 2 2 10 8 8 11 7 7 

FILE003 58 54 4 4 46 11 12 4 56 54 32 26 26 20 24 38 9 47 49 

FILE004 31 31 0 0 31 1 0 16 33 15 31 0 0 31 0 0 30 1 1 

FILE005 46 16 30 30 1 35 45 4 43 42 3 43 43 0 46 46 32 3 14 

FILE007 41 41 0 0 26 1 15 41 15 0 41 0 0 40 1 1 41 0 0 

FILE008 7 7 0 0 7 0 0 7 0 0 5 2 2 1 6 6 7 0 0 

FILE009 48 48 0 0 46 0 2 3 106 45 48 0 0 43 5 5 7 41 41 

FILEOlO 12 5 7 7 1 10 11 12 0 0 2 10 10 0 12 12 12 0 0 

FILEOll 33 30 3 3 22 2 11 0 33 33 25 2 8 5 28 28 15 17 18 

FILE012 49 47 2 2 35 3 14 38 13 11 11 38 38 3 46 46 36 5 13 

FILE013 34 29 4 5 0 0 34 14 42 20 29 6 5 1 6 33 3· 12 31 

FILE014 43 38 1 5 17 4 26 43 31 0 40 3 3 32 11 11 39 0 4 

FILE015 35 35 0 0 13 0 22 34 1 1 33 2 2 15 20 20 30 5 5 

FILE016 23 16 7 7 5 17 18 23 0 0 3 20 20 0 23 23 23 0 0 

FILE019 35 35 1 0 11 0 24 18 17 17 8 27 27 10 25 25 29 4 6 

FILE020 47 23 24 24 12 21 35 0 47 47 6 41 41 44 3 3 0 33 47 

FILE021 11 0 11 11 3 8 8 11 12 0 11 1 0 0 8 11 0 11 11 

FILE022 9 9 0 0 8 0 1 5 9 4 1 8 8 3 1 6 5 4 4 

FILE023 11 11 0 0 4 0 7 0 15 11 9 1 2 8 3 3 1 10 10 

FILE027 35 35 0 0 20 0 15 31 4 4 34 0 1 18 17 17 32 2 3 
FILE029 41 41 0 0 40 0 1 41 41 0 25 15 16 33 8 8 39 1 2 

FILE030 20 0 14 20 0 9 20 10 10 10 0 20 20 0 20 20 18 2 2 

FILE031 56 52 5 4 42 8 14 56 12 0 13 43 43 2 54 54 49 3 7 

FILE032 9 9 0 0 6 0 3 9 8 0 9 0 0 6 3 3 9 0 0 

FILE033 11 0 11 11 1 10 10 10 4 1 0 11 11 0 11 11 9 2 2 
FILE034 25 25 0 0 16 9 9 25 24 0 25 0 0 5 20 20 25 0 0 

FILE035 20 20 0 0 9 11 11 19 2 1 0 20 20 1 19 19 16 1 4 

FILE036 7 1 6 6 1 6 6 6 1 1 0 7 7 0 7 7 7 0 0 
FILE037 30 28 2 2 23 2 7 30 0 0 2 28 28 0 30 30 9 4 21 
FILE039 28 23 5 5 15 3 13 15 74 13 25 31 3 10 19 18 16 12 12 
FlLE046 12 9 0 3 1 0 11 6 8 6 4 5 8 7 3 5 7 4 5 
FlLE060 16 15 1 1 14 17 2 16 70 0 16 6 0 7 6 9 1 15 15 
FlLE069 22 1 21 21 0 9 22 4 18 18 0 22 22 0 22 22 3 2 19 
FILE071 14 13 1 1 8 1 6 5 11 9 1 13 13 0 12 14 0 6 14 
FILE076 27 25 0 2 0 12 27 27 47 0 8 19 19 8 7 19 26 0 1 
FILE077 24 24 0 0 0 13 24 24 45 0 0 25 24 1 9 23 24 0 0 
FILE078 20 7 13 13 0 12 20 0 19 20 0 20 20 0 19 20 2 9 18 
FILE082 22 22 0 0 7 9 15 22 13 0 14 10 8 11 6 11 17 5 5 
FILE084 23 22 0 1 23 0 0 11 56 12 23 0 0 0 22 23 2 15 21 
FlLE085 29 29 0 0 21 8 8 29 29 0 8 21 21 25 4 4 26 0 3 
FILE088 14 14 0 0 11 0 3 5 32 9 14 1 0 8 6 6 7 7 7 
FILE089 11 4 7 7 6 5 5 9 50 2 7 7 4 1 2 10 5 6 6 
FlLE090 15 15 0 0 15 15 0 15 16 0 15 0 0 15 0 0 13 2 2 
FlLE091 21 21 0 0 0 21 21 21 0 0 0 21 21 0 21 21 21 0 0 
FILE094 18 18 0 0 18 0 0 17 5 1 3 15 15 0 1 18 17 1 1 
F1LE095 25 25 0 0 16 7 9 25 25 0 25 10 0 19 13 6 25 0 0 
FlLElOO 22 0 17 22 0 22 22 21 1 1 0 22 22 0 22 22 22 0 0 
FILElOl 14 1 12 13 0 14 14 4 10 10 0 14 14 0 14 14 7 3 7 
FILE102 13 11 2 2 11 2 2 11 8 2 0 14 13 0 9 13 5 4 8 
FILE103 14 14 0 0 5 0 9 10 4 4 13 1 1 0 13 14 13 0 1 
FlLE104 18 17 0 1 14 4 4 15 18 3 16 2 2 0 3 18 12 2 6 
FILE108 22 19 . 0 3 11 0 11 15 7 7 18 7 4 11 9 11 2 11 20 
FILE112 17 17 0 0 17 0 0 17 0 0 8 9 9 3 14 14 17 0 0 
FILE113 18 17 1 1 17 1 1 18 5 0 18 1 0 0 2 18 12 2 6 
FILE115 23 22 0 1 0 23 23 23 1 0 0 23 23 1 22 22 22 0 1 
FILE116 16 16 0 0 16 0 0 16 0 0 6 10 10 0 13 16 14 0 2 
FILE117 24 23 1 1 15 0 9 24 0 0 0 24 24 0 22 24 15 9 9 
FILE120 15 9 6 6 0 12 15 15 13 0 15 0 0 2 11 13 9 3 6 
FILE121 10 5 5 5 0 10 10 10 0 0 0 10 10 0 10 10 10 0 0 
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FILE126 12 11 1 1 3 10 9 12 10 0 12 0 0 0 10 12 4 7 8 

FILE127 13 13 0 0 13 0 0 10 6 3 0 13 13 4 9 9 13 0 0 

FILE130 13 13 0 0 13 0 0 l 12 12 13 0 0 0 12 13 13 0 0 

FILE132 26 26 0 0 16 0 10 2 41 24 25 0 1 14 12 12 2 22 24 

FILE137 17 16 1 l 10 0 7 0 17 17 7 10 10 0 0 17 0 11 17 

FILE138 13 12 1 1 12 1 1 13 0 0 0 13 13 0 2 13 13 0 0 

FILE139 21 21 0 0 13 0 8 8 17 13 13 8 8 12 9 9 15 6 6 
FILE140 21 18 1 3 4 3 17 13 17 8 6 16 15 2 16 19 14 4 7 

FILE141 17 10 7 7 8 l 9 16 0 1 0 16 17 0 16 17 15 1 2 
FILE145 23 23 0 0 13 0 10 8 16 15 14 9 9 0 13 23 16 7 7 

FILE146 19 15 4 4 1 18 18 0 20 19 3 16 16 0 1 19 3 16 16 

FILE147 24 24 0 0 0 7 24 24 1 0 22 0 2 22 l 2 19 3 5 

FILE149 16 16 0 0 14 0 2 8 7 8 12 4 4 1 15 15 14 2 2 

Total 1647 1380 239 267 840 428 807 1082 1339 565 846 844 801 515 917 1132 1056 412 591 

Sensitivity % 83.8 51 65.7 51 31 64.1 
+Productivity % 85.2 66 44.7 50 36 71.9 
FPRate % 14.5 26 81.3 51 56 25 
FNRate % 16.2 49 34.3 49 69 35.9 
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Appendix C 

Graphical Results of Detection Algorithm Performance 
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~ Arterial Blood Pressure (Wavelet) File009 
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